ON AUTOMORPHIC DESCENT FROM GL; TO Gs

JOSEPH HUNDLEY AND BAIYING LIU

ABSTRACT. In this paper, we study the functorial descent from self-contragredient cuspidal auto-
morphic representations m of GL7(A) with L% (s, 7, A*) having a pole at s = 1 to the split exceptional
group G2(A), using Fourier coefficients associated to two nilpotent orbits of E7. We show that one
descent module is generic, and under suitable local conditions, it is cuspidal and 7 is a weak func-
torial lift of each of its irreducible summands. This establishes the first functorial descent involving
the exotic exterior cube L-function. However, we show that the other descent module supports not
only the non-degenerate Whittaker-Fourier integral on G2(A) but also every degenerate Whittaker-
Fourier integral. Thus it is generic, but not cuspidal.

1. INTRODUCTION

In the theory of automorphic forms one of the major open problems is to construct functorial
correspondences between automorphic forms on different groups. This has been accomplished in
particular cases by various methods, including the converse theorem, the theta correspondence, the
trace formula, and the theory of functorial descent.

The theory of functorial descent was pioneered by Ginzburg, Rallis, and Soudry. It serves as a
complement to the constructions of functorial liftings, and can be used to characterize the image
of a functorial lifting.

We briefly recall these notions. Let F' be a number field, A its adele ring, and H a connected
reductive F-group. Given an irreducible automorphic representation = = ®,7, of H(A) we obtain a
finite set S of places of F' and a semisimple conjugacy class {t,,} in “H for each v ¢ S. We say that
two automorphic representations 7w and 7’ are nearly equivalent if {tr,} = {tx/} for all v outside
a finite set. Given an L-homomorphism ¢ : “H — G we say that an irreducible automorphic
representation IT of G(A) is a weak functorial lift, relative to ¢ of an irreducible automorphic
representation 7 of H(A) if {tr,} = {¢(tx,)} for all v outside a finite set. Clearly, in this situation,
every element of the near equivalence class of II is also a weak functorial lift of every element of the
near equivalence class of w. We also say that 7 is a weak functorial descent of II. The Langlands
functoriality conjecture then predicts that the set of weak functorial lifts is nonempty for all = and
all . This has been proved in a number of cases, though the general case is still very much open.

Supposing that a lifting exists, one may ask what its image is. Here again, the general case is
open but the problem has been solved in some cases. For example, Ginzburg, Rallis and Soudry
showed, using descent together with the lifting results of Cogdell, Kim, Piatetski-Shapiro, and
Shahidi, that an automorphic representation of GLs,(A) is a weak functorial lift from a generic
cuspidal representation of SOg,.1(A) (for the inclusion Sp2,(C) < GLa,(C)) if and only if it is
an isobaric sum 71 ®--- 8 7, of distinct cuspidal representations 7; of GLay,, (A) for 1 <4 < r, such
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that L(s,7;, A?) has a pole at s = 1 for each i. In particular, a cuspidal representation of GLa, (A)
has a weak functorial descent to SOay,41(A) if and only if its exterior square L-function has a pole.
Notice that Spo,(C) is embedded into G Lo, (C) as the stabilizer of a point in general position in
the exterior square representation. Ginzburg, Rallis and Soudry also obtained similar results for
other classical groups, as well as metaplectic groups.

The connection between the exterior square L-function and the lifting is clear. It was an earlier
result of Ginzburg, Rallis, and Soudry, that L° (s,7,7%) has a pole at s = 1 whenever 7 is a weak
functorial lift relative to the above inclusion. Moreover, this result was predicted by the functori-
ality and generalized Ramanujan conjectures, before it was proved. If a cuspidal representation 7
of GLy,(A) is the weak functorial lift of a cuspidal representation o of SOsgy1(A) relative to the
inclusion Spa,(C) = G Lo, (C), then L5(s,7,A2) = L% (s, 0, A2)((s), where A2 is the second funda-
mental representation of Sps,(C), which satisfies A2 = /\% ® 1, where 1 is the trivial representation.
Clearly ¢° (s) has a pole at s =1 for all finite sets S. Further, the functoriality conjecture predicts
that L(s,o,A2) should be the standard L-function of the weak functorial lift of o to GLdimAg,

relative to /\(2). This lift may not be cuspidal, but the generalized Ramanujan conjecture predicts
that o will be tempered at all places, in which case its lift will be as well. This forces the cuspidal
support of any weak functorial lift to be unitary, which is sufficient to ensure nonvanishing of its
L-function on the line Re(s) = 1.

In general, by the same reasoning, if 7 is a finite dimensional representation of “G and the image
of ¢ : "H - L@ is contained in the stabilizer of some nonzero point in the space of r, and if 7 is an
irreducible globally generic cuspidal representation of H(A) then L% (s,II,7) is expected to have a
pole at s =1 for any weak functorial lift IT of 7 to G relative to .

The descent results of Ginzburg, Rallis, and Soudry point to a converse result: if L° (s,II,7) has
a pole at s =1, then II should be a weak functorial lift relative to the inclusion of a reductive group
which stabilizes a nonzero point in the space of r. (A more refined conjecture is given in [L04].)

The descent method of Ginzburg, Rallis, and Soudry has been extended to GSpin groups (which
are not classical, but have classical L-groups) in [HS16]. The preprint |[G18] investigates the ex-
tension of the method of descent into exceptional groups. Ginzburg has also investigated descent
from Eg to Fy, together with the first named author, in an unpublished preprint. In this paper, we
investigate an interesting case in the exceptional group GE7.

The method may be described as follows. Suppose that there is a reductive group A such that

(1) G is a Levi subgroup of A
(2) r appears in the restriction to “G of the adjoint representation of ©A
(3) H is the stabilizer in A of some sly-triple in the Lie algebra a of A.

Then the descent method proceeds by the following steps:

(1) Take an irreducible cuspidal automorphic representation 7 of G(A).

(2) Consider Eisenstein series on A(A) induced from 7. The L-function L(s,,r) appears in
the constant term of these Eisenstein series. Consider the corresponding residual represen-
tation.

(3) Consider a Fourier coefficient attached to the sla-triple with stabilizer H. This Fourier coef-
ficient will map automorphic forms on A(A) to smooth automorphic functions of uniformly
moderate growth on H(A) (or in some cases the metaplectic double cover of H(A)). Ap-
plying this Fourier coefficient to our residual representation, we obtain a space of functions
on H(A) (or its double cover) which we call the descent module.

For example, in the classical work of Ginzburg, Rallis and Soudry, the group GLs, appears as a

Levi of SOy, and for suitable slo-triples in s04,, the stabilizer in SOy, is isomorphic to SO9, 1. We

remark that in some cases L° (s,m,r) will appear in the constant term along with other L-functions,

and it will be necessary to add some assumption above and beyond L° (s,7,r) having a pole. For
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example, in the descent from GLa, to *%% one must assume that the exterior square L-function
has a pole at 1, and that the standard L-function is nonvanishing at %

As mentioned, in some cases the descent module consists of genuine functions on a metaplectic
double cover. Since this does not apply to the case we consider in this paper, we will not go further
into this. We remark that while the functions in the descent module are easily seen to be smooth,
invariant by H(F') on the left, of uniformly moderate growth, and finite under translations of a
maximal compact subgroup of H(A), it is not easy to see whether or not they are finite under the
action of the center of the universal enveloping algebra. So, they are not necessarily automorphic
forms.

In the classical work of Ginzburg, Rallis, and Soudry, it is possible to show that descent module is
cuspidal (hence L?, so that its closure is a Hilbert space direct sum of irreducibles), and that every
summand is a weak descent of the original representation on G La,(A). Moreover, it is orthogonal
to the kernel of the non-degenerate Whittaker-Fourier integral on H(A), which implies that it is
multiplicity free and that every summand is globally generic. In some cases, it can even be shown
that the descent module is irreducible. In [HS16], it is shown that the descent module is cuspidal,
that every summand is a weak descent, and that the non-degenerate Whittaker-Fourier integral
does not vanish on the descent module (so at least one summand is globally generic). The stronger
result — that the descent module is orthogonal to the kernel of the non-degenerate Whittaker-Fourier
integral — should follow from work in progress of Asgari, Cogdell, and Shahidi.

There are a number of cases where the conditions above are satisfied with A being one of the
exceptional groups. In this paper we consider the case when A = GE7, and G = GLy x GLq. The
embedding of GL7 x GL; into GE7 can be chosen so that r is the product of the A% representation
of GL7 and the standard representation of GLq. We show that it suffices to consider the case when
the automorphic representation of GGL7 is self-contragredient and the character of GL; is trivial.
The group GL7 x GLq acts on our space with a Zariski-open orbit and the stabilizer of any point in
this orbit is the product of the center of GE; and a subgroup of GL7 of type G3. (Cf. pp. 356-57
of [FH91], and Lemma below.) The stabilizer of any nonzero point which is not in the Zariski
open orbit is not reductive. Thus we consider irreducible self-contragredient cuspidal automorphic
representations m of GL7(A) such that the A3 L-function has a pole at s = 1, i.e., of Go type
by Definition The philosophy discussed above predicts that such cuspidal representations
should be weak functorial lifts from Ga. We first construct square integrable residual representations
of GE7(A). At this point, an interesting feature emerges: it turns out that there are two orbits of
slp triples in e7 with stabilizers of type G2. Thus, we have two different Fourier coefficients which
we can apply to obtain two descent modules on the exceptional group Ga2(A). In this paper we
study both descent modules.

A similar situation was considered previously in [GJR02], where the authors consider three
different orbits of a group of type Dy, all of which have a stabilizer of type A;. However, the two
orbits considered in our paper are not related to one another by the automorphism group of e7,
whereas the three orbits considered in |[GJR02] are permuted by the automorphism group of 0.

The functorial lifting corresponding to this case is known, at least for generic cuspidal represen-
tations. By [GRS97] generic cuspidal representations of G2(A) can be lifted to Spg(A) using the
minimal representation of F7. It can then be lifted to G L7 using the work of Cogdell-Kim-Piatetski-
Shapiro-Shahidi [CKPSS04], Arthur [A13], and Cai-Friedberg-Kaplan [CFK18]. It is very natural
to ask whether the descent from GL7 to Gy could be constructed by combining the descent from
GL7 to Spg from [GRS11] with the theta-type correspondence from Spg to G2 in [GRS97]. To
the best of our understanding, this should be possible, but would require proving the following
conjecture.

Conjecture 1.0.1. Let 7w be an irreducible self-contragredient cuspidal automorphic representation
of GL7(A) such that L%(s,m,A%) has a pole at s = 1, and let o denote the irreducible descent of
3



m to Sps(A). Then o has trivial central character and satisfies the three equivalent conditions of
Theorem 1.1 of [GJO1].

An analogy with the earlier work of Ginzburg-Rallis-Soudry, as well as [HS16], would predict that
the descent module should be cuspidal, support the non-degenerate Whittaker-Fourier integral, and
be a direct sum of weak descents of our original cuspidal representation of GL7. In this respect,
the two descent modules behave totally differently.

In one case we prove that the descent module is generic, and under suitable local conditions, it
is cuspidal and 7 is a weak functorial lift of each irreducible summand. One piece that is missing,
in comparison to [GRS11], [HS16], is a means of showing that when 7 is self-contragredient and
LS (s,m,A%) has a pole at s = 1, the Satake parameters of the components of 7 at unramified places
must contain conjugacy classes of G2(C). We show cuspidality under the assumption that at least
one of them does, and weak functorial lifting under the assumption that all but finitely many of
them do. In particular, we prove the following theorem (cf. Theorem .

Theorem 1.0.2. Let F' be a number field and let m be an irreducible cuspidal automorphic repre-
sentation of GL7(Ar). Suppose that the following conditions hold.

(1) The partial L-function L(s,m, A%) has a pole at s = 1, for some finite set S.

(2) For almost all places v of F' at which 7, is unramified, the Satake parameter of the local
component 7, is conjugate, in GL7(C), to an element of r7(G2(C)), where r7 is standard
representation of Gs.

Then there exists a globally generic cuspidal automorphic representation o of Ga(Ap) such that
for almost all places v of F' at which o, is unramified, the Satake parameter of m, is conjugate, in
GL7(C), to the Satake parameter of o,,.

We believe that it should be possible to replace the second condition with the weaker condi-
tion that 7 is self-contragredient or has trivial central character. That is, we have the following
conjecture.

Conjecture 1.0.3. Let 7w be an irreducible self-contragredient cuspidal automorphic representation
of GL7(A) such that L°(s,m,A%) has a pole at s = 1. Then for almost all places v of F' at which
7y is unramified, the Satake parameter of the local component , is conjugate, in GL7(C), to an
element of r7(G2(C), where 77 is standard representation of Gs.

This conjecture turns out to be equivalent to Conjecture More generally, if 7 satisfies
conditions (1) and (2) of Theorem then its descent to G2 contains an irreducible generic
cuspidal automorphic representation of Gy(A), which we may theta-lift to Sps(A) using the lifting
from [GRS97]. By a result of Savin, [HKT19, Appendix A], the lifting is generic, and lifts weakly
to 7 (which forces it to be cuspidal due to the Strong Multiplicity One Theorem for GL7), and so,
by Strong Multiplicity One Theorem for Spg, it contains the descent of 7, which therefore satisfies
the equivalent conditions of [GJ01]. Conversely, if the descent of 7 to Spg satisfies the equivalent
conditions of [GJ01], then it is the theta lift of a generic cuspidal representation of G5(A), and this
lifting is functorial. It follows that 7 itself is a functorial lift from G5 and condition (2) of Theorem
[1.0.2 is satisfied.

The descent method is constructive and makes use of an Eisenstein series on the similitude
exceptional group GE;. We prove that this Eisenstein series has a pole whenever condition (1)
of theorem is satisfied. In fact, we could replace condition (1) with the hypothesis that the
FEisenstein series has a pole. Indeed, for any cuspidal automorphic representation of GL7 such that
the Eisenstein series has a pole, the descent method produces a space of functions on Gy which
is globally generic in the sense that the Whittaker integral does not vanish identically on it. See

Remark [7.1.18) Under condition (2) we are able to prove that it is cuspidal and that all of its
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irreducible components lift weakly to 7, but in each of these proofs, condition (2) can be replaced
from a weaker hypothesis applied to the residue of the Eisenstein series. See Remarks and
[.5.7

The result above establishes the first functorial descent which involves the exotic exterior cube
L-function. This is an important step towards fully understanding the Langlands functoriality from
G2 to GL7 which is not an endoscopic type. As pointed out to us by Michael Harris, Theorem [1.0.2]
has interesting applications already, for example, to [BHKT19, Conjecture 11.6] and the surjectivity
of local Langlands correspondence ([HKT19]).

The other descent module behaves totally differently. It supports not only the non-degenerate
Whittaker-Fourier integral on G2(A), but also every degenerate Whittaker-Fourier integral. Thus
it is generic, but not cuspidal. It has a nontrivial constant term for each proper parabolic of Go,
and its constant terms for the two maximal parabolics are generic representations of GL2(A). And
this holds for every cuspidal representation of G'L7(A) such that the A% L-function has a pole! See
Theorem [8.0.1]

This outcome is not entirely without precedent. Descent constructions in the exceptional group
Fy were previously studied in |G18] from a different point of view. In [G18], Ginzburg introduces
a general family of lifting integrals which interpolates between theta type liftings at one end of the
spectrum and descent constructions at the other end. He also introduces a “dimension equation”
which is said to hold in every known case where an integral of his type gives a functorial corre-
spondence. He then uses the dimension equation to decide which automorphic representations to
apply a Fourier coefficient to (instead of using a residual representation obtained from a pole of
L3(s,m,T)).

This approach makes sense from the perspective of the techniques which are used to prove
genericity and cuspidality, namely identities of unipotent periods. The approach taken in |G18] is
to take the unipotent period obtained by composing the descent Fourier coefficient with either a
Whittaker integral or a constant term on the stabilizer H, and relate this period to some combination
of coefficients attached to slo-triples and constant terms.

One case of particular interest is when A = Fy, G = GSpg, r is the spin representation of
L@ = GSpinz(C), and H = Gs. In this case, it is shown in [G18] that

(1) The non-degenerate Whittaker-Fourier integral of the descent module of any representation
& can be expressed in terms of coefficients attached to the orbits Fy, Fy(a1), and Fy(as), as
well as the constant term along the C3 parabolic, and

(2) The constant terms of the descent module can be expressed in terms of exactly the same
four unipotent periods!

This is very similar to our result, which relates both the non-degenerate Whittaker-Fourier integral
and all degenerate Whittaker-Fourier integrals of the descent to the same unipotent period on
G FE~. This period is not one of the types considered by Ginzburg, but it is in a more general family,
introduced by Gomez, Gourevich and Sahi in |[GGS17].

Another case which has been studied somewhat is when A = FEg, G = GEg x GLq, r is 27-
dimensional, and H = Fj. This case is considered in work in progress of Ginzburg and the first
named author. In that case, also, it appears that the descent module is generic, but not cuspidal.

Having established that the descent is not cuspidal, it is no longer clear that it has a decomposi-
tion into irreducibles, or even a spectral decomposition in terms of cuspidal data. Moreover, there
would seem to be little reason to think that its irreducible subquotients — should they exist — will
be weak descents of the original cuspidal representation of GL7(A). Indeed, if our representation
of GL7(A) was a weak functorial lift of a cuspidal representation of G2(A) which is not CAP, then
no weak descent of it has a constant term — and the descent module does. If one is still optimistic
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enough to believe that the descent module contains a generic weak descent of our cuspidal repre-
sentation of GL7(A), then one is led to the questions of what else it contains, and whether this
“extra” depends on the choice of the representation.

Another natural question is the following: what other automorphic representations of GL7(A)
should descend to Go(A)? And can our construction generalize to construct their descents? For
example, there is a lifting, constructed in [GRS97] and shown to be functorial in |[GJO01], attached
to the embedding SL3(C) = G2(C). If we compose this with an embedding G2(C) - GL7(C) the
result is conjugate to the map

g 1
tg—l

Thus, if an irreducible cuspidal automorphic representation m of G2(A) is the lift of a cuspidal
representation 7 of PGL3(A) then the lift of 7 to GL7(A) is the isobaric sum 781 87, where 1
is the one-dimensional trivial representation of GLj(A). Thus, it is very natural to ask whether 7
can be recovered from 78187, by some generalization of our construction. (Note that this would
then give an alternate construction of the lifting from [GRS97].) We hope to return to this and
related questions in the future.

The organization of the paper is as follows: we introduce some notation in Section 2] preliminaries
and some general results in Section [3] the Ag Levi and the residual representation of the similitude
exceptional group GE7(A) in Section 4] and the nilpotent orbit Ag of E7 in Section |5, Then we
introduce in Section [6] the two descent Fourier coefficients attached to the two nilpotent orbits, from
which we obtain two descent modules. In Section |7, we show that one descent module is generic,
and under suitable local conditions, it is cuspidal and having 7 as a weak functorial lift of each
irreducible summand. In Section [8) we show that the other descent module supports not only the
non-degenerate Whittaker-Fourier integral on G2(A) but also every degenerate Whittaker-Fourier
integral. Thus it is generic, but not cuspidal.

We used three software packages for computations: LiE [LIE00], GAP[GAP15], and Sage[Sagel6].
LiE was used for computations involving the action of the Weyl group on the root and weight
lattices and their duals. GAP, and the packages QuaGroup[dG13al, SLA 0.14[dG13b], and UNIPOT
1.2[Hal04], were used for many computations involving nilpotent elements of the Lie algebra ey
and their adjoint orbits. Sage was used for symbolic manipulation of multivariate polynomials—
especially for performing computations using matrices over multivariate polynomial rings. These
matrices were formed by loading integer matrices obtained from GAP into sage and then forming
linear combinations with coefficients in the polynomial ring. Our code is available at [HL21].
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and string theory in 2016, and when the second named author was visiting University of Buffalo.
The authors would like to thank both institutes for the hospitality and support. The authors also
would like to thank David Ginzburg, Dihua Jiang and Freydoon Shahidi for their interest, constant
support and encouragement, and Michael Harris for helpful communication on possible applications
of the results in this paper. The authors also would like to thank Michael Harris and Stephen Miller
for helpful comments and suggestions. Notably, it was Michael Harris who first pointed out to us
how the result of Savin and Strong Multiplicity One for Spg could be used to connect Conjectures
and The authors also thank the referee for a careful reading and helpful suggestions.

