
Quantum Persistent Homology for Time Series
Bernardo Ameneyro

Department of Mathematics
The University of Tennessee

Knoxville, TN 37996-1320, USA
bameneyr@vols.utk.edu

George Siopsis
Department of Physics and Astronomy

The University of Tennessee
Knoxville, TN 37996-1200, USA

gsiopsis@utk.edu

Vasileios Maroulas
Department of Mathematics
The University of Tennessee

Knoxville, TN 37996-1200, USA
vasileios.maroulas@utk.edu

Abstract—Persistent homology, a powerful mathematical
tool for data analysis, summarizes the shape of data
through tracking topological features across changes in
different scales. Classical algorithms for persistent homol-
ogy are often constrained by running times and mem-
ory requirements that grow exponentially on the number
of data points. To surpass this problem, two quantum
algorithms of persistent homology have been developed
based on two different approaches. However, both of these
quantum algorithms consider a data set in the form of a
point cloud, which can be restrictive considering that many
data sets come in the form of time series. In this paper,
we alleviate this issue by establishing a quantum Takens’s
delay embedding algorithm, which turns a time series
into a point cloud by considering a pertinent embedding
into a higher dimensional space. Having this quantum
transformation of time series to point clouds, then one may
use a quantum persistent homology algorithm to extract the
topological features from the point cloud associated with
the original times series.

Index Terms—quantum information, topological data
analysis, machine learning, time series, Takens’s embedding
theorem

I. INTRODUCTION

Topological data analysis (TDA) methods capture
shape properties of data, and they have found a number
of applications from biology [1]–[6] to chemistry and
materials science [7]–[11], and from classification and
clustering for action recognition [12], and handwriting
analysis [13], to classification and clustering of signals
[1], [12], [14]–[16]. Persistent homology is a power-
ful technique, on which TDA relies, and summarizes
nonlinear and high-dimensional data retaining useful
information about its shape.

The topological features discovered via persistent ho-
mology are displayed in a persistence diagram, and the
efficient computation of such diagrams using packages
such as Dionysus [17] and Ripser [18] leverage certain
properties of simplicial complexes to create persistence
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diagrams efficiently [19]. However, these classical al-
gorithms are not easily scalable and tend to deteriorate
with the increase in the number of data size. Indeed, a
point cloud consisting of n points possesses 2n potential
subsets that could contribute to the topology, so the
best classical algorithm for estimating these features
with accuracy δ takes time O(2n log(1/δ)) and requires
O(2n) bits to encode the subsets [20].

To bypass the computational bottleneck, quantum al-
gorithms for homology (fixed data resolution/scale) [21],
[22], and more recently, for persistent homology (varying
data resolutions/scales) [23], [24] use a quantum random
access memory (QRAM) to efficiently read a point cloud
data set, and encode it into pertinent quantum states.
One then uses these quantum states to build membership
oracles that identify the features that are present at
different scales. The main advantage of these algorithms
is that they use relatively small QRAMs of size O(n2),
which only require O(log n) calls to access the data [25],
as opposed to classical algorithms that need memories
of size (O(22n).

These quantum algorithms make use of membership
oracles to determine which objects are present at a
certain scale. The oracles are simply subroutines that
take into consideration a pertinent triangulation of point
cloud data, called simplex and a positive number ϵ
encoded into qubits and return a qubit in state |1⟩ if
the simplex is present at scale ϵ, or a qubit in state |0⟩
otherwise. On the other hand, the membership oracles
that exist in the literature so far are merely restricted to
simplicial complexes built from point cloud data sets.

In this paper, a quantum TDA algorithm is proposed
by providing a membership oracle for time series. In-
deed, a QRAM is queried to access the time series,
and a quantum version of the Takens’s delay embedding
theorem [26] is established for transforming a time
series into a point cloud while preserving the relevant
topological information. In turn, the oracle is plugged



into the quantum algorithm for persistent homology [23]
to study time series and their behavior (periodic, chaotic,
etc.) by analyzing their corresponding point cloud.

This paper is organized as follows. Section II in-
troduces the background information like the Takens’s
delay embedding, and summarizes classical and quantum
algorithms for TDA. Section III details our novel mem-
bership oracle as well as the quantum TDA algorithm
for time series. Section IV shows two implementations
of the quantum algorithm to time series data sets, and
finally, Section V concludes with a brief discussion of
our results.

