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The wide availability of data coupled with the computational advances in arti!cial intelligence and machine
learning promise to enable many future technologies such as autonomous driving. While there has been a
variety of successful demonstrations of these technologies, critical system failures have repeatedly been re-
ported. Even if rare, such system failures pose a serious barrier to adoption without a rigorous risk assessment.
This article presents a framework for the systematic and rigorous risk veri!cation of systems. We consider a
wide range of system speci!cations formulated in signal temporal logic (STL) and model the system as a sto-
chastic process, permitting discrete-time and continuous-time stochastic processes. We then de!ne the STL
robustness risk as the risk of lacking robustness against failure. This de!nition is motivated as system failures
are often caused by missing robustness to modeling errors, system disturbances, and distribution shifts in
the underlying data generating process. Within the de!nition, we permit general classes of risk measures
and focus on tail risk measures such as the value-at-risk and the conditional value-at-risk. While the STL
robustness risk is in general hard to compute, we propose the approximate STL robustness risk as a more
tractable notion that upper bounds the STL robustness risk. We show how the approximate STL robustness
risk can accurately be estimated from system trajectory data. For discrete-time stochastic processes, we show
under which conditions the approximate STL robustness risk can even be computed exactly. We illustrate our
veri!cation algorithm in the autonomous driving simulator CARLA and show how a least risky controller can
be selected among four neural network lane-keeping controllers for !ve meaningful system speci!cations.
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Fig. 1. Le!: Simulation environment in the autonomous driving simulator CARLA. Middle: Double le! turn
on which we evaluate four trained neural network lane-keeping controllers. Right: Cross-track error ce and
orientation error θe used for risk verification of the neural network controllers.

1 INTRODUCTION
Over the next decade, large amounts of data will be generated and stored as devices that perceive
and control the world become more a"ordable and available. Impressive demonstrations of data-
driven and machine learning-enabled technologies exist already today, e.g., robotic manipulation
[44], solving games [55, 74], and autonomous driving [19]. However, occasionally occurring system
failures impede the use of these technologies particularly when system safety is a concern. For
instance, neural networks, frequently used for perception and control in autonomous systems, are
known to be fragile and non-robust [25, 77]. Especially the problem of long tails in training data
distributions poses challenges, e.g., natural variations in weather and lighting conditions [61].

Moving forward, we expect that system failures appear less frequently due to advancing
technologies—nonetheless, algorithms for the systematic and rigorous risk veri!cation of such sys-
tems is needed. For instance, the National Transportation Safety Board emphasized in a statement
in connection with an Uber accident from 2018 “the need for safety risk management requirements
for testing automated vehicles on public roads” [12]. In this article, we show how to reason about
the risk of systems that are modeled as stochastic processes. We consider a wide range of system
speci!cations formulated in signal temporal logic (STL) [9, 51] and present a systematic way to
quantify and compute the risk of a system lacking robustness against failure.

1.1 Related Work
Depending on the research disciplines and applications, risk can have various interpretations.
While risk is often de!ned as a failure probability, it can also be understood in more general terms
as a metric de!ned over a cost distribution, e.g., the expected value or the variance of a distribution.
We focus on tail risk measures to capture the rare yet costly events of a distribution. In particular,
we consider the value-at-risk (VaR), i.e., quantiles of a distribution, and the conditional value-at-
risk (CVaR) [62, 63], i.e., the expected value over a quantile. Tail risk measures are more frequently
being used in robotics and control applications where system safety is important [50].

Risk in control. Control design under risk objectives and constraints is increasingly been stud-
ied among control theorists, as machine learning components integrated into closed-loop systems
cause stochastic system uncertainty. Oftentimes, the CVaR risk measure is used to capture risk due
its convexity and the property of being an upper bound to the VaR. For instance, the authors in Ref-
erence [72] consider a stochastic optimal control problem with CVaR constraints over the distance
to obstacles. Linear quadratic control under risk constraints was considered in Reference [81] to
trade o" risk and mean performance. A similar idea is followed for the risk constrained minimum
mean squared error estimator in Reference [37]. Risk-aware model predictive control was con-
sidered in References [29, 76], while References [17, 73] present data-driven and distributionally
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robust model predictive controllers. Risk-aware control barrier functions for safe control synthe-
sis were proposed in Reference [2], while Reference [58] demonstrates the use of risk in sampling-
based planning. We remark that we view these works to be orthogonal to our article, as we provide
a data-driven framework for the risk assessment under complex temporal logic speci!cations, and
we hope to inform future control design strategies.

Stochastic system veri!cation. System veri!cation has a long history in complementing and
informing the control design process of systems, e.g., using model checking [6, 14]. When dealing
with stochastic systems, system veri!cation becomes computationally more challenging [40]. Sta-
tistical model checking has recently gained attention by relying on availability of data instead of
computation [1, 22, 43, 85]. Another line of work considers stochastic barrier functions for safety
veri!cation of dynamical systems [32, 59]. The authors in References [33, 34] deal with the veri!-
cation of stochastic dynamical systems during runtime. Motivated by the fragility and sensitivity
of neural networks [25, 77], a special focus has recently been on verifying neural networks in
open-loop [38, 75] and closed-loop [30]. We remark that our algorithms presented in this article
permit veri!cation of general classes of systems, including systems with neural networks, as long
as we can obtain data, e.g., from a simulator. The guarantees obtained in these previous works
are either worst-case guarantees or in terms of failure probabilities. Towards incorporating tail
risk measures, the authors in References [15, 16] propose a risk-aware safety analysis framework
using the CVaR. We are instead interested in system veri!cation under more complex temporal
logic speci!cations and risk.

Temporal logics. We use signal temporal logic to express a wide range of system speci!cations,
e.g., surveillance (“visit regions A, B, and C every 10−60 sec”), safety (“always between 5−25 sec
stay at least 1 m away from region D”), and many others. For deterministic signals, STL allows to
calculate the robustness by which a signal satis!es an STL speci!cation. Particularly, the authors
in Reference [21] proposed the robustness degree as the maximal tube around a signal in which all
signals satisfy the speci!cation. The size of the tube consequently measures the robustness of this
signal with respect to the speci!cation. As the robustness degree is in general hard to calculate,
the authors in Reference [21] proposed approximate yet easier to calculate robust semantics. Many
forms of robust semantics have appeared, such as space and time robustness [18], the arithmetic-
geometric mean robustness [53], the smooth cumulative robustness [28], averaged STL [3], and
Reference [64], in which a connection with linear time-invariant !ltering is established allowing
to de!ne various types of robust semantics.

For stochastic signals, the authors in References [35, 41, 45, 67, 80] propose notions of proba-
bilistic signal temporal logic in which chance constraints over predicates are considered, while the
Boolean and temporal operators of STL are not changed. Similarly, notions of risk signal temporal
logic have recently appeared in References [46, 48, 69] by de!ning risk constraints over predicates
while not changing the de!nitions of Boolean and temporal operators. In this article, we instead
de!ne risk over the whole STL speci!cation. The work in Reference [23] considers the probability
of an STL speci!cation being satis!ed instead of using chance or risk constraints over predicates.
The authors in Reference [84] consider hyperproperties in STL, i.e., properties between multiple
system executions. More with a control synthesis focus and for the less-expressive formalism of lin-
ear temporal logic, the authors in References [10, 42, 82] consider control over belief spaces, while
the authors in Reference [27] consider probabilistic satisfaction over Markov decision processes.
Complementary to these works, References [5, 60] propose techniques to infer STL speci!cations
from data towards explaining the underlying data.

Risk veri!cation with temporal logics. In this article, we quantify and compute the risk
of lacking robustness against failure. We argue that the consideration of robustness in system
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veri!cation is crucial and are particularly motivated by the fact that system failures are often
caused by missing robustness to modeling errors, system disturbances, and distribution shifts in
the underlying data generating process. The authors in Reference [4] further highlight the impor-
tance of robustness in system veri!cation. Probably closest to our article are the works in Refer-
ences [31, 70, 71] and References [7, 8]. In References [31, 70, 71], the authors combine data-driven
and model-based veri!cation techniques to obtain information about the satisfaction probability
of a partially known system. The authors in References [7, 8] present a purely data-driven veri!ca-
tion technique to estimate probabilities over robustness distributions of the system. Conceptually,
our work di"ers in two directions. First, we consider general risk measures to be able to focus on
the tails of the robustness distribution. We also show how to estimate the robustness risk from data
with high con!dence. Second, we use the robustness degree as de!ned in Reference [21] to obtain
robustness distributions. This in fact allows us to obtain a precise geometric interpretation of risk.
This article is based on our previous work [47]. We here permit continuous-time stochastic pro-
cesses and the CVaR as a risk measure. We also show under which conditions the STL robustness
risk can exactly be calculated, while presenting exhaustive simulations within the autonomous
driving simulator CARLA [19].

1.2 Contributions and Article Outline
Our general goal is to analyze the robustness of stochastic processes and to quantify and compute
the risk of a system lacking robustness against system failure. We make the following contributions:
• We consider discrete-time and continuous-time stochastic processes and show under which

conditions the robust semantics and the robustness degree of STL are random variables. This
enables us to de!ne risk over these quantities.
• We de!ne the STL robustness risk as the risk of a system lacking robustness against failure

of an STL speci!cation. The de!nition permits general classes of risk measures and has a
precise geometric interpretation in terms of the size of permissible disturbances. We also
de!ne the approximate STL robustness risk as a computationally tractable upper bound of
the STL robustness risk.
• For the VaR and the CVaR, we show how the approximate STL robustness risk can be esti-

mated from system trajectory data. Importantly, no particular restriction on the distribution
of the stochastic process has to be made. For discrete-time stochastic processes with a dis-
crete state space, we show how the approximate STL robustness risk can even be computed
exactly.
• We estimate the risk of four neural network lane-keeping controllers within the autonomous

driving simulator CARLA. We show how to !nd the least risky controller.
In Section 2, we present background on signal temporal logic, stochastic processes, and risk

measures. In Section 3, we de!ne the STL robustness risk and the STL approximate robustness
risk. Section 4 shows how the approximate STL robustness risk can be estimated from data, while
Section 5 shows under which conditions it can be computed exactly. The simulation results within
CARLA are presented in Section 6 followed by conclusions in Section 7.

2 BACKGROUND
We !rst provide background on signal temporal logic, stochastic processes, and risk measures.

2.1 Signal Temporal Logic
Signal temporal logic (STL) is based on deterministic signals x : T → Rn where T denotes the
time domain [51]. We particularly consider continuous time T := R (the set of real numbers) and
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discrete time T := Z (the set of natural numbers). The atomic elements of STL are predicates that
are functions µ : Rn → B where B := {#,⊥} is the set of Booleans consisting of the true and false
elements # := 1 and ⊥ := −1, respectively. Let us associate an observation map O µ ⊆ Rn with a
predicate µ that indicates regions within the state space where the predicate µ is true, i.e.,

O µ := µ−1 (#),

where µ−1 (#) denotes the inverse image of# under the function µ. We assume throughout the arti-
cle that the setsO µ andO¬µ are non-empty and measurable, which is a mild technical assumption.
In other words, the sets O µ and O¬µ are elements of the Borel σ -algebra Bn of Rn .

