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Safe Planning in Dynamic Environments Using
Conformal Prediction

Lars Lindemann

Abstract—We propose a framework for planning in unknown
dynamic environments with probabilistic safety guarantees using
conformal prediction. Particularly, we design a model predictive
controller (MPC) that uses i) trajectory predictions of the dynamic
environment, and ii) prediction regions quantifying the uncertainty
of the predictions. To obtain prediction regions, we use conformal
prediction, a statistical tool for uncertainty quantification, that
requires availability of offline trajectory data — a reasonable as-
sumption in many applications such as autonomous driving. The
prediction regions are valid, i.e., they hold with a user-defined prob-
ability, so that the MPC is provably safe. We illustrate the results
in the self-driving car simulator CARLA at a pedestrian-filled
intersection. The strength of our approach is compatibility with
state of the art trajectory predictors, e.g., RNNs and LSTMs, while
making no assumptions on the underlying trajectory-generating
distribution. To the best of our knowledge, these are the first results
that provide valid safety guarantees in such a setting.

Index Terms—Planning under uncertainty, robot safety, motion
planning, autonomous agents, AI-enabled robotics.

I. INTRODUCTION

OBILE robots and autonomous systems operate in dy-
M namic and shared environments. Consider for instance a
self-driving car navigating through urban traffic, or a service
robot planning a path while avoiding other agents such as
pedestrians, see Fig. 1. These applications are safety-critical
and challenging as the agents’ intentions and policies are un-
known so that their a-priori unknown trajectories need to be es-
timated and integrated into the planning algorithm. We propose
an uncertainty-informed planning algorithm that enjoys formal
safety guarantees by using conformal prediction.

The problem of path planning in dynamic environments has
found broad attention [1]. A large body of work focused on
multi-agent navigation without incorporating predicted agent

Manuscript received 22 October 2022; accepted 5 June 2023. Date of pub-
lication 4 July 2023; date of current version 12 July 2023. This letter was
recommended for publication by Associate Editor J. Huand Editor H. Kurniawati
upon evaluation of the reviewers’ comments. This work was supported in part
by the NSF Award under Grant CPS-2038873 and in part by AFOSR under
Grant FA9550-19-1-0265 (Assured Autonomy in Contested Environments).
(Lars Lindemann and Matthew Cleaveland contributed equally to this work.)
(Corresponding author: Lars Lindemann.)

Lars Lindemann is with the Thomas Lord Department of Computer Science,
University of Southern California, Los Angeles, CA 90089 USA (e-mail:
llindema@usc.edu).

Matthew Cleaveland, Gihyun Shim, and George J. Pappas are with the
Department of Electrical and Systems Engineering, University of Pennsylva-
nia, Philadelphia, PA 19104 USA (e-mail: mcleav@seas.upenn.edu; gihyun@
seas.upenn.edu; pappasg @seas.upenn.edu).

Digital Object Identifier 10.1109/LRA.2023.3292071

, Member, IEEE, Matthew Cleaveland
and George J. Pappas

, Member, IEEE, Gihyun Shim,
, Fellow, IEEE

Fig.1. Wepredictagent trajectories using state of the art prediction algorithms,
such as LSTMs, and calculate valid prediction regions (blue circles) using
conformal prediction.

trajectories, e.g., the dynamic window approach [2], [3] or
navigation functions [4], [5], [6]. However, predicted trajectories
provide additional information and can significantly increase the
quality of the robot’s path in terms of safety and performance.
Existing works that use trajectory predictions can be broadly
classified into two categories: non-interactive and interactive.
Non-interactive approaches predict agent trajectories and then
integrate predictions into the planning algorithm [7], [8]. Inter-
active approaches simultaneously predict agent trajectories and
design the path to take the coupling effect between a control
action and the trajectories of other agents into account [9],
[10]. While interactive approaches attempt to model interactions
between actions and agents, this is generally a difficult task and
existing works fail to provide quantifiable safety guarantees.

