2023 International Joint Conference on Neural Networks (IJCNN) | 978-1-6654-8867-9/23/$31.00 ©2023 IEEE | DOI: 10.1109/1JCNN54540.2023.10191837

An Improved Trust-Region Method for Off-Policy
Deep Reinforcement Learning

Hepeng Li', Xiangnan Zhong?, and Haibo He'

"Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island
Kingston, RI, USA, Email: hepengli@uri.edu and haibohe @uri.edu
Department of Electrical Engineering and Computer Science, Florida Atlantic University
Boca Raton, FL, USA, Email: xzhong @ fau.edu

Abstract—Reinforcement learning (RL) is a powerful tool
for training agents to interact with complex environments. In
particular, trust-region methods are widely used for policy
optimization in model-free RL. However, these methods suffer
from high sample complexity due to their on-policy nature,
which requires interactions with the environment for each up-
date. To address this issue, off-policy trust-region methods have
been proposed, but they have shown limited success in high-
dimensional continuous control problems compared to other off-
policy DRL methods. To improve the performance and sample
efficiency of trust-region policy optimization, we propose an off-
policy trust-region RL algorithm. Our algorithm is based on a
theoretical result on a closed-form solution to trust-region policy
optimization and is effective in optimizing complex nonlinear
policies. We demonstrate the superiority of our algorithm over
prior trust-region DRL methods and show that it achieves
excellent performance on a range of continuous control tasks in
the Multi-Joint dynamics with Contact (MuJoCo) environment,
comparable to state-of-the-art off-policy algorithms.

I. INTRODUCTION

Model-free reinforcement learning (RL) has become a
popular approach for solving complex sequential decision-
making problems [1], [2] and optimal control tasks [3]. This
success can be attributed to the progress made in deep RL
(DRL) algorithms that combine traditional RL methods with
deep learning techniques [4] to scale up to high-dimensional
problems. DRL algorithms can be categorized into two types:
value-based methods and policy-based methods. Value-based
methods, such as deep Q-learning (DQN) [1] and double DQN
[5], learn an action-value function using deep neural networks
and represent the policy with a greedy or e—greedy action-
selection strategy based on the estimated action-value func-
tion. In contrast, policy-based methods, such as REINFORCE
[6] and policy gradient [7], learn an explicit policy that is
parameterized using a deep neural network that maps states
to a policy distribution over the action space. Policy search
methods are generally more effective in high-dimensional or
continuous action control tasks and have become increasingly
popular in model-free RL.

However, traditional policy-based methods in reinforcement
learning, such as REINFORCE [6], policy gradient [7], actor-
critic [8], [9], and approximate dynamic programming [10],

This material is based upon work supported by the National Science
Foundation under Grant No. ECCS 1917275 and ECCS 1947419.

[11], often encounter challenges with learning stability and
hyperparameter sensitivity [12], [13]. They typically utilize
first-order policy gradients to update policy parameters, which
can lead to policy collapse due to an inappropriate choice
of step-size. In practice, it can be difficult to determine the
optimal step-size to ensure performance improvement in the
direction of gradient ascent, particularly when using nonlinear
function approximation.

Trust-region methods have been introduced to policy-based
RL to improve stability by constraining policy updates to a
local area surrounding the most recent policy, or the “trust
region.” Different trust-region RL algorithms have been devel-
oped based on how the trust-region distance is measured. For
example, the natural policy gradient [14] calculates the trust
region distance using a quadratic metric over policy parame-
ters, which is determined using the Fisher information matrix.
Trust region policy optimization [15] measures the distance
using KL-Divergence and provides a monotonic improvement
guarantee on policy performance, but it requires second-order
gradients and is computationally inefficient. Proximal policy
optimization [16] approximates the KL distance by clipping
the policy ratio in the objective, allowing for the use of
first-order optimization methods. In [17], differentiable trust-
region layers for Gaussian policies are proposed based on
Wasserstein L2 distance, Frobenius norm, and KL-Divergence,
and provide guarantees of monotonic improvement. However,
these methods are sample inefficient due to their need for a
large number of on-policy interactions with the environment,
making them impractical for real-world applications.

Recently, off-policy DRL algorithms have been proposed
to improve the sample efficiency of trust-region methods. In
[18], a trust region path consistency learning algorithm is
proposed to leverage off-policy data for policy learning and
value function estimation. Considering RL as a variational
inference paradigm [19], [20] proposes an off-policy trust-
region RL algorithm for Gaussian policies using expectation-
maximization (EM) via maximum-a-posteriori estimation. In
[21], a new surrogate function-based off-policy trust-region
policy optimization algorithm is proposed. [22] proposes an
off-policy DRL algorithm using mirror descent policy opti-
mization, which projects gradients in a dual space of the policy
onto a trust region under a Bregman divergence. In [23], off-

Authorized licensed use limited to: University of Rhode Island. Downloaded on August 15,2023 at 18:36:04 UTC from |IEEE Xplore. Restrictions apply.

policy variants of trust-region policy optimization, proximal
policy optimization, and mirror descent policy optimization are
developed using functional mirror ascent to construct a general
class of surrogate functions. Despite these advancements, their
ability to compete with other policy-based DRL algorithms,
such as deep deterministic policy gradient [3], [24] and max-
imum entropy RL [25]-[28], on high-dimensional continuous
control tasks is still unsatisfactory.

