
Rethink before Releasing your Model:
ML Model Extraction Attack in EDA

Chen-Chia Chang1, Jingyu Pan1, Zhiyao Xie2, Jiang Hu3, and Yiran Chen1

Duke University1 Hong Kong University of Science and Technology2 Texas A&M University3

{chenchia.chang, jingyu.pan, yiran.chen}@duke.edu, eezhiyao@ust.hk, jianghu@tamu.edu

ABSTRACT

Machine learning (ML)-based techniques for electronic design automa-
tion (EDA) have boosted the performance of modern integrated circuits
(ICs). Such achievementmakesMLmodel to be of importance for the EDA
industry. In addition, ML models for EDA are widely considered having
high development cost because of the time-consuming and complicated
training data generation process. Thus, confidentiality protection for
EDA models is a critical issue. However, an adversary could apply model
extraction attacks to steal the model in the sense of achieving the compa-
rable performance to the victim’s model. As model extraction attacks
have posed great threats to other application domains, e.g., computer
vision and natural language process, in this paper, we study model ex-
traction attacks for EDA models under two real-world scenarios. It is the
first work that (1) introduces model extraction attacks on EDA models
and (2) proposes two attack methods against the unlimited and limited
query budget scenarios. Our results show that our approach can achieve
competitive performance with the well-trained victim model without
any performance degradation. Based on the results, we demonstrate that
model extraction attacks truly threaten the EDA model privacy and hope
to raise concerns about ML security issues in EDA.

ACM Reference Format:

Chen-Chia Chang, Jingyu Pan, Zhiyao Xie, Jiang Hu, and Yiran Chen. 2023.
Rethink before Releasing your Model: ML Model Extraction Attack in EDA. In
28th Asia and South Pacific Design Automation Conference (ASPDAC ’23), January

16–19, 2023, Tokyo, Japan. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3566097.3567896

1 INTRODUCTION

Modern IC design development involves a multi-stage design flow. How-
ever, with limited interplay across different stages, tools in the early
stage cannot guarantee high-quality solutions for subsequent stages,
causing the need of many optimization iterations. As technology node
shrinks, this drawback leads to an even longer turnaround time in IC
design development. Thus, new EDAmethodologies for design efficiency
improvement is in a high demand.

ML techniques, which have shown great ability in prediction and
optimization, play important roles in the advanced EDA tool devel-
opment. A wide range of ML-based approaches [11] is proposed to
foresee circuit quality across different stages, such as routability pre-
diction [7, 8, 17, 28, 31] and lithographic hotspot detection [18, 30]. In
addition, many industrial tools [5, 25] have demonstrated great potential
in integrating ML models into EDA design flows to achieve better IC
power, performance, and area (PPA). The achievement exhibits the power
of ML techniques, leading to the high demand of ML for EDA.

With the fast development of ML for EDA techniques, the next im-
portant phase for their wide adoption is about the commercialization.
An essential question to consider is, what will be the possible business

Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9783-4/23/01. . . $15.00
https://doi.org/10.1145/3566097.3567896

��������	��

�����

��	
�

��
�
�����

�
�������������

�����

��������

�
�����������

�	�
�	��

�������
������ ��	�
��

�����
������ ����

�
���
������ ��	�
��

�����
������ ����

��������

�	���	��

���������

�����

Figure 1: An anticipated application scenario ofML for EDAmodel
and the correspondingmodel extraction attack. The vendor trains
a model with circuit features and labels generated by EDA tools.
Users are expected to take their own circuit features as inputs
to query their circuits’ quality. However, malicious users can
take advantage of model outputs to construct similar substitute
models, without the costly label generation process.

scenarios of ML for EDA? We envision two possibilities based on our
understanding. First, some giant semiconductor companies may be able
to develop and use ML models all by themselves. However, this scenario
is hard to be supported by small or even middle-class companies because
its development requires expertise with a diverse background, including
ML, EDA, and IC design. Thus, a more ‘democratic’ scenario that may
benefit more IC designers could be separate ML model vendors and users.
This specialization would be more convenient for those vendors/users
to focus on developing/applying ML models for EDA. We believe this
scenario is practicable since it is also observed in other domain appli-
cations. For example, Microsoft Azure [19] provides natural language
processing models through web Application Programming Interfaces
(APIs) in a secure cloud platform to support queries from users. In this
way, they can choose not to disclose its model to users and thus protect
their model, which has great business value. Similarly, we expect ML
models for EDA can also be provided as a service through APIs, and we
focus on such separate-vendor-user scenario in this paper.

The details of this envisioned scenario is depicted in Figure 1. The
vendor first trains its MLmodel using circuit features and labels produced
by EDA tools. Such ML model could be mostly used to perform quality
prediction (e.g., power, timing, and routability). This well-trained model,
which is also referred to as an oracle, is then accessed by users as a black
box. Therefore, by feeding the circuit features into the oracle, normal
users can obtain the quality prediction results and then use results to
facilitate circuit development in the subsequent stages.

