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A critical step in data analysis for many different
types of experiments is the identification of features
with theoretically defined shapes in N-dimensional
datasets; examples of this process include finding
peaks in multi-dimensional molecular spectra or
emitters in fluorescence microscopy images. Identifying
such features involves determining if the overall
shape of the data is consistent with an expected
shape, however, it is generally unclear how to
quantitatively make this determination. In practice,
many analysis methods employ subjective, heuristic
approaches, which complicates the validation of
any ensuing results—especially as the amount and
dimensionality of the data increase. Here, we present
a probabilistic solution to this problem by using
Bayes’ rule to calculate the probability that the
data has any one of several potential shapes. This
probabilistic approach may be used to objectively
compare how well different theories describe a
dataset, identify changes between datasets, and detect
features within data using a corollary method called
Bayesian Inference-based Template Search (BITS);
several proof-of-principle examples are provided.
Altogether, this mathematical framework serves as
an automated ‘engine’ capable of computationally
executing analysis decisions currently made by visual
inspection across the sciences.
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1. Introduction

Across the physical and life sciences, many experimental techniques rely upon pragmatic data
analysis steps where an expert researcher is required to make scientific decisions based on
their visual perception of data. This perception involves identifying and recognizing correlations
between datapoints that stem from underlying physical processes, which are ideally invariant
across experiments; we refer to these correlations as the latent structure of the data. Latent
structure manifests visually in what we would colloquially call the ‘shape’ of the data and is the
basis for inspection-driven analysis decisions. For example, an expert researcher might have to
visually identify a feature of interest by recognising an expected shape in a plot of their data (e.g.,
a shoulder on a peak in a molecular spectrum). Alternatively, such a researcher might anticipate
the location of an expected feature within their plotted data (e.g., a peak at a specific frequency in
a molecular spectrum), but must then decide whether or not it is actually present at that location.
In these types of determinations, the researcher must generate at least two visual models of a
phenomenon, manually compare those models to the shape of their experimental data, and then
choose the model that, in their expert opinion, best describes the data. To be explicit, in the first
example above, the researcher visually compares both the shape of a peak and the shape of a
peak with a shoulder to the experimental molecular spectrum. Similarly, in the second example,
the researcher visually compares both the shape of a peak and the shape of signal-free background
noise to the experimental molecular spectrum.

A key advantage of such expert-driven analyses is the human ability to make accurate,
informed decisions about the latent structure of experimental data, even in the absence of a full
theoretical description of the phenomenon of interest. For instance, while the spectral line shapes
of peaks in molecular spectra arise due to physical processes with well established theoretical
foundations, a full quantum mechanical calculation is generally not required to determine
whether a certain peak exists at a particular location, nor whether or not it has a shoulder. Instead,
approximate models of the shape of a peak, guided by a researcher’s physics-based intuition and
years of experience, are usually sufficient for the level of analysis required for these problems.
Having considered all the models they deem appropriate, the expert researcher then decides
which of those models is the best description of their data and, thus, is best supported by the
available evidence.

Such researcher-dependent approaches to data analysis create major practical, quantitative,
and scientific challenges. An obvious difficulty is the time required for manual data processing,
which limits a researcher’s output and productivity. Another is simply the learning curve required
to perform visual inspection-based analysis tasks—an extensive amount of training is required
before an inexperienced researcher can build enough physics-guided intuition to accurately and
reliably interpret experimental data. Yet another obstacle is the lack of a quantitative metric for
assessing the confidence one should have in one’s own or someone else’s analysis decisions,
especially in cases of conflicting results. The lack of such a quantitative confidence metric makes it
similarly difficult to validate or replicate such visual inspection-based analyses. Most importantly,
there exist fundamental barriers which inhibit precise communication of the details of these
analyses: namely, the intrinsic complexity of describing in writing the exact details of a method
performed within one’s mind, and conversely, of understanding the details of such a method
solely by reading a description of it. All of these challenges are exacerbated as scientific research
fields progress towards more quantitative, data-driven approaches, and as more techniques are
developed that yield larger amounts of increasingly more complex data, as is systematically
occurring with, for instance, the advent of ultrahigh-throughput methods [1,2].

In contrast to such human-dependent approaches, here we have developed a computational
framework designed to automate and imitate the visual inspection-based data analysis steps
typically performed by expert researchers, but in manner that is quantifiable, reproducible, and
precisely communicable. Inspired by the human ability to visually assess the ‘shape” of plotted
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Figure 1. Applications of shape calculation to the physical and life sciences. A graphical representation of our
mathematical framework (black), with examples of data analysis methods made possible by it (purple), specific tasks
these methods enable (blue), and applications of these tasks in specific techniques in the physical and life sciences (dark
cyan) along with the specific problems (light cyan) that the application of our framework to these techniques may address.
The given examples are not meant to be exhaustive.

data, our approach is to use probabilistic inference-based model selection [3,4] on technique-
specific sets of models in order to calculate how well the shape of each model, which we call
a ‘template’, can quantitatively describe the latent structure of the data. Specifically, we apply
Bayes’ rule to the probability expressions, known as evidences, which here characterise the
degree to which the models under consideration can explain the observed data, in a process
known as Bayesian model selection (BMS) [5]. Broadly, the advantages of adopting a Bayesian
framework have led to the increased usage of Bayesian methods in recent times across the
sciences [6]. For instance, in the field of biophysics, and particularly single-molecule studies, the
use of Bayesian inference has been transformative due to its intrinsic ability to handle particularly
noisy data (reviewed in [5]). However, the difficulty of deriving evidences has historically limited
the extension of Bayesian inference to BMS-based analysis approaches [7,8], except in a few
specialised cases (e.g., in [9] and [10]).

