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A critical step in data analysis for many different
types of experiments is the identification of features
with theoretically defined shapes in N-dimensional
datasets; examples of this process include finding
peaks in multi-dimensional molecular spectra or
emitters in fluorescence microscopy images. Identifying
such features involves determining if the overall
shape of the data is consistent with an expected
shape, however, it is generally unclear how to
quantitatively make this determination. In practice,
many analysis methods employ subjective, heuristic
approaches, which complicates the validation of
any ensuing results—especially as the amount and
dimensionality of the data increase. Here, we present
a probabilistic solution to this problem by using
Bayes’ rule to calculate the probability that the
data has any one of several potential shapes. This
probabilistic approach may be used to objectively
compare how well different theories describe a
dataset, identify changes between datasets, and detect
features within data using a corollary method called
Bayesian Inference-based Template Search (BITS);
several proof-of-principle examples are provided.
Altogether, this mathematical framework serves as
an automated ‘engine’ capable of computationally
executing analysis decisions currently made by visual
inspection across the sciences.
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1. Introduction2

Across the physical and life sciences, many experimental techniques rely upon pragmatic data3

analysis steps where an expert researcher is required to make scientific decisions based on4

their visual perception of data. This perception involves identifying and recognizing correlations5

between datapoints that stem from underlying physical processes, which are ideally invariant6

across experiments; we refer to these correlations as the latent structure of the data. Latent7

structure manifests visually in what we would colloquially call the ‘shape’ of the data and is the8

basis for inspection-driven analysis decisions. For example, an expert researcher might have to9

visually identify a feature of interest by recognising an expected shape in a plot of their data (e.g.,10

a shoulder on a peak in a molecular spectrum). Alternatively, such a researcher might anticipate11

the location of an expected feature within their plotted data (e.g., a peak at a specific frequency in12

a molecular spectrum), but must then decide whether or not it is actually present at that location.13

In these types of determinations, the researcher must generate at least two visual models of a14

phenomenon, manually compare those models to the shape of their experimental data, and then15

choose the model that, in their expert opinion, best describes the data. To be explicit, in the first16

example above, the researcher visually compares both the shape of a peak and the shape of a17

peak with a shoulder to the experimental molecular spectrum. Similarly, in the second example,18

the researcher visually compares both the shape of a peak and the shape of signal-free background19

noise to the experimental molecular spectrum.20

A key advantage of such expert-driven analyses is the human ability to make accurate,21

informed decisions about the latent structure of experimental data, even in the absence of a full22

theoretical description of the phenomenon of interest. For instance, while the spectral line shapes23

of peaks in molecular spectra arise due to physical processes with well established theoretical24

foundations, a full quantum mechanical calculation is generally not required to determine25

whether a certain peak exists at a particular location, nor whether or not it has a shoulder. Instead,26

approximate models of the shape of a peak, guided by a researcher’s physics-based intuition and27

years of experience, are usually sufficient for the level of analysis required for these problems.28

Having considered all the models they deem appropriate, the expert researcher then decides29

which of those models is the best description of their data and, thus, is best supported by the30

available evidence.31

Such researcher-dependent approaches to data analysis create major practical, quantitative,32

and scientific challenges. An obvious difficulty is the time required for manual data processing,33

which limits a researcher’s output and productivity. Another is simply the learning curve required34

to perform visual inspection-based analysis tasks–an extensive amount of training is required35

before an inexperienced researcher can build enough physics-guided intuition to accurately and36

reliably interpret experimental data. Yet another obstacle is the lack of a quantitative metric for37

assessing the confidence one should have in one’s own or someone else’s analysis decisions,38

especially in cases of conflicting results. The lack of such a quantitative confidence metric makes it39

similarly difficult to validate or replicate such visual inspection-based analyses. Most importantly,40

there exist fundamental barriers which inhibit precise communication of the details of these41

analyses: namely, the intrinsic complexity of describing in writing the exact details of a method42

performed within one’s mind, and conversely, of understanding the details of such a method43

solely by reading a description of it. All of these challenges are exacerbated as scientific research44

fields progress towards more quantitative, data-driven approaches, and as more techniques are45

developed that yield larger amounts of increasingly more complex data, as is systematically46

occurring with, for instance, the advent of ultrahigh-throughput methods [1,2].47

In contrast to such human-dependent approaches, here we have developed a computational48

framework designed to automate and imitate the visual inspection-based data analysis steps49

typically performed by expert researchers, but in manner that is quantifiable, reproducible, and50

precisely communicable. Inspired by the human ability to visually assess the ‘shape’ of plotted51
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Figure 1. Applications of shape calculation to the physical and life sciences. A graphical representation of our

mathematical framework (black), with examples of data analysis methods made possible by it (purple), specific tasks

these methods enable (blue), and applications of these tasks in specific techniques in the physical and life sciences (dark

cyan) along with the specific problems (light cyan) that the application of our framework to these techniques may address.