However, in this scenario, the business value of the vendor’s model is
under risk because the model could be replicated by malicious users with
model extraction attacks [13, 15, 20]. In such attacks, malicious users aim
to steal or replicate the remotely deployed model with the goal of achiev-
ing the competitive performance. In the scenario sketched in Figure 1,
malicious users can easily build their own substitute models by exploit-
ing the vendor-provided oracle. They can obtain abundant pseudo labels
in a short period and train models without the label generation process
with EDA tools. In ML for EDA, label generation is a burdensome task.
As the example in Table 1 shows, obtaining only one post-routing label
for a moderate-size design (with 100k nets) requires approximately 2
hours by running the commercial tool. Therefore, constructing a dataset
with thousands of data points would take up to several months for the

252

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Chen-Chia Chang et al.

Table 1: Post-routing label generation time. To generate labels for
the ITC’99 [9] benchmark circuit b_19 with 100k nets, commercial
EDA tool requires approximately 2.22 hourswhile thewell-known
ML model [28] takes 0.03 seconds.

Label generation method Runtime

Routing with EDA tool (Innovus® [6]) 2.22 hr

ML model [28] 0.03 sec

vendors. In comparison, obtaining a label through an existing ML model
only takes 0.03 seconds. Thus, malicious users can save lots of model de-
velopment time by utilizing the oracle. As a result, such model extraction
attacks will greatly hurt vendor’s business advantage. This undesirable
consequence may hamper the development and commercialization of
ML techniques for EDA.

To validate the attack concern, we investigate model extraction tech-
niques in ML for EDA. In other domain applications, there has been some
previous explorations [13, 15, 20]. However, they cannot be directly ap-
plied in EDA tasks. For example, a well-known work [20] tries to extract
a class-specific classifier from a multi-class model. However, its goal
is different to ours because our attacks aim to extract the exact same
model as the oracle. Second, the work [13] utilizes the rotation loss to
robustify pseudo-label training, while the rotation loss is not applicable
for most tasks on circuit layouts because features and labels could be
mismatched after rotation. Finally, the other work [15] attacks models
that input word sequence, while such word sequence is largely different
from the data format of circuits. Given the uniqueness of EDA problems,
we need to study new methods for model extraction attacks.

To the best of our knowledge, we are the first to study the potential
threat of model extraction attack in EDA. To study its threat, we construct
real-world scenarios targeting routability prediction [7, 8, 17, 28, 31],
which is a well-studied ML application for EDA. In this case study, the
attacker’s goal is to construct a new routability model that can achieve
competitive performance with the vendor’s one. Given no ground-truth
labels to the attacker, a naive model extraction attack is to use pseudo
labels from the oracle to train a model. However, the attack model’s
performance cannot be guaranteed because the oracle may produce false
labels due to the model imperfection with unseen data, which could
actually mislead the attack model. Also, the attacker could have limited
query budgets since model vendors may charge users per query or set
a hard limit to prevent potential attacks. In this work, we propose two
effective model extraction methods by selecting reliable and informative
pseudo labels to validate the threat of model extraction attacks.

Our contributions are summarized as follows:

• We raise the concern of model extraction attacks in ML for EDA
and validate that such attacks truly jeopardize the development
and the commercialization of ML models for EDA through our
results. In this study, we employ a realistic attack setup that the at-
tacker has no prior knowledge about the vendor’s model structure
and ground-truth labels.

• To examine the threat of model extraction attacks in EDA, we
propose two effective attack methods. Without query budgets,
we propose a confidence-based data selection method to avoid
attacker model being misguided by the unreliability pseudo labels.
With limited query budgets, we propose an information-based
iterative data selection method to progressively choose the most
informative pseudo labels to the attacker model and apply self-
training to improve the model generalization ability.

• Without query budgets, our method can reach competitive per-
formance to the oracle without any performance degradation and
outperform a naive attack method with 5.0% ROC-AUC improve-
ment. With limited query budgets, our method can outperform
simple random selection with average 3.4% improvement under
varied query budget.

Through this article, we explore the risks of model commercialization
imposed by model extraction attacks and call attentions to more ML
security issues [29] for EDA in future studies.

The reminder of the paper is organized as follows. Section 2 details
the preliminaries, including our target application and two EDA model
extraction scenarios. For each scenario, we propose a data selection
method to optimize the attack performance. For the first scenario, Sec-
tion 3 introduces the confidence-based data selection method. For the
second scenario, Section 4 gives the information-based iterative data
selection method. Then, Section 5 demonstrates the experimental results,
and Section 6 concludes our paper.

2 PRELIMINARIES

In this section, we first describe our target EDA application, the routabil-
ity prediction. Then, we define real-world model extraction scenarios
for EDA.

2.1 Target application: Routability prediction

As a proof of concept demonstration, we apply model extraction attacks
on the routability prediction application [7, 8, 17, 28, 31, 32]. This ML-
based estimation is widely applied to improve placers [12] and routers [8],
making great contribution to the physical design flow. Therefore, we
select it as our target application. Routability prediction estimates the
routability of a placement result based on the routing congestion oc-
curred in global routing. Possessing the routability prediction model,
we can examine whether the current placement result can lead to the
congestion-free routing solution in the later routing stage. Routability
prediction can be formally defined as follows: Given a set of placement
solutions with the features 𝑋 , a routability prediction model 𝑓 takes 𝑋
as inputs to predict routing congestion 𝑌 , where

𝑓 : 𝑋𝑖 ∈ R
𝑤×ℎ×𝑐 → 𝑌𝑖 ∈ B

𝑤×ℎ .

