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ABSTRACT

Analog integrated circuit (IC) placement is a heavily manual and time-
consuming task that has a significant impact on chip quality. Several
recent studies apply machine learning (ML) techniques to directly pre-
dict the impact of placement on circuit performance or even guide the
placement process. However, the significant diversity in analog design
topologies can lead to different impacts on performance metrics (e.g.,
common-mode rejection ratio (CMRR) or offset voltage). Thus, it is
unlikely that the same ML model structure will achieve the best perfor-
mance for all designs and metrics. In addition, customizing ML mod-
els for different designs require more tremendous engineering efforts
and longer development cycles. In this work, we leverage Neural Ar-
chitecture Search (NAS) to automatically develop customized neural
architectures for different analog circuit designs and metrics. Our pro-
posed NAS methodology supports an unconstrained DAG-based search
space containing a wide range of ML operations and topological con-
nections. Our search strategy can efficiently explore this flexible search
space and provide every design with the best-customized model to boost
the model performance. We make unprejudiced comparisons with the
claimed performance of the previous representative work on exactly the
same dataset. After fully automated development within only 0.5 days,
generated models give 3.61% superior accuracy than the prior art.
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1 INTRODUCTION

The performance of analog IC largely depends on the circuit layout
quality. Despite decades of research towards automated layout gen-
eration [7, 9, 10, 16], analog layout in practice is still a manual and
time-consuming process, leading to a high engineering cost and long
time-to-market. Many traditional analog placement methods enforce
certain heuristic constraints without explicit evaluations of post-layout
circuit performance. These heuristic constraints cannot precisely capture
complex correlations between layout and circuit performance for differ-
ent scenarios. Thus, providing an efficient and effective way to estimate
layout performance is important while optimizing analog placement
solutions.

In recent years, various machine learning (ML) approaches [8, 11]
have been developed to explicitly predict the final post-layout perfor-
mance. These methods are applied in various EDA applications such as
pre-routing design space exploration [11] and guiding the placement
process [8]. Liu et al. [11] proposed a well-designed convolution neural
network (CNN) model to capture the complex correlation between the
layout and final performance. Li et al. [8] developed a customized graph

Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9783-4/23/01. . . $15.00
https://doi.org/10.1145/3566097.3567881

neural network model to estimate the impact of placement on layout
performance. However, existing methods typically relied on developers
to manually design one ML model architecture to predict for all designs
and for all performance metrics. Considering the vast difference among
analog designs, one fixed ML architecture, regardless of how sophisti-
cated it is, cannot fit the requirements on all analog designs for different
metrics, thus leading to sub-optimal performance. More importantly, a
fixed ML model would suffer from reliability problems due to possible
accuracy degradation when applied towards new designs.

In comparison, allowing customized ML models for various designs
and performance metrics is a straightforward yet promising way to
achieve superior overall performance and more reliable predictions.
However, such model customization is constrained by the manpower
budget of design companies. Considering a typical ML model develop-
ment process in design flow easily takes weeks [2], further customizing
ML architectures for different analog designs will take prohibitively
tremendous engineering efforts and a long turnaround time. A recent
work [2] proposed to automatically develop ML estimators for digital
designs with NAS techniques. However, this work only focused on the
digital routability estimation problem, a small EDA field.

To reduce the engineering effort on ML model development for chip
design, we extend the automated ML model development framework [2]
to analog design, targeting analog placement quality prediction. This
is achieved by leveraging NAS, which efficiently searches the most ap-
propriate customized model for each task from a comprehensive search
space. Our approach achieves superior performance than representative
prior work [11] through unprejudiced comparisons. As a result, our work
demonstrates the extraordinary generalization ability of the framework.
Such generalization ability applies to various prediction tasks for digital
and analog designs, including the previous routability estimator and
this analog placement quality model development. Thus, we believe this
general automation framework has great potential for an extensive range
of design problems. Our main contributions are summarized as follows:

• We construct a generic framework that supports automated place-
ment quality estimator development without any human interfer-
ence. This is the first exploration of automated ML model devel-
opment for analog design to the best of our knowledge.