In this paper, our focus is on improving the performance and
sample efficiency of trust-region RL methods for continuous
control tasks. Our objective is to derive a stable and sample-
efficient trust-region policy optimization algorithm for model-
free RL. The paper makes two main contributions. First,
building on the closed-form solution to trust region policy
optimization, we develop a practical deep RL algorithm that
enables the exploitation of off-policy data for policy optimiza-
tion using trust-region methods. Second, we provide a detailed
implementation of the algorithm for parameterized policies,
such as deep neural networks, based on first-order gradients
that is practical for real-world applications. We evaluate the
proposed algorithm on a variety of Multi-Joint dynamics with
Contact (MuJoCo) robot control tasks, and demonstrate that
it is effective at solving high-dimensional continuous control
tasks, with significant improvements in the final return and
sample efficiency over prior trust-region methods.

This paper is organized as follows. Section II presents the
necessary preliminaries to understand the proposed algorithm.
In Section III, we introduce the proposed algorithm and
provide detailed information on its implementation. Section
IV evaluates the effectiveness of the proposed method through
comparison studies. Finally, we conclude our findings and
discuss potential future work in Section V.

II. PRELIMINARIES
A. Markov Decision Process

In this paper, we model model-free RL as an infinite-horizon
Markov decision process (MDP), defined by (S, A, p, , po,7).
where & is the space of environment state s, A is the space
of agent action a, p: § x Ax & — Ryg is the unknown state
transition density, r : S x A — [Fmin, Tmax| 1S the reward
function bounded by Tmin and Tmax. po : S — Ry is the
distribution of the initial state sg, ~ is the discount factor,
which can take any value in the interval [0, 1).

Denote 7 as the Markov process consisting of the sequence
of states and actions, 7 := (sg, a0, 51,...), and R(7) =
Y reo7're as the discounted return of the trajectory T. A
policy m : & x A — Ry(is a conditional probability
distribution of the action a given the state s, and it is denoted
by m(a|s). The objective of RL is to maximize the expected
discounted return with respect to m:

max J(r) = Ernr [R(7)] (1)

where 7 ~ 7 indicates that the Markov process 7 depends on
the policy =

80 ™~ Po, Gy ~ ‘r’r('|3t)= St41 ™ P('|Ssa&t)-

We also define as follows the state-value function
V?r(s) =Erur [R(T)|SD = 5] 5 (2)

the action-value function (Q-function)

Q‘ﬂ'(s: {1) S EE:‘i"\-".l'i' [R(TNSO T S: ag = (],] T (3)
and the advantage function
A'.IT(S'I lfl) = Q'ﬂ'(sra) _V‘ﬂ'(s): (4)

Also, define the discounted state visitation distribution by
d"(s) = (1 —7)[p5 (s) +7p1(s) +7°p5(s) +---]

- (5)
=(1-7))_~ri(s).

t=0
where pf : & — R>g is probability distribution of the state at
step t under the policy .

B. Trust-Region RL Methods

Trust-region RL methods are a type of policy-based method
that improve stability by restricting the policy search to a local
neighborhood around the most recent update, e.g.:

max J ()
well (6)
st. D(m,mp) <6

where 7 is the most recent update of the policy, D measures
the trust-region distance between 7 and 7y, and d > 0 defines
the size of the trust region.

However, due to the unknown nature of the environment,
we do not have an explicit expression of J(x) in terms of .
This makes solving the constrained optimization problem (6)
a challenging task. However, based on Lemma 6.1 in [29], the
objective function J() can be expressed as a function of mg.:

1
J(?T) — J(?Tk) + mESwd",amﬁ[An (Sv a)]. (?)

Although the distribution d" is unknown, it can be approx-
imated by d™ when they are similar. As a result, trust-
region methods use the following surrogate to approximate
the objective function.

Ly, (7) = J(mx) + %Eswm a~r[Ar(s,a)l. (8)

It is proven that the approximation error between the surrogate
L, (m) and the objective J(m) is bounded by [15]:
| J(m) = L, ()| < C max D [rlm](s),

T2 cmmalAn (s,

Rewriting this inequality provides a lower bound on the
objective:

where C =

J(m) > Ly (w) — Cm;txDKL[rH?Tk](s], (10)

Authorized licensed use limited to: University of Rhode Island. Downloaded on August 15,2023 at 18:36:04 UTC from |IEEE Xplore. Restrictions apply.