In this equation, 𝑤 and ℎ are the width and height of the placement
result, 𝑐 is the number of features, and B indicates whether this location
has congestion.

2.2 Model Extraction Scenarios

In this section, we detail two representative scenarios for EDA model
extraction attacks and define the corresponding problem formulations.

In the scenario, there are an ML model vendor and a malicious user
(attacker). The well-trained model 𝑓𝑣 provided by the vendor is referred
to as the victim model and can be queried by users as an oracle to provide
prediction results. As a model buyer, the attacker has a set of circuits 𝐶 ,
which generates multiple unlabeled layouts and transforms into features
𝑋𝑖 to be predicted, and we refer this set of features for the circuit 𝑐
as U𝑐 = {𝑋𝑖 |𝑋𝑖 ∈ 𝑐}. The whole unlabeled dataset is referred to as

U = {𝑋𝑖 }
𝑢
𝑖=1 = {

⋃ |𝐶 |
𝑐=1𝑈𝑐 }. The attacker’s objective is to construct a

model 𝑓𝑎 , which is referred to as the attacker model, to achieve the
competitive or even better performance to 𝑓𝑣 . Based on this scenario,
the problem formulation for the model extraction attack can be defined
as follows:

Problem 1 (Application scenario 1). Given a well-trained black-
box victim model 𝑓𝑣 and an attacker’s unlabeled dataset U, the objective is
to build an attacker model 𝑓𝑎 such that the performance of 𝑓𝑎 evaluated on
U is maximized.

In this paper, we further consider the scenario that the attacker has a
query budget. For example, model vendors may deploy ML models as
web APIs to charge users per query. Thus, users could only have limited
queries due to finite budgets. This scenario can be formulated as follows:

Problem 2 (Application scenario 2). Given a well-trained black-
box victim model 𝑓𝑣 , an attacker’s unlabeled dataset U, and a query budget
𝛽 , the objective is to build an attacker model 𝑓𝑎 such that the performance
of 𝑓𝑎 evaluated on U is maximized.

253

ML Model Extraction Attack in EDA ASPDAC ’23, January 16–19, 2023, Tokyo, Japan

Algorithm 1 Confidence-based data selection

Input: Victim model 𝑓𝑣 , unlabeled dataset U
Output: Attacker model 𝑓𝑎 with weights𝑤𝑎
1: P = {(𝑋, 𝑓𝑣 (𝑋)) |𝑋 ∈ U}

2: 𝑤𝑎 = train(𝑓𝑎, P)
3: mc_array = ∅

4: for 𝑋𝑖 ∈ U do
5: MC𝑖 = MC(𝑋𝑖 ,𝑤𝑎) ⊲ Eq. 1
6: mc_array.add(MC𝑖)

7: sort mc_array by non-decreasing order
8: U𝛼 = {𝑋𝑖 |MC𝑖 ∈ mc_array[: 𝛼]}
9: P𝛼 = {(𝑋, 𝑓𝑣 (𝑋)) |𝑋 ∈ U𝛼 }

10: 𝑤𝑎 = train(𝑓𝑎, P𝛼)
11: return 𝑓𝑎 (·|𝑤𝑎)

3 CONFIDENCE-BASED DATA SELECTION

With unlimited query budgets (Problem 1) to the victim model and the
lack of ground-truth labels, a naive solution is to generate pseudo labels
through the victim model. However, the victim model may produce false
labels due to the model imperfection with unseen data. If the attacker
directly trains its model on the data along with pseudo labels, the model
may be misguided by the incorrect labels, leading to poor performance.
Thus, choosing reliable pseudo labels is essential. To address this issue,
we propose a confidence-based data selection method established on
the observation that the high-confidence prediction results is more re-
liable [27]. However, we cannot calculate the pseudo label confidence
through the victim model because the confidence measurement requires
predicted probability [21, 22, 27] whereas the victim model only provides
class prediction. In addition, the most promising metric to evaluate confi-
dence is Monte-Carlo (MC) dropout [10]. The MC dropout calculation is
to apply dropout several times during the model inference and compute
the variance of the predicted probabilities. The variance can be used to
presents the sensitivity of the predicted probability to the weight pertur-
bation. The low sensitivity indicates the model has high confidence to
this data, which in other words, low MC dropout value represents the
high confidence. As we can not perform dropout on the victim model,
we apply a surrogate model for high-confidence data selection instead.

Our confidence-based data selection method is sketched in Algo-
rithm 1. Given the unlabeled dataset U = {𝑋𝑖 }

𝑢
𝑖=1, we first use the victim

model 𝑓𝑣 as a labeling oracle to generate pseudo labels 𝑌𝑖 = 𝑓𝑣 (𝑋𝑖)
and construct a pseudo-label dataset P = {(𝑋𝑖 , 𝑌𝑖)}

𝑢
𝑖=1 (Line 1). Then,

we build a surrogate model 𝑓𝑎 (·|𝑤𝑎) by training 𝑓𝑎 on P (Line 2) and
estimate the pseudo label confidence by the surrogate model (Line 4–6).