The given examples are not meant to be exhaustive.

data, our approach is to use probabilistic inference-based model selection [3,4] on technique-52

specific sets of models in order to calculate how well the shape of each model, which we call53

a ‘template’, can quantitatively describe the latent structure of the data. Specifically, we apply54

Bayes’ rule to the probability expressions, known as evidences, which here characterise the55

degree to which the models under consideration can explain the observed data, in a process56

known as Bayesian model selection (BMS) [5]. Broadly, the advantages of adopting a Bayesian57

framework have led to the increased usage of Bayesian methods in recent times across the58

sciences [6]. For instance, in the field of biophysics, and particularly single-molecule studies, the59

use of Bayesian inference has been transformative due to its intrinsic ability to handle particularly60

noisy data (reviewed in [5]). However, the difficulty of deriving evidences has historically limited61

the extension of Bayesian inference to BMS-based analysis approaches [7,8], except in a few62

specialised cases (e.g., in [9] and [10]).63

In this work we create a generalised BMS-based framework using closed-form expressions64

for evidences that can be adapted by researchers in the physical and life sciences to a variety65

of different applications with computational ease and efficiency (Fig. 1). Additionally, because66

each implementation of this framework is defined by the specific set of physics-informed67

models considered, our approach can be leveraged to create constrained analyses that achieve68

optimal balances between theoretical precision and computational efficiency. We also harness69

this framework to create a corollary method, called Bayesian Inference-based Template Search70

(BITS), that enables us to achieve a large computational speedup when identifying and localising71

multiple features of interest within a dataset. Altogether, our probabilistic, BMS-based framework72

is a radically new method for analysing data that allows researchers to computationally mimic73

expert-based visual analyses without needing to resort to a subjective, researcher-dependent74

approach.75

2. Describing the Shape of a Dataset76

In this section, we detail a mathematical framework designed to resemble the process of expert-77

based visual analysis. This approach uses orientation-preserving affine transformations of a78

template vector to map the associated model of latent structure onto the experimental data79

being analysed. The marginal likelihood of the data given a specific template is then calculated80

regardless of the scaling and translation of this transformation, or the noise present in the data.81

These marginal likelihoods are computed for a predefined set of templates, and are then used82



4

rs
p

a
.ro

y
a

ls
o

c
ie

ty
p

u
b
lis

h
in

g
.o

rg
P

ro
c

R
S

o
c

A
0

0
0

0
0

0
0

..........................................................

in BMS to calculate the posterior probabilities for each template. The shape of the data is then83

optimally described by the template with the highest posterior probability.84

(a) Defining a Template85

To begin, we consider the problem of specifying a model of the latent structure of a dataset for86

the purpose of mimicking visual recognition. In our framework, a dataset, y, is a tensor whose87

components are the individual, scalar datapoints. Regardless of the experimental relationships88

between those datapoints (i.e., the organisational structure of the tensor), for simplicity we can89

reshape y into an N-dimensional vector y= [y1, ..., yN ], where yi are the scalar datapoints. One90

can imagine a dataset y collected using a particular instrument, in a particular location, on a91

particular day, and by a particular researcher. Altogether, these specific factors might induce92

systematic differences in y relative to an otherwise equivalent experiment. For example, an optical93

filter in an instrument might slowly oxidise, which could reduce the intensity of light incident94

upon the detector and, over a period of months, yield y with different scales (i.e., units). Similarly,95

overhead lights might be left on accidentally when making an optical measurement, which could96

increase the background photons incident on the detector and yield y with different relative97

offsets. Likewise, local vibrations might vary from day to day, which could affect the stability of98

an instrument and yield y with different amounts of noise. Yet factors such as the scaling, offset,99

or amount of noise in a measurement generally do not alter the underlying physical processes100

that give rise to the measured data, and thus should not affect the latent structure (i.e., the shape)101

of y. Instead, these factors often act as irregularities, or nuisances, that can limit our ability to102

model the shape of y, hence our use of the term ‘nuisance parameters’ to describe them. With103

this in mind, we define a template, x= [x1, ...xN ], as a particular N-dimensional vector of scalar104

quantities which is related to y through the following transformation105

yi =mxi + b+ ⇠i for all i= 1, . . . , N. (2.1)106

In this equation, m and b are nuisance parameters representing changes to scale and offset,107

respectively, ⇠= [⇠1, ..., ⇠N ] is a nuisance parameter composed of stochastic terms representing108

the experimental noise, and N is the number of components in x or y. If we recall our definition109

of shape as correlations within data which derive from fundamental physical processes, we can110

conceptually understand a template, x, as an ideal representation of these correlations, without111

noise or background. To avoid confusion, we note that our definition of shape is distinct from112

those that take shape to mean a boundary or segmentation in data [11], and that it is this choice of113

definition which enables our framework and aligns it with the intuitive visual analyses performed114

manually by researchers.115

It is important to note that the shape of y, regardless of any distortions caused by the116

experimental nuisance parameters described above, may often be reasonably described by117

many different xs. Indeed, there are no restrictions on what specific xs one may choose as118

templates. Different xs might depend upon different levels of theory, the particular details119

of the experimental setup, and even sample-to-sample variability. For example, the laws of120

diffraction dictate the point spread function (PSF) that describes the shape of point emissions in a121

fluorescence microscopy image [12]. However, for a standard microscope, the PSF can be modeled122

by an Airy disk; a two-dimensional circular Gaussian function; or, in order to incorporate an123

astigmatism correction, even a two-dimensional elliptical Gaussian function [13]. Each of these124

models of the PSF provides a distinct, theoretically valid x capable of modeling the shape of y125

with varying degrees of complexity. Alternatively, one’s xs could be empirically derived from126

data previously recorded in other experiments. In the context of the above example, an x can127

be created from fluorescence microscopy images of point emitter-like samples without needing128

to explicitly invoke a theory of diffraction, and such empirically derived xs might even model129

the latent structure of y more effectively than analytical, theory-derived xs. Regardless of the130

complexity of x or its origin, once formulated, it is directly related to a y by the simple affine131

transformation given in Eqn. (2.1).132
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The choice of which x (or set of xs) one uses to model the shape of y depends not only on133

the experimental technique but also on the level of precision required for that particular analysis.134