2. NOTATION

Let F be a number field, A its adele ring, and Ag, its ring of finite adeles. (Our results are
restricted to number fields because we make use of [GGS17]. We expect that both the results of
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[GGS17] and our results should extend to function fields, except possibly for a few small primes.
For a discussion of the relevant issues, see [GGS17, Remark 5.1.4].)

We shall consider automorphic representations of the similitude exceptional group GE7. This
group can be realized as the maximal Levi subgroup of split Eg whose derived group is of type
E;. For us, this will be the definition. The derived group is in fact the unique split connected
simply connected quasi-simple group of type Ey. For the split group Fg, we label the simple roots
as following

[e%1 Qs Qy as Qg (0% asg
o --0 --0--0--0--0--0
\
0
(D)

We assume that GFE» is equipped with a choice of split maximal torus T" and Borel subgroup
B. We write ® for the set of roots of T in GE7, ®* for the set of positive roots determined by
the choice of B and A for the set of simple roots. If H is T-stable subgroup of GFE7, we denote
the set of roots of T in H by ®(H,T) For o € & we denote the corresponding root subgroup by
U, and the corresponding coroot G,, — T by a". Let t and u, be the Lie algebras of T and U,,
respectively. We use an exponential notation for rational characters and cocharacters: ¢t — t%, teT

and a — ao‘v, a € G,,,. We sometimes also use the notation h(ti,...,t3) = H§:1 t?iv. We also equip
G Er with a realization in the sense of [Sp|, i.e. a family {z : G, = U, } of parametrizations of the
root subgroups (subject to some compatibility relations). This determines a basis of the Lie algebra
ge,. Indeed, for each root a the differential Dz, of z, is an isomorphism G, — u, and we denote
Dz,(1) by X,. The differential of a¥ : G,,, — T is an injective map Da" : G, — t, and we denote
DaY(1) by Hy. Then {X, : o€ ®(GE7,T)} U{H,, : 1 <i < 8} is a basis for ge;, and by taking
a suitable realization, we can arrange for it to be a Chevalley basis. We choose the Chevalley
basis so that the structure constants match those employed by GAP [GAP15]. As mentionted
previously, we used LiE and SageMath, in addition to GAP for computations. Structure constants
are not involved in the type of computations for which LiE was used, and SageMath was used to
manipulate polynomial-linear combinations of integer matrices obtained from GAP, which ensures
compatibility of structure constants between the computations done using GAP and Sage. We also
fix a GEr-invariant bilinear form k on ge; such that x(X,, X_,) =1 for each root «a.

We denote the Weyl group of GFEx relative to T by W. We denote the simple reflection attached
to the simple root «; by w[i], and the product w[ii]...w[i] by w[iy...4;]. There is a standard
representative for w(i], namely w[i] := x4, (1)z_q,(-1)xq,(1). This then gives rise to a standard
representative w[iy ...4;] = w[i1]...w[i] for wliy...4;]. But note that w[i; ...4;] depends on the
expression for w[iy ...4 ] as a word in the simple reflections and not only on the Weyl group element.

Let P = MU be the standard parabolic subgroup of G E; whose unipotent radical contains U,,
if and only if ¢ = 2, with Levi subgroup M and unipotent radical U. Then M is isomorphic to
GL7xGL; (see Lemma for details). Let @ be the standard parabolic subgroup of GE7 whose
unipotent radical contains U,, if and only if i = 4 or 6. More generally, for S c {1,2,3,4,5,6,7}, let
Ps = MgUg denote the standard parabolic subgroup whose Levi subgroup Mg contains the root
subgroups attached to the simple roots {c; : i € S} and unipotent radical Ug contains the root
subgroups attached to the simple roots {«; :i ¢ S}. Hence, P = Pri3a567 and Q = Py o357. We
also fix once and for all a maximal compact subgroup K of GE7(A).

We shall also consider automorphic representations of the split exceptional group G3. We denote
the long simple root of G by 3 and the short one by a. For v € {3, a} we let P, denote the maximal
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parabolic subgroup of Go whose Levi, M., contains the root subgroup U, attached to . We let IV,

denote the unipotent radical of P,.

Let go and gl; be the Lie algebras of G2 and G Ly, respectively. Following [FH91] we embed go
into gl; by letting it act on a seven-dimensional vector space. We order the basis vectors as follows:
V4,03, V1, U, w1, w3, wq. Then it follows from the formulae on p. 354 of [FH91] that the matrices of
Y1 and Y3 (using notation on p. 340 of [FH91]) are

0
1 0
00
1

0
2

0
0

0

-1 0

and

0
0 0
-1 0
0 0
0 0
10

0 0

, respectively.

The matrices attached to H; and Hs are easily computed by looking at the images of H; and Ho

under the weights.

The matrices are

Weight H1 H2

a 2 | -1

15} -3 | 2
wi=2a+p | 1 0
w1 -« -1 1
wi—a-p 2 | -1
wi—2a-6 | 0] 0
wi—-3a-0 | -2 | 1
wp—-3a-261| 1 | -1
wi—4a-26|-110

0
1
-1
and 0
1
-1

, respectively.

Finding the action of X; and X5 takes a little work. In some cases, we use our knowledge about the
set of weights. For example Xjws must be zero because ws is weight wi-3a—25 and wy —2a—2/ is not
a weight of this representation. For the others we use our knowledge of the action of Y1, Y2, Hy, Ho,
and bracket relations. For example, since Xjv4 = 0, it follows that

Xjv3 = X1Yivg = (Hy + Y1.X1)vg = Hivg = vg.

After similar computations we get that the matrices of X1 and Xo are

0 1

00
0

2
0

1
0

0
0

-1
0

and

00
0 -1
0 0
00
01
0

0
0

, respectively.



Finally, for a matrix g we denote the transpose by g. When g is a square matrix, we also denote
by g the transpose about the second diagonal, which may be obtained by conjugating ‘g by the
1

matrix , 1.e., with ones from lower left corner to upper right corner and zeros elsewhere.

3. PRELIMINARIES AND SOME GENERAL RESULTS

3.1. Fourier coefficients attached to nilpotent orbits. In this section, we recall Fourier co-
efficients of automorphic forms attached to nilpotent orbits, following the formulation in [GGS17].
Let G be a reductive group defined over F, or a central extension of finite degree. Fix a nontrivial
additive character ¢ of F\A. Let g be the Lie algebra of G(F') and u be a nilpotent element in g.
The element u defines a function on g(A):

Yy ¢ g(A) - C*

by ¥y (x) = ¥ (k(u,x)), where k is a G-invariant symmetric bilinear form on g(A) which is nonde-
generate on every simple summand of g (such as the Killing form, or a convenient scalar multiple).

Given any semi-simple element s € g, under the adjoint action, g is decomposed to a direct sum of
eigenspaces g; of h corresponding to eigenvalues i. For any rational number 7 € Q, let g3, = ®,75,97,.
The element s is called rational semi-simple if all its eigenvalues are in Q. Given a nilpotent element
u, a Whittaker pairis a pair (s,u) with s € g being a rational semi-simple element, and u € g°5. The
element s in a Whittaker pair (s,u) is called a neutral element for w if there is a nilpotent element
v € g such that (v,s,u) is an sly-triple, in this case we call (s,u) a neutral pair. For any X € g, let
gx be the centralizer of X in g.

Given any Whittaker pair (s,u), define an anti-symmetric form w,, on g by w,(X,Y") := k(u, [X,Y]).
Let us = g3, and let ny,, = ker(w,) be the radical of wy|y,. Then [uy,us] c g3, c ng,. By [GGSIT,
Lemma 3.2.6], ns, = g3, + g7 N gy. Note that if the Whittaker pair (s,u) comes from an slp-triple
(v,s,u), then ng, = g35. Let Us = exp(us) and Ny, = exp(ns,) be the corresponding unipotent
subgroups of G. Abusing of notation, we define a character of Ny, by ¥, (n) = ¥ (k(u,log(n))).
Let Ny, = Nsunker(¢y,). Then Us/Ny , is a Heisenberg group with center Ny/Ny . It follows that
for each Whittaker pair (s,u), ¥, defines a character of Ny, (A) which is trivial on N, (F'). Let
m, = g%, and M, = exp(my). Then Py = M Uy is a parabolic subgroup of G with Levi subgroup Mj
and unipotent radical Us.

Assume that 7 is an automorphic representation of G(A). Define a degenerate Whittaker-Fourier
coefficient of ¢ € ™ by

(3.1.1) Faul@)@)= [y (A)w(ng)%(n)dmgeG(A)-

Let Fs o (m) = {Fsu(p)|p € w}. If s is a neutral element for u, then F; ,, () is also called a generalized
Whittaker-Fourier coefficient of . We are interested in the collection of neutral pairs (s,u) such
that Fs (@) # 0. It is easy to see that this set is preserved by the natural action of G(F') on g x g.
We shall refer to an orbit for the action of G(F') on the nilpotent subvariety of g as a rational
nilpotent orbit. By a stable nilpotent orbit we shall mean the intersection of g with a G(F) orbit
in g®p F, where I is the algebraic closure of F. The (global) wave-front set n(m) of 7 is defined
to be the set of rational nilpotent orbits O such that F;,(7) is nonzero, for some Whittaker pair
(s,u) with w € O and s being a neutral element for u. Note that if Fs,(7) is nonzero for some
Whittaker pair (s,u) with f € O and s being a neutral element for u, then it is nonzero for any
such Whittaker pair (s,u), since the non-vanishing property of such Fourier coefficients does not
depend on the choice of representatives of O. Let n™(7) be the set of maximal elements in n()
under the natural order of nilpotent orbits.
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Assume that 7 is an admissible representation of G(F),), where v is a finite place of F. Then
similarly we can define a twisted Jacquet module of 7 by Jn, 4, (7) and consider the (local)
wave-front set n(7) and the subset n™ (7).

The following theorem is one of the main results in |[GGS17].

Theorem 3.1.2 (Theorem C, [GGS17]). Let m be an automorphic representation of G(A). Given
two Whittaker pairs (s,u) and (s',u), with s being a neutral element for u, if Fy ,(7) is nonzero,
then F;, () is also nonzero.

In the following, we prove a slightly generalized version of Theorem [3.1.2] using similar arguments.
Assume that (s,u) and (s’,u) are two Whittaker pairs with the same u, such that g, ng$; c ggll.
Let z = s’ — s € gy. And for any rational number 0 <t <1, let s, = s +tz, w; = g3, v; = g4, and
o, = gi*. tis called regular if u; = s, for any small enough e € Q. t is called critical if it is not
regular. For convenience, we say that 0 is critical and 1 is regular. Fix a Lagrangian m c g§n g7
and let
=m+ (o, ngsy) + 0+ (0N gy),
t=m+ (o ngsy) + 0+ (o, Ngy).
Note that [; and v; defined here agree with those in [GGS17] by applying [GGS17, Lemma 3.2.6].
For i,7 € Q, let
Gij = {X €g | [SaX] =1X, [Z,X] =]X}
Then one can see that 1oy = ®;4¢j-10i, v+ = ®ivtj>10i, t is a critical number if and only if there
exists (7,7) such that i+¢j =1 and j # 0, and ¢ is a regular number if and only if to; = g1 = g5 N g;.
And we can rewrite [; and v; as follows:

(3.1.3) [t = M+ @irrj=1,j<00ij + 0t + (Sirtj=1,4500i,7) N Gu + §1,0 N Gu,

(3.1.4) T =M+ Drtj=1,7500i,7 + 0t + (Dirtj=1,j<08i5) N Gu + 01,0 N Gu-
We summarize the results in |[GGS17, Lemma 3.2.7] in the following lemma.
Lemma 3.1.5 (Lemma 3.2.7, [GGS17]). Assume that (s,u) and (s’,u) are two Whittaker pairs
with the same u, such that g, ngs; c ggll. Then the following properties hold.
(1) For any ¢ >0, I; and t; are maximal isotropic subspaces of u; and [l,t;] c [y nt;. And

ut/ker(wu|ut) = mt/(mt n gg +to; N gu)

defines a symplectic structure, with the image of [; and t; being two complementary La-
grangians.

(2) Suppose that 0 <t < ¢/, and that all the elements in the open interval (¢,t") are regular.
Then t; c [y,

In the following lemma, we analyze the precise structure of [y /t;, in the situation of Lemma
Part (2).

Lemma 3.1.6. Assume that (s,u) and (s’,u) are two Whittaker pairs with the same u, such that
gungd c ggl. Suppose that 0 < ¢t < ¢/, and that all the elements in the open interval (¢,t) are
regular. Then, /vy = (®i+r/j=1,j508i,7) N Gu, Preserving .

Proof. By (-13) and (B:1),
(3.1.7) [y =M+ ®i1prj=1,j<08i,j + Op + (®isr/j=1,5508i5) N Gu + 61,0 N Gu-
(3.1.8) T = M+ @14j=1,j500i,7 + 0t + (Bisvtj=1,j<08i,5) N Gu + §1,0 N Gu-
Since 0 <t < ', and all the elements in the open interval (¢,t") are regular, one can see that

Di+tj=1,j500ij + Ot = Oiv175=1,<00i j + Op'.
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Therefore,
L + (®irtj=1,j<08i,j) N Gu =t + (Si+17j=1,j508i,5) N Gu-
Note that if i +tj =1 and j < 0, then i+ j < 1. Hence, ®;4¢j-1,<08i,j C gi'l, Since g, N g3; © gi’l,
(®i4tj=1,j<08i,5) N 9u = {0}. Therefore, ly/t; = (®i11j=1,j508i,5) N Gu, Preserving v,
This completes the proof of the lemma. O

For a Whittaker pair (s,u), let [s c us be any maximal isotropic subalgebra with respect to the
form w,. And let Ly = exp(ls). Then 1, can be extended trivially to a character of Ls(k)\Ls(A).
Let 7 be an automorphic representation of G(A). Define the following Fourier coefficient of f € 7

(3.1.9) FE(F)(9) = P f(ng),(n)dn, g e G(A).

Let Fi3(m) = {Fau()If e}

Next, we recall a lemma as follows.

Lemma 3.1.10 (Lemma 6.0.2, [GGS17]). Let 7 be an automorphic representation of G(A). Then,
Fsu(m) #0 if and only if FL; () # 0.

The next theorem is the global analogue of [GGS17, Corollary 3.0.3] with essentially the same
proof. To be complete, we sketch it in the following.

Theorem 3.1.11. Let 7 be an automorphic representation of G(A). Assume that (s, ) and (s',u)
are two Whittaker pairs with the same u, such that g, ngs; c gill If Fy (m) is nonzero, then
Fsu(m) is also nonzero.

Proof. Let (s,u) and (s’,u) be two Whittaker pairs with the same w, such that g, ng$; c ggl. Then
it is clear that s’ — s € g,.

Let tg =0 <ty <to <--- <1 be the all the critical numbers. Let t;,1 = 1. Then, for 0 <4 < k, all the
rational numbers in the open interval (t;,%;11) are regular. Let Ry, = exp(ty, ), and Ly, = exp(ly,,,).
Assume that fgleu(ﬂ) # 0, then fi::;lu(w) # 0 by Lemma|3.1.10, By Lemma|3.1.5, v, c lt,,,, and
by Lemma lyor [t = (®patye1j=1,j508¢,5) N Gu € Wy, N gy, which is abelian and normalizes 1),.
Then it is clear that ]—'ﬁf’u(w) # 0.

Note that fﬁ;ilu(w) = Fyu(m) # 0. Therefore, by the above discussion, Fs . (7) = Fs, u(7) =
Ry
f 0

St07

w(m) # 0. This completes the proof of the theorem. O

3.2. A few general results. Before we turn to matters that are specific to the problem of descent
from G L7 to G2 by way of GE7, we would like to present some results in a general setting. These
are related to the general problem of computing the twisted Jacquet module

jU,l/)U (Indg X)7

where G is a reductive p-adic group, ) is a parabolic subgroup of G, U is a subgroup of the
unipotent radical of a second parabolic subgroup, P of GG, U is normalized by P, x is a character
of @ and vy is a character of U. In this direction, the most general result of which we are aware is
theorem 5.2 of [BZ77]. This result considers a set-up which is more general than the one we shall
consider here, but it has the defect that one must check a certain finiteness condition which, for
many applications is unnecessary.

The group P acts on the space of characters of U by p- ¢y (u) = ¥y (p~tup). In fact, this action
may be realized as the rational representation of P dual to its action on U/(U,U). Let Ry, denote
the stabilizer of ¥;; in P. Then for any admissible representation 7 of G, the twisted Jacquet module

Ju .y () has the structure of an Ry,,-module.
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We assume that G is equipped with a choice of minimal parabolic subgroup Py and that P and
() are both standard, i.e., both contain Py. We also choose a maximal split torus 7 contained
in Py. The space Indg x has a filtration by P-modules I, indexed by the elements of Q\G/P. As
representatives, we choose minimal-length elements of th? relative Weyl group. The P-module I,
corresponding to w may be realized as ¢ — indﬁmw,l waéé o Ad(w), where w is any representative
for w in G.

We say that p € P is w-admissible if p- ¢y is trivial on U nw™Qw. (Clearly this is relative to

Yu, and Q.)
Lemma 3.2.1. For each w, the set of w-admissible elements is a subvariety of P.

Proof. Write [U/(U,U)]* for the rational representation of P that is dual to U/(U,U). Then ¢y
corresponds to an element X of [U/(U,U)]*(F). Let V denote the image of Unw ™ 'Qw in U/(U,U).
Then p is w-admissible if and only if (Ad(p).X,v) =0 for all v € V. Here (,) is the canonical pairing
between U/(U,U) and [U/(U,U)]*. Taking a basis of V' we obtain a finite number of polynomial
conditions in p which define the w-admissible subvariety. O

Now fix w and let X,, denote the open subset of w-inadmissible elements in P. Let I denote
{f e I, : supp(f) ¢ Xy }. Then I is a sub Ry, -module of I,,. Let I,, denote the quotient, so we
have a short exact sequence of Ry, —modules

010 —»1I,—I,—0.

Lemma 3.2.2.
jUﬂZJU(IZ;) =0, hence jUﬂlJU (Iw) = jU7¢U(IW)‘

Proof. In general, for an admissible representation (7, V') of P the kernel of the map V' — Jy 4, (V')
is the subspace of elements v such that

/J-V Yy(n)m(n).wdn =0

for some compact subgroup N of U. In the case of an induced representation, this is equivalent to

fN f(pn)yvy(n)dn =0 Vp e P.
For each fixed p,
[, 1emydutydn = [ e du(n)dn.

where p -y (u) = Yy (p~tup). It’s clear that if p-1y is nontrivial on U nw™'Quw, then this integral
will be zero for all sufficiently large N, and if f € I, then this holds for all p in the support of f.
We need to show that N can be chosen independently of p. This follows because p -1y depends
continuously on p and the support of f is compact modulo P nw 'Quw. O

For each w in our set of representatives for Q\G/P let P, = P nw 'Qw. Note that the w-
admissible subvariety of P is a union of P,, R, -double cosets.

Lemma 3.2.3. Assume that w-admissible subvariety of P is a single P,,,, Ry, -double coset P,z Ry, .

Then, as an Ry,,-module, I,, = c— indﬁZU X&gQ o Ad(wx).

Uﬂx‘lw‘lez
Proof. Recall that I, is the subset of elements of I,, whose support is in the open set X,, of inad-
missible elements. So, the canonical quotient map I,, — I,,/I§, = I, may be realized as restriction

to the admissible subvariety. Write TS ) for this realization of I, as a subspace of C®(Py,z Ry, ).
12



Clearly, each element f € TS) is determined by the function h¢(r) = f(xr) € C*(Ry, ). Thus we

obtain a second realization of I,, as a subspace of C*°(Ry,,) which we denote 1(3). We claim that

=(2) . . . Ry 1/2 .
Iy is precisely ¢ — dewZ ﬂx‘lw—lexX(sQ o Ad(wz).