Remark 1. For convenience, the predicate µ is often de!ned via a predicate function h : Rn → R
as

µ (ζ ) :=

# if h(ζ ) ≥ 0
⊥ otherwise

for ζ ∈ Rn . In this case, we have O µ = {ζ ∈ Rn |h(ζ ) ≥ 0}.
The syntax of STL, which recursively allows to formulate system speci!cations, is de!ned as

ϕ ::= # | µ | ¬ϕ | ϕ ′ ∧ ϕ ′′ | ϕ ′UIϕ
′′ | ϕ ′U Iϕ

′′, (1)
where ϕ ′ and ϕ ′′ are STL formulas and where UI is the future until operator with time interval
I ⊆ R≥0, whileU I is the past until-operator. The Boolean operators ¬ and ∧ encode negations and
conjunctions, respectively. We say that an STL formula ϕ as in Equation (1) is bounded if the time
interval I is restricted to be compact. Based on these elementary operators, we can de!ne the set
of operators

ϕ ′ ∨ ϕ ′′ := ¬(¬ϕ ′ ∧ ¬ϕ ′′) (disjunction operator),
FIϕ := #UIϕ (future eventually operator),
F Iϕ := #U Iϕ (past eventually operator),
GIϕ := ¬FI¬ϕ (future always operator),
G Iϕ := ¬F I¬ϕ (past always operator).

2.1.1 Semantics. To determine whether or not a signal x : T → Rn satis!es an STL formula ϕ,
we de!ne the semantics of ϕ by means of the satisfaction function βϕ : F(T ,Rn ) × T → B.1 In
particular, βϕ (x , t ) = # indicates that the signal x satis!es the formula ϕ at time t , while βϕ (x , t ) =
⊥ indicates thatx does not satisfyϕ at time t . While the intuitive meanings of the Boolean operators
¬ (“not”), ∧ (“and”), and ∨ (“or”) are clear, we note that the future until operator ϕ ′UIϕ ′′ encodes
that ϕ ′ holds until ϕ ′′ holds. Speci!cally, βϕ′UI ϕ′′ (x , t ) = #means that ϕ ′ holds for all times after t
(not necessarily at time t ) until ϕ ′′ holds within the time interval (t ⊕ I )∩T .2 Similarly, βFI ϕ (x , t ) =
# encodes that ϕ holds eventually within (t ⊕ I ) ∩ T , while βGI ϕ (x , t ) = # encodes that ϕ holds
always within (t ⊕ I ) ∩T . For a formal de!nition of βϕ (x , t ), we refer to Appendix A.

We are usually interested in the satisfaction function βϕ (x , 0), which determines the satisfaction
of ϕ by x at time zero, the time at which we assume ϕ to be enabled. An STL formula ϕ is hence
said to be satis!able if ∃x ∈ F(T ,Rn ) such that βϕ (x , 0) = #. The following example is taken from
Lindemann et al. [47] and used as a running example throughout the article:

1We use the notation F(A, B ) to denote the set of all measurable functions mapping from the domain A into the domain
B , i.e., an element f ∈ F(A, B ) is a measurable function f : A→ B .
2We use the notation ⊕ and / to denote the Minkowski sum and the Minkowski di"erence, respectively.
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Fig. 2. The figure shows six potential robot trajectories r1-r6 and the four regions A, B, C , and D. The spec-
ification given in Equation (2) is violated by r1 and satisfied by r2-r6. It can be seen that r2 only marginally
satisfies ϕ, while r3-r6 satisfy ϕ robustly.

Example 1. Consider a delivery robot that needs to perform two time-critical delivery tasks in
regions A and B sequentially while avoiding areas C and D; see Figure 2. We consider the STL
formula

ϕ := G[0,3] (¬µC ∧ ¬µD ) ∧ F[1,2] (µA ∧ F[0,1]µB ), (2)
where the regions A, B, C , and D are encoded by the predicates µA, µB , µC , and µD , respectively,
that are de!ned below. Let the state x (t ) ∈ R10 of the system at time t be

x (t ) := [r (t ) a b c d]T

where r (t ) is the robot position at time t and where a, b, c , and d denote the center points of the
regions A, B, C , and D that are de!ned as

a := [4 5]T b := [7 2]T c := [2 3]T d := [6 4].T

The predicates µA, µB , µC , and µD are now de!ned by their observation maps
O µA := {x ∈ R10 |‖r − a‖∞ ≤ 0.5},
O µB := {x ∈ R10 |‖r − b‖2 ≤ 0.7},
O µC := {x ∈ R10 |‖r − c ‖∞ ≤ 0.5}, (3)
O µD := {x ∈ R10 |‖r − d ‖2 ≤ 0.7}, (4)

where ‖ ·‖2 is the Euclidean and ‖ ·‖∞ is the in!nity norm. In Figure 2, six di"erent robot trajectories
r1-r6 are shown. It can be seen that the signal x1 that corresponds to r1 violatesϕ, while x2-x6 satisfy
ϕ, i.e., we have βϕ (x1, 0) = ⊥ and βϕ (x j , 0) = # for all j ∈ {2, . . . , 6}.

Remark 2. The operators UI and U I are the strict non-matching versions of the until opera-
tors. In particular, ϕ ′UIϕ ′′ is: (1) strict, as it does not require ϕ ′ to hold at the current time t , and
(2) non-matching, as it does not require thatϕ ′ andϕ ′′ have to hold at the same time. When dealing
with continuous-time stochastic systems later in this article, we replace the strict non-matching
versions UI and U I by the non-strict matching versions that we denote by !UI and !U I ; see Ap-
pendix A for their formal de!nitions. We note that STL with until operators UI and U I is more
expressive than STL with !UI and !U I . When excluding Zeno-signals, there is, however, no di"er-
ence between these two notions [24]. As one rarely encounters Zeno-signals, we argue that the
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restriction to the non-strict matching version of the until operator for continuous-time stochastic
processes is not restrictive in practice.

2.1.2 Robustness Degree. Importantly, one may also be interested in the quality of satisfaction
and additionally ask how robustly the signal x satis!es the STL formula ϕ at time t . To answer this
question, the authors in Fainekos and Pappas [21, De!nition 7] de!ne the robustness degree that
we recall next in a slightly modi!ed manner. If βϕ (x , t ) = #, then the robustness degree quanti!es
how much the signal x can be perturbed by additive noise before changing the value of βϕ (x , t ).
Towards a formal de!nition, let us !rst de!ne the set of signals that violate ϕ at time t as

L¬ϕ (t ) := {x ∈ F(T ,Rn ) |β¬ϕ (x , t ) = #}.

To measure distances between signals, let us de!ne the metric κ : F(T ,Rn ) ×F(T ,Rn ) → R≥0 as

κ (x ,x ′) := sup
t ∈T

d
(
x (t ),x ′(t )

)
,

where R≥0 := R≥0∪ {∞} is the set of nonnegative extended real numbers and where d : Rn×Rn →
R≥0 is a metric assigning a distance in Rn , e.g., the Euclidean norm. Throughout the article, we
use the extended de!nitions of the supremum and in!mum operators, e.g., supR = ∞. Note that
κ (x ,x ′) is the L∞ norm of the signal x − x ′ and measures the distance between the signals x and
x ′.

To set some general notation, for a metric space (S,κ) with metric κ, we denote by

κ̄ (x , S ′) := inf
x ′ ∈S ′

κ (x ,x ′)

the distance of a point x ∈ S to a nonempty set S ′ ⊆ S . Using this de!nition, the robustness degree
RDϕ : F(T ,Rn ) × T → R≥0 is now de!ned via the metric κ as the distance of the signal x to the
set of violating signals L¬ϕ (t ).

De!nition 1 (Robustness Degree3). For a signal x : T → Rn and an STL formula ϕ, the robustness
degree RDϕ (x , t ) is de!ned as

RDϕ (x , t ) := κ̄
(
x , cl(L¬ϕ (t ))

)
,

where cl(L¬ϕ (t )) denotes the closure of the set L¬ϕ (t ).

By de!nition of the robustness degree, the following properties hold: If RDϕ (x , t ) > 0, then
βϕ (x , t ) = #, i.e., the signal x satis!es ϕ at time t . It further follows that all signals x ′ ∈ F(T ,Rn )
with κ (x ,x ′) < RDϕ (x , t ) are such that βϕ (x ′, t ) = #. The robustness degree de!nes in fact a
robust neighborhood, which is a set strictly containing x , so for all x ′ in this robust neighborhood
we have βϕ (x , t ) = βϕ (x ′, t ). Finally, note that RDϕ (x , t ) = 0 may imply either βϕ (x , t ) = # or
βϕ (x , t ) = ⊥, i.e., the signal x either satis!es or violates ϕ at time t .

2.1.3 Robust Semantics. Note that it is in general di#cult to calculate the robustness degree
RDϕ (x , t ), as the setL¬ϕ (t ) is hard to calculate. The authors in Fainekos and Pappas [21] introduce
the robust semantics ρϕ : F(T ,Rn )×T → R as an alternative way of !nding a robust neighborhood
where R := R ∪ {−∞,∞} is, in direct analogy to R≥0, the set of extended real numbers.

3The robustness degree in Fainekos and Pappas [21, De!nition 7] is de!ned slightly di"erently by instead considering the
signed distance of the signal x to the set of violating signals L¬ϕ (t ).
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De!nition 2 (Robust Semantics). For a signal x : T → Rn and an STL formula ϕ, the robust
semantics ρϕ (x , t ) are recursively de!ned as

ρ# (x , t ) := ∞,

ρµ (x , t ) :=

d̄
(
x (t ), cl(O¬µ )

)
if x (t ) ∈ O µ

−d̄
(
x (t ), cl(O µ )

)
otherwise,

ρ¬ϕ (x , t ) := −ρϕ (x , t ),

ρϕ′∧ϕ′′ (x , t ) := min(ρϕ′ (x , t ), ρϕ′′ (x , t )),

ρϕ′UI ϕ′′ (x , t ) := sup
t ′′ ∈(t ⊕I )∩T

(
min

(
ρϕ′′ (x , t ′′), inf

t ′ ∈(t,t ′′)∩T
ρϕ′ (x , t ′)

))
,

ρϕ′U I ϕ′′ (x , t ) := sup
t ′′ ∈(t /I )∩T

(
min

(
ρϕ′′ (x , t ′′), inf

t ′ ∈(t ′′,t )∩T
ρϕ′ (x , t ′)

))
.