Then, we can instead maximize the lower bound to derive a
new policy:

Tr41 = argmax Ly, () — CmngKL[ﬂ”ﬁk](s) =

1
g jEsmdwk v [Ar(s,a)] — Cm;ﬂ(Dy [](s)

(1)

It follows that the new policy guarantees monotonic improve-
ment in performance, ie., J(mpyq) > J(mg).

However, optimizing the lower bound directly can be im-
practical for problems with a high-dimensional state space
because it requires an accurate estimate of the maximal KL
over the state space, max, Dk [m|mx](s). To address this
issue, TRPO [15] approximates the optimization by using
an importance sampling objective with a constraint on the
expected KL:

m(als)
mr(als)
s.t. Begme [Dicp[me||7](s)] < 6.

Aﬂ'k (S:‘ a)

max E.ugmi gom,
™

(12)

To update the policy m using the above method, it is necessary
to collect on-policy samples at every training step k£ from
s ~ d™ which are used to estimate the expectation terms in
the objective and the KL constraint. This makes the method
sample inefficient because it requires massive interactions with
the environment for each policy update.

III. AN OFF-POLICY TRUST-REGION DRL ALGORITHM

In this section, we present an off-policy DRL algorithm
based on trust-region policy optimization methods that is
suitable for practical applications. We begin by introducing
a theoretical result established in [30]. We then propose a
trust-region DRL algorithm that allows us to use parameterized
function approximators in practice. This enables us to exploit
off-policy data, which is more efficient than on-policy data
collection. Finally, we provide a detailed description of the
implementation of this algorithm for parameterized policies.

A. Closed-Form Solution to Trust-Region Policy Optimization

To address the challenge of optimizing the lower bound in
Equation (10), Li et al. [30] proposed a new bound for the
approximation error when v € [0.5,1):

1
|J(7) = L, ()] < mcﬂ'kES’”d’r‘“ [Dxw[7llme](s)] 5

e
where Cﬁ = W, €=]]‘:gli.x |Aﬂ—(5, G)|.
(13)
This bound improves the result of TRPO by establishing a con-
nection between the approximation error and the expected KL-
Divergence Eg.q= [Dky[r||7x](s)]. Using this new bound,
we obtain the following lower bound:
1
J(m) 2 Ly () = 37— CmEonams [Dxv[r|me](s)] -

= (14)

Since the new lower bound does not depend on the maximum
KL compared with (10), it is easier to directly maximize the
lower bound to obtain a new policy:

Tgy1 = argmax L., ()
m

1
- 1 CnBunars Dralalnel ()
(15)

The new policy mgy1 guarantees monotonic improvement in
performance, i.e., J(mgy1) > J(mg). As proven in [30], the
above optimization has a closed-form solution for mg41:

en‘l\'k (E,G-J
,Vs,a

mry1(als) = mp(als) - T (16)
amTge [6 Tl AT]

where ay, (s,a) = Ax,.(s,a)/Cr,.

Compare with the TRPO algorithm in (12), Equation (16)
provides a new policy update method that does not involve
on-policy calculation for the expectation term Eg..g~ [-]. This
enables the development of an off-policy trust-region RL
algorithm, which is presented in the next section.

B. An Off-Policy Trust-Region RL Algorithm

As mentioned in the previous section, the policy mgy1 in
Equation (16) guarantees monotonic improvement. To opti-
mize any arbitrary policy m, we can minimize a loss function
that measures the distance between 7 and mg4q. In our
proposed algorithm, we use the square error loss defined as
follows:

EAWk (s,a)}'cq\-k

i (als) 2 .
m#n// [:rrk(a|s) anm[e’q‘“k(sﬂ)fcwk]] dsda. (17)

However, in continuous control problems, it is not practical
to compute the accurate policy mg(als) and the advantage
function A, (s,a) for all (s, a). Instead, function approxima-
tors are usually used to represent the policy and estimate the
advantage values. Moreover, computing the integral exactly is
also challenging. To address these issues, we derive a practical
algorithm based on the loss function presented earlier.

Specifically, we will consider a parameterized policy
mg(als), and a parameterized Q-function Q4(s,a), and the
parameters of these differentiable approximators are # and ¢,
respectively.

To optimize the policy parameters #, we propose to mini-
mize the following mean square error (MSE) loss:

1 A
.Lr(ﬂ) == EES‘ND‘G"NW&R‘ [(Tg(sh at) - '.-")2] (]8)
where
re(s,a) = m(at|st) s ok (26:8¢)/ T
gy mor(ag|st)’ B [eA“ek (8:,:1:)10‘;8,:] y

The MSE loss (18) aims to minimize the expected square
error between the policy ratio 7y and its target 7 using the most
recent iterate of the policy parameters 8% and a replay buffer D
that stores the past visited states during training. Specifically,
the optimization is carried out over the past visited states s ~
D and the actions following the most recent policy a ~ mgk.