• Our method supports a large search space allowing various oper-
ations and highly flexible connections, accommodating solutions
beyond the scope of human-designed models.

• The automatically developed models outperform the state-of-the-
art estimator [11] through unprejudiced comparisons Evaluations
are performed on exactly the same open-sourced datasets [11],
directly adopting their claimed performance as baselines.

• The whole search process of our NAS-based framework takes
only 0.5 days, while the human developers easily spend weeks to
months in model development. In addition, we conduct a detailed
analysis on automatically developed models, which significantly
differs from human-developed estimators. We believe this work
will benefit the development of layout estimators in the future.

The rest of the paper is organized as follows. Section 2 introduces the
background of our target task, the analog placement quality prediction.
Section 3 formulates our model customization problem for the analog
placement quality prediction. Section 4 details our automatic ML model
development method. Section 5 demonstrates the experimental results,
and Section 6 further discuss our proposed framework. Finally, Section 7
concludes this paper.
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Figure 1: Analog IC design automation and quality evaluation
flow.Anetlist and design rules comes into the constraint extractor,
the placement, and the routing stage to produce the physical
layout. In the standard evaluationflow,we use parasitic extraction
and simulation to obtain layout quality. With the ML model, we
can directly use the placement result to predict layout quality.

2 BACKGROUND OF ANALOG AUTOMATION

Analog IC design automation flow aims to automatically generate physi-
cal layouts from circuit netlists. In recent years, some frameworks are
developed [6, 17] to achieve analog IC design automation. The layout
design flows of both works [6, 17] contain the placement and routing
(P&R) stages. An example of the analog IC design automation flow pro-
posed in [17] is shown in Figure 1. A netlist will first come through the
constraint extractor and the P&R stage to generate the layout. In the
P&R stage, however, adopting the same objective used for the digital cir-
cuit, e.g., wirelength and area minimization, cannot guarantee the layout
solution quality because the analog layout quality is affected by the other
geometric factors such as symmetric and common-centroid relations [12].
Many automatic analog placement [12, 14] and routing [15, 18] methods
have been proposed to meet geometric relations but still are lack of
a proper model to measure the layout quality. Thus, a precise layout
quality estimation in the P&R stage is desirable.

The work [11] proposes an ML-based approach to perform placement
quality prediction, which takes the placement result as an input and
predict the layout quality generated by the parasitic extraction and
simulation, as shown in Figure 1. In [11], they view their placement
results as two-dimensional images and apply CNN model to predict
placement quality. Their approach uses one general-purpose structure
to predict different layout quality metrics on different analog designs.
Due to the topology heterogeneity between different analog designs,
one model structure may not be well-suited for all designs. Thus, the
model customization is needed for each design and quality metric to
achieve promising prediction performance. As a result, in this work,
we introduce NAS to automate the ML model customization. In this
way, we can conduct the customization without additional engineering
efforts and can accelerate the customization process. We use a highly
flexible model search space that contains a variety of diverse model
structures, enabling us to find the best model for each analog design. In
addition, our search process only takes about 0.5 day to find a promising
model for a analog design. With a short search period, we can make
a great prediction performance improvement by our automatic model
customization method.

3 PROBLEM FORMULATION

This work applies NAS techniques to automate designs of ML models for
analog layout performance prediction. After placement, a layout is sliced

into 𝑤 × ℎ tiles and transformed to input feature 𝑋𝑖 ∈ R
𝑤×ℎ×𝑐 , which

is comprised of 𝑐 different two-dimensional feature maps. The ground-
truth layout performance 𝑦𝑖 are collected after the subsequent routing,
parasitic extraction, and SPICE simulation. The type of 𝑦𝑖 includes offset
voltage and CMRR. Finally, following [11], we separate our placement
solutions into 75% good and 25% bad layouts based on 𝑦𝑖 and formulate
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Figure 2: Overview of Neural Architecture Search. We first sample
an architecture from the search space and estimate its accuracy by
our evaluation strategy. With the search strategy, we can control
the sampling according to the accuracy.