When using this mathematical framework to analyse experimental data from the natural sciences,135

one can invoke prior knowledge of the physics governing the experiment which gave rise to the136

data to constrain the choice of templates used in the analysis. Thus, while templates with higher137

complexities (e.g., an Airy disk as a model for a PSF) may be required for certain applications, in138

other cases, a less complex template (e.g., a 2D Gaussian as model for a PSF) can perform just as139

effectively while greatly reducing the computational cost of the analysis. The flexibility in choice140

of templates enabled by our framework can greatly increase the efficiency and effectiveness of an141

analysis method (see Sec. 3), however, determining which of the chosen xs, if any, is the optimal142

template requires that we first compute how well the shape of y is explained by a given x.143

(b) Deriving Probabilistic Expressions for Shape144

After defining an x, we quantify the degree to which it describes the latent structure of y,145

regardless of the nuisance parameters described above in Eqn. (2.1). For the kth template,146

xk, in a set of templates, {x}= {x1, ...,xK}, this means calculating a marginalised likelihood147

probability called the evidence, P (y|xk,M0). Here, the conditional M0 represents all of the148

details of the experiment, previous knowledge about the system, and particulars of the analysis149

method(s)—including which templates have been incorporated into the chosen {x}. The150

expression for the evidence of xk is the marginalisation of the joint probability, which is given151

by152

P (y |xk,M0) =

ZZZ
p (y |xk, ⇠,m, b,M0)⇥ p (⇠,m, b |M0) d⇠ dm db. (2.2)153

In Eqn. (2.2), p(y|xk, ⇠,m, b,M0) is called the likelihood, and it represents the probability density154

of observing y for a given xk and given values of the nuisance parameters; p(⇠,m, b |M0) is called155

the prior, and it represents the joint probability density of those particular nuisance parameter156

values based on the prior knowledge specified by M0.157

In this work, we have used combinations of different likelihoods and priors to derive a set of158

evidences, expressed in closed-form, that are particularly useful for calculating the shape of data159

in a variety of experimental situations. For all of the cases presented here, we have assumed in160

our M0 that the ⇠i are uncorrelated, such that h⇠ii = 0, and h⇠i, ⇠ji = ⌧�1�ij , where ⌧ is a constant161

called the precision and �ij is the Kronecker delta. While this assumption is not a requirement162

of our approach, this noise model is often experimentally reasonable, and it has allowed us to163

present analytical solutions to evidence integrals in many general situations (see Supplemental164

Materials, Section 2 for other noise models). Together with Eqn. (2.1), this assumption yields the165

following likelihood function:166

p(y, |xk,m, b, ⌧,M0) =
NY

i=1

⇣ ⌧
2⇡

⌘1/2
e�

⌧
2 (yi�mxi�b)2 . (2.3)167

Very similar likelihood functions arise with this noise model when m is known to be 0 or 1, and/or168

b is 0.169

Specifying the probability expression for the prior–the second term in the integrand in Eqn.170

(2.2)–requires that we mathematically represent our previous knowledge of how m, b, and ⌧171

are distributed in the experiments of interest [3]. In particular, the prior dictates the integration172

bounds of Eqn. (2.2) by determining the values that are possible for these parameters to assume173

(i.e., regions where the prior probability is non-zero). For the results derived here, we have used174

so-called ‘maximum entropy’ priors, which allow us to encode information and constraints into175

our prior probability expressions, without dictating their functional form in an ad hoc manner [3].176

If we assume in M0 that we only know that m, b, and ⌧ are within some range and that we177

do not know the magnitude of ⌧ (i.e., the amount of noise we expect), then the corresponding178

maximum entropy priors are a uniform distribution for m and b, and a uniform distribution over179
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the logarithm of ⌧ (see Supplemental Materials, Section 1). If we further assume that m, b, and ⌧180

are independent, then the corresponding joint prior of these parameters within the given ranges181

is182

p(m, b, ⌧ |M0) =
⌧�1

�m�b�(ln ⌧)
, (2.4)183

where the shorthand �f ⌘ fmax � fmin defines the range of a parameter.184

In order to analytically integrate Eqn. (2.2), the integration bounds in the prior must be185

explicitly defined. We note that a positive transformation of an xk (m> 0) can have a distinct186

physical interpretation from a negative transformation (m< 0). Thus, in order to differentiate187

between these two cases and properly model the underlying shape of y, we impose that xk188

and y be oriented in the same direction. This constraint can be encoded into the calculation by189

only considering orientation-preserving (i.e., positive scaling) affine transforms of the xk in Eqn.190

(2.1). To explicitly include this information in the prior, and thus in our M0, we therefore use191

mmin = 0 rather than some mmin < 0. In the case that the negative transformation (m< 0) is of192

interest, we note that �xk with m> 0 is equivalent to xk with m< 0. Closed-form expressions193

for the evidence derived using other integration bounds are also provided in the Supplemental194