In this work we create a generalised BMS-based framework using closed-form expressions
for evidences that can be adapted by researchers in the physical and life sciences to a variety
of different applications with computational ease and efficiency (Fig. 1). Additionally, because
each implementation of this framework is defined by the specific set of physics-informed
models considered, our approach can be leveraged to create constrained analyses that achieve
optimal balances between theoretical precision and computational efficiency. We also harness
this framework to create a corollary method, called Bayesian Inference-based Template Search
(BITS), that enables us to achieve a large computational speedup when identifying and localising
multiple features of interest within a dataset. Altogether, our probabilistic, BMS-based framework
is a radically new method for analysing data that allows researchers to computationally mimic
expert-based visual analyses without needing to resort to a subjective, researcher-dependent
approach.

2. Describing the Shape of a Dataset

In this section, we detail a mathematical framework designed to resemble the process of expert-
based visual analysis. This approach uses orientation-preserving affine transformations of a
template vector to map the associated model of latent structure onto the experimental data
being analysed. The marginal likelihood of the data given a specific template is then calculated
regardless of the scaling and translation of this transformation, or the noise present in the data.
These marginal likelihoods are computed for a predefined set of templates, and are then used
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in BMS to calculate the posterior probabilities for each template. The shape of the data is then
optimally described by the template with the highest posterior probability.

(a) Defining a Template

To begin, we consider the problem of specifying a model of the latent structure of a dataset for
the purpose of mimicking visual recognition. In our framework, a dataset, y, is a tensor whose
components are the individual, scalar datapoints. Regardless of the experimental relationships
between those datapoints (i.e., the organisational structure of the tensor), for simplicity we can
reshape y into an N-dimensional vector y = [y1, ..., yn], where y; are the scalar datapoints. One
can imagine a dataset y collected using a particular instrument, in a particular location, on a
particular day, and by a particular researcher. Altogether, these specific factors might induce
systematic differences in y relative to an otherwise equivalent experiment. For example, an optical
filter in an instrument might slowly oxidise, which could reduce the intensity of light incident
upon the detector and, over a period of months, yield y with different scales (i.e., units). Similarly,
overhead lights might be left on accidentally when making an optical measurement, which could
increase the background photons incident on the detector and yield y with different relative
offsets. Likewise, local vibrations might vary from day to day, which could affect the stability of
an instrument and yield y with different amounts of noise. Yet factors such as the scaling, offset,
or amount of noise in a measurement generally do not alter the underlying physical processes
that give rise to the measured data, and thus should not affect the latent structure (i.e., the shape)
of y. Instead, these factors often act as irregularities, or nuisances, that can limit our ability to
model the shape of y, hence our use of the term ‘nuisance parameters’ to describe them. With
this in mind, we define a template, = [x1, ...x x], as a particular N-dimensional vector of scalar
quantities which is related to y through the following transformation

yi=mz; +b+¢& forall i=1,...,N. (2.1)

In this equation, m and b are nuisance parameters representing changes to scale and offset,
respectively, £ = [{1, ...,£n] is a nuisance parameter composed of stochastic terms representing
the experimental noise, and N is the number of components in x or y. If we recall our definition
of shape as correlations within data which derive from fundamental physical processes, we can
conceptually understand a template, , as an ideal representation of these correlations, without
noise or background. To avoid confusion, we note that our definition of shape is distinct from
those that take shape to mean a boundary or segmentation in data [11], and that it is this choice of
definition which enables our framework and aligns it with the intuitive visual analyses performed
manually by researchers.

It is important to note that the shape of y, regardless of any distortions caused by the
experimental nuisance parameters described above, may often be reasonably described by
many different xs. Indeed, there are no restrictions on what specific s one may choose as
templates. Different xs might depend upon different levels of theory, the particular details
of the experimental setup, and even sample-to-sample variability. For example, the laws of
diffraction dictate the point spread function (PSF) that describes the shape of point emissions in a
fluorescence microscopy image [12]. However, for a standard microscope, the PSF can be modeled
by an Airy disk; a two-dimensional circular Gaussian function; or, in order to incorporate an
astigmatism correction, even a two-dimensional elliptical Gaussian function [13]. Each of these
models of the PSF provides a distinct, theoretically valid = capable of modeling the shape of y
with varying degrees of complexity. Alternatively, one’s as could be empirically derived from
data previously recorded in other experiments. In the context of the above example, an = can
be created from fluorescence microscopy images of point emitter-like samples without needing
to explicitly invoke a theory of diffraction, and such empirically derived s might even model
the latent structure of y more effectively than analytical, theory-derived xs. Regardless of the
complexity of @ or its origin, once formulated, it is directly related to a y by the simple affine
transformation given in Eqn. (2.1).
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The choice of which x (or set of s) one uses to model the shape of y depends not only on
the experimental technique but also on the level of precision required for that particular analysis.
When using this mathematical framework to analyse experimental data from the natural sciences,
one can invoke prior knowledge of the physics governing the experiment which gave rise to the
data to constrain the choice of templates used in the analysis. Thus, while templates with higher
complexities (e.g., an Airy disk as a model for a PSF) may be required for certain applications, in
other cases, a less complex template (e.g., a 2D Gaussian as model for a PSF) can perform just as
effectively while greatly reducing the computational cost of the analysis. The flexibility in choice
of templates enabled by our framework can greatly increase the efficiency and effectiveness of an
analysis method (see Sec. 3), however, determining which of the chosen xs, if any, is the optimal
template requires that we first compute how well the shape of y is explained by a given x.

