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The wide availability of data coupled with the computational advances in artificial intelligence and machine
learning promise to enable many future technologies such as autonomous driving. While there has been a
variety of successful demonstrations of these technologies, critical system failures have repeatedly been re-
ported. Even if rare, such system failures pose a serious barrier to adoption without a rigorous risk assessment.
This article presents a framework for the systematic and rigorous risk verification of systems. We consider a
wide range of system specifications formulated in signal temporal logic (STL) and model the system as a sto-
chastic process, permitting discrete-time and continuous-time stochastic processes. We then define the STL
robustness risk as the risk of lacking robustness against failure. This definition is motivated as system failures
are often caused by missing robustness to modeling errors, system disturbances, and distribution shifts in
the underlying data generating process. Within the definition, we permit general classes of risk measures
and focus on tail risk measures such as the value-at-risk and the conditional value-at-risk. While the STL
robustness risk is in general hard to compute, we propose the approximate STL robustness risk as a more
tractable notion that upper bounds the STL robustness risk. We show how the approximate STL robustness
risk can accurately be estimated from system trajectory data. For discrete-time stochastic processes, we show
under which conditions the approximate STL robustness risk can even be computed exactly. We illustrate our
verification algorithm in the autonomous driving simulator CARLA and show how a least risky controller can
be selected among four neural network lane-keeping controllers for five meaningful system specifications.
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Fig. 1. Left: Simulation environment in the autonomous driving simulator CARLA. Middle: Double left turn
on which we evaluate four trained neural network lane-keeping controllers. Right: Cross-track error ¢, and
orientation error 0, used for risk verification of the neural network controllers.

1 INTRODUCTION

Over the next decade, large amounts of data will be generated and stored as devices that perceive
and control the world become more affordable and available. Impressive demonstrations of data-
driven and machine learning-enabled technologies exist already today, e.g., robotic manipulation
[44], solving games [55, 74], and autonomous driving [19]. However, occasionally occurring system
failures impede the use of these technologies particularly when system safety is a concern. For
instance, neural networks, frequently used for perception and control in autonomous systems, are
known to be fragile and non-robust [25, 77]. Especially the problem of long tails in training data
distributions poses challenges, e.g., natural variations in weather and lighting conditions [61].

Moving forward, we expect that system failures appear less frequently due to advancing
technologies—nonetheless, algorithms for the systematic and rigorous risk verification of such sys-
tems is needed. For instance, the National Transportation Safety Board emphasized in a statement
in connection with an Uber accident from 2018 “the need for safety risk management requirements
for testing automated vehicles on public roads” [12]. In this article, we show how to reason about
the risk of systems that are modeled as stochastic processes. We consider a wide range of system
specifications formulated in signal temporal logic (STL) [9, 51] and present a systematic way to
quantify and compute the risk of a system lacking robustness against failure.

1.1 Related Work

Depending on the research disciplines and applications, risk can have various interpretations.
While risk is often defined as a failure probability, it can also be understood in more general terms
as a metric defined over a cost distribution, e.g., the expected value or the variance of a distribution.
We focus on tail risk measures to capture the rare yet costly events of a distribution. In particular,
we consider the value-at-risk (VaR), i.e., quantiles of a distribution, and the conditional value-at-
risk (CVaR) [62, 63], i.e., the expected value over a quantile. Tail risk measures are more frequently
being used in robotics and control applications where system safety is important [50].

Risk in control. Control design under risk objectives and constraints is increasingly been stud-
ied among control theorists, as machine learning components integrated into closed-loop systems
cause stochastic system uncertainty. Oftentimes, the CVaR risk measure is used to capture risk due
its convexity and the property of being an upper bound to the VaR. For instance, the authors in Ref-
erence [72] consider a stochastic optimal control problem with CVaR constraints over the distance
to obstacles. Linear quadratic control under risk constraints was considered in Reference [81] to
trade off risk and mean performance. A similar idea is followed for the risk constrained minimum
mean squared error estimator in Reference [37]. Risk-aware model predictive control was con-
sidered in References [29, 76], while References [17, 73] present data-driven and distributionally
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robust model predictive controllers. Risk-aware control barrier functions for safe control synthe-
sis were proposed in Reference [2], while Reference [58] demonstrates the use of risk in sampling-
based planning. We remark that we view these works to be orthogonal to our article, as we provide
a data-driven framework for the risk assessment under complex temporal logic specifications, and
we hope to inform future control design strategies.

Stochastic system verification. System verification has a long history in complementing and
informing the control design process of systems, e.g., using model checking [6, 14]. When dealing
with stochastic systems, system verification becomes computationally more challenging [40]. Sta-
tistical model checking has recently gained attention by relying on availability of data instead of
computation [1, 22, 43, 85]. Another line of work considers stochastic barrier functions for safety
verification of dynamical systems [32, 59]. The authors in References [33, 34] deal with the verifi-
cation of stochastic dynamical systems during runtime. Motivated by the fragility and sensitivity
of neural networks [25, 77], a special focus has recently been on verifying neural networks in
open-loop [38, 75] and closed-loop [30]. We remark that our algorithms presented in this article
permit verification of general classes of systems, including systems with neural networks, as long
as we can obtain data, e.g., from a simulator. The guarantees obtained in these previous works
are either worst-case guarantees or in terms of failure probabilities. Towards incorporating tail
risk measures, the authors in References [15, 16] propose a risk-aware safety analysis framework
using the CVaR. We are instead interested in system verification under more complex temporal
logic specifications and risk.

Temporal logics. We use signal temporal logic to express a wide range of system specifications,
e.g., surveillance (“visit regions A, B, and C every 10—60 sec”), safety (“always between 5—25 sec
stay at least 1 m away from region D”), and many others. For deterministic signals, STL allows to
calculate the robustness by which a signal satisfies an STL specification. Particularly, the authors
in Reference [21] proposed the robustness degree as the maximal tube around a signal in which all
signals satisfy the specification. The size of the tube consequently measures the robustness of this
signal with respect to the specification. As the robustness degree is in general hard to calculate,
the authors in Reference [21] proposed approximate yet easier to calculate robust semantics. Many
forms of robust semantics have appeared, such as space and time robustness [18], the arithmetic-
geometric mean robustness [53], the smooth cumulative robustness [28], averaged STL [3], and
Reference [64], in which a connection with linear time-invariant filtering is established allowing
to define various types of robust semantics.

For stochastic signals, the authors in References [35, 41, 45, 67, 80] propose notions of proba-
bilistic signal temporal logic in which chance constraints over predicates are considered, while the
Boolean and temporal operators of STL are not changed. Similarly, notions of risk signal temporal
logic have recently appeared in References [46, 48, 69] by defining risk constraints over predicates
while not changing the definitions of Boolean and temporal operators. In this article, we instead
define risk over the whole STL specification. The work in Reference [23] considers the probability
of an STL specification being satisfied instead of using chance or risk constraints over predicates.
The authors in Reference [84] consider hyperproperties in STL, i.e., properties between multiple
system executions. More with a control synthesis focus and for the less-expressive formalism of lin-
ear temporal logic, the authors in References [10, 42, 82] consider control over belief spaces, while
the authors in Reference [27] consider probabilistic satisfaction over Markov decision processes.
Complementary to these works, References [5, 60] propose techniques to infer STL specifications
from data towards explaining the underlying data.

Risk verification with temporal logics. In this article, we quantify and compute the risk
of lacking robustness against failure. We argue that the consideration of robustness in system
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verification is crucial and are particularly motivated by the fact that system failures are often
caused by missing robustness to modeling errors, system disturbances, and distribution shifts in
the underlying data generating process. The authors in Reference [4] further highlight the impor-
tance of robustness in system verification. Probably closest to our article are the works in Refer-
ences [31, 70, 71] and References [7, 8]. In References [31, 70, 71], the authors combine data-driven
and model-based verification techniques to obtain information about the satisfaction probability
of a partially known system. The authors in References [7, 8] present a purely data-driven verifica-
tion technique to estimate probabilities over robustness distributions of the system. Conceptually,
our work differs in two directions. First, we consider general risk measures to be able to focus on
the tails of the robustness distribution. We also show how to estimate the robustness risk from data
with high confidence. Second, we use the robustness degree as defined in Reference [21] to obtain
robustness distributions. This in fact allows us to obtain a precise geometric interpretation of risk.
This article is based on our previous work [47]. We here permit continuous-time stochastic pro-
cesses and the CVaR as a risk measure. We also show under which conditions the STL robustness
risk can exactly be calculated, while presenting exhaustive simulations within the autonomous
driving simulator CARLA [19].

1.2 Contributions and Article Outline

Our general goal is to analyze the robustness of stochastic processes and to quantify and compute
the risk of a system lacking robustness against system failure. We make the following contributions:

e We consider discrete-time and continuous-time stochastic processes and show under which
conditions the robust semantics and the robustness degree of STL are random variables. This
enables us to define risk over these quantities.

e We define the STL robustness risk as the risk of a system lacking robustness against failure
of an STL specification. The definition permits general classes of risk measures and has a
precise geometric interpretation in terms of the size of permissible disturbances. We also
define the approximate STL robustness risk as a computationally tractable upper bound of
the STL robustness risk.

e For the VaR and the CVaR, we show how the approximate STL robustness risk can be esti-
mated from system trajectory data. Importantly, no particular restriction on the distribution
of the stochastic process has to be made. For discrete-time stochastic processes with a dis-
crete state space, we show how the approximate STL robustness risk can even be computed
exactly.

e We estimate the risk of four neural network lane-keeping controllers within the autonomous
driving simulator CARLA. We show how to find the least risky controller.