Authorized licensed use limited to: University of Rhode Island. Downloaded on August 15,2023 at 18:36:04 UTC from |IEEE Xplore. Restrictions apply.

It’s worth noting that this policy update using (18) is off-policy,
because it doesn’t require the expectation over the on-policy
states Eggmx [], as is the case with the TRPO algorithm (12).

Gradient decent can be used to minimize the MSE loss. The
gradient of J(#) can be expressed as

7o (ae|st)

Mgk (Gt|5:)

VoJx(6) = Eg o aim,y {(

Mgk (atlst)

_ ._;:) vé"ﬁﬂ(atlst)l] _

At 8 = 8, we have

VoJr(0)|g=g+ = Es,nD g~y [(1—7) Ve log ma(asse)] -
(20)
Since neural networks are powerful and common differen-
tiable function approximators, we will use the terms of policy
network and Q-network to denote the parameterized policy and
the parameterized Q-function. We will update both networks
alternately with mini-batch stochastic gradient descent (SGD)
as the way of training in deep deterministic policy gradient
[3]. In practice, the policy parameters # are optimized with
the mini-batch SGD:

B N
Vo (6)]g—or = EZZ (1—#)Velogma(ar|sy) (21)

b=1n=1
where the target policy ratio 7% is calculated by
Ailcs exP{Airek (SE: a’?)/cﬂ'gk }
n - N .
N Lon=1 [exp{Ar,. (s7,0})/Cr, }]
b

The states si are sampled from the replay buffer D, and
the actions a! are sampled from the most recent policy myx
given s?. Note that obtaining action samples from g« does
not require additional interactions with the environment, and
therefore we can update the policy in an off-policy manner
using (21).

To compute the target policy ratio 72, we need to know
the advantage function A, , (s,a) with respect to the most
recent policy mge. To this end, our algorithm makes use of a
target policy with parameters @ as the most recent iterate 6%.
Based on the definition in Equation (4), we can calculate the
advantage value with the Q-function:

Aﬁg(st, Gz) Zng(St, at) oF Vwrg(-?t)
:Qﬂa—(st: at) —]Ea:fv‘n'a—[Q‘rrF—(st; a)].

Not the advantage function is defined as a function over the
whole state and action space, rather than a specific trajectory.
In our algorithm, we estimate the advantage function by
randomly sampling state s; from a buffer and taking actions
by following the policy 5. Therefore, the sampled values
do not necessarily belong to the same trajectory. In practice,
the advantage function is estimated by using the Q-network
Q4(s¢,as) as follows:

(22)

(23)

Aﬂ—F(St, at) (24)

Q:;S St, ﬂt

Z [Qﬁb Sty at

where the state are sampled accordmg to s ~ D and the
actions are sampled according to af ~ .

The Q-network is trained to minimize the mean square
Bellman error as follows:

1 A 2
JQ(¢) = §E(st,aL)~D [(Qq&(st, Gt) - Q(St, ﬂt))] (25)

where the targe Q-value is

Q(st,a¢) =1 + 1B [Qo(se41,aes1)] , Gey1 ~ mp. (26)

In our algorithm, the Q-network is optimized with the mini-
batch SGD

B

Z VsQo(st,a) - (Qu(st,ab)- o

'rg - 7Q§(S:+1: ag.l,_])):

Vedo(d)

where B is the batch size, s}, al, r}, and s?,; are sampled

from a reply buffer D, and a?,, is sampled from mg. The
update makes use of a target Q-function to compute the
Bellman error, and the parameters ¢ of the target Q-function
are obtained as a moving average of the SGD iterates of
the Q-function parameters, which has been shown to help
stabilize Q-function learning [5]. The update also makes use
of two Q-functions to mitigate overestimated value estimates,
as proposed in [31]. Specifically, we construct two Q-networks
with parameters ¢;,7 = 1,2, which are trained independently
using the mini-batch SGD in Eq. (27). We also obtain two
target Q-functions with ¢;,# = 1,2 using Polyak moving
averages of the SGD updates of ¢;,7 = 1,2. Then, we use
the minimum of the target Q-functions as the target Q-value
in Eq. (27).