In this letter, we focus on designing non-interactive planning
algorithms with valid safety guarantees. Particularly, we use sta-
tistical tools from the conformal prediction literature [11], [12]
to obtain valid prediction regions that quantify the uncertainty
of trajectory predictions. We then formulate a model predictive
controller (MPC) that incorporates trajectory predictions and
valid prediction regions. While our framework is compatible
with any trajectory prediction algorithm, we focus in the experi-
ments on long short term memory (LSTM) networks [13], [14],
[15],[16], [17], [18] which are special recurrent neural networks
(RNN) that can capture nonlinear and long-term trends [19],
[20]. Our contributions are:

® We propose a planning algorithm that incorporates tra-

jectory predictions and valid prediction regions which are
obtained using conformal prediction. The elegance in using
conformal prediction is that prediction regions are easy to
obtain and tight. Our algorithm is computationally tractable
and, under reasonable assumptions, based on a convex
optimization problem.
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e We provide valid safety guarantees which guarantee that
the system is safe with a user-defined probability. Larger
user-defined probabilities naturally result in more conser-
vative plans. The strength of our approach is compatibility
with state of the art trajectory predictors, e.g., RNNs and
LSTMs, while making no assumptions on the underlying
trajectory-generating distribution.

® We provide numerical experiments of a mobile robot and a
self-driving car using the TrajNet++ toolbox [17] and the
autonomous driving simulator CARLA [21].

A. Related Work

The works in [22], [23], [24], [25], [26] present non-
interactive sampling-based motion planners, while [8], [27],
[28], [29] propose non-interactive receding horizon planning
algorithms that minimize the risk of collision. A challenge in
non-interactive methods is the robot freezing problem in which
robots may come to a deadlock due to too large prediction uncer-
tainty [7], e.g., for long time horizons. While this problem can
be alleviated by receding horizon planning strategies, another
direction to address this problem is to model social interaction
as in interactive approaches where typically an interaction model
is learned or constructed [9], [30], [31], [32], [33], [34], [35],
[36], [37]. Reinforcement learning approaches that take social
interaction into account were presented in [10], [38].

A particular challenge lies in selecting a good predictive
model. Recent works have used intent-driven models for human
agents where model uncertainty was estimated using Bayesian
inference and then used for planning [39], [40], [41]. Other
works considered Gaussian processes as a predictive model [42],
[43], [44]. To the best of our knowledge, none of the afore-
mentioned works provide valid safety guarantees unless strong
assumptions are placed on the prediction algorithm and the agent
model or its distribution, e.g., being Gaussian.

We focus instead on the predictive strength of neural net-
works. Particularly, RNNs and LSTMs have shown to be applica-
ble to time-series forecasting [19], [20]. They were successfully
applied in domains such as speech/handwriting recognition and
image classification [45], [46], [47], [48], but also in trajectory
prediction [13], [14], [15], [16], [17], [18]. We will specifically
use the social LSTM presented in [16] that can jointly predict
agent trajectories by taking social interaction into account.

Neural network predictors, however, provide no information
about the uncertainty of a prediction so that wrong predictions
can lead to unsafe decisions. Therefore, monitors were con-
structed in [49], [50] to detect prediction failures — particu-
larly [50] used conformal prediction to obtain guarantees on
the predictor’s false negative rate. Conformal prediction was
also used to estimate reachable sets via neural network predic-
tors [51], [52], [53]. Conceptually closest to our work is [54]
where a valid predictor is constructed using conformal predic-
tion, and then utilized to design a model predictive controller.
However, no safety guarantees for the planner can be provided
as the predictor uses a finite collection of training trajectories to
represent all possible trajectories, implicitly requiring training
and test trajectories to be similar. Our approach directly predicts
trajectories of the dynamic environment (e.g., using RNNs or
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LSTMs) along with valid prediction regions so that we can
provide end-to-end safety guarantees for our planner.

II. PROBLEM FORMULATION

We first define the safe planning problem in dynamic envi-
ronments that we consider, and then briefly discuss methods for
trajectory prediction of dynamic agents.

A. Safe Planning in Dynamic Environments

Consider the discrete-time dynamical system

Ty = f(x,ue), o :=( (D

where z; € X CR" and u; € U C R™ denote the state and
the control input at time ¢ € N U {0}, respectively. The sets
U and X denote the set of permissible control inputs and the
workspace of the system, respectively. The measurable function
f:R™ xR™ — R"™ describes the system dynamics and ¢ €
R™ is the initial condition of the system.