In Section 2, we present background on signal temporal logic, stochastic processes, and risk
measures. In Section 3, we define the STL robustness risk and the STL approximate robustness
risk. Section 4 shows how the approximate STL robustness risk can be estimated from data, while
Section 5 shows under which conditions it can be computed exactly. The simulation results within
CARLA are presented in Section 6 followed by conclusions in Section 7.

2 BACKGROUND

We first provide background on signal temporal logic, stochastic processes, and risk measures.

2.1 Signal Temporal Logic

Signal temporal logic (STL) is based on deterministic signals x : T — R" where T denotes the
time domain [51]. We particularly consider continuous time T := R (the set of real numbers) and
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discrete time T := Z (the set of natural numbers). The atomic elements of STL are predicates that
are functions y : R” — B where B := {T, L} is the set of Booleans consisting of the true and false

elements T := 1 and L := —1, respectively. Let us associate an observation map O* C R" with a
predicate p that indicates regions within the state space where the predicate y is true, i.e.,
O i= p ! (T),

where 1~ 1(T) denotes the inverse image of T under the function y. We assume throughout the arti-
cle that the sets O# and O™* are non-empty and measurable, which is a mild technical assumption.
In other words, the sets O¥ and O™* are elements of the Borel o-algebra 8" of R".

Remark 1. For convenience, the predicate y is often defined via a predicate function h : R* — R

as
(D) = {T ifh({) >0

1 otherwise
for { € R"™. In this case, we have O¥ = {{ € R"|h({) > 0}.
The syntax of STL, which recursively allows to formulate system specifications, is defined as

¢ u= Tlpl-¢ ¢ Ag" | 'Ud” | $'U,;4", (1)
where ¢’ and ¢’ are STL formulas and where Uj is the future until operator with time interval
I € Ry, while U, is the past until-operator. The Boolean operators - and A encode negations and
conjunctions, respectively. We say that an STL formula ¢ as in Equation (1) is bounded if the time
interval I is restricted to be compact. Based on these elementary operators, we can define the set
of operators

@'V P = (=g A=) (disjunction operator),
Fr¢ .= TUr¢ (future eventually operator),
Fip:=TU,¢ (past eventually operator),
Gr¢ := =F—¢ (future always operator),
G,¢ = F;~¢ (past always operator).

2.1.1  Semantics. To determine whether or not a signal x : T — R” satisfies an STL formula ¢,
we define the semantics of ¢ by means of the satisfaction function ¢ : F(T,R") x T — B.!' In
particular, 8% (x, t) = T indicates that the signal x satisfies the formula ¢ at time ¢, while 8% (x, t) =
1 indicates that x does not satisfy ¢ at time ¢. While the intuitive meanings of the Boolean operators
= (“not”), A (“and”), and V (“or”) are clear, we note that the future until operator ¢'U;¢”" encodes
that ¢’ holds until ¢” holds. Specifically, f#'Ur%”" (x, t) = T means that ¢’ holds for all times after ¢
(not necessarily at time t) until ¢’ holds within the time interval (t ®I) N T.? Similarly, 7% (x,t) =
T encodes that ¢ holds eventually within (t @ I) N T, while %% (x,t) = T encodes that ¢ holds
always within (¢t @ I) N T. For a formal definition of 3% (x, t), we refer to Appendix A.

We are usually interested in the satisfaction function ¢ (x, 0), which determines the satisfaction
of ¢ by x at time zero, the time at which we assume ¢ to be enabled. An STL formula ¢ is hence
said to be satisfiable if Ax € F(T,R") such that ,B¢ (x,0) = T. The following example is taken from
Lindemann et al. [47] and used as a running example throughout the article:

1We use the notation F(A, B) to denote the set of all measurable functions mapping from the domain A into the domain
B, ie., anelement f € (A, B) is a measurable function f : A — B.
2We use the notation @ and © to denote the Minkowski sum and the Minkowski difference, respectively.
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Fig. 2. The figure shows six potential robot trajectories ri-r¢ and the four regions A, B, C, and D. The spec-
ification given in Equation (2) is violated by r; and satisfied by ra-r¢. It can be seen that rz only marginally
satisfies ¢, while r3-rg satisfy ¢ robustly.

Example 1. Consider a delivery robot that needs to perform two time-critical delivery tasks in
regions A and B sequentially while avoiding areas C and D; see Figure 2. We consider the STL
formula

¢ = Gio,31(=pc A =pp) A Fii,21(Ha A Flo,11p8)s (2)

where the regions A, B, C, and D are encoded by the predicates p4, pip, yc, and up, respectively,
that are defined below. Let the state x(t) € R1° of the system at time t be

x(t):=[rt) a b ¢ d]T
where r(t) is the robot position at time t and where a, b, ¢, and d denote the center points of the
regions A, B, C, and D that are defined as
a:=[4 517 b:=[7 217 c¢:=[2 37 d:==[6 4T

The predicates 4, p, pic, and pup are now defined by their observation maps

OF4 = {x € R||Ir — alle < 0.5},

OF5 = {x e RY|||r = b]|, < 0.7},

Ok .= {x e RY|||r — ¢l < 0.5}, (3)

0"P = {x e R|||r = d||; < 0.7}, (4)
where ||- ||, is the Euclidean and || || is the infinity norm. In Figure 2, six different robot trajectories

r1-r¢ are shown. It can be seen that the signal x; that corresponds to r; violates ¢, while x;-x¢ satisfy
$, i.e., we have f?(x1,0) = L and ﬁ¢(xj, 0) =T forallje{2,...,6}

Remark 2. The operators Ur and U, are the strict non-matching versions of the until opera-
tors. In particular, ¢’U;¢” is: (1) strict, as it does not require ¢’ to hold at the current time ¢, and
(2) non-matching, as it does not require that ¢” and ¢’” have to hold at the same time. When dealing
with continuous-time stochastic systems later in this article, we replace the strict non-matching
versions Uy and U, by the non-strict matching versions that we denote by U and Qz? see Ap-
pendix A for their formal definitions. We note that STL with until operators U; and U, is more
expressive than STL with U, and Ql. When excluding Zeno-signals, there is, however, no differ-
ence between these two notions [24]. As one rarely encounters Zeno-signals, we argue that the
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restriction to the non-strict matching version of the until operator for continuous-time stochastic
processes is not restrictive in practice.

2.1.2  Robustness Degree. Importantly, one may also be interested in the quality of satisfaction
and additionally ask how robustly the signal x satisfies the STL formula ¢ at time ¢. To answer this
question, the authors in Fainekos and Pappas [21, Definition 7] define the robustness degree that
we recall next in a slightly modified manner. If f¢ (x, t) = T, then the robustness degree quantifies
how much the signal x can be perturbed by additive noise before changing the value of ¢ (x, t).
Towards a formal definition, let us first define the set of signals that violate ¢ at time ¢ as

L79(t) = {x € FT,R")|(x,t) = T}.
To measure distances between signals, let us define the metric x : F(T,R") X F(T,R") — Ry as

k(x,x") := sup d(x(t), x'(t)),
teT

where R := RsoU{oo} is the set of nonnegative extended real numbers and where d : R” XxR" —
R is a metric assigning a distance in R", e.g., the Euclidean norm. Throughout the article, we
use the extended definitions of the supremum and infimum operators, e.g., supR = co. Note that
K(x,x") is the Lo, norm of the signal x — x” and measures the distance between the signals x and
x'.

To set some general notation, for a metric space (S, k) with metric x, we denote by
©(x,S") := inf x(x,x’)
x' €S’

the distance of a point x € S to a nonempty set S’ C S. Using this definition, the robustness degree
RD? : F(T,R") x T — Ry, is now defined via the metric « as the distance of the signal x to the
set of violating signals £ (t).

Definition 1 (Robustness Degree’). For a signal x : T — R™ and an STL formula ¢, the robustness
degree RD?(x, t) is defined as

RD? (x, £) 1= & (x, (L7 (1))
where cl(£7?(t)) denotes the closure of the set £™%(t).

By definition of the robustness degree, the following properties hold: If RD?(x,t) > 0, then
ﬁ¢ (x,t) = T, ie., the signal x satisfies ¢ at time . It further follows that all signals x" € &(T,R")
with x(x,x’) < RD?(x,t) are such that f#(x’,t) = T. The robustness degree defines in fact a
robust neighborhood, which is a set strictly containing x, so for all x” in this robust neighborhood
we have f?(x,t) = B?(x’,t). Finally, note that RD?(x,t) = 0 may imply either %(x,t) = T or
,B¢ (x,t) = 1, i.e., the signal x either satisfies or violates ¢ at time ¢.

2.1.3 Robust Semantics. Note that it is in general difficult to calculate the robustness degree
RD?(x, t), as the set £7?(t) is hard to calculate. The authors in Fainekos and Pappas [21] introduce
the robust semantics p? : F(T,R")xT — R as an alternative way of finding a robust neighborhood
where R := RU {—o00, 00} is, in direct analogy to ﬁzo, the set of extended real numbers.