𝑦𝑖 into binary classification. Based on the extracted features and label,
the analog layout performance prediction task can be formulated below:

Problem. Given a set of placement solutions with the input feature
𝑋𝑖 , the defined search space 𝑆𝐶 , and 𝑦𝑖 , it aims to explore the architecture
𝐴𝐶 ∈ 𝑆𝐶 of the neural network model 𝑓𝐴𝐶 to predict 𝑦𝑖 such that the
performance of 𝑓𝐴𝐶 is maximized, where

𝑓𝐴𝐶 : 𝑋𝑖 ∈ R
𝑤×ℎ×𝑐 → 𝑦𝑖 ∈ {0, 1}.

Thus, our NAS approach aims to generate customized models to
maximize the model performance on different designs and metrics.

4 TOWARDS AUTOMATED MACHINE LEARNING
MODEL DEVELOPMENT

To achieve automated ML model development, we leverage NAS tech-
niques to explore high-performance customized models for analog layout
performance prediction for all analog circuit designs without human
interference. Typically, NAS contains three key ingredients: search space,
evaluation strategy, and search strategy. Search space defines a space of
candidate model architectures that can be explored in NAS. Evaluation
strategy determines how to estimate the design metrics (e.g., accuracy)
of a candidate architecture and provides feedback to the search process.
Search strategy is the method to explore the search space and guide the
search process toward a correct selection of the promising ML model.
The overall procedure of NAS is sketched in Fig. 2.

We introduce a graph-based NAS method to automate the design of
neural networks, following the spirit of SwiftNet [4]. We start with intro-
ducing our graph-based search space, where a neural architecture can be
easily partitioned into two parts: fixed and searchable parts composed
of Directed Acyclic Graphs (DAGs). While the fixed parts are respon-
sible for performing standard transformations, e.g., downsampling, to
process the features, the searchable blocks are capable of formulating a
high-quality learned representation to extract critical information from
the input features, leading to improved performance on the placement
quality prediction. Then, we present our graph propagation strategy that
efficiently harness our graph-based search space to discover promising
neural architectures within limited search budget. Finally, we disclose
the evaluation strategy and defines the criteria on evaluating different
candidate models within the graph-based search space.

4.1 Graph-based Search Space

We leverage CNN as our main architecture of interest in placement
quality prediction. We can view CNN as a graph constructed by a set
of operations and the connections of operations. Specifically, vertices
represent operations, and edges indicate the directed connections of
operations to pass tensors from one vertex to another. The illustration
of our graph-based search space is shown in Figure 3. For the searchable
part, we employ 6 DAGs (i.e. {𝐺1, 𝐺2, . . . , 𝐺6}), named guide-DAGs, to
represent the overall search space that admits a wide set of possible CNN
architectures. Each guide-DAG 𝐺𝑖 (𝑉𝑖 , 𝐸𝑖 ) represents a combination of
the candidate operations and the propagation of data tensors. Specifically,
a guide-DAG is composed by a set of completely ordered vertices𝑉𝑖 with
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Figure 3: The search space and the sampled architecture of our
NAS method. Our model architecture is separated into the search-
able and fixed part. The searchable part composes of six sampled-
DAGs, whose structures are sampled from the guide-DAGs. The
fixed part has three convolution layers with kernel size 3 and
stride 2 to perform downsampling and two fully-connected layers
to produce the layout metric.

maximum edges to provide all possible connections and with each vertex
𝑣 ∈ 𝑉𝑖 representing a candidate operation OP𝑣 . During our graph-based
NAS, we sample sub-graphs from the guide-DAG to obtain different
neural architectures, and name the sampled graphs as sampled-DAGs
(i.e. {𝑆1, 𝑆2, . . . , 𝑆6}). For the fix part, we use 3 convolution layers with
kernel size 3 and stride 2 to downsample the input features. Then, in the
head stage, we use a mean pooling layer and two fully-connected layers
with size 32 and 1 to produce the output layout metrics. Combining both
searchable and fix parts, we can construct our sampled model architec-
ture. We elaborate the vertex and the edge operation as follows.