(b) Deriving Probabilistic Expressions for Shape

After defining an «, we quantify the degree to which it describes the latent structure of y,
regardless of the nuisance parameters described above in Eqn. (2.1). For the kth template,
xj, in a set of templates, {x} = {1, ..., xx }, this means calculating a marginalised likelihood
probability called the evidence, P(y|x, Mo). Here, the conditional My represents all of the
details of the experiment, previous knowledge about the system, and particulars of the analysis
method(s)—including which templates have been incorporated into the chosen {x}. The
expression for the evidence of xj, is the marginalisation of the joint probability, which is given

by
P (y | @, Mo) :mp<y|mk,s,m, b, Mo) x p (€, m, b| Mo) dé dm db. 2.2)

In Eqn. (2.2), p(y|xy, &, m, b, M) is called the likelihood, and it represents the probability density
of observing y for a given x;, and given values of the nuisance parameters; p(§, m, b | Mp) is called
the prior, and it represents the joint probability density of those particular nuisance parameter
values based on the prior knowledge specified by Mj.

In this work, we have used combinations of different likelihoods and priors to derive a set of
evidences, expressed in closed-form, that are particularly useful for calculating the shape of data
in a variety of experimental situations. For all of the cases presented here, we have assumed in
our M that the §; are uncorrelated, such that (¢;) =0, and (&;,&;) = T_léij, where 7 is a constant
called the precision and §;; is the Kronecker delta. While this assumption is not a requirement
of our approach, this noise model is often experimentally reasonable, and it has allowed us to
present analytical solutions to evidence integrals in many general situations (see Supplemental
Materials, Section 2 for other noise models). Together with Eqn. (2.1), this assumption yields the
following likelihood function:

N T\V2 =z yi—max;—b)?
p(y,|:ck,m,b,T,Mo)7i:1_[1 (ﬂ) e 5 ", (2.3)
Very similar likelihood functions arise with this noise model when m is known tobe 0 or 1, and /or
bis 0.

Specifying the probability expression for the prior-the second term in the integrand in Eqn.
(2.2)-requires that we mathematically represent our previous knowledge of how m, b, and T
are distributed in the experiments of interest [3]. In particular, the prior dictates the integration
bounds of Eqn. (2.2) by determining the values that are possible for these parameters to assume
(i.e., regions where the prior probability is non-zero). For the results derived here, we have used
so-called ‘maximum entropy’ priors, which allow us to encode information and constraints into
our prior probability expressions, without dictating their functional form in an ad hoc manner [3].
If we assume in My that we only know that m, b, and 7 are within some range and that we
do not know the magnitude of 7 (i.e., the amount of noise we expect), then the corresponding
maximum entropy priors are a uniform distribution for m and b, and a uniform distribution over
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the logarithm of 7 (see Supplemental Materials, Section 1). If we further assume that m, b, and 7
are independent, then the corresponding joint prior of these parameters within the given ranges
is
1
p(m,b, 7| Mo) = WA(IHT)’ (2.4)
where the shorthand Af = finax — fmin defines the range of a parameter.

In order to analytically integrate Eqn. (2.2), the integration bounds in the prior must be
explicitly defined. We note that a positive transformation of an x; (m > 0) can have a distinct
physical interpretation from a negative transformation (m < 0). Thus, in order to differentiate
between these two cases and properly model the underlying shape of y, we impose that xj
and y be oriented in the same direction. This constraint can be encoded into the calculation by
only considering orientation-preserving (i.e., positive scaling) affine transforms of the x;, in Eqn.
(2.1). To explicitly include this information in the prior, and thus in our My, we therefore use
Myyin = 0 rather than some m,;, < 0. In the case that the negative transformation (m < 0) is of
interest, we note that —x;, with m > 0 is equivalent to x;, with m < 0. Closed-form expressions
for the evidence derived using other integration bounds are also provided in the Supplemental
Materials. Additionally, to keep the prior normalised and avoid using a so-called ‘improper’
prior, the minimum and maximum values must be chosen such that Am, Ab, and Aln T are not
infinite. For the purposes of a tractable integration [14,15], we have used such large negative
and positive values that the integration bounds in Eqn. (2.2) can be approximated as m € [0, c0),
be (—o00,00), and 7 € [0,00). While the exact values of the bounds are important and should
be chosen judiciously, we note that the resulting prior normalisation terms end up canceling in
subsequent steps during BMS (see below). Using the integration bounds discussed above, the
closed-form probability expression for the evidence calculated using Eqn. (2.2) is