II. BACKGROUND

A. Delay Embedding

Consider a time series xt for t = 1, 2, ..., T . The
Takens’s delay embedding of the time series xt is given
by the vector

vi = (xi, xi+τ , . . . , xi+(d−1)τ ) (1)

for i = 1, ..., T − τd, where d is the dimension of the
point cloud, and τ is the delay parameter. The Takens’s
delay embedding theorem guarantees that the map from
the time series to point cloud is an embedding and as
such all the relevant topological information is retained
[26]. The parametric choices of the dimension, d, and
the delay, τ, has been widely discussed in the literature,
e.g. see [27] and references therein. For example, the
time series is typically embedded into a d = 2, 3, space,
and the delay parameter may be selected based on the
autocorrelation.

B. Vietoris-Rips Filtration and Persistent Homology

An oriented k−simplex or simplex of dimension k
is the collection of all convex combinations formed by
(k+1) ordered and linearly independent vertices, a few
examples are shown in Fig. 1 such as vertices, edges,
triangles, tetrahedrons. They are written as the ordered
list of their vertices, and a subset of this list is called a
face of the simplex.

Homology studies simplicial complexes and chain
complexes. A simplicial complex is a collection of

Fig. 1: Simplices of dimensions k = 0, 1, 2, 3.

simplices such that the faces of any simplex in the
complex are also in the complex and the intersection
of any two simplices in the complex is also a simplex
in the complex. A commonly used simplicial complex
is the Vietoris-Rips (VR) complex, which at scale ϵ is
defined by all the simplices with a diameter of at most
ϵ. So, a simplex σ is in the complex Sϵ if and only
if all the pairwise distances between its points are less
than ϵ. On the other hand, the chain complex of Sϵ over
Z3 = {−1, 0, 1} is the collection of formal sums of
simplices in Sϵ with coefficients in Z3.

Classical algorithms encode the VR complex and
chain complex, then compute its corresponding boundary
matrix, and finally diagonalize it to extract topological
features like the number of connected components, holes,
voids, and k dimensional holes in general.

Algorithms for persistent homology consider instead
a filtration or nested sequence of VR complexes Sϵ0 ⊆
· · · ⊆ SϵN and analyze a boundary matrix in which the
simplices are ordered according to the sequence [20].
Persistence diagrams are used to display the results of
these algorithms. Points on the persistence diagram (b, d)
represent the number of k dimensional holes born at
scale b that disappear at scale d.

C. Quantum TDA Algorithms for point cloud data

The quantum algorithms appeared in [23], [24] estab-
lished for the first time a quantum implementation for
computing the persistent homology of a point cloud to
reveal its topological properties across different scales.
The study in [23] defines a linear map, the persistent
Dirac operator, which tracks topological features across
a pair of different scales. The persistent Dirac operator
is a generalization of the Dirac operator established
in the algorithms of [21], [22], which cannot track
features across different scales/resolutions, and there-
fore they cannot obtain any persistent information. The
work in [24] builds a block-encoding of the persistent
combinatorial Laplacian and uses the quantum singular
value transformation to extract the persistent topological
features.

All of these quantum algorithms use a QRAM to store
and access the data efficiently, they encode the points of
a cloud as qubits and use superpositions to represent
complexes. They also rely on a membership oracle to
identify the simplices that are present at a certain scale
and construct projections onto the corresponding VR
complexes.
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III. QUANTUM METHODOLOGY FOR TIME SERIES

A. Encoding Data and Simplices

Consider a discrete time series xt, t = 1, 2 . . . , T ,
such that T > 0 is an integer. The data are stored in a
QRAM, allowing for their quantum parallel access. The
QRAM maps a quantum state |t⟩|0⟩ to the state |t⟩|xt⟩
where |xt⟩ is a state normalized to reflect the value xt.
Such states can be encoded using O(log2 T ) qubits.