Remark 3. With respect to Remark 2, the non-strict matching version of the until operators
replace the open time intervals (t , t ′′) in De!nition 2 by the closed time intervals [t , t ′′] so

ρϕ′!UI ϕ′′ (x , t ) := sup
t ′′ ∈(t ⊕I )∩T

(
min

(
ρϕ′′ (x , t ′′), inf

t ′ ∈[t,t ′′]∩T
ρϕ′ (x , t ′)

))
,

ρϕ′!U I ϕ′′ (x , t ) := sup
t ′′ ∈(t /I )∩T

(
min

(
ρϕ′′ (x , t ′′), inf

t ′ ∈[t ′′,t ]∩T
ρϕ′ (x , t ′)

))
.

Importantly, by slight modi!cation of Fainekos and Pappas [21, Theorem 28], we know that
ρϕ (x , t ) ≤ RDϕ (x , t ). (5)

The robust semantics ρϕ (x , t ) hence provides a tractable under-approximation of the robustness
degree RDϕ (x , t ). The robust semantics are sound in the sense that βϕ (x , t ) = # if ρϕ (x , t ) > 0
and βϕ (x , t ) = ⊥ if ρϕ (x , t ) < 0 [21, Proposition 30].

Example 1 (continued). Consider again the trajectories shown in Figure 2. We obtain ρϕ (x1, 0) =
−0.15, ρϕ (x2, 0) = 0.01, and ρϕ (x j , 0) = 0.25 for all j ∈ {3, . . . , 6}. The reason for x1 having negative
robustness lies in r1 intersecting with the region D. Marginal robustness of x2 is explained as r2
only marginally avoids the region D, while all other trajectories avoid the region D robustly.

2.2 Random Variables and Stochastic Processes
Instead of interpreting an STL speci!cations ϕ over deterministic signals, we will interpret ϕ over
stochastic processes. Consider, therefore, the probability space (Ω,F , P ), where Ω is the sample
space, F is a σ -algebra of Ω, and P : F → [0, 1] is a probability measure.

Let Z denote a real-valued random vector, i.e., a measurable function Z : Ω → Rn . When n = 1,
we say Z is a random variable. We refer to Z (ω) as a realization of the random vector Z where
ω ∈ Ω. Since Z is a measurable function, a probability space can be de!ned for Z so probabilities
can be assigned to events related to values of Z .4 Consequently, a cumulative distribution function
(CDF) FZ (z) can be de!ned for Z . Given a random vector Z , we can derive other random variables.
Assume, for instance, a measurable function д : Rn → R, then д(Z (ω)) becomes a derived ran-
dom variable, since function composition preserves measurability; see, e.g., Durrett [20] for more
details.

4Particularly, this probability space is (Rn, Bn, PZ ) where, for Borel sets B ∈ Bn , the probability measure PZ : Bn →
[0, 1] is de!ned as PZ (B ) := P (Z−1 (B )), where Z−1 (B ) := {ω ∈ Ω |Z (w ) ∈ B } is the inverse image of B under Z .
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Fig. 3. Illustration of the expected value, the value-at-risk, and the conditional value-at-risk.

A stochastic process is a function X : T × Ω → Rn , where X (t , ·) is a random vector for each
!xed t ∈ T . A stochastic process can be viewed as a collection of random vectors {X (t , ·) |t ∈ T }
that are de!ned on a common probability space (Ω,F , P ) and that are indexed by T . For a !xed
ω ∈ Ω, the function X (·,ω) is a realization of the stochastic process. Another interpretation is
that a stochastic process is a collection of deterministic functions of time {X (·,ω) |ω ∈ Ω} that are
indexed by Ω.

2.3 Risk Measures
A risk measure is a function R : F(Ω,R) → R that maps from the set of real-valued random
variables to the real numbers. In particular, we refer to the input of a risk measure R as the cost
random variable, since typically a cost is associated with the input of R. Risk measures hence allow
for a risk assessment in terms of such cost random variables.

In this article, we particularly use the expected value, the value-at-riskVaRβ , and the conditional
value-at-riskCVaRβ at risk level β ∈ (0, 1), which are commonly used risk measures; see Figure 3.
The VaRβ of a random variable Z : Ω → R is de!ned as

VaRβ (Z ) := inf {α ∈ R|FZ (α ) ≥ β },
i.e., the right 1 − β quantile of Z . The CVaRβ of Z is de!ned as

CVaRβ (Z ) := inf
α ∈R

(
α + (1 − β )−1E ([Z − α]+)

)
,

where [Z −α]+ := max(Z −α , 0). When the CDF FZ of Z is continuous, it holds thatCVaRβ (Z ) :=
E (Z |Z ≥ VaRβ (Z )), i.e., CVaRβ (Z ) is the expected value of Z conditioned on the events where Z
is greater or equal than VaRβ (Z ).

There are various desriable properties that a risk measure R may satisfy; see Majumdar and
Pavone [50] for more information. We emphasize that our presented method is compatible with
any monotone risk measure, where monotonicity of R is de!ned as follows:
• For two cost random variables Z ,Z ′ ∈ F(Ω,R), the risk measure R is monotone if

Z (ω) ≤ Z ′(ω) for all ω ∈ Ω =⇒ R (Z ) ≤ R (Z ′).

The assumption of considering monotone risk measures is very mild, and both the value-at-risk
VaRβ (Z ) and the conditional value-at-riskCVaRβ (Z ) as well as the expected value are monotone.

3 THE RISK OF LACKING ROBUSTNESS AGAINST FAILURE
We interpret STL formulas ϕ over stochastic processes X instead of deterministic signals x . It is,
however, not immediately clear how to interpret the satisfaction of ϕ by X . One way is to argue
about the probability of satisfaction; see, e.g., Farahani et al. [23], but probabilities provide no
information about the risk and the robustness of X with respect to ϕ. In fact, some realizations of
X may satisfy ϕ robustly, while some other realizations ofX may satisfy ϕ only marginally or even
violate ϕ. This observation leads us to the use of risk measures R to be able to argue about the risk
of the stochastic process X lacking robustness against failure of the speci!cation ϕ.
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3.1 Measurability of Semantics, Robustness Degree, and Robust Semantics
To de!ne the risk of a stochastic process X , we !rst need to show under which conditions the
semantics βϕ (X , t ), the robustness degree RDϕ (X , t ), and the robust semantics ρϕ (X , t ) are derived
random variables. For discrete-time stochastic processes, no assumptions have to be made.

Theorem 1. Let X be a discrete-time stochastic process, i.e., T := Z. Let ϕ be an STL speci!cation
as in Equation (1). Then βϕ (X (·,ω), t ), RDϕ (X (·,ω), t ), and ρϕ (X (·,ω), t ) are measurable in ω for a
!xed t ∈ T , i.e., βϕ (X , t ), RDϕ (X , t ), and ρϕ (X , t ) are random variables.

For continuous-time stochastic processes, however, we have to impose additional technical as-
sumptions. Particularly, we have to restrict the class of STL formulas in Equation (1) and make
further assumptions on the stochastic process X .

Theorem 2. Let X be a continuous-time stochastic process, i.e., T := R. Let ϕ be a bounded STL
speci!cation as in Equation (1), but where the strict non-matching until operators UI and U I are
replaced with the non-strict matching until operators !UI and !U I . Then βϕ (X (·,ω), t ) is measurable
in ω for a !xed t ∈ T , i.e., βϕ (X , t ) is a random variable. If X (·,ω) : Ω → F(T ,Rn ) is measurable,5

then RDϕ (X (·,ω), t ) is measurable in ω for a !xed t ∈ T , i.e., RDϕ (X , t ) is a random variable, and if
additionally X (·,ω) is a cadlag function6 for each ω ∈ Ω, then ρϕ (X (·,ω), t ) is measurable in ω for
a !xed t ∈ T , i.e., ρϕ (X , t ) is a random variable.7

Consequently, the probabilities P (βϕ (X , t ) ∈ B), P (ρϕ (X , t ) ∈ B), and P (RDϕ (X , t ) ∈ B)8 are
well de!ned for measurable sets B from the corresponding measurable spaces. This enables us to
de!ne the STL robustness risk in the next section.

Remark 4. We !rst note that the assumption of a bounded STL formula ϕ with the non-strict
matching until operator is made for a technical reason. While the restriction to bounded formu-
las limits our expressivity to !nite time speci!cations, the consideration of the non-strict match-
ing until operator is not restrictive, as discussed in Remark 2. We remark that Bartocci et al. [8]
showed measurability of ρϕ (X (·,ω), t ) under the assumption of a bounded STL speci!cation ϕ
with non-strict matching until operators, while we additionally show measurability of the seman-
tics βϕ (X (·,ω), t ) and the robustness degree RDϕ (X (·,ω), t ) without any additional continuity as-
sumptions onX . Last, we recall that we do not need to assume thatϕ is bounded for a discrete-time
stochastic process as per Theorem 1.

3.2 The STL Robustness Risk
One way of de!ning the risk associated with a stochastic process X is to consider the satisfaction
function βϕ (X , t ). However, not much information about the robustness of X can be inferred due
to binary encoding of βϕ (X , t ). Instead, we consider the risk of the stochastic process X lacking
robustness against failure of the speci!cation ϕ by considering the robustness degree RDϕ (X , t ).

Example 2. Consider an electric RC circuit consisting of a resistor with resistance R and a ca-
pacitor with capacitance C := 1. If the capacitor is initially charged withV0 := 5, then the capacitor
discharges its energy over time once the circuit is closed. In fact, the voltage over the capacitor is

5Here, we mean measurable with respect to the Borel σ -algebras induced by the Skorokhod metric; see Reference [8] for
details.
6Cadlag functions are right continuous functions with left limits.
7The result for measurability of ρϕ (X ( ·, ω ), t ) is mainly taken from Reference [8, Theorem 6].
8We use the shorthand notations P (β ϕ (X , t ) ∈ B ), P (ρϕ (X , t ) ∈ B ), and P (RDϕ (X , t ) ∈ B ) instead of P ( {ω ∈
Ω |β ϕ (X ( ·, ω ), t ) ∈ B }), P ( {ω ∈ Ω |ρϕ (X ( ·, ω ), t ) ∈ B }), and P ( {ω ∈ Ω |RDϕ (X ( ·, ω ), t ) ∈ B }), respectively.
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Fig. 4. Le!: 200 realizations of the voltage V (t ) over the capacitor of an RC circuit. Right: Histogram of the
negative robustness degree −RDϕ (V , 0) of the specification ϕ := G[2,∞) (V ≤ 1).

described by

V (t ) = V0 exp(−τ t ),
where τ := 1/RC is the time constant. Assume that the resistance is unknown and modeled as
R := 0.5 + Z , where Z is a random variable following a beta distribution with probability density
function fZ (z) := 1

B (1.5,5)z
1.5−1 (1 − z)5−1, where B (1.5, 5) is the beta function with parameters 1.5

and 5. Consequently, the voltageV becomes a stochastic process of which we plot 200 realizations
in Figure 4 (left). As a speci!cation ϕ, we want that the voltage V (t ) drops below 1 after 2 s, i.e.,

ϕ := G[2,∞) (V ≤ 1).