3The robustness degree in Fainekos and Pappas [21, Definition 7] is defined slightly differently by instead considering the
signed distance of the signal x to the set of violating signals £ ().
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Definition 2 (Robust Semantics). For a signal x : T — R”" and an STL formula ¢, the robust
semantics p? (x, t) are recursively defined as

pl(x,1) := o,

~ {d(x(t),cl(ow)) if x(t) € O

- —J(x(t), cl(O”)) otherwise,
p(x, 1) = —p? (x,1),

p?M" (x, 1) 1= min(p? (x, 1), p?" (x, 1)),

P¢/U1¢N (x,t):=  sup (min (pﬁf’” (x,t”), inf p¢’ (x, t'))),
t"e(t®I)NT t'e(t,t”)NT

p? Ui (x,1) = sup (min (pﬁf’" (x,t”), inf p%(x, t'))),
t"e(tel)NT t'e(t”,t)NT

Remark 3. With respect to Remark 2, the non-strict matching version of the until operators
replace the open time intervals (¢, ¢”’) in Definition 2 by the closed time intervals [t, "] so

p¢lﬁ1¢"(x, t):= sup (min (p¢"(x, t”), inf  p¥(x, t’))),

te(tol)NT t'e[t,t”]NT

p‘ﬁﬁf‘f’"(x, t):= sup (min (p¢"(x, t”), inf  p¥(x, t’))).

t”e(tel)NT t'e[t”, t]NT
Importantly, by slight modification of Fainekos and Pappas [21, Theorem 28], we know that
p? (x,t) < RD?(x,1). )

The robust semantics p? (x, t) hence provides a tractable under-approximation of the robustness
degree RD?(x, t). The robust semantics are sound in the sense that f?(x,t) = T if p?(x,t) > 0
and B%(x,t) = L if p?(x,t) < 0 [21, Proposition 30].

Example 1 (continued). Consider again the trajectories shown in Figure 2. We obtain p? (x;,0) =
—0.15, p¢(x2, 0) = 0.01,and p¢(xj, 0) =0.25forallj € {3,...,6}. The reason for x; having negative
robustness lies in ry intersecting with the region D. Marginal robustness of x;, is explained as r;
only marginally avoids the region D, while all other trajectories avoid the region D robustly.

2.2 Random Variables and Stochastic Processes

Instead of interpreting an STL specifications ¢ over deterministic signals, we will interpret ¢ over
stochastic processes. Consider, therefore, the probability space (Q, 7, P), where Q is the sample
space, ¥ is a o-algebra of Q,and P : ¥ — [0, 1] is a probability measure.

Let Z denote a real-valued random vector, i.e., a measurable function Z : Q — R"”. When n = 1,
we say Z is a random variable. We refer to Z(w) as a realization of the random vector Z where
w € Q. Since Z is a measurable function, a probability space can be defined for Z so probabilities
can be assigned to events related to values of Z.* Consequently, a cumulative distribution function
(CDF) Fz(z) can be defined for Z. Given a random vector Z, we can derive other random variables.
Assume, for instance, a measurable function g : R” — R, then g(Z(w)) becomes a derived ran-
dom variable, since function composition preserves measurability; see, e.g., Durrett [20] for more
details.

4Particulalrly, this probability space is (R”, 8", P) where, for Borel sets B € 8", the probability measure Pz : 8" —
[0, 1] is defined as P (B) := P(Z~1(B)), where Z~}(B) := {w € Q|Z(w) € B} is the inverse image of B under Z.
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Fig. 3. lllustration of the expected value, the value-at-risk, and the conditional value-at-risk.

A stochastic process is a function X : T X Q — R”, where X(¢,-) is a random vector for each
fixed t € T. A stochastic process can be viewed as a collection of random vectors {X(¢,-)|t € T}
that are defined on a common probability space (Q, ¥, P) and that are indexed by T. For a fixed
w € Q, the function X(-, w) is a realization of the stochastic process. Another interpretation is
that a stochastic process is a collection of deterministic functions of time {X (-, w)|w € Q} that are
indexed by Q.

2.3 Risk Measures

A risk measure is a function R : F(Q,R) — R that maps from the set of real-valued random
variables to the real numbers. In particular, we refer to the input of a risk measure R as the cost
random variable, since typically a cost is associated with the input of R. Risk measures hence allow
for a risk assessment in terms of such cost random variables.

In this article, we particularly use the expected value, the value-at-risk VaRg, and the conditional
value-at-risk CVaRp at risk level # € (0, 1), which are commonly used risk measures; see Figure 3.
The VaRg of a random variable Z : Q — R is defined as

VaRg(Z) := inf{a € R|Fz(a) 2 f},
i.e., the right 1 — § quantile of Z. The CVaRy of Z is defined as
— _ gyl o+
CVaRg(Z) = inf (a+-pE(Z - a]").

where [Z — a]" := max(Z — @, 0). When the CDF F; of Z is continuous, it holds that CVaRg(Z) :=
E(Z|Z 2 VaRg(Z)), i.e., CVaRg(Z) is the expected value of Z conditioned on the events where Z
is greater or equal than VaRz(Z).

There are various desriable properties that a risk measure R may satisfy; see Majumdar and
Pavone [50] for more information. We emphasize that our presented method is compatible with
any monotone risk measure, where monotonicity of R is defined as follows:

e For two cost random variables Z, Z’ € §(Q, R), the risk measure R is monotone if
Z(w) < Z'(w)foralw e Q = R(Z) < R(Z').

The assumption of considering monotone risk measures is very mild, and both the value-at-risk
VaRg(Z) and the conditional value-at-risk CVaRg(Z) as well as the expected value are monotone.

3 THE RISK OF LACKING ROBUSTNESS AGAINST FAILURE

We interpret STL formulas ¢ over stochastic processes X instead of deterministic signals x. It is,
however, not immediately clear how to interpret the satisfaction of ¢ by X. One way is to argue
about the probability of satisfaction; see, e.g., Farahani et al. [23], but probabilities provide no
information about the risk and the robustness of X with respect to ¢. In fact, some realizations of
X may satisfy ¢ robustly, while some other realizations of X may satisfy ¢ only marginally or even
violate ¢. This observation leads us to the use of risk measures R to be able to argue about the risk
of the stochastic process X lacking robustness against failure of the specification ¢.
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3.1 Measurability of Semantics, Robustness Degree, and Robust Semantics

To define the risk of a stochastic process X, we first need to show under which conditions the
semantics % (X, t), the robustness degree RD? (X, t), and the robust semantics p? (X, t) are derived
random variables. For discrete-time stochastic processes, no assumptions have to be made.

THEOREM 1. Let X be a discrete-time stochastic process, i.e., T := Z. Let ¢ be an STL specification
as in Equation (1). Then B% (X (-, 0),1), RD?(X(-, ), 1), and p? (X (-, w), t) are measurable in w fora
fixedt €T, ie, ﬂ‘/’ (X, 1), RD¢(X, t), and p¢' (X, t) are random variables.

For continuous-time stochastic processes, however, we have to impose additional technical as-
sumptions. Particularly, we have to restrict the class of STL formulas in Equation (1) and make
further assumptions on the stochastic process X.

THEOREM 2. Let X be a continuous-time stochastic process, i.e., T := R. Let ¢ be a bounded STL
specification as in Equation (1), but where the strict non-matching until operators Uy and U, are
replaced with the non-strict matching until operators U; and QI. Then (X (-, ),t) is measurable
inw forafixedt €T, ie., /3"/’(X, t) is a random variable. If X (-, ) : Q — F(T,R") is measurable,
then RD¢(X(-, w), t) is measurable in w for a fixedt € T, i.e., RD? (X, t) is a random variable, and if
additionally X (-, w) is a cadlag function® for each ® € Q, then p? (X (-, w),t) is measurable in w for
afixedt € T, ie, p?(X,t) is a random variable.

Consequently, the probabilities P(5%(X,t) € B), P(p?(X,t) € B), and P(RD?(X,t) € B)® are
well defined for measurable sets B from the corresponding measurable spaces. This enables us to
define the STL robustness risk in the next section.

Remark 4. We first note that the assumption of a bounded STL formula ¢ with the non-strict
matching until operator is made for a technical reason. While the restriction to bounded formu-
las limits our expressivity to finite time specifications, the consideration of the non-strict match-
ing until operator is not restrictive, as discussed in Remark 2. We remark that Bartocci et al. [8]
showed measurability of p? (X (-, ), t) under the assumption of a bounded STL specification ¢
with non-strict matching until operators, while we additionally show measurability of the seman-
tics % (X (-, w), t) and the robustness degree RD? (X (-, w), t) without any additional continuity as-
sumptions on X. Last, we recall that we do not need to assume that ¢ is bounded for a discrete-time
stochastic process as per Theorem 1.

3.2 The STL Robustness Risk

One way of defining the risk associated with a stochastic process X is to consider the satisfaction
function ﬁ¢(X ,t). However, not much information about the robustness of X can be inferred due
to binary encoding of % (X, t). Instead, we consider the risk of the stochastic process X lacking
robustness against failure of the specification ¢ by considering the robustness degree RD? (X, t).

Example 2. Consider an electric RC circuit consisting of a resistor with resistance R and a ca-
pacitor with capacitance C := 1. If the capacitor is initially charged with V; := 5, then the capacitor
discharges its energy over time once the circuit is closed. In fact, the voltage over the capacitor is

SHere, we mean measurable with respect to the Borel o-algebras induced by the Skorokhod metric; see Reference [8] for
details.

®Cadlag functions are right continuous functions with left limits.

"The result for measurability of p"S (X(+, w), t) is mainly taken from Reference [8, Theorem 6].