Recall that the point cloud relates to the time series
via the vectors vi given in Eq. (1). We use T − τd
qubits to encode these points so that any simplex σ
formed with these points is represented by a quantum
state |σ⟩, with the qubits corresponding to points in the
simplex in state |1⟩, and all other qubits in state |0⟩.
A balanced superposition of the states represents the
maximal simplicial complex S. Define Z3 = {−1, 0, 1}.
Using these quantum states as a basis of the generated
Hilbert space over Z3 encodes the chain complex needed
to extract the desired topological features.

B. Quantum Delay Embedding

Considering the time series data xt, along with the
embedding parameters, the dimension, d, of the space
to which the times series is embedded, and the delay
parameter, τ , one may check for membership in a sim-
plicial complex by first computing the distances between
points vi in the embedded point cloud, defined in Eq. (1).
The distance between two points vi and vj of the delay
embedded time series is given by

D(vi, vj) = max
0≤t<d

|xi+tτ − xj+tτ |. (2)

With the ability to create quantum states encoding
the values xt, we can construct a quantum circuit that
takes input states of the form |t1⟩|t2⟩|0⟩ and returns
the output state |t1⟩|t2⟩

⃓⃓
|xt1 − xt2 |2

⟩︁
, where the last

register contains an estimate of the difference between
xt1 and xt2 . To obtain an estimate with accuracy δ it
is necessary to make O(δ−1) calls to the QRAM and
O
(︁
δ−1(log2 T )

2
)︁

[21], [25]. Moreover, this circuit can
also operate in quantum parallel.

Notice that a simplex σ is in the VR complex Sϵ if and
only if for each pair of vertices vi and vj in the simplex,
D(vi, vj) ≤ ϵ, where the distance, D, is defined in Eq.
(2). Being able to compute the difference |xt1 − xt2 |
allows us to create an oracle Oϵ that verifies if the
difference |xt1 −xt2 | ≤ ϵ. Such an oracle takes as input
the state |t1⟩|t2⟩|1⟩ and returns the state |t1⟩|t2⟩|aϵ⟩,
where

aϵ =

{︃
1 , |xt1 − xt2 | ≤ ϵ
0 , |xt1 − xt2 | > ϵ

(3)

Given a simplex σ encoded as the quantum state |σ⟩,
where the qubits in state |1⟩ correspond to the vertices
of σ, we can make repeated calls to the oracle Oϵ to
check if the simplex belongs to the VR complex at scale
ϵ. In particular, we need to verify the inequality for all
t1 = i + tτ and t2 = j + tτ with 0 ≤ t < d and
i < j such that vi and vj are vertices of σ, where d and
τ as in Eq. (1) must be chosen according to the data.
The vertices vi, vj are obtained from the quantum state
|σ⟩, and they correspond to the qubits in state |1⟩. One
concludes that σ is in Sϵ if all the calls to the oracle Oϵ

yield an output with the last qubit in state |1⟩. However,
if at least one of the calls returns an output with the last
qubit in state |0⟩, it means the simplex is not yet present
at that scale.

To that end, for fixed d, and τ, a membership oracle
Oϵ

d,τ is constructed such that it acts on a quantum state
|σ⟩|1⟩ according to

Oϵ
d,τ |σ⟩|1⟩ =

{︃
|σ⟩|1⟩ , σ ∈ Sϵ

|σ⟩|0⟩ , σ /∈ Sϵ . (4)

The membership oracle, Oϵ
d,τ , makes at most dk(k+

1)/2 calls to the oracle Oϵ in order to determine whether
a simplex σ of dimension k is present in the VR complex
at scale ϵ.

C. Quantum Algorithm for Persistent Homology

Having established a membership oracle Oϵ
d,τ , defined

in Eq. (4), allows to consider a quantum persistent
homology algorithm for time series. First, one uses
T − τd qubits to represent the point cloud points, vi,
defined in Eq. (1), which result from the embedding.
Then, a simplex σ is represented by the quantum state
|σ⟩, where the qubits corresponding to the vertices of
σ are in state |1⟩, and all others are in state |0⟩. The
boundary map ∂ is essential to extract the topological
features and it can be encoded using Pauli X operators,
which are switches that change state |0⟩ into state |1⟩
and vice versa.