In Figure 4 (right), we show the histogram of the negative robustness degree −RDϕ (V , 0) for
100,000 realizations. To estimate the risk of the stochastic process X lacking robustness against
failure of ϕ, we can now compose −RDϕ (V , 0) with a risk measure R. For instance, the value-
at-risk at level β := 0.9 is VaR0.9 (−RDϕ (V , 0)) ≈ −0.38. Recall that VaR0.9 (−RDϕ (V , 0)) is the
0.1 quantile of −RDϕ (V , 0). This means that with a probability of at least 0.9 the robustness degree
is not smaller (i.e., greater) than |VaR0.9 (−RDϕ (V , 0)) | ≈ 0.38 or, in other words, that in at most
10% of the cases the robustness is smaller than 0.38. This information is useful, as it allows us to
quantify how much uncertainty our system can handle, e.g., when we do not know the value ofV0
exactly.

The previous example motivates the following de!nition for the risk of the stochastic process
X lacking robustness against failure of ϕ to which we refer as the STL robustness risk for brevity.

De!nition 3 (STL Robustness Risk). Given an STL formula ϕ and a stochastic processX : T ×Ω →
Rn , the risk of X lacking robustness against failure of ϕ at time t is de!ned as

R (−RDϕ (X , t )).

We remark that a large positive value of RDϕ (X (·,ω), t ) for a realization ω ∈ Ω indicates robust
satisfaction ofϕ. Therefore, the negative robustness degree −RDϕ (X , t ) is the cost random variable
that is chosen as the input for the risk measure R. This way, a large robustness degree results in a
low cost. Finally, note that R (−RDϕ (X ′, t )) ≤ R (−RDϕ (X ′′, t )) implies that the stochastic process
X ′ is less risky than the stochastic process X ′′ with respect to the speci!cation ϕ.
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3.3 The Approximate STL Robustness Risk
Unfortunately, the STL robustness risk R (−RDϕ (X , t )) can in general not be calculated, as the
robustness degree in De!nition 1 is di#cult to calculate. Instead, we will focus on R (−ρϕ (X , t ))
using the robust semantics as an approximation of the STL robustness risk.

De!nition 4 (Approximate STL Robustness Risk). Given an STL formulaϕ and a stochastic process
X : T × Ω → Rn , the approximate risk of X lacking robustness against failure of ϕ at time t is
de!ned as

R (−ρϕ (X , t )).

Fortunately, the approximate STL robustness risk R (−ρϕ (X , t )) over-approximates the STL ro-
bustness risk R (−RDϕ (X , t )) when R is a monotone risk measure, as shown next.

Theorem 3. Let X be a stochastic process, ϕ be an STL speci!cation as in Equation (1), and R be a
monotone risk measure. Then it holds that

R (−RDϕ (X , t )) ≤ R (−ρϕ (X , t )).

The previous result is important, as using R (−ρϕ (X , t )) instead of R (−RDϕ (X , t )) will not result
in an optimistic risk assessment. Especially in safety-critical applications, it is desirable to be more
risk-averse as opposed to being overly optimistic.

Sometimes one may be interested in scaling the robustness degree to associate a monetary cost
with RDϕ (X , t ) to re)ect the severity of events with low robustness. Let us for this purpose consider
an increasing cost function C : R→ R.

Corollary 1. Let X be a stochastic process, ϕ be an STL speci!cation as in Equation (1), R be a
monotone risk measure, and C be an increasing cost function. Then it holds that

R (C (−RDϕ (X , t ))) ≤ R (C (−ρϕ (X , t ))).

4 DATA-DRIVEN ESTIMATION OF THE APPROXIMATE STL ROBUSTNESS RISK
In this section, we show how the approximate STL robustness risk R (−ρϕ (X , t )) can be estimated
from data. We assume that we have observed N independent realizations of the stochastic process
X , i.e., we know N realizations X (·,ω1), . . . ,X (·,ωN ) where ω1, . . . ,ωN ∈ Ω are drawn inde-
pendently and according to the probability measure P . A practical example would be a simulator
from which we can unroll trajectories X (·,ωi ). For brevity, we denote X (·,ω1), . . . ,X (·,ωN ) by
X 1, . . . ,XN . In this way, one can think of X 1, . . . ,XN as N independent copies of X . We empha-
size that we do not need knowledge of the distribution of X . Our goal is to derive upper bounds
of R (−ρϕ (X , t )) that hold with high probability. Let us, for convenience, !rst de!ne the random
variable

Z := −ρϕ (X , t ).

For further convenience, let Z i := −ρϕ (X i , t ) and let us also de!ne the tuple

Z := (Z 1, . . . ,ZN ).

We consider the value-at-risk VaRβ (Z ), the conditional value-at-risk CVaRβ (Z ), and the mean
E (Z ). Particularly, we derive upper boundsVaRβ (Z,δ ),CVaRβ (Z,δ ), and E (Z,δ ) that hold with
a probability of at least 1− δ . By Theorem 3 and Propositions 1, 2, and 3 (presented in the remain-
der), we then have computational algorithms to !nd tight upper bounds for the approximate STL
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robustness risk and hence for the STL robustness risk, and it holds that with a probability of 1− δ
VaRβ (−RDϕ (X , t )) ≤ VaRβ (Z ) ≤ VaRβ (Z,δ ),

CVaRβ (−RDϕ (X , t )) ≤ CVaRβ (Z ) ≤ CVaRβ (Z,δ ),

E (−RDϕ (X , t )) ≤ E (Z ) ≤ E (Z,δ ).

4.1 Value-at-Risk (VaR)
For a risk level of β ∈ (0, 1), recall that the VaR of Z is given by

VaRβ (Z ) := inf {α ∈ R|FZ (α ) ≥ β },
where FZ (α ) denotes the CDF of Z . To estimate FZ (α ), we de!ne the empirical CDF as

F̂ (α ,Z) := 1
N

N∑

i=1
I(Z i ≤ α ),

where I denotes the indicator function de!ned as

I(Z i ≤ α ) :=


1 if Z i ≤ α

0 otherwise.
Let now δ ∈ (0, 1) be a probability threshold. Inspired by Szorenyi et al. [78], we calculate an upper
bound of VaRβ (Z ) as

VaRβ (Z,δ ) := inf
α ∈ R|F̂ (α ,Z) −

√
ln(2/δ )

2N ≥ β


and a lower bound as

VaRβ (Z,δ ) := inf
α ∈ R|F̂ (α ,Z) +

√
ln(2/δ )

2N ≥ β
,

where we recall that inf ∅ = ∞ for ∅ being the empty set due to the extended de!nition of the
in!mum operator. We next show that VaRβ (Z,δ ) and VaRβ (Z,δ ) are upper and lower bounds
of VaRβ (Z ), respectively, with a probability of at least 1 − δ .

Proposition 1. Assume that FZ is continuous and let δ ∈ (0, 1) be a probability threshold and
β ∈ (0, 1) be a risk level. LetVaRβ (Z,δ ) andVaRβ (Z,δ ) be based on the dataZ. With a probability
of at least 1 − δ , it holds that

VaRβ (Z,δ ) ≤ VaRβ (Z ) ≤ VaRβ (Z,δ ).

We remark that Theorem 1 assumes that FZ is continuous. If FZ is not continuous, then one can
derive upper and lower bounds by using order statistics following Nikolakakis et al. [57, Lemma 3].

4.2 Conditional Value-at-Risk (CVaR)
For a risk level of β ∈ (0, 1), recall that the CVaR of Z is given by

CVaRβ (Z ) := inf
α ∈R

(α + (1 − β )−1E ([Z − α]+)),

where [Z −α]+ := max(Z −α , 0). For estimatingCVaRβ (Z ) from dataZ, we focus here on the case
where the random variable ρϕ (X , t ) (and hence Z ) has bounded support for !xed t . In particular,
we assume that P (ρϕ (X , t ) ∈ [a,b]) = 1. Note that ρϕ (X , t ) has bounded support when the func-
tion ρϕ is bounded, which can be achieved either by construction of ϕ or by clipping o" ρϕ outside
the interval [a,b] for some a priori chosen constants a and b, i.e., values outside this interval are
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clipped to the end points a and b of the interval. We remark that clipping o" ρϕ is not restric-
tive in most practical applications, i.e., realizations of ρϕ (X , t ) that are larger than a su#ciently
large value of b > 0 indicate robust satisfaction of ϕ and will not a"ect the risk associated with Z ,
while realizations of ρϕ (X , t ) smaller than a < 0 violate the speci!cation ϕ already.9 We will pro-
vide illustrative examples in our simulations in Section 6. This boundedness assumption enables
us now to directly leverage results from Wang and Gao [83] to estimate upper and lower bounds
of CVaRβ (Z ). Let us !rst de!ne the empirical estimate of CVaRβ (Z ) as

)CVaRβ (Z) := inf
α ∈R

*
+α + (N (1 − β ))−1

N∑

i=1
[Z i − α]+,-.

Based on Wang and Gao [83, Theorem 3.1], we can now calculate an upper bound ofCVaRβ (Z ) as

CVaRβ (Z,δ ) := )CVaRβ (Z) +

√
5 ln(3/δ )

N (1 − β )
(b − a)

and a lower bound as

CVaRβ (Z,δ ) := )CVaRβ (Z) −
√

11 ln(3/δ )

N (1 − β )
(b − a).

We would like to highlight that the upper and lower bounds CVaRβ (Z,δ ) and CVaRβ (Z,δ ), re-
spectively, become less accurate with larger values of (b−a), which we can account for by increas-
ing the number of observed trajectories N . The following proposition follows immediately from
Wang and Gao [83, Theorem 3.1]:

Proposition 2. Let δ ∈ (0, 1) be a probability threshold and β ∈ (0, 1) be a risk level. Assume
that P (ρϕ (X , t ) ∈ [a,b]) = 1. Let CVaRβ (Z,δ ) and CVaRβ (Z,δ ) be based on the data Z. With a
probability of at least 1 − δ , it holds that

CVaRβ (Z,δ ) ≤ CVaRβ (Z ) ≤ CVaRβ (Z,δ ).

Remark 5. The case where Z has unbounded support, but where Z is sub-Gaussian or sub-
exponential has been considered in Bhat and L. A. [11], Brown [13], Kolla et al. [39], Mhammedi
et al. [54], Thomas and Learned-Miller [79].

4.3 Mean
De!ne the empirical estimate of the mean E (Z ) as

Ê (Z) := 1
N

N∑

i=1
Z i .