It’s clear that h¢(pr) = X(ng(wxpx’lw’l)hf(r) for each p € Ry, Nz 'w 'Quwz, and r € Ry, .
Moreover, since Ry, ﬂm_lw_lex\R¢U maps injectively into P nw™'Quw, the support of hy will be

compact modulo z 'w ™ Qwz. Thus TS) is contained in c—indgz" X(%/z o Ad(wzx). What

—1qy-1
ynz~tw Qux

- . R . . .
remains is to show that this map from IS) to ¢ — deZU Xf%p o Ad(wz) is surjective.

—1g,-1
y e~ tw Quz

. . R .
Given h e c— deZU Xéclf o Ad(wz), we can choose Q a compact open set such that

Nz lwlQuz
h is supported on (R, N ™t Qux)R, a compact open subgroup K of Ry, such that that h is
right- Kq-invariant, and a compact open subgroup K3 of P such that Ko n Ry, = Ki. Then we can
define

1o [0 e, g =garh.g e Pure Ry ke Ko,
07 g ¢ waRwUK2-
O]

Using the form k, the space [U/(U,U)]* may be identified with a subspace [U/(U,U)]” of the
Lie algebra up of the unipotent radical Up of the parabolic that is opposed to P. It is important
to keep in mind that this identification is an isomorphism of Mp-modules, where Mp is the Levi
of P, but that it is not an isomorphism of P-modules. More precisely, the form & gives us a linear
isomorphism gger = g, that sends X € gqer to the linear form Y = s(X,Y’). Here, gqer is the
derived subalgebra of g. We can decompose g into irreducible Mp-submodules and those that are
not contained in mp come in dual pairs. More precisely, each irreducible in up is paired with
an irreducible in up. The Lie algebra of U is a direct sum of irreducible components in up so its
dual is identified with a subspace of up. Then the dual of the quotient U/(U,U) is a subspace
of the dual of U. Since (U,U) is Mp-invariant [U/(U,U)]* is again a direct sum of irreducible
M p-submodules of up,. Notice that X e [U/(U,U)]™ implies Ad(m)X € [U/(U,U)]" for all m in M
but not Ad(p)X € [U/(U,U)]” for p in P but not in M.

The Lie algebra g decomposes as q~ @ ug where q~ is the Lie algebra of the parabolic q~ opposed
to @ and ug is the Lie algebra of the unipotent radical of ). Conjugating by w we have also
g=Ad(w)g" @ Ad(w H)ug.

Lemma 3.2.4. [U/(U,U)] = ([U/(U,U)]" nAd(w)q7) @ (([U/(U,U)]” n Ad(w ™ )ug).

Proof. Let Mg be the standard Levi factor of @ (containing Tp). Let Zp, denote its center, and
Ang = Zmg N To. Because the space [U/(U,U)]" is preserved by w’lAMQw, we can decompose
[U/(U,U)]” into eigenspaces of w_lAMQw. If A is one of the eigencharacters, then A o Ad(w) is
either trivial or a relative root for the torus Ay, . If it is trivial or negative then the A-eigenspace
lies in Ad(w™)q™ and if it is positive then the A-eigenspace lies in Ad(w™!)ug.

Take X € [U/(U,U)]". Then using this eigenspace decomposition we can write X = X; + Xy
where X; € [U/(U,U)]" nAd(w™)q™) and X5 € ([U/(U,U)]” n Ad(w ™ )ug). O

Notice that p is w-admissible if and only if the projection of Ad(p)X onto [U/(U,U)]™ is in
[U/(U,U)] nAd(w Hug.

Now write Up for the unipotent radical of the parabolic P. Inside [U/(U,U)]* we have the
subspace of [U/(U,Up)]* of linear forms which corresponds to the space of characters of U that
are trivial on (U,Up). This is an Mp-invariant subspace which we can identify with a subspace
[U/(U,Up)]" of [U/(U,U)]".
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If X e[U/(U,Up)]™ and p = mu with m € Mp and u € Up then the projection of Ad(p).X onto
[U/(U,U)] is Ad(m).X. Put differently, if ¢y is trivial on (U,Up) then Up fixes 17, and hence
p-Yu=m-iy.

Assume now that vy is trivial on (U, Up). Then p = mu is w-admissible if and only if Ad(m).X is
in [U/(U,U)]"nAd(w")ug, or, equivalently, if Ad(wm)X € ug. In particular, X must be conjugate
to an element of the subspace [U/(U,U)]” n Ad(w™ Hug.

Corollary 3.2.5. If ¢y is trivial on (U,Up) and the space [U/(U,U)]” n Ad(w™)ug does not
contain any elements of the orbit of X, then the w-admissible subvariety of P is empty.

Corollary 3.2.6. Suppose that ¢y is trivial on (U,Up) and the w-admissible subvariety of P is
nonzero. Then the nilpotent element X attached to 1y is conjugate to an element of ug.

Corollary 3.2.7. If 4y is trivial on (U,Up) and the space ug does not contain any elements of
the orbit of X, then the w-admissible subvariety of P is empty for all w, and

J(U,W)(Indg(x)) =0.

Corollary 3.2.8. Let O be the Richardson orbit of @ (the largest stable orbit that intersects ug).
Let O be a stable orbit that is greater than or not related to O. Let (s,u) be any Whittaker pair
with v € O'. Let U = exp(g3y). Then

T(w,p0)IdG(x)) = 0.

Proof. Let P = exp(g3,), then Up = exp(g3;). The previous corollary applies to this situation, since
(U,Up) = exp(gl3) and 9, is trivial on it. O

Corollary 3.2.9. Let O be the Richardson orbit of Q. Let O’ be a stable orbit that is greater
than or not related to O. Let (s,u) be any Whittaker pair with u € O" then J, , 4, (Indg x) =0.

Proof. Define U as in the previous corollary. Then it follows from the definition of Jy, , 4, , because
INs o () 18 @ quotient of J(y4,)(m) for any . 0

Remark 3.2.10. (1) Suppose that the weighted Dynkin diagram of O consists of 0’s and 2’s
(namely O is even) and let @ be the parabolic whose Levi contains the simple roots labeled 0 and
whose unipotent radical contains the simple roots labeled 2. Then O is the Richardson orbit of Q.
Cf. [CM93], Theorem 7.1.1, Theorem 7.1.6, Corollary 7.1.7].

(2) Corollary can also be deduced from the argument in [MWS87, Section II.1.3].

4. THE Ag¢ LEVI OF GE7 AND EISENSTEIN SERIES

Recall that P = MU is the standard parabolic subgroup of GE7 whose unipotent radical contains
U,, if and only if ¢ = 2, with Levi subgroup M and unipotent radical U. In this section, we show
that this Levi subgroup M which is of type Ag is isomorphic to GL7 x GLy. Then we introduce the
Eisentein series associated to P whose residues at s = 1 generate a residual representation. This
residual representation serves as automorphic kernel of our descent construction.

4.1. The Ag Levi.
Lemma 4.1.1. The group M is isomorphic to GL7 x GLj.

Proof. Recall that the derived group of a Levi subgroup of a simply connected group is simply

connected. In particular the derived group Mgy, of M is simply connected, semisimple, of type Ag.

This means that it is isomorphic to SL7. To pin down a particular isomorphism we first require

that T'n Mge, is mapped to the standard torus of SL7 (the diagonal elements), and B N My, is

mapped to the standard Borel of SL7 (the upper triangular elements. Any isomorphism satisfying
14



these requirements induces a bijection on the set of simple roots which respects the structure of
the root system. There are only two such bijections. For reasons which will become apparent, we
choose to map a7 to the first simple root of SL7; and aq to the last. These conditions determine
the isomorphism up to conjugation by an element of T'n Mye,. To make it unique, we can use the
parametrizations x,: there is a unique isomorphism ¢g : My, = SL7 such that

L L Lr
1 1 1
Toy (1) 1 . , Tag(r) e 1 R RS Tan (1) P 1 )
17 1 1
1 1 1

Now M is the product of its derived group and the maximal torus 7. A general element of T is of
the form [%; ¢;*. Of course [Tizos ¢ lies in M which is mapped to (under ¢o)

t7
t-1tg
tslts
t=1ty
ty'ts
t3't
t7!
Since
- ty', j=4
(ty*tg™) = 1t5h, j=T
1, otherwise,

we can extend ¢y to a homomorphism ¢q : M - G L7 such that

1 tgt

n(ts?) = 1 () = 1
to 1
to 1
to 1

For any m € M, assume that m = motg(m)agtg(m)ag, where mg € My,,. Define the map
LM - GLy x G,
m = (t1(m),t2(m)),

which is a group homomorphism. We claim that ¢ is an isomorphism between M and GL7 x GL.
Indeed, assume that ¢(m) = (I7,1), then t2(m) = 1. And then det(:1(m)) = tg*(m), which is equal
to det(I7) = 1. Hence, t1(m) = t9(mg) = Iy. Since ¢g is an isomorphism, we get that mg is the
identity of M. Hence m = moty(m)®2tg(m)s is the identify of M. Therefore, ¢ is an isomorphism.
This completes the proof of the lemma. O

Remark 4.1.2. The inverse of ¢ can be described explicitly as follows: for g € GL7 write g =
g1 (“71 T ), with g1 € SL7, then

(g, b) = 15" (g1)apo2 05206 -Sar oy,

Remark 4.1.3. The center of GE7 is the image of 2] + 3avy + 4oy + 6cr) + boyy + oy + 3o + 204
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Remark 4.1.4. Recall that there is a notion of duality on split algebraic groups (by means of
their root data) which underlies the definition of the L-group. By this duality, the isomorphism
t: M — GL7 x GLq induces a dual isomorphism ¢ : GL7 x GL1 — M.

Remark 4.1.5. For 1 <7 < 7 let e; denote the rational character of the standard maximal torus
of GL7 which maps a matrix to its /& diagonal entry. Treat e; also as a rational character of
G L7 x G L1 which is trivial on the second factor and let eg denote projection onto the second factor,

so that eq,...,eg is a Z-basis for the lattice of rational characters of the standard maximal torus
of GL7 x GLy. Let e],...,eg be the dual basis for the lattice of cocharacters. Then we see at once
that
\ * * Vv * * vV * * \ * * Vv * * Vv * *
a7:61_€2, a6:€2_63, a5:63_64, a4:64_€5, a3:€5_66, Oél :66_677
ay =eltes+ertes, ag =—€]

4.2. Eisenstein series. Take 7 an irreducible cuspidal automorphic representation of GL7(A) and
x : A* - C* a Hecke character. Having fixed above an isomorpism ¢ : M — GL; x GLq, we may
regard ™ ® x as an irreducible cuspidal automorphic representation of M (A). Restriction maps the
lattice X (M) of rational characters of M isomorphically onto a subgroup of the lattice X(7T') of
rational characters of T This sublattice is generated by the second and eighth fundamental weights
w9 and wg. We denote their preimages in X (M) by @ and @g. Then g extends to a generator
for the lattice of rational characters of G Er itself. Abusing notation, we still denote this extension

by %s. Let P be the standard parabolic whose Levi is M. We consider the family of induced
GE7(A)
P(A)
of Fisenstein series.

representations Ind (mr®x)-|@2|%, s€C (normalized induction), and the corresponding space

Lemma 4.2.1. The ratio of products of partial L-functions appearing in the constant term of these
Eisenstein series is

L3(s,m® x, A% x St) L% (25,7 ® x%w, St x St)
LS(s+1,m®x,A% x St)L5(2s + 1,7 ® 2w, St x St)

(4.2.2)

Proof. This is standard from the Gindikin-Karpalevic formula and the L-group formalism. The
Lie algebra of the unipotent radical of the parabolic PV is a direct sum of two irreducible M-
submodules. The highest weights correspond to the coroots aj + oy + 2ay + 3o + 3 +2ay + oo,
and 2oy + 20y + 3ag + day + 3a) + 20 + oy . We must view the corresponding coroots as weights
on the maximal torus of GL7(C) x GL1(C). In terms of the basis ej, ..., eg these two cocharacters
are e] +ej +ej +ef and e] + e +ef +ej +el +ef +2e}, respectively. The highest weight of A3 is
e] +e5 +e3, and projection to the GL; factor is eg and determinant of the GL7 factor. The weight
e} +e+el +ej+ek+e} is the highest weight of the A® representation, which can also be regarded
as the dual to the standard representation twisted by the determinant. ]

Let wy = w[243154234565423143542765423143542654376542], which is the longest Weyl word
which is reduced by the Weyl group of GL7 on both the left and the right. By [MW95, I1.1.7]
the constant term of the Eisenstein series applied to a section f of the induced space is given by
f+M(wo).f, where M (wp) is the standard intertwining operator as in [MW95, I1.1.6]. By [MW95,
IV.1.11], M (wo).f can have at most a simple pole at s = 1. By (3.1) and (3.5, ¢) of [KS04], it follows
that can have at most a simple pole at s = 1.

Since the standard L-functions of cuspidal representations of GL(n) are nonzero on the half plane
L5 (25, 7®x?wx,St x St)
? L5(2s+1,7@x2wx,St x St)

Re(s) > 1 (see [JS81], Theorem 5.3]) and are entire on the whole complex plane
LS (s,m®x,A>xSt)
» L5 (s+1,m®x,A3xSt)
16

has no pole and no zero at s =1. So

has at most a simple pole at s = 1. Moreover,



from (3.5, b) of [KS04] a pole of the intertwining operator in the half plane Re(s) > 1 must come
LS (s,7r®x,A3xSt)

from LS (s+1,m®x,A3xSt) *

Proposition 4.2.3. If the Eisenstein series has a pole in the half plane Re(s) > 0, then the residual
representation is square integrable.

Proof. This is an easy application of the square integrability in [MW95] 1.4.11. O

According to Lemma 7.5 of [L76], the Eisenstein series can have a square integrable residue only
if 7 ® x o Ad(uyp) 27 ® x. We investigate what this condition says explicitly about 7 and Y.

Lemma 4.2.4. There is a representative 1wy for wg such that the automorphism of GL7 x GLq
induced by Ad(wg) and our choice of isomorphism M — GL7 x GL; is

3 8
o -1 a a

where ;g is defined at the end of Section 2.

Proof. For any choice of representative, the Ad(wg) induces an automorphism of GL7 x GL; which
preserves the chosen torus and Borel. When such an automorphism is restricted to SL7 there are
two possibilities: either it is given by conjugation by an element of the torus of GL7 (in which case
we can adjust the representative 1 to make it trivial), or else it is given by g +»; g~! composed
with conjugation by an element of the torus of GL7 (in which case we can adjust the representative
o to make it g+ g71).

By inspecting the action of wg on the simple coroots, one can see that Ad(wo) maps h(t1,...,ts)
to

to to] 31Tt 13ty
If we push this through the isomorphism with GL7 X GL1 it becomes

trts 13 tets tsty tats tsty tit
pl=,8 28 28 28 8 28 4.

tr titg
4 +
B tats
. ti1to
T tats
e t3to
te 1:_4 t 3 tsts tg
¥ L2 | = ta [
5 tot t
lats % 2
tg 5
ti1to tZtS
t3 6
2
to tg

We see that on the torus of SL7 (obtained by setting ty = tg = 1) this agrees with g +; g~1. In
O

general, it can be expressed as (¢,t3) = (;t g, = ), and ts can be expressed as ditg
Corollary 4.2.5. If n is a character, we write n- 7 for the twist of m by nodet. Then for any =, x
we have

7® o Ad(tig) = (wilx %) @ (Wix®).

Corollary 4.2.6. If
T ® xoAd(up) 2T X,

then there is a self-contragredient cuspidal representation mg with trivial central character, and a
character 1 such that = =7 'my and y =73
Proof If x = w2x® then w? = X T 50 x = (wrx?)™3. Setting n = w;1x™2, we have y = 7° and

= x2nt = 77 . Then w;lx™ % = n~2%. If this is isomorphic to 7 then my := 7 ® 1 is self-
contragredlent with trivial central character. (|

17



Remark 4.2.7. L°(s,n'my ® %, A3 ® St) = L (s, w0, A3).

Remark 4.2.8. If a representation 7 of GLy is self-contragredient, then L (s,7,sym?) has a simple
pole at s = 1. Indeed, each self-contragredient representation of GL,, is of either orthogonal type
(L3 (s,m,sym?) has a pole) or symplectic type (L°(s,m, %) has a pole). When n is odd 7 must
be of orthogonal type, because L°(s,m,A2) has no poles in the odd case (see [JS90), [S81, [K99)).

Corollary implies that a cuspidal representation whose twisted A% L-function has a pole
is simply a twist of a representation whose untwisted A3 L-function has a pole. Since there is no
essential loss of generality, we shall henceforth restrict our attention to untwisted A% L-function,
i.e., we shall assume that x is trivial. In this case we get the following simplification of Corollary

4.2.61

Lemma 4.2.9. If Ls(s, 7,A%) has a pole, then 7 = n- 19 where 7 is cubic, g is self-contragredient
with trivial central character and L° (s, g, sym?) has a pole at s = 1.

Definition 4.2.10. Given an irreducible cuspidal automorphic representation 7w of GL7(A), we
say that 7 is of Go type if it is self-contragredient, and L(s,, %) has a pole at s = 1.

Remark 4.2.11. By [KS04, Theorem 1], if L(s,7,A%) has a pole at s = 1, then it is simple. By
Lemma 4.2.9, given an irreducible cuspidal automorphic representation 7 of GL7(A), if it is of G
type, then the central character of « is trivial and L° (s,m,sym?) has a pole at s = 1.

Proposition 4.2.12. If 7 is of G2 type then the Eisenstein series has a simple pole at s = 1.

Proof. We've already explained that the Eisenstein series has the same poles as % in
Re(s) > 1.

The exterior cube L-function is holomorphic at 2 by [KS04, Lemma 5.1], so a pole at 1 will be
inherited by the ratio and hence the Eisenstein series. O

Definition 4.2.13. When 7 is of G5 type, we can see that the Eisenstein series above has a simple
pole at s = 1. Denote the residual representation by &;.

Remark 4.2.14. (1) Tt is possible for the Eisenstein series to have a pole at one even if
L3%(s,m,A%) has no pole, namely, if L(s,m,A%) vanishes at s = 2. One expects that this
does not occur. For example, if Langlands functoriality holds, then L°(s, 7w, A%) is simply
the standard L function of the A3 lift of . This lift doesn’t need to be cuspidal, but if the
Ramanujan conjecture also holds, then both 7 and its lift will be tempered at every place,
so that the lift will be an isobaric sum of unitary cuspidal representations. In this case its
standard L function is holomorphic and nonvanishing in Re(s) > 1.

(2) For similar reasons, one expects that L (s, %) will have no poles other than possibly at
0 and 1 with poles at 0 and 1 arising when the trivial character is an isobaric summand of
the A3 lift.

(3) If 7 is of G type, then L¥(s,m,A%) must be nonvanishing at s = 2, since the intertwining
operator can have at most a simple pole.

(4) If 7 is not of G type but L3(s,m,A%) has a pole at s = 1, then we can still obtain a residual
representation &;.

Lemma 4.2.15. If an irreducible automorphic representation m of GL7(A) is the weak functorial
lift of an irreducible automorphic representation o of Ga(A), then

(1) 7 is nearly equivalent to it’s contragredient 7,
(2) L¥(s,m,A3) = L(s,m,sym?) L5 (s, ).
18



Proof. The embedding of G5 into GL7 factors through an embedding of the special orthogonal
group SOy — G L. It follows that if 7 is a weak functorial lift associated with this embedding, then
Ty 2 T, at every unramified place v.