The system operates in an environment with N dynamic
agents whose trajectories are a priori unknown. Let D be an
unknown distribution over agent trajectories and let

(Yo,Y1,...)~D

describe a random trajectory where the joint agent state Y; :=
(Yia,...,Y; n) at time ¢ is drawn from RM", ie., Y; ; is the
state of agent j at time t.! We assume at time ¢ to have knowledge
of (Yp,...,Y:). Modeling dynamic agents by a distribution D
provides great flexibility, e.g., the pedestrians in Fig. 1 can be
described by distributions D1, D5, and D5 with joint distribution
D, and D can generally describe the motion of Markov decision
processes. We make no assumptions on the form of the distribu-
tion D, but assume that D is independent of the system in (1) as
formalized next.

Assumption 1: For any time t > 0, the control inputs
(ug, - .., us—1) and the resulting trajectory (xo, . . ., ¢ ), follow-
ing (1), do not change the distribution of (Yp, Y1,...) ~ D.

Assumption 1 approximately holds in many applications,
e.g., a self-driving car taking conservative control actions that
result in socially acceptable trajectories which do not change the
behavior of pedestrians. We later comment on ways to deal with
distribution shifts in practice, and reserve a thorough treatment
of this issue for future papers. We further assume availability of
training and calibration data drawn from D.

Assumption 2: We have a dataset D := {Y(1) . YU}
in which each of the K trajectories Y'(*) := (Yo(i)7 Yl(z), ...) s
independently drawn from D, i.e., Y@ ~ D,

Assumption 2 is not restrictive in practice, e.g., pedestrian
data is available in autonomous driving. Let us now define the
problem that we aim to solve in this letter.

Problem 1: Given the system in (1), the random trajectory
(Yo,Y1...) ~ D, a mission time T, and a failure probability
d € (0,1), design the control inputs u; such that the Lipschitz
continuous constraint function ¢ : R x R™Y — R is satisfied?

'For simplicity, we assume that the state of each dynamic agent is n-
dimensional. This assumption can easily be generalized.
2We assume that ¢ is initially satisfied, i.e., that c(xo, Yp,0) > 0.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on August 15,2023 at 18:28:00 UTC from IEEE Xplore. Restrictions apply.



5118

with a probability of at least 1 — 4, i.e., that
P(c(x,Yy) >0Vt €{0,...,T}) >1—0.

‘We note that the function ¢ can encode collision avoidance,
but also objectives such as tracking another agent. In our solution
to Problem 1, we additionally achieve cost optimality in terms
of a cost function .J (details below).

B. Trajectory Predictors for Dynamic Environments

Our goal is to predict future agent states (Yiyi,...,Yr)
from observations (Yp,...,Y;). Our proposed planning algo-
rithm is compatible with any trajectory prediction algorithm.
Assume that PREDICT is a measureable function that maps
observations (Yp,...,Y;) to predictions (?Hl‘t?...,f/ﬂt) of
(Yit1,...,Y7). We now split the dataset D into training and
calibration datasets Dy,in and De,, respectively, and assume
that PREDICT is learned from D\iy.

A specific example of PREDICT are recurrent neural networks
(RNNs) that have shown good performance [20]. For 7 < ¢, the
recurrent structure of an RNN is given as

hl:=H(Y;, ht ),

hi = H(Y, hifl’ hfril)v

)/}T—‘y-l“f' = y(hﬁ%

where Y, is the input that is sequentially applied and H is a
function that can parameterize different types of RNNs, e.g.,
LSTMs [14]. Furthermore, d is its depth and hl,... h? are
the hidden states. The output }A’tﬂ‘t provides an estimate of
Y41, see e.g., [18], [55] where the function ) parameterizes
a predictive conditional distribution. To obtain the remaining
predictions ﬁ+2|t, ceey ?T‘t of Yiio,..., Yy, we use the RNN

Vie{2,...,d}

in a recursive way by sequentially applying }A/H_l‘t, e ,YT,W
instead of the unknown Y;1q,..., Y 1.

III. CONFORMAL PREDICTION REGIONS FOR TRAJECTORY
PREDICTORS

The challenges in solving Problem 1 are twofold. First, the
unknown distribution D over trajectories (Yp,Y7,...) can be
complex and may not follow standard assumptions, e.g., being
Gaussian. Second, the function PREDICT can be highly nonlinear
and predictions Y7|t may not be accurate. To be able to deal
with these challenges, we use conformal prediction to obtain
prediction regions for }A’T‘t.