8We use the shorthand notations P(ﬂ¢(X, t) € B), P(p¢(X, t) € B), and P(RD?(X, t) € B) instead of P({ww €
Q% (X(-, w), t) € B}), P({lw € Q|p?(X(:, w), t) € B}), and P({w € QRD?(X(-, w), t) € B}), respectively.
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Fig. 4. Left: 200 realizations of the voltage V(t) over the capacitor of an RC circuit. Right: Histogram of the
negative robustness degree —RD?(V, 0) of the specification ¢ := Gz,00)(V < 1).

described by
V(t) = Vo exp(-1t),

where 7 := 1/RC is the time constant. Assume that the resistance is unknown and modeled as
R := 0.5+ Z, where Z is a random variable following a beta distribution with probability density
function f7(z) := ﬁzu_l (1 - z)>71, where B(1.5,5) is the beta function with parameters 1.5
and 5. Consequently, the voltage V becomes a stochastic process of which we plot 200 realizations

in Figure 4 (left). As a specification ¢, we want that the voltage V (¢) drops below 1 after 2 s, i.e.,
¢ = Grae)(V < 1).

In Figure 4 (right), we show the histogram of the negative robustness degree —RD?(V,0) for
100,000 realizations. To estimate the risk of the stochastic process X lacking robustness against
failure of ¢, we can now compose —RD?(V,0) with a risk measure R. For instance, the value-
at-risk at level f := 0.9 is VaRy.o(-RD?(V,0)) ~ —0.38. Recall that VaRy o(—RD?(V, 0)) is the
0.1 quantile of —RD?(V, 0). This means that with a probability of at least 0.9 the robustness degree
is not smaller (i.e., greater) than |VaRy.o(—RD?(V,0))| ~ 0.38 or, in other words, that in at most
10% of the cases the robustness is smaller than 0.38. This information is useful, as it allows us to
quantify how much uncertainty our system can handle, e.g., when we do not know the value of
exactly.

The previous example motivates the following definition for the risk of the stochastic process
X lacking robustness against failure of ¢ to which we refer as the STL robustness risk for brevity.

Definition 3 (STL Robustness Risk). Given an STL formula ¢ and a stochastic process X : TXQ —
R”, the risk of X lacking robustness against failure of ¢ at time ¢ is defined as

R(-RD?(X, 1)).

We remark that a large positive value of RD? (X (-, w), t) for a realization w € Q indicates robust
satisfaction of ¢. Therefore, the negative robustness degree —RD? (X, t) is the cost random variable
that is chosen as the input for the risk measure R. This way, a large robustness degree results in a
low cost. Finally, note that R(—RD? (X’, t)) < R(~RD? (X", t)) implies that the stochastic process
X’ is less risky than the stochastic process X" with respect to the specification ¢.
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3.3 The Approximate STL Robustness Risk

Unfortunately, the STL robustness risk R(-RD?(X, 1)) can in general not be calculated, as the
robustness degree in Definition 1 is difficult to calculate. Instead, we will focus on R(—p? (X, t))
using the robust semantics as an approximation of the STL robustness risk.

Definition 4 (Approximate STL Robustness Risk). Given an STL formula ¢ and a stochastic process
X : T x Q — R" the approximate risk of X lacking robustness against failure of ¢ at time ¢ is
defined as

R(=p? (X, 1)).

Fortunately, the approximate STL robustness risk R(—p? (X, t)) over-approximates the STL ro-
bustness risk R(—RD? (X, t)) when R is a monotone risk measure, as shown next.

THEOREM 3. Let X be a stochastic process, ¢ be an STL specification as in Equation (1), and R be a
monotone risk measure. Then it holds that

R(-RD?(X,t)) < R(-p?(X,1)).

The previous result is important, as using R(—p? (X, t)) instead of R(—~RD? (X, t)) will not result
in an optimistic risk assessment. Especially in safety-critical applications, it is desirable to be more
risk-averse as opposed to being overly optimistic.

Sometimes one may be interested in scaling the robustness degree to associate a monetary cost
with RD? (X, t) to reflect the severity of events with low robustness. Let us for this purpose consider
an increasing cost function C : R — R.

CoROLLARY 1. Let X be a stochastic process, ¢ be an STL specification as in Equation (1), R be a
monotone risk measure, and C be an increasing cost function. Then it holds that

R(C(-RD?(X, 1)) < R(C(=p? (X, 1))).

4 DATA-DRIVEN ESTIMATION OF THE APPROXIMATE STL ROBUSTNESS RISK

In this section, we show how the approximate STL robustness risk R(—p? (X, t)) can be estimated
from data. We assume that we have observed N independent realizations of the stochastic process
X, ie., we know N realizations X (-, 0'),...,X(-, o) where w!,..., 0N € Q are drawn inde-
pendently and according to the probability measure P. A practical example would be a simulator
from which we can unroll trajectories X (-, w'). For brevity, we denote X(-, »'),...,X(-, o) by
X1 ..., XN In this way, one can think of X ....XNasN independent copies of X. We empha-
size that we do not need knowledge of the distribution of X. Our goal is to derive upper bounds
of R(-p?(X,t)) that hold with high probability. Let us, for convenience, first define the random
variable

Z = —p?(X,1).
For further convenience, let Z := —p¢ (X', t) and let us also define the tuple
Z:=(Z'...,ZN).

We consider the value-at-risk VaRg(Z), the conditional value-at-risk CVaRg(Z), and the mean

E(Z). Particularly, we derive upper bounds VaRg(Z, §), CVaRg(Z, §), and E(Z, 8) that hold with
a probability of at least 1 — §. By Theorem 3 and Propositions 1, 2, and 3 (presented in the remain-
der), we then have computational algorithms to find tight upper bounds for the approximate STL
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robustness risk and hence for the STL robustness risk, and it holds that with a probability of 1 — §
VaRz(-RD? (X, 1)) < VaRg(Z) < VaRg(Z, ),
CVaRg(-RD? (X, 1)) < CVaRg(Z) < CVaRg(Z,9),
E(-RD?(X,t)) < E(Z) < E(Z. ).

4.1 Value-at-Risk (VaR)
For a risk level of § € (0, 1), recall that the VaR of Z is given by
VaRg(Z) := infla € R|Fz(a) > f},

where Fz(a) denotes the CDF of Z. To estimate Fz(a), we define the empirical CDF as
N

Fla, Z) == %Z]{(zi < a),

i=1
where I denotes the indicator function defined as

, 1 ifZi<
WZi<a)=4 2 =€
0 otherwise.

Let now § € (0, 1) be a probability threshold. Inspired by Szorenyi et al. [78], we calculate an upper
bound of VaRg(Z) as

\%

VaRg(Z,8) = inf{aeR|ﬁ(a,z)— 1n$\/[5) /3}

and a lower bound as

VaR,(Z.5) := inf{a eRIF(a,2) + lng\/f) > ﬁ},

where we recall that inf ) = oo for () being the empty set due to the extended definition of the
infimum operator. We next show that Wﬁ (Z,0) and Mﬁ (Z, ) are upper and lower bounds
of VaRg(Z), respectively, with a probability of at least 1 — 6.

PROPOSITION 1. Assume that F; is continuous and let 5 € (0,1) be a probability threshold and
B € (0,1) be arisk level. Letmﬁ (Z,90) andMﬂ (Z, 8) be based on the data Z. With a probability
of at least 1 — 6, it holds that

VaRﬁ(Z, 0) < VaRg(Z) < VaRg(Z, ).
We remark that Theorem 1 assumes that F is continuous. If F7 is not continuous, then one can
derive upper and lower bounds by using order statistics following Nikolakakis et al. [57, Lemma 3].

4.2 Conditional Value-at-Risk (CVaR)
For a risk level of § € (0, 1), recall that the CVaR of Z is given by

CVaRp(Z) = inf (o + (1 - B)E((Z - a]")),

where [Z—a]* := max(Z - a, 0). For estimating CVaRg(Z) from data Z, we focus here on the case
where the random variable p? (X, t) (and hence Z) has bounded support for fixed t. In particular,
we assume that P(p? (X, t) € [a,b]) = 1. Note that p? (X, t) has bounded support when the func-
tion p? is bounded, which can be achieved either by construction of ¢ or by clipping off p? outside
the interval [a, b] for some a priori chosen constants a and b, i.e., values outside this interval are
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clipped to the end points a and b of the interval. We remark that clipping off p? is not restric-
tive in most practical applications, i.e., realizations of p? (X, t) that are larger than a sufficiently
large value of b > 0 indicate robust satisfaction of ¢ and will not affect the risk associated with Z,
while realizations of p? (X, t) smaller than a < 0 violate the specification ¢ already.” We will pro-
vide illustrative examples in our simulations in Section 6. This boundedness assumption enables
us now to directly leverage results from Wang and Gao [83] to estimate upper and lower bounds
of CVaRg(Z). Let us first define the empirical estimate of CVaRg(Z) as

N
AT s _ -1 i+
CVaRg(Z) = inf (a +(N(1 - B) ;[2 al )
Based on Wang and Gao [83, Theorem 3.1], we can now calculate an upper bound of CVaRz(Z) as

51n(3/0)

CVaR4(Z,8) := CVaRg(Z) + N(l—_ﬂ)(b - a)
and a lower bound as
— 111n(3/6)
CVaRﬁ(Z,5) = CV(ZRﬁ(Z) - Ml—_ﬁ)(b—a)

We would like to highlight that the upper and lower bounds CVaRg(Z, 5) and CVaR 5 (Z,96), re-
spectively, become less accurate with larger values of (b — a), which we can account for by increas-
ing the number of observed trajectories N. The following proposition follows immediately from
Wang and Gao [83, Theorem 3.1]:

PropPOSITION 2. Let § € (0,1) be a probability threshold and f € (0,1) be a risk level. Assume
that P(p?(X,t) € [a,b]) = 1. Let CVaRg(Z,6) and CVaRﬁ(Z,(S) be based on the data Z. With a
probability of at least 1 — 8, it holds that

CVaR,(Z.6) < CVaRy(Z) < CVaRy(Z.9).

