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Abstract

Many real-world scenarios in which DNN-based recog-
nition systems are deployed have inherently fine-grained
attributes (e.g., bird-species recognition, medical image
classification). In addition to achieving reliable accuracy,
a critical subtask for these models is to detect Out-of-
distribution (OOD) inputs. Given the nature of the de-
ployment environment, one may expect such OOD inputs to
also be fine-grained w.r.t. the known classes (e.g., a novel
bird species), which are thus extremely difficult to iden-
tify. Unfortunately, OOD detection in fine-grained scenar-
ios remains largely underexplored. In this work, we aim to
fill this gap by first carefully constructing four large-scale
fine-grained test environments, in which existing methods
are shown to have difficulties. Particularly, we find that
even explicitly incorporating a diverse set of auxiliary out-
lier data during training does not provide sufficient cover-
age over the broad region where fine-grained OOD sam-
ples locate. We then propose Mixture Outlier Exposure
(MixOE), which mixes ID data and training outliers to
expand the coverage of different OOD granularities, and
trains the model such that the prediction confidence lin-
early decays as the input transitions from ID to OOD. Ex-
tensive experiments and analyses demonstrate the effec-
tiveness of MixOE for building up OOD detector in fine-
grained environments. The code is available at https:
//github.com/zjysteven/MixOE.

1. Introduction

Real-world scenarios in which DNN recognition systems

are deployed are often fine-grained in nature, wherein the

data coming from such environments share a high level of

semantic/visual similarity. Examples include fine-grained

visual classification [49, 13, 46], medical image classifica-

tion [23, 7], and remote sensing applications [50, 45, 44].

In addition to achieving accurate classification, a critical

problem for DNN models is to identify out-of-distribution

(OOD) samples during inference time which do not belong

to one of the DNN’s known classes. Such detection is cru-

cial for building safe and reliable intelligent systems that

operate in the open world. However, we posit that OOD

detection is particularly challenging in fine-grained scenar-

ios because one may expect the OOD inputs to be highly

granular w.r.t. the in-distribution (ID) data (e.g., novel bird

species to a bird classifier), given the nature of the deploy-

ment environment. Such fine-grained OOD samples can

make detection much difficult because they may use very

similar feature sets to the ID data [16].

Unfortunately, despite being inherently motivated

by many real-world scenarios, OOD detection in
fine-grained environments remains largely underex-
plored/underconsidered in current research. This in part

has to do with (overly) simplistic [1, 37] and coarse-grained

benchmarks that are currently being used to evaluate

OOD detection methods [25, 22, 36, 26, 14, 43, 38] (e.g.,
CIFAR-10/100 v.s. SVHN/LSUN). An illustrative compar-

ison between OOD detection in fine- and coarse-grained

environments is shown in Fig. 1. A few recent works

[31, 1, 39] did consider fine-grained settings but did not
carefully/thoroughly investigate why and how they are

difficult. Besides, these works either operated at a rather

limited scale, i.e., very few ID classes were considered

[1, 39], or made unrealistic practices such as training on a

labeled outlier dataset that overlaps with testing OOD data

distribution [31].

In this work, our goal is to fill the gap and present (to
our knowledge) the first study that specifically targets OOD
detection in fine-grained environments. We start by build-

ing four large-scale, fine-grained test environments to ap-

proximate real-world scenarios (Sec. 3). We find that sev-

eral state-of-the-art OOD detection methods struggle to de-

tect fine-grained novelties, which highlights the challeng-

ing nature of OOD detection in fine-grained settings. Then,

through analysis we identify that fine-grained OOD sam-

ples span a much broader region and are closer to the ID

clusters in the DNN’s feature space (Sec. 4.1). In addition,

we find that including a large/diverse set of outlier data dur-
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Figure 1. Left: A comparison of OOD detection in coarse- and fine-grained environments. Intuitively, fine-grained detection is much more

challenging. Right: A conceptual illustration of MixOE. A Standard model with no OOD considerations tends to be over-confident on

OOD samples. OE is able to calibrate the prediction confidence on coarse-grained OOD, but the outputs on fine-grained OOD are not

explicitly controlled (marked by “?”). MixOE aims for a smooth decay of the confidence as the inputs transition from ID to OOD, and thus

enables detection of both coarse/fine-grained OOD.

ing training [12, 2, 26] does not help cover the area where

fine-grained OOD data locate.