2N~ 7= "

2AMAbAIn T
N-—-2
N\~ r 1 N-2
x (Vy (1 r )) {1+ ke (§T>] . (2.5

where Vy = (27) — (21,)2, Vy = (y%) — (y)%, r= %, H=+ va fi is the arithmetic

mean, I'(z) is the gamma function, and I;(a, b) is the regularised incomplete beta function. This
evidence is the probability that the shape of y corresponds to a specific template x, regardless
of the particular values of the (positive) scale, offset, and noise parameters used in the affine

P(y|$k7M0):

transformation that relates x; to y (Eqn. (2.1)). At first glance, the appearance of the term Vw_%
suggests that two xs that are equivalent up to a multiplicative constant would have different
abilities to explain the same y. However, that constant must also be accounted for in the prior term
Am™!, where it can cancel this effect. Thus, choosing the range for m in the prior is intimately
related to setting the V; of the x;, and, unless one has a reason to believe different models have
different ranges of m, the ), within a {z} should be normalised such that their V,, are equivalent.

While the evidence expression in Eqn. (2.5) is very general in the sense that it can be used for
almost all choices of templates, it is not applicable to the special, ‘null’ case in which a template
is absent (i.e., where x}, is flat and /or m is only zero). This case is very useful in our approach for
validating the presence or absence of a shape in experimental data, as we will show in following
section. The corresponding evidence expression for this case is

F(M)N_% _N-1
W(va) T, (2.6)

where x,,,;; represents the case that the model lacks a template. This evidence expression
represents the probability that the experimental data is featureless (i.e., lacking any latent
structure) beyond the presence of a constant background offset and noise, regardless of the exact

P(y | Lnulls MO) =
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values of these parameters. Together, the evidence expressions in Eqns. (2.5) and (2.6) enable us to
quantitatively express how well the shape of experimental data agrees with candidate templates,
independent of extraneous details and nuisance parameters that may change from experiment to
experiment.

(c) Describing the Shape of a Dataset using Bayesian Model Selection
(BMS)

We compare the performance of different templates by using BMS [3-5] in order to calculate the
probability that each xj, is the best description of the shape of the data, y. This calculation is
conditionally dependent on the assumptions in My, which define the specifics of the analysis
method, including the composition of {«}. Multiple distinct analysis methods can consequently
be developed by using different Mys to tailor their effectiveness to individual experimental
situations and systems. For any chosen My, an appropriate template prior probability for ay,
P (x| M), must then be assigned, for example, by: (i) using an equal a priori assignment of K~ *,
where K represents the number of templates in {x}; (ii) learning prior values from separate
experiments; or even (iii) using a Dirichlet process or hierarchical Dirichlet process [16] for a
non-parametric ‘infinite” set of templates. Once all of the P(x|Mo) have been assigned, Bayes’
rule can be used to perform BMS and compute the template posterior probability as

P(y |y, Mo)P(xy, | Mo)
S Py |2, Mo)P(a; | Mo)

P(zy |y, Mo) = 2.7)

This expression represents the probability of an xj, given the observed data y and, thus, may be
used to identify the xj, in {«} that most optimally describes the latent structure of y (for a specific
choice of Mp). Using Eqn. (2.7) is therefore a quantitative means by which the underlying shape
of experimental data may be determined. Furthermore, by considering a ‘background’-shaped
x and/or just the presence of noise (i.e., Eqn. (2.6)) in the BMS process, this approach can also
validate whether using the most probable xj, to describe the shape of y is justified, or whether
the shape of y can be better explained as just noise in the data. Altogether, this BMS process sets
up an objective, quantitative, researcher-independent metric for not only determining the shape
of experimental data, but also validating such shape assignments.

The shape-calculation equations we report above describe a relationship between ideal
distributions (i.e., x}) and noisy signals (i.e., y) that is independent of many experimental details
which would otherwise complicate the analysis being performed. The only requirements are that
both x; and y exist in the same data-space and are vectors of the same size. Practically, however,
most templates are generated from some underlying model that exists in a separate ‘model-space’
distinct from the data-space of xj, and y. Relating such a model-space to data-space requires that
a set of parameters, {6}, be used to map the model to an x;. For example, a model of a three-
dimensional object being projected onto a two-dimensional image may use the Euler angles of
the object to generate xj,s with different orientations in the two-dimensional image data-space.

Generally, when using such a model to generate xs for identifying the shape of y, the template
posterior probabilities for an entire group of model-associated ;s must be calculated to account
for the many possible ways that the single model could have been mapped into data-space.
Having performed all of those calculations, it is then possible to marginalise out the dependence
upon some of the {6} from the model. In the example above, marginalising out the Euler angles
would yield the posterior probability that the shape of y corresponds to a two-dimensional image
of the model, regardless of not knowing the true orientation of the three-dimensional object being
projected into the image. Thus, this type of marginalisation in data-space enables our framework
to provide objective measures for shape assignment in model-spaces as well. We note that the
map between model-space and data-space used in these shape-calculations should be explicitly
acknowledged and defined in order to mitigate unintentional mis-estimations of the weight of
particular models in data-space during the change of variables. Finally, it is worth mentioning

H
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that such model-spaces almost always exist for scientific analyses, even if they are only implicitly
invoked within M.