The MC dropout calculation is detailed as follows. Without loss of
generality, we assume 𝑌𝑖 is a two-dimensional binary classification pre-

diction, where 𝑌𝑖 ∈ B
𝑤×ℎ and 𝑦 𝑗,𝑘 is an element of 𝑌𝑖 . Given the model

𝑓𝑎 (·|𝑤𝑎), the MC dropout MC𝑖 of 𝑋𝑖 is calculated by

MC𝑖 = MC(𝑋𝑖 ,𝑤𝑎)

=
1

𝑤 ∗ ℎ

𝑤∑

𝑗=1

ℎ∑

𝑘=1

var ({prob(𝑦 𝑗,𝑘 = 1|𝑋𝑖 ; 𝑤̂
𝑡
𝑎)}

𝑇
𝑡=1), (1)

where 𝑤̂𝑡
𝑎 are the dropout weights in time 𝑡 , prob(𝑦 𝑗,𝑘 = 1|𝑋𝑖 ; 𝑤̂

𝑡
𝑎) is the

probability of 𝑦 𝑗,𝑘 being the positive class predicted by the dropout net-
work, and var computes the variance of 𝑇 times predicted probabilities.
Then, the average over all computed variance isMC𝑖 of 𝑋𝑖 . This formula
can be easily extended to a multi-class classification problem with an
arbitrary prediction dimension by averaging the variance of each class
probability.

After computing MC dropout for all data, we sort MC𝑖 in a non-
decreasing order (Line 7) and pick the first 𝛼 𝑋𝑖 to construct U𝛼 such

�������������������

������	���
 ��!�"	���
�	��
	�������	�������

�	��	�������

� 	�������"�
��������������

��� ��
����������������

���������������������

��� ��
�����������������

���	�

�!�� ������
��������������

�	������������������

�����
 ��!�
� ������

����
���	�	��

������	��������

������	��

Figure 2: Overview of our information-based iterative data selec-
tion method. The attacker iteratively queries the victim model
by high-informative unlabeled data according to the current at-
tacker model. After meeting the query budget, the attacker use
the current model to label the rest data and train the final model
with the whole pseudo-label dataset.

that U𝛼 consists of the top-𝛼 high-confidence data, where 𝛼 is an user-
defined parameter. Then, we train the attacker model 𝑓𝑎 on the pseudo-
label dataset P𝛼 = {(𝑋, 𝑓𝑣 (𝑋)) |𝑋 ∈ U𝛼 } (Line 9–10). In the sequel, the
training operation is referred to training the target model from scratch.
Finally, the attacker model 𝑓𝑎 with weights𝑤𝑎 is returned (Line 11). With
this confidence-based data selection method, we can train the attacker
model with reliable data and thus boost the model performance.

4 INFORMATION-BASED ITERATIVE DATA
SELECTION

With limited queries to the victim model (Problem 2), our confidence-
based data selection method is not applicable because we cannot obtain
all pseudo labels to construct a surrogate model to select high-confidence
data. Under the query constraint, a straightforward way to construct
dataset is to randomly select limited data to obtain pseudo labels. How-
ever, the random data selection cannot ensure the chosen data is able to
produce a great training result. Due to the restricted amount of pseudo
labels, selecting data that can most benefit the model is essential to opti-
mize the attacker model performance. Choosing high-informative data
in training [21, 22, 27] has shown great potential in improving the model
performance. As a result, we propose an information-based iterative data
selection method to progressively select data that could give the most
training enhancement to the attacker model. Because the benefit brought
by a pseudo label depends on the current model, we iteratively choose
the highest-informative data based on the current attacker model.

The overview of the information-based iterative data selectionmethod
is sketched in Figure 2. This method includes two main stages: 1) itera-
tive data selection, and 2) self-training method. Iterative data selection
progressively selects high-informative data corresponding to the model
in current iteration until meeting the query budget. Then, self-training
method utilizes the rest unlabeled data to further improve the model
generalization performance. The detailed processes of these stages are
shown in Algorithm 2. First, we define 𝛼 = 𝛽/maxr to be the number
of data to be selected in each iteration, where maxr is an user-defined
parameter representing the iteration number (Line 1), and 𝑟 = 𝛼/|U| to
be the ratio of selected data to the total data in the unlabeled dataset U
(Line 2). Because data derived from different circuit designs tends to have
distinct characteristics (e.g., cell interconnections), the training dataset
should include data from different circuits. Therefore, to construct the
initial training set U𝛽 , we sample 𝑟 portions of data from each U𝑐 , where

U𝑐 is the set of data derived from the same circuit 𝑐 (Lines 4–6). Then,

254

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Chen-Chia Chang et al.

