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Abstract. In this paper, we study the functorial descent from self-contragredient cuspidal auto-
morphic representations ⇡ of GL7(A) with LS(s,⇡,∧3) having a pole at s = 1 to the split exceptional
group G2(A), using Fourier coe�cients associated to two nilpotent orbits of E7. We show that one
descent module is generic, and under suitable local conditions, it is cuspidal and ⇡ is a weak func-
torial lift of each of its irreducible summands. This establishes the first functorial descent involving
the exotic exterior cube L-function. However, we show that the other descent module supports not
only the non-degenerate Whittaker-Fourier integral on G2(A) but also every degenerate Whittaker-
Fourier integral. Thus it is generic, but not cuspidal.

1. Introduction

In the theory of automorphic forms one of the major open problems is to construct functorial
correspondences between automorphic forms on di↵erent groups. This has been accomplished in
particular cases by various methods, including the converse theorem, the theta correspondence, the
trace formula, and the theory of functorial descent.

The theory of functorial descent was pioneered by Ginzburg, Rallis, and Soudry. It serves as a
complement to the constructions of functorial liftings, and can be used to characterize the image
of a functorial lifting.

We briefly recall these notions. Let F be a number field, A its adele ring, and H a connected
reductive F -group. Given an irreducible automorphic representation ⇡ = ⊗v⇡v of H(A) we obtain a
finite set S of places of F and a semisimple conjugacy class {t⇡v} in

LH for each v ∉ S. We say that
two automorphic representations ⇡ and ⇡′ are nearly equivalent if {t⇡v} = {t⇡′v} for all v outside
a finite set. Given an L-homomorphism ' ∶ LH → LG we say that an irreducible automorphic
representation ⇧ of G(A) is a weak functorial lift, relative to ' of an irreducible automorphic
representation ⇡ of H(A) if {t⇧v} = {'(t⇡v)} for all v outside a finite set. Clearly, in this situation,
every element of the near equivalence class of ⇧ is also a weak functorial lift of every element of the
near equivalence class of ⇡. We also say that ⇡ is a weak functorial descent of ⇧. The Langlands
functoriality conjecture then predicts that the set of weak functorial lifts is nonempty for all ⇡ and
all '. This has been proved in a number of cases, though the general case is still very much open.

Supposing that a lifting exists, one may ask what its image is. Here again, the general case is
open but the problem has been solved in some cases. For example, Ginzburg, Rallis and Soudry
showed, using descent together with the lifting results of Cogdell, Kim, Piatetski-Shapiro, and
Shahidi, that an automorphic representation of GL2n(A) is a weak functorial lift from a generic
cuspidal representation of SO2n+1(A) (for the inclusion Sp2n(C) � GL2n(C)) if and only if it is
an isobaric sum ⌧1 � ⋅ ⋅ ⋅ � ⌧r of distinct cuspidal representations ⌧i of GL2ni(A) for 1 ≤ i ≤ r, such
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that LS
(s, ⌧i,∧

2
) has a pole at s = 1 for each i. In particular, a cuspidal representation of GL2n(A)

has a weak functorial descent to SO2n+1(A) if and only if its exterior square L-function has a pole.
Notice that Sp2n(C) is embedded into GL2n(C) as the stabilizer of a point in general position in
the exterior square representation. Ginzburg, Rallis and Soudry also obtained similar results for
other classical groups, as well as metaplectic groups.

The connection between the exterior square L-function and the lifting is clear. It was an earlier
result of Ginzburg, Rallis, and Soudry, that LS

(s, ⌧,∧2) has a pole at s = 1 whenever ⌧ is a weak
functorial lift relative to the above inclusion. Moreover, this result was predicted by the functori-
ality and generalized Ramanujan conjectures, before it was proved. If a cuspidal representation ⌧
of GL2n(A) is the weak functorial lift of a cuspidal representation � of SO2n+1(A) relative to the
inclusion Sp2n(C)� GL2n(C), then LS