By the law of large numbers, Ê (Z) converges to E (Z ) with probability one asN goes to in!nity. For
!nite N and when again Z has bounded support, i.e., P (Z ∈ [a,b]) = 1, we can apply Hoe"ding’s
inequality and calculate an upper E (Z,δ ) of the mean E (Z ) as

E (Z,δ ) := Ê (Z) +

√
ln(2/δ )

2N (b − a)

9In practice, it hence makes sense to select a negative value for a and to select b based on physical intuition that we may
have—either from trajectories that we may have already observed or from domain knowledge, e.g., for a lane-keeping
controller in autonomous driving, the value of b = 1 meter is a good robustness.
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Fig. 5. Histogram of −RDϕ (X j , 0) of the specification ϕ in (2) for robot trajectories j ∈ {1, . . . , 6}.

and a lower bound as

E (Z,δ ) := Ê (Z) −
√

ln(2/δ )

2N (b − a).

Similarly to the observation that we made for CVaR, note that the upper and lower bounds E (Z,δ )
and E (Z,δ ), respectively, become less accurate with increasing values of (b−a) and more accurate
with increasing N . We next show that we indeed obtain valid upper and lower bounds.

Proposition 3. Let δ ∈ (0, 1) be a probability threshold. Assume that P (ρϕ (X , t ) ∈ [a,b]) = 1.
Let E (Z,δ ) and E (Z,δ ) be based on the dataZ. With a probability of at least 1 − δ , it holds that

E (Z,δ ) ≤ E (Z ) ≤ E (Z,δ ).

Example 1 (continued). We now modify Example 1 by considering that the regions C and D are
not exactly known. Let c and d in Equations (3) and (4), respectively, be Gaussian random vectors
as

c ∼ N
( [

2
3

]
,

[
0.2 0
0 0.2

])
, (6)

d ∼ N
( [

6
4

]
,

[
0.2 0
0 0.2

])
. (7)

Consequently, the signals x1-x6 become stochastic processes denoted byX1-X6. Let nowX i
j denote

the ith observed realization of X j where j ∈ {1, . . . , 6}. Our !rst goal is to estimate VaRβ (Z ) to
compare the risk between the six robot trajectories r1-r6. We set δ := 0.01 and N := 15, 000.10 The
histograms of −ρϕ (X j ) for each trajectory are shown in Figure 5. For di"erent risk levels β , the
resulting upper and lower bounds for the value-at-risk are shown in the next table.
!!!!!j

R
VaR0.9 VaR0.925 VaR0.95 VaR0.975 VaR0.9 VaR0.925 VaR0.95 VaR0.975

1 0.434 0.467 0.508 0.577 0.407 0.432 0.465 0.505
2 0.261 0.295 0.335 0.424 0.232 0.259 0.292 0.332
3 −0.075 −0.044 0.001 0.086 −0.1 −0.077 −0.046 −0.003
4 −0.25 −0.222 −0.177 −0.086 −0.25 −0.25 −0.225 −0.182
5 −0.249 −0.228 −0.18 −0.084 −0.249 −0.249 −0.23 −0.185
6 −0.249 −0.249 −0.249 −0.249 −0.249 −0.249 −0.249 −0.249

Across all β , it can be observed that the estimateVaRβ ofVaRβ is relatively tight, as the di"erence
|VaRβ −VaRβ | between upper and lower bounds is small. The table indicates that trajectories r1

10We can select smaller N at the cost of slightly more conservative estimates.
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and r2 are not favorable and are not robust. Recall that smaller risk values are favorable, as only
negative values indicate actual robustness. Trajectory r3 is better compared to trajectories r1 and
r2, but worse than r4-r6 in terms of the approximate STL robustness risk of ϕ. For trajectories
r4-r6, note that a β = 0.9 provides the information that the trajectories have roughly the same
approximate STL robustness risk. However, once the risk level β is increased to 0.925, 0.95, and
0.975, it becomes clear that r6 is preferable over r4 and r5. This matches with what one would
expect by closer inspection of Figures 2 and 5.

We next estimate CVaRβ (Z ) and therefore restrict ρϕ to lie within [−0.5, 0.25] simply by clip-
ping values that exceed this bound. This choice is motivated by our previous discussion in Sec-
tion 4.2 and as ρϕ is upper bounded by 0.25; see histograms in Figure 5. For di"erent risk levels β ,
the resulting upper and lower bounds for the conditional value-at-risk are shown next.
!!!!!j

R
CVaR0.9 CVaR0.925 CVaR0.95 CVaR0.975 CVaR0.9 CVaR0.925 CVaR0.95 CVaR0.975

1 0.577 0.607 0.645 0.707 0.32 0.31 0.282 0.193
2 0.432 0.471 0.527 0.637 0.175 0.174 0.164 0.12
3 0.1 0.136 0.193 0.301 −0.16 −0.161 −0.17 −0.213
4 −0.078 −0.04 0.019 0.13 −0.335 −0.336 −0.344 −0.384
5 −0.08 −0.042 0.019 0.134 −0.337 −0.338 −0.344 −0.38
6 −0.146 −0.13 −0.103 −0.042 −0.403 −0.426 −0.466 −0.556

In general, the same observations regarding the ranking of r1 − r6 can be made based on the con-
ditional value-at-risk. However, the risk levels are in general much higher, asCVaRβ is more risk-
sensitive than VaRβ . An important observation is that the estimates CVaRβ of CVaRβ are not as
tight as before forVaRβ , as the di"erence |CVaRβ −CVaRβ | is larger, particularly for larger β due
to the division by 1 − β in the estimates of CVaRβ and CVaRβ . For completeness, we also report
the estimated mean of Z .

!!!!!j
R

E E

1 0.227 0.207
2 0.043 0.023
3 −0.194 −0.214
4 −0.233 −0.253
5 −0.233 −0.253
6 −0.24 −0.26

5 EXACT COMPUTATION OF THE APPROXIMATE STL ROBUSTNESS RISK
In the previous section, we estimated the approximate STL robustness risk using observed real-
izations X 1, . . . ,XN of the stochastic process X . In this section, we instead assume to know the
distribution of X . There are two main challenges in computing the approximate STL robustness
risk R (−ρϕ (X , t )) from the distribution of X . First, note that exact computation of R (−ρϕ (X , t ))
requires knowledge of the CDF of ρϕ (X , t ). However, the CDF of ρϕ (X , t ) is in general not known
and often hard to obtain analytically. Second, calculating R (−ρϕ (X , t )) may often involve solving
high-dimensional integrals for which in most of the cases no closed-form expressions exists. For
these reasons, we assume in this section that the STL formulaϕ is bounded and thatX : T ×Ω → X
is a discrete-time stochastic process, i.e., T := Z, with a !nite state space X ⊆ Rn (i.e., the set X
consists of a !nite set of elements).
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Recall that the time intervals I contained in a bounded STL formula ϕ are compact. The satis-
faction of such an STL formula can hence be decided by !nite signals. A bounded STL formula ϕ
has a future formula length Lϕ

f ∈ Z and a past formula length Lϕ
p ∈ Z. The future formula length

Lϕ
f can be calculated, similarly to Sadraddini and Belta [68], as

L#f = Lµ
f := 0

L¬ϕ
f := Lϕ

f

Lϕ′∧ϕ′′

f := max(Lϕ′

f ,L
ϕ′′

f )

Lϕ′UI ϕ′′

f := max{I ∩ Z} +max(Lϕ′

f ,L
ϕ′′

f )

L
ϕ′U I ϕ′′

f := max(Lϕ′

f ,L
ϕ′′

f ).

The past formula length Lϕ
p can be calculated similarly as

L#p = Lµ
p := 0

L¬ϕ
p := Lϕ

p

Lϕ′∧ϕ′′
p := max(Lϕ′

p ,L
ϕ′′
p )

Lϕ′UI ϕ′′
p := max(Lϕ′

p ,L
ϕ′′
p )

L
ϕ′U I ϕ′′
p := max{I ∩ Z} +max(Lϕ′

p ,L
ϕ′′
p ).

A !nite signal of length Lϕ
f +L

ϕ
p is now su#cient to determine ifϕ is satis!ed at time t . In particular,

information from the time interval TL := {t − Lϕ
p , . . . , t , . . . , t + L

ϕ
f } is su#cient to determine if ϕ

is satis!ed at time t . Now, let X : Ω × TL → X be the discrete-time stochastic process under
consideration where the state space X ⊆ Rn is a !nite set. Note that we can always obtain such
a !nite set X from a continuous state space by discretization. Let the probability mass function
(PMF) fX (x ) of X be given. The next result is stated without proof, as it follows immediately from
the fact that TL and X, and consequently the set of signals F(TL,X) are !nite sets.

Proposition 4. Let ϕ be a bounded STL formula with future and past formula lengths Lϕ
f and Lϕ

p ,
respectively. Let X : Ω ×TL → X be a discrete-time stochastic process with a !nite state space X. For
t ∈ R, we can calculate the PMF fZ (z) and the CDF FZ (z) of Z as

fZ (z) =
∑

x ∈F(TL,X)

I(−ρϕ (x , t ) = z) fX (x ),

FZ (z) =
∑

x ∈F(TL,X)

I(−ρϕ (x , t ) ≤ z) fX (x ).

Note that FZ (z) =
∑

z′ ≤z fZ (z ′) holds as required. Having obtained the PMF fZ (z) and the CDF
FZ (z) of Z , it is now straightforward to calculate R (Z ) for various risk measures R. Note, in par-
ticular, that Z is a discrete random variable so fZ (z) is discrete and FZ (z) is piecewise-continuous,
hence simplifying the calculation of R (Z ), as no high-dimensional integrals need to be solved.

Example 1 (continued). Recall that c and d were assumed to be Gaussian distributed accord-
ing to Equations (6) and (7), respectively. We !rst discretize the distributions of c and d ; see Ap-
pendix G for details. From the PMFs fc and fd , we can now calculate the PMF fX (x ) for any
x ∈ F(TL,R6) × C × D where C and D are the discretized domains of c and d . We can hence
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calculate fZ (z) according to Proposition 4. From this, the value at riskVaRβ (Z ) can be calculated,
which is reported in the next table.

!!!!!i
R

VaR0.9 VaR0.925 VaR0.95 VaR0.975

1 0.403 0.429 0.461 0.509
2 0.225 0.255 0.29 0.348
3 −0.102 −0.067 −0.049 0.003
4 −0.249 −0.249 −0.222 −0.162
5 −0.25 −0.25 −0.222 −0.157
6 −0.249 −0.249 −0.249 −0.249

It can be seen that the STL robustness risks reported above closely resemble the sampling-based
estimates VaRβ of VaRβ from Section 4.