Materials. Additionally, to keep the prior normalised and avoid using a so-called ‘improper’195

prior, the minimum and maximum values must be chosen such that �m, �b, and � ln ⌧ are not196

infinite. For the purposes of a tractable integration [14,15], we have used such large negative197

and positive values that the integration bounds in Eqn. (2.2) can be approximated as m2 [0,1),198

b2 (�1,1), and ⌧ 2 [0,1). While the exact values of the bounds are important and should199

be chosen judiciously, we note that the resulting prior normalisation terms end up canceling in200

subsequent steps during BMS (see below). Using the integration bounds discussed above, the201

closed-form probability expression for the evidence calculated using Eqn. (2.2) is202

P (y |xk,M0) =
� (N�2

2 )N�N
2 ⇡�N�2

2

2�m�b� ln ⌧
V

� 1
2

x

⇥

⇣
Vy

⇣
1� r2

⌘⌘�N�2
2


1 +

r
|r|

Ir2

✓
1
2
,
N � 2

2

◆�
, (2.5)

where Vx ⌘ hx2
ki � hxki

2, Vy ⌘ hy2
i � hyi2, r⌘ hxkyi�hxkihyip

VxVy
, hfi ⌘ 1

N

PN
i fi is the arithmetic203

mean, � (x) is the gamma function, and Ix(a, b) is the regularised incomplete beta function. This204

evidence is the probability that the shape of y corresponds to a specific template xk, regardless205

of the particular values of the (positive) scale, offset, and noise parameters used in the affine206

transformation that relates xk to y (Eqn. (2.1)). At first glance, the appearance of the term V
� 1

2
x207

suggests that two xks that are equivalent up to a multiplicative constant would have different208

abilities to explain the same y. However, that constant must also be accounted for in the prior term209

�m�1, where it can cancel this effect. Thus, choosing the range for m in the prior is intimately210

related to setting the Vx of the xk and, unless one has a reason to believe different models have211

different ranges of m, the xk within a {x} should be normalised such that their Vx are equivalent.212

While the evidence expression in Eqn. (2.5) is very general in the sense that it can be used for213

almost all choices of templates, it is not applicable to the special, ‘null’ case in which a template214

is absent (i.e., where xk is flat and/or m is only zero). This case is very useful in our approach for215

validating the presence or absence of a shape in experimental data, as we will show in following216

section. The corresponding evidence expression for this case is217

P (y |xnull,M0) =
� (N�1

2 )N�N
2

�b� ln ⌧
(⇡Vy)

�N�1
2 , (2.6)218

where xnull represents the case that the model lacks a template. This evidence expression219

represents the probability that the experimental data is featureless (i.e., lacking any latent220

structure) beyond the presence of a constant background offset and noise, regardless of the exact221
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values of these parameters. Together, the evidence expressions in Eqns. (2.5) and (2.6) enable us to222

quantitatively express how well the shape of experimental data agrees with candidate templates,223

independent of extraneous details and nuisance parameters that may change from experiment to224

experiment.225

(c) Describing the Shape of a Dataset using Bayesian Model Selection226

(BMS)227

We compare the performance of different templates by using BMS [3–5] in order to calculate the228

probability that each xk is the best description of the shape of the data, y. This calculation is229

conditionally dependent on the assumptions in M0, which define the specifics of the analysis230

method, including the composition of {x}. Multiple distinct analysis methods can consequently231

be developed by using different M0s to tailor their effectiveness to individual experimental232

situations and systems. For any chosen M0, an appropriate template prior probability for xk,233

P (xk|M0), must then be assigned, for example, by: (i) using an equal a priori assignment of K�1,234

where K represents the number of templates in {x}; (ii) learning prior values from separate235

experiments; or even (iii) using a Dirichlet process or hierarchical Dirichlet process [16] for a236

non-parametric ‘infinite’ set of templates. Once all of the P (xk|M0) have been assigned, Bayes’237

rule can be used to perform BMS and compute the template posterior probability as238

P (xk |y,M0) =
P (y |xk,M0)P (xk |M0)PK
j=1 P (y |xj ,M0)P (xj |M0)

. (2.7)239

This expression represents the probability of an xk given the observed data y and, thus, may be240

used to identify the xk in {x} that most optimally describes the latent structure of y (for a specific241

choice of M0). Using Eqn. (2.7) is therefore a quantitative means by which the underlying shape242

of experimental data may be determined. Furthermore, by considering a ‘background’-shaped243

xk and/or just the presence of noise (i.e., Eqn. (2.6)) in the BMS process, this approach can also244

validate whether using the most probable xk to describe the shape of y is justified, or whether245

the shape of y can be better explained as just noise in the data. Altogether, this BMS process sets246

up an objective, quantitative, researcher-independent metric for not only determining the shape247

of experimental data, but also validating such shape assignments.248

The shape-calculation equations we report above describe a relationship between ideal249

distributions (i.e., xk) and noisy signals (i.e., y) that is independent of many experimental details250

which would otherwise complicate the analysis being performed. The only requirements are that251

both xk and y exist in the same data-space and are vectors of the same size. Practically, however,252

most templates are generated from some underlying model that exists in a separate ‘model-space’253

distinct from the data-space of xk and y. Relating such a model-space to data-space requires that254

a set of parameters, {✓}, be used to map the model to an xk. For example, a model of a three-255

dimensional object being projected onto a two-dimensional image may use the Euler angles of256

the object to generate xks with different orientations in the two-dimensional image data-space.257