(s, ⌧,∧2) = LS
(s,�,∧20)⇣

S
(s), where ∧20 is the second funda-

mental representation of Sp2n(C), which satisfies ∧2 = ∧20⊕1, where 1 is the trivial representation.
Clearly ⇣S(s) has a pole at s = 1 for all finite sets S. Further, the functoriality conjecture predicts
that LS

(s,�,∧20) should be the standard L-function of the weak functorial lift of � to GLdim∧20
,

relative to ∧20. This lift may not be cuspidal, but the generalized Ramanujan conjecture predicts
that � will be tempered at all places, in which case its lift will be as well. This forces the cuspidal
support of any weak functorial lift to be unitary, which is su�cient to ensure nonvanishing of its
L-function on the line Re(s) = 1.

In general, by the same reasoning, if r is a finite dimensional representation of LG and the image
of ' ∶ LH → LG is contained in the stabilizer of some nonzero point in the space of r, and if ⇡ is an
irreducible globally generic cuspidal representation of H(A) then LS

(s,⇧, r) is expected to have a
pole at s = 1 for any weak functorial lift ⇧ of ⇡ to G relative to '.

The descent results of Ginzburg, Rallis, and Soudry point to a converse result: if LS
(s,⇧, r) has

a pole at s = 1, then ⇧ should be a weak functorial lift relative to the inclusion of a reductive group
which stabilizes a nonzero point in the space of r. (A more refined conjecture is given in [L04].)

The descent method of Ginzburg, Rallis, and Soudry has been extended to GSpin groups (which
are not classical, but have classical L-groups) in [HS16]. The preprint [G18] investigates the ex-
tension of the method of descent into exceptional groups. Ginzburg has also investigated descent
from E6 to F4, together with the first named author, in an unpublished preprint. In this paper, we
investigate an interesting case in the exceptional group GE7.

The method may be described as follows. Suppose that there is a reductive group A such that

(1) G is a Levi subgroup of A
(2) r appears in the restriction to LG of the adjoint representation of LA
(3) H is the stabilizer in A of some sl2-triple in the Lie algebra a of A.

Then the descent method proceeds by the following steps:

(1) Take an irreducible cuspidal automorphic representation ⇡ of G(A).
(2) Consider Eisenstein series on A(A) induced from ⇡. The L-function LS

(s,⇡, r) appears in
the constant term of these Eisenstein series. Consider the corresponding residual represen-
tation.

(3) Consider a Fourier coe�cient attached to the sl2-triple with stabilizer H. This Fourier coef-
ficient will map automorphic forms on A(A) to smooth automorphic functions of uniformly
moderate growth on H(A) (or in some cases the metaplectic double cover of H(A)). Ap-
plying this Fourier coe�cient to our residual representation, we obtain a space of functions
on H(A) (or its double cover) which we call the descent module.

For example, in the classical work of Ginzburg, Rallis and Soudry, the group GL2n appears as a
Levi of SO4n, and for suitable sl2-triples in so4n the stabilizer in SO4n is isomorphic to SO2n+1. We
remark that in some cases LS

(s,⇡, r) will appear in the constant term along with other L-functions,
and it will be necessary to add some assumption above and beyond LS

(s,⇡, r) having a pole. For
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example, in the descent from GL2n to �Sp2n one must assume that the exterior square L-function
has a pole at 1, and that the standard L-function is nonvanishing at 1

2 .
As mentioned, in some cases the descent module consists of genuine functions on a metaplectic

double cover. Since this does not apply to the case we consider in this paper, we will not go further
into this. We remark that while the functions in the descent module are easily seen to be smooth,
invariant by H(F ) on the left, of uniformly moderate growth, and finite under translations of a
maximal compact subgroup of H(A), it is not easy to see whether or not they are finite under the
action of the center of the universal enveloping algebra. So, they are not necessarily automorphic
forms.