A. Introduction to Conformal Prediction

Conformal prediction was introduced in [11], [12] to obtain
valid prediction regions for complex predictive models, i.e.,
neural networks, without making assumptions on the underlying
distribution or the predictive model [56], [57], [58], [59], [60].
We first provide a brief introduction to conformal prediction.

Let R© ... R be k + 1 independent and identically dis-
tributed random variables.® The variable R(*) is usually referred

3In general only exchangeability is needed, which means that the joint
distribution of R(O),...,R(k) is the same as the joint distribution of

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 8, AUGUST 2023

to as the nonconformity score. In supervised learning, it may be
defined as R := || Z() — (X @))| where the predictor y at-
tempts to predict the output Z(*) based on the input X (V). A large
nonconformity score indicates a poor predictive model. Our goal
is to obtain a prediction region for R(?) basedon RV, ... R(*),
i.e., the random variable R(9) should be contained within the
prediction region with high probability. Formally, given a failure
probability 6 € (0,1), we want to construct a valid prediction
region C' so that*

P(RY <C)>1-4.

By a surprisingly simple quantile argument, see [59, Lemma 1],
one can obtain C to be the (1 — ¢)th quantile of the empirical
distribution of the values R™"), ..., R and cc. By assuming
that R, ... R are sorted in non-decreasing order, and by
adding R**1 := 0o, we can equivalently obtain C := R(?)
wherep := [(k + 1)(1 — §)] with [-] being the ceiling function,
i.e., C'is the pth smallest nonconformity score. In the next sec-
tion, we discuss how to obtain conformal prediction regions for
trajectory predictions. We are inspired by [61] where prediction
regions for RNNs were derived, but present results that are more
taylored for our problem setup.

B. Prediction Regions Using Conformal Prediction

Given observations (Yp,...,Y;) at time ¢, recall that we
can obtain predictions Y/T‘t of Y, for all future times 7 € {t +
1,..., T} via the PREDICT function. For a failure probability of
5 € (0,1), our first goal is now to construct prediction regions
defined by a value C; so that

P (I¥; = Vol < Cy) 2156,

Following Section III-A, we define the nonconformity score

Ry := ||Y; — Y7y || so that a small (large) nonconformity score

indicates that the predictions Y7|t are accurate (not accurate). In-

deed, let us compute the nonconformity score for each trajectory
Y () of the calibration dataset Dy as

RY . Hy(i) B

T T

Tt "

2
where YT(lit) is the prediction obtained from (Yo(i), e }Q(i)).
We can now obtain prediction regions by a direct application

of [59, Lemma 1]. Assume hence that the values of R(Tllf‘ are

cal|+1) —

sorted in non-decreasing order, and let us add R‘(I"ltD o0

as the (| Dcar| + 1)th value.

Lemma 1 (Following [11]): Given the random trajectory
(Yp,Y1,...) ~ D, the calibration dataset D, and predictions
Y, |; obtained from observations (Yp, . ..,Y;). Let§ € (0,1) be
a failure probability, then for 7 > ¢ we have

P (IY; = Vol < Cpp) 216

R@©) R for any permutation o on {0, ...k}. Exchangeability
is a strictly weaker requirement than independence and identical distribution.

“More formally, we would have to write C(R() ..., R()) as the prediction
region C' is a function of RW ... R() For this reason, the probability
measure P is defined over the product measure of R RN R,
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where the prediction regions C |, are defined by
Cryp = RY) with pi= [(|Deal + 1)(1-0)]. (2

Proof: By construction of the nonconformity scores R(i)
they are exchangeable and we can directly apply [59, Lemma 1]
so that P(||Y, — YT‘tH < Crp) =1-4. |

We can now construct prediction regions over multiple future
predictions by an application of Boole’s inequality.

Theorem 1: Given the random trajectory (Yo, Y7,...) ~ D,
the calibration dataset D, andﬁpredictions f/ﬂt obtained from
observations (Yp,...,Y:). Let 6 := 6/T where 6 € (0,1) is a
failure probability, then the following two statements hold where
C7¢ is constructed as in (2):

P (||YT ~ Yol € Crpo, Yr e {1, ,T}) >1-46, ()

P (||Yt+1 — Yisrell < Cogap, VEE€{0,..., T — 1}) >1—46.

“)

Proof: Let us first show that the statement in (3) holds.