Remark 5. The case where Z has unbounded support, but where Z is sub-Gaussian or sub-
exponential has been considered in Bhat and L. A. [11], Brown [13], Kolla et al. [39], Mhammedi
et al. [54], Thomas and Learned-Miller [79].

4.3 Mean

Define the empirical estimate of the mean E(Z) as

=
N

i

| =
1=
N

i=1
By the law of large numbers, E(2) converges to E(Z) with probability one as N goes to infinity. For
finite N and when again Z has bounded support, i.e., P(Z € [a,b]) = 1, we can apply Hoeffding’s
inequality and calculate an upper E(Z, §) of the mean E(Z) as

In(2/96)

E(Z,5) = E(Z) + —n (-9

%In practice, it hence makes sense to select a negative value for a and to select b based on physical intuition that we may
have—either from trajectories that we may have already observed or from domain knowledge, e.g., for a lane-keeping
controller in autonomous driving, the value of b = 1 meter is a good robustness.
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Fig. 5. Histogram of —RD¢(X]-, 0) of the specification ¢ in (2) for robot trajectories j € {1,...,6}.

and a lower bound as

= In(2/96)
E =E -7/ —— (b —a).
E(Z.%) = E(Q) T
Similarly to the observation that we made for CVaR, note that the upper and lower bounds E(Z, §)
and E(Z, §), respectively, become less accurate with increasing values of (b —a) and more accurate

with increasing N. We next show that we indeed obtain valid upper and lower bounds.

PROPOSITION 3. Let 8 € (0,1) be a probability threshold. Assume that P(p?(X,t) € [a,b]) = 1.
Let E(Z,0) and E(Z, 6) be based on the data Z. With a probability of at least 1 — 8, it holds that

E(Z.5) < E(Z) < E(Z.9).

Example 1 (continued). We now modify Example 1 by considering that the regions C and D are
not exactly known. Let ¢ and d in Equations (3) and (4), respectively, be Gaussian random vectors

“ (s &)
(5 &)

Consequently, the signals x;-xs become stochastic processes denoted by X;-Xs. Let now X ; denote
the ith observed realization of X; where j € {1,...,6}. Our first goal is to estimate VaRz(Z) to
compare the risk between the six robot trajectories r;-rs. We set § := 0.01 and N := 15, 000.!° The
histograms of —p?(X;) for each trajectory are shown in Figure 5. For different risk levels f3, the
resulting upper and lower bounds for the value-at-risk are shown in the next table.

j R VaRo_g VaR0_925 VaR0_95 VaR0_975 VCIRO‘9 V(,ZRO.925 V(,IRO.95 VaR0.975
1 0.434 0.467 0.508 0.577 0.407 0.432 0.465 0.505
2 0.261 0.295 0.335 0.424 0.232 0.259 0.292 0.332
3 —0.075 | —0.044 0.001 0.086 -0.1 -0.077 —0.046 —0.003
4 —0.25 —0.222 -0.177 —0.086 —0.25 —0.25 —0.225 —0.182
5 —0.249 | —0.228 —0.18 —0.084 | —0.249 | —0.249 —0.23 —0.185
6

—0.249 | —0.249 | —-0.249 | —-0.249 | -0.249 | —-0.249 | —-0.249 | -0.249

Across all B, it can be observed that the estimate VaRy of VaRy is relatively tight, as the difference
[VaRg — VaR ,Bl between upper and lower bounds is small. The table indicates that trajectories ry

10We can select smaller N at the cost of slightly more conservative estimates.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 54. Publication date: April 2023.



54:16 L. Lindemann et al.

and r, are not favorable and are not robust. Recall that smaller risk values are favorable, as only
negative values indicate actual robustness. Trajectory r3 is better compared to trajectories r; and
rz, but worse than ry-r¢ in terms of the approximate STL robustness risk of ¢. For trajectories
r4-16, note that a f = 0.9 provides the information that the trajectories have roughly the same
approximate STL robustness risk. However, once the risk level § is increased to 0.925, 0.95, and
0.975, it becomes clear that rg is preferable over ry and rs. This matches with what one would
expect by closer inspection of Figures 2 and 5.

We next estimate CVaRg(Z) and therefore restrict p? to lie within [—0.5,0.25] simply by clip-
ping values that exceed this bound. This choice is motivated by our previous discussion in Sec-
tion 4.2 and as p? is upper bounded by 0.25; see histograms in Figure 5. For different risk levels /3,
the resulting upper and lower bounds for the conditional value-at-risk are shown next.

j R CVaRo.g CVaR0.925 CVaR0_95 CVaR0.975 CVaRO.E, CVGRO.QZS CVaRO_gs CVaR0_975
1 0.577 0.607 0.645 0.707 0.32 0.31 0.282 0.193

2 0.432 0.471 0.527 0.637 0.175 0.174 0.164 0.12

3 0.1 0.136 0.193 0.301 —-0.16 —0.161 —0.17 —0.213

4 —0.078 —0.04 0.019 0.13 —-0.335 —0.336 —0.344 —0.384

5 —0.08 —0.042 0.019 0.134 —0.337 —0.338 —0.344 —0.38

6 —0.146 —0.13 —0.103 —0.042 —0.403 —0.426 —0.466 —0.556

In general, the same observations regarding the ranking of r; — r¢ can be made based on the con-
ditional value-at-risk. However, the risk levels are in general much higher, as CVaR is more risk-
sensitive than VaRg. An important observation is that the estimates CVaRg of CVaRy are not as
tight as before for VaRy, as the difference |Wﬁ —CVaRg| is larger, particularly for larger  due

to the division by 1 — f in the estimates of CVaRg and CVaR 4- For completeness, we also report
the estimated mean of Z.

R —

E E
0.227 0.207
0.043 0.023

—0.194 -0.214
—0.233 —0.253
—0.233 —0.253
—0.24 —0.26

U R W N~

5 EXACT COMPUTATION OF THE APPROXIMATE STL ROBUSTNESS RISK

In the previous section, we estimated the approximate STL robustness risk using observed real-
izations X?, ..., X" of the stochastic process X. In this section, we instead assume to know the
distribution of X. There are two main challenges in computing the approximate STL robustness
risk R(—p? (X, t)) from the distribution of X. First, note that exact computation of R(—p? (X, t))
requires knowledge of the CDF of p? (X, t). However, the CDF of p? (X, t) is in general not known
and often hard to obtain analytically. Second, calculating R(—p? (X, t)) may often involve solving
high-dimensional integrals for which in most of the cases no closed-form expressions exists. For
these reasons, we assume in this section that the STL formula ¢ is bounded and that X : TxQ — X
is a discrete-time stochastic process, i.e., T := Z, with a finite state space X € R” (i.e., the set X
consists of a finite set of elements).
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Recall that the time intervals I contained in a bounded STL formula ¢ are compact. The satis-
faction of such an STL formula can hence be decided by finite signals. A bounded STL formula ¢

has a future formula length L? € Z and a past formula length Lﬁ € Z. The future formula length
sz can be calculated, similarly to Sadraddini and Belta [68], as

L;¢ = L?
L?/w” _ max(Ljf/,L?N)
L?IUW = max{I N Z} + maX(L?I’L?”)
L?'QM" = max(Ly, 1Y),

The past formula length Lff can be calculated similarly as
Ly=1L,:=0
L =19
L) = max(L) L))
L9 = max(Ly 13
Lﬁ/gﬂs// :=max{INZ} + max(LqS/, Lff”).

A finite signal of length L? +ij is now sufficient to determine if ¢ is satisfied at time ¢. In particular,

information from the time interval Ty := {t — Lﬁ, R AN s L¢} is sufficient to determine if ¢
is satisfied at time f. Now, let X : Q X Ty — X be the discrete-time stochastic process under
consideration where the state space X C R” is a finite set. Note that we can always obtain such
a finite set X from a continuous state space by discretization. Let the probability mass function
(PMF) fx(x) of X be given. The next result is stated without proof; as it follows immediately from
the fact that T and X, and consequently the set of signals & (17, X) are finite sets.

PROPOSITION 4. Let ¢ be a bounded STL formula with future and past formula lengths Ljf and Lﬁ,

respectively. Let X : Q X T;, — X be a discrete-time stochastic process with a finite state space X. For
t € R, we can calculate the PMF f(z) and the CDF Fz(z) of Z as

@)= ) =p?x0) = 2)fx(x),
x€F(Tr, X)

Fz(z)= > I(=pP(x.1) < 2)fx(x).
x€F(TL, X)

Note that Fz(z) = Y, <, fz(z’) holds as required. Having obtained the PMF f7(z) and the CDF
Fz(z) of Z, it is now straightforward to calculate R(Z) for various risk measures R. Note, in par-
ticular, that Z is a discrete random variable so f7(z) is discrete and Fz(z) is piecewise-continuous,
hence simplifying the calculation of R(Z), as no high-dimensional integrals need to be solved.

Example 1 (continued). Recall that ¢ and d were assumed to be Gaussian distributed accord-
ing to Equations (6) and (7), respectively. We first discretize the distributions of ¢ and d; see Ap-
pendix G for details. From the PMFs f. and f;, we can now calculate the PMF fx(x) for any
x € F(TL,R%) x C x D where C and D are the discretized domains of ¢ and d. We can hence

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 54. Publication date: April 2023.



54:18 L. Lindemann et al.

calculate f7(z) according to Proposition 4. From this, the value at risk VaRg(Z) can be calculated,
which is reported in the next table.