Finally, we design a novel training algorithm named

Mixture Outlier Exposure (MixOE) to address the observed

issue in fine-grained OOD detection (Sec. 4.2). Specif-

ically, we propose to perform mixing operations (in this

work we adopt Mixup [48] or CutMix [47]) between ID

data and outlier data to get “virtual” outlier samples which

can be both near to and far away from the ID clusters. The

model is then trained such that the prediction confidence lin-

early decays as the input transitions from ID to OOD (see

Fig. 1 for illustration). As such, MixOE induces regulariza-

tion over a larger OOD region and has clear implications for

both coarse- and fine-grained OOD samples. Experimen-

tal results on the four test benches show that a simple fine-

tuning with MixOE can lead to consistently higher or com-

petitive detection rates against both coarse- and fine-grained

OOD data (Sec. 5). We also conduct careful ablation study

to further understand why and how MixOE works. Our con-

tributions are summarized as follows:

• We construct four large-scale test environments for

fine-grained OOD detection, which can be easily gen-

erated from existing public datasets and facilitate fu-

ture studies;

• We propose MixOE, a novel OOD detection method-

ology that has effect across a spectrum of OOD granu-

larities;

• We show that MixOE leads to notable improvements

on all four benchmarks, in particular against fine-

grained OOD where few current methods have any im-

pacts.

2. Related work
OOD detection approaches. Many popular works in OOD

detection research use a pre-trained DNN classifier as a base

model, and design an OOD scoring mechanism that lever-

ages some signal from this model. Several methods utilize

the output space of the classifier, e.g., MSP [12], ODIN

[25], and Energy [26], while other works such as Maha-

lanobis detector [22] and Gram Matrices [36] focus on the

intermediate feature space of DNNs. Recent works also

start to explore the potential of gradient information [15].

Another line of research modifies the base DNN’s train-

ing phase to enable better detection. Lee et al. [21] pro-

posed to synthesize OOD samples with a GAN [32] and

force the classifier to be less confident on the generated

OOD data. Hendrycks et al. [12] later showed that a diverse

and realistic outlier distribution is more proficient than syn-

thetic samples at encouraging low confidence predictions

on unseen OOD data. More recently there comes the idea

of VOS [6], which does not use real data but generates vir-

tual outliers by sampling from class-conditional Gaussian

distribution. However, the assumption that ID data follow

class-conditional Gaussian may not hold especially when

the number of classes is large, and VOS has shown to even

have trouble scaling to CIFAR-100 [18]. To conclude, in-

corporating auxiliary outlier data in training is still one of

the most effective methods to date [12, 2, 26].

Our work is most closely related to [12] in that we too

use unlabeled auxiliary outlier data. However, our method

uniquely formulates the learning procedure that has explicit

consideration of operating in a fine-grained setting where

highly granular OOD inputs are expected. We also remark

that the above works all consider relatively coarse-grained

settings in their experiments.

Mixing operations for OOD detection. Our work also re-

lates to, but differs significantly from a few works that uti-

lized mixing operations in the context of OOD detection.

The work of [40] and [4] both directly evaluated Mixup’s

effect on OOD detection. In this work, instead of plainly

applying Mixup or CutMix as a regular ID training strategy,

we leverage them to construct the virtual outlier distribu-
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tion to expand the coverage over OOD region. Ravikumar et
al. [33] proposed to apply Mixup either between ID samples

or between the training outliers. In contrast, in our frame-

work the mixing operations are performed between ID and

outlier data, which has explicit implication in characteriz-

ing the transition from ID to OOD region. In Sec. 5.3,

we will demonstrate the superiority of the proposed MixOE

over these methods through careful ablation study.

OOD detection in fine-grained settings. As aforemen-

tioned, there are a few works that lightly considered OOD

detection in fine-grained environments, yet they all have

significant limitations. In the work of [31], a labeled outlier

dataset was used for training, which we believe is a pro-

hibitive assumption in reality. Even more concerning, in

its experiments the training outlier dataset (ImageNet [5])

overlapped with the testing OOD data (CUB [42] and Stan-

ford Dogs [19]), which makes the detection (arguably) triv-

ial. The work of [1] and [39] are limited in that the scale

of the fine-grained detection problems in their experiments

is rather small, i.e., only tens of or even fewer ID classes

were considered, whereas we operate at a much larger scale

with hundreds of ID classes. Later, we will also show that

the method studied in [1] is not yet effective for detecting

fine-grained OOD examples.

We also notice some recent works that purposefully con-

sider cases where the test OOD samples are semantically

related to the ID classes [43, 17]. The critical difference

here is that they did not consider the ID classes to be gran-

ular. We argue that without such ID granularity, it may be

debatable whether a model should be asked to detect gran-

ular OOD samples! For example, consider an experiment

in [43] that regards “leopard” (in CIFAR-100) as a gran-

ular OOD sample for a CIFAR-10 model (which contains

a “cat” class). This situation begs the question: given a

model trained on cats, is it more desirable to generalize to

the notion of a leopard1, or to identify leopards as OOD? In

our work, since we consider ID classes that are themselves

highly granular (e.g., unique bird species), such ambiguity

is avoided and the fine-grained novelties (e.g., novel bird

species) should be considered OOD.

3. Challenges of OOD detection in fine-grained
settings

This section describes a detailed study on OOD detec-

tion in fine-grained settings and serves to further motivate

our goal of improving detection explicitly in fine-grained

scenarios. In Sec. 3.1 we describe the construction of the

four fine-grained test environments, which is necessary be-

cause those presented in prior works are limited in scale.