In the classical work of Ginzburg, Rallis, and Soudry, it is possible to show that descent module is
cuspidal (hence L2, so that its closure is a Hilbert space direct sum of irreducibles), and that every
summand is a weak descent of the original representation on GL2n(A). Moreover, it is orthogonal
to the kernel of the non-degenerate Whittaker-Fourier integral on H(A), which implies that it is
multiplicity free and that every summand is globally generic. In some cases, it can even be shown
that the descent module is irreducible. In [HS16], it is shown that the descent module is cuspidal,
that every summand is a weak descent, and that the non-degenerate Whittaker-Fourier integral
does not vanish on the descent module (so at least one summand is globally generic). The stronger
result – that the descent module is orthogonal to the kernel of the non-degenerate Whittaker-Fourier
integral – should follow from work in progress of Asgari, Cogdell, and Shahidi.

There are a number of cases where the conditions above are satisfied with A being one of the
exceptional groups. In this paper we consider the case when A = GE7, and G = GL7 ×GL1. The
embedding of GL7 ×GL1 into GE7 can be chosen so that r is the product of the ∧3 representation
of GL7 and the standard representation of GL1. We show that it su�ces to consider the case when
the automorphic representation of GL7 is self-contragredient and the character of GL1 is trivial.
The group GL7×GL1 acts on our space with a Zariski-open orbit and the stabilizer of any point in
this orbit is the product of the center of GE7 and a subgroup of GL7 of type G2. (Cf. pp. 356-57
of [FH91], and Lemma 6.2.1 below.) The stabilizer of any nonzero point which is not in the Zariski
open orbit is not reductive. Thus we consider irreducible self-contragredient cuspidal automorphic
representations ⇡ of GL7(A) such that the ∧3 L-function has a pole at s = 1, i.e., of G2 type
by Definition 4.2.10. The philosophy discussed above predicts that such cuspidal representations
should be weak functorial lifts from G2.We first construct square integrable residual representations
of GE7(A). At this point, an interesting feature emerges: it turns out that there are two orbits of
sl2 triples in e7 with stabilizers of type G2. Thus, we have two di↵erent Fourier coe�cients which
we can apply to obtain two descent modules on the exceptional group G2(A). In this paper we
study both descent modules.

A similar situation was considered previously in [GJR02], where the authors consider three
di↵erent orbits of a group of type D4, all of which have a stabilizer of type A1. However, the two
orbits considered in our paper are not related to one another by the automorphism group of e7,
whereas the three orbits considered in [GJR02] are permuted by the automorphism group of d4.

The functorial lifting corresponding to this case is known, at least for generic cuspidal represen-
tations. By [GRS97] generic cuspidal representations of G2(A) can be lifted to Sp6(A) using the
minimal representation of E7. It can then be lifted to GL7 using the work of Cogdell-Kim-Piatetski-
Shapiro-Shahidi [CKPSS04], Arthur [A13], and Cai-Friedberg-Kaplan [CFK18]. It is very natural
to ask whether the descent from GL7 to G2 could be constructed by combining the descent from
GL7 to Sp6 from [GRS11] with the theta-type correspondence from Sp6 to G2 in [GRS97]. To
the best of our understanding, this should be possible, but would require proving the following
conjecture.

Conjecture 1.0.1. Let ⇡ be an irreducible self-contragredient cuspidal automorphic representation
of GL7(A) such that LS

(s,⇡,∧3) has a pole at s = 1, and let � denote the irreducible descent of
3



⇡ to Sp6(A). Then � has trivial central character and satisfies the three equivalent conditions of
Theorem 1.1 of [GJ01].

An analogy with the earlier work of Ginzburg-Rallis-Soudry, as well as [HS16], would predict that
the descent module should be cuspidal, support the non-degenerate Whittaker-Fourier integral, and
be a direct sum of weak descents of our original cuspidal representation of GL7. In this respect,
the two descent modules behave totally di↵erently.

In one case we prove that the descent module is generic, and under suitable local conditions, it
is cuspidal and ⇡ is a weak functorial lift of each irreducible summand. One piece that is missing,
in comparison to [GRS11], [HS16], is a means of showing that when ⇡ is self-contragredient and
LS
(s,⇡,∧3) has a pole at s = 1, the Satake parameters of the components of ⇡ at unramified places

must contain conjugacy classes of G2(C). We show cuspidality under the assumption that at least
one of them does, and weak functorial lifting under the assumption that all but finitely many of
them do. In particular, we prove the following theorem (cf. Theorem 7.0.1).