According to Lemma 1, it holds that P(]|Y, — YT‘OH < Crp) >

1—¢ for each 7 € {1,...,T} individually. We consequently

know that P(||Y; — YT‘OH > Cyy0) < 6. Applying Boole’s in-
equality gives us

T T
P (37> 05t |V; = Vool > Or) < 2=> 7=

’ﬂ\%

so that we can finally conclude that

P (HYT — Vil < Cryo, Vr € {1,...,T}) >1-6
which proves (3). Statement (4) follows analogously. |

Equation (3) guarantees that all 7-step ahead prediction re-
gions at time zero are valid, while (4) guarantees that all one-step
ahead prediction regions are valid. We note that we set 6 := & /T
to compute C|; according to (2) to obtain prediction regions
over multiple time steps. As a consequence, the value of C7;
increases with increasing 7" or decreasing § as smaller J result
in larger quantiles p.

Remark 1: The result in (3) was similarly shown in [61],
but without permitting recursive RNNs, i.e., RNNs where pre-
dictions YT‘t are recursively used to predict Yr+1\t We permit
any measurable predictor PREDICT. Importantly, we also show
that (4) holds, which will be important for proving correctness
guarantees of our proposed MPC.

Remark 2: For the applications that we plan to address, it can
be useful to instead consider a nonconformity score

R,y = 1Y, - Y,

je{l,.,N}y " e

where we recall that Y- ; is the state of agent j at time 7, and
where Y, 7|¢,; 18 the corresponding prediction for agent j. We can
obtain prediction regions P(R,; < Cr;) > 1 — ¢ in the same
way as described above. Using this nonconformity score, we get
prediction regions individually for each agent.
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IV. MODEL PREDICTIVE CONTROL WITH CONFORMAL
PREDICTION REGIONS

We next propose an MPC that uses the predictions )A’T‘t and
the prediction regions defined by C.|; to solve Problem 1.
Let us first present the optimization problem that will be it-
eratively solved within the MPC. Therefore, denote the Lips-
chitz constant of ¢ by L. For instance, the collision avoidance
constraint ¢(x, y) := ||z — y[| — 0.5 has Lipschitz constant one,
ie., |e(x,y) —c(x,y")| < ||y — y”||. At time t, we solve the
f0110w1ng optimization problem to obtain an open-loop control

Sequence s, ..., Ur—_1:
(ut,?7iilT71) J(z,u) (5a)
st g1 = far,ur), Te{t,....,T—1} (5b)
c(zr,Yy) > LCypy, TE{t+1,...,t+H} (50
Uy €U, 741 € X, reft,...,T—1} (5d)

where H is a prediction horizon and J is a cost func-
tion over states x := (x1,...,27) and control inputs w :=
(ug, . ..,ur—1). The optimization problem (5) is convex if the
functions J and f are convex, the function ¢ is convex in its first
argument, and the sets &/ and X" are convex.

If one can solve the optimization problem (5) at time ¢ = 0,
one obtains a control sequence u that solves Problem 1.

Theorem 2 (Open-loop control): Let the system (1) be given,
and let the conditions from Theorem 1 and Assumption 1 hold.
If the optimization problem (5) is feasible at time ¢ = 0 with
prediction horizon H = T, then the open-loop control sequence
u from (5) is s.t.

P(c(z.,Y;)>0,Vre{l,...,T}) >1-4.

Proof: Due to constraint (5¢), it holds that

0< 0(1'7_7 Y‘r|0) - LCT\O

< e, Yy) + LY, — Yool — LCrpo

where the latter inequality follows by Lipschitz continuity. Now,
by (3) in Theorem 1, it directly follows that P(c(z,,Y;) >
0,vre{l,...,T}) >1-6. |

While the open-loop controller in Theorem 2 provides a solu-
tion to Problem 1, the controller will admittedly be conservative,
or the optimization problem in (5) may even be infeasible. The
main reason for this is that the prediction regions defined by
Crjo will be large for large 7 as the predictions YT|0 will lose
accuracy. Another drawback of an open-loop controller is the
missing robustness due to the lack of feedback. We propose a
receding horizon control strategy in Algorithm 1 that reduces
conservatism and is robust.