In Sec. 3.2, through initial evaluations we show that fine-

1This is actually the desired behaviour in the problem of subpopulation

shift robustness [35].

Table 1. Comparison of constructed fine-grained OOD settings.

For example, in our third test environment there are 150 ID and

46 (fine-grained) OOD categories. We consider a larger scale than

previous works.

# ID classes # OOD classes

[31] [100, 60] [100, 60]

[1] [11, 9, 8, 7, 7] [1, 1, 1, 1, 1]

[39] [46, 20] [47, 5]

Ours [200, 150, 150, 90] [55, 50, 46, 12]

grained OOD detection presents distinct challenges for ex-

isting methods.

3.1. Test environments

The test environments are curated from four public

fine-grained visual classification (FGVC) datasets, namely

FGVC-Aircraft [28], Stanford Cars [20], Butterfly [3], and

North American Birds [41]. We refer to them as Aircraft ,
Car , Butterfly , and Bird , respectively. For each dataset,

we create ID/OOD splits using a holdout class method, i.e.,
we keep some of the categories as ID and the rest are held

out from the training set and considered OOD at test time.

Note, to avoid implicit bias that might exist in each single

split [1], we randomly produce three ID/OOD splits for each

dataset with equal counts of ID/OOD categories. See Ap-

pendix A for more details including exact splits and number

of train/test images.

In Tab. 1 we present a comparison between our con-

structed environments and previous ones. By considering

100+ ID classes we are operating at a larger scale which

better represents a wide variety of complex real-world tasks

and avoids putting any restrictive assumptions about the

complexity of the ID classification task that would make

our findings less scalable. We also leave a reasonable num-

ber of classes as OOD to reflect the diversity of the open

world.

Besides fine-grained novel inputs, a reliable detector

should also be able to identify coarse-grained OOD data.

Here, for each dataset, we take the images from the other

datasets as coarse-grained OOD samples (e.g., when Bird is

ID, Butterfly , Car , and Aircraft will be considered OOD).

The detection performance is then evaluated against both

fine- and coarse-grained novelties.

3.2. Evaluating existing methods

Setup. We now evaluate six state-of-the-art detectors in

the constructed fine-grained environments, including three

post-training scorers2 (MSP [11], ODIN [25], and Energy

[26]) and three that incorporate training-time regulariza-

tions using auxiliary outlier data (OE [12], OE with hard

2We also evaluated Mahalanobis detector [22] but simply got NaN er-

ror, which aligns with [10]’s finding that it has scalability issue.
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Figure 2. TNR95 of existing methods against coarse-grained (first

row) and fine-grained OOD data (second row). The gray dashed

line is the baseline performance (MSP). Fine-grained novelties are

significantly harder to detect in all datasets for all methods. Also

note how the methods that utilize outlier data (coral ones) help

with coarse-grained OOD but barely improve fine-grained detec-

tion rates.

example mining (OE-M) [2], and EnergyOE [26]). In addi-

tion, we consider the method Rotation [1] which was stud-

ied in a related work that mentioned fine-grained detection.

We leave implementation details of the detection methods

to Sec. 5.1 and Appendix B.

To measure detector performance, we use two common

metrics [22, 21, 14]: true negative rate at a 95% true positive

rate (TNR95) and area under the receiver operating charac-

teristic curve (AUROC). While AUROC is a holistic mea-

surement obtained by varying the threshold, TNR95 indi-

cates what portion of OOD samples could be detected when

the recall of ID data is 95%. TNR95 is known to better sep-

arate different detectors since achieving a high TNR95 is

much harder than achieving a high AUROC [14].

Observations. Fig. 2 shows the TNR95 results on one of

the three splits in each dataset (other splits present simi-

lar patterns; see Appendix E Fig. 7). Also see the full re-

sult table including AUROC statistics in Appendix E Tab.

6. From these results we make two important observations.

First, fine-grained OOD samples are significantly more dif-

ficult to detect than coarse-grained ones. Specifically, while

most methods can achieve more than around 80% TNR95

when detecting coarse-grained OOD samples (Fig. 2 first

row), the TNR95 drops to below 30% for all methods on 3

of the 4 datasets when facing fine-grained OOD (Fig. 2 sec-

ond row). This observation is in line with recent findings

that detection becomes more challenging when OOD data

are semantically similar to ID classes [14, 43, 17].

Our second observation is more surprising: on the hold-

out fine-grained data, even the methods that explicitly in-

clude outlier data during the training (OE, OE-M, and En-

ergyOE) do not reliably outperform MSP, which trains the

model using ID data only. This finding directly contrasts the

results on coarse-grained data, where OE/OE-M/EnergyOE

consistently lead to improvements (compared with MSP).