To compute the target policy ratio 72, we also need the
value of Cr_. (note # = 6%), which requires the exact
value of maxg g |Ar(s,a)|. Computing the exact value of
max, g |An;(s,a)| can be challenging for high-dimensional,
continuous problems. Besides, if we used the coefficient C,TF
recommended by the theory in (13), the step sizes would be
very small. In our algorithm, we approximate it using a sliding
window maximum of sampled estimates with a window size

Cry = max{Ck_w, - - -, Ck—1, O} (28)
where

Ve
Crw = Wv € :max“A?rgk —w (shat)|, ¥b,n}. (29)

The policy parameters are updated by applying 8 :=
6 — AxVgJr(6), and the target policy parameters are then
completely replaced with the most recent iterate of the policy
parameters, ie. 8 := 6.

To ensure bounded actions, a squashed Gaussian is used as
the policy distribution, as proposed in [27]. In particular, let
u be a multivariate random variable following the diagonal
gaussian distribution p(u|s). Then, the action a is a function
of u:

a=1+""Ltanh(u) +1) (30)

Authorized licensed use limited to: University of Rhode Island. Downloaded on August 15,2023 at 18:36:04 UTC from |IEEE Xplore. Restrictions apply.

Algorithm 1 An Off-policy Trust-Region DRL Algorithm

Input: Initial parameters 6, 0, ¢1, d2, 1, do:
for k=0,1,2,... do
for each environment step do
as ~ ma(+|st):
Sgp1 ™ P(‘|St, C&t);
D+ DU {St, g, T, St-l—l}:u
end for
for each gradient step do
01 0 — AV, Jq(9i),1 € {1,2}
b; B + (1 — B)ohi,i € {1,2};
0+ 08— A Vo Jr(0);
0« 6;
end for
end for

where tanh is applied elementwise; [and h are the lower
and upper bound of the action a. Based on distribution
function technique, the action distribution can be calculated

1
by m(a|s) = ,u(a|s)|det (%)‘ . Then, we can calculate the
log-likelihood of action a by

|A|

log 7(a|s) = log p(als) — Z log (1 o ta:nhz(ug))

i=1

_Elog (hi 2—%)

where h;, l;, u; are the ith elements of h, I, u, respectively.
The algorithm is summarized in 1.

(31)

IV. EXPERIMENTS

We evaluate the effectiveness of the proposed method on
a range of high-dimensional, continuous robot control tasks
using the MuJoCo simulator [32], which is interfaced through
the OpenAl Gym environment [33]. Our aim is to compare the
proposed method with prior trust-region-based DRL methods
and state-of-the-art off-policy algorithms in terms of their
performance and sample efficiency.

A. Setup

We use six robotic locomotion tasks from the MuJoCo
simulator as benchmarks for our experiments. These tasks
include (a) Swimmer-v3, (b) Hopper-v3, (c) Walker2D-v3,
(d) HalfCheetah-v3, (e) Ant-v3, and (f) Humanoid-v3, as
illustrated in Fig. 1. The state and action spaces for these
tasks are continuous and have varying dimensions, ranging
from 8 states and 2 actions (Swimmer-v3) to 376 states
and 17 actions (Humanoid-v3). While some tasks with low-
dimensional state and action spaces are easier to solve, high-
dimensional benchmarks such as Humanoid-v3 are extremely
challenging for prior trust-region deep reinforcement learning
algorithms.

To demonstrate the effectiveness of our proposed algorithm,
we compare it with three trust-region deep reinforcement

(a) Swimmer-v3 (b) Hopper-v3 (¢) Walker2D-v3

(d) HalfCheetah-v3

(e) Ant-v3 (f) Humanoid-v3

Fig. 1. Six representative MuJoCo robot control tasks [32] used in our
evaluation.

learning (DRL) methods: (1) trust-region policy optimization
(TRPO) [15], an on-policy algorithm that uses second-order
gradients and a line search procedure for policy parameter up-
dates; (2) proximal policy optimization (PPO) [16], a variant of
TRPO that uses first-order gradients and policy ratio clipping;
and (3) trust region path consistency learning (Trust-PCL)
[18], an off-policy trust-region algorithm that has shown better
performance and efficiency than TRPO. We also compare
our proposed algorithm with two off-policy DRL algorithms:
(1) deep deterministic policy gradient (DDPG) [3], which
learns a deterministic policy for continuous control tasks,
and (2) soft actor-critic (SAC) [27], a state-of-the-art DRL
algorithm based on maximum entropy policy optimization. We
implemented the TRPO, PPO, DDPG, and SAC algorithms
using the OpenAl Spinning Up module [34]. For Trust-PCL,
we used the implementation provided by the authors in their
paper [18].