Write I'y, , for the irreducible representation of Go(C) with highest weight awfz’ + waG 2. (Here
w1G2 ) wQG 2 are the fundamental weights of G2(C).) The seven-dimensional “standard” representation
of GQ((C) is FLO' Then /\3F1,0 = F070®F170®F270, while sym2 Fl,O = F070€9F2,0, S0 /\3F170 = sym2 FL()@
I'1 0. It follows that for 7 the weak functorial lift of o we have

Ls(s, T, /\3) = LS(S, o, /\31“1,0) = LS(S, o, sym2 FLQ)LS(S, o,T1p) = LS(S,ﬂ', sym2)LS(s, ).
U

Lemma 4.2.16. If an irreducible cuspidal representation m of GL7(A) is the weak functorial lift
of an irreducible cuspidal representation o of Go(A), then 7 is self-contragredient and L (s, m, A%)
has a simple pole at s =1.

Proof. From part (1) of lemma [4.2.15] and strong multiplicity one for G L7, it follows that 7 = 7.
From part (2) of lemma [4.2.15 we have

L5 (s,m,A%) = L5 (s, 7, sym?) L5 (s, 7).

Now, L°(s, ) is holomorphic and nonvanishing in Re(s) > 1, while L® (s, 7, sym?) has a simple pole
at s =1, because 7 is self-contragredient. Note that self-contragredient representations of GL7(A)
are automatically of orthogonal type. It follows that L (s,m,A%) has a simple pole at s = 1. ([l

5. THE NILPOTENT ORBIT Ag OF Ex

In this section we consider the rational orbit structure for the nilpotent orbit of E7 whose Bala-
Carter label is Ag and whose weighted Dynkin diagram is

0 — 0 — 2 — 0 — 2 — 0

|
0

We will show that this nilpotent orbit consists of a single rational orbit and the residual represen-
tation &, has a nonzero generalized Whittaker-Fourier coefficient attached to it.

First, we introduce some notation related to nilpotent orbits. One of the most convenient ways
to specify a nilpotent orbit O in a reductive Lie algebra is by a weighted Dynkin diagram. This
method of specifying nilpotent elements relies on two facts:

(1) Orbits of nilpotent elements are in bijection with orbits of sla-triples [C93, Theorem 5.5.11].

(2) Once a split maximal torus 7" and a base A of simple roots (relative to T') have been fixed,
each sly-triple is conjugate to a triple (v,s,u) such that s € t, and a(s) > 0 for all o € A.
(Since each torus is contained in a maximal one, all maximal tori are conjugate, and every
weight is in the Weyl orbit of a dominant one.)

Definition 5.0.1. The semisimple element s = sp as above is called the standard semisimple
element attached to the orbit O in question. Let Pp = MpUp be the parabolic subgroup Ps = MU,
defined in Section with Levi subgroup My = Mg and unipotent radical Uy = Us.

Each element s of t determines a weighted Dynkin diagram

ai(s) as(s) aa(s) as(s) as(s) ar(s)
az(s)
The weighted Dynkin diagram of a nilpotent orbit is then the weighted Dynkin diagram of its
standard semisimple element.
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The map from t to weighted Dynkin diagrams is not injective, but each fiber has a unique element
which is contained in the span of the coroots of G. For any nilpotent orbit, the standard semisimple
element is contained in this subspace of t. In addition, if the weights of the Dynkin diagram are
integral, then the diagram canonically determines a homomorphism from the root lattice into Z,
i.e., a coweight. Whenever convenient, we will use integrally weighted Dynkin diagrams to specify
coweights, nilpotent orbits, and elements of {.

To study the nilpotent orbit Ag, we consider the parabolic subgroup @ = LV whose Levi, L
contains the root subgroups attached to ai,a9,a3,as5 and a7y and whose unipotent radical, V
contains the root subgroups attached to the other simple roots. The derived group of L is isomorphic
to SLyx SLoxSLyxSLo, and we can map L into GL3g x GLy x GLy x GLg so that the induced map
on Lie algebras maps Z?:l tiHo, +2ic12357%iXa; +YiX-q, tO

tgy— b + {375 x to—t4 X9 t5 - t(j xT5 t7 - tg xT7
° P tl "y )\ ys ta-ts)\ yr te—tr
Y1 —l1

The image is
(502) {(gl,gg,gg,g4) € GL3 X GL2 X GL2 X GLQ :det g1 = det gz}.

Denote the isomorphism from L to (5.0.2) by ¢r. Denote the projection of GL3 x GLa x GLg x G Ly
onto the i factor by p; for i = 1,2,3,4. We write D for the differential, i.e., the induced map on
Lie algebras. Thus, for example Dpy o Diy, maps [ — gl,.

The space of characters of V' is identified with the sum of the root spaces g-, attached to roots
« such that a = 227:1 c;a; and 2¢q + 2¢g = 2. Clearly, this is the direct sum of two subspaces

0= B ge  ad  ne @D g
azcq=1,c6=0 accy=0,c6=1

Lemma 5.0.3. Write GSOy for the usual split similitude orthogonal group in four variables. In
other words, let

Jy = GSO4:={geGLy:gJs'g=Ag)Js, \(g) e GL1}.

1 )
1
There is an surjective homomorphism of algebraic groups pr: GLs x GLy - GSOy

al b ag _b2

1
aq b1 a9 bg l1a d1 a9 b2
pr C1 d1 ’ (&) dg - al —b1 —C2 dg ’

—C1 d1 Co d2
which satisfies A\(pr(g1,92)) = det g1 det go.

Proof. Write E;; for the 2 x 2 matrix with a 1 at the 4,j entry and zeros elsewhere. Then pr
sends (g1,92) to the matrix of the linear operator X + g1 X%go relative to the ordered basis

(Er1,E21,-FE12,E22) of Matayse. Notice that the coordinate vector for the matrix (Z Z) rel-

ative to this ordered basis is ¢ [a c -b d] . Thus the quadratic form determined by the matrix Jy

corresponds to twice the determinant form on Matoye, from which it easily follows that G Lo x G Lo
maps into GSO,4 (which can also be checked by hand on the matrices above). The formula for Aopr
also follows easily.
It remains to show that the map is surjective. It suffices to show that the image contains all four
root subgroups and the full torus, and this is straightforward. (|
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Lemma 5.0.4. There is an isomorphism of vector groups ly; 0y = Matsyo which is compatible
with ¢, in the sense that

toz (Ad(e7 (91,92, 93,94))-X) = g3tz (X) g1

Proof. We consider the action of SL3 x SLy x SLy x SLy on v;, and easily see that the copies of
S Lo attached to the roots as and a7 act nontrivially, while the copy of SLo attached to ao and the
S L3 factor act trivially. There is a unique four-dimensional representation of SLs x SLs on which
both factors act trivially. Hence, the given action on Matays is one realization of it, while inclusion
into SL3y x SLy x SLy x SLy at the third and fourth positions composed with Ad OLil is another.
To construct a specific isomorphism we start by matching our preferred highest weight vectors and
generating the correspondence on the complete bases of weight vectors. Thus, we map X_goo0010 (a
highest weight vector in v3) to Ej2 (a highest weight vector in Matays). Then, since the differential
of L1, Maps X,0000100 to (Ezl, 0). It follows that ad(X,(]oooloo)X,O()ooglo, must be mapped to E21 :
Eq9 = Es. Of course ad(X_0000100)X -0000010 is a scalar multiple of X_gggo110- The scalar depends
on the structure constants for our realization (or equivalently of the corresponding Chevalley basis).
Using GAP, we have [ X_0000100, X-0000010] = X-0000110- Continuing in this fashion, we computeﬁ

Z0000011 xOOOOOlO)

Ln; (xOOOOUIOX—OOUOOIO+x0000011X—OOOOOH+$0000110X—00001 10+$0000111X_0000111) = (1,0000111 £0000110

What remains is to check that the action of t4a4 tg% tgg is the same on both sides. And this is

easy, since
-1 -1 -1 t_8 €T l €T
te 20000011 20000010 | [l _ | te0000011  32:20000010
t4 ) \®ooo0111 0000110 tg t4t3T0000111 i—éw‘oooouo

¥ a¥ aV —-0000011 oY oY aV —-0000010
<t44t66t88) 20000011 (t44t66t88) 70000010

=1 ) oY oy avs-0000111 0 oY oy \~0000110
(t44 tCtg® ) 0000111 (t44t66 tg® ) 20000110

O

Lemma 5.0.5. There is an isomorphism of vector groups Ly; 10T = Matsxg which is compatible
with ¢, in the sense that

to- (Ad (17! (91,92, 93, 94))- X)) = g1eo- (X) pr(g2, 93) ™"

Proof. This is proved by the same method. We record only the essential information. The corre-
spondence between roots a such that X, lies in v] and entries in an element of Mats.4 is succinctly
expressed by the following matrix:

-0101100 -0001100 -0101000 -0001000
-0111100 -0011100 -0111000 -0011000
-1111100 -1011100 -1111000 -1011000

\% Vv Vv
In the next matrix we record the image of tj“ tgﬁ tgs under these twelve roots:

te 1 1

te ta  ta  t2
1

tots 1o Z
1

lela e i

1We remark that the scalars are not important for the present argument — only the correspondence between roots
and entries is really needed.
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Each entry matches exactly the effect of multiplying by diag(#;', 1, 1) on the left and diag(tst4, t6, 1, t;*)
on the right. Finally, one has to check that diag(tgts, te, 1, t;*)~' =pr ((tZl ) ) , ( 5! " )) O

Next we compute the rational orbit structure for the action of GL3 x GSO4 on Matsxy by
(g1,92).Y = 1Y g3*. Write Mat35y for the space of 3x 3 symmetric matrices. The group GLsx GL;
acts by (g,a).Z = agZ'g. We have a map Matgys — Maty)y given by Y = Y JIY. Clearly

(1Y) I (1Y 93") = Mgz D)1 Y Ju'Y.

Thus Y7 and Y5 lie in the same G'Lz x GSOy-orbit if and only if Y;!Y] lies in the same G L3 x GL1-
orbit as ¥5'Y5. It is clear that Rank Y and Rank Y'Y are both invariants of a G Lz x GSOy4-orbit, and
that the latter is bounded by the former. It is relatively easy to show that {Y € Matsyxs : RankY =
i,Rank Y'Y = j} is nonempty and a single GL3 x G.SOy-orbit for (i,5) = (0,0),(1,0),(1,1),(2,0),
and (2,1). Also, one can easily find a matrix Y of rank 2 such that Y'Y = diag(a,b,0) for any a,b.

Lemma 5.0.6. Take F' a field and Y € Matsy4(F') rank three. Then there exists g € GL3 such that
(gY'Yg) is of the form
1

1

Proof. Write V for the span of the rows of Y. We choose a suitable basis for V such that the
quadratic form attached to J4, when written in terms of the new basis, has a matrix of the specified
form.

We may write Matixq = W1 & Wy where Wy, W are two-dimensional isotropic subspaces. Since
dim V' > dim W; there exist nontrivial elements of v which project to 0 in Wy. That is V n Wy £ 0.
Likewise V n Wy # 0. Select v1 e VnW; and vg € V n Wh.

First suppose that v; is orthogonal to vs. Then the span of v; and vs is a maximal isotropic
subspace W/. Select v3 in the orthogonal complement of W] and then replace v1, vy by a new basis
v, vh for W{ such that v4Jyvs = 0 and v]Jyvs = 1. Then the basis v],v4,vs fits the bill.

Now suppose that v is not orthogonal to vy, and let v3 be any element of V' which is linearly
independent of v; and vs. Then there exist a, b such that vs — bvi — cvs is orthogonal to both v and
vg9, and the basis v1,vs, vs fits the bill. O

Corollary 5.0.7.
{Y € Matgy(F) : Rank Y'Y = 3}
is a Zariski open GL3(F') x GSO4(F') orbit over any field F.

Proof. The set is clearly Zariski open. We have shown that each orbit with Rank Y'Y = 3 contains

an element with
1

Y'V=| a
1
If the rank is 3 then a is nonzero and we can scale by a™! in GL; and then act by diag(a,1,1) in

1
GLs to get (1 1 ) , which completes the proof that our set is a single orbit. ]

Corollary 5.0.8. The nilpotent orbit Ag consists of a single rational orbit.

Proof. We know that each rational orbit in Ag has a representative that lies in v] (F') @ v5(F'), and

that two elements of this space Lie in the same G(F') orbit if and only if they lie in the same L(F)-

orbit. We can identify v] (F') @ v;(F') with Matsxs(F') @ Mataxa(F"). It is clear that the action of

L(F) preserves the Zariski open subset {(Y, X) € Matg4(F)xMatayxo(F) : Rank Y'Y = 3, Rank X =

2}. We show that this set is a single L(F") orbit. Take (Y7, X7) and (Y3, X2) two elements. Recall
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that L is identified with {(g1,92,93,94) € GL3 x GLa x GLy x GL3 : det g; = det g2}, and note that
(91,92,93,94) = (g1,pr(g2,93)) gives a surjective mapping onto GL3 x GSOy4. Thus, there exists
(91,92, 93) such that Ad(g1, 92,93, 12).(Y1,X1) = (Y2, X}). Then Ad(I3, I3, Iz, X5 (X3)).(Y2, X}5) =
(Ya, X5). O

It will be convenient to select a representative for our open orbit. A representative in Matgyxs x Matoxo

would be
1 1
1| ( 1)
1

A convenient representative in 0] O by would be X_p101100 + X-0111000 + X-0011100 + X-1011000 +
X _0000110 + X-0000011- This will correspond to the above pair of matrices up to some signs. In par-
ticular it will be an element of the correct orbit. Let wy = w[243154234654237654]. (This notation
for an element of the Weyl group was introduced in Section ) Then there is a representative wy
for wg such that

Ad(wo).(X-0101100 + X-0111000 + X—-0011100 + X-1011000 + X-0000110 + X-0000011)
=X o, + X + X + X o + X + Xy

This nilpotent element corresponds to the regular orbit of the Ag Levi. (We remark that if a
standard representative wy is used then

Ad(0).(X-0101100 + X-0111000 + X—-0011100 + X-1011000 + X-0000110 + X-0000011)
==X o+ X, —Xoo) + Xy + X — X_as.

For the sake of completeness, we record our findings regarding the rational orbit decomposition
of Matgyg.

Proposition 5.0.9. The set
{Y e Mats.q : RankY =4, Rank Y J,'Y = j}

is nonempty if and only if 0 < j <i<2o0ri=3and 2 < j <3.Itis asingle GL3 x GSO4 orbit
unless ¢ = j = 2, in which case it is a union of orbits which are in one-to-one correspondence with
the action of GLy x GL; on Mat3y .

Theorem 5.0.10. &£, has a nonzero generalized Fourier coefficient attached to the rational nilpotent
orbit labeled by Ag.

Proof. Take u = X_q, + X_q, + X_o, + X_a, + X_ag + X_as and s’ a rational semisimple element
which acts by 2 on each simple root space. Then Fy , maps an automorphic form to the GL7 non-
degenerate Whittaker-Fourier integral of its constant term along the Ag parabolic. It is clear that
the residual representation supports this coefficient. Therefore, by Theorem it also supports
Fs,u, where s is a neutral element for u. ]

Remark 5.0.11. We expect that in fact n (&) = {A4s}. Indeed, we expect that if 7 is of G type
then at each unramified place v, m, is attached to a semisimple conjugacy class of GL7(C) which
intersects the subgroup G2(C). By Corollary Remark it follows from the discussion
in below that if there is even one unramified finite place where this condition holds, then
n"(Ex) = {As}-

6. DESCENT FOURIER COEFFICIENTS AND DESCENT MODULES

From the table on pp. 403-04 of [C93], we learn that there are two conjugacy classes of sly-triples
in GE7 such that the stabilizer is of type Ga. They are known as A and Aj + 3A4;. For the sake of
completeness, we consider Fourier coefficients and associated descent modules attached to both of
them.
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. o . oo 2 2 2
6.1. A. The weighted Dykin diagram of this orbit is 0 8 0 . Let s be the standard
semisimple element attached to the orbit. Then the Levi subgroup whose Lie algebra is g is the
semidirect product of a derived group isomorphic to Sping and a four-dimensional torus, while the
space g-o is the direct sum of two nonisomorphic irreducible eight-dimensional representations of
this Levi and one one-dimensional representation. On each eight-dimensional representation we

have a Sping-invariant quadratic form, which is unique up to scalar (cf. [FH91], exercise 20.38).
S a1

The Levi acts on g_gf’ with an open orbit. It is not hard to check that in this case the open
orbit consists of triples such that each eight-dimensional component is anisotropic relative to the
Sping-invariant form and the one-dimensional component is nonzero (cf. [IN05]). The stabilizer of
any point in this open orbit is the product of the center of GFE; and a group isomorphic to Gs. It’s
not hard to check that

Jo == X_0000001 + X-1111000 + X-1011100 + X-0101110 + X—0011110

is in this open orbit. The corresponding copy of go is generated by

X10001000, X 0100000 — X 0010000 + X 0000100,

and we embed G3 into GE7 so that X, = X.0100000 — X 0010000 + X+0000100 and X,z = X_.0001000-
Recall that PA’5’ =M A'5'U Al = P = M U, is the parabolic subgroup defined as in Section where
s is the standard semisimple element (cf. Definition i attached to AL, M Ay = M is the Levi
subgroup, and Uy» = Uy is the unipotent radical. Then UA’5’ contains U,, if and only if 7 # 2, 3,4, 5.

Let @D{})Ag be the character of UA%’(F)\UAQ (A) attached to fo.

Definition 6.1.1. Let 7 be an irreducible cuspidal automorphic representation of GL7(A) which

is of G type (as in Definition [4.2.10)). Let &, be the residual representation as in Definition [4.2.13

We define the corresponding descent module D, = D? 5 to be

by
(g2
5

Dri=19 Gatay ¥ € Em [

(UAu,z/)[J;O ”)
where o\ ° 45/(g):= / cp(ug)qu)A”(u) du,g e GE7(A).
Uay (FN\Uar (A) 5

6.2. Az +3A;. The weighted Dykin diagram of this orbit is 00 g 00 O. Recall that M is
the standard Levi subgroup isomorphic to GL7 x GL1, P is the standard parabolic which contains
it, and U is the unipotent radical of P. Then P = MU = P4,+34, = M a,+34,UA,+34, as in Definition

M = MA2+3A17 U = UA2+3A1-
Let eg = X_1122100 + X-1112110 + X-1111111 + X-0112210 + X_0112111 and

UrP (u) = ¥ (u1122100 + U1112110 + U1111111 + 0112210 + U0112111)

be the corresponding character of U(F)\U(A). We write u € U as [], Za(uq) with the roots taken
in some fixed order. The coordinate u, is independent of the choice of order provided the second
coordinate of « is 1.

Lemma 6.2.1. The stabilizer of ¢[e]o in M is the product of the center and a group isomorphic to
Go.
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Proof. We can identify the space of characters of U(F)\U(A) with the space

ug_l) = P u.
(o, ¥ )=-1
As representation of gl;, this representation is isomorphic to the exterior cube representation of
GL7. It is well known (cf. pp. 356-57 of [FHI1]) that GL7 acts on this representation with an open
orbit, and that the stabilizer of any point in this open orbit is of type Gs. Using SageMath, with
adjoint matrices from GAP, we verified that ;7 is fixed by

1000000 (@) 0001100 (—a* ) Z0000100 (2@ ) Z0001000 (@) Zoooo001 (—a),

20010000 (b) Zoo00010(b), 70010000 (b)_0000010(D),

2-1000000(@) 0001100 (@*) 0000100 (@) Z-0001000(20) 20000001 (—a).-
These subgroups generate a split subgroup of GL7 of type Ga. The stabilizer also contains the
center of GE7. It remains to prove that the stabilizer is no larger. For this purpose it suffices to
prove that our character corresponds to a point in the open orbit. On p. 357 of [FH91] a specific
point in the open orbit is written down; it is a sum of five weight vectors. We easily check that
these five weights correspond to the five roots which appear in ¢;7. Over an algebraically closed
field, the torus acts transitively on the set of linear combinations of these five weight vectors such
that all five coefficients are nonzero. Therefore the point corresponding to ;° is also in the open

U
orbit. =

We remark that the embedding of G2 into GL7 obtained in this way agrees with the one from
[FH91].