Vertex Operation. Each vertex obtains the source of input concatenates
all input tensors from the incoming edges and produces the output tensor
by a given c operation OP𝑣 . To ensure a good performance on placement
prediction, we review prior literature in computer vision and carefully
select the following candidates as vertex operations:

• 3 × 3 convolution with 32 filters
• 3 × 3 convolution with 64 filters
• 3 × 3 atrous convolution with 32 filters, dilation rate 2
• mixed convolution with 4 groups, kernel size [7, 9, 11, 13]

First, we include regular convolution layers with different numbers
of filters as our operation option. Then, we observe that atrous con-
volution [3] can effectively enlarge receptive fields of filters thus help
model to capture large regions of relations between different transis-
tors. In addition, we choose a mixed depth-wise convolution operation
(MixConv) [13] to separate channels into groups and apply different
kernel sizes to each group. As such, we can identify transistor placement
patterns in different sizes when applied in this layout quality prediction.
As a result, the high variety of operations improves our model diversity
and cover much more potential high-quality models in the search space.

Edge Operation. Each edge 𝑒 (𝑢, 𝑣) ∈ 𝐸𝑖 represents the propagation of
the output tensor of vertex 𝑢 to the input of 𝑣 . Here, 𝐸𝑖 is constructed
to make𝐺𝑖 with maximum edges to provide all possible connections in
the sampled-DAG. Our search space develops many parallel propagation
of tensors within a sampled-DAG becuase concatenation and parallel

Algorithm 1 Graph Propagation

Require: 𝐺𝑖 (𝑉𝑖 , 𝐸𝑖 )
Ensure: 𝑆𝑖 (𝑉𝑆𝑖 , 𝐸𝑆𝑖 )
1: 𝑉𝑆𝑖 = {𝑣0}, 𝑣0 ∈ 𝑉𝑖
2: 𝐸𝑆𝑖 = ∅

3: for each 𝑣 𝑗 ∈ 𝑉𝑖 do
4: if 𝑣 𝑗 ∈ 𝑉𝑆𝑖 then
5: for each 𝑒 (𝑣 𝑗 , 𝑢𝑘 ) ∈ 𝐸𝑖 do

6: 𝑝 =
exp(𝑤𝑒 (𝑣𝑗 ,𝑣𝑘 ) )

∑7
𝑙=𝑗 exp(𝑤𝑒 (𝑣𝑗 ,𝑣𝑙 )

)

7: random 𝑟 (0, 1)
8: if 𝑝 > 𝑟 then ⊲ sampled by probability 𝑝
9: 𝑉𝑆𝑖 = 𝑉𝑆𝑖 ∪ {𝑣𝑘 }
10: 𝐸𝑆𝑖 = 𝐸𝑆𝑖 ∪ {𝑒 (𝑣 𝑗 , 𝑣𝑘 )}

11: for each 𝑣 𝑗 ∈ 𝑉𝑆𝑖 do
12: random 𝑟 (0, 1)
13: 𝑝 = 0
14: for each𝑤OP𝑘 𝑣𝑗

, 𝑘 = 1 to 4 do

15: 𝑝 ′ =
exp(𝑤OP𝑘 𝑣𝑗

)

∑4
𝑙=𝑖 exp(𝑤OP1𝑣𝑗

)

16: 𝑝 = 𝑝 + 𝑝 ′

17: if 𝑝 > 𝑟 then ⊲ sampled by probability 𝑝 ′

18: OP𝑣𝑗 = OP𝑘
19: break

20: return 𝑆𝑖 (𝑉𝑆𝑖 , 𝐸𝑆𝑖 )

propagation of tensors can help the model to facilitate feature combina-
tions between vertices to discover different layout quality information.
In addition, the parallel sampled-DAG structures between every two
downsampling layers can also explore different feature representations
of layout quality.