The most complete implementations of these BMS-based shape calculations occur when using
Mos that specify every physically appropriate x;. However, this approach may not always
be theoretically possible nor computationally feasible if an effectively infinite number of s
exist. In such situations, it is worth noting that, depending on the precision required by a
particular analysis method, the full set of templates may not be required to obtain effective
results. Importantly, a major benefit of BMS is that we can determine which x; among a set
of approximate templates best describes the shape of y, even if none are ‘exact’. Additionally,
the BMS expression in Eqn. (2.7) can be rearranged into a function of the log difference of
evidence expressions (i.e., a Bayes’ factor) between a test x;, and an appropriate control xj (or
a ‘null’ model), which yields an effective cost function for the direct optimisation of a single
x, (see Supplemental Materials, Section 3). Overall, the most powerful aspect of the BMS-based
shape calculations described here is that by considering different Mps, an analysis method can
be optimised for completeness (where all appropriate templates are enumerated) or efficiency
(where only a test and a control template are considered), or for a trade-off between the two (using
only a restricted set of templates), as the situation demands. This flexibility is a large reason why
our framework can be effectively adapted to mimic nearly any of the subjective, expert-based
analysis methods that it is meant to replace. Furthermore, the ability to easily disseminate the
{z} used in an analysis means that methods can be readily shared, critiqued, and reproduced.
Together, these especially powerful aspects of our framework make it extremely straightforward
to implement tailor-made, shape-based analysis methods for new experiments and applications.

3. Searching for Shapes: Bayesian Inference-based Template
Search (BITS)

While the practical scientific applications of shape calculations are numerous (see Fig. 1 and Sec.
4), the flexibility of our framework leads to a corollary of this approach that can be used to
search for the presence of particular ‘local’ features in the data. Experimental examples of this
kind of analysis include finding the location of peaks in molecular spectra, puncta in fluorescence
microscopy images, or stepping behavior in time-series. In all of these situations, an underlying
physical relationship exists between the datapoints in y (e.g., emission wavelength, Cartesian
position on a substrate, or measurement time). In the previous section we considered y as an
N-dimensional vector in a manner that largely ignored the relationships between datapoints.
Because y is a tensor, however, we can reshape it to fundamentally account for these relationships.
For instance, if y is a fluorescence microscopy image, then each datapoint might correspond to
a pixel of spectral colour ¢ with an associated position (rz, 7y, 7) in the sample-space of the
experiment. Thus, it would be useful to reshape y from a first-order tensor (i.e., a vector) of N
scalar datapoints into a more natural representation as a fourth-order tensor with one dimension
each for ¢, rz, ry, and r.. Because rz, 7y, and 7, exist in a Euclidean metric space, we can also
calculate a distance, d(y;, y;), between any two datapoints in this example. With such a distance
metric for at least one of the tensor dimensions of y, a local neighbourhood around the position
of y; can be defined as the subset of datapoints, y; ) C y, for which d(y;,y;) <&, where € is a
specified distance cutoff. Notably, this neighbourhood contains n < N datapoints, and may be
orders of magnitude smaller depending on the choice of e. Thus, for a fixed value of ¢, y can be
thought of as a composite of approximately N unique e-neighbourhoods of size n (i.e., distinct
subsets y; ))-

We can then define the local, latent structure of y by performing the BMS-based shape
assignment described in Sec. 2 separately within each of these unique neighbourhoods using a
set of templates, {}, where each xy, is also of size n. Intuitively, this process can be understood
as ‘scanning’ a small region through y along the dimensions of the tensor and assessing the shape
of the data at each site. Whenever one of the x;, is found to be an appropriate description for
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the data in a particular neighbourhood, a feature (i.e., x}) is effectively ‘localised” at that site.
Therefore, we call this local analysis approach ‘Bayesian inference-based template search” (BITS),
because it localises the templates in {} within y by traversing the unique neighbourhoods of y
and determining the latent structure of the data in each using the BMS approach described above.
As the name BITS suggests, this approach is conceptually similar to traditional template matching
calculations (e.g., via normalised cross correlation [17]), and in fact incredible mathematical
similarities, as seen in the r cross-correlation term between xj, and y in Eqn. (2.5), have naturally
arisen from our probabilistic approach. As such, we believe many strategies used for template
matching (e.g., fast Fourier transforms) might be adapted with future work. Regardless, as
discussed below, by casting the template matching process into a probabilistic framework BITS
enables powerful extensions facilitated by model selection, such as model comparison and
automatic feature localisation.