6 SIMULATIONS: AUTONOMOUS DRIVING IN CARLA
We consider the veri!cation of neural network-based lane-keeping controllers for lateral control
in the autonomous driving simulator CARLA [19]; see Figure 1 (left). Lane-keeping in CARLA
is achieved by tracking a set of prede!ned waypoints. For longitudinal control, a built-in PID
controller is used to stabilize the car at 20 km/h. We particularly trained four di"erent neural
network controllers as detailed below. Our overall goal is to estimate and compare the risks of these
four controllers for !ve di"erent speci!cations during a double left turn; see Figure 1 (middle).

For the veri!cation and comparison of these controllers, we are particularly interested in the
cross-track error, which is a measure of the closest distance from the car to the path de!ned by the
set of waypoints, as illustrated in Figure 1 (right). Formally, letwp1 be the waypoint that is closest
to the car and let wp2 be the waypoint proceeding wp1. Then the cross-track error is de!ned as
ce := ‖w ‖ sin(θw ),wherew is the vector pointing fromwp1 to the car andθw is the angle betweenw
and the vector pointing fromwp1 towp2. We are also interested in the orientation error θe := θt −θ
between the orientation of the reference path θt and the orientation of the car θ .

The state x := (ce ,θe ,v,d, θ̇t ) of the car consists of the cross-track error ce , the orientation error
θe , the velocityv of the car, the internal state d of the longitudinal PID controller, and the rate θ̇t at
which the orientation of the reference path changes. The control input for which we aim to learn
and verify a lane-keeping controller is the steering angle u.

6.1 Training Neural Network Lane-keeping Controllers
We have trained four di"erent neural network controllers. Two of these four controllers were
obtained by using supervised imitation learning (IL) [65], while the other two controllers were
obtained by learning control barrier functions (CBFs) from expert demonstrations [49].

To obtain two imitation learning controllers, we used a CARLA built-in PID controller u∗ as an
expert controller to collect expert trajectories, which are sequences of state and control input pairs.
The !rst IL controller, denoted as ILfull, is trained using the full state x as an input to the neural
network, while the control input u is the output. The second IL controller, denoted as ILpartial,
is trained by only using partial state knowledge. In particular, only the cross-track error ce , the
orientation error θe , and the rate θ̇t at which the orientation of the path changes are used here as
an input to the neural network. We used one-layer neural networks with 20 neurons per layer and
ReLU activation functions and trained with the mean squared error as the loss function.

Remark 6. For simplicity, we did not attempt to address the distribution shift between the expert
controller and the trained controller, e.g., by using DAGGER [66]. We remark that our primary goal
lies in the veri!cation and comparison of risk between controllers.
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Fig. 6. Shown are 600 trajectories for each of the four controllers during the double le! turn. Trajectories
marked in red led to a collision with an obstacle.

To obtain the CBF-based controllers, we again used the expert controller u∗ to get expert trajec-
tories from which we learned robust control barrier functions following Lindemann et al. [49].
The !rst controller, denoted as CBFfull, uses again full state knowledge of x . The second con-
troller, denoted as CBFpartial, estimates the cross-track error ce from RGB dashboard camera im-
ages while assuming knowledge of the remaining states; see Lindemann et al. [49] for details.
Both neural network controllers consist of two layers with 32 and 16 neurons and tanh activation
functions.

6.2 Risk Verification and Comparison
For the risk veri!cation and comparison of these four controllers, we tested each of them on the
training course; see Figure 1 (middle). We uniformly sampled the initial position of the car in
a range of ce ∈ [−1, 1] m and θe ∈ [−0.4, 0.4] rad and added normally distributed noise in a
range of [−0.1, 0.1] rad to the control input to simulate actuation noise so the car becomes a
stochastic process X . We collected N := 1,000 trajectories for each controller, of which 600 are
shown in Figure 6. From a visual inspection, we can already see that the controllers that use full
state knowledge (ILfull, CBFfull) outperform the controllers that only use partial state knowledge
(ILpartial, CBFpartial). Videos of each controller from !ve di"erent initial conditions are provided
under https://tinyurl.com/48xjf545.

To obtain a more formal assessment, we next estimate the risk of each controller with respect
to: (1) the cross-track error over the whole trajectory, during steady state, and during the transient
phase, (2) the responsiveness of the controller, and (3) the orientation error.

6.2.1 Cross-track Error. The speci!cation that we look at here is that the cross-track error ce
should always be within the interval [−2.25, 2.25], where 2.25 is a threshold that we selected based
on the cross-track error induced by the expert controller u∗. In STL language, we have

ϕ1 := G[0,∞) ( |ce | ≤ 2.25).

We show the histograms of ρϕ1 (X , 0) for each controller in Figure 7(a) (left).11 We are particularly
interested in the controllers ILfull and CBFfull and show their histograms isolated in Figure 7(a)
(right) for better readability. Selecting δ := 0.01, the estimates of VaR0.85, VaR0.95, CVaR0.85, and
E are reported in the table below. In the last column, we have additionally reported the empirical
probability that the speci!cation ϕ1 is satis!ed, which we calculate as

#ϕ1 :=
∑N

i=1 I(β
ϕ1 (X i , 0) = #)

N
.

For each risk measure, we highlight the controller with the lowest risk in green.

11We restrict ρϕ1 to lie within the interval [−1.25, 2.25], i.e., in this case, we clip the values of ρϕ1 (X , 0) = inft∈Z 2.25 −
|ce (t ) | to −1.25 if ρϕ1 (X , 0) < −1.25. In the remainder, we clip ρϕ2 -ρϕ5 in the same way for the speci!cations ϕ2-ϕ5.
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Fig. 7. Histograms of −ρϕi (X , 0) for each controller for the specifications ϕ1-ϕ5.
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!!!!!u
R

VaR0.85 VaR0.95 CVaR0.85 E VaR0.85 VaR0.95 CVaR0.85 E #ϕ1

ILfull −0.168 0.462 1.436 −0.248 −0.258 −0.168 −2.354 −0.61 0.975
ILpartial 1.25 1.25 2.776 1.166 1.25 1.25 −1.014 0.806 0.005
CBFfull 0.135 1.125 1.818 −0.375 −0.125 0.105 −1.972 −0.736 0.863
CBFpartial 0.58 1.25 2.42 0.357 0.44 0.58 −1.37 −0.003 0.364
Based on these risk estimates, we make the following observations:
• As expected from the visual inspection of Figure 6, the controllers ILpartial and CBFpartial

perform poorly. Among these two, CBFpartial performs slightly better in terms of risk than
ILpartial.
• The controllers ILfull and CBFfull perform better. The risk of CBFfull in terms of the expected

value E is smaller than the risk of ILfull. Interestingly, the risk of ILfull in terms of theVaR0.85,
VaR0.95, andCVaR0.85 is smaller than the risk of CBFfull. This is due to the long tail induced
by CBFfull; see Figure 7(a) (right). We hence argue that ILfull is the better choice with respect
to ϕ1.
• The estimate CVaR0.85 of CVaR0.85 is not tight and very conservative. The di"erence
|CVaR0.85 − CVaR0.85 | between the upper and lower bounds is large. To make this bound
tighter, more data N is needed. We neglect the conditional value-at-risk in the remainder.
• In this case, it can be observed that a low empirical satisfaction probability #ϕ1 correlates

with a high risk. We remark that this is not always the case, as risk considers characteristics
of the right tail of the distribution−ρϕ1 (X , 0), while satisfaction probabilities focus on the left
tail of this distribution. This can be observed when we present the results for speci!cation
ϕ5.

We formulate the hypothesis that the long tail of CBFfull that makes CBFfull more risky than
ILfull is induced by the transient behavior. We analyze this hypothesis in detail in the remainder
looking at the speci!cations ϕ2 (steady-state) and ϕ3 (transient phase).

6.2.2 Steady-state. In the previous section, we concluded that ILfull is the best controller for the
speci!cation ϕ1, i.e., when considering the cross-track error ce over the whole trajectory. We now
study the steady-state behavior of each controller in terms of ce and reveal that CBFfull is the least
risky controller when only looking at the steady-state. Therefore, we check if the cross-track error
ce is always within the interval [−2.25, 2.25] after 10 s by the speci!cation

ϕ2 := G[10,∞) ( |ce | ≤ 2.25).

We show the histograms of ρϕ2 (X , 0) for each controller Figure 7(b) and report the risk estimates
below.

!!!!!u
R

VaR0.85 VaR0.9 VaR0.95 E #ϕ2

ILfull −0.168 −0.078 0.462 −0.254 0.975
ILpartial 1.25 1.25 1.25 1.153 0.005
CBFfull −0.944 −0.924 −0.794 −0.81 1
CBFpartial 0.56 1.25 1.25 0.341 0.377

Based on these risk estimates, we make the following observations:
• We see that our stated hypothesis is true and observe that CBFfull now has the least risky

behavior for all risk measures with respect to ϕ2, i.e., during steady state.
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• For CBFfull, we have VaR0.95 (−ρϕ2 (X , 0)) = −0.794. Consequently, for at most 5% of the
realizations the robustness is less than 0.794.

6.2.3 Transient Phase. Complementary to the previous analysis, we now look at the transient
behavior of the cross-track error ce of each controller by imposing the speci!cation

ϕ3 := F[0,5]G[0,5] ( |ce | ≤ 1.25).

In other words, the speci!cation ϕ3 requires that eventually within the !rst 5 s the absolute value
of the cross-track error falls below the threshold 1.25 for at least 5 s. We show the histogram of
each controller in Figure 7(c) and report the corresponding risk estimates next.

!!!!!u
R

VaR0.85 VaR0.9 VaR0.95 E #ϕ3

ILfull −0.584 −0.524 −0.324 −0.652 1
ILpartial 1.25 1.25 1.25 0.493 0.42
CBFfull −0.157 −0.137 0.063 −0.297 0.998
CBFpartial 0.2 0.38 1.25 −0.221 0.83

For ϕ3, we see a similar result as for ϕ1 in the sense that ILfull is the least risky controller, but
now clearly indicating that ILfull is the less risky controller across all risk measures. It is also worth
pointing out that CBFfull and CBFpartial have almost the same expected value, whileVaR0.85,VaR0.9,
and VaR0.95 indicate that CBFfull is less risky.

Summarizing the observations from ϕ1, ϕ2, and ϕ3, ILfull is the least risky controller during the
transient phase and CBFfull is the least risky controller during steady-state.

6.2.4 Responsiveness. So far, we focused on the cross-track error during steady-state and tran-
sient phase. We now analyze the responsiveness of the controllers when the cross-track error
gets too large. We particularly analyze how responsive the controllers are in such situations and
how quickly they can decrease the error again to an acceptable level. Let us therefore look at the
speci!cation

ϕ4 := G[10,∞)

(
( |ce | ≥ 1.25) =⇒ F[0,5]G[0,5] ( |ce | ≤ 1.25)

)
.