R

VaRo.o | VaRg.o25 | VaRy.o5 | VaRyg.o75

0.403 0.429 0.461 0.509
0.225 0.255 0.29 0.348
—0.102 —0.067 —0.049 0.003
—0.249 —0.249 —0.222 —0.162
—0.25 —0.25 —0.222 —0.157
—0.249 —0.249 —0.249 —0.249

QN U W DN

It can be seen that the STL robustness risks reported above closely resemble the sampling-based
estimates VaRg of VaRg from Section 4.

6 SIMULATIONS: AUTONOMOUS DRIVING IN CARLA

We consider the verification of neural network-based lane-keeping controllers for lateral control
in the autonomous driving simulator CARLA [19]; see Figure 1 (left). Lane-keeping in CARLA
is achieved by tracking a set of predefined waypoints. For longitudinal control, a built-in PID
controller is used to stabilize the car at 20 km/h. We particularly trained four different neural
network controllers as detailed below. Our overall goal is to estimate and compare the risks of these
four controllers for five different specifications during a double left turn; see Figure 1 (middle).

For the verification and comparison of these controllers, we are particularly interested in the
cross-track error, which is a measure of the closest distance from the car to the path defined by the
set of waypoints, as illustrated in Figure 1 (right). Formally, let wp; be the waypoint that is closest
to the car and let wp, be the waypoint proceeding wp;. Then the cross-track error is defined as
ce := ||w|| sin(6,,), where w is the vector pointing from wp; to the car and 6,, is the angle between w
and the vector pointing from wp; to wp,. We are also interested in the orientation error 6, := 6, -6
between the orientation of the reference path 6, and the orientation of the car 6.

The state x := (ce, ¢, 0, d, ét) of the car consists of the cross-track error c,., the orientation error
0., the velocity v of the car, the internal state d of the longitudinal PID controller, and the rate 9t at
which the orientation of the reference path changes. The control input for which we aim to learn
and verify a lane-keeping controller is the steering angle u.

6.1 Training Neural Network Lane-keeping Controllers

We have trained four different neural network controllers. Two of these four controllers were
obtained by using supervised imitation learning (IL) [65], while the other two controllers were
obtained by learning control barrier functions (CBFs) from expert demonstrations [49].

To obtain two imitation learning controllers, we used a CARLA built-in PID controller u* as an
expert controller to collect expert trajectories, which are sequences of state and control input pairs.
The first IL controller, denoted as ILgy, is trained using the full state x as an input to the neural
network, while the control input u is the output. The second IL controller, denoted as ILpartial,
is trained by only using partial state knowledge. In particular, only the cross-track error c., the
orientation error 6,, and the rate 6, at which the orientation of the path changes are used here as
an input to the neural network. We used one-layer neural networks with 20 neurons per layer and
ReLU activation functions and trained with the mean squared error as the loss function.

Remark 6. For simplicity, we did not attempt to address the distribution shift between the expert
controller and the trained controller, e.g., by using DAGGER [66]. We remark that our primary goal
lies in the verification and comparison of risk between controllers.
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Fig. 6. Shown are 600 trajectories for each of the four controllers during the double left turn. Trajectories
marked in red led to a collision with an obstacle.

To obtain the CBF-based controllers, we again used the expert controller u™ to get expert trajec-
tories from which we learned robust control barrier functions following Lindemann et al. [49].
The first controller, denoted as CBFg,;, uses again full state knowledge of x. The second con-
troller, denoted as CBFatial, estimates the cross-track error c, from RGB dashboard camera im-
ages while assuming knowledge of the remaining states; see Lindemann et al. [49] for details.
Both neural network controllers consist of two layers with 32 and 16 neurons and tanh activation
functions.

6.2 Risk Verification and Comparison

For the risk verification and comparison of these four controllers, we tested each of them on the
training course; see Figure 1 (middle). We uniformly sampled the initial position of the car in
a range of ¢, € [-1,1] m and 0, € [-0.4,0.4] rad and added normally distributed noise in a
range of [-0.1,0.1] rad to the control input to simulate actuation noise so the car becomes a
stochastic process X. We collected N := 1,000 trajectories for each controller, of which 600 are
shown in Figure 6. From a visual inspection, we can already see that the controllers that use full
state knowledge (ILg,, CBFygy)) outperform the controllers that only use partial state knowledge
(ILpartial, CBFpartial). Videos of each controller from five different initial conditions are provided
under https://tinyurl.com/48x;jf545.

To obtain a more formal assessment, we next estimate the risk of each controller with respect
to: (1) the cross-track error over the whole trajectory, during steady state, and during the transient
phase, (2) the responsiveness of the controller, and (3) the orientation error.

6.2.1 Cross-track Error. The specification that we look at here is that the cross-track error c,
should always be within the interval [-2.25, 2.25], where 2.25 is a threshold that we selected based
on the cross-track error induced by the expert controller u*. In STL language, we have

¢1 = G[o’oo)(|ce| < 2.25).

We show the histograms of p#1 (X, 0) for each controller in Figure 7(a) (left).!! We are particularly
interested in the controllers ILgy and CBFgy and show their histograms isolated in Figure 7(a)
(right) for better readability. Selecting § := 0.01, the estimates of VaRy g5, VaRg o5, CVaRy g5, and
E are reported in the table below. In the last column, we have additionally reported the empirical
probability that the specification ¢, is satisfied, which we calculate as

L I IENXL0) = T)
¢1 . N .

For each risk measure, we highlight the controller with the lowest risk in green.

1We restrict p?! to lie within the interval [~1.25, 2.25], i.e., in this case, we clip the values of p®1 (X, 0) = inf;c7 2.25 —
lce(t)] to —1.25 if p?1(X, 0) < —1.25. In the remainder, we clip p#2-p®5 in the same way for the specifications ¢z-¢s.
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Fig. 7. Histograms of —p%i (X, 0) for each controller for the specifications ¢;-¢s.
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R| —— N I —
u VaRo_gs VaR0_95 CVaRo.gs E VaRo's5 V(ZRO'95 CVaRO_ss E #¢1
Lsun —0.168 | 0.462 1.436 | —0.248] —0.258 | —0.168 | —2.354 | —0.61 | 0.975
ILpartial 1.25 1.25 2.776 | 1.166 | 1.25 1.25 -1.014 | 0.806 | 0.005
CBFgun 0.135 1.125 1.818 —0.375] =0.125 | 0.105 —-1.972 | —-0.736| 0.863
CBFpartial | 0.58 1.25 2.42 0.357 | 0.44 0.58 -1.37 | —0.003| 0.364

Based on these risk estimates, we make the following observations:

e As expected from the visual inspection of Figure 6, the controllers ILpqrtial and CBFpartial
perform poorly. Among these two, CBFpariial performs slightly better in terms of risk than
ILpartial~

e The controllers ILg, and CBFg, perform better. The risk of CBFy) in terms of the expected
value E is smaller than the risk of ILg. Interestingly, the risk of ILg,j in terms of the VaRy ss,
VaRy. o5, and CVaR, g5 is smaller than the risk of CBFgy. This is due to the long tail induced
by CBFsu; see Figure 7(a) (right). We hence argue that ILg is the better choice with respect
to ¢1 .

e The estimate CVaRygs of CVaRygs is not tight and very conservative. The difference
ICVaRy, g5 — CVaR, .| between the upper and lower bounds is large. To make this bound
tighter, more data N is needed. We neglect the conditional value-at-risk in the remainder.

e In this case, it can be observed that a low empirical satisfaction probability #4 correlates
with a high risk. We remark that this is not always the case, as risk considers characteristics
of the right tail of the distribution — p‘ZSI (X, 0), while satisfaction probabilities focus on the left
tail of this distribution. This can be observed when we present the results for specification

Ps.

We formulate the hypothesis that the long tail of CBFg) that makes CBFg,; more risky than
ILgyy is induced by the transient behavior. We analyze this hypothesis in detail in the remainder
looking at the specifications ¢, (steady-state) and ¢ (transient phase).

6.2.2 Steady-state. In the previous section, we concluded that ILgyj is the best controller for the
specification ¢y, i.e., when considering the cross-track error ¢, over the whole trajectory. We now
study the steady-state behavior of each controller in terms of ¢, and reveal that CBFy is the least
risky controller when only looking at the steady-state. Therefore, we check if the cross-track error
ce is always within the interval [-2.25, 2.25] after 10 s by the specification

¢z = Gpio,o0 (Ice| < 2.25).

We show the histograms of p#2(X, 0) for each controller Figure 7(b) and report the risk estimates
below:.

R | —— - - —
u VaRo.gs VaRO.g VaR0.95 E #¢2
I -0.168 | —0.078 0.462 —-0.254 | 0.975
ILpartial 1.25 1.25 1.25 1.153 0.005
CBFfun —~0.944 | —0.924 | —0.794 | -0.81 1
CBFpartial 0.56 1.25 1.25 0.341 0.377

Based on these risk estimates, we make the following observations:

e We see that our stated hypothesis is true and observe that CBFg,; now has the least risky
behavior for all risk measures with respect to ¢, i.e., during steady state.
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e For CBFg,, we have VaRo_gs(—p¢2 (X,0)) = —0.794. Consequently, for at most 5% of the
realizations the robustness is less than 0.794.

6.2.3 Transient Phase. Complementary to the previous analysis, we now look at the transient
behavior of the cross-track error c, of each controller by imposing the specification

¢3 = F[O,S]G[O,S](|Ce| < 1.25).

In other words, the specification ¢3 requires that eventually within the first 5 s the absolute value
of the cross-track error falls below the threshold 1.25 for at least 5 s. We show the histogram of
each controller in Figure 7(c) and report the corresponding risk estimates next.