We note that each local calculation is technically performed over all y but, by splitting the
likelihood into two regions, one within y; .y modeled by {} and one without y; .y modeled by
Ty (ie., non-local data is ‘noise’), the evidence contribution from without the local region is the
same for each xj, and cancels in the Bayes’ factors of Eqn. (2.7). Thus, the entire calculation can be
simplified, and only the local region within y; .y needs to be addressed. Of course, rather than
use the local BITS approach described here, a composite template simultaneously containing all
of the features being localised could be used to describe the shape of the entire y, however, as we
will show, BITS is much more computationally efficient. For instance, a y of size N that contains
R unique features of size n that are to be localised with datapoint-resolution would require N
distinct templates be tested. Both constructing each template and calculating the evidence for a
template are O(NV), so such a full-sised shape calculation has computational scaling of O(N Ry,
Clearly, this approach has severe scaling issues for any number of features. Fortunately, the
equivalent BITS calculation that interrogates N localisation sites, and where we have chosen ¢ so
that the @, are the size of the features, n, has a computational scaling of O(nN R). In the context
of shape-based analyses, template searching with BITS greatly reduces the computational burden
of localising features down from a geometric to a linear scaling.

The BITS process is demonstrated in Fig. 2 with an illustrative example of the analysis of
an image of a cellular environment. The data-space to be analysed in this example consists
of a second-order tensor of pixel intensities where the two tensor dimensions correspond to
Cartesian coordinates in the cellular environment. While the image is coloured to differentiate
and visualise different cellular components with the human eye, we note that, for simplicity, our
illustrative example is dealing with the total intensity value of each pixel. Three-dimensional
atomic-resolution structural models for these molecules are used to generate a corresponding set
of two-dimensional xs that represent each biomolecule in a particular orientation in the image
of the cellular environment (shown in the figure in grey boxes). Given the number of templates,
and that the size of these templates is much smaller than the total size of the image, BITS can be
used very efficiently in this analysis.

Along with a null template (x,,,,;), the biomolecular model templates are ‘scanned” through
the image vy, and the BMS calculation of Eqn. (2.7) is performed on the Y(i,e) at each site. The white
square on the image shows the specific local neighbourhood y; .y currently being interrogated
using BMS, and in subsequent steps BMS calculations are performed on the adjacent local
neighbourhoods (‘scanning” order denoted by the white arrow). The biomolecular orientation
dependence of the x;s is marginalised out of this calculation by combining the template posterior
probabilities of the xys derived from the same biomolecular model. This yields the model
posterior probability that each biomolecule of interest is localised at a particular position in the
image regardless of its orientation. The specific neighbourhood being analysed in Fig. 2 highlights
the advantages of including a @,,,,;; in a BITS analysis. While this region of the image contains
some latent structure, we can visually see that it is not explained by any of the biomolecular
model templates. Corresponding to this visual analysis, BITS finds that the null template has the
highest posterior probability, and thus, no feature is localised. This stipulation, that a feature is
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Figure 2. lllustration of the Bayesian Inference-based Template Search Algorithm. An example of a BITS process is
shown, where three different biomolecules are searched for in a two dimensional image of a cellular environment. Different
sets of cellular components are coloured differently for illustrative purposes, to demonstrate the expected locations of the
different biomolecules (green for cell membrane components, purple for translation machinery, blue for enzymes, and
yellow and orange for transcription and replication machinery). A set of rotational templates (in grey boxes) generated
from different models of the biomolecules of interest (coloured as above) is scanned through subsections of the image
(white arrow), and the probability that each template best matches the local shape of the data in a specific subsection
(white box) is calculated and then marginalised into an aggregate probability for each model that is used to identify the
local composition of the image. The probability values shown were chosen to illustrate the example case of the null
template being identified in the case where the shape of a subsection cannot be explained by any of the model templates.
Adapted from illustrations by David S. Goodsell, RCSB Protein Data Bank (DOls: 10.2210/rcsb_pdb/goodsell-gallery-028,
10.2210/rcsb_pdb/mom_2000_10, and 10.2210/rcsb_pdb/mom_2016_6, 10.2210/rcsb_pdb/mom_2003_3).

only localised if the shape of the data is better explained by a model template than random noise,
provides critical protection against over-fitting, which is a distinct advantage of BITS over other
template searching methods.
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Notably, in Fig. 2, only a small sample of biomolecular model orientations are used, and
we assume that if a particular neighbourhood contains a biomolecule of interest in a similar
orientation as one of the chosen templates, there is sufficient overlap of shape between the
two for it to be detected in the BMS calculation. The exact amount of similarity required for
this correspondence depends only upon how well the other templates can account for the local
shape of this neighbourhood. Thus, while the number of sampled orientations may need to be
optimised for different applications depending on the desired outcome, {x} with sparse samples
of a model’s orientations may still be used to effectively localise features.

Overall, the BITS algorithm can be understood as a method that quantifies the degree to
which the latent structure in the data of each neighbourhood y; - of y is correlated with an a;,.
This correlation is maximised when BITS reaches the ‘true’ location of a feature of interest in
the data and the =, is perfectly aligned with the feature. When misaligned by even one data-
point, however, the positive correlation can be negligible, and immediately another xj, (e.g., a
null template) or even no particular ; can dominate the BMS calculation. The effect of this
behavior is that only the location in y corresponding to the center of a feature of interest (i.e.,
perfectly overlapped by x) is identified with a high P(xy|y, Mop). Interestingly, this means
BITS inherently protects against multiple localisations of the same feature while simultaneously
facilitating localisation of multiple, closely spaced features.