Thanks to the great flexibility of connections and operations, our
graph-based search space can produce the high-quality model architec-
ture for layout performance prediction. As a result, our NASmethodology
can explore diverse customized models to fit different analog designs
and layout performance metrics based on this flexible search space.

4.2 Graph Propagation Strategy

Due to the large size of our graph search space, it is neither efficient
nor practical to examine every sub-graph and every combination of
operations. For example, it is impossible for random search to obtain a
well-performance model in an efficient manner. Thus, designing a proper
search strategy with this large and high flexibility search space is crucial.

We propose graph propagation, an efficient search strategy via sam-
pling and continuous weight updating. Specifically, our graph propaga-
tion composes of two stages: 1) Edge sampling and 2) operation sampling.
Edge sampling selects edges to form the sampled architecture, and opera-
tion sampling decides the internal operation within each selected vertex.
Note that different from the work [2], we add the operation sampling
method to enhance our search strategy. During each search iteration, we
assign a weight to each edge and each vertex operation that control its
sampling probability and then increase weights of the promising edges
and vertex operations that lead to better architectures. During our search
process, we will gradually update weights based on the sampled model
performance to find a promising model.

We demonstrate the graph propagation algorithm in Algorithm 1.
For edge sampling stage (Line 1-10), we first initialize the vertex set
of sampled-DAG 𝑉𝑆𝑖 with 𝑣0 (lines 1), the vertex that represents the
downsampling convolution layer. Because 𝑣0 is in the fixed part, we view
it as the sampling start vertex. Then, we iterate through each vertex
𝑣 𝑗 ∈ 𝑉𝑖 . If 𝑣 𝑗 is selected in𝑉𝑆𝑖 , for each outgoing edge 𝑒 (𝑣 𝑗 , 𝑣𝑘 ) of 𝑣 𝑗 , we
normalize its weight to be its edge selection probability 𝑝 (Lines 3-6).
Note that a larger weight means a higher probability to be sampled.
We apply softmax to perform normalization, which can enhance and
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Figure 4: An example of graph propagation. For edge sampling, we select edges from the guide-DAG 𝐺1 (a) to form the sampled-DAG
𝑆1 (b). Then, we choose the operations of the selected vertices in operation sampling to form the sampled architecture (c).

reflect the difference between weights on the probability. If 𝑒 (𝑣 𝑗 , 𝑣𝑘 )
is selected, we add 𝑒 (𝑣 𝑗 , 𝑣𝑘 ) and 𝑣𝑘 into our sampled DAG (Lines 8-
10). In later iterations, the outgoing edges of 𝑣𝑘 will be extracted and
performed sampling. After sampling all the vertices and edges of 𝑆𝑖 , we
enter the operation sampling stage (Line 11-19) to select the operation of
each vertex 𝑣 𝑗 ∈ 𝑉𝑆𝑖 (Line 11). We also utilize softmax to normalize the
operation weights of 𝑣 𝑗 . The normalized weights directly represent the
selection probabilities, and we choose one operation for each 𝑣 𝑗 (Lines 12-
19). Finally, 𝑆𝑖 is returned (Line 20) after selecting all the operations of
vertices. An example of graph propagation is illustrated in Figure 4. Note
that 𝑣0 represents the fixed convolution layer before 𝑆1, and for the nodes
without sampled outgoing edge (5 and 6), we will directly connect it to
the subsequent fixed convolution layer.