R | —— N —_ —
u VaR().gf; V(ZRo.g V(ZRO'95 E #¢3
L —0.584 | —0.524 | —0.324 | —0.652 1
ILpartial 1.25 1.25 1.25 0.493 0.42
CBFgn —0.157 | —0.137 | 0.063 —0.297 | 0.998
CBFpartial 0.2 0.38 1.25 —-0.221 0.83

For ¢35, we see a similar result as for ¢; in the sense that ILg, is the least risky controller, but
now clearly indicating that ILgyy is the less risky controller across all risk measures. It is also worth
pointing out that CBFy,y and CBFprtia1 have almost the same expected value, while VaRy ss, VaRy o,
and VaR, ¢s indicate that CBFgy is less risky.

Summarizing the observations from ¢;, ¢,, and ¢s, [Lgy is the least risky controller during the
transient phase and CBFyg is the least risky controller during steady-state.

6.2.4 Responsiveness. So far, we focused on the cross-track error during steady-state and tran-
sient phase. We now analyze the responsiveness of the controllers when the cross-track error
gets too large. We particularly analyze how responsive the controllers are in such situations and
how quickly they can decrease the error again to an acceptable level. Let us therefore look at the
specification

Py = G[lo,oo)<(|ce| > 1.25) = Fo,51G[o,51(lcel < 125))‘

In other words, whenever the cross-track error c, leaves the interval [—1.25, 1.25] after the tran-
sient phase has died out (approximately after 10 s), it should hold that within the next 5 s the
cross-track error is again within the interval [—1.25, 1.25] for at least 5 s. We show the histogram
of each controller in Figure 7(d) and report the corresponding risk estimates below.

R| — J— J— —
u VaRo.gs VGRO.‘) VGRO_95 E #¢4
L 0.088 0.128 0.248 0.127 | 0.703
ILpartial 1.25 1.25 1.25 1.226 | 0.026
CBFun —0.0152 | —0.005 | 0.055 | 0.129 | 0.974
CBFpartial 1.25 1.25 1.25 1.054 0

The results are interesting in the sense that the risk of ILg,;; and CBFg) in terms of the expected
value are almost identical, even slightly favoring ILg,;, while the risk of CBFgy) in terms of VaRy ss,
VaRy 9, and VaRy o5 is much smaller.

6.2.5 Orientation Error. Let us now focus on the orientation error 8. In general, an orientation
error is expected when either the orientation 6, of the reference path changes or the car tries to
reduce the cross-track error ¢, by adjusting 6, e.g., when |c.| > 0, we need |6,| > 0 to reduce |c,|
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(see Figure 1). To analyze how well the orientation error is adjusted when the cross-track error
leaves the interval [—1.25, 1.25], we consider the specification

$s = G[O,oo)((ce > 1.25) = F0,21Gpo,11(6e < 0) A (ce < —1.25) = Fo,2G[o,1](6e > 0))-

The specification ¢s encodes that, whenever the cross-track error c, leaves the interval
[—1.25,1.25], the orientation error 0, should, within 2 s, be such that the cross-track error de-
creases for at least 1 s. We show the histogram of each controller in Figure 7(r) and report the risk
estimates below.

R | —— _ _ —
u VaR0_85 VaRo.g VaR0.95 E #¢5
ILan —0.58 —-0.54 -0.13 —-0.517 1
ILpartial 1.25 1.25 1.25 0.762 | 0.247
CBFfun —047 | —044 | 032 | -0553 1
CBFpariial | 0.43 1.14 1.25 | 0.225 | 0.503

We can observe that the risk of ILgy is the lowest for VaRy s and VaRy ¢, while the risks of ILgyy
and CBFyy) are roughly equal for the expected value E. However, the distribution induced by ILgyj
has a long tail, which is why the risk of CBFgy is the lowest for VaRy ¢s.

7 CONCLUSION

We defined the STL robustness risk to quantify the risk of a stochastic system lacking robustness
against failure of an STL specification. The approximate STL robustness risk was defined as a com-
putationally tractable upper bound of the STL robustness risk. It was shown how the approximate
STL robustness risk is estimated from data for the value-at-risk and the conditional value-at-risk.
We also provided conditions under which the approximate STL robustness risk can be computed
exactly. Within the autonomous driving simulator CARLA, we trained four different neural net-
work lane-keeping controllers and estimated their risk for five different STL system specifications.

APPENDICES
A SEMANTICS OF SIGNAL TEMPORAL LOGIC
The satisfaction function ¢ (x, t) determines whether or not the signal x satisfies the specification

¢ at time t. The definition of ¢ (x, t) follows recursively from the structure of ¢ as follows:

Definition 5 (STL Semantics). For a signal x : T — R" and an STL formula ¢, the satisfaction
function B%(x, t) is recursively defined as

BT (x,t) =T,

)T ifx(@r) e OF
e )= {J_ otherwise,
B (x, 1) = =B (x, 1),

BN (x, 1) = min(B? (x, 1), B (x, 1)),
ﬁ‘/”UIW (x,t) :==  sup (min (ﬁw (x,t"), inf ﬁqy (x, t/)))’

t7e(te)NT t'e(t,t")NT

LYY (x, 1) : sup (min (ﬂ‘f’"(x,t”), inf g% (x, t/))).

t7e(tel)NT t'e(t”,t)NT
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The semantics in Definition 5 use the strict non-matching versions Uy and U, of the until opera-
tors. The non-strict matching versions of the until operator, in comparison, replace the open time
intervals (t,t"") in Definition 5 by the closed time intervals [t, t"] as follows:

ﬂ‘ﬁ’ﬁ"ﬁ” (x,t) == sup ( min (ﬁ‘f’ﬂ (x,t”), inf ,B‘ﬁ/ (x, t'))),
1 InT

t"e(t@I)NT S

ﬁ"yﬁf‘ﬁ” (x,t) == sup ( min (ﬁ‘ﬁﬂ (x,t”), inf ,[3‘25/ (x, t')) )
¢ InT

t"e(te)nT re[t”t

B PROOF OF THEOREM 1

We prove the statement of Theorem 1 first for the semantics % (X, t), then for the robust semantics
p?(X,t), and finally for the robustness degree RD? (X, t).

B.1 Semantics f?(X,1t)

Let us define the power set of B as 2B .= {0, T, L, {L, T}}. Note that 2% is a o-algebra of B. To
prove measurability of ﬂ¢' (X (-, w),t) in w for a fixed t € T, we need to show that, for each B € 2B
it holds that the inverse image of B under % (X (-, w),t) for a fixed t € T is contained within 7,
i.e., that it holds that

{we QIB?(X(-,w),t) € B} C F.

We show measurability of ¢ (X(:, ), t) in o for a fixed t € T inductively on the structure of ¢.

T: For B € 25, it trivially holds that {w € Q|7 (X(-,),t) € B} € F, since BT (X(-,w),t) = T
for all € Q. This follows according to Definition 5 so {w € Q|7 (X(-,w),t) € B} =0 C F if
Be {0, 1} and {0 € Q|T(X(-, w),t) € B} = Q C F otherwise.

p:Let 1ox : R™ — B be the indicator function of O¥ with 1o+ ({) := Tif{ € O¥ and 1ox({) := L
otherwise. According to Definition 5, we can now write f*(X (-, w),t) = 1ox (X (¢, ®)). Recall that
O* is measurable and note that the indicator function of a measurable set is measurable again (see,
e.g., Durrett [20, Chapter 1.2]). Since X (¢, w) is measurable in o for a fixed ¢t € T by definition, it
follows that 1o« (X (t, w)) and hence p*(X(:, ), t) is measurable in w for a fixed t € T. In other
words, for B € 2B, it follows that

{w e QIF (X(-,w),t) € B} = {w € Qlon(X(t,w)) € B} C F.

—¢: By the induction assumption, 8¢ (X (-, w), t) is measurable in o for a fixed ¢ € T. Recall that
F is a o-algebra that is, by definition, closed under its complement so, for B € 2%, it holds that

{we QI ?(X(-,w),t) € B} = Q\{we QI (X(-,w),t) € B} C F.

¢’ A ¢”: By the induction assumption, /3925/ (X(-,w),t) and [3‘75” (X(+, w), t) are measurable in w for
afixed t € T. Hence, f#"" (X(-, w),t) = min(ﬁ‘f’/ (X (-, w), t),ﬂ¢/’(X(~, w), t)) is measurable in
for a fixed ¢ € T, since the min operator of measurable functions is again a measurable function.
¢'Ur¢” and ¢'U ;¢"": Recall the definition of the future until operator

IV (X (L w).t) = sup  (min(B(X(.w).t"). inf BY(X(.0).1)).
t”e(tel)NT t'e(t,t”)NT
By the induction assumption, ¢ (X (-, »),t) and ¢ (X(-,w),t) are measurable in o for a fixed
t € T.First note that (¢,””) N T and (+ ®I) N T are countable sets, since T = N. According to Guide
[26, Theorem 4.27], the supremum and infimum operators over a countable number of measurable

functions is again measurable. Consequently, the function BYUI" (X (-, w), t) is measurable in w
for a fixed t € T. The same reasoning applies to S Z?" (X (-, w), t).
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B.2 Robust Semantics p? (X, t)

The proof for p? (X (-, ), t) follows again inductively on the structure of ¢, and the goal is to show
that {w € Q|p?(X(-,w),t) € B} C F for each Borel set B € B. The difference here, compared to
the proof for the semantics f? (X (-, w),t) presented above, lies only in the way predicates y are
handled. Note first that we can write p" (X (-, w), t) as

PH(X (- w),t) = 0.5(1on (X(t, ®)) + 1)d(X(t, ®), cl(O™H))
+0.5(10k (X (t, ®)) — 1)d(X(t, ®), cl(O*)),

where we recall that we interpret T := 1 and L = —1. Since the composition of the indicator
function with X (¢, w), i.e., 1ox (X (t, ®)), is measurable in o for a fixed t € T as argued before, we
only need to show that d(X(t, »), cl(O*)) and d(X (¢, ®), cl(O™*)) are measurable in o for a fixed
t € T. This immediately follows, since X (¢, ) is measurable in o for a fixed t € T by definition
and, since the function d is continuous in its first argument, and hence measurable (see Guide [26,
Corollary 4.26]), due to d being a metric defined on the set R” (see, e.g., Munkres [56, Chapter 3])
so pH(X (-, w),t) is measurable in o for a fixed ¢ € T.