In lines 1 and 2 of Algorithm 1, we set the variables 5 and
p according to Lemma 1 and Theorem 1. Lines 3-9 present
the computation of the conformal prediction regions by: 1)

calculating the predictions }AfT(lit) on the calibration data D, g,
2) calculating the nonconformity scores RrY

e and 3) obtaining
CT\t =

R(T’T t) according to Theorem 1. Lines 10-14 are the
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Algorithm 1: MPC With Conformal Prediction Regions.

Input: Failure probability §, calibration dataset Dy
obtained from D, prediction and task horizons H and T’
Output: Feedback controller ug(zg), ..., ur—1(xr-1)
1:6+6/T
2 p ¢ [(|Deal + 1)(1 - 8]
3: for t from O to T' — 1 do # offline computation
for 7 from ¢ + 1 to t + H do # conformal prediction

Obtain predictions )A/T(ft) for each YV € Dy

4
5:
6. R ‘1 — ||Y(i) - YT(‘Z)H for each YY) € Dy
7
8

R(‘DcalH‘l)

Tt

— 0
Sort R( ) in non-decreasing order

9: Cﬂt — R( Tt
10: for ¢ from 0 to T" — 1 do # real-time planning loop
11:  Sense x; and Y;
12:  Obtain predictions YT” forre{t+1,...
13:  Calculate controls uy, . . .,
14:  Apply us to (1)

-+ H}
ur_1 as the solution of (5)

real-time planning loop in which we observe our states x; and Y}
(line 11), obtain new predictions Y/ﬂt based on Y; (line 12), and
solve the optimization problem in (5) of which we apply only
uy (lines 13—14). The MPC presented in Algorithm 1 enjoys the
following guarantees.

Theorem 3 (Closed-loop control): Let the system (1) be
given, and let the conditions from Theorem 1 and Assump-
tion 1 hold. If the optimization problem (5) is feasible at
each time t € {0,...,7 — 1}, then the closed-loop control

uo(x0), ..., ur—1(zr_1) obtained from Algorithm 1 is s.t.
P(c(x,Yy) >0Vt e{l,...,T}) >1—04.

Proof: By assumption, the optimization problem (5) is feasi-
ble at each time ¢ € {0,...,7 — 1}. Due to constraint (5¢) and
Lipschitz continuity of c, it hence holds that

0 < c(xp41, Yt+1\t) -

< c(xpq1, Yeqr) + L||Yigr —

LC
Vi1l = LCysp

ateachtimet € {0,...,7 — 1}.By (4)in Theorem I, it now fol-
lows that P(c(z¢41, Yiq1) >0,V € {0,..., T —1}) >1-4§
which proves the main result. |
We conclude with final remarks on parameter choices and
recursive feasibility of the MPC and distribution shifts in D.
Remark 3: A smaller failure probability § leads to larger
predictionregions C' |, as remarked before, and hence to less op-
timal paths w.r.t. the cost function J. Larger prediction horizons
H may also lead to less optimal paths as future predictions lose
accuracy. For too small H, however, one may experience recur-
sive feasibility issues of the optimization problem (5). While we
assume recursive feasibility in Theorem 3, we note that this is a
reasonable assumption when || Yy g — Y34 g41||isnotchanging
too much. Note that the time-varying nature of prediction regions
is typically no problem for recursive feasibility as prediction
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Fig. 2. Left: nonconformity scores Rls\lo and ng‘m on D¢y along with
C15)10 and Cyg)1 for different T' for Scenario 1. Right: nonconformity scores
(%) (#) ; :
R55‘50 and Rss\so on Dcy along with C550 and Cg)s0 for different T" for
Scenario 2.

regions shrink over time, e.g., C7; will typically be smaller
than C7 .

Remark 4: We assume that test and calibration trajectories
follow the same distribution D per Assumptions 1 and 2. We
hence ignore that the trajectory x may change D during test
time, e.g., when a robot is too close to a pedestrian. While we do
not address distribution shifts in full generality, e.g., when D(x)
depends explicitly on z, we can use robust conformal predic-
tion [60] to obtain valid prediction regions for all distributions
that are “close” to D (in terms of the f-divergence), and integrate
these in an MPC.

V. CASE STUDIES

In the first case study, we consider navigating a mobile
robot around pedestrians whose trajectories are generated in
TrajNet++ [17] using the ORCA simulator [62]. In the second
case study, we control a self-driving car at an intersection filled
with pedestrians in CARLA [21], see Fig. 1.