After sampling each 𝑆𝑖 , we construct our model through the architec-
ture shown in Figure 3 and measure the accuracy based on our evaluation
strategy, which will be discussed Section 4.3. According to the accuracy
𝜂, for each 𝐺𝑖 , we update weights𝑤𝑒 of edges 𝑒 that are selected into 𝑆𝑖
in this iteration based on the below equation:

𝑤𝑒 = 𝑤𝑒 ∗ exp (𝛼 (𝜂 − 𝛽)),

where 𝛼 is the updating rate, and 𝛽 is the baseline accuracy. We update
weights according to the difference between 𝜂 and 𝛽 and apply an expo-
nential function to accelerate the weight update. In addition, we update
the operation weight𝑤OP𝑣

in the same way of𝑤𝑒 . When we get a higher

accuracy than the baseline, the edge and vertex operation weights will
increase. Thus, in the next iteration, the sampled probabilities of these
edges and operations will grow. Also, the baseline metrics 𝛽 is set to
the average accuracy of all history sampled models. In this way, we can
prompt the search process to seek higher-performance models through
iterations. Finally, this search process, including sampling and weight
updating, continues until our model performance converges.

As graph propagation covers every sub-graph in our search space, it
makes the number of vertices and edges varied in each sampled-DAG. In
addition, graph propagation can explore every vertex operation combina-
tion. As a result, graph propagation enables a highly flexible choice of our
sampled model and provides a higher chance of obtaining state-of-the-
art architectures for difference designs. Despite the great flexibility, the
search cost for graph propagation is only 0.5 days, indicating its remark-
able efficiency. Thus, graph propagation can efficiently craft suitable
customized models for analog designs even with huge diversity.

4.3 Evaluation Strategy

Following the previous NAS work [1], we directly train our sampled
model on the training split of our target dataset and evaluate the accuracy
on the validation split. The evaluation result is directly employed as our
search objective.

Table 1: Data Statistics of [11].

Design (#transistor) Compensation Layouts Metrics

OTA1 (31) Nested Miller 16376 Offset

OTA2 (31) Nested Miller 16381 Offset

OTA3 (22) Miller 16384 Offset

OTA4 (23) None 16363 CMRR

5 EXPERIMENTAL RESULTS

In this section, we first describe our experiment setups. We then present
our unprejudiced comparison results with the previous work on exactly
the same training and testing benchmark.

5.1 Experiment Setup

The baselinemethod is awell-designed CNN-based estimator 3D-CNN [11].
To have a fair comparison, we directly take the claimed accuracy pre-
sented in their work to compare with our NAS method. we validate our
method using the same open-sourced dataset and the same setting as the
work [11]. The dataset includes all OTA (Operational Transconductance
Amplifier) designs but with different topologies and compensations. The
summarized data statistics about this dataset is shown in Table 1. Note
that OTA1 and OTA2 are in the same schematic but with different sizing.
Their layout performance is evaluated by offset voltage for OTA1 to 3
and CMRR for OTA4. For each circuit design, the dataset is separated
into 80% for training and 20% for testing. For labeling, we also follow
the practice of the previous work, which formulates the problem into
binary classification by given thresholds. For the feature extraction be-
fore training, we also follow the feature construction method in [11], in
order to only focusing on the influence of model structure.

We adopt the NAS method described in Section 4 to explore the
search space defined for layout quality prediction. The overall search

process runs for 0.5 days on a NVIDIA TITAN RTX GPU with Intel®

Xeon® E5-2687W CPUs. In comparison, an ML expert typically spends
weeks to months to design a promising model [2]. Obviously, our NAS
process largely shortens the development cycle of ML models for analog
automation.

We employ the following hyperparameters to conduct model train-
ing in our experiments: we train our model for 45 epochs with Adam
optimizer [5], a batch size of 48, and a fixed learning rate of 0.0005. To
combat overfitting and improve generalization, we use an L2 weight

decay of 10−3 and ReLU activation.

5.2 Layout Performance Comparison

In Table 2, we compare the performance of NAS-crafted models with
the claimed performance of CNN [11]. Note that our NAS flow automat-
ically generates customized models for different OTA designs separately.
Our NAS-crafted models clearly achieve higher accuracy on all designs
with average 1.85% higher accuracy. More importantly, our NAS-crafted
models reach maximum 3.6% improvement in accuracy. These results
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Table 2: Placement quality prediction result with dataset [11].