In all, these trends clearly demonstrate that OOD detection

in fine-grained settings with highly granular OOD inputs is

particularly challenging for existing detectors.

4. Methodology

4.1. Motivating analysis

An immediate question that arises from our initial results

is why using auxiliary outlier data to explicitly regularize
the model helps with detecting coarse-grained OOD sam-
ples but not fine-grained ones? In fact, the training outlier

data we use do not characterize/model the test coarse- or

fine-grained OOD at all (see Fig. 3; we manually ensure

this via filtering as discussed in Sec. 5.1). Next, we conduct

analysis to provide an explanation to this question, which

also directly motivates our methodology.

The idea of our analysis is to reveal the relationship be-

tween the training outliers and test OOD samples by pro-

jecting them into the DNN’s feature space. Specifically,

we forward pass the train/test OOD data into a “standard”

pre-trained model, take the outputs of the penultimate layer

as their features, and visualize them in a 2D space using

the technique in [30] (see Appendix C for details). Crit-

ically, the visualization process is uniquely formed by ID

data and thus remains agnostic to OOD data. The stan-

dard model here is trained using cross-entropy loss on ID

data only. Since OE-based methods typically fine-tune the

standard model using the outlier data [12, 26, 2], by visu-

alizing in the standard model’s feature space we can antic-

ipate/explain how the training outliers may help regularize

the model.

Fig. 3 shows the results on one of the test benches (see

Appendix E Fig. 12-15 for more), from which we make

two key observations. First, as shown in Fig. 3 (b), coarse-

grained OOD data locate in a rather compact region, with

a small portion of samples intersecting with one of the ID

clusters and others being relatively far away from the ID re-

gion. According to Fig. 3 (c), however, fine-grained OOD

samples span a much broader area, with many of them be-

ing very close to or even within the ID clusters, due to their

semantic similarity to the ID images. This observation re-

inforces the TNR95 detection results in Fig. 2, where fine-

grained novelties are significantly more difficult to detect

than coarse-grained ones.

Second, comparing Fig. 3 (d) and (b), the auxiliary out-

lier data “enclose” the coarse OOD data region. As a result,

although the outliers do not have any concepts related to the

test coarse OOD samples (i.e., no cars/butterflies/aircrafts in

Fig. 3 (d) second row), their regularization still generalize

to the test coarse OOD inputs. On the other hand, clearly

the training outliers fail to cover the larger area where many

fine-grained OOD data locate, which explains why meth-

ods utilizing the outlier data have limited effect in detecting

fine-grained novelties.
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Figure 3. Visualization of the data samples (second row) and their representations in the DNN’s feature space (first row). The color lightness

in (d)/(e) indicates the prediction confidence encoded in the soft target of each corresponding outlier sample. Note, (b) and (c) are test

OOD samples and are never seen during the training. The empirical training outliers (d) enclose the region where coarse OOD data (b)

locate but does not cover the much broader area the fine OOD samples (c) span. MixOE mixes the ID (a) and training outliers (d) to induce

larger coverage which accounts for both coarse- and fine-grained novelties. Moreover, the soft targets of the mixed data will calibrate the

model’s prediction confidence to smoothly decay from ID to OOD.

4.2. Mixture Outlier Exposure

To explicitly regularize the model’s behaviour in a

broader region to improve detection against both coarse-

and fine-grained OOD data, we would like to create a “vir-

tual” outlier distribution Dvirtual
out which can provide a more

comprehensive coverage over the OOD region than the em-

pirical outlier distribution Dout.

Generating mixed outliers. Specifically, given an ID sam-

ple (xin, yin) ∼ Din and an outlier sample xout ∼ Dout, we

propose to perform mixing operations to generate the virtual

outliers:

x̃ = mix(xin, xout, λ), (1)

where λ ∈ [0, 1] is a coefficient controlling the contribution

of each sample to the mixed one (i.e., λ and 1 − λ are the

weight for xin and xout, respectively). The intuition here is

directly based on our observations in Fig. 3: If we “inter-

polate” the ID samples (Fig. 3 (a)) and outlier data (Fig. 3

(d)), the resulting samples are likely to span a larger area

and cover the region where fine-grained OOD data locate

(Fig. 3 (c)).

We find that simple pixel-level operations, e.g., linear in-

terpolation [48] and cut-paste operation [47], can already

result in samples that cover the fine-grained OOD region.

Thus in this work we instantiate Eqn. 1 with these oper-

ations and denote them as linear mixing and cut mixing,

respectively. However, we remark that this operation may

be as simple or as complex as desired; it is not constrained

to [48, 47] and allows possible extension in the future.

To demonstrate the effect of mixed samples x̃, we again

visualize them in the DNN model’s feature space in Fig. 3

(e) (here we use linear mixing as an example; see Appendix

E Fig. 12-15 for more). Importantly, unlike the empiri-

cal outlier distribution Dout in Fig. 3 (d), our virtual out-

lier samples can span a larger area (being both near to and

far away from the ID clusters) by varying the coefficient λ.