(®)

B.3 Robustness Degree RD?(X, 1)

For RD¢(X (-, w), t), note that, for a fixed ¢ € T, the function RD? maps from the domain &(7,R")
into the domain R, while X (-, ) maps from the domain Q into the domain F(T,R"). Recall now
that RD? (X (-, w), 1) = &(X(-, w), cl(L?(t))) := inf . cq( o) K(X (- @), x*) and that « is a metric
defined on the set §(T,R"), as argued in Fainekos and Pappas [21]. Therefore, it follows that
the function & is continuous in its first argument (see, e.g., Munkres [56, Chapter 3]), and hence
measurable with respect to the Borel o-algebra of &(T,R") (see, e.g., Guide [26, Corollary 4.26]).
Consequently, the function RD? : §(T,R") x T — R" is measurable in its first argument for a
fixed t € T. As T is countable and X is a discrete-time stochastic process, it follows that X (-, w) is
measurable with respect to the product o-algebra of Borel o-algebras 8", which is equivalent to
the Borel o-algebra of §(T,R") (see, e.g., Kallenberg [36, Lemma 1.2]). Since function composition
preserves measurability, it holds that RD¢(X (-, w), t) is measurable in  for a fixed t € T.

C PROOF OF THEOREM 2

We prove the statement of Theorem 2 first for the robustness degree RD? (X, t), and finally for the
semantics % (X, t), then for the robust semantics p? (X, t).

C.1 Semantics (X, 1)

The proof again follows inductively on the structure of ¢. The difference to the proof of Theorem 1
lies in the way the until operators are handled, which are now assumed to be the non-strict match-
ing versions ¢'Ur¢” and ¢’'U ;#”". Note also that the time interval I is compact, as the formula ¢ is
assumed to be bounded. The main idea is to show that infimum and supremum operators reduce
to minimum and maximum operators that allow us to show measurability. Recall, therefore, the

definition of the future until operator ﬂ‘/"ﬁf (X (-, w), t) as

U (X(,w),t) = sup (min (B (X( o) t"), _inf BY(X(. ), t'))).
tre(te)nT reft,tInT
We first show that the infimum operator in ﬂqﬁ,ﬁ’ ¢"(X(-,w), t) reduces to a min operator. In par-
ticular, note now that infy ¢, tu]mrﬂ‘ﬁl (X (-, w),t") includes the compact time interval [t,t”] N T
instead of the open interval (¢,t”) N T due to the interpretation of the until operator as the non-
strict matching version. It holds that the minimum of minye[t,tu]mﬁqf’/ (X (-, w),t") exists as
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(1) the minimum is over the compact time interval [£, "] N T = [¢t,t”'] (recall that T = R), and
(2) the range of ﬂ‘}y (X (-, w), t) is restricted to B.

Consequently, the minimum corresponds to the infimum and it follows that

inf  pY(X(,w),t")= min B (X(, 0),t).

t'e[t,t”]NT t'e[t,t”]NT
Now, it holds that mintxe[t,tu]mﬁ‘f”(X(-,a)),t') is equivalent to B? (X(-,w),t’) for some t' €
[t,t”] N T. Since B? (X (-, w),t") is measurable in w by the induction assumption, it follows that
the function infyf,, tu]mTﬁ‘ﬁl (X(-,w),t") is measurable in w for a fixed t € T. Note next that the
supremum operator in ﬂ‘ﬁ/ﬁf ¢"(X (-, ), t) reduces to a max operator due to I being compact and
following a similar argument as for the infimum operator. Measurability of ﬁ‘f’,ﬁ’ ¢ (X(-,w),t) in
o for a fixed t € T then follows as in the proof of Theorem 1. The proof for /395@195" (X(-, w), t)
follows similarly.

C.2 Robustness Degree RD? (X, t)

As shown in the proof of Theorem 1, the function RD? : F(T,R") x T — R" is continuous and
hence Borel-measurable in its first argument for a fixed ¢t € T. By the assumption that X(-, ) :
Q — F(T,R") is Borel-measurable, the result follows trivially.

C.3 Robust Semantics p¢(X, t)

The proof follows mainly from Reference [8, Theorem 6]. However, to apply this result, we need
to show that the robust semantics p#({,t) of predicates yu are continuous in { € R", where we
recall that

d(Z,cl(O7H)) if{ € O#

pH(L, 1) = {_J(g, cl(O#)) otherwise.

Note that the functions d(,cl(O™#)) and d({, cl(O*)) are continuous in ¢. This follows due to
Munkres [56, Chapter 3]. By definition, we have p#({, t) = 0if { € bd(O*), where bd(O*) denotes
the boundary of O¥. Note also that d({, cl(O™#)) — 0 as { — bd(O*) as well as —d({, cI(O*)) — 0
as { — bd(O*). It follows that p#({, t) is continuous in {. The assumption that X (-, ) is a cadlag
function for each w € Q then enables us to apply Theorem 6 in Bartocci et al. [8].

D PROOF OF THEOREM 3

First note that p? (X (-, w), t) < RD?(X(-, w), t) for each realization X (-, ) of the stochastic process
X with o € Q due to Equation (5). Consequently, we have that —RD? (X (-, »),t) < —p?(X (-, ), t)
for all w € Q. If R is now monotone, then it directly follows that R(-RD?(X, 1)) < R(-p? (X, 1)).

E PROOF OF PROPOSITION 1

Let us assume that X!,...,X" are N independent copies of X. Consequently, all Z contained
within Z are independent and identically distributed. We first recall the tight version of the
Dvoretzky-Kiefer-Wolfowitz inequality as originally presented in Massart [52], which requires
that F7 is continuous.

LEMMA 1. Let 1?(0(, ) be based on the data Z consisting onl, ..., ZN which are N independent
copies of Z. Let ¢ > 0 be a desired precision, then it holds that

P |sup II?(a,.Z) - Fz(a)| > c) < 2exp(—2Nc?).
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By setting § := 2 exp(—2Nc?) in Lemma 1, it holds with a probability of at least 1 — § that

sup F(e. Z) = F(@)] < o
With a probability of at least 1 — §, it now holds that
{a eR|F(a, Z) - % > ﬁ} C{a e R|Fz(a) = p}
as well as
{a e RIF(a, Z) + % > ﬁ} 2 {a € RIFz(a) = B).

Hence, it holds with a probability of at least 1 — § that

In(2/5)
2N

inf {a e R|F(a, Z) - > ﬂ} > inf{a € R|Fz(a) > B}

as well as

In(2/5)
2N

inf{a eR|F(a, Z) + > /3} < inf{ar € R|Fz(a) > f}.

By the definition of Mﬁ (Z,96) and mﬁ (Z,9), it holds with a probability of at least 1 — § that
VaR,;(Z,8) < VaRg(Z) < VaRg(Z,6).

F PROOF OF PROPOSITION 3

N are N independent copies of X. Consequently, all Z* contained

Let us again assume thatX!,..., X
within Z are independent and identically distributed. Note first that E(ZZ) is a random variable

with the expected value according to

- 1w 13
EEQ)) = 5 ) EZ) = ) E2) = EQ).
i=1 i=1

For ¢ > 0, we can now apply Hoeffding’s inequality and obtain the concentration inequality

2Nc? )

P(IE(Z) - E@)| = ¢) < 2exp ( )

By setting & := 2 exp(— 2 <), it holds with a probability of at least 1 — § that

(b-ay
~ [In(2/5)(b — a)?
|E(Z) - E(Z)] < —

From this inequality, the result follows trivially.
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G DISCRETIZATION OF ¢ AND d IN EXAMPLE 1

To discretize the distributions of ¢ and d in Equations (6) and (7), respectively, let M := 32 be
the number of desired discretization steps and y := 0.55 be a discretization bound. We uniformly
discretize the interval [—y,y] into M values (s, ..., sy) where s, < $p+1. We additionally add
so := 0 and define S := (s¢, S1, . . ., Sar). We now assign a PMF fs(sy,) to each element s, € S as

Fn(sm) if s, = 51
Fn(sm) — Fn(Sm—1) ifs; <s, <0
fs(sm) = {2(Fn(sm) = Fn(sm-1)) if sm =0
Frn(sm+1) — Fa(sm) if 0 < sy, <suy
1—Fn(sm) if s = s,

where Fy (s) is the CDF of N (0, 0.2) (according to Equations (6) and (7)). We now assume, instead
of Equations (6) and (7), that ¢ and d take values in the sets

C=206S5Sx3®S
D:=6dSX40S,

where 2, 3, 6, and 4 are the mean values of ¢ and d in Equations (6) and (7), respectively. Finally,

T T
we assume that the distributions of ¢ = [01 cz] and d = [dl dz] are according to the PMFs

fi(c) := fo(er) fs(ez) and fy(d) := fs(dy) fs(dy), respectively.
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