Generally, when using such a model to generate xks for identifying the shape of y, the template258

posterior probabilities for an entire group of model-associated xks must be calculated to account259

for the many possible ways that the single model could have been mapped into data-space.260

Having performed all of those calculations, it is then possible to marginalise out the dependence261

upon some of the {✓} from the model. In the example above, marginalising out the Euler angles262

would yield the posterior probability that the shape of y corresponds to a two-dimensional image263

of the model, regardless of not knowing the true orientation of the three-dimensional object being264

projected into the image. Thus, this type of marginalisation in data-space enables our framework265

to provide objective measures for shape assignment in model-spaces as well. We note that the266

map between model-space and data-space used in these shape-calculations should be explicitly267

acknowledged and defined in order to mitigate unintentional mis-estimations of the weight of268

particular models in data-space during the change of variables. Finally, it is worth mentioning269
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that such model-spaces almost always exist for scientific analyses, even if they are only implicitly270

invoked within M0.271

The most complete implementations of these BMS-based shape calculations occur when using272

M0s that specify every physically appropriate xk. However, this approach may not always273

be theoretically possible nor computationally feasible if an effectively infinite number of xks274

exist. In such situations, it is worth noting that, depending on the precision required by a275

particular analysis method, the full set of templates may not be required to obtain effective276

results. Importantly, a major benefit of BMS is that we can determine which xk among a set277

of approximate templates best describes the shape of y, even if none are ‘exact’. Additionally,278

the BMS expression in Eqn. (2.7) can be rearranged into a function of the log difference of279

evidence expressions (i.e., a Bayes’ factor) between a test xk and an appropriate control xk (or280

a ‘null’ model), which yields an effective cost function for the direct optimisation of a single281

xk (see Supplemental Materials, Section 3). Overall, the most powerful aspect of the BMS-based282

shape calculations described here is that by considering different M0s, an analysis method can283

be optimised for completeness (where all appropriate templates are enumerated) or efficiency284

(where only a test and a control template are considered), or for a trade-off between the two (using285

only a restricted set of templates), as the situation demands. This flexibility is a large reason why286

our framework can be effectively adapted to mimic nearly any of the subjective, expert-based287

analysis methods that it is meant to replace. Furthermore, the ability to easily disseminate the288

{x} used in an analysis means that methods can be readily shared, critiqued, and reproduced.289

Together, these especially powerful aspects of our framework make it extremely straightforward290

to implement tailor-made, shape-based analysis methods for new experiments and applications.291

3. Searching for Shapes: Bayesian Inference-based Template292

Search (BITS)293

While the practical scientific applications of shape calculations are numerous (see Fig. 1 and Sec.294

4), the flexibility of our framework leads to a corollary of this approach that can be used to295

search for the presence of particular ’local’ features in the data. Experimental examples of this296

kind of analysis include finding the location of peaks in molecular spectra, puncta in fluorescence297

microscopy images, or stepping behavior in time-series. In all of these situations, an underlying298

physical relationship exists between the datapoints in y (e.g., emission wavelength, Cartesian299

position on a substrate, or measurement time). In the previous section we considered y as an300

N -dimensional vector in a manner that largely ignored the relationships between datapoints.301

Because y is a tensor, however, we can reshape it to fundamentally account for these relationships.302

For instance, if y is a fluorescence microscopy image, then each datapoint might correspond to303

a pixel of spectral colour c with an associated position (rx, ry , rz) in the sample-space of the304

experiment. Thus, it would be useful to reshape y from a first-order tensor (i.e., a vector) of N305

scalar datapoints into a more natural representation as a fourth-order tensor with one dimension306

each for c, rx, ry , and rz . Because rx, ry , and rz exist in a Euclidean metric space, we can also307

calculate a distance, d(yi, yj), between any two datapoints in this example. With such a distance308

metric for at least one of the tensor dimensions of y, a local neighbourhood around the position309

of yi can be defined as the subset of datapoints, y(i,") ⇢ y, for which d(yi, yj)< ", where " is a310

specified distance cutoff. Notably, this neighbourhood contains nN datapoints, and may be311

orders of magnitude smaller depending on the choice of ". Thus, for a fixed value of ", y can be312

thought of as a composite of approximately N unique "-neighbourhoods of size n (i.e., distinct313

subsets y(i,")).314

We can then define the local, latent structure of y by performing the BMS-based shape315

assignment described in Sec. 2 separately within each of these unique neighbourhoods using a316

set of templates, {x}, where each xk is also of size n. Intuitively, this process can be understood317

as ‘scanning’ a small region through y along the dimensions of the tensor and assessing the shape318

of the data at each site. Whenever one of the xk is found to be an appropriate description for319
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the data in a particular neighbourhood, a feature (i.e., xk) is effectively ‘localised’ at that site.320

Therefore, we call this local analysis approach ‘Bayesian inference-based template search’ (BITS),321

because it localises the templates in {x} within y by traversing the unique neighbourhoods of y322

and determining the latent structure of the data in each using the BMS approach described above.323