As a result, we anticipate that when training with the sam-

ples from Dvirtual
out , the model’s behaviour on both fine- and

coarse-grained OOD data can be regularized.

Assigning training targets. Now that we have generated

mixed outliers for training, the next important step is to

decide the corresponding training targets. Our key insight
here is to regularize the model such that its prediction con-
fidence can smoothly decay as the input transitions from ID
to OOD. To this end, we assign soft target ỹ corresponding

to the mixed sample x̃ as follows:

ỹ = λyin + (1− λ)U , (2)

where yin is the one-hot label of the ID sample xin, and U
represents the uniform distribution over the ID categories.

The prediction confidence (i.e., maximum softmax proba-

bility [11]) encoded in ỹ is ỹpred. conf. = λ + (1 − λ) 1
K ,

where K is the number of ID categories. Concretely, when

the mixed sample is OOD (i.e., λ = 0), we force the model

to be least confident/maximally uncertain on that sample

(i.e., ỹpred. conf. = 1
K ); when the mixed sample is ID (i.e.,

λ = 1), the model is trained to make a confident prediction

(i.e., ỹpred. conf. = 1). The confidence of the intermediate

mixed samples (i.e., λ ∈ (0, 1)) is smoothly modulated by

λ. A visualization of such effect can be seen in Fig. 3 (e),

where darker points correspond to a higher confidence that

is encoded in their soft targets ỹ. Unlike previous methods,

we remark that this formulation uniquely enables the model

to have better calibration over a wider range of confidence

levels. As a result, our method can have effects across a

spectrum of OOD granularities, which is crucial for detec-

tors in fine-grained environments as the OOD samples could

be highly granular.
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Training objective. The above two technical insights

make up our training algorithm, Mixture Outlier Exposure

(MixOE), whose objective is formulated as

E(x,y)∼Din

[L(f(x), y)]+ βE(x̃,ỹ)∼Dvirtual
out

[L(f(x̃), ỹ)].
(3)

Here, L(f(x), y) is the cross-entropy loss between the

DNN’s predicted distribution f(x) and the ground truth dis-

tribution y, and β is a weighting term. During training, at

each iteration the λ in Eqn. 1 and Eqn. 2 is sampled from

a Beta distribution Beta(α, α) for an introduced hyperpa-

rameter α. Both α and β can be determined using valida-

tion data (details are in Sec. 5.1). We also remark here

that the outlier dataset used to construct Dvirtual
out is unlabeled

and does not need to contain any data related to the test

OOD data distribution. After training, the detection will be

performed by thresholding the prediction confidence since

MixOE explicitly calibrates the confidence on outliers dur-

ing the training.

Relationship with prior methods. The training objec-

tive of the vanilla OE [12] is E(x,y)∼Din

[L(f(x), y)] +

βExout∼Dout

[L(f(xout),U)
]
, which encourages the model’s

output to resemble uniform distribution U on the empirical

outliers from Dout. What separates MixOE from OE is the

novel idea of using generated virtual outliers to expand the

regularization over a broader region and controlling how the

confidence decay from ID to OOD. Also, note that MixOE

can degenerate to vanilla OE if λ is fixed to 0 during the

training. The other two methods, OE-M [2] and EnergyOE

[26], share the same idea as OE except that [2] uses the

“hardest” outliers from Dout and [26] adopts a different scor-

ing function for detection. They still uses only the empirical

outliers and has no control over the confidence decay. Thus

we believe they share similar shortcomings to OE, which

we will confirm with experimental results shortly.

5. Experiments
5.1. Setup

Baselines. Same as in Sec. 3.2, we consider a total of

seven baseline methods, including six state-of-the-art meth-

ods [11, 25, 26, 12, 2] and one that was studied in a previous

fine-grained setting [1]. We also re-emphasize that there are

very few methods that have considerations for operating in

fine-grained environments as this is an underexplored topic.

Training details. For the post-training scoring methods, we

train ResNet-50 models [9] in the standard fashion, i.e., by

minimizing the cross-entropy loss over the ID-only training

dataset. Specifically, we train the model for 90 epochs us-

ing SGD with the batch size being 32. Following common

practices in fine-grained classification research [49, 13, 46],

the model is initialized with ImageNet pre-trained weights.

The initial learning rate is 0.001 and is decayed by cosine

learning rate schedule [27]. For Rotation [1], we train the

model using its objective with the same setup as the stan-

dard training.

For methods that utilize auxiliary outlier data (OE, OE-

M, EnergyOE, and MixOE), we only fine-tune the trained

standard model with the corresponding objective for 10

epochs, following [12, 26]. Therefore, MixOE and other

OE-based methods only induce marginal computation over-

head. The fine-tuning also adopts cosine schedule with the

initial learning rate being 0.001. The batch size of ID data

is still 32. For OE/OE-M/EnergyOE, as suggested in their

papers, we set the batch size of outlier data to be twice as

the ID batch size, which is 64. In the case of MixOE, we

keep outlier batch size same as the ID batch size. As a re-

sult, MixOE actually uses only half of the outliers used by

other methods.