Perhaps the most important and unique aspect of the BITS algorithm is that it enables
ys acquired under different experimental conditions to be directly compared within a single,
common reference frame. Specifically, since BITS uses evidence expressions that are based only
upon agreement of an x;, with the latent structure of y, it is independent of many experimental
nuisances that would otherwise obstruct direct comparisons. For example, while different
background levels in two experiments can render the use of a common threshold value to localise
features completely ineffective, BITS remains invariant under changes in background and thus
yields two sets of feature localisations that can be directly compared. Moreover, by setting a
pre-defined posterior probability threshold and/or by including a model of the background or
simply noise as xs in {x}, BITS can automatically identify and localise features for a wide
range of experimental techniques without human intervention or advanced knowledge about
the experimental situation (e.g., exposure times for a detector).

4. Discussion

The ability to describe the latent structure of experimental data can readily be leveraged for many
different techniques and analyses in the physical and life sciences (Fig. 1). Here, we consider
several examples, and briefly demonstrate and discuss some of their implementations. We begin
with experiments in which raw data is pre-processed in a manner according to its shape. For
instance, in signal processing-based analyses, the shape-based framework presented here can be
used to: (i) perform multivariate calibration transfer [18] (e.g., in optical spectroscopy techniques)
by comparing the shapes of responses for standardised samples across multiple instruments;
(ii) perform blind deconvolution [19] (e.g., in atomic force-, optical-, or electron microscopy) by
comparing the convolution of possible instrument response functions and deconvolved signals
to the shape of the recorded data (Fig. 3A) ; or (iii) to align distinct measurements of the same
object or sample (e.g., the same field-of-view in different colour channels [20] or multiple image
planes [21] of a fluorescence microscope) by finding the optimal polynomial transform to create
an interpolated measurement that matches the shape of another measurement.

In analytical chemistry experiments that are used to identify the contents of an experimental
sample based on the characteristics, or ‘fingerprints’, of known standards, the framework
presented here can be used to compare the shape of the signal of an experimental sample
against databases of standard experimental and/or theoretical templates of the possible contents.
Examples of this kind of analysis include identification of chemicals from characteristic infrared
(IR) spectra [22], or 'H nuclear magnetic resonance (NMR) spectra [23], and identification
of proteins from fragmentation patterns in mass spectrometry data [24]. Similarly, a shape
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Figure 3. Examples of analyses based on shape calculations. A) A fluorescence lifetime dataset (left) may be modeled
as a convolution of an exponential decay of unknown lifetime (7) and a Gaussian instrument response function (IRF)
of unknown width. By comparing shapes of the data with convolved templates, a joint log-probability map of the two
unknowns is constructed (middle) and the deconvolved functions corresponding to the parameters with the maximum
probabilities are plotted (right). B) A signal vs. time trajectory (left) with two discontinuous jumps may be compared in
shape to a set of templates corresponding to all possible jump times to generate a map of the joint log-probabilities for
the times of the jumps (middle). The times corresponding to the maximum probabilities are overlaid (in blue) over the
raw signal and the continuous segments identified are idealised (in red) using a Gaussian filter (right). C) A fluorescence
emitter in a microscope image (left) may be modeled as a Gaussian of known width centered at a certain location. Using
a subpixel grid to generate such templates with varying centers, a map of the joint probability for the co-ordinates of the
emitter is plotted, along with marginalised probabilities for the x- and y-axes (middle). The co-ordinates with the maximum
probability are overlaid (in blue) over the raw image (right).

assignment-based approach would enable the automated identification of sample contents from
the noisy measurements typically obtained in analyses involving small sample concentrations.
Additionally, shape comparisons can be used to construct and validate atomic- or near-atomic
resolution models in structural biology experiments by comparing the: (i) structure factors from
different molecular models to the diffraction pattern for an X-ray crystallography experiment [25],
(ii) electrostatic potential maps from different molecular models to the reconstructed density
in a cryogenic electron microscopy (cryo-EM) experiment [26], or even (iii) predicted electron
scattering patterns from different atomic models to the raw electron microscopy micrographs in a
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cryo-EM experiment. In fact, in the last example, a similar Bayesian approach has been pioneered
by Cossio and Hummer to analyse cryo-EM micrographs [9]. Despite differences in the priors,
scaling parameter, and specific use of BMS, our generalised shape-based analysis framework
otherwise readily maps onto this approach, and could thus be used to develop a specialised
method that achieves effectively the same results.