The operator given in Eq. (5) maps a simplex |σk⟩ of
dimension k into a superposition of the (k−1)-simplices
that conform its boundary, which are none other than the
simplices obtained by removing each of the vertices in
σk,

∂k|σk⟩ =
k∑︂

l=0

(−1)lXil |σk⟩. (5)
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Given two fixed scales ϵ ≤ ϵ′, the membership oracle
in Eq. (4) is used to implement the projection operators,
P ϵ and P ϵ′ , onto the subspaces that encode the VR
complexes Sϵ and Sϵ′ . The boundary operator and the
projections are in turn used to build a persistent Dirac
operator

Bϵ,ϵ′

k =

⎛⎜⎝−ξI ∂ϵ,ϵ
k 0

∂ϵ,ϵ†
k ξI ∂ϵ,ϵ′

k+1

0 ∂ϵ,ϵ′†
k+1 −ξI

⎞⎟⎠ , (6)

where ξ is an integer that is chosen according to the
particular data at hand, and ∂ϵ,ϵ′

k+1 is used to denote
P ϵ∂k+1P

ϵ′ .
The parameter ξ in Eq. (6) is an eigenvalue of the

persistent Dirac operator and its eigenspace corresponds
to the kernel of a generalization of the graph Laplacian
[23]. In particular, the multiplicity of this eigenvalue
is the persistent Betti number βϵ,ϵ′

k , which counts the
number of k-dimensional holes in the point cloud that
persist from scale ϵ up to at least scale ϵ′.

To estimate a persistent Betti number, the quantum
phase estimation algorithm is performed on the persis-
tent Dirac operator as in [23] to derive the following
probability distribution

P(p) =
1

N

∑︂
λs

1

M

sin2 πlλs

sin2 π(lλs−p)
M

, (7)

where λs are the eigenvalues of the persistent Dirac
operator in Eq. (6) and N its dimension, while l and
M are parameters to be chosen according to the data.

Next, one may use the Eq. (7) directly to estimate
the persistent Betti numbers. Notice that if l and M are
large enough, each of the terms in the sum in Eq. (7)
is either equal to 1, if p = lλs, or very close to 0, if
otherwise. Therefore P(p) of Eq. (7) is proportional to
the multiplicity of λs at p = lλs and 0 everywhere else.
The desired persistent Betti number is then given by

βϵ,ϵ′

k = NP(lξ), (8)

where the parameters l and M were chosen according
to the eigenvalues of the persistent Dirac operators from
Eq. (6). Indeed, the parameter l was picked as the inverse
of the gap between ξ and the closest eigenvalue, then
M was chosen as a power of 2 larger than the greatest
eigenvalue (in norm) of the persistent Dirac operator
times l.

In order to obtain all persistent Betti numbers at vari-
ous scales and represent them onto persistence diagrams,
one needs to consider an increasing sequence of scales

ϵ0 < ... < ϵn, chosen according to the data. Then one
implements the aforementioned quantum methodology
to obtain the persistent Betti numbers for each pair
ϵi, ϵj with 0 ≤ i ≤ j ≤ n. Since the estimations
are independent, this can be done in parallel. Finally,
once we have all possible Betti numbers, and the scales,
which appear and disappear, one may depict them onto
persistence diagrams. Indeed, if µϵ,ϵ′

k denotes the number
of k−dimensional holes that appear in scale ϵ and
disappear at scale ϵ′, we have µ

ϵi,ϵj
k = β

ϵi,ϵj−1

k −β
ϵi,ϵj
k −(︁

β
ϵi−1,ϵj−1

k − β
ϵi−1,ϵj
k

)︁
, where βk is defined in Eq. (8)

for various scales.

IV. RESULTS

Two time series are considered to discover their shape
properties. The first data is a simulated periodic discrete
time series, and the second is a segment from an elec-
troencephalography (EEG) measurement of a brain taken
while the subject listened to music [28]. In both cases
the task is to employ the quantum framework of Section
III by first embedding the time series into a point cloud
using the quantum delay embedding, and then examining
the topological features of the corresponding embedded
point clouds using the quantum persistent homology
algorithm. Precisely, we simulate the quantum states
and membership oracle Eq. (4) to construct a matrix
representation of the persistent Dirac operator Eq. (6).
Then we obtain the eigenvalues of this matrix and use
Eq. (7) to estimate the persistent Betti numbers.