The auxiliary outlier set. The training outlier set Dout we

consider is WebVision 1.0 [24], which contains natural im-

ages crawled from Flickr and Google by querying with the

1,000 categories of ImageNet. We believe this dataset repre-

sents a realistic and practical construction of Dout for many

ID tasks in the natural imagery domain.

Importantly, to avoid arguments of “cheating”, we filter
out images that are relevant to the considered OOD tasks
from the outlier set based on WordNet ID [29]. Specifically,

a total of 491K images related to aircraft/car/butterfly/bird

are removed. Thus, the training outliers reveal no infor-

mation about the test coarse- or fine-grained OOD data (see

Fig. 3 for visualization). After the filtering, there are 1948K

images left in the outlier set. However, since MixOE just

fine-tunes the model for 10 epochs, at most 70K images are

actually used during the training.

Hyperparameter tuning. We take great care to ensure that

the hyperparameter tuning is fair. Concretely, we randomly

holdout a portion of samples from the ID and outlier train-

ing set to serve as ID/OOD validation data. Critically, note

that the OOD validation data reveals no information about

the test-time OOD distribution since we already filter out all

relevant images from Dout.

With the selected ID and OOD validation samples, we

tune the hyperparameters such that the OOD detection per-

formance is maximized and the ID classification accuracy is

minimally affected. To test the method robustness, in each

of the four environments we only tune the hyperparameter

once for each approach using a single split; the determined

hyperparameter is then applied to all splits from the same

dataset. In Appendix B we present a detailed list of the

candidate hyperparameter values and the final deteremined

values we use for each method in our experiments.

Evaluation. The evaluation procedure follows the one de-

scribed in Sec. 3.1 and Sec. 3.2. For each dataset, we con-

sider the holdout classes as fine-grained OOD data and the

samples from other datasets as coarse-grained OOD data.
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Table 2. Detection performance in terms of TNR95 statistics. The

number before and after the slash is for coarse-grained and fine-

grained OOD samples, respectively. Avg. diff. is the average

difference (across three splits) relative to MSP. Clearly, MixOE

consistently leads to notable improvements against both coarse-

and fine-grained novelties, while other methods degrade the fine-

grained OOD detection performance and thus do not qualify for a

reliable detector in fine-grained environments.

Din Method Split 1 Split 2 Split 3 Avg. diff.