Algorithm 2 Information-based iterative data selection

Input: Victim model 𝑓𝑣 , unlabeled dataset U, query budget 𝛽
Output: Attacker model 𝑓𝑎 with weights𝑤𝑎
1: 𝛼 = 𝛽/maxr
2: 𝑟 = 𝛼/|U|
3: U𝛽 = ∅

4: for U𝑐 ∈ U do
5: U0 = random_select(U𝑐 , 𝑟)
6: U𝛽 = U𝛽 ∪ U0

7: P𝛽 = {(𝑋, 𝑓𝑣 (𝑋)) |𝑋 ∈ U𝛽 }

8: 𝑤𝑎 = train(𝑓𝑎, P𝛽)
9: for iter ∈ 2 · · ·maxr do
10: U𝛽′ = U \ U𝛽
11: en_array = ∅

12: for 𝑋𝑖 ∈ U𝛽′ do
13: EN 𝑖 = EN(𝑋𝑖 ,𝑤𝑎). ⊲ Eq. 2
14: en_array.add(EN 𝑖)

15: sort en_array by non-increasing order
16: U𝛽 = U𝛽 ∪ {𝑋𝑖 |EN 𝑖 ∈ en_array[: 𝛼]}
17: P𝛽 = {(𝑋, 𝑓𝑣 (𝑋)) |𝑋 ∈ U𝛽 }

18: 𝑤𝑎 = train(𝑓𝑎, P𝛽)

19: U𝛽′ = U \ U𝛽
20: P𝛽′ = {(𝑋, 𝑓𝑎 (𝑋 |𝑤𝑎)) |𝑋 ∈ U𝛽′ }

21: P = P𝛽 ∪ P𝛽′

22: 𝑤𝑎 = train(𝑓𝑎, P)
23: return 𝑓𝑎 (·|𝑤𝑎)

we query the victim model 𝑓𝑣 to generate the initial pseudo label dataset
P𝛽 = {(𝑋, 𝑓𝑣 (𝑋)) |𝑋 ∈ U𝛽 } and train 𝑓𝑎 on P𝛽 (Lines 7–8).

With the rudimentary attacker model, we enter the loop of itera-
tive data selection (Line 9-18). In each iteration, for all data in the un-
queried dataset U𝛽′ = U \ U𝛽 , we estimate its amount of information

by entropy [23] based on the prediction of the current attacker model
(Line 11–14). Predictionwith high entropy exhibits themodel uncertainty
to this prediction. That is, the model lacks the knowledge of the data,
indicating labeling this data can potentially provide more information
to the model.

The entropy can be calculated as follows. Without loss of generality,

we assume 𝑌𝑖 ∈ B𝑤×ℎ and 𝑦 𝑗,𝑘 is an element of 𝑌𝑖 . Given the model
𝑓𝑎 (·|𝑤𝑎), the entropy EN 𝑖 of 𝑋𝑖 is:

EN 𝑖 = EN(𝑋𝑖 ,𝑤𝑎)

=
1

𝑤 ∗ ℎ

𝑤∑

𝑗=1

ℎ∑

𝑘=1

𝐻𝑏 (prob(𝑦 𝑗,𝑘 = 1|𝑤𝑎)), (2)

where 𝐻𝑏 (𝑝) = −𝑝 log(𝑝) − (1−𝑝) log(1−𝑝), and prob(𝑦 𝑗,𝑘 = 1|𝑋𝑖 ;𝑤𝑎)

is the probability of 𝑦 𝑗,𝑘 being the positive class. Then, EN 𝑖 of 𝑋𝑖 is the
average over all computed 𝐻𝑏 . Similar to the MC dropout calculation,
this formula can be extended to multi-class classification problems with
an arbitrary prediction dimension.

After computing entropy, we sort EN 𝑖 in a non-increasing order and
add top-𝛼 high-informative data 𝑋𝑖 into U𝛽 (Line 15–16). Then, we

train the attacker model 𝑓𝑎 on the current pseudo-label dataset P𝛽 =
{(𝑋, 𝑓𝑣 (𝑋)) |𝑋 ∈ U𝛽 } (Line 17–18). This selection process will repeat

maxr − 1 times with |U𝛽 | = 𝛽 .
For the rest unqueried data U𝛽′ (Line 19), we apply the self-training

method (Line 19-23), which has shown promising results in semi-supervised
learning [26], to further strengthen 𝑓𝑎 . Self-training is to let the model
train on the unlabeled data and its own pseudo labels. The work [16]
states that self-training is equivalent to entropy regularization on the
unlabeled data and can improve the model generalization performance.
With self-training method, we generate the self-label dataset P𝛽′ =

Table 2: Experiment data setup for the victim and attacker.

Benchmarks (number of placements)

Victim ISCAS’89, ITC’99 (4900)

Attacker IWLS’05, ISPD’15 (2100)

{(𝑋, 𝑓𝑎 (𝑋 |𝑤𝑎)) |𝑋 ∈ U𝛽′ } by the attacker model 𝑓𝑎 (·|𝑤𝑎) (Line 20). Then,
we train the attacker model on the combination of the victim pseudo
label dataset and self-label dataset (Line 21–22). Finally, the attacker
model 𝑓𝑎 (·|𝑤𝑎) is returned (Line 23).

With the information-based iterative data selection method, we can
gradually choose high-informative data that can mostly increase the
prediction ability of the attacker model and thus enhance the model
performance. In addition, we employ the self-training method to fur-
ther improve the model generalization performance with the aid of the
rest unqueried data. Even given the query budget, our method can still
maximize the data utilization to construct the attacker model.

5 EXPERIMENTAL RESULTS

In this section, we first give details of our experiment setup. Then, we
present the results of the confidence-based data selection method and
the information-based iterative data selection method.