A. Periodic time series example

Consider the discrete time series based on the periodic
function sin(2πt). Using a delay d = 2, τ = 1, the time
series is embedded into the 2-dimensional point cloud
as shown in Fig. 2. Notice that this function has one

Fig. 2: (a) The graph of sin(2πt) (blue line) along
with a discrete time series (orange dots) given by
t = 0, 1/4, 1/2, 3/4, 1. (b) The point cloud obtained by
Takens’s delay embedding using τ = 1 and d = 2.
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Fig. 3: Vietoris Rips complexes of the embedded point
cloud associated with the sinusodial signal of Fig. 2 at
scales (a) ϵ1 = 1.2, the points are pairwise connected,
which results in a hole in the middle; and (b) ϵ2 = 2.2,
the points become totally connected and the hole dis-
appears. The blue squares are the balls of diameter ϵi
around each point.

Fig. 4: Persistence diagram for the time series in Fig
2. The horizontal axis marks the scales at which the
topological features are born, while the vertical axis
marks the scales at which they disappear. The size of
the dots represents the number of features that appear
and disappear at the same scales. Finally, the orange
dots along the vertical axis represent the connected
components, while the blue dots closer to the diagonal
line are the one dimensional holes.

maximum (or minimum) per period, which translates to
one hole in the corresponding embedded point cloud,
constructed by the quantum Taken’s delay embedding.

To construct the persistence diagram, an increasing
sequence of twenty-five different scales starting at ϵ0 =
0.0 < ϵ1 = 0.1 < · · · < ϵ24 = 2.4 with step size
0.1 taken into account. Using the quantum persistent
homology algorithm, the persistent Betti numbers of
dimensions 0 and 1 for each possible pair of scales are
computed, and depicted in Fig. 4. As expected, a single

Fig. 5: (a) A segment of an EEG signal measured while
the subject listened to music [28]. (b) The point cloud
obtained by the Takens’s delay embedding using τ = 8
and d = 2.

one dimensional hole exists due to periodicity, and this
is born at scale 1 and died at scale 2. On the other hand,
the number of connected components, which is initially
four, is reduced to one when the one dimensional hole
is formed at scale 1.

B. An electroencephalogram example

A segment of fifty measurements from an electroen-
cephalogram (EEG) signal while the subject listened to
music is considered in Fig. 5.

The point cloud obtained using the quantum delay em-
bedding algorithm for a delay τ = 8 and d = 2 is shown
in Fig. 5. Next, the persistence diagrams are constructed
using the quantum persistent homology algorithm for an
increasing sequence of scales ϵk = k, for k = 0, . . . , 15.
The persistence diagram of dimensions 0 (connected
components) and 1 (holes) are depicted in Fig. 6. In this
case one may see a number of small one dimensional
holes that appear and disappear very quickly indicating
that the segment of the signal is not periodic. The number
of connected components is reduced quickly as shown
by the large circles near the origin. Nevertheless, a few
survive past scale 6 which indicates the presence of
clusters in Fig. 5 (b).

V. CONCLUSION AND DISCUSSION

This paper makes possible for the first time, the
topological data analysis of a time series by providing a
quantum delay embedding of a time series into a point
cloud. We introduced a new membership oracle for time
series data, by changing the way in which the data is
stored in the QRAM, and how it is used in the quantum
topological data analysis algorithms to construct the rel-
evant linear operators. The membership oracle provided
here is for Vietoris-Rips complexes, but it is possible
that a similar approach could be extended for other types
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Fig. 6: Persistence diagram for the time series in Fig
5. The horizontal axis states the scales at which the
topological features are born, while the vertical axis
marks the scales at which they disappear. The size of
the dots represents the number of features that appear
and disappear at the same scales. Finally, the orange
dots along the vertical axis represent the connected
components, while the blue dots closer to the diagonal
line are the one dimensional holes.

of complexes dependent on the the data. For example,
lazy witness complexes are similar to VR complexes and
retain the same topological characteristics, but in order
to check for membership it suffices to consider only
a subset of the vertices. This could further reduce the
amount of resources that the quantum algorithm requires
to extract the persistence information, and we plan to
examine this in the future. Additionally, we would like
to do a full scale complexity analysis for the quantum
framework for persistent homology of time series.
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