A
ir

cr
af

t

MSP [11] 75.0 / 29.9 61.6 / 15.9 77.1 / 18.5 - / -

ODIN [25] 87.5 / 30.2 73.2 / 15.3 86.5 / 15.8 +11.2 / –1.0

Energy [26] 88.5 / 30.1 74.4 / 14.6 86.2 / 16.3 +11.8 / –1.1

Rotation [1] 65.5 / 31.4 55.0 / 15.9 65.5 / 17.6 –9.2 / +0.2

OE [12] 99.3 / 27.8 98.5 / 16.0 98.7 / 16.5 +27.6 / –1.3

OE-M [2] 99.6 / 25.0 98.5 / 16.0 98.9 / 14.0 +27.8 / –3.1

EnergyOE [26] 99.8 / 30.3 99.7 / 17.0 99.7 / 19.9 +28.5 / +1.0

MixOE-linear 93.2 / 41.4 88.4 / 24.6 92.1 / 16.5 +20.0 / +6.1

MixOE-cut 99.0 / 39.8 99.4 / 23.7 99.4 / 24.9 +28.0 / +8.0

C
ar

MSP [11] 95.5 / 58.5 88.0 / 56.3 78.8 / 53.5 - / -

ODIN [25] 99.6 / 55.6 99.1 / 47.0 97.8 / 49.0 +11.4 / –5.6

Energy [26] 99.7 / 49.1 99.4 / 39.7 99.1 / 42.6 +12.0 / –12.3

Rotation [1] 97.7 / 58.9 88.1 / 52.4 81.3 / 50.4 +1.6 / –2.2

OE [12] 99.9 / 53.2 100.0 / 53.0 99.9 / 51.2 +12.5 / –3.6

OE-M [2] 99.9 / 53.6 100.0 / 49.4 100.0 / 50.6 +12.5 / –4.9

EnergyOE [26] 100.0 / 52.6 100.0 / 41.0 100.0 / 44.9 +12.6 / –9.9

MixOE-linear 99.6 / 65.9 99.7 / 62.9 99.5 / 60.1 +12.2 / +6.9

MixOE-cut 99.9 / 70.3 100.0 / 69.8 99.9 / 66.5 +12.5 / +12.8

B
u
tt

er
fl

y

MSP [11] 87.1 / 29.9 89.9 / 31.8 88.4 / 36.6 - / -

ODIN [25] 95.2 / 28.2 95.5 / 32.5 95.6 / 38.7 +7.0 / +0.4

Energy [26] 95.3 / 25.5 95.2 / 30.2 95.6 / 36.1 +6.9 / –2.2

Rotation [1] 87.9 / 27.6 88.5 / 31.2 86.2 / 37.0 –0.9 / –0.8

OE [12] 92.2 / 26.5 93.7 / 32.1 94.3 / 34.3 +4.9 / –1.8

OE-M [2] 99.9 / 53.6 100.0 / 49.4 100.0 / 50.6 +12.5 / –4.9

EnergyOE [26] 97.8 / 25.1 96.9 / 30.5 98.2 / 37.2 +9.2 / –1.8

MixOE-linear 95.3 / 32.6 93.9 / 37.9 95.5 / 45.0 +6.4 / +5.7

MixOE-cut 94.9 / 35.8 94.1 / 38.8 92.7 / 46.0 +5.4 / +7.4

B
ir

d

MSP [11] 72.3 / 22.6 67.4 / 22.3 66.4 / 22.3 - / -

ODIN [25] 80.9 / 22.7 77.2 / 21.5 74.3 / 21.9 +8.8 / –0.4

Energy [26] 80.8 / 20.3 76.5 / 18.4 73.9 / 18.8 +8.4 / –3.2

Rotation [1] 71.3 / 23.6 64.0 / 24.0 65.4 / 21.5 –1.8 / +0.6

OE [12] 98.2 / 20.6 97.9 / 22.9 97.9 / 20.7 +29.3 / –1.0

OE-M [2] 98.7 / 19.8 98.7 / 21.4 97.7 / 19.2 +29.7 / –2.3

EnergyOE [26] 98.6 / 19.4 99.0 / 18.4 99.3 / 19.5 +30.3 / –3.3

MixOE-linear 88.6 / 24.9 83.9 / 26.7 86.3 / 28.6 +17.6 / +4.3

MixOE-cut 91.0 / 27.7 91.8 / 24.6 92.9 / 27.7 +23.2 / +4.3

Following [14, 22, 21], we consider ID as positive and OOD

as negative, and use TNR95 and AUROC as the metrics.

5.2. Results

Detection performance. Tab. 2 shows the TNR95 results

across the four test benches. The AUROC statistics yield

similar patterns to TNR95 and are left in the expanded Tab.

6 in Appendix E.

Our first observation is that MixOE consistently achieves

the best detection performance against fine-grained OOD

samples. Specifically, averaged across the three splits on

the [Aircraft , Car , Butterfly, Bird ] tasks, MixOE-linear
and MixOE-cut improve the TNR95 over MSP by [+6.1%,

+6.9%, +5.7%, +4.3%] and [+8.0%, +12.8%, +7.4%,

+4.3%], respectively. In comparison, vanilla OE’s rela-

tive improvement over MSP is [–1.3%, –3.6%, –1.8%, –

Figure 4. Comparison of the prediction confidence’s distribution

between methods. MixOE leads to clearer separation between the

confidence of ID and OOD samples (especially fine-grained ones)

and thus enables better detection.

1.0%]. Similar to OE, the other baseline methods also re-

sult in performance degradation in the face of fine-grained

OOD on many (if not all) datasets. We also remark that

MixOE-linear and MixOE-cut both lead to significant im-

provements, demonstrating that the validity of the idea be-

hind MixOE is independent of the specific mixing opera-

tions being used.

Our second observation is that MixOE can perform

on par with state-of-the-art methods in detecting coarse-

grained OOD samples. On the four tasks MixOE-linear
and MixOE-cut improve the TNR95 over MSP by [+20.0%,

+12.2%, +6.4%, +17.6%] and [+28.0%, +12.5%, +5.4%,

+23.2%], respectively. OE, whose effect is exclusively to-

wards coarse-grained OOD data, leads to improvements of

[+27.6%, +12.5%, +4.9%, +29.3%].

Finally, we note that MixOE is the only method that con-

sistently improves upon MSP against both fine- and coarse-

grained novelties across all the datasets. This unique ca-

pability of MixOE to remain effective across a spectrum of

OOD granularities is critical for systems that operate in fine-

grained environments, as the novel inputs during inference

can be either coarse or fine. Overall, these evaluation results

display the effectiveness of MixOE for building up reliable

OOD detectors in real-world fine-grained settings.

Prediction confidences. To more closely understand how

MixOE improves the OOD detection, we monitor the con-

fidence distributions of the models on ID/OOD samples as

MixOE functions by calibrating the predication confidence.