As the name BITS suggests, this approach is conceptually similar to traditional template matching324

calculations (e.g., via normalised cross correlation [17]), and in fact incredible mathematical325

similarities, as seen in the r cross-correlation term between xk and y in Eqn. (2.5), have naturally326

arisen from our probabilistic approach. As such, we believe many strategies used for template327

matching (e.g., fast Fourier transforms) might be adapted with future work. Regardless, as328

discussed below, by casting the template matching process into a probabilistic framework BITS329

enables powerful extensions facilitated by model selection, such as model comparison and330

automatic feature localisation.331

We note that each local calculation is technically performed over all y but, by splitting the332

likelihood into two regions, one within y(i,") modeled by {x} and one without y(i,") modeled by333

xnull (i.e., non-local data is ‘noise’), the evidence contribution from without the local region is the334

same for each xk and cancels in the Bayes’ factors of Eqn. (2.7). Thus, the entire calculation can be335

simplified, and only the local region within y(i,") needs to be addressed. Of course, rather than336

use the local BITS approach described here, a composite template simultaneously containing all337

of the features being localised could be used to describe the shape of the entire y, however, as we338

will show, BITS is much more computationally efficient. For instance, a y of size N that contains339

R unique features of size n that are to be localised with datapoint-resolution would require NR
340

distinct templates be tested. Both constructing each template and calculating the evidence for a341

template are O(N), so such a full-sised shape calculation has computational scaling of O(NR+1).342

Clearly, this approach has severe scaling issues for any number of features. Fortunately, the343

equivalent BITS calculation that interrogates N localisation sites, and where we have chosen " so344

that the xk are the size of the features, n, has a computational scaling of O(nNR). In the context345

of shape-based analyses, template searching with BITS greatly reduces the computational burden346

of localising features down from a geometric to a linear scaling.347

The BITS process is demonstrated in Fig. 2 with an illustrative example of the analysis of348

an image of a cellular environment. The data-space to be analysed in this example consists349

of a second-order tensor of pixel intensities where the two tensor dimensions correspond to350

Cartesian coordinates in the cellular environment. While the image is coloured to differentiate351

and visualise different cellular components with the human eye, we note that, for simplicity, our352

illustrative example is dealing with the total intensity value of each pixel. Three-dimensional353

atomic-resolution structural models for these molecules are used to generate a corresponding set354

of two-dimensional xks that represent each biomolecule in a particular orientation in the image355

of the cellular environment (shown in the figure in grey boxes). Given the number of templates,356

and that the size of these templates is much smaller than the total size of the image, BITS can be357

used very efficiently in this analysis.358

Along with a null template (xnull), the biomolecular model templates are ‘scanned’ through359

the image y, and the BMS calculation of Eqn. (2.7) is performed on the y(i,") at each site. The white360

square on the image shows the specific local neighbourhood y(i,") currently being interrogated361

using BMS, and in subsequent steps BMS calculations are performed on the adjacent local362

neighbourhoods (‘scanning’ order denoted by the white arrow). The biomolecular orientation363

dependence of the xks is marginalised out of this calculation by combining the template posterior364

probabilities of the xks derived from the same biomolecular model. This yields the model365

posterior probability that each biomolecule of interest is localised at a particular position in the366

image regardless of its orientation. The specific neighbourhood being analysed in Fig. 2 highlights367

the advantages of including a xnull in a BITS analysis. While this region of the image contains368

some latent structure, we can visually see that it is not explained by any of the biomolecular369

model templates. Corresponding to this visual analysis, BITS finds that the null template has the370

highest posterior probability, and thus, no feature is localised. This stipulation, that a feature is371
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Figure 2. Illustration of the Bayesian Inference-based Template Search Algorithm. An example of a BITS process is

shown, where three different biomolecules are searched for in a two dimensional image of a cellular environment. Different

sets of cellular components are coloured differently for illustrative purposes, to demonstrate the expected locations of the

different biomolecules (green for cell membrane components, purple for translation machinery, blue for enzymes, and

yellow and orange for transcription and replication machinery). A set of rotational templates (in grey boxes) generated

from different models of the biomolecules of interest (coloured as above) is scanned through subsections of the image

(white arrow), and the probability that each template best matches the local shape of the data in a specific subsection

(white box) is calculated and then marginalised into an aggregate probability for each model that is used to identify the

local composition of the image. The probability values shown were chosen to illustrate the example case of the null

template being identified in the case where the shape of a subsection cannot be explained by any of the model templates.

Adapted from illustrations by David S. Goodsell, RCSB Protein Data Bank (DOIs: 10.2210/rcsb_pdb/goodsell-gallery-028,

10.2210/rcsb_pdb/mom_2000_10, and 10.2210/rcsb_pdb/mom_2016_6, 10.2210/rcsb_pdb/mom_2003_3).

only localised if the shape of the data is better explained by a model template than random noise,372

provides critical protection against over-fitting, which is a distinct advantage of BITS over other373

template searching methods.374
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Notably, in Fig. 2, only a small sample of biomolecular model orientations are used, and375

we assume that if a particular neighbourhood contains a biomolecule of interest in a similar376

orientation as one of the chosen templates, there is sufficient overlap of shape between the377

two for it to be detected in the BMS calculation. The exact amount of similarity required for378

this correspondence depends only upon how well the other templates can account for the local379

shape of this neighbourhood. Thus, while the number of sampled orientations may need to be380

optimised for different applications depending on the desired outcome, {x} with sparse samples381

of a model’s orientations may still be used to effectively localise features.382

Overall, the BITS algorithm can be understood as a method that quantifies the degree to383

which the latent structure in the data of each neighbourhood yi,r of y is correlated with an xk.384