It is convenient to know that the roots in supp(¢;’) can be simultaneously conjugated to simple
roots. Let Ry ={1122100,1112110,1111111,0112210,0112111}, and wg = w[423546542314376542].
Then wg - Ry = {1, a9, as, a5, ar}.

Definition 6.2.2. Let 7 be an irreducible cuspidal automorphic representation of GL7(A) which
is of G type (as in Definition [4.2.10]). Let &, be the residual representation as in Definition [4.2.13
We define the corresponding descent module D, = DA2+341 t0 be

D, = {¢(U’w€UO)\G2(A) e gﬂ} :

where oV (g) = [ p(ug)f? (u) du, g e GE7(A).
U(FN\U(A)

Remark 6.2.3. The embedding of G2 which comes from the orbit As + 3A; is closely related to
the appearance of A% in the constant term. Indeed, L (s,m,7) appears in the constant term of an
Eisenstein series of a group G if and only if » appears in the action of the relevant Levi of “G on
the nilpotent radical of the Lie algebra of the corresponding parabolic. That is, r appears equipped
with a realization as a space of nilpotent elements. In fact, the realization of A2 is precisely as the
space g5 where s is the standard semisimple element attached to As +3A;. That is, the embedding
of G3(C) into GE7(C) on the L-group side as the stabilizer of a point in the representation obtained
from an L-function, and the embedding of G9 into GE» as the stabilizer of a Fourier coefficient
are essentially the same embedding. This phenomenon does not occur in the classical situation of
[GRS11], as it requires self-contragredientity of both the group denoted by H and the one denoted
by A in our discussion of the general set-up in the introduction.

In the introduction we remarked on prior work of Ginzburg where H = Go and A = F}, as well
as prior work of Ginzburg-Hundley where H = Fy and A = Eg, where the descent modules fail to
be cuspidal. It is noteworthy that in both of those cases, H and A are self-contragredient and the
embedding of H into A obtained from the L-function is the only embedding of H into A.
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7. THE Al CASE
Recall from Definition that in the A case the descent module D is defined by applying
the Fourier coefficient (U Agﬂﬁ(]}l‘,,) from Section [6.1| to the residual representation &, where 7 is
5

an irreducible cuspidal automorphic representation of GL7(A) which is of G2 type. In this section,
we prove the following theorem.

Theorem 7.0.1. Assume that 7 is an irreducible cuspidal automorphic representation of GL7(A)
which is of Gs type, and D; is defined as in Definition Then

(1) Dy is generic.

(2) Suppose that there exists a finite place vy such that m,, is a principal series representation
of GL7(F,,) which is attached to a semisimple conjugacy class of GL7(C), and intersects
the subgroup G2(C). Then D, is cuspidal.

(3) Suppose that for almost all finite places v, 7, is a principal series representation of GL7(F,)
which is attached to a semisimple conjugacy class of GL7(C), and intersects the subgroup
G2(C). Then 7 is a weak functorial lift of each irreducible summand of D;.

7.1. Genericity of the A'5' descent module. The purpose of this section is to prove that the
descent module D, is generic. The proof can be explained using the language of “unipotent periods”
introduced in [HS16]. Let U, G2 he the standard maximal unipotent subgroup of Gs. Let 12 be

max

max*

period on C*(GE7(F)\GE(A)). Explicitly, it maps ¢ € C’°°(GE7(}57)\GE7(A)) to

go(ulwg)w{};" (u1)p%2 (ug) duy dus.
5
U (F)\Umax (4) U\U(4)

any character of US2, . Then the composite (Ug;x, ¢G2) o (U Ag,z/J[J;OA”) makes sense as a unipotent

In our discussion of unipotent periods it is helpful to note that

S<—>HUa

is a bijection
{Scd:a,feS,a+8ecPu{0} = a+ eSS}« {T -stable unipotent subgroups of GE7}.

Thus, it is often convenient to specify a unipotent subgroup V' of GE; by identifying ®(V,T"). We
adopt a convenient abuse of notation. Let V be a T-stable unipotent subgroup of GE; and let ¢y
be a character of it. We shall call {a € ®(V,T) : ¥v|y, (a) # 1} the “support” of ¢y and denote it

supp ¢y-. We denote by (V, 4y ) or ¢(V:¥v) the following attached unipotent period
Yy (v)dv, g € GE7(A).
ooy PCVE ()0 g < G ()

Given two unipotent periods (V, ¢y ) and (U, vy), if V"¥V) is left-invariant by U(F), then we
denote the composed period by (U, vy ) o (V, 4y ).

We recall the concept of equivalence of unipotent periods. Denote by Pi|Ps if P2 vanishes
identically on any automorphic representation on which P; vanishes identically. Two periods P;
and Py are said to be equivalent (denoted Py ~ Py) if P1[Ps and Pa|P;.

In the study of Fourier coefficients of automorphic forms, in particular concerning the global
nonvanishing property, a technical lemma from |GRS11] has been very useful in the theory. We
recall it as follows. Let G be any connected reductive group defined over F'. Let C' be an F-subgroup
of a maximal unipotent subgroup of G, and let ¥¢ be a non-trivial character of [C'] = C(F)\C(A).
X,Y are two unipotent F-subgroups, satisfying the following conditions:
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(1) X and Y normalize C;

(2) XnC and Y nC are normal in X and Y, respectively, (X n C)\X and (Y nC)\Y are
abelian;

(3) X(A) and Y (A) preserve ¢¢;

(4) ¢ is trivial on (X nC)(A) and (Y nC)(A);

(5) [X,Y] < C;

(6) there is a non-degenerate pairing (X n C)(A)\X(A) x (Y nC)(A)\Y(A) - C*, given
by (z,y) = Yo([z,y]), which is multiplicative in each coordinate, and identifies (Y n
C)(F)\Y (F) with the dual of X(F)(X nC)(A)\X(A), and (X nC)(F)\X(F) with the
dual of Y(F)(Y nC)(A)\Y (A).

Let B = CX and D = CY, and extend ¢ trivially to characters of [B] = B(F)\B(A) and
[D] = D(F)\D(A), which will be denoted by 15 and ¥ p respectively. When there is no confusion,
we will denote both ¥p and ¥p by 1¢.

Lemma 7.1.1 (Lemma 7.1, and Corollary 7.1 |[GRS11]). Assume that (C,v¢¢, X,Y") satisfies all
the above conditions. Let f be an automorphic function of uniformly moderate growth on G(A).
Then

Jy F@on@ydo= [ ] T g)in(u) dude, Vg < G(A)

The right hand side of the the above equality is convergent in the sense

uzg)p(u)du|dz < oo,
f(XnC)(A)\X(A) | f[D] J(uzg)pp(w)dd

and this convergence is uniform as g varies in compact subsets of G(A). Moreover (B,1p) ~

(DawD)'

We consider the unipotent period (Ul, 1/1%1) where U; is the T-stable unipotent group attached to
the set of positive roots whose complement is {1011000,0001110, 1010000,0000110, 1000000, 0000010} .
Also 1#%1 (1) = ¥ (10000001 + 11111000 +U1011100 + U0101110 + U0011110 + A1 Uay + A2Uag +A3Uas +A4Ua, ). For
a=(a1,as,a3,a4) € F* we define a character wicg of US2_ by ¢§G2 (u) = Y(asug+(ai—az+as)uq).

max
Jo(var.otr,, ).

Proof. The proof consists of three applications of the “exchange lemma”, Lemma[7.1.1] Each time,
the group X is a product of two commuting root subgroups U,,,U,, of GE7, and there are three
roots 1, B2, 83 of GE7 and a root § of Go such that go N 69?:1 ug, = us. For the group Y we may
use any complement to Us in Ug, Ug,Ug,. The roots which determine the groups X and Y in the
successive applications of Lemma [7.1.1 are given in the table below.

X Y 0
1000000, 0000010 | 0111000,0101100,0011100 | 2c + 3
1010000, 0000110 | 0101000,0011000,0001100 | o+ 3
1011000, 0001110 | 0100000, 0010000, 0000100 o

Checking conditions (1) to (6) for Lemma is similar to the proof of Lemma

Lemma 7.1.2. The period (Ul, 1/1%1) is equivalent to the composed period (Uﬁgx, wi%

max

Note that the character ¢%1 is attached to
fg = fo + CLl_X_a2 + agX_a3 + a3X_a5 + a4X_a4.

Lemma 7.1.3. (1) Let X be a nilpotent element of e7. Then X is in the closure of Ag if and
only if ad(X) = 0. In this case ad(X)!? is also 0.
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(2) Let X be in the closure of Ag. Then X is in Ag itself if and only if ad(X)'? # 0.

Proof. To any nilpotent element X € ¢7 we may associate the rank sequence (rankad(X)"),.
(All but finitely many entries are zero.) It is clear that the rank sequence is an invariant of the
stable orbit of X. In general the map from stable orbits to rank sequences is not injective, but one
can check (using GAP, for example) that for e it is. This lemma can then be proved by inspecting
the rank sequences for all nilpotent orbits in e7, obtained from GAP, while using the chart on p.
442 of [C93] to see which orbits are in the closure of Ag. O

Lemma 7.1.4. (1) For a in general position f, is in the orbit E7(as4).

(2) The orbit of f, is in the closure of Ag if and only if at least one of the following conditions
holds:
(a) a4 = 0;
(b) a3 =0 and a; = ay;
(¢) a1 = asci(c1 +2) and ag = azey(c1 + 1) for some c¢;.

(3) If ag =0, or, az =0 and a; = ag, then the orbit of f, is strictly less than Ag.

(4) If a1 = agcr(e1 +2) and ag = azci(cr + 1), then f, is in Ag if and only if a4 and a; —as + a3
are both nonzero, i.e., the character wiGQ is generic.

max

)14 —

Proof. Using GAP and SageMath, we compute that for @ in general position, Rankad(f,
1,Rank ad( f,) 13 = 2 Rankad( fa) 12 — 4. Tt follows that for @ in general position, fa is an element of
the orbit E7(as). An element f of ¢7 lies in the closure of Ag if and only if ad(f)!3 = 0. It lies in
Ag itself, if and only if Rankad(f)'? = 3. Further, Rank ad(f,)** = 0 if and only if as = 0 or

(715) (a1 - a2)2 + ag(al - 2&2) =0.

If a4 = 0, then Rank aud(fg)11 =0, and f, is in an orbit which is less than Ag. If ag = 0 and a3 = ay,
the same is true. 2 ,
If ag # 0 then we may let by = a; — as, and becomes by — ag = —é. Then letting ¢; = é,
this becomes as = cias + c%ag. Also a1 = cias + as = 2cjas3 + c%ag. We may compute ad(f,), with
a1, a9 defined by these formulas, using SageMath. After dropping all rows and columns that consist
entirely of zeros, we obtain a 9 x 9 matrix, all of whose entries are divisible by 462a§a4(cl +1)2,
which is easily seen to be rank three if this expression is nonzero. Further, when a1, as are defined
by these formulas, we have a1 —as + a3 = (¢1 + 1)as. From this we conclude that for any a such that
fa € Ag, the character wi% is generic. g

max

Remark 7.1.6. Note that the character 1/1?733)( is trivial if and only if a4 = a1 — a2 + ag = 0. We
found that in this case f, is always in the orbit A7
Lemma 7.1.7. Let Uy be the T-stable unipotent subgroup such that
O(T,Uy) =d* ~ {0000100,0000110,0001100,0010000,0011000, 1010000},
and ¢%2 :Uz(A) — C* the character of Ua(F)\Uz(A) given by

a
¢52 (u) = 9 (0000111 +0101100+%0001110+%0111000 11011000 +A3U0000010 +A4%0011100+@1U0100000+A2U1000000) -

Let * denote entrywise multiplication in F*: (c1, 2, c3,cq)*(a1, a2, a3,a4) = (cra1, caas, c3a3, c4a4).
Then there exists ¢ = (c1, ¢, c3,¢4) € {£1}* such that (Ul,l/%l) ~ (Ug,wg;g) for all @ € F*.

Proof. Conjugate by a suitable representative of w[5631]. For any representative, w[5631], we have

W[5631]xo(r)w[5631]7t = Ty[5631]a (Ci[5631],a7), fOr some constants c[5631],« Which depends on a,

the choice of representative, w[5631], and the structure constants of the Chevalley basis. Moreover,

there exist representatives such that c;[5631),o € {£1} for all a.. Since the five roots from the original
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A character can be simultaneously conjugated to simple roots, it follows that we can adjust our
representative by an element of the torus to make these five coefficients one. O

The character ¢, is attached to Ad(w[5631]) ferq, which is, of course, in the same orbit as fe.q-
We have seen in Lemma [7.1.4| that if this orbit is greater than or equal to Ag, then 1/)2*52 will be

max

a generic character of Uggx. But the set of such characters is permuted transitively by the torus of

G5. Hence, all such characters are equivalent. That is (Ug, w%Q) ~ (Ug, wQUQ) whenever the nilpotent
elements attached to 1/}%2 and wQUQ are both attached to orbits that are greater than or equal to Ag.

Lemma 7.1.8. Let Uz be the T-stable unipotent subgroup such that
O(T,Us) = ® ~ {0000001,0000100,0001000,0001100,0010000,0011000},
and let ¢%3 : U3(A) — C* be the character given by ¢%3 (u) = ¥ (uooo1110 + 0101100 + U0000111 +

: 4

U0111000 T %1010000 + @3U0000011 + A4U0011100 T A1U0101000 + a2u1000000)- Then there exists d € {il} such
a dxa 4
that (Us, ¥f,) ~ (Ug, vy ) for all a € F*.

Proof. Exchange a7 for 0000110 and a4 for 1010000, applying Lemma [7.1.1] and then conjugate
by a suitable representative for w[47]. O

Lemma 7.1.9. Let Us be the unipotent subgroup attached to E7(a4). Thus Uy, is in Us for i =1,4
and 7. Let Uj be the subgroup of Us defined by the condition u,, = 0. And 1/)%4 be the character of

this group defined by the same formula as 1/1%3. Then (U3, w%s) ~ (U4, 1/1%4) .

Proof. We exchange 0100000 for 0011000, 0000010 for 0001100, and then 0000110 for 0000001,
applying Lemma [7.1.1 O

Proposition 7.1.10. For a € F* and b € F, let w%’: be the character given by w%’:(uxm (r)) =
¢%4(u)w(br), for u € Uy(A) and r € A. Then an automorphic representation supports the period
(U4, w%4) if and only if it supports (U5,w%’5b) for some b.

Proof. Given an automorphic form ¢ we perform Fourier expansion of go(UMl@) along the one-
dimensional unipotent group Uy, (F)\Uq, (A). O

Let Mys 356 be the standard Levi subgroup of GE7 which contains Uy, if and only if 7 = 2,3, 5,
or 6. (Thus, Myy 356y is the standard Levi factor of a standard parabolic whose unipotent radical
is the group Us.)

Proposition 7.1.11. Let y, = X _oo01110+X-0101100 + X -0000111 +X 0111000 +X-1010000 +@3X 0000011 *+

L. ) . 0

a4 X _0011100 + @1 X 0101000 + @2X _1000000, Which is the nilpotent element associated to wa and wl%; .
, . .

Let e = X_1010000 + X-0000011 + X-0111000 + X—0101100 + X—-0011100 + X-0001110- If ¥, is in the orbit Ag

then there exists m in My, 356 such that Ad(m).y, = €. In particular, if w[e}; is the character of
Us(A) attached to e, then the periods (U5,¢%’50) and (U5,¢le})5) are equivalent.
Proof. Computations that are very similar to those done in the proof of Lemma show that y,
is in Ag if and only if a4,a3 # 0, a1 = 2c1a3 + c3az, az = —(ciaz + c1a3), with ¢ # 1. Let

1 (b1, b2, b3,b4,b5) = T0100000(b1) 0010000 (b2) Z0000100 (b3 ) 0000010 (b4 ) 0000110 (b5 ),

11 (b1, b2, b3,b4,b5) = 20100000 (b1)Z-0010000(b2) Z-0000100 (b3 ) Z-0000010 (b4 ) Z—-0000110(b5)-
Then u;(azagcy, —(agc% +agey), cras, —a3a4c%, a%mc%) maps Y, to

X 0001110 + X-0101100 + X-0000111 + X-0111000 + X-1010000 + (@3 + @3¢1) X _0000011 + @4 X_0011100-
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Then acting on this by

1 1 1 1 1
l y y y y
! (2(13(14(61 + 1) 2a3((:1 + 1) a3(01 + 1) 2a3a4(01 + 1) 4a§a4(cl + 1)2)
produces
X_0001110 + X-0101100 + X-0111000 + X-1010000 + (@3 + azc1) X 0000011 + @4 X_0011100-

Then acting by a suitable torus element produces ef. O

Lemma 7.1.12. Let w3 = w[24315423465423765]. Then there is a representative ws for ws in
GE7(F) such that wse) = X_o, + X_gq + Xy + Xoas + X_ag + Xoar-

Proof. One may check (using LiE, for example) that ws maps the six roots which appear in the
expression for ef, to the six negative simple roots in the GL7 subgroup. It follows that the identity
holds up to nonzero scalars for any representative w|[24315423465423765]. We may then adjust by

an element of T'(F) to make all the scalars one. O
2 0 2 0 0 2 ..
Remark 7.1.13. Let s = 0 be the standard semisimple element attached to the

orbit E7(a4). Then (U5,@Z)(e]i) =Fsel-

42222 22

Lemma 7.1.14. Let s’ = w3". 9 . Then Fy o (€x) # 0.

2 2 2 2 2 2
Proof. Let eg =wsel; = X_q; + X_ag + X_ay + Xy + X_ag + X_o, and " = o . Then
as in the proof of Theorem [5.0.10, Fy» ., maps an automorphic form to the GL7 non-degenerate
Whittaker-Fourier integral of its constant term along the Ag parabolic. Therefore, Fyr ¢, (Ex) # 0.

Since for ¢ € Ex, For o1 (9)(9) = For e, (0)(w3g), Frer (Ex) # 0. O
Lemma 7.1.15. F s | Fg o . Hence, F o1 (Er) # 0.
Proof. By Theorem [3.1.11} we only need to check that

gu NP3 C 851

202 00 2
0

into a neutral pair. The element u is in the orbit Ag and it is not hard to check that w[4].u lies in

0020220
0

Here u = ¢, s = . In order to check this condition, it is convenient to embed u

the unipotent radical determined by . It follows that w[4].u forms a neutral pair

with 00 (2) 0 2 0, and thence that u forms a neutral pair with

00202002 -2220_

’U)[4] 0 9 -+ S50.

Now, we know that g, c g2{. Hence g, ng$; c g2 ng3;. It’s not hard to check that g2 ng?; is
the sum of the root subgroups attached to the following roots:

{1011000,0001000,0101000,0011000,0001100, 1000000, 0000001 }

and from there its not hard to check that gZ) ngs; c ggll.

In fact, it turns out that s’ = 7s — 6sg. It immediately follows that if s acts on X with a positive
eigenvalue, and sy acts on X with a nonpositive eigenvalue, then s’ acts on X with a positive
eigenvalue, which is what we wanted. (|
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Corollary 7.1.16. If ¢ L G2 is generic, then &, supports (Umax,wUG2 ) o (UAg,w{,‘)A").

max max

Proof. If ¥* 152 is generic, then — since wgc depends only on a; — az + a3 — we may assume that

a1 = ag = O “In this case, by Lemma [7 “the element fa is in Ag. Hence, if ¢ and d are as in
Lemmas [7.1.7] and [7.1.8] respectively, then Yexdra, Which is conjugate to f,, is also in Ag. From

Proposition [7.1.11) Lemmas [7.1.12| and [7.1.15] and Remark [7.1.13] it follows that & supports
(Ug,,i/)%’o). Then, by Proposition [7.1.10| and Lemmas |7.1.9L |7.1.8L 7.1.7}7 and |7.1.2L it supports

( maxaw G2 ) o (UAg,wlj})A”) as well. 0

max

Reformulating Corollary [7.1.16| gives the main theorem of this section.
Theorem 7.1.17. D, is generic.
Remark 7.1.18. (1) It can be shown that for each a € F** there is a unique b € F such that the

cxd*a,b .

nilpotent element attached to the character wU is in the closure of Ag, and that this element

is in Ag if and only if 1* ,Ga is a generic character.

max

(2) If 7 is not of Gy type but L°(s, 7, %) has a pole at s = 1, then Theorem [7.1.17|is still valid
for the residual representation &, with exactly the same proof.
(3) It follows from the proof above that given any irreducible automorphic representation IT of

GE7(A), if F e (1) # 0, then the (UA’S’, wéoAH)—Fourier coefficients of IT are generic. In particular,

5
this applies to the residue of our Eisenstein series at 1, whenever it exists.