Theorem 1.0.2. Let F be a number field and let ⇡ be an irreducible cuspidal automorphic repre-
sentation of GL7(AF ). Suppose that the following conditions hold.

(1) The partial L-function LS
(s,⇡,∧3) has a pole at s = 1, for some finite set S.

(2) For almost all places v of F at which ⇡v is unramified, the Satake parameter of the local
component ⇡v is conjugate, in GL7(C), to an element of r7(G2(C)), where r7 is standard
representation of G2.

Then there exists a globally generic cuspidal automorphic representation � of G2(AF ) such that
for almost all places v of F at which �v is unramified, the Satake parameter of ⇡v is conjugate, in
GL7(C), to the Satake parameter of �v.

We believe that it should be possible to replace the second condition with the weaker condi-
tion that ⇡ is self-contragredient or has trivial central character. That is, we have the following
conjecture.

Conjecture 1.0.3. Let ⇡ be an irreducible self-contragredient cuspidal automorphic representation
of GL7(A) such that LS

(s,⇡,∧3) has a pole at s = 1. Then for almost all places v of F at which
⇡v is unramified, the Satake parameter of the local component ⇡v is conjugate, in GL7(C), to an
element of r7(G2(C), where r7 is standard representation of G2.

This conjecture turns out to be equivalent to Conjecture 1.0.1. More generally, if ⇡ satisfies
conditions (1) and (2) of Theorem 1.0.2, then its descent to G2 contains an irreducible generic
cuspidal automorphic representation of G2(A), which we may theta-lift to Sp6(A) using the lifting
from [GRS97]. By a result of Savin, [HKT19, Appendix A], the lifting is generic, and lifts weakly
to ⇡ (which forces it to be cuspidal due to the Strong Multiplicity One Theorem for GL7), and so,
by Strong Multiplicity One Theorem for Sp6, it contains the descent of ⇡, which therefore satisfies
the equivalent conditions of [GJ01]. Conversely, if the descent of ⇡ to Sp6 satisfies the equivalent
conditions of [GJ01], then it is the theta lift of a generic cuspidal representation of G2(A), and this
lifting is functorial. It follows that ⇡ itself is a functorial lift from G2 and condition (2) of Theorem
1.0.2 is satisfied.

The descent method is constructive and makes use of an Eisenstein series on the similitude
exceptional group GE7. We prove that this Eisenstein series has a pole whenever condition (1)
of theorem 1.0.2 is satisfied. In fact, we could replace condition (1) with the hypothesis that the
Eisenstein series has a pole. Indeed, for any cuspidal automorphic representation of GL7 such that
the Eisenstein series has a pole, the descent method produces a space of functions on G2 which
is globally generic in the sense that the Whittaker integral does not vanish identically on it. See
Remark 7.1.18. Under condition (2) we are able to prove that it is cuspidal and that all of its
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irreducible components lift weakly to ⇡, but in each of these proofs, condition (2) can be replaced
from a weaker hypothesis applied to the residue of the Eisenstein series. See Remarks 7.4.33 and
7.5.7.

The result above establishes the first functorial descent which involves the exotic exterior cube
L-function. This is an important step towards fully understanding the Langlands functoriality from
G2 to GL7 which is not an endoscopic type. As pointed out to us by Michael Harris, Theorem 1.0.2
has interesting applications already, for example, to [BHKT19, Conjecture 11.6] and the surjectivity
of local Langlands correspondence ([HKT19]).

The other descent module behaves totally di↵erently. It supports not only the non-degenerate
Whittaker-Fourier integral on G2(A), but also every degenerate Whittaker-Fourier integral. Thus
it is generic, but not cuspidal. It has a nontrivial constant term for each proper parabolic of G2,
and its constant terms for the two maximal parabolics are generic representations of GL2(A). And
this holds for every cuspidal representation of GL7(A) such that the ∧3 L-function has a pole! See
Theorem 8.0.1.