This correlation is maximised when BITS reaches the ‘true’ location of a feature of interest in385

the data and the xk is perfectly aligned with the feature. When misaligned by even one data-386

point, however, the positive correlation can be negligible, and immediately another xk (e.g., a387

null template) or even no particular xk can dominate the BMS calculation. The effect of this388

behavior is that only the location in y corresponding to the center of a feature of interest (i.e.,389

perfectly overlapped by xk) is identified with a high P (xk|y,M0). Interestingly, this means390

BITS inherently protects against multiple localisations of the same feature while simultaneously391

facilitating localisation of multiple, closely spaced features.392

Perhaps the most important and unique aspect of the BITS algorithm is that it enables393

ys acquired under different experimental conditions to be directly compared within a single,394

common reference frame. Specifically, since BITS uses evidence expressions that are based only395

upon agreement of an xk with the latent structure of y, it is independent of many experimental396

nuisances that would otherwise obstruct direct comparisons. For example, while different397

background levels in two experiments can render the use of a common threshold value to localise398

features completely ineffective, BITS remains invariant under changes in background and thus399

yields two sets of feature localisations that can be directly compared. Moreover, by setting a400

pre-defined posterior probability threshold and/or by including a model of the background or401

simply noise as xks in {x}, BITS can automatically identify and localise features for a wide402

range of experimental techniques without human intervention or advanced knowledge about403

the experimental situation (e.g., exposure times for a detector).404

4. Discussion405

The ability to describe the latent structure of experimental data can readily be leveraged for many406

different techniques and analyses in the physical and life sciences (Fig. 1). Here, we consider407

several examples, and briefly demonstrate and discuss some of their implementations. We begin408

with experiments in which raw data is pre-processed in a manner according to its shape. For409

instance, in signal processing-based analyses, the shape-based framework presented here can be410

used to: (i) perform multivariate calibration transfer [18] (e.g., in optical spectroscopy techniques)411

by comparing the shapes of responses for standardised samples across multiple instruments;412

(ii) perform blind deconvolution [19] (e.g., in atomic force-, optical-, or electron microscopy) by413

comparing the convolution of possible instrument response functions and deconvolved signals414

to the shape of the recorded data (Fig. 3A) ; or (iii) to align distinct measurements of the same415

object or sample (e.g., the same field-of-view in different colour channels [20] or multiple image416

planes [21] of a fluorescence microscope) by finding the optimal polynomial transform to create417

an interpolated measurement that matches the shape of another measurement.418

In analytical chemistry experiments that are used to identify the contents of an experimental419

sample based on the characteristics, or ‘fingerprints’, of known standards, the framework420

presented here can be used to compare the shape of the signal of an experimental sample421

against databases of standard experimental and/or theoretical templates of the possible contents.422

Examples of this kind of analysis include identification of chemicals from characteristic infrared423

(IR) spectra [22], or 1H nuclear magnetic resonance (NMR) spectra [23], and identification424

of proteins from fragmentation patterns in mass spectrometry data [24]. Similarly, a shape425
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Figure 3. Examples of analyses based on shape calculations. A) A fluorescence lifetime dataset (left) may be modeled

as a convolution of an exponential decay of unknown lifetime (⌧ ) and a Gaussian instrument response function (IRF)

of unknown width. By comparing shapes of the data with convolved templates, a joint log-probability map of the two

unknowns is constructed (middle) and the deconvolved functions corresponding to the parameters with the maximum

probabilities are plotted (right). B) A signal vs. time trajectory (left) with two discontinuous jumps may be compared in

shape to a set of templates corresponding to all possible jump times to generate a map of the joint log-probabilities for

the times of the jumps (middle). The times corresponding to the maximum probabilities are overlaid (in blue) over the

raw signal and the continuous segments identified are idealised (in red) using a Gaussian filter (right). C) A fluorescence

emitter in a microscope image (left) may be modeled as a Gaussian of known width centered at a certain location. Using

a subpixel grid to generate such templates with varying centers, a map of the joint probability for the co-ordinates of the

emitter is plotted, along with marginalised probabilities for the x- and y-axes (middle). The co-ordinates with the maximum

probability are overlaid (in blue) over the raw image (right).

assignment-based approach would enable the automated identification of sample contents from426

the noisy measurements typically obtained in analyses involving small sample concentrations.427

Additionally, shape comparisons can be used to construct and validate atomic- or near-atomic428

resolution models in structural biology experiments by comparing the: (i) structure factors from429

different molecular models to the diffraction pattern for an X-ray crystallography experiment [25],430

(ii) electrostatic potential maps from different molecular models to the reconstructed density431

in a cryogenic electron microscopy (cryo-EM) experiment [26], or even (iii) predicted electron432

scattering patterns from different atomic models to the raw electron microscopy micrographs in a433
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cryo-EM experiment. In fact, in the last example, a similar Bayesian approach has been pioneered434

by Cossio and Hummer to analyse cryo-EM micrographs [9]. Despite differences in the priors,435

scaling parameter, and specific use of BMS, our generalised shape-based analysis framework436

otherwise readily maps onto this approach, and could thus be used to develop a specialised437

method that achieves effectively the same results.438

In analyses in which transitions between different signal values need to be identified, our439

approach can be extended to locate change points by comparing xks with and without a discrete440

change of any arbitrary magnitude in shape (Fig. 3B). This could be used to locate changes in the:441