5.1 Experiment setup

We benchmark our attack methods on two famous routability prediction
models proposed in [28] and [7]. To show our attacks are model-agnostic,
our methods are evaluated under two conditions, where we first use [28]
as the victim model and [7] as the attacker model and then exchange the
roles of the two.

We validate our method with a comprehensive dataset, which consists
of 74 different circuit designs from multiple benchmarks. Our dataset
consists of 74 different circuit designs in total, where 29 designs are
from ISCAS’89 [3], 13 designs are from ITC’99 [9], 19 designs are from
Faraday and OpenCores in the IWLS’05 [2], and 13 designs are from
ISPD’15 [4]. We adopt the NanGate 45nm technology library [1] with
Design Compiler® [24] for logic synthesis and Innovus® [6] for physical
design. We use different logic synthesis and physical design settings to
generate around 100 placement solutions for each design. Following [7],
input placement features are collected at the post-placement stage, and
the ground-truth routing congestion results are fetched after global
routing. In summary, 7,000 placement solutions are generated from these
74 designs.

We imitate a real-world scenario by separating all designs into two
datasets for the victim and attacker. Since circuit designs are seldom
shared between companies, the victim and attacker are not using com-
mon designs. In addition, they do not use designs from the same bench-
mark because these designs tend to be more similar to each other. For the
victim and attacker dataset, we randomly select 80% for training and 20%
for testing. The detailed data splits for the victim and attacker are shown
in Table 2. The victim has designs from ISCAS’89 [3] and ITC’99 [9]
with totally 4900 placement solutions. The attacker has designs from
IWLS’05 [2] and ISPD’15 [4] with 2100 placement results. We assign
more training data to the victim model because the model vendor is
expected to provide a well-established model. In all experiments, the
model performance is evaluated based on the attacker testing set be-
cause in practice the attacker’s goal is to construct a model that can have
competitive performance on the attacker’s own designs.

Following previous routability prediction works [7, 8], we employ the
area under the receiver operating characteristic curve (ROC-AUC) as the
metric to evaluate the model performance. A higher ROC-AUC indicates
that higher precision of routing congestion prediction can be achieved
at the same false positive rate.

255

ML Model Extraction Attack in EDA ASPDAC ’23, January 16–19, 2023, Tokyo, Japan

Table 3: Routability prediction results with unlimited access to victim model. The victim model structure is [28], and the attacker
model structure is [7].

Models & Methods
ROC-AUC on designs (#nets)

ROC-AUC on all layouts
spi (3.0k) mgc_edit_dist_a (13.1k) usb_funct (20.6k) mgc_des_perf_b (112.9k)

Victim 0.915 0.945 0.906 0.856 0.892

All pseudo-labels 0.862 0.920 0.864 0.833 0.852

Confidence-based 0.891 0.932 0.889 0.845 0.880

Table 4: Routability prediction results with unlimited access to victim model. The victim model structure is [7], and the attacker
model structure is [28].

Models & Methods
ROC-AUC on designs (#nets)

ROC-AUC on all layouts
spi (3.0k) mgc_edit_dist_a (13.1k) usb_funct (20.6k) mgc_des_perf_b (112.9k)

Victim 0.895 0.935 0.874 0.835 0.871

All pseudo-labels 0.871 0.884 0.855 0.797 0.833

Confidence-based 0.895 0.923 0.888 0.837 0.875

We adopt the attackmethodsmentioned in Section 3 and 4 to construct
our attacker models against the victim model based on two scenarios in-
troduced in Section 2.2. Each attack method runs on one NVIDIA TITAN
RTX GPU with Intel® Xeon® E5-2687W CPUs. We use the following
hyperparameters to conduct model training for both the victim and at-
tacker models: We train models for 120 epochs with Adam optimizer [14],
a batch size of 32, and a fixed learning rate of 3 ∗ 10−4. We use an L2
weight decay of 10−5 and ReLU activation to combat overfitting and
improve generalization.

5.2 Attack results with unlimited access

With unlimited oracle access, we test our confidence-based data selection
algorithm against the naive attack method, which the attacker model is
trained on the whole pseudo-label dataset. In Algorithm 1, we set 𝛼 =
0.4 ∗ |U| and dropout ratio to 0.2 with dropout times 𝑇 = 10. The model
performance is evaluated by the average ROC-AUC over all designs in
the testing set. To valid the model-agnostic property of our method, we
conduct two experiments where the model used as the victim (attack)
model in the first experiment will become the attack (victim) model in the
second experiment. Note that the prediction results of different layouts
from the same design is important in order to perform optimization.
Therefore, we conduct the case study on four representative designs
with net numbers ranging from 3.0k to 112.9k.

First, we apply [28] as the architecture of the victim model, and [7] as
the architecture of the attacker. Table 3 shows that the model trained by
Algorithm 1 has only 1.4% negligible performance gap between the victim
model, while the model trained by the naive attack approach has 4.5%
degradation. The performance loss may come from the imperfections of
the pseudo labels and the relatively less data amount in the attacker’s
side. In addition, Algorithm 1 can outperform the naive attack method
by 3.3% higher ROC-AUC on all layouts. For each specific design, the
model trained by our algorithm achieves 1.3% to 3.4% higher ROC-AUC
over the model trained by the naive attack method.