In our study, we use a feedforward neural network with
two hidden layers of 256 ReLU units to parameterize the
policy, which is the same across our method and the baseline
algorithms. The value network (for TRPO, PPO, Trust-PCL)
and the Q-network (for DDPG, SAC, and our method) share
the same architecture in the hidden layers, but differ in the
dimensions of the inputs and outputs. We implement our
method and the baseline algorithms using TensorFlow [35]. We
train the policy for 3 million environment steps and evaluate
it after every 2000 steps by running 10 episodes and selecting
the mean of the policy distribution as the agent’s action for
optimal performance. The hyperparameters of our method are
summarized in Table L

B. Comparison With Prior Trust-Region methods

The learning curves of the proposed algorithm are compared
to those of prior trust-region DRL methods on six repre-
sentative MuJoCo continuous control tasks. The solid curves
represent the mean performance of different algorithms over

Authorized licensed use limited to: University of Rhode Island. Downloaded on August 15,2023 at 18:36:04 UTC from |IEEE Xplore. Restrictions apply.

b 3500 ik
125
3000 i
1004
E £ 2500 e
1 5 3 4000
T 759 i 0
e = 2000 =
u o
g S0 % E 3000
] % 3 1500
= / = =
S QP [« = 2000
1000
o
o] 1000
—25
0 o
=50 T T T T T T T T T T T T T T T
o 0.5 1 15 2 25 3 o 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 25 3
Total Environment Interactions (million steps) Total Environment Interactions (million steps) Total Environment Interactions (million stepsh
(a) Swimmer-v3 (b) Hopper-v3 (c) Walker2D-v3
6000
6000 - — TRPO
12500
5000
10000 4000 -
2000
E 7500 §
g 2000 z siio]
%‘ 5000 E‘.
2 2500 - e Z 2000
N Ml A 1 -
VLY AT e
0 \/ v | | " ' .fl -
y , " 2000 |'._?._' h 1000
W'
-2500/ g ——— ———
o
T T T T T T T T T T if ¥ .. T S
0.5 1 1.5 2 2.5 0,5 1 L5] 2.5 0.5 1 1.5 2 2.5

Total Environment Interactions {milllan steps)

(d) HalfCheetah-v3

Total Envirenment Interactions (million steps)

(e) Ant-v3

Total Environmaent Interactions (milllen steps)

(f) Humanoid-v3

Fig. 2. Learning curves of the proposed algorithm in contrast to prior trust-region DRL methods on six representative MuJoCo continuous control tasks. The
solid curves represent the mean performance of different algorithms over five random seeds, and the shaded areas correspond to the 95% confidence intervals.

TABLE 1
PARAMETERS OF THE PROPOSED OFF-POLICY TRUST-REGION DEEP
REINFORCEMENT LEARNING ALGORITHM.

Hyperparameter Value
optimizer Adam [36]
learning rate Ax 0.001
learning rate Ag 0.001
discount factor 7y 0.99
replay buffer size |D| 108

number of hidden layers (all networks) 2

number of units per hidden layer 256
activation function RelLU

batch size B 256

number of action samples per state N 50
Polyak coefficient 3 0.995

Sliding window size for estimating C'r, 200

five random seeds, and the shaded areas correspond to the 95%
confidence intervals.

The comparison results reveal that the proposed algorithm
significantly outperforms the baseline trust-region methods in
terms of both the final average return and sample efficiency
on all six tasks. Specifically, the proposed algorithm achieves
much higher final average returns than the baseline methods
on all tasks, indicating that it can learn more effective policies.
Additionally, the proposed algorithm requires fewer samples
to achieve comparable performance to the baseline methods,
demonstrating its superior sample efficiency. One possible

reason for the superior performance of the proposed algorithm
is that it is derived directly from a novel theory that guarantees
monotonic improvement guarantee, allowing it to discover
better policies. On the easier tasks, Swimmer-v3 and Hopper-
v3, TRPO learns a relatively good policy but fails to do
so on the harder tasks, such as HalfCheetah, Ant-v3, and
Humanoid-v3. Although Trust-PCL performs slightly better
than TRPO and PPO on more high-dimensional tasks, i.e.,
HalfCheetah and Ant-v3, it fails to solve these tasks and can
merely learn sub-optimal policies. On the most complex task,
Humanoid-v3, all benchmark trust-region methods fail to make
any progress, indicating that it is a particularly challenging
task that requires new and innovative approaches. Overall, the
proposed algorithm shows great potential for solving high-
dimensional, continuous control problems, especially those
that are difficult for traditional trust-region methods.

C. Comparison With Other Off-Policy methods

Figure 3 shows the learning curves our proposed algorithm
and two different off-policy DRL algorithms, DDPG and SAC.
The comparison indicates that our method achieves similar
performance to the state-of-the-art SAC algorithm on most
tasks, except for Swimmer-v3, where SAC fails to learn an ef-
fective control policy. Moreover, our method significantly out-
performs DDPG on Hopper-v3, Walker2D-v3, and Humanoid-
v3, and performs similarly to DDPG on other tasks. It’s worth
noting that the learning curve for the Ant-v3 environment has
a higher variance than the others, which may be due to the

Authorized licensed use limited to: University of Rhode Island. Downloaded on August 15,2023 at 18:36:04 UTC from IEEE Xplore. Restrictions apply.