7.2. Local descent. Since the results of [GGS17] hold in both the local and global settings, the
same set of arguments given in the global setting above also provides a local analogue.

Theorem 7.2.1. Let F), be a nonarchimedean local field. Suppose that an irreducible admissible
representation II, of GE;(F,) supports the twisted Jacquet module attached to (Ug,,l/%’:) with

Ya (see Proposition [7.1.11) in the orbit Ag. Then the (U Ag,ip(]};")—twisted Jacquet module of II,
5

supports twisted Jacquet modules attached to Ug;x and all generic characters of Uggx In particular,
this holds when II, is the local component of any irreducible summand of &; where 7 has the

property that L%(s,m, A%) has a pole at s = 1.
7.3. Unramified constituents of &;.

7.3.1. Unramified lifting. Let x be an unramified character of GL7(F,) where F, is nonarchimedean.
Recall that our isomorphism of the Levi M of GE7 with GL7 x GLy maps h(ty,...,ts) to

tslts
t-1t6
tslts
tz1ty
tyltats

Thus, it identifies xy with a matrix # = diag(#1,...,#7) in GL7(C) such that

X(h(tla ts)) "h7 ns"’% n7’£’gs %’75‘24 ns’t‘nz+n3 n4’t‘7611+n2 ns’t‘nz n17

where n; = ord(t;), fori=1,...,8.
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If Te G5(C) then T3 = % Ti=1,%=2 % =%" and % =, hence
X(h(tla ) 7t8)) _ (’t"l)nl72n2—n3+n4+n57n6+n77n8 (’{2)—111+2n3—n4—n5+2n6—n7‘

We can rephrase this as follows. Let A\; = @y — 2w — w3 + Wy + w5 — wg + Wy — s, and g =
—w + 23 — w4 — w5 + 2006 — wr, and let x; be the unramified character of GL;(F,) attached to %;
for ¢ =1,2. Then

(7.3.1) X(t) = x1 (£ )x2(t*?), for t = h(ty,... tg) € M.

This element € Go(C) ¢ GL7(C) also determines a character p of the standard torus of Go. If
a is the short simple root of G5 and 3 is the long simple root, then «" is the long simple coroot
and is identified with the long simple root of the dual group, while 3V is identified with the short
simple root of the dual. Then

v.BY [ " ’tg P +ng (T2
(6% -n n ni—m
p (1) ):(?) (_) = (B) R ()P,

)\t

where n; = ord(t;) for i =1, 2.

7.3.2. Degeneration. Recall that P is the standard parabolic subgroup of GE7 whose unipotent
radical contains U,, if and only if ¢ = 2, and @) is the standard parabolic subgroup of GE; whose
unipotent radical contains U,, if and only if ¢ = 4 or 6.

Suppose now that m, is a principal series representation of GL7(F,) which is attached to a

character of the form ([7.3.1)). We consider the representation Indiiﬁff v)
component of a cuspidal representation m of Go type, then the residual representation & is a
GE7(A)

Ty - |@2|. If 7y, is the local

quotient of Ind 7+|@2|. It may be reducible, but it is in the discrete spectrum, and if II is any

P(A)
irreducible summand, then II, is a quotient of Indgfg(f v)

GE7(Fy)
P(Fy)

Ty - |@2|. Moreover, if 11, is unramified,

then it is the unique unramified constituent of Ind Ty - |22

Lemma 7.3.2. Let wg be w[423546542314376542] as in Section so wg maps the five roots in
the character w(ej‘) to {a; :1=1,2,3,5,7}. Let wy denote the longest element of the Weyl group of
GE7 which is reduced by P on the left and right. Then wgwy maps A1 to w4 — wg — ws, A2 to
-ty + 2w — wg, and ws to PQ — PB+ 3/2w8.

Proof. This can be checked using a computer software package such as LiE. (|

Since wgwoA1 pairs trivially with all coroots in the Levi of @), it induces a rational character
of this Levi. Similarly, wgwgAo induces a rational character vs.

Corollary 7.3.3. The unramified constituent of IndIGD(E;(f v) 7y|Z2| is equal to that of
GEr(F, ~
(7.3.4) IndQ(;f) )(x1 01)(x2 0 )&%,

Proposition 7.3.5. Let (s,u) be a Whittaker pair such that u is contained in an orbit which
is greater than or not related to Ag. Let U = exp(g3;). Then both J(y4,) and Jn, 4, kill the
representation ([7.3.4).

Proof. This follows from Corollary (cf. Remark [3.2.10) O
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7.4. Cuspidality of the A’5’ descent module. The purpose of this section is to show that D, is
cuspidal, provided that there exists a finite place vy such that m,, is a principal series representation
of GL7(F,,) which is attached to a character of the form (7.3.1)). There are two maximal parabolic
subgroups of Go. Recall that 8 denotes the long simple root of Go and a denotes the short one,
and for v € {,a}, P, denotes the maximal parabolic subgroup of Go whose Levi, M, contains the
root subgroup U, attached to v. N, denotes the unipotent radical of P,.

7.4.1. Constant term along N,.

Lemma 7.4.1. Let hp, = 2a¥ + 45Y. This is the standard semisimple element of Gy which is
attached to the parabolic P,.
(1) The embedding of G5 into GE7 identifies hp, with 2a3 + 20 + 4oy +2ay.
020 -2 0
0 .
(3) The Weyl element wp, = w[134567245631] maps this weight to the dominant weight
200000
0 .

(2) The weight attached to this semisimple element is

(4) Let
f1 =X 0100000 + X-0011000 + X-0001100 + X-0000110 + X-0000011-
Then there exists a representative wp, for wp, which maps fo to fi.

Proof. The embedding fixed in section [6.1] maps o to ay + oy + ) and B to ay so (1) is clear.
Parts (2) and (3) can be checked using LiE. As for part (4), let

S, = {-0100000,-0011000, -0001100,-0000110,-0000011}.
Then we can first check using LiE that the wp, maps the five roots v such that X, appears in fj
to the five roots of Sy, . This ensures that any representative wp, maps fo to Y g " cy X, for some
quintuple (¢y)~es f1 of elements of F™*. Since wp, is unique up to an arbitrary element of the torus
T(F), it suffices to show that for any such quintuple (¢, )4es;, , there is an element ¢ € T'(F") which
acts on X, by ¢, for each v € Sy, . Since Eg is of adjoint type and GE7 contains the full torus of
Eg, the elements of I by which ¢ acts on X,,,..., X4, can be chosen arbitrarily. Since the Sy, is

a subset of a basis of the root lattice, it follow that the scalars by which ¢ acts on {X, :v € S}
can be chosen arbitrarily as well. ([l

Lemma 7.4.2. Let U; be the unipotent subgroup of GE7 such that ®(U;,T) = ®*(GE7,T) ~
{a, a9, as, as, ag, 1010000,0000110}. Let ¢(J;01 be the character of U; determined by fy, and let tri

denote the trivial character of N,. Then the composed period (N, tri) o (U Al wg)A”) is equivalent
5

to (Ul, [];01) .
Proof. This follows from the exchange lemma (Lemma |7.1.1). (Cf. Lemma[7.1.2}) O

Now let Uy = wp, Ulwl‘gi. Then it follows from part (4) of lemma|7.4.1|that (Ul, w{;‘)l) is equivalent
to (Ug, ¢[];12) .
Lemma 7.4.3. Let S3 be the set which contains all positive roots of E7 except

0000001, 0000100, 0010000, 1000000, 1010000, 1011000,1011100,1011110,1011111,

in addition to —1000000,-1010000. This set is closed under addition, and hence determines a
unipotent subgroup Us. The nilpotent element f; determines a character of Us(A) which we denote
by @D[j;la Then (UQ,¢(J}2) is equivalent to (Ug,qb{}g) .
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Proof. We apply the exchange lemma (Lemma [7.1.1) six times, exchanging —1111100 for 1122100,
—-1111000 for 1112100, —1011111 for 1111111, 1011110 for 1111110, —1011100 for 1111100, and
—1011000 for 1111000. 0

Lemma 7.4.4. For a, be F, let fz(a, b) = f1 + aX,mHHO + bX,1011111. Let U4 be the pI‘OdU.Ct of U3
and the two-dimensional unipotent group corresponding to 1011110 and 1011111. Then

(U371/1£): > (U4,¢(]Z(a’b))-
beF

)

Proof. This follows from taking the Fourier expansion on the two-dimensional unipotent group
corresponding to 1011110 and 1011111. ([l

Lemma 7.4.5. The element f2(a,b) lies in the orbit Dg(aq) unless a =b=0.

Proof. This was checked using GAP and SageMath. An element X of ey is in Dg(ay) if and only
if Rankad(X)" is given as in the table for the listed values of k.

k 10 11 12 13 14
Rankad(X)* 11 6 3 2 1 °

GAP was used to obtain adjoint matrices for a Chevalley basis of e7. These were then loaded into
SageMath, in order to work in the polynomial ring Z[a,b]. The matrices ad(f(a,b))* were then
computed, starting with k£ = 1 and continuing until the zero matrix was obtained. Next, we deleted
any rows and columns consisting entirely of zeros to obtain a sequence of smaller matrices, which
we refer to as the nonzero parts of the matrices ad(f(a,b))”. Clearly, each matrix has the same
rank as its nonzero part. Next, we computed the ranks of the matrices ad(f(a,b))*, deducing that
as an element of e7(Z[a,b]), f2(a,b) lies in the orbit Dg(a;). This implies that for any specific
scalars a and b, fo(a,b) lies in the Zariski closure of Dg(aq).

Now, each stable orbit which is less than Dg(a) is contained in the closure of either F7(as) or
Ds. (See, for example, the diagram on p. 442 of [C93].)

If X lies in the closure of F7(as) then ad(X)' = 0. The nonzero part of ad(f(a,b)) is

-1716a*> -1716ab
-1716ab -1716b>

We deduce that if f(a,b) is in the closure of E7(as) then a =b=0.
If X lies in the closure of Ds, then rankad(X)!'! < 4. A suitable permutation of the rows and
columns of the nonzero part of ad(f(a,b))!! puts it into the form

0 0 0 A
0 0 B O
0 -'B 0 0
-tA 0 0 0

where
A~ 0 264a -330a -66b -528a®> -330a®> -528ab 330ab
| 66a 3300 -264b 0 -528ab -330ab -528b% 33042 |’

g —5%a -528a% -528ab 1188a% 1188ab
“\ -594b -528ab -528b% 1188ab 11881°

It’s fairly easy to see that if (a,b) # (0,0), then A and ~'A are of rank 2, B and ~!B are of rank
1, and ad(f(a,b))'! is of rank 6. O
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Lemma 7.4.6. Let Uj = w[31]Usw[13], which is the unipotent radical of a parabolic subgroup
and contains the root subgroup U,, attached to the simple root «; if i = 2,3, or 6. Let w[31]
be a representative for w[31] and f5(a,b) = Ad(w[31])f2(a,b) then for any smooth automorphic

function ¢
f2 (a,b)

o = gy,
In particular the periods (U4,wf2(a b)) and (U4,wf2(a b)) are equivalent.

Uspf2?) ( R

Proposition 7.4.7. Let £ = ®,&, be an irreducible automorphic representation of GE7(A) and
assume that there is a finite place vg such that &,, is induced from a character of the group ) from

Section |7.3.2. Then £ does not support the coefficient (U4,wf2(a b)) for (a,b) # (0,0).

Proof. This follows from Corollary [3.2.7} since the Richardson orbit of @ is Ag (cf. Remark m
and f3(a,b) is in Dg(a;) by Lemma 7 4 5

Proposition 7.4.8. Let S5 be the set which contains all positive roots of E; except
0000001, 0000100, 0010000, 1000000, 1010000.

Then for any smooth automorphic function ¢,

f1 f1
SD(U4’wU4)(g):fAfAgp(UwpUs)(a?_loooooo(7“1)33—1010000(7"2)9)drl dra.

In particular, (U471/Jf2(0 0)) is equivalent to (U5, (JZ(O’O)).

Proof. This is another application of the exchange lemma (Lemma|7.1.1). O
Lemma 7.4.9. Let Ug be the product of Us and the two-dimensional unipotent group Uy, Uq, +as-
For a,be F, let f5(a,b) = fi + aX o, +bX 1010000- Then (Us, 2 "”) = £y pep (Us, 02 ?).
Proof. This is again just a Fourier expansion. ]
Lemma 7.4.10. The residual representation &, does not support the period ( ,wf 3(0, 0))

Proof. This holds because Ug contains the full unipotent radical of the standard maximal parabolic

subgroup of F; whose Levi is of type Dg, and the character gZ){}”G(O’O)

is trivial on this subgroup.
Thus ( ,wf 5(0, 0)) factors through the constant term attached to this maximal parabolic. But

that parabohc is not associate to the one used in constructing our Eisenstein series, so neither the

Eisenstein series nor its residue will support this constant term. O
Proposition 7.4.11. If (a,b) # (0,0) then f3(a,b) lies in the orbit Ds.
Proof. We use the same method which we used above to find the orbit of fa(a,b). O

Proposition 7.4.12. Let £ = ®,&, be an irreducible automorphic representation of GE7(A) and
assume that there is a finite place vg such that &,, is induced from a character of the group ) from

Section [7.3.2. Then & does not support the coefficient (U6 wa(a b)) for (a,b) # (0,0).

Proof. This follows from Corollary and Lemma [7.4.11] because the Richardson orbit of Q is
Ag (cf. Remark |3.2.10)). O

Hence, we have the following theorem.

Theorem 7.4.13. Let 7 be an irreducible cuspidal automorphic representation of GL7(A) which
is of G2 type, such that m,, is induced from a character of the form at some finite place vg.

T
(UAg"l’Z]U(;")

Then the constant term of £, along N, is zero.
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7.4.2. Constant term along Ng. Let hp, = 4a” + 64Y. This is the standard semisimple element
of G which is attached to the parabolic Pg. The embedding of G2 into GFE7 identifies hp, with

2 g 2 QThe

Weyl element wp, = w([3,4,1,3,2,4,5,6,7,4,3,2,4,5,6,4,3,1] maps this to the dominant weight
02 0000
0 :

Lemma 7.4.14. Let U; be the unipotent subgroup of GE7 such that ®(U;,T) = ®*(GE;,T) \
{0001000, 1011000, 0001110, 1010000,0000110, 1000000,0000010}. Let w{jol be the character of Uy
determined by fo, and let tri denote the trivial character of Ng(A) Then the composed period

. f . . f
(Ng, tri) o (UAg,@ZJUOAg) is equivalent to (Ul,d}UOl).

day +4ay + 60y +4ay. The weight attached to this semisimple element is

Proof. This follows from the exchange lemma (Lemma [7.1.1). (Cf. Lemma[7.1.2]) O
Now let Uy = w Ps Ulw]_g}a and

J1 =X 0100000 + X-0001000 + X-0000100 + X-0000010 + X-0000001-

Then there exists a representative wp, for wp, which maps fo to f1, so (Ul,w{}’l ) is equivalent to

(U0}

Lemma 7.4.15. Let S5 be the set which contains all positive roots of E; except
0010000,0011000,0011100,0111000, 1000000, 1010000, 1011000,
1011100,1011110,1111000,1111100, 1122100, 1122110, 1122210,

in addition to

-1111000,-1011100,-1011000,-0011000,-1122100, -1010000, -0010000,

This set is closed under addition, and hence determines a unipotent subgroup Us. The nilpotent
element f; determines a character of Us(A) which we denote w[’jlg. Then (Ug,d}&) is equivalent to

(Us,011).

Proof. We apply the exchange lemma (Lemma|[7.1.1) five times, exchanging —1122210 for 1123210,
—1122111 for 1122211, —0011100 for 0011110, —0111000 for 0111100, —1122110 for 1122111. O

Lemma 7.4.16. For a € F, let fa(a) = f1 + aX_1122210. Let Uy be the product of Us and the
one-dimensional unipotent group corresponding to 1122210. Then

fi) _ f2(a)
(U371/}U13)_ Z (U471/}U24 )
aeF
Proof. This follows from taking the Fourier expansion on the one-dimensional unipotent group
corresponding to 1122210. O
Lemma 7.4.17. The element f(a) lies in the orbit Dg(a;) unless a = 0.
Proof. The method is similar to that of Lemma [7.4.5 U

Proposition 7.4.18. Let £ = ®,&, be an irreducible automorphic representation of GE7(A) and
assume that there is a finite place vg such that &,, is induced from a character of the group ) from
Section [7.3.2. Then & does not support the coefficient (U4, {Z(a)) for a + 0.
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Proof. Recall that for S c {1,2,3,4,5,6,7}, Ps denotes the standard parabolic subgroup whose
Levi contains the root subgroups attached to the simple roots {«; : i € S} and unipotent radical
contains the root subgroups attached to the simple roots {«; : i ¢ S}. Let w = w[425423413]. Let
U; = wUqw™, which is contained in the unipotent radical of Py2 3561 Let w be a representative for
w and fi(a) = Ad(w) f2(a) then for any smooth automorphic function ¢

( fg(a))
P (9) = Y (g).
In particular the periods (U4,¢£24(a)) and (U4,¢f2( )) are equivalent.

U4,1/Jf2(a)) (U4:¢

Hence, it suffices to show that £ does not support the coefficient (U4,1/1f2( )) for a # 0. This
follows from Corollary and Lemma [7.4.17, because the Richardson orbit of @ is Ag (cf.

Remark |3.2.10)). O

Proposition 7.4.19. Let S be the set which contains all positive roots of E7 except
0010000,0011000,0111000, 1000000, 1010000,1011000, 1111000, 1122100,

in addition to —1010000, —0010000. Then (U4,¢f2(0)) is equivalent to ( ,wa(O))

Proof. This is another application of the exchange lemma (Lemma |7 five times: exchang-
ing —1011100 for 1011110, —1111000 for 1111100, —1122100 for 1122110, —0011000 for 0011100,
—1011000 for 1011100. 0

Lemma 7.4.20. Let Ug be the product of Us and the one-dimensional unipotent group

Ui122100-
For a € F, let fg(a) = fl + aX_1122100. Then

(U wa(O)) Z(U wa(a)),

aeF
Proof. This is again just a Fourier expansion. O
Proposition 7.4.21. If a # 0 then f3(a) lies in the orbit Ds.
Proof. The method is similar to that of Lemma [7.4.5 U

Proposition 7.4.22. Let £ = ®,&, be an irreducible automorphic representation of GE7(A) and
assume that there is a finite place vg such that &,, is induced from a character of the group ) from

Section [7.3.2. Then & does not support the coefficient (U6,1/J(]Z(a)) for a # 0.

Proof. Let Ui = w[3,4,1,3]Usw[3,4,1,3]. Let w[3,4,1,3] be a representative for w[3,4,1,3] and
f3(a) = Ad(w[3,4,1,3]) f3(a) then for any ¢

f3(a)
6,¢f3( )) 3

Ao gy = L) s, 0,310
In particular the periods (Uﬁ,d)f?’(a)) and (U6,1/}f5( )) are equivalent.

o

Hence, it suffices to show that £ does not support the coefficient (Uﬁ,wf s )) for a # 0.