Design (#transistor)
Accuracy ↑

CNN [11] NAS-crafted Improvement

OTA1 (31) 90.29 91.39 1.22%

OTA2 (31) 92.61 92.74 0.14%

OTA3 (22) 91.33 93.57 2.45%

OTA4 (23) 92.05 95.37 3.61%

Avg 91.57 93.27 1.85%

indicate that automatically customizing models for different designs
with our NAS method can effectively boost the model performance with-
out any designer’s manual interference. Most importantly, the search
process only takes about 0.5 days to achieve significant performance
improvement.

In addition, we validate our NAS-crafted models using the same trans-
fer learning scheme of [11]. We utilize transfer learning to trained s
model on one design and then finetune this model on another design.
Following [11], we first pretrain the model with OTA1 design using
𝛼 = 0.8 ratio of all data, then finetune on other designs with different 𝛼 .
With the transfer learning scheme, we can reduce the data usage of other
designs and get the comparable results of training on the full dataset.
Reducing the data usage is important because it can shorten the data
generation time and can also accelerate the model development period.
Note that 𝛼 = 0.8 means using the entire set of training data because
the data is assigned 80% for training. In addition, 𝛼 = 0 means we only
perform inference on the target design without any finetuning.

In Table 3, our NAS-crafted models can outperform CNN [11] in all
the cases with average 8.59% higher accuracy. It shows our customized
models also perform well when transferring to other designs. In addition,
as 𝛼 decreases from 0.8 to 0.01, the degradation of our model performance
is not as large as CNN [11], which shows that our model has great data-
efficiency. Also, the average improvement ratio in transfer learning
scheme is larger than the one in Table 2, which indicates that our NAS
flow not only can find high-performance model for each specific design
but also can give a better starting point in transfer learning scheme.

6 DISCUSSION

In this section, we first give an analysis of our automatic model cus-
tomization scheme. Then, we compare our NAS-crafted models with
different designs and try to provide insights about the analog layout
performance prediction based on our NAS-crafted models.

Effectiveness of our automatic model customization. We propose
a NAS framework to automatically customize ML models for different
designs and layout quality metrics. To examine the effectiveness of this
customization scheme, we take the NAS-crafted model searched for each
design and then let it train on OTA1 and OTA3 data from scratch. We se-
lect OTA1 and OTA3 as our case study because two designs have highly
different transistor numbers. According to Table 4, based on OTA1 data,
the model searched for OTA1 can outperform other models. This observa-
tion also can be observed in OTA3. Thus, this comparison demonstrates
that our automatic model customization can find the model that can
achieve superior model performance on its target design.

Comparison of our NAS-craftedmodels for different designs. First,
we compare and analyze the NAS-crafted models for OTA1 and OTA3,
whose both layout metrics is the offset voltage but with different tran-
sistor numbers. Figure 5 (a) and (b) sketch our NAS-crafted models for
OTA1 and OTA3, respectively.

In sampled-DAG 1 and 2, we observe OTA1 model utilizes wider and
more convolution layers than the OTA3 model, which can help the de-
sign with more transistors explore richer feature representations. In
sampled-DAG 3 and 4, both models use the most operations compared to
the other sampled-DAGs in their own model. Thus, this stage is the most

Table 3: Transfer learning result with dataset [11].

Design 𝛼
Accuracy ↑

CNN [11] NAS-crafted Improvement

OTA1 0.8 90.29 91.39 1.22%

OTA2

0.8 90.96 92.22 1.39%
0.1 90.10 92.43 2.59%
0.01 88.28 92.16 4.40%
0.0 70.10 83.52 19.14%

OTA3

0.8 90.23 91.05 0.91%
0.1 87.29 91.15 4.42%
0.01 81.21 87.84 8.16%
0.0 74.73 75.01 0.37%

OTA4

0.8 89.91 95.31 6.01%
0.1 88.70 94.79 6.87%
0.01 90.10 92.86 3.06%
0.0 49.72 76.16 53.18%