Fig. 4 shows the probability density plots of prediction con-

fidence on Standard, OE, OE-M, and MixOE models on one

of the splits from each dataset (see Appendix E Fig. 8-11 for

more). From Fig. 4 we can clearly identify that, regardless

of the mixing operation, the MixOE models consistently

produce lower confidence predictions on fine-grained OOD

samples, making them more distinguishable from ID in-

puts. This observation confirms that the virtual outlier data

and their corresponding soft targets introduced in MixOE

indeed help regularize the model’s outputs on fine-grained

OOD samples.
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Table 3. Accuracy comparison of the training algorithms. The

numbers in the parenthesis are the differences relative to the ac-

curacy of standard training. Avg. diff. shows the improvements

averaged across the four datasets. Unlike other methods that trade-

off accuracy for detection, MixOE acutally improves the accuracy.

Aircraft Car Butterfly Bird Avg. diff.

Rotation [1] 88.5 (–1.1) 91.3 (–0.6) 88.8 (–0.1) 82.0 (–0.1) –0.5

OE [12] 89.2 (–0.5) 91.6 (–0.2) 88.1 (–0.9) 82.4 (+0.3) –0.3

OE-M [2] 89.3 (–0.4) 91.1 (–0.8) 88.2 (–0.8) 82.7 (+0.6) –0.4

EnergyOE [26] 89.3 (–0.3) 91.8 (–0.0) 88.8 (–0.2) 82.3 (+0.2) –0.1

MixOE-linear 90.5 (+0.8) 92.9 (+1.1) 89.3 (+0.3) 83.4 (+1.3) +0.9

MixOE-cut 90.1 (+0.5) 92.9 (+1.1) 90.1 (+1.2) 83.5 (+1.4) +1.1

ID classification accuracy. Lastly, we examine how the

training methods can affect the ID classification accuracy

because we do not intend to tradeoff accuracy for detec-

tion performance. In Tab. 3 we show the accuracy on each

dataset averaged across the three splits (see Appendix E

Tab. 7 for unaveraged results). Interestingly, unlike other

training strategies, MixOE-linear and MixOE-cut can im-

prove the accuracy by 0.9% and 1.1% on average across the

four environments, respectively. Our hypothesis here is that

since the fine-grained datasets often have relatively small

number of training samples (e.g., tens of images per class),

some of the training “outliers” generated by MixOE that are

close to the ID clusters actually serve as augmented data and

thus contribute to the ID accuracy.

5.3. Ablation study

MixOE v.s. Mix. Recall that the core idea of MixOE is to

mix ID and outlier data for DNN training. In Sec. 5.2 we

have shown that this concept is more beneficial than using

the outlier data alone without mixing (vanilla OE). Here we

ablate MixOE along another direction: We contrast MixOE

with vanilla Mix training [48, 47] which does not use the

auxiliary outlier data, i.e., mixing only ID data. Concretely,

for Mix training the generation of virtual outlier samples in

Eqn. 3 is changed to (x̃, ỹ) = (mix(x1, x2, λ), λy1 + (1 −
λ)y2), where (x1, y1), (x2, y2) ∼ Din. The hyperparameter

tuning procedure and training setup is the same as those for

MixOE.

The comparison is presented in Fig. 5, where we show

the methods’ average improvements in TNR95 relative to

the baseline MSP across the three splits on each dataset.

We find that Mix training is able to provide performance

gains in detecting fine-grained OOD data, but the gains

are smaller than those brought by MixOE; meanwhile, Mix

training rarely improves the coarse-grained OOD detection

rates.

MixOE v.s. Mix + OE. Finally, we investigate whether

naively combining the Mix and OE objective together can

achieve similar effect to MixOE. A detailed analysis is

given in Appendix D. The takeaway here is that Mix + OE

will lead to manifold intrusion [8], where the training will

assign distinct targets to inputs that are close to each other

Figure 5. Comparison between MixOE and vanilla Mix train-

ing (without using outlier data) in terms of average difference in

TNR95 relative to MSP. MixOE outperforms Mix against both

coarse-/fine-grained OOD data.

in the DNN’s feature space, causing significant learning dif-

ficulty for the model. Indeed, we find that when combining

Mix and OE together, the model’s accuracy can decrease by

up to 10%, and the TNR95 can be worse than MSP by 10%

and 20% against coarse- and fine-grained OOD samples, re-

spectively. The results clearly demonstrate that MixOE’s
formulation is unique, effective, and cannot be replaced by
a simple/naive combination of two existing objectives.

6. Conclusion
In this work, we propose Mixture Outlier Exposure, a

DNN training algorithm for OOD detection in fine-grained

environments. MixOE explicitly expand the coverage over

the broad OOD region by mixing ID data and training

outlier samples. The mixed samples are used to regular-

ize the model’s behaviour such that the prediction con-

fidence smoothly decays when the inputs transition from

ID to OOD. Experimental results in the four newly con-

structed large-scale fine-grained environments demonstrate

that MixOE is able to improve detection rates against both

coarse- and fine-grained OOD samples, while other meth-

ods hardly help with fine-grained detection. We hope that

this work will facilitate and inspire future research on OOD

detection in the challenging fine-grained settings.
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