(i) efficiency of fluorescence resonance energy transfer (EFRET) in the EFRET vs. time trajectories442

reporting on the (un)folding or conformational dynamics of a biomolecule in single-molecule443

FRET (smFRET) experiments [27], (ii) extension in the force vs. extension or extension vs. time444

trajectories reporting on the (un)folding or conformational dynamics of a biomolecule in single-445

molecule force spectroscopy experiments [27,28], (iii) position in the position vs. time trajectories446

reporting on the directional stepping of a biomolecular motor in single-molecule fluorescence447

experiments [29], (iv) conductance in the conductance vs. time trajectories reporting on the448

(un)folding or conformational dynamics of a biomolecule in single-molecule field effect transistor449

(smFET) experiments [30], or even (v) conformation in the conformation vs. time trajectories450

reporting on (un)folding or conformational dynamics of a biomolecule in molecular dynamics451

simulations. Indeed, such a BMS-based method to detect transition in time-series data has been452

pioneered by Ensign and Pande [10]. Despite minimal differences in noise models, our generalised453

shape-based analysis framework can be mapped onto the approach of Ensign and Pande, thus454

facilitating the development of a specialised method that can effectively arrive at the same455

results. This general approach to analysing time-series extends the use of Bayesian inference-456

based techniques for the detection of change points in a time-dependent signal to any sequential457

data with arbitrary signal properties, thereby enabling the accurate estimation of kinetics from a458

wide range of experimental techniques.459

Figure 4. Computational efficiency of Full-dataset versus BITS Analyses. A) An example signal versus time trajectory

(left) with one discontinuous jump analysed by comparing the shape of the data to templates the size of the entire dataset

(Full Template) and using BITS with a small template encoding a ‘step up’. The logarithm of the computational time,

required to perform an analysis, ⌧ , is shown as a function of the logarithm of the length of the signal versus time trajectory,

N . The linearised curves were fit with a first-order polynomial to yield the computational scaling of each calculation. These

values match the predicted scaling for one template (R= 1) of O(NR+1 =N2) and O(N1), for Full Template and

BITS, respectively. B) As in panel A, but with signal versus time trajectories (left) with two discontinuous jumps such as

in Fig. 3B. The computational scaling matches the predicted scaling for two templates (R= 2) of O(N3) and O(N1).

Together these results demonstrate the linear scaling of BITS with respect to the number of features in a dataset.

In addition to the full shape-based methods discussed above, we expect that BITS is poised to460

have a large impact on a number of more specialised situations–particularly analyses that require461

localisation of well-defined signals or image features. For example, given a particular spectral462

line shape (e.g., a Lorentzian function), BITS can be used to find peaks in multidimensional NMR463

spectra [31]. Similarly, BITS can be used to identify particles of interest and their orientations in464
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cryo-EM [32] and cryogenic electron tomography (cryo-ET) [33] micrographs in a manner similar465

to that shown in Fig. 2. This is also readily extended to localising and identifying individual466

molecules and molecular structures in atomic force microscopy (AFM) [34] and super-resolution467

fluorescence microscopy images [35] (Fig. 3C). Methods using traditional template matching for468

such analysis tasks can be easily adapted into our BITS framework, thereby enabling comparison469

across disparate datasets (e.g., [36], [37]). In the case of the analysis of time-series (e.g., single-470

molecule fluorescence, molecular dynamics), BITS can be used to detect transitions or change471

points between states, even when those transitions are more diffusive than instantaneous, as is a472

typical requirement for analysis using hidden Markov models. Additionally, as discussed in Sec.473

3, BITS makes this type of time-series analysis much more efficient than when analysing the shape474

of a whole time-series at once (Fig. 4).475

The range of examples provided above are broad, but not exhaustive. Nonetheless, they476

highlight the versatility of our approach, and we hope they will inspire others to adopt this477

framework for their experiments and analysis methods. Although the development, optimisation,478

bench-marking, and in-depth discussion of each of the individual scientific applications described479

above is necessarily very specialised, and, thus, beyond the scope of the current work, we have480

created a gallery of illustrative, proof-of-principle examples that are open-source and written in481

Python to demonstrate and enable the use of our framework; they can be accessed at https:482

//bayes-shape-calc.github.io.483

5. Conclusion484

To the best of our knowledge, the use of probabilities to determine the latent structure of data485

as discussed above is a radically new approach to analysing experiments in the physical and486

life sciences. The framework we present here is the quantitative extension of a very intuitive487

approach to data analysis in which expert researchers visually determine whether their data488

is the shape that they expect it to be. Rather than develop heuristic approaches to emulate489

this subjective process, our method provides a quantitative metric based only on probability490

that is free from human intervention and experimental considerations. Among other things, the491

ability to determine the shape of data enables researchers to objectively pre-process data; identify492

fingerprints and validate assignments; detect change points; and identify and localise features493

using BITS (Figs. 1 and 2). Additionally, the shape-based framework we present here can be494

readily applied to analyse large, high-dimensional datasets that are difficult to visualise and495

would be nearly impossible to analyse manually. As can be seen from the breadth of potential496

applications listed above (Fig. 1), the overall methodology described in this work transcends497

individual fields and techniques, and indeed represents a new quantitative lens through which498

countless experiments in many different areas of the physical and life sciences may be analysed.499

Data Accessibility. The codes for the examples discussed in Sec. 4 is available on Github and at https:500

//bayes-shape-calc.github.io/examples.501
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