This outcome is not entirely without precedent. Descent constructions in the exceptional group
F4 were previously studied in [G18] from a di↵erent point of view. In [G18], Ginzburg introduces
a general family of lifting integrals which interpolates between theta type liftings at one end of the
spectrum and descent constructions at the other end. He also introduces a “dimension equation”
which is said to hold in every known case where an integral of his type gives a functorial corre-
spondence. He then uses the dimension equation to decide which automorphic representations to
apply a Fourier coe�cient to (instead of using a residual representation obtained from a pole of
LS
(s,⇡, r)).
This approach makes sense from the perspective of the techniques which are used to prove

genericity and cuspidality, namely identities of unipotent periods. The approach taken in [G18] is
to take the unipotent period obtained by composing the descent Fourier coe�cient with either a
Whittaker integral or a constant term on the stabilizerH, and relate this period to some combination
of coe�cients attached to sl2-triples and constant terms.

One case of particular interest is when A = F4, G = GSp6, r is the spin representation of
LG = GSpin7(C), and H = G2. In this case, it is shown in [G18] that

(1) The non-degenerate Whittaker-Fourier integral of the descent module of any representation
E can be expressed in terms of coe�cients attached to the orbits F4, F4(a1), and F4(a2), as
well as the constant term along the C3 parabolic, and

(2) The constant terms of the descent module can be expressed in terms of exactly the same
four unipotent periods!

This is very similar to our result, which relates both the non-degenerate Whittaker-Fourier integral
and all degenerate Whittaker-Fourier integrals of the descent to the same unipotent period on
GE7. This period is not one of the types considered by Ginzburg, but it is in a more general family,
introduced by Gomez, Gourevich and Sahi in [GGS17].

Another case which has been studied somewhat is when A = E8, G = GE6 × GL1, r is 27-
dimensional, and H = F4. This case is considered in work in progress of Ginzburg and the first
named author. In that case, also, it appears that the descent module is generic, but not cuspidal.

Having established that the descent is not cuspidal, it is no longer clear that it has a decomposi-
tion into irreducibles, or even a spectral decomposition in terms of cuspidal data. Moreover, there
would seem to be little reason to think that its irreducible subquotients – should they exist – will
be weak descents of the original cuspidal representation of GL7(A). Indeed, if our representation
of GL7(A) was a weak functorial lift of a cuspidal representation of G2(A) which is not CAP, then
no weak descent of it has a constant term – and the descent module does. If one is still optimistic
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enough to believe that the descent module contains a generic weak descent of our cuspidal repre-
sentation of GL7(A), then one is led to the questions of what else it contains, and whether this
“extra” depends on the choice of the representation.

Another natural question is the following: what other automorphic representations of GL7(A)
should descend to G2(A)? And can our construction generalize to construct their descents? For
example, there is a lifting, constructed in [GRS97] and shown to be functorial in [GJ01], attached
to the embedding SL3(C) � G2(C). If we compose this with an embedding G2(C) � GL7(C) the
result is conjugate to the map

g �
�

�

�

g
1

tg−1

�

�

�

.

Thus, if an irreducible cuspidal automorphic representation ⇡ of G2(A) is the lift of a cuspidal
representation ⌧ of PGL3(A) then the lift of ⇡ to GL7(A) is the isobaric sum ⌧ � 1 � ⌧̃ , where 1
is the one-dimensional trivial representation of GL1(A). Thus, it is very natural to ask whether ⇡
can be recovered from ⌧ �1� ⌧̃ , by some generalization of our construction. (Note that this would
then give an alternate construction of the lifting from [GRS97].) We hope to return to this and
related questions in the future.