Second, we exchange the architectures of victim model and the attack-
ers (victim: [7], attacker: [28]). The results are demonstrated in Table 4.
Different from previous results, Algorithm 1 can outperform the victim
model by 0.5%, while the model trained by the naive attackmethod shows
4.4% performance degradation. This outperformance may be due to the
data heterogeneity between the victim’s training set and the attacker’s
one because our result is evaluated in the attacker’s testing set. For dif-
ferent design comparisons, Algorithm 1 outperforms the model trained
by naive attack approach with 2.8% to 5.0% improvement. Additionally,
Algorithm 1 can get 5.0% improvement in the overall ROC-AUC. To fur-
ther validate our results, we show the routability prediction visualization
in Figure 3. Algorithm 1 can achieve similar prediction results with the

(a) Predicted by the victim
model.

(b) Predicted by the model
trained by Algorithm 1.

(c) Predicted by the attacker
model trained by the naive
attack method.

Figure 3: Examples of the routability prediction results produced
by the victim model, the attacker model trained by Algorithm 1
and trained by the naive attack method. Yellow regions indicate
the predicted congestion.

victim model, while the model trained by the naive method predicts
extra wrong congestion.

5.3 Attack results with query budget

With limited query budget, we compare the performance of information-
based iterative data selection approach with the random selected method.
Following Section 5.2, we conduct two experiments where we assign
different model architectures to the victim and attacker models to show
our method is model-agnostic. The model performance is evaluated by
the average ROC-AUC over all designs. To show the effectiveness of our
method with different budgets, we benchmark our method with varied
query budgets 𝛽 = {50, 100, 200, 400}. Thus, we further compare random
selection plus self-training with our method and random selection to
examine performance contribution of each step. To eliminate the bias of
randomness, for all the methods, we use the average ROC-AUC of five
rounds as evaluation metrics.

First, we assign [28] to the victim, and [7] to the attacker. Figure 4 (a)
shows that our method (green line) can outperform the model trained
with the random selection (red line) on every 𝛽 and achieve average 1.3%
higher ROC-AUC. Most importantly, our method reaches a maximum
of 2.5% improvement over the random selection with 𝛽 = 50. In addi-
tion, compared our method and the random selection plus self-training
method (blue line), the effectiveness of iterative data selection is shown
by achieving 0.5% improvement on average. Similarly, according to the
results of the random selection and the one plus self-training method,
self-training method contributes 0.9% ROC-AUC.

Then, we swap the architectures of victim model and the attackers
(victim: [7], attacker: [28]). As shown in Figure 4 (b), Algorithm 2 (green
line) achieves higher ROC-AUC than the random selection (red line)
on every 𝛽 with average 3.4% improvement. Especially when 𝛽 = 50

256

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Chen-Chia Chang et al.

���

���

Figure 4: Routability prediction results with a query budget to
access the victim model. (a) Victim: [28], and attacker: [7]. (b)
Victim: [7], and attacker: [28]

and 100, Algorithm 2 achieves remarkable 5.3% and 6.2% improvement
compared to the random selection. This trend can be explained that
when 𝛽 is very limited, selecting high-informative data is very important.
Then, Algorithm 2 reaches up to a 2.6% higher ROC-AUC and achieves
1.4% average improvement compared to the random selection plus self-
training method (blue line). Also, the random selection plus self-training
method outperforms the random selection on every 𝛽 with average 1.9%
ROC-AUC improvement. As a result, each step in Algorithm 2 has shown
its ability to improve the attacker training.

6 CONCLUSION

In this work, we investigate and proposemodel extraction attackmethods
inML applications for EDA for the first time.We hold strong assumptions
that the attacker only has unlabeled data and has no knowledge about the
victim model. With unlimited oracle access, we propose the confidence-
based data selection method to effectively choose reliable pseudo labels
to prevent performance degradation. Our evaluation, which simulates in
routability prediction problem, shows that our confidence-based data
selection method not only achieves competitive performance with the
oracle but also gets superior 4.2% ROC-AUC improvement than the naive
attack method. With a limited query budget, we propose the information-
based iterative data selection method, which selects the most informative
data and uses the self-training method to favor the attacker training.
Our result shows an average 3.4% ROC-AUC improvement compared to
the random selection method. Also, our iterative data selection and the
self-training method both show their effectiveness with 1.4% and 1.9%
improvement by testing the random selection plus self-training method.
In summary, our model extraction attack methods can achieve the similar
performance with victim model, which indicates that the attacker can
bypass the burdensome label generation process and at the same time
damage the business value of the model vendor. This attack shows its
possibility hinder the development and the commercialization of ML
techniques for EDA. Thus, we hope to raise concerns on ML security for
EDA and motivate future studies.

ACKNOWLEDGMENTS

This work is supported by SRC GRC-CADT 3103.001/3104.001, NSF CCF-
2106725/2106828, and ACCESS – AI Chip Center for Emerging Smart
Systems, sponsored by InnoHK funding, Hong Kong SAR.