Avg 83.20 88.91 8.59%

important one to extract some effective features. In this stage, the input
tensor size is reduced by 4x. We speculate this is the appropriate resolu-
tion for these models to identify some impacts of placement relations
between different transistors. In addition, this stage uses more mixed
convolutions and atrous convolutions. Since both mixed convolution and
atrous convolution have large receptive fields, more placement features
in a wide layout region can be captured at this stage. In sampled-DAG 5
and 6, the OTA1 model still needs some large receptive field convolution
operations to enrich the representations before passing it to the head
stage. On the other hand, the OTA3 model just passes the output ex-
tracted by the previous stage to the final head stage. These observations
show that models for large designs require more operations in the last
stage to produce the final prediction on the offset voltage. In addition,
we observe the sampled-DAG 5 and 6 of OTA1 and the sampled-DAG 3
and 4 of OTA3 have the same architectures, which composes of one mix
convolution, one atrous convolution, and one normal convolution layer.
This phenomenon shows that this sub-graph structure could be a good
fit to be constructed in the final stage to detect the offset voltage metric.
To summary, our search strategy produces a significantly more complex
model for OTA1, helping extract placement features on various scales to
boost the performance of this large design model.

We also provide a summary of these NAS-crafted models for four
OTA designs in Table 5 by presenting the number of vertices and edges
in sampled-DAGs at each sampling layer. This table indicates models
for large design (OTA1 and OTA2) indeed need more operations than
models for small designs to predict the layout performance accurately.
Also, OTA2 has muchmore vertices and edges than OTA1. Thus, different
transistor sizing also largely affects the model size and edge connections
because OTA1 and OTA2 have the same schematic but processed with
different sizing.

Table 4: Validation of the customization effectiveness. We take
OTA1 data and perform training on customized models of other
designs from scratch.

Training Data Model Development Accuracy ↑

Searched for OTA1 91.39
Training Searched for OTA2 90.59
on OTA1 Searched for OTA3 91.24

Searched for OTA4 91.24

Searched for OTA1 92.31
Training Searched for OTA2 90.99
on OTA3 Searched for OTA3 93.57

Searched for OTA4 91.61
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Figure 5: NAS-crafted models (a) for OTA1 and (b) for OTA3.

Table 5: Summary of our NAS-crafted models.

Design

sampled-DAG sampled-DAG sampled-DAG

1, 2 3, 4 5, 6

#vertex #edge #vertex #edge #vertex #edge

OTA1 4 7 8 16 3 6

OTA2 6 14 6 11 8 14

OTA3 2 4 3 6 0 2

OTA4 8 10 3 5 4 6

In addition to transistor sizing, different target layout quality met-
rics also have impact on models. The comparison between OTA3 and
OTA4 in Table 5 (similar #transistors but different metrics) indicates
that predicting CMRR requires more computations than offset voltage.
In summary, with different transistor numbers, transistor sizing, and
layout quality metrics, we need to design and craft suitable model struc-
tures to provide better prediction performance. This analysis provides
some insights into future analog placement quality prediction model
development.

7 CONCLUSION

This work proposes a generalized framework, which can be applied in
both digital and analog design automation, to automate the development
of placement quality estimators without any human interference. This
is the first work focusing on automated model development for analog
designs. Under the framework, we can provide customizedMLmodels for
different analog circuit designs and different performance metrics. These
customized models prove to outperform previous layout performance
estimator. We also demonstrate the effectiveness of our search strategy
and customization method with random search and extra experiments.

In addition, our search strategy exhibits high efficiency and scalability.
The search process only takes 0.5 days to develop high-performance
models, shortening the model development cycle in real-world appli-
cations. Based on automatically generated models, we provide insights
to facilitate the future analog performance models development. With
different design characteristics and target layout quality, we need to craft
different model structures to maximize prediction performance. In the
future, we plan to apply our generalized framework to a large range of
essential ML for EDA problems in both digital analog layout automation.
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