The organization of the paper is as follows: we introduce some notation in Section 2, preliminaries
and some general results in Section 3, the A6 Levi and the residual representation of the similitude
exceptional group GE7(A) in Section 4, and the nilpotent orbit A6 of E7 in Section 5. Then we
introduce in Section 6 the two descent Fourier coe�cients attached to the two nilpotent orbits, from
which we obtain two descent modules. In Section 7, we show that one descent module is generic,
and under suitable local conditions, it is cuspidal and having ⇡ as a weak functorial lift of each
irreducible summand. In Section 8, we show that the other descent module supports not only the
non-degenerate Whittaker-Fourier integral on G2(A) but also every degenerate Whittaker-Fourier
integral. Thus it is generic, but not cuspidal.

We used three software packages for computations: LiE [LiE00], GAP[GAP15], and Sage[Sage16].
LiE was used for computations involving the action of the Weyl group on the root and weight
lattices and their duals. GAP, and the packages QuaGroup[dG13a], SLA 0.14[dG13b], and UNIPOT
1.2[Hal04], were used for many computations involving nilpotent elements of the Lie algebra e7
and their adjoint orbits. Sage was used for symbolic manipulation of multivariate polynomials–
especially for performing computations using matrices over multivariate polynomial rings. These
matrices were formed by loading integer matrices obtained from GAP into sage and then forming
linear combinations with coe�cients in the polynomial ring. Our code is available at [HL21].

Acknowledgements: Part of the work was done when the authors were visiting the Simons
Center for Geometry and Physics during the program: Automorphic forms, mock modular forms
and string theory in 2016, and when the second named author was visiting University of Bu↵alo.
The authors would like to thank both institutes for the hospitality and support. The authors also
would like to thank David Ginzburg, Dihua Jiang and Freydoon Shahidi for their interest, constant
support and encouragement, and Michael Harris for helpful communication on possible applications
of the results in this paper. The authors also would like to thank Michael Harris and Stephen Miller
for helpful comments and suggestions. Notably, it was Michael Harris who first pointed out to us
how the result of Savin and Strong Multiplicity One for Sp6 could be used to connect Conjectures
1.0.1 and 1.0.3. The authors also thank the referee for a careful reading and helpful suggestions.

2. Notation

Let F be a number field, A its adele ring, and Afin its ring of finite adeles. (Our results are
restricted to number fields because we make use of [GGS17]. We expect that both the results of
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[GGS17] and our results should extend to function fields, except possibly for a few small primes.
For a discussion of the relevant issues, see [GGS17, Remark 5.1.4].)

We shall consider automorphic representations of the similitude exceptional group GE7. This
group can be realized as the maximal Levi subgroup of split E8 whose derived group is of type
E7. For us, this will be the definition. The derived group is in fact the unique split connected
simply connected quasi-simple group of type E7. For the split group E8, we label the simple roots
as following

↵1 ↵3 ↵4 ↵5 ↵6 ↵7 ↵8

0 − − 0 − − 0 − − 0 − − 0 − − 0 − − 0

�

0

↵2

We assume that GE7 is equipped with a choice of split maximal torus T and Borel subgroup
B. We write � for the set of roots of T in GE7, �

+ for the set of positive roots determined by
the choice of B and � for the set of simple roots. If H is T -stable subgroup of GE7, we denote
the set of roots of T in H by �(H,T ) For ↵ ∈ � we denote the corresponding root subgroup by
U↵ and the corresponding coroot Gm → T by ↵∨. Let t and u↵ be the Lie algebras of T and U↵,
respectively. We use an exponential notation for rational characters and cocharacters: t� t↵, t ∈ T