180+
e 5SS 3500 - 6000
e 1 [P prspem—s
1404 ¢ ..W—"W"ﬂ f "“"f\]p"l | oV 3000 4
| (] | il u T ﬁ |"||[r||ma 5000
£ 120 ! I £ 2500 1 £
2 2 3 4000
= 100 = 3000 TR T | R e it o=
g g I | A A YW M "r'u!ln B LA | 8 000
£ oo S usoo | NNV T W UMY YT WEAWYE R | €
: S 114 i ki B
i I LA} Y 20004
" 1woo 4 | '
40+ S5i 1000
20 o4 o
T 7 T) y T T T T T T T T T T
0.5 1 1.5 2 2.5 o5 1 15 2 25 05 1 1.5 2 25

Taotal Environment Interactions (milllan steps)

(a) Swimmer-v3

Total Environment Interactions {milkon steps)

(b) Hopper-v3

Total Envirenment Interactions {million steps)

(c) Walker2D-v3

15000 50004

12500
4000 1
10000

a0 2000

Average Return
Average Heturmn

o]
o a
-] 2
=] o
| |

syl Mll

— BAC
— DbDPG
— Proposed

Average Return

o oot

T T T T T T T
0.5 1 15 2 2.5 o 0.5 1

Total Environment Interactions (million steps)

(d) HalfC heetah-v3

15 2 2.5
Total Environment Interactions (million steps)

(e) Ant-v3

T T T
1.5 2 2.5

T T
0.5 1
Tetal Environment Interactions (milllen steps)

(f) Humanoid-v3

Fig. 3. Learning curves of the proposed algorithm in contrast to other off-policy DRL methods on six representative MuJoCo continuous control tasks. The
solid curves represent the mean performance of different algorithms over five random seeds, and the shaded areas correspond to 95% confidence intervals.

high dimensionality of the state space, making the learning
process more challenging. These results demonstrate that our
trust-region method achieves excellent performance in terms
of both final return and sample efficiency, compared to prior
off-policy algorithms.

V. CONCLUSIONS

In this work, we presented an off-policy trust-region re-
inforcement learning algorithm that offers a sample-efficient
approach for learning deep neural network policies while
retaining the stability of trust-region methods. Our empirical
results on a set of MuJoCo continuous control tasks demon-
strate that our proposed approach outperforms prior trust-
region deep RL algorithms such as TRPO, PPO, and Trust-
PCL in terms of both the final return and sample efficiency.
Moreover, we found that our approach achieves comparable
performance to SAC, a state-of-the-art off-policy algorithm,
while outperforming DDPG on most tasks. Our findings
suggest that trust-region methods can be not only effective
for stabilizing policy optimization but also sample efficient in
learning high-quality policies for complex continuous control
tasks. Overall, our proposed approach offers a promising
direction for future research in deep RL algorithms.

REFERENCES
[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,

D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through

deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529-533.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den

Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-

tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,

T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,

“Mastering the game of Go with deep neural networks and tree search,”

Nature, vol. 529, no. 7587, pp. 484-489, Jan 2016.

T. P. Lillicrap, I. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,

D. Silver, and D. Wierstra, “Continuous control with deep reinforce-

ment learning,” in Proceedings of the 4th International Conference on

Learning Representations, San Juan, Puerto Rico, May 2-4 2016.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp- 436-444, 2015.

[5] H.v. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with
double g-learning,” in Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence. AAAI Press, 2016, pp. 2094-2100.

[6] R. J. Williams, “Simple statistical gradient-following algorithms for

connectionist reinforcement learning,” Machine Learning, vol. 8, p.

229-256, May 1992.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient

methods for reinforcement learning with function approximation,” in

Proceedings of the 12th International Conference on Neural Information

Processing Systems, 1999, pp. 1057-1063.

T. Degris, M. White, and R. S. Sutton, “Off-policy actor-critic,” in

Proceedings of the 29th International Coference on International Con-

ference on Machine Learning. Madison, WI, USA: Omnipress, 2012,

pp. 179-186.

[9] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” in Advances in
Neural Information Processing Systems, vol. 12. MIT Press, 1999, pp.
1008-1014.

[10] X. Zhong and H. He, “A reinforcement learning-based control approach
for unknown nonlinear systems with persistent adversarial inputs,” in
2021 International Joint Conference on Neural Networks (IJCNN), 2021,
pp. 1-8.

[11] Z. Ni, N. Malla, and X. Zhong, “Towards enabling deep leamning

121

131

71

18]

Authorized licensed use limited to: University of Rhode Island. Downloaded on August 15,2023 at 18:36:04 UTC from IEEE Xplore. Restrictions apply.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

techniques for adaptive dynamic programming,” in 2017 International
Joint Conference on Neural Networks (IJCNN), 2017, pp. 2828-2835.

Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Bench-
marking deep reinforcement learning for continuous control,” in Pro-
ceedings of the 33rd International Conference on International Confer-
ence on Machine Learning, vol. 48, 2016, pp. 1329-1338.

P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and
D. Meger, “Deep reinforcement learning that matters,” 2017. [Online].
Available: https://arxiv.org/abs/1709.06560

S. Kakade, “A natural policy gradient,” in Proceedings of the 14th
International Conference on Neural Information Processing Systems:
Natural and Synthetic, Vancouver, British Columbia, Canada, 2001, pp.
1531-1538.

J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel, “Trust
region policy optimization,” in Proceedings of the 32nd International
Conference on International Conference on Machine Learning, vol. 37,
Lille, France, 2015, pp. 1889-1897.

J. Schulman, F. Wolski, P Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017. [Online]. Available:
https:/farxiv.org/abs/1707.06347

E. Otto, P. Becker, V. A. Ngo, H. C. M. Ziesche, and G. Neumann,
“Differentiable trust region layers for deep reinforcement learning,” in
Proceedings of the 9th International Conference on Learning Represen-
tations, ser. ICLR’21, May 3-7 2021.

0. Nachum, M. Norouzi, K. Xu, and D. Schuurmans, “Trust-PCL: An
off-policy trust region method for continuous control,” in Proceedings
of the 6th International Conference on Learning Representations, ser.
ICLR’18, Vancouver, Canada, Apr 30 - May 3 2018.

S. Levine, “Reinforcement learning and control as probabilistic
inference: Tutorial and review,” 2018. [Online]. Available:
https://arxiv.org/abs/1805.00909

A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess, and
M. Riedmiller, “Maximum a posteriori policy optimisation,” in Proceed-
ings of the 6th International Conference on Learning Representations,
ser. ICLR’18, Vancouver, Canada, Apr 30 - May 3 2018.

W. Meng, Q. Zheng, Y. Shi, and G. Pan, “An off-policy trust region
policy optimization method with monotonic improvement guarantee for
deep reinforcement learning,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 33, no. 5, pp. 2223-2235, 2022.

M. Tomar, L. Shani, Y. Efroni, and M. Ghavamzadeh,
“Mirror descent policy optimization,” 2020. [Online]. Available:
https:/arxiv.org/abs/2005.09814

S. Vaswani, O. Bachem, S. Totaro, R. Muller, S. Garg, M. Geist, M. C.
Machado, P. S. Castro, and N. L. Roux, “A general class of surrogate
functions for stable and efficient reinforcement learning,” in AISTATS,
2022, pp. 8619-8649.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in Proceedings of the 31st
International Conference on Machine Learning, vol. 32, Bejing, China,
22-24 Jun 2014, pp. 387-395.

B. D. Ziebart, “Modeling purposeful adaptive behavior with the principle
of maximum causal entropy,” Ph.D. dissertation, Pittsburgh, PA, USA,
2010, camegie Mellon University.

T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learning
with deep energy-based policies,” in Proceedings of the 34th Interna-
tional Conference on Machine Learning, vol. 70, 2017, pp. 1352-1361.
T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Proceedings of the 35th International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, vol. 80.
PMLR, 10-15 Jul 2018, pp. 1861-1870.

L. Shi, 8. Li, Q. Zheng, L. Cao, L. Yang, and G. Pan, “Maximum entropy
reinforcement learning with evolution strategies,” in 2020 International
Joint Conference on Neural Networks (IJCNN), 2020, pp. 1-8.

S. Kakade and J. Langford, “Approximately optimal approximate rein-
forcement learning,” in Proceedings of the 19th International Conference
on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2002, p. 267-274.

H. Li, N. Clavette, and H. He, “An analytical update rule for general pol-
icy optimization,” in Proceedings of the 39th International Conference
on Machine Learning, ser. Proceedings of Machine Learning Research,
vol. 162. PMLR, 17-23 Jul 2022, pp. 12696-12716.

[31]

[32]

[33]

[34]
[35]

[36]

X. Li, W. Yang, J. Liang, Z. Zhang, and M. L. Jordan, “Polyak-ruppert-
averaged g-learning is statistically efficient,” 2021. [Online]. Available:
https:/farxiv.org/abs/2112.14582

E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026-5033.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

1. Achiam, “Spinning Up in Deep Reinforcement Learning,” 2018.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A
system for large-scale machine learning,” 2016. [Online]. Available:
https://arxiv.org/abs/1605.08695

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014. [Online]. Available: https://arxiv.org/abs/1412.6980

Authorized licensed use limited to: University of Rhode Island. Downloaded on August 15,2023 at 18:36:04 UTC from |IEEE Xplore. Restrictions apply.