For trajectory prediction, we use the social LSTM from [16].
Compared to vanilla LSTMs as introduced in Section II-B, the
social LSTM uses one LSTM for each agent while sharing
LSTM weights via a pooling layer to model social interactions.
These pooled LSTM weights are then used as inputs of the
individual LSTMs, see [16] for details. For both case studies, we
trained a social LSTM with a depth of d := 128 for the individual
agent LSTM.

In both case studies, we consider a bicycle model [63]

Tyl ¢ + Avg cos(0y)
Yer1 | | z¢ + Avgsin(6y)
9t+1 915 + A% tan(@)
Vt41 vy + Aay

where p, := (z¢,y;) is the two-dimensional position, 6, is the
vehicles’s orientation, v, is the velocity, [ := 1 is the vehicles’s
length, and A is the sampling time. The control inputs are the
steering angle ¢, and the acceleration a;.

The objective is to reach a goal region, while avoiding the
pedestrians by means of the constraint function

c(pr, Yr) = {

oy 1Pr = Yol =€

Authorized licensed use limited to: University of Pennsylvania. Downloaded on August 15,2023 at 18:28:00 UTC from IEEE Xplore. Restrictions apply.



LINDEMANN et al.: SAFE PLANNING IN DYNAMIC ENVIRONMENTS USING CONFORMAL PREDICTION

5121

Fig. 3.

Scenario 1. The top three plots show the robot trajectory (black triangles) produced by the proposed MPC at times 4, 8, and 15. There are three pedestrians,

with their actual trajectories indicated by black stars, that the robot safely avoids. The LSTM predictions are indicated by red stars with the corresponding prediction
regions shown in green. The prediction regions are updated at each time making the MPC less conservative than the open-loop controller, which is presented in the
bottom three plots. For the open-loop controller, the prediction regions are fixed from time zero and given by C|g.

where € is a user-defined safety distance. In the first case study,
we encode reaching the goal region as a constraint ||[pr —
Pgoat || < 0.25, while we minimize ||[pr — pgoa|| in the cost func-
tion J in the second case study. To solve the optimization
problemin (5), we use CasADi [64] with the Ipopt nonlinear pro-
gramming solver. Animations for both case studies can be found
at https://tinyurl.com/ecz2a9c4https://tinyurl.com/ecz2a9c4.
Scenario 1 (ORCA). We collected 4500 synthetic trajectories
in a scene consisting of three pedestrians, and created training,
calibration, and test datasets with sizes | Dyin| = 2000, | Dea| =
2000, and |Dyey| := 500, respectively. The sampling time is
A :=1/8, and Fig. 2 (left) shows histograms of the nonconfor-

mity scores R(Tl& evaluated on D, for 7 € {15,18} and ¢ := 10
(with R defined as in Remark 2). Based on these nonconformity
scores, we can calculate C'7; according to Theorem 1 by using
0 :=0.05and 7" := 20. In Fig. 2 (left), we additionally indicate
C7; for different values of T, and we can observe that larger T
naturally result in larger prediction regions. Next, we empirically
evaluate the correctness of the prediction regions by checking
whether or not (3) holds on D;.. Indeed, we find that 498 of the
500 test trajectories are such that ||Yf(i) - }A’T(fo) | < Crjo which
empirically confirms (3) in Theorem 1. For one of these test
trajectories, Fig. 3 shows the prediction regions defined by Yr‘t
and Cy, for 7 >t where ¢t = 0 (bottom plots) ¢ = 4 (top left
plot), t = 8 (top middle plot), ¢ = 15 (top right plot). We note
that the LSTM at time ¢ = 0 for simplicity uses information
Y_90,...,Y_1. We can observe that prediction regions become
larger for larger 7.

Fig. 3 shows the result of the proposed MPC (here with
H :=T) in the top three plots for a trajectory (Yp, Y7, .. .) from
Diegt. For comparison, we present the results for the open-loop
controller from Theorem 2, i.e., only applying the control se-
quence obtained at time zero, in the bottom three plots of Fig. 3.
For illustration purposes, we have set € := 0. It is visible that

”"’/////* AN

Intersection with pedestrians in CARLA [21].