Now, write sp, for the standard semisimple element attached to the OI‘bIt Dg. Let Vp, be the
(a) .

unipotent group whose Lie algebra is g>26 Then Ug = Vp,Uoooo100Uooo1100, and ¢f3 is trivial on

fa(a
(vl

U0000100U0001100. So ¢ 6 ) may be written as a double integral with the inner integral being

f3(a)
Vbg s 3
<p( Pas¥, ) So, it suffices to show that the coefficient (Vpﬁ,w st )) vanishes on £. This follows
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from Corollary and Lemma [7.4.21] because the Richardson orbit of @ is Ag (cf. Remark
3.2.10)), and Dg is greater than Ag. The role of “P” in Corollary is played by Ppy;. O

Lemma 7.4.23. Let U; be the product of Ug and the two-dimensional unipotent group

Uo111000U1111000-
For a,be F, let fi(a,b) = f1 +aX 0111000 + bX_1111000. Then

(5 £20) - 3, (058),

a,beF
Proof. This is again just a Fourier expansion. O
Proposition 7.4.24. If (a,b) # (0,0) then f4(a,b) lies in the orbit Dg(aq).
Proof. The method is similar to that of Lemma [7.4.5 O

Proposition 7.4.25. Let £ = ®,&, be an irreducible automorphic representation of GE7(A) and
assume that there is a finite place vg such that &,, is induced from a character of the group ) from

Section [7.3.2. Then & does not support the coefficient (U7,1/1[];47(a’b)) for (a,b) # (0,0).

Proof. Let Uz = w[13]Urw([31], and f;(a,b) = Ad(w[13]).fs(a,b). Then U; = Uys4y. We apply
Corollary with P = Py34y. Since the Richardson orbit of @ is Ag (cf. Remark [3.2.10), it

follows from Lemma |7.4.24| that &,, does not support the coefficient (U;, wg‘%(a’b)) , which is clearly
7
equivalent to (U7, {]47(“’17)) . O

Proposition 7.4.26. Let Sg be the set which contains all positive roots of F; except
0010000, 1010000.

Then <U7,¢(J;47(070)) is equivalent to (US, wlj};(o,o)) .

Proof. This is another application of the exchange lemma (Lemma(7.1.1)) twice: exchanging —1010000
for 1011000, —0010000 for 0011000. O

Lemma 7.4.27. Let Ug be the product of Ug and the two-dimensional unipotent group Upg10000U1010000-
For a,be F, let f5(a,b) = f1 +aX_oo10000 + bX_1010000. Then

(U 6£O) = 5 (0 2.

a.beF
Proof. This is again just a Fourier expansion. O
Proposition 7.4.28. If (a,b) # (0,0) then f5(a,b) lies in the orbit Dg.

Proof. The method is similar to that of Lemma [7.4.5 g

Proposition 7.4.29. Let £ = ®,&, be an irreducible automorphic representation of GE7(A) and
assume that there is a finite place vg such that &, is induced from a character of the group @ from

Section [7.3.2. Then & does not support the coefficient (U97wlf]59(a,b)) for (a,b) #(0,0).

Proof. Note that Uy is the full unipotent radical of the parabolic Pgyy. We apply Corollary
with P = Pyyy. The result follows from Lemma |7.4.28| because the Richardson orbit of @) is Ag (cf.
Remark |3.2.10)). O

Lemma 7.4.30. The residual representation £, does not support the period (U9,¢[]}Z(O’O)) .
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Proof. This holds because Uy contains the full unipotent radical of the standard maximal parabolic
subgroup Py 24567}, and the character w{]g;(o,o) is trivial on this subgroup. Thus (Ug,wéf’g(o’o))
factors through the constant term attached to this maximal parabolic. But that parabolic is not
associate to the one used in constructing our Eisenstein series, so neither the Eisenstein series nor
its residue will support this constant term. [l

Hence, we have the following theorem.

Theorem 7.4.31. Let 7 be an irreducible cuspidal automorphic representation of GL7(A) which
is of Ga type, such that m,, is induced from a character of the form at some finite place vg.
(U Agﬂ?{}l‘ ,,)

Then the constant term of &, " along Ng is zero.

Therefore, Theorems [7.4.13] and [7.4.31] together imply the following theorem on the cuspidality
(vag vt
of our descent module &; 5

Theorem 7.4.32. Let 7 be an irreducible cuspidal automorphic representation of GL7(A) which
is of G'g type, such that m,, is induced from a character of the form at some finite place vg.

(UA,,,w,fJO ,,)
Then &, P % g cuspidal automorphic representation of G3(A).

Remark 7.4.33. It follows from the proof above that given any irreducible automorphic repre-
sentation IT of GE7(A), if Dg(a1), Dg ¢ n(II) and the constant terms of II along Py 34567 and

P(12.456,7y are identically zero, then the (UAg’a 1/)(1})A,,)—Fourier coefficients of 11 are cuspidal.
5

7.5. Unramified local descent. The purpose of this section is to show that « is a weak functorial
lift of each irreducible summand of D,, provided that for almost all finite places v, 7, is a principal
series representation of GL7(F,) which is attached to a character of the form ((7.3.1).

Recall that PA’5’ = MAgUAg = P, = MU, is the parabolic subgroup defined as in Section
where s = s 4¢ is the standard semisimple element (cf. Definition attached to AL, M Ay = M
is the Levi subgroup, and U Ay = U is the unipotent radical.

We consider the twisted Jacquet module
jUAg”wzf&g (Indgfgff“)(m ovy)(xzo 1/2)?53/2) X
For x; and v;, see §7.3, To that end we study the space of double cosets Q(F,)\GE7(F,)/Ga(Fy)Uar (Fy),
where G4 is embedded into M Ar s the stabilizer of fy.

For v € Q(F,)\GE7(F,)/G(F,)Ur(F,) we say that  is admissible if ng)A” 1.
5

Ugprn(v1@Q)
Each double coset contains elements of the form wp with w in the Weyl group of minismal length in
its (Q, Pay)-double coset, and p € Myy(F,). Indeed, 1 may be taken modulo G2(Fy) on the right

and M 4r N w™'Quw — which is a standard parabolic subgroup of M Av—on the left. Then

fo

fo
o,

U pn
A5

1.

=] < u-
UAgﬂ(v‘le) ey

UAgn(w‘le)

Note also that -0 = wAd(”)'fO. Clearly Ad(p).fo is in the open orbit for the action of M,y on

UA’I UA’/
S arr 5 5
A
5
g9
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Lemma 7.5.1. Let ®47(2) = {a € ®:{a,sar) =2}. Then Ypeq ,,(2) daX-a is in A7 if and only if
5

2
(a0011110a0101110 = ap001110@0111110 ~ @0000110@0112110 — a0000010a0112210) x

2 2
X (a1011100a1111000 — @101100021111100 + @101000021112100 + a1000000a1122100) 0000001 * 0.

Proof. Direct computation using SageMath, with adjoint matrices obtained using GAP. U

Proposition 7.5.2. The set of reduced representatives w for Q\GE~r/ PAg such that v

UAgﬂw’le

f

UAg
S a1t

1 for some f in the open M Az-orbit of 9_25 has only one element, namely,

wp = w[4231435423165423143542654317654231435426543176].

Proof. T{ v, ,

=1 with f = Zaeq)Ag(Q) O/CVX—OH then

UAIrIn’LU_le
{ae @47(2) s wa <0}

contains {a € ®4r(2) : aq # 0}. If f is in the open orbit, then it follows from Lemma [7.5.1, that
{ave ©4r(2) : aq # 0} contains
(1) the root 0000001,

(2) two roots of the form 1 * % * 00 that add up to 2122100,
(3) two roots of the form 0 * * * 10 that add up to 0112220.

One can check using LiE that Q\GE7/PA§ has 786 elements. Of these, only 342 map 0000001 to a
negative root. Of these 342 only 120 map two roots of the form 1 % x * x00 that add up to 2122100
to negative roots, and of these 120 only one maps two roots of the form 0 * * x *x10 that add up to
0112220 to negative roots. Thus there is only one element of Q\GE7/PA/5/ such that

SAIrI f
€g .5’ : =1
{f -2 wUA'sl UAgﬂw‘le }

contains elements of the orbit AZ. This element is wp. O

Lemma 7.5.3. The orbit Al is a single rational orbit.

S Al
Proof. The space 9_35 decomposes as a direct sum of three irreducible M Ag—modules:

{X0000001), 0010 := (X0000010, X0000110, X00011105 X01011105 X00111105 X0111110, X0112110, X0112210)+

0100 *= (X1000000, X 1010000, X 1011000, X 1111000, X1011100, X1111100> X 11121005 X 1122100)-

"

5

S
We identify an element of gf; with a triple (z,y,2) where z and y are column vectors of size

8 and z is a scalar. The action of My~ on gigg then induces a rational homomorphism M Ay~
GLg x GLg x GLy. From Lemma W the triple (z,y,z) corresponds to an element of Af if
q1(2)q2(y)z # 0, where 1 and g2 are two quadratic forms. The derived group of M Ay is isomorphic
to Sping, and its image in GLg x GLg x GL1 preserves the forms ¢q; and ¢o. That is, the image the

derived group is contained in SOg(q1) x SOs(g2) x {1}. By Propositions 1 and 4 of [I70], we can
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map any triple which corresponds to an element of A to one of the form

0] [0
ol |0
ol o
a b
1 f1]?
ol |0
ol |0
-0_ -O_

using an element of the derived group of M AL It then suffices to show that the torus of GEr

contains an element ¢ which acts by a™! on X_1111000 by b} on X_g101110 by 27! on X_ggo0001 and
by 1 on X _ 1911100 and X _go11110- Since the images of ¢ under the 7 simple roots of F; can be chosen
arbitrarily, this is easy. g

Proposition 7.5.4. Let Py 4, := M A7 Nwg LQuwg. Then Py 4, acts transitively on

SA//
eg s (FYyn AL ot =1;.
{f 9—2 ( ) 5 wUAg UA//nwaleO
5

In the language Of the wy-admissible subvariety of PAg is equal to Py 4, - G2U. AL

4

S
Proof. Write feg_ 25 as Yo @aX-q, and identify it with a triple (z,y, 2) as above, given by

t
2:[(11000000 1010000 41011000 @1111000 @1011100 @1111100 @1112100 (11122100]7

t

Y= [CL0000010 @0000110  @0001110  @0101110  @0011110  @0111110  @0112110 00112210]-
The group P 4, is the standard parabolic subgroup of M Al whose Levi contains Uy, and Ui,
and whose unipotent radical contains U,, and U,,. This parabolic preserves a flag in each of the
spaces v1g9 and vg1g which is compatible with the order placed on the roots above. Specifically
write

1
L1 Y2
X
T = ii s y=|ys
L "

where z; is a column vector of size 2 for each i, Yy, is a column vector of size four, and y; is a
scalar for ¢ = 1,2,4,5. Then the standard Levi subgroup of P ,, respects this decomposition. The

= 1 is equivalent to api12110 = @o112210 = @1112100 = a1122100 = 0, i.e., to
UA//ﬁ’u}O Q’LU()

z,=0,y4=y5=0.

The triple (z, y,z) corresponds to an element of if z # 0 and z and y are each anisotropic
relative to a certain quadratic form (cf. Lemma |75_1D When z,,y4 and ys are trivial, this forces
Y and (£3) to be anisotropic.

The derived group of the Levi of Py 4, is isomorphic to SLg xS Ly, its action on the y , component

condition 1/JU ,

ll

of vg1p can be identified with the action of SLs x SLy on 2 x 2 matrices by (g1,92) Y = leggl.
Anisotropic elements correspond to matrices Y with detY # 0. Clearly, each such matrix is in
the same orbit as a diag(a, 1) for some a. It follows that each f is in the same orbit as one with
aoo11110 = ao101110 = 0,a0111110 = 1. The condition f € AL forces agoo1110 # 0. Once y, is of this
form, the subgroup of SLs x SLy which preserves it is isomorphic to SLs. The four- d1men51onal

space corresponding to x5 and x5 can then be identified with 2 x 2 matrices with this SLs acting by
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g-X = gX (matrix multiplication). Once again, det X # 0 for (%ﬁ ) anisotropic. Hence we can choose
a suitable element of SLs so that gX = diag(b,1). Hence we can arrange ai111100 = 1, 1011100 =
ai111000 = 0. The condition f € A{ then forces aipi1000 # 0. Now, acting by a suitable element of
the torus, we can arrange a1911000 = @0001110 = @oooo001 = 1 without changing the existing conditions

ao111110 = @1111100 = 1. Finally, we can act by an element zoo11000(@)Z0101100(b)Z0001100(¢)Z0111000(d)
to make z,,y1 and ys trivial. O

Proposition 7.5.5. The twisted Jacquet module J, (IndgE7 ((Xl ovy)(x20 1/2)1%3/2)) is

f
Uap 7,
5

isomorphic as a representation of G to Indgz 1, where p is given in Section|(7.3.1, B¢, is the Borel
2

subgroup of Gy obtained by intersecting GGo with our standard Borel of GFE5.
Proof. It now follows from the results of that
J fo (Ind8E7 ((Xl ovy)(xzo VQ)Y%S/Q)) =J,

fo
Uas Yay UAg’wUAg

(Tuo)

where
— Go UAISI

. ~3/2\ <3
Iy, 2c—ind ((XlOVl)(X2°V2)w8 )(%OAd(wo).

The group Ganwy, LQuy is the standard Borel subgroup of G, while U Az Nwgy LQuy is the product
of the roots subgroups attached to the following five roots:
{0112110,0112210,0112211,1112100, 1122100}

Let J denote the sum of these five roots.
We compute

Go UArsr ﬂwaleo

J = 2w + 2wy + w5 — 2w — w7 — wWs,
V10 Ad(wo) = —wW] + W4 — W5 — We + W7 + W8,
V9 o Ad('wg) = —Ty4 + 2’@'5 - 2w7 + w8,

2o o Ad(wp) = s,
1
(55 = 3@4 + 2@6 - 13@8,

1
(5(3 o Ad(wo) = —8w + 3wy + 2W5 - 8@6 - 2@7 + 13w8.
Each of these induces a rational character of the standard torus T, of the embedded Ga. If the

fundamental weights are denoted w1G2 and wQG 2 then
J = wa + Q’WQGQ,
v1 o Ad(wy) = —w?Q + w§2,
Ta,
vg o Ad(wo) = 2w1G2 - w§2,
Te,
g o Ad(wp) =0,
Te,
1
64 © Ad(wo) = QwIGQ + ?)WQGQ.
Te,

Thus (x10v1)(x20 Vg)?%g/z o Ad(wo)‘T is precisely, the character p given in Section [7.3.1] and an
G2

- 1
element h of Iy, satisfies h(utg) = p(t)d5 (wotwy Yh(g) for u in the standard maximal unipotent

of G and t € T, .
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Now, for h € I, let

Whig)= [ h(ug)of? (u) du.

(UA'S'ﬂw61Qw0)\UAg Ag

1S 1S conver ent, sice € support o 1S compact modulo AarGonNnwy wo ). en e Kerne
This i g ince th t of h i t modulo (UrGanwy'Q Then the kernel

of W is the kernel of the canonical map Two - JU 10 (Two). That is, the image of W is a
Ag’ U
_ 5
concrete realization of J; 70 (I wo) . (The proof is the same as in [HS16], Section 10.) Further,
AS U

direct computation shows that
1
W.h(urugtg) = o (u1)p(t)63 o Ad(wo) (Ol Wh(g),  wi € Uny,us e U2t € Tay,g € Go.
5

But X )
(55 o Ad(wy) - J) | =@l =0}

TG2 BGQ ’

Hence restriction from GaUay to G is a linear isomorphism from the image of W onto Indgé (n).
2

Hence, we have proved the following theorem.

Theorem 7.5.6. Assume that for almost all finite places v, 7, is a principal series representation
of GL7(F,) which is attached to a character of the form ([7.3.1), then every irreducible summand
of D, weakly functorial lifts to 7.

Remark 7.5.7. It follows from the proof above that given any irreducible automorphic repre-
sentation II of GE7(A) and any finite local place v, if II, has the form as in (7.3.4), then the

(U Ag,w{};g )—twisted Jacquet module of II, has the form Indgé2 i, where p is given in Section

8. THE A9 +3A1 CASE

Recall from Definition that in the Ay + 3A; case the descent module D, is defined by
applying the Fourier coefficient (U, w(@}o) from Section to the residual representation &;, where
7 be an irreducible cuspidal automorphic representation of GL7(A) which is of Gy type. In this
section, we prove the following theorem.

Theorem 8.0.1. Assume that 7 is an irreducible cuspidal automorphic representation of GL7(A)
which is of G5 type, and D, is defined as in Definition Then
(1) Dy is generic.
(2) Dy is not cuspidal. Actually, D, supports all degenerate Whittaker Fourier coefficients of
Gs.

We also study the unramified local descent as in Section which is motivated by the question
of whether irreducible subquotients of D, would lift functorially back to w, and provides evidence
that they might well not.

8.1. Nonvanishing Fourier coefficients of the descent module. The main goal of this subsec-
tion is to prove (in the following theorem) that the descent module supports the Whittaker-Fourier
integral along the maximal unipotent of G5 against any character of this group. In particular, it is
globally generic, but not cuspidal, and it’s constant term along the Borel is nontrivial.
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Theorem 8.1.1. Recall that US2, is the standard maximal unipotent subgroup of Ga, let 1“2 be

max

any character of US2 _(F)\US2, (A). Write (US2,,%2) for the corresponding (possibly) degenerate

max

Whittaker-Fourier integral. That is for any f € C*°(G2(F)\G2(4)),

G c en
FURAD) (g = f f(ug)yp¥2 (u) du.
Uiz (F)\Usa2c(A)

Then (US2,_,4%2) does not vanish identically on the descent module D,. That is, there is some
G
De Dﬂ- SUCh that D(Umgx»'l/)GQ) +0.

Define V; = UUSZ, and define ¢y, : Vi(F)\Vi(A) — C* by ¥y, (wiua) = ¥5? (u1)1©?(uz), for
up € U, uy € US2, (this is a well-defined character of V3(F)\Vi(A)). Then the composed period
(US2_,42) o (U, Yi?) = (Vi,vv,). Theorem is therefore an immediate consequence of the

following theorem.
Theorem 8.1.2. The period (V1,%y;) does not vanish identically on &;.

Lemma 8.1.3. Let

S0 = 0100000, 0101000,0111000,0101100,1111000,0111100,0101110,1111100,
2" 0112100,0111110,0101111,1112100,1111110,0112110,0111111

Let Sy = ®* \ 59 and let S = S9 U {1223210,1223211}. Let V5 and V3 be the T-stable unipotent
subgroups of GE; corresponding to Sy and S3.
Let vy, denote a character of V5 such that supp )y, is contained in

{1000000, 0010000, 0001000, 0000100,0000010,0000001,1111111,1122100,1112110,0112210,0112111},

and ¢V2‘V1(A)0V2(A) =y, ‘Vl(A)mvg(A)' Then for any automorphic function f: GE;(F)\GE;(A) - C
of uniformly moderate growth, and any g € GE7(A),

FOAE) (g = f FV20v2) (1 gYdw).
(VanV5 (A)\V5(A)

Moreover, (Vi,9y;) ~ (Va,¥v,).

Proof. The proof is by nine successive applications of Lemma[7.1.1] The applications come in three
basic types. In the first type there are two roots 1 € (M, T), y1 € ®(U,T') such that X = U,, and
Y = Up,. In these cases go nu,, = {0}, and the roots 31,v; are given in the table below. Recall that
go is the Lie algebra of the Gs.

In the second type, there are two roots 31,82 € ®(M,T) and ¢ € (IDICg;’; (positive long roots of G2)
such that g nug, ®ug, = u;. In these cases, there is a root v € ®(U,T') such that X = U, which has
a pairing with Ug, Ug, as in Lemma and Us, is the right kernel of this pairing. We may take
Y to be any complement of Us in Ug, Ug, so that the group D in Lemma contains the whole
group Ug,Ug,. For these cases, the roots 31, 2 and 7 are given in the table below.