In analyses in which transitions between different signal values need to be identified, our
approach can be extended to locate change points by comparing xjs with and without a discrete
change of any arbitrary magnitude in shape (Fig. 3B). This could be used to locate changes in the:
(i) efficiency of fluorescence resonance energy transfer (Eprpr) in the Epggr vs. time trajectories
reporting on the (un)folding or conformational dynamics of a biomolecule in single-molecule
FRET (smFRET) experiments [27], (ii) extension in the force vs. extension or extension vs. time
trajectories reporting on the (un)folding or conformational dynamics of a biomolecule in single-
molecule force spectroscopy experiments [27,28], (iii) position in the position vs. time trajectories
reporting on the directional stepping of a biomolecular motor in single-molecule fluorescence
experiments [29], (iv) conductance in the conductance vs. time trajectories reporting on the
(un)folding or conformational dynamics of a biomolecule in single-molecule field effect transistor
(smFET) experiments [30], or even (v) conformation in the conformation vs. time trajectories
reporting on (un)folding or conformational dynamics of a biomolecule in molecular dynamics
simulations. Indeed, such a BMS-based method to detect transition in time-series data has been
pioneered by Ensign and Pande [10]. Despite minimal differences in noise models, our generalised
shape-based analysis framework can be mapped onto the approach of Ensign and Pande, thus
facilitating the development of a specialised method that can effectively arrive at the same
results. This general approach to analysing time-series extends the use of Bayesian inference-
based techniques for the detection of change points in a time-dependent signal to any sequential
data with arbitrary signal properties, thereby enabling the accurate estimation of kinetics from a
wide range of experimental techniques.

A) Searching for one feature in a dataset B) Searching for two features in a dataset

3
® Full Template P
.
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Figure 4. Computational efficiency of Full-dataset versus BITS Analyses. A) An example signal versus time trajectory
(left) with one discontinuous jump analysed by comparing the shape of the data to templates the size of the entire dataset
(Full Template) and using BITS with a small template encoding a ‘step up’. The logarithm of the computational time,
required to perform an analysis, T, is shown as a function of the logarithm of the length of the signal versus time trajectory,
N. The linearised curves were fit with a first-order polynomial to yield the computational scaling of each calculation. These
values match the predicted scaling for one template (R = 1) of O(NT+1 = N2) and O(N1), for Full Template and
BITS, respectively. B) As in panel A, but with signal versus time trajectories (left) with two discontinuous jumps such as
in Fig. 3B. The computational scaling matches the predicted scaling for two templates (R = 2) of O(N3) and O(N1).
Together these results demonstrate the linear scaling of BITS with respect to the number of features in a dataset.

In addition to the full shape-based methods discussed above, we expect that BITS is poised to
have a large impact on a number of more specialised situations—particularly analyses that require
localisation of well-defined signals or image features. For example, given a particular spectral
line shape (e.g., a Lorentzian function), BITS can be used to find peaks in multidimensional NMR
spectra [31]. Similarly, BITS can be used to identify particles of interest and their orientations in
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cryo-EM [32] and cryogenic electron tomography (cryo-ET) [33] micrographs in a manner similar
to that shown in Fig. 2. This is also readily extended to localising and identifying individual
molecules and molecular structures in atomic force microscopy (AFM) [34] and super-resolution
fluorescence microscopy images [35] (Fig. 3C). Methods using traditional template matching for
such analysis tasks can be easily adapted into our BITS framework, thereby enabling comparison
across disparate datasets (e.g., [36], [37]). In the case of the analysis of time-series (e.g., single-
molecule fluorescence, molecular dynamics), BITS can be used to detect transitions or change
points between states, even when those transitions are more diffusive than instantaneous, as is a
typical requirement for analysis using hidden Markov models. Additionally, as discussed in Sec.
3, BITS makes this type of time-series analysis much more efficient than when analysing the shape
of a whole time-series at once (Fig. 4).

The range of examples provided above are broad, but not exhaustive. Nonetheless, they
highlight the versatility of our approach, and we hope they will inspire others to adopt this
framework for their experiments and analysis methods. Although the development, optimisation,
bench-marking, and in-depth discussion of each of the individual scientific applications described
above is necessarily very specialised, and, thus, beyond the scope of the current work, we have
created a gallery of illustrative, proof-of-principle examples that are open-source and written in
Python to demonstrate and enable the use of our framework; they can be accessed at https:
//bayes-shape-calc.github.io.

5. Conclusion

To the best of our knowledge, the use of probabilities to determine the latent structure of data
as discussed above is a radically new approach to analysing experiments in the physical and
life sciences. The framework we present here is the quantitative extension of a very intuitive
approach to data analysis in which expert researchers visually determine whether their data
is the shape that they expect it to be. Rather than develop heuristic approaches to emulate
this subjective process, our method provides a quantitative metric based only on probability
that is free from human intervention and experimental considerations. Among other things, the
ability to determine the shape of data enables researchers to objectively pre-process data; identify
fingerprints and validate assignments; detect change points; and identify and localise features
using BITS (Figs. 1 and 2). Additionally, the shape-based framework we present here can be
readily applied to analyse large, high-dimensional datasets that are difficult to visualise and
would be nearly impossible to analyse manually. As can be seen from the breadth of potential
applications listed above (Fig. 1), the overall methodology described in this work transcends
individual fields and techniques, and indeed represents a new quantitative lens through which
countless experiments in many different areas of the physical and life sciences may be analysed.

Data Accessibility. The codes for the examples discussed in Sec. 4 is available on Github and at https:
//bayes—shape-calc.github.io/examples.
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