Fig. 4.

both the open and closed loop MPC controllers are such that the
pedestrians are avoided according to the constraint function c.
This has to hold in at least 95 percent of the cases by Theorems 2
and 3 since we have selected 6 = 0.05. The cost function J in the
open and closed loop MPC controllers additionally minimizes
23:1 v? to avoid large velocities, which also acts as a proxy to
minimize the total distance traveled. The closed loop MPC is, as
expected and motivated before, much less conservative than the
open-loop controller and finds a more direct trajectory towards
the goal region. To corroborate this observation, we calculated
the averaged cost over 500 test trajectories which are 414 for the
open-loop controller and 367.1 for the closed loop controller.
Scenario 2 (CARLA). Within the autonomous driving sim-
ulator CARLA we have created a scene consisting of an inter-
section that is populated with four pedestrians, see Fig. 4. These
pedestrians have random initial and goal positions, and walk at
random speeds to reach their goal. We collected 2600 trajec-
tories, and then created training, calibration, and test datasets
with sizes |Dygin| = 1000, |Dea| = 1500, and |Dies| = 100,
respectively, and train an LSTM from Dy, to predict pedestrian
trajectories. We run CARLA at a frequency of 20 Hz for 30
seconds, but use the LSTM and solve the MPC at 2 Hz. We
show the histograms of the nonconformity scores Ril‘)t evaluated
on D¢, for 7 € {55,58} and ¢ := 50 which are hence the 2.5
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Scenario 2. The car (black dot) navigating an intersection while avoiding four pedestrians (current position marked in red, predictions and prediction

regions indicated by green dots and circles, respectively). Plots at times 4, 8, and 36.

and 4 seconds ahead prediction regions (with R defined as in
Remark 2) in Fig. 2 (right). We again indicate C’;|; for different
values of 7', and observe that the size of C7|; increases with
larger T'. As we run the car for 30 seconds, the mission time
T is technically 60. However, as we have a limited amount of
calibration trajectories (data collection in CARLA is real-time),
we only use 7" := 30 to calculate prediction regions C|; from
D, i.e., we use 0 := ¢/30 with § = 0.05 in Theorem 1. This
choice is practically motivated and larger calibration datasets
D, will allow to select larger 7. Nonetheless, the obtained
prediction regions are valid for T steps.

We use the MPC again with the constraint function ¢ and the
bicycle model discretized with A = 1/2, but we now set the
prediction horizon to H := 10, i.e., to five seconds. Due to the
large time horizon of 7', we note that the open-loop controller
with H := T is infeasible. We made two practically motivated
modifications to the optimization problem in (5). First, for the x
step-ahead predictions we observed that the values of C |, are
similar at different times ¢, and we have hence used the smallest
value of C,, . among all ¢ for the x step-ahead prediction
region. Second, due to a model mismatch between the bicycle
model and the CARLA model, we also included slack variables
on the constraint in (5¢) to obtain recursive feasibility.

The MPC result for a single trajectory from the test set Dieg 1S
shown in Fig. 5. We also ran the MPC for all 100 test trajectories,
and only in one case the safety constraint ¢(z,,Y,) > 0 was
violated. This confirms Theorem 3 which states that in at most 5
of the 100 MPC runs the constraint is violated. We next checked
the correctness of the one-step ahead prediction regions and
found that in 99.985 % it holds that ||Y; — YT‘tH < Oy are
satisfied which is higher than the theoretically ensured value of
100(1 — 6/T) = 99.83 %.

VI. CONCLUSION

We presented a model predictive controller (MPC) that uses
conformal prediction for probabilistic safe planning in dynamic
environments. The MPC uses complex trajectory predictors,
such as (but not limited to) long short term memory networks,
to predict future states of the dynamic environment and incor-
porates valid prediction regions using conformal prediction to
quantify the uncertainty. To the best of our knowledge, these are
the first results that provide valid safety guarantees for planning

in dynamic environments without making assumptions on the
predictor or the environment. To corroborate our results, we
presented two numerical experiments of a mobile robot and a
self-driving vehicle safely navigating around other agents.

For future work, we plan to do a comparative study using
different trajectory predictors and to analyze their interplay with
the MPC in more detail. We will also extend the presented MPC
to be able to handle an arbitrary number of agents in the environ-
ment. We further plan to investigate potential conservatism in the
prediction regions (induced by union bounding over events over
several time steps in Theorem 1) by using adaptive methods.
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