In other words, whenever the cross-track error ce leaves the interval [−1.25, 1.25] after the tran-
sient phase has died out (approximately after 10 s), it should hold that within the next 5 s the
cross-track error is again within the interval [−1.25, 1.25] for at least 5 s. We show the histogram
of each controller in Figure 7(d) and report the corresponding risk estimates below.

!!!!!u
R

VaR0.85 VaR0.9 VaR0.95 E #ϕ4

ILfull 0.088 0.128 0.248 0.127 0.703
ILpartial 1.25 1.25 1.25 1.226 0.026
CBFfull −0.0152 −0.005 0.055 0.129 0.974
CBFpartial 1.25 1.25 1.25 1.054 0

The results are interesting in the sense that the risk of ILfull and CBFfull in terms of the expected
value are almost identical, even slightly favoring ILfull, while the risk of CBFfull in terms ofVaR0.85,
VaR0.9, and VaR0.95 is much smaller.

6.2.5 Orientation Error. Let us now focus on the orientation error θe . In general, an orientation
error is expected when either the orientation θt of the reference path changes or the car tries to
reduce the cross-track error ce by adjusting θ , e.g., when |ce | > 0, we need |θe | > 0 to reduce |ce |

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 54. Publication date: April 2023.



Risk of Stochastic Systems for Temporal Logic Specifications 54:23

(see Figure 1). To analyze how well the orientation error is adjusted when the cross-track error
leaves the interval [−1.25, 1.25], we consider the speci!cation

ϕ5 := G[0,∞)

(
(ce ≥ 1.25) =⇒ F[0,2]G[0,1] (θe ≤ 0) ∧ (ce ≤ −1.25) =⇒ F[0,2]G[0,1] (θe ≥ 0)

)
.

The speci!cation ϕ5 encodes that, whenever the cross-track error ce leaves the interval
[−1.25, 1.25], the orientation error θe should, within 2 s, be such that the cross-track error de-
creases for at least 1 s. We show the histogram of each controller in Figure 7(r) and report the risk
estimates below.

!!!!!u
R

VaR0.85 VaR0.9 VaR0.95 E #ϕ5

ILfull −0.58 −0.54 −0.13 −0.517 1
ILpartial 1.25 1.25 1.25 0.762 0.247
CBFfull −0.47 −0.44 −0.32 −0.553 1
CBFpartial 0.43 1.14 1.25 0.225 0.503

We can observe that the risk of ILfull is the lowest forVaR0.85 andVaR0.9, while the risks of ILfull
and CBFfull are roughly equal for the expected value E. However, the distribution induced by ILfull
has a long tail, which is why the risk of CBFfull is the lowest for VaR0.95.

7 CONCLUSION
We de!ned the STL robustness risk to quantify the risk of a stochastic system lacking robustness
against failure of an STL speci!cation. The approximate STL robustness risk was de!ned as a com-
putationally tractable upper bound of the STL robustness risk. It was shown how the approximate
STL robustness risk is estimated from data for the value-at-risk and the conditional value-at-risk.
We also provided conditions under which the approximate STL robustness risk can be computed
exactly. Within the autonomous driving simulator CARLA, we trained four di"erent neural net-
work lane-keeping controllers and estimated their risk for !ve di"erent STL system speci!cations.

APPENDICES
A SEMANTICS OF SIGNAL TEMPORAL LOGIC
The satisfaction function βϕ (x , t ) determines whether or not the signal x satis!es the speci!cation
ϕ at time t . The de!nition of βϕ (x , t ) follows recursively from the structure of ϕ as follows:

De!nition 5 (STL Semantics). For a signal x : T → Rn and an STL formula ϕ, the satisfaction
function βϕ (x , t ) is recursively de!ned as

β# (x , t ) := #,

β µ (x , t ) :=

# if x (t ) ∈ O µ

⊥ otherwise,
β¬ϕ (x , t ) := ¬βϕ (x , t ),

βϕ′∧ϕ′′ (x , t ) := min(βϕ′ (x , t ), βϕ′′ (x , t )),

βϕ′UI ϕ′′ (x , t ) := sup
t ′′ ∈(t ⊕I )∩T

(
min

(
βϕ′′ (x , t ′′), inf

t ′ ∈(t,t ′′)∩T
βϕ′ (x , t ′)

))
,

βϕ′U I ϕ′′ (x , t ) := sup
t ′′ ∈(t /I )∩T

(
min

(
βϕ′′ (x , t ′′), inf

t ′ ∈(t ′′,t )∩T
βϕ′ (x , t ′)

))
.
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The semantics in De!nition 5 use the strict non-matching versionsUI andU I of the until opera-
tors. The non-strict matching versions of the until operator, in comparison, replace the open time
intervals (t , t ′′) in De!nition 5 by the closed time intervals [t , t ′′] as follows:

βϕ′!UI ϕ′′ (x , t ) := sup
t ′′ ∈(t ⊕I )∩T

(
min

(
βϕ′′ (x , t ′′), inf

t ′ ∈[t,t ′′]∩T
βϕ′ (x , t ′)

))
,

βϕ′!U I ϕ′′ (x , t ) := sup
t ′′ ∈(t /I )∩T

(
min

(
βϕ′′ (x , t ′′), inf

t ′ ∈[t ′′,t ]∩T
βϕ′ (x , t ′)

))
.

B PROOF OF THEOREM 1
We prove the statement of Theorem 1 !rst for the semantics βϕ (X , t ), then for the robust semantics
ρϕ (X , t ), and !nally for the robustness degree RDϕ (X , t ).

B.1 Semantics βϕ (X , t )

Let us de!ne the power set of B as 2B := {∅,#,⊥, {⊥,#}}. Note that 2B is a σ -algebra of B. To
prove measurability of βϕ (X (·,ω), t ) in ω for a !xed t ∈ T , we need to show that, for each B ∈ 2B,
it holds that the inverse image of B under βϕ (X (·,ω), t ) for a !xed t ∈ T is contained within F ,
i.e., that it holds that

{ω ∈ Ω |βϕ (X (·,ω), t ) ∈ B} ⊆ F .

We show measurability of βϕ (X (·,ω), t ) in ω for a !xed t ∈ T inductively on the structure of ϕ.
#: For B ∈ 2B, it trivially holds that {ω ∈ Ω |β# (X (·,ω), t ) ∈ B} ⊆ F , since β# (X (·,ω), t ) = #

for all ω ∈ Ω. This follows according to De!nition 5 so {ω ∈ Ω |β# (X (·,ω), t ) ∈ B} = ∅ ⊆ F if
B ∈ {∅,⊥} and {ω ∈ Ω |β# (X (·,ω), t ) ∈ B} = Ω ⊆ F otherwise.

µ: Let 1O µ : Rn → B be the indicator function ofO µ with 1O µ (ζ ) := # if ζ ∈ O µ and 1O µ (ζ ) := ⊥
otherwise. According to De!nition 5, we can now write β µ (X (·,ω), t ) = 1O µ (X (t ,ω)). Recall that
O µ is measurable and note that the indicator function of a measurable set is measurable again (see,
e.g., Durrett [20, Chapter 1.2]). Since X (t ,ω) is measurable in ω for a !xed t ∈ T by de!nition, it
follows that 1O µ (X (t ,ω)) and hence β µ (X (·,ω), t ) is measurable in ω for a !xed t ∈ T . In other
words, for B ∈ 2B, it follows that

{ω ∈ Ω |β µ (X (·,ω), t ) ∈ B} = {ω ∈ Ω |1O µ (X (t ,ω)) ∈ B} ⊆ F .

¬ϕ: By the induction assumption, βϕ (X (·,ω), t ) is measurable in ω for a !xed t ∈ T . Recall that
F is a σ -algebra that is, by de!nition, closed under its complement so, for B ∈ 2B, it holds that

{ω ∈ Ω |β¬ϕ (X (·,ω), t ) ∈ B} = Ω \ {ω ∈ Ω |βϕ (X (·,ω), t ) ∈ B} ⊆ F .

ϕ ′ ∧ϕ ′′: By the induction assumption, βϕ′ (X (·,ω), t ) and βϕ′′ (X (·,ω), t ) are measurable in ω for
a !xed t ∈ T . Hence, βϕ′∧ϕ′′ (X (·,ω), t ) = min(βϕ′ (X (·,ω), t ), βϕ′′ (X (·,ω), t )) is measurable in ω
for a !xed t ∈ T , since the min operator of measurable functions is again a measurable function.
ϕ ′UIϕ ′′ and ϕ ′U Iϕ

′′: Recall the de!nition of the future until operator

βϕ′UI ϕ′′ (X (·,ω), t ) := sup
t ′′ ∈(t ⊕I )∩T

(
min(βϕ′′ (X (·,ω), t ′′), inf

t ′ ∈(t,t ′′)∩T
βϕ′ (X (·,ω), t ′))

)
.

By the induction assumption, βϕ′ (X (·,ω), t ) and βϕ′′ (X (·,ω), t ) are measurable in ω for a !xed
t ∈ T . First note that (t , t ′′) ∩T and (t ⊕ I ) ∩T are countable sets, sinceT = N. According to Guide
[26, Theorem 4.27], the supremum and in!mum operators over a countable number of measurable
functions is again measurable. Consequently, the function βϕ′UI ϕ′′ (X (·,ω), t ) is measurable in ω
for a !xed t ∈ T . The same reasoning applies to βϕ′U I ϕ′′ (X (·,ω), t ).
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B.2 Robust Semantics ρϕ (X , t )

The proof for ρϕ (X (·,ω), t ) follows again inductively on the structure of ϕ, and the goal is to show
that {ω ∈ Ω |ρϕ (X (·,ω), t ) ∈ B} ⊆ F for each Borel set B ∈ B. The di"erence here, compared to
the proof for the semantics βϕ (X (·,ω), t ) presented above, lies only in the way predicates µ are
handled. Note !rst that we can write ρµ (X (·,ω), t ) as

ρµ (X (·,ω), t ) = 0.5(1O µ (X (t ,ω)) + 1)d̄ (X (t ,ω), cl(O¬µ ))

+ 0.5(1O µ (X (t ,ω)) − 1)d̄ (X (t ,ω), cl(O µ )),
(8)

where we recall that we interpret # := 1 and ⊥ = −1. Since the composition of the indicator
function with X (t ,ω), i.e., 1O µ (X (t ,ω)), is measurable in ω for a !xed t ∈ T as argued before, we
only need to show that d̄ (X (t ,ω), cl(O µ )) and d̄ (X (t ,ω), cl(O¬µ )) are measurable in ω for a !xed
t ∈ T . This immediately follows, since X (t ,ω) is measurable in ω for a !xed t ∈ T by de!nition
and, since the function d̄ is continuous in its !rst argument, and hence measurable (see Guide [26,
Corollary 4.26]), due to d being a metric de!ned on the set Rn (see, e.g., Munkres [56, Chapter 3])
so ρµ (X (·,ω), t ) is measurable in ω for a !xed t ∈ T .