The third type is similar to the second, except that § is a short root of Gs. In this case, (cf.
proof of Lemma there are four roots f1, 52,03, 84 € ®(M,T) such that go n @;1:1 ug, = Uus.
Moreover, there is a unique pair of them such that the sum is another root 85 € ®(M,T). The
product H?:l Up, is a T-stable subgroup. In fact it is the smallest T-stable subgroup of G E7 which
contains Us. We denote it V5. It is two-step nilpotent with center Ug,. In these cases the group X
is a product []2; U,, which has a pairing with Vj as in Lemma and UsUg,, is the right kernel
of this pairing. For Y, we may select any subgroup of Vs which contains Ug,, such that the image
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in the abelian quotient V;/Upg, is complementary to the image of Us. In the table below we give
Y1,72,73 and B1,..., s with G5 in parentheses.

X Y 0
0100000 1011111
0101000 0011111,1011110 3a+20
0111000 0001111,1011100 3a+p
0101100 0011110

1111000,0111100,0101110 | 0000111, 0001110,0011100,1011000, (1011111) | 2a + 3
1111100,0112100,0101111 | 0000011, 0011000,0000110, 1010000, (0011110) | «+ 3
0111110 0001100
1112100 0000010, 0010000 B
1111110,0112110,0111111 | 0000001, 0001000, 0000100, 1000000, (0001100) |  «

At the first stage, the group B is just Vi. In each stage later it is the group D obtained from the
previous stage. At each stage the group C' may be thought of as the subgroup of B obtained by
deleting the roots listed below “X” in the table. More precisely, the Lie algebra, ¢, of C is the
largest subalgebra of the Lie algebra, b, of B, whose projection onto u,, is trivial for each i. The
group D is the product of C' and the root subgroups attached to the roots listed under “Y” in the
table.

Checking conditions (1) to (6) for Lemma is fairly routine. The order in which the nine
applications of Lemma are carried out is important. It is useful to consider the bigrading in
which the root subgroup U, where ~y = 21‘7:1 cia; gets grading (ca, (21-7:1 ¢i) —c2). Notice that as the
table is read top-to-bottom the second component of this grading is nondecreasing in the column
labelled “X” and nonincreasing in the column labelled “Y”. This determines a partial ordering on
the nine rows. It’s fairly easy to check most of the conditions of Lemma|[7.1.1] provided this partial
ordering is respected, but (3) and (6) take some care, particularly for applications of the third type.
We discuss the first application of the third type in some detail and leave all the remaining details
to the reader.

For the first application of the third type, X = Ui111000U0111100U0101110 2 1111000 D Uo111100 D
up101110, While Vs = Upooo111Uooo1110U0011100U1011000U1011111- The center of Vi is Ug, = Uio11111-
The quotient V(;(A)/Uloulu(A) may be identified with uggoo111 @ to001110 ® Uo011100 D W1011000- Lhe
character of C(A) which we consider is given by

v (expe) =(k(eg,c)),  (cec(A)).

In order to check conditions (3) and (6) we must consider the pairing

Y(z,y) = vg ([z,y]),
where
[2,y] = aya™y ™ w e X(A),y € V5(A).
(It is trivial on X (A)xUg,(A) and hence may be regarded as a pairing on X (A) x V5/Upg, (A).) The
pairing Y satisfies
(8.1.4) T (expa, expb) = ((eo, [a,5]) = (o (@),

where

[a,b] = ab - ba,a € u1111000 ® Uo111100 ® U0101110, b € U0000111 ® Uo001110 & U0011100 D 11011000-
To check condition (3), we have to check that X(A) and Y (A) preserve ¢¢. This amounts to

checking that T is trivial on X (A) x Us/Upg, (A) and on Y (A) x Us/Upg, (A). The former is obvious,

since us = g2 N @7 ug,. The latter is also obvious, since Y c Vs and V;/Up, is abelian. To check
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condition (6), we have to check that Y is nondegenerate on X (A) x Y (A)/Ug, (A) for any Y such
that Y /Ug, is complementary to Us/Ug,. In other words, we have to show that

{yeVs(A): T(z,y) =1 Vo e X(A)} = Us(A).
By equation (8.1.4), this reduces to showing that

{b € ugooo111 ® Uo001110 ® Uoo11100 ® 1011000 : K(€0, [@,D]) =0 Ya € ur111000 © Uo111100 ® Uo101110} = Us-

Now (eg, [a,b]) = —k([b,ep],a), which is certainly trivial if b € ug, since [b,eg] = 0 for all b € go. On
the other hand, if b ¢ us = g2 N}, ug,, then [b, o] is nonzero, hence x([b,eg],a) # 0 for some a € ez
because k is nondegenerate, and hence x([b,eg],a) # 0 for some a € U1111000 ® Uo111100 D U0101110
because k respects the bigrading. O

Remark 8.1.5. As noted, for applications of Lemma [7.1.1]of the second and third types, the group
Y is not uniquely determined, but can be taken as any complement to a given subgroup. This is
the reason that 1y, may be chosen with some degree of freedom. In addition we have a degree of
freedom in the choice of 2.

In order to proceed further, it will be convenient to write 1y, and %2 explicitly in coordinates.
There exist a1, as, as, as, ag, a7 € F such that
Yy, (V) = P(v1122100+ 01112110 +V1111111 +V0112210 V0112111 +@1Vay +A3Vas +04Vay + A5V +A6Vag +A70ay )
for all v € Va. Then ¢92(u) = 1((a1 + as + as + ag)uq + (a3 + ag)ug) for all u e US2 . Rewrite 1y, as
¢%/2 with a= {a17 as, a4, 05,06, a/7}'
Lemma 8.1.6. Let
S3 = ®*u{-a4}{0000001, 0001000,0001100,0001111,0011000,0101000,0112100,0112111, 1011000,

1112100,1112111,1123211,0100000,0010000, 0000100, 0000010},

and let V3 be the corresponding T-stable unipotent subgroup. Let w%/; : V3(A) - C* be given by

A ! 4 A A l4
¢(00000111+Uo111100+vo101110+U1010000+v0011110+G1U0101100+a300000011+a4120011100+a5va1 +a61)0111000+a7?10001110)-
Let wy = w[745632451342]. Then there is a representative w4 for wy such that for each a there

exists @’ with a; being nonzero scalar multiple of a; and f(V?”w‘%,a)(g) = f(VQ’ﬁz)(mg) for all f €
C=(GE(F)\GE7(A)) and g € GE7(A), whence (Va, 9 ) ~ (Va, % ).
Proof. Let

Ry = {1122100,1112110,1111111,0112210,0112111}, Ry = {a; : 1 <4 < 7,7 # 2},

1=1{0000111,0111100,0101110,1010000,0011110},
R} ={0101100,0000011,0011100, 1000000, 0111000,0001110}.
Then wyR; = R}, and wyRy = RY),.
For any representative w,4 for wy, V3 = w4V2w;1, and

7
w%@ (wilvu'%) =1 Z Civg,aVwsa T Z AiCipg,0; Vwgoy |

aeR, i=1

1#2
for some nonzero constants ¢, o depending on the choice of the representative w4. The point is to
show that w4 may be chosen so that c¢;, o =1 for all o € R;. Now, w4 is unique up to an element
of the maximal torus T' of GE7, so it suffices to check that the mapping T — GL? induced by
the five elements of R; is surjective. This follows from the fact that these five elements can be
simultaneously conjugated to simple roots, as seen in Section (|
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Remark 8.1.7. Recall that the descent Fourier coefficient is attached to the standard semisimple

element 00 (2) 00 0. The regular nilpotent orbit of go is attached to a standard semisimple

2 2 2 2 2
element of g2, which may then mapped to a semisimple element of ge;, namely .

-12
.22 2 2 2 2 . . o . .
The sum is 10 . If we regard it as a coweight, it is not dominant. The dominant
. ... 2 0 2 0 0 2 D -
element of its Weyl orbit is 0 , which is the standard semisimple element attached to

2 2 2 2 2

a nilpotent orbit of F7 whose Bala-Carter label is E7(a4). The element wy maps ~10

to 2.0 (2) 00 2. This was the original motivation for considering wy, V3, and w%;

Lemma 8.1.8. Let
Sy =®" u{-as} \ {0000001,0001000,0001100,0001111,0011000,0101000,0112100, 1011000,

0100000, 0010000, 0000100, 0000010},

and let V4 be the corresponding unipotent subgroup. Let 1/1%/; be the character such that @b‘%; |V3 )=
¢y, and w%,JUW =1 for v € ®(Vy,T) ~ ®(V3,T). Then (V3,47 )| (Va, ¥y, ).

Proof. One may write (V4,1/1‘%’ ) as a double integral with (‘/;3,1/}%/, ) as inner integral. O

Lemma 8.1.9. Let S5 = 4U{0001111 0000001} \ {—cvy,0000110}. Let V5 be the correspondmg T-
stable unipotent group. Let ¢V V5(A) - C* be the character such that ¢V5|V4mv5( A) = ¢v4|v4mv5( A)

and ¢V5|Ua7U0001111(A) = 1. Then

1750 g) = [ 5V @ (r)aosnono(r2)g) dr drs.
A

Moreover, (Va, ¢ ) ~ (Va, % ).
Proof. This is another application of Lemma [7.1.1 ([l

The key feature of V5 is that it is contained in the unipotent subgroup attached to the weighted
0 2 0 0 2

0
{a7,0001110,0011100,0101100,0111000,0000011,0011110,1010000,0101110,0111100,0000111},

Dynkin diagram 2 for the orbit E7(a4). Further supp w‘%; is contained in

which is contained in the two-graded piece for this weighting.

. 2 2 2 . . .
Let Vi be the full unipotent group for 0 0 00 (that is, all root subgroups with weights
bigger than or equal to 2) and 1/1‘%.6 be the character of it with 1/1‘%6“/5 = ¢%5 and supp 1/1‘%.6 = supp 1/1‘%5.

(Vo)

Then for any automorphic function f of uniformly moderate growth, f can be written as a

double integral with inner integral f V5%%)  Hence (Vs, 1/}%,5) | (Vs, 1/1%;) Notice that (Vg, w‘%;) is a
unipotent period of the type considered in Section
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Lemma 8.1.10. Let

Xa = X 1010000 + X—-0000111 + X_0011110 + X—0101110 + X—0111100
! ! ! 4 l4 A
+ a7 X 0001110 + @4 X 0011100 + @1 X 0101100 + @gX 0111000 + @3X 0000011 + @5X_1000000+

and
ey = X_1010000 + X 0000011 + X 0111000 + X 0101100 + X-0011100 + X_0001110-
Then
(1) X is an element of the closure of the orbit Ag if and only if

(8.1.11) — 1716(a}ajal + ayalal — 2a}ayal — ayagal — alafal)?afaPaf = 0.

2) When af = 0, the element X, lies in Ag if and only if afaba)azal # 0.
5 a 133040607
(3) If X, is in Ag then it is conjugate to ef).

Proof. We may regard X, first as an element of the Lie algebra e¢; over a polynomial ring in
six indeterminates and compute its rank sequence as such. This can be done, for example, by
obtaining 133 x 133 matrices for ad(X,) for the relevant roots v from GAP and then loading them
into SageMath. This tells us what orbit X, lies in for a’ in general position, and allows us to
obtain polynomial conditions for X, to lie in a smaller orbit.

It turns out that for ¢’ in general position, Xy lies in the orbit E7(a4). The largest value of k
such that X ff, #0is 14, and X ;,4 is rank one, with only one nonzero entry. This nonzero entry is
the left hand side of . As mentioned in Lemma Xy is in Ag if and only if it’s 14th
power is 0.

From the diagram on p. 442 of [C93], we see that there are three stable orbits which are less
than E7(a4) but not less than Ag. Their Bala-Carter labels are D5 + Ay, Dg(a1), and Ds. For X in
any of these orbits we have rankad(X)!* = 1. This proves the first part.

It is then clear that af = 0 implies X, is in the closure of Ag. Referring again to the diagram
on p. 442 of [C93], we see that O < Ag < O < E7(as). By inspecting the rank sequences of
these two orbits, we can see that if X € Ag, then rankad(X)'? = 3, while if X € F7(as), then
rank ad(X)!? = 0. When af = 0, if we calculate the matrix ad(X,)? (as an element of ¢7 over a
polynomial ring) and then discard all rows and columns which consist entirely of zeros, we obtain
the following three by three matrix

0 0 Y o -462a3aa)afal?
02 , 924a2alfalfala; 0
-462a’3altajafal 0 0

This completes the proof of the second part.
To prove the third part we consider

! ! !/ ! ! /
KXo = X-1010000 + @3X-0000011 + agX-0111000 + @1 X-0101100 + a3 X 0011100 + @7X 0001110,

and
u(bl’ S 7b5) = $*a2(b1)$*a3(b2)l‘*a5 (b3)$*a5*a6(b4)$*a6(b5)‘
Using SageMath, one can check that for each a},a},a},ag, ar (all nonzero) there exists unique
bi,...,bs such that
Ad(u(by,...,bs5)). Xy = Xé,.
These six roots which appear in X/, may be simultaneously conjugated to simple roots (cf.

Lemma [7.1.12)). Hence we can conjugate X/, to e; using a suitable element of the torus. ([l
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Corollary 8.1.12. Let wv Vg = C* be given by

wv(;(v) = (V0001110 + V0011100 + V0101100 + V0111000 + 0000011 + V1010000)-
Then for each a' = (a},aj,a},0,aq,a7) with a} # 0 for i = 1,3,4,6,7, there exists vy € GEg(F') such
that Vgr%ug_,l = Vs and w(/G(Vg/vyg_,l) = 1y, (v), for all v € Vg (A). Hence f(V6:¥v)(g) = f(ve’w{/cs)(ygrg)
for all smooth automorphic functions f: GE;(F)\GE7(A) —» C and all g € GE7(A), and in partic-
ular (Vg 67, ) ~ (Ve, i, )-

This completes the proof of Theorem [8.1.1} since (V, LZJ{/G) has appeared previously as (Us, 1/)(6](;),
and it was already shown in Lemma [7.1.15| that £; supports this period.

8.1.1. Remarks. The proof of Theorem can be summarized as follows. For ¢ = (c¢1,¢2), let
G2(u) = w(clua +coug) for u € US2,. Then (Uggx,z/JGQ) o (U, 7)) divides (V6,¢V) whenever c¢ is

max*

the image of a’ under a certain linear map. In this situation, every representation which supports
(Vg;,wv) must also support (Uﬁzx,wg*'?) o (U,9;}). For any ¢, we can choose ¢’ which maps to
¢ and corresponds to an element of the orbit Ag. The residual representation &, supports the
Fourier coefficient (Vg,wv) whenever a’ corresponds to an element of Ag. Therefore it supports
(U2, 15?) o (U, 45?) for all c.

In particular, the conclusion applies not only to &, but to any automorphic representation
II which supports the Fourier coefficient (Vﬁ,w%;) whenever a’ corresponds to an element of Ag.
Moreover, it is reasonable to ask whether Ag can be replaced by a smaller orbit. In this connection
we note that taking a4 = a; = 1 and the rest zero, or, aj = ag = 1 and the rest zero, gives an element
Xy in the orbit 245 + Ay, which lies immediately above the orbit As + 34, attached to @ZJ;}O

If 7 is not of Gy type but L5(s, 7, A%) has a pole at s = 1, then Theorem is still valid for
the residual representation &, with exactly the same proof.

8.2. Local descent. Since the results of [GGS17] hold in both the local and global settings, the
same set of arguments given in the global setting above also provides a local analogue.

Theorem 8.2.1. Let F), be a nonarchimedean local field. Suppose that an irreducible admissible
representation I, of GE;(F,) supports the twisted Jacquet module attached to (1/6,111‘9/, ) with o’
now in FY corresponding to an element of Ag. Then the (U, YP)-twisted Jacquet module of II,

supports (twisted and untwisted) Jacquet modules attached to Ug;x and all characters of UG2, . In

particular, this holds when 11, is the local component of any irreducible subquotient IT of £; where
7 has the property that L% (s, 7, A%) has a pole at s = 1.

8.3. Unramified local descent. One may now consider the twisted Jacquet module

T 0 (Indgf}(f“)(xl ov1)(xz0 Vz)ﬁg/z) :

If 7 is an irreducible cuspidal automorphic representation of GLy with m, being induced from a
character of the form (7.3.1) and o is an irreducible quotient of &, then o, will be a quotient of
this twisted Jacquet module.

The study of such a twisted Jacquet module is closely connected with the structure of the double
coset space Q(F,)\GE7(F,)/G2(F,)U(F,). Notice that this space is infinite, since

dim GE7 = 134, dim Q@ + dim Gy + dim U = 133.

This stands in contrast to the situation encountered in [GRS11) [HS16], where [BZ77, Theorem 5.2]
could be applied.

Moreover, suppose we say that a double coset is admissible if its elements ~y satisfy 9/} |Un(¢1 Q) =

1. Then we have
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Lemma 8.3.1. The set of admissible double cosets in Q(F,)\GE7(F,)/G2(F,)U(F,) is infinite.

Proof. We can sort the elements of Q(F,)\GE7(F,)/G2(F,)U(F,) according to which element
of Q(Fy,)\GE;(F,)/P(F,). Of course this latter double coset space is finite and represented by
elements of the Weyl group. We use elements w of the Weyl group that are of minimal length in
their double coset. For each such w

d = Q(Fy)wéGa(F,)U(Fy)

is induces a bijection between the set of Q(F,), G2(F,)U(F,)-double cosets in Q(F,)wP(F,) and
(M(F,) nw™tQ(F,)w)\M(F,)/G2(F,). Moreover for § € M(F,),

¢[EJO|U06‘1w‘1Qw5 =]l = [5 : weUO:HUﬂw‘le =1
We consider the longest element wg of Q(F,)\GE7(F,)/P(F,), and show that

{0 € (M(F) 0" QUE)wo)\M(F) [Ga(Fy) 8 U0 lymu quo = 1

is infinite.

To do this we first compute M nwg LQuy and find that it is the product of the GL; factor of M
and the parabolic of type (2,2,3) in the Levi factor. Note that the dimension of this parabolic is
33.

If we let GL7(F,) act on 97, then the stabilizer is G2(F,), and so the orbit is a variety of
dimension 35. Recall that 7 is identified with a nilpotent element X of ge;, lying in g°, for the
00 00

2

Finally, we compute that {« € ®(U,T) : woar > 0} = {1123321}. Because wy is of shortest length in
Quwo P, this implies that U n waleo = Uq123321- This means that the condition ¢ - ¢[€]()|Unw61Qw0 =1
amounts to a single polynomial equation on the entries of §, so we get a 34-dimensional subvariety.
Clearly, our 33-dimensional parabolic can not act transitively on this subvariety. O

semisimple element 0, our variety is then identified with the G L7-orbit of X in gZ,.

Lemma 8.3.2. At least eight different Q(F),), P(F,)-double cosets contain admissible Q(F},),
Go(F,)U(F,)-double cosets.

Proof. Indeed, there are eight distinct Kostant representatives w for elements of Q\GE7/P such
that ¥ |ynw-10w = 1. Le., there are eight Kostant representatives such that

{0 € (M(F) nw ' Q(F)w)\M (F,)[G2(Fo) 6 ¥f lyew-1quw = 1)

contains the identity. (And possibly other representatives that it is nonempty but does not contain
the identity.) O

Remark 8.3.3. We expect that if 7 is of G2 type then the local components of 7 at unramified
places will be induced from characters of the form , with 1, x2 being unitary characters.
However, we would expect that in general x1, x2 would not satisfy any special condition that would
permit to be reducible. The representation has a P-module filtration parametrized
by the elements of Q\GE7/P, and Lemma @ suggests that at least eight of the P-modules in this
filtration will have nontrivial twisted Jacquet modules. Thus the local unramified descent appears
to be highly reducible.

This is consistent with our global results. We would expect an irreducible cuspidal automorphic
representation 7 of G type to be a weak functorial lift attached to the embedding Go(C) - GL7(C)
of some generic cuspidal automorphic representation of Go(A). In the classical cases considered in
[GRS11] and [HS16], the descent recovers the original cuspidal representation that was lifted (up to
near equivalence). In our case, our global results let us know that the descent module also contains
noncuspidal functions. In general, we would not expect any noncuspidal automorphic forms to
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lift weakly to 7. Hence our noncuspidality result predicts that the descent module will not consist
solely of automorphic forms which lift weakly to .
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