REFERENCES
[1] [n.d.]. NanGate 45nm Open Cell Library. https://si2.org/open-cell-library/
[2] Christoph Albrecht. 2005. IWLS 2005 benchmarks. In International Workshop for Logic

Synthesis (IWLS): http://www. iwls. org.
[3] Franc Brglez et al. 1989. Combinational profiles of sequential benchmark circuits. In

IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 1929–1934.
[4] Ismail S Bustany et al. 2015. ISPD 2015 benchmarks with fence regions and routing

blockages for detailed-routing-driven placement. In Proceedings of the 2015 Symposium
on International Symposium on Physical Design. 157–164.

[5] Cadence. 2021. Cadence Cerebrus Intelligent Chip Explorer. https://www.
cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-
floorplanning/cerebrus-intelligent-chip-explorer.html

[6] Cadence. 2021. Innovus Implementation System. https://www.cadence.com/en_US/
home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/
innovus-implementation-system.html

[7] Chen-Chia Chang et al. 2021. Automatic Routability Predictor Development Using
Neural Architecture Search. In 2021 IEEE/ACM International Conference On Computer
Aided Design (ICCAD). IEEE, 1–9.

[8] Jingsong Chen et al. 2020. PROS: A plug-in for routability optimization applied in the
state-of-the-art commercial eda tool using deep learning. In International Conference
On Computer Aided Design (ICCAD). IEEE.

[9] Fulvio Corno, Matteo Sonza Reorda, and Giovanni Squillero. 2000. RT-level ITC’99
benchmarks and first ATPG results. Design & Test of computers (2000).

[10] Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a bayesian approximation: Rep-
resenting model uncertainty in deep learning. In international conference on machine
learning. PMLR, 1050–1059.

[11] Guyue Huang et al. 2021. Machine learning for electronic design automation: A survey.
ACM Transactions on Design Automation of Electronic Systems (TODAES) 26, 5 (2021),
1–46.

[12] Yu-Hung Huang, Zhiyao Xie, Guan-Qi Fang, Tao-Chun Yu, Haoxing Ren, Shao-Yun Fang,
Yiran Chen, and Jiang Hu. 2019. Routability-driven macro placement with embedded
cnn-based prediction model. In Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE.

[13] Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and Nicolas Pa-
pernot. 2020. High accuracy and high fidelity extraction of neural networks. In 29th
USENIX Security Symposium (USENIX Security 20). 1345–1362.

[14] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

[15] Kalpesh Krishna et al. 2019. Thieves on sesame street! model extraction of bert-based
apis. arXiv preprint arXiv:1910.12366 (2019).

[16] Dong-Hyun Lee et al. 2013. Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks. In Workshop on challenges in representation
learning, ICML, Vol. 3. 896.

[17] Rongjian Liang et al. 2020. DRC hotspot prediction at sub-10nm process nodes using
customized convolutional network. In International Symposium on Physical Design
(ISPD).

[18] Kang Liu et al. 2020. Adversarial perturbation attacks on ML-based CAD: A case study
on CNN-based lithographic hotspot detection. ACM Transactions on Design Automation
of Electronic Systems (TODAES) 25, 5 (2020), 1–31.

[19] Microsoft. 2021. Microsoft Azure. https://azure.microsoft.com/services/machine-
learning

[20] Tribhuvanesh Orekondy et al. 2019. Knockoff nets: Stealing functionality of black-
box models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 4954–4963.

[21] Tobias Scheffer et al. 2001. Active hidden markov models for information extraction. In
International Symposium on Intelligent Data Analysis. Springer, 309–318.

[22] Burr Settles. 2009. Active learning literature survey. (2009).
[23] Claude Elwood Shannon. 2001. A mathematical theory of communication. ACM

SIGMOBILE mobile computing and communications review 5, 1 (2001), 3–55.
[24] Synopsys. 2021. Design Compiler Implementation System. https://www.synopsys.

com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
[25] Synopsys. 2021. DSO.ai: AI-Driven Design Applications. https://www.synopsys.com/

implementation-and-signoff/ml-ai-design/dso-ai.html
[26] Jesper E Van Engelen and Holger H Hoos. 2020. A survey on semi-supervised learning.

Machine Learning 109, 2 (2020), 373–440.
[27] Keze Wang et al. 2016. Cost-effective active learning for deep image classification. IEEE

Transactions on Circuits and Systems for Video Technology 27, 12 (2016), 2591–2600.
[28] Zhiyao Xie et al. 2018. RouteNet: Routability prediction for mixed-size designs using

convolutional neural network. In IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). IEEE.

[29] Zhiyao Xie et al. 2022. The Dark Side: Security Concerns in Machine Learning for EDA.
arXiv preprint arXiv:2203.10597 (2022).

[30] Haoyu Yang et al. 2021. Attacking a CNN-based Layout Hotspot Detector Using Group
Gradient Method. In 2021 26th Asia and South Pacific Design Automation Conference
(ASP-DAC). IEEE, 885–891.

[31] Cunxi Yu and Zhiru Zhang. 2019. Painting on placement: Forecasting routing congestion
using conditional generative adversarial nets. In Design Automation Conference (DAC).

[32] C. Yu and Z. Zhang. 2019. Painting on placement: forecasting routing congestion using
conditional generative adversarial nets. In ACM/IEEE Design Automation Conference.

257