B.3 Robustness Degree RDϕ (X , t )

For RDϕ (X (·,ω), t ), note that, for a !xed t ∈ T , the function RDϕ maps from the domainF(T ,Rn )
into the domain R, while X (·,ω) maps from the domain Ω into the domain F(T ,Rn ). Recall now
that RDϕ (X (·,ω), t ) = κ̄ (X (·,ω), cl(Lϕ (t ))) := infx ∗ ∈cl(Lϕ (t )) κ (X (·,ω),x∗) and that κ is a metric
de!ned on the set F(T ,Rn ), as argued in Fainekos and Pappas [21]. Therefore, it follows that
the function κ̄ is continuous in its !rst argument (see, e.g., Munkres [56, Chapter 3]), and hence
measurable with respect to the Borel σ -algebra of F(T ,Rn ) (see, e.g., Guide [26, Corollary 4.26]).
Consequently, the function RDϕ : F(T ,Rn ) × T → Rn is measurable in its !rst argument for a
!xed t ∈ T . As T is countable and X is a discrete-time stochastic process, it follows that X (·,ω) is
measurable with respect to the product σ -algebra of Borel σ -algebras Bn , which is equivalent to
the Borel σ -algebra ofF(T ,Rn ) (see, e.g., Kallenberg [36, Lemma 1.2]). Since function composition
preserves measurability, it holds that RDϕ (X (·,ω), t ) is measurable in ω for a !xed t ∈ T .

C PROOF OF THEOREM 2
We prove the statement of Theorem 2 !rst for the robustness degree RDϕ (X , t ), and !nally for the
semantics βϕ (X , t ), then for the robust semantics ρϕ (X , t ).

C.1 Semantics βϕ (X , t )

The proof again follows inductively on the structure of ϕ. The di"erence to the proof of Theorem 1
lies in the way the until operators are handled, which are now assumed to be the non-strict match-
ing versions ϕ ′!UIϕ ′′ and ϕ ′!U Iϕ

′′. Note also that the time interval I is compact, as the formula ϕ is
assumed to be bounded. The main idea is to show that in!mum and supremum operators reduce
to minimum and maximum operators that allow us to show measurability. Recall, therefore, the
de!nition of the future until operator βϕ′!UI ϕ′′ (X (·,ω), t ) as

βϕ′!UI ϕ′′ (X (·,ω), t ) := sup
t ′′ ∈(t ⊕I )∩T

(
min

(
βϕ′′ (X (·,ω), t ′′), inf

t ′ ∈[t,t ′′]∩T
βϕ′ (X (·,ω), t ′)

))
.

We !rst show that the in!mum operator in βϕ′!UI ϕ′′ (X (·,ω), t ) reduces to a min operator. In par-
ticular, note now that inft ′ ∈[t,t ′′]∩T βϕ′ (X (·,ω), t ′) includes the compact time interval [t , t ′′] ∩ T
instead of the open interval (t , t ′′) ∩ T due to the interpretation of the until operator as the non-
strict matching version. It holds that the minimum of mint ′ ∈[t,t ′′]∩T βϕ′ (X (·,ω), t ′) exists as
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(1) the minimum is over the compact time interval [t , t ′′] ∩T = [t , t ′′] (recall that T = R), and
(2) the range of βϕ′ (X (·,ω), t ) is restricted to B.

Consequently, the minimum corresponds to the in!mum and it follows that
inf

t ′ ∈[t,t ′′]∩T
βϕ′ (X (·,ω), t ′) = min

t ′ ∈[t,t ′′]∩T
βϕ′ (X (·,ω), t ′).

Now, it holds that mint ′ ∈[t,t ′′]∩T βϕ′ (X (·,ω), t ′) is equivalent to βϕ′ (X (·,ω), t ′) for some t ′ ∈
[t , t ′′] ∩ T . Since βϕ′ (X (·,ω), t ′) is measurable in ω by the induction assumption, it follows that
the function inft ′ ∈[t,t ′′]∩T βϕ′ (X (·,ω), t ′) is measurable in ω for a !xed t ∈ T . Note next that the
supremum operator in βϕ′!UI ϕ′′ (X (·,ω), t ) reduces to a max operator due to I being compact and
following a similar argument as for the in!mum operator. Measurability of βϕ′!UI ϕ′′ (X (·,ω), t ) in
ω for a !xed t ∈ T then follows as in the proof of Theorem 1. The proof for βϕ′!U I ϕ′′ (X (·,ω), t )
follows similarly.

C.2 Robustness Degree RDϕ (X , t )

As shown in the proof of Theorem 1, the function RDϕ : F(T ,Rn ) × T → Rn is continuous and
hence Borel-measurable in its !rst argument for a !xed t ∈ T . By the assumption that X (·,ω) :
Ω → F(T ,Rn ) is Borel-measurable, the result follows trivially.

C.3 Robust Semantics ρϕ (X , t )

The proof follows mainly from Reference [8, Theorem 6]. However, to apply this result, we need
to show that the robust semantics ρµ (ζ , t ) of predicates µ are continuous in ζ ∈ Rn , where we
recall that

ρµ (ζ , t ) :=

d̄ (ζ , cl(O¬µ )) if ζ ∈ O µ

−d̄ (ζ , cl(O µ )) otherwise.

Note that the functions d̄ (ζ , cl(O¬µ )) and d̄ (ζ , cl(O µ )) are continuous in ζ . This follows due to
Munkres [56, Chapter 3]. By de!nition, we have ρµ (ζ , t ) = 0 if ζ ∈ bd(O µ ),where bd(O µ ) denotes
the boundary ofO µ . Note also that d̄ (ζ , cl(O¬µ )) → 0 as ζ → bd(O µ ) as well as −d̄ (ζ , cl(O µ )) → 0
as ζ → bd(O µ ). It follows that ρµ (ζ , t ) is continuous in ζ . The assumption that X (·,ω) is a cadlag
function for each ω ∈ Ω then enables us to apply Theorem 6 in Bartocci et al. [8].

D PROOF OF THEOREM 3
First note that ρϕ (X (·,ω), t ) ≤ RDϕ (X (·,ω), t ) for each realizationX (·,ω) of the stochastic process
X with ω ∈ Ω due to Equation (5). Consequently, we have that −RDϕ (X (·,ω), t ) ≤ −ρϕ (X (·,ω), t )
for all ω ∈ Ω. If R is now monotone, then it directly follows that R (−RDϕ (X , t )) ≤ R (−ρϕ (X , t )).

E PROOF OF PROPOSITION 1
Let us assume that X 1, . . . ,XN are N independent copies of X . Consequently, all Z i contained
within Z are independent and identically distributed. We !rst recall the tight version of the
Dvoretzky-Kiefer-Wolfowitz inequality as originally presented in Massart [52], which requires
that FZ is continuous.

Lemma 1. Let F̂ (α ,Z) be based on the dataZ consisting of Z 1, . . . ,ZN , which are N independent
copies of Z . Let c > 0 be a desired precision, then it holds that

P

(
sup

α
|F̂ (α ,Z) − FZ (α ) | > c

)
≤ 2 exp(−2Nc2).

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 54. Publication date: April 2023.



Risk of Stochastic Systems for Temporal Logic Specifications 54:27

By setting δ := 2 exp(−2Nc2) in Lemma 1, it holds with a probability of at least 1 − δ that

sup
α
|F̂ (α ,Z) − FZ (α ) | ≤

√
ln(2/δ )

2N .

With a probability of at least 1 − δ , it now holds that

α ∈ R|F̂ (α ,Z) −
√

ln(2/δ )

2N ≥ β
 ⊆ {α ∈ R|FZ (α ) ≥ β }

as well as

α ∈ R|F̂ (α ,Z) +

√
ln(2/δ )

2N ≥ β
 ⊇ {α ∈ R|FZ (α ) ≥ β }.

Hence, it holds with a probability of at least 1 − δ that

inf
α ∈ R|F̂ (α ,Z) −

√
ln(2/δ )

2N ≥ β
 ≥ inf {α ∈ R|FZ (α ) ≥ β }

as well as

inf
α ∈ R|F̂ (α ,Z) +

√
ln(2/δ )

2N ≥ β
 ≤ inf {α ∈ R|FZ (α ) ≥ β }.

By the de!nition of VaRβ (Z,δ ) and VaRβ (Z,δ ), it holds with a probability of at least 1 − δ that

VaRβ (Z,δ ) ≤ VaRβ (Z ) ≤ VaRβ (Z,δ ).

F PROOF OF PROPOSITION 3
Let us again assume thatX 1, . . . ,XN areN independent copies ofX . Consequently, allZ i contained
within Z are independent and identically distributed. Note !rst that Ê (Z) is a random variable
with the expected value according to

E (Ê (Z)) =
1
N

N∑

i=1
E (Zi ) =

1
N

N∑

i=1
E (Z ) = E (Z ).

For c > 0, we can now apply Hoe"ding’s inequality and obtain the concentration inequality

P
(
|Ê (Z) − E (Z ) | ≥ c

)
≤ 2 exp

(
− 2Nc2

(b − a)2

)
.

By setting δ := 2 exp(− 2N c2

(b−a)2 ), it holds with a probability of at least 1 − δ that

|Ê (Z) − E (Z ) | ≤
√

ln(2/δ ) (b − a)2

2N .

From this inequality, the result follows trivially.
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G DISCRETIZATION OF c AND d IN EXAMPLE 1
To discretize the distributions of c and d in Equations (6) and (7), respectively, let M := 32 be
the number of desired discretization steps and γ := 0.55 be a discretization bound. We uniformly
discretize the interval [−γ ,γ ] into M values (s1, . . . , sM ) where sm < sm+1. We additionally add
s0 := 0 and de!ne S := (s0, s1, . . . , sM ). We now assign a PMF fS (sm ) to each element sm ∈ S as

fS (sm ) :=



FN (sm ) if sm = s1
FN (sm ) − FN (sm−1) if s1 < sm < 0
2(FN (sm ) − FN (sm−1)) if sm = 0
FN (sm+1) − FN (sm ) if 0 < sm < sM

1 − FN (sm ) if sm = sM ,

where FN (s ) is the CDF ofN (0, 0.2) (according to Equations (6) and (7)). We now assume, instead
of Equations (6) and (7), that c and d take values in the sets

C := 2 ⊕ S × 3 ⊕ S
D := 6 ⊕ S × 4 ⊕ S,

where 2, 3, 6, and 4 are the mean values of c and d in Equations (6) and (7), respectively. Finally,
we assume that the distributions of c =

[
c1 c2

]T and d =
[
d1 d2

]T are according to the PMFs
fc (c ) := fS (c1) fS (c2) and fd (d ) := fS (d1) fS (d2), respectively.
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