and a � a↵
∨
, a ∈ Gm. We sometimes also use the notation h(t1, . . . , t8) = ∏

8
i=1 t

↵∨i
i . We also equip

GE7 with a realization in the sense of [Sp], i.e. a family {x↵ ∶ Ga → U↵} of parametrizations of the
root subgroups (subject to some compatibility relations). This determines a basis of the Lie algebra
ge7. Indeed, for each root ↵ the di↵erential Dx↵ of x↵ is an isomorphism Ga → u↵ and we denote
Dx↵(1) by X↵. The di↵erential of ↵∨ ∶ Gm → T is an injective map D↵∨ ∶ Ga → t, and we denote
D↵∨(1) by H↵. Then {X↵ ∶ ↵ ∈ �(GE7, T )} ∪ {H↵i ∶ 1 ≤ i ≤ 8} is a basis for ge7, and by taking
a suitable realization, we can arrange for it to be a Chevalley basis. We choose the Chevalley
basis so that the structure constants match those employed by GAP [GAP15]. As mentionted
previously, we used LiE and SageMath, in addition to GAP for computations. Structure constants
are not involved in the type of computations for which LiE was used, and SageMath was used to
manipulate polynomial-linear combinations of integer matrices obtained from GAP, which ensures
compatibility of structure constants between the computations done using GAP and Sage. We also
fix a GE7-invariant bilinear form  on ge7 such that (X↵,X−↵) = 1 for each root ↵.

We denote the Weyl group of GE7 relative to T by W. We denote the simple reflection attached
to the simple root ↵i by w[i], and the product w[i1] . . .w[il] by w[i1 . . . il]. There is a standard
representative for w[i], namely ẇ[i] ∶= x↵i(1)x−↵i(−1)x↵i(1). This then gives rise to a standard
representative ẇ[i1 . . . il] ∶= ẇ[i1] . . . ẇ[il] for w[i1 . . . il]. But note that ẇ[i1 . . . il] depends on the
expression for w[i1 . . . il] as a word in the simple reflections and not only on the Weyl group element.

Let P =MU be the standard parabolic subgroup of GE7 whose unipotent radical contains U↵i

if and only if i = 2, with Levi subgroup M and unipotent radical U . Then M is isomorphic to
GL7 ×GL1 (see Lemma 4.1.1 for details). Let Q be the standard parabolic subgroup of GE7 whose
unipotent radical contains U↵i if and only if i = 4 or 6. More generally, for S ⊂ {1,2,3,4,5,6,7}, let
PS = MSUS denote the standard parabolic subgroup whose Levi subgroup MS contains the root
subgroups attached to the simple roots {↵i ∶ i ∈ S} and unipotent radical US contains the root
subgroups attached to the simple roots {↵i ∶ i ∉ S}. Hence, P = P{1,3,4,5,6,7} and Q = P{1,2,3,5,7}. We
also fix once and for all a maximal compact subgroup K of GE7(A).

We shall also consider automorphic representations of the split exceptional group G2. We denote
the long simple root of G2 by � and the short one by ↵. For � ∈ {�,↵} we let P� denote the maximal
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parabolic subgroup of G2 whose Levi, M� contains the root subgroup U� attached to �. We let N�

denote the unipotent radical of P� .
Let g2 and gl7 be the Lie algebras of G2 and GL7, respectively. Following [FH91] we embed g2

into gl7 by letting it act on a seven-dimensional vector space. We order the basis vectors as follows:
v4, v3, v1, u,w1,w3,w4. Then it follows from the formulae on p. 354 of [FH91] that the matrices of
Y1 and Y2 (using notation on p. 340 of [FH91]) are

�

�
�
�
�
�
�
�
�
�
�

�

0
1 0

0 0
1 0

2 0
0 0
−1 0

�

�
�
�
�
�
�
�
�
�
�

�

, and

�

�
�
�
�
�
�
�
�
�
�

�

0
0 0
−1 0

0 0
0 0

1 0
0 0

�

�
�
�
�
�
�
�
�
�
�

�

, respectively.

The matrices attached to H1 and H2 are easily computed by looking at the images of H1 and H2

under the weights.
weight H1 H2

↵ 2 −1
� −3 2

!1 = 2↵ + � 1 0
!1 − ↵ −1 1

!1 − ↵ − � 2 −1
!1 − 2↵ − � 0 0
!1 − 3↵ − � −2 1
!1 − 3↵ − 2� 1 −1
!1 − 4↵ − 2� −1 0

The matrices are

�

�
�
�
�
�
�
�
�
�
�

�

1
−1

2
0
−2

1
−1

�

�
�
�
�
�
�
�
�
�
�

�

, and

�

�
�
�
�
�
�
�
�
�
�

�

0
1
−1

0
1
−1

0

�

�
�
�
�
�
�
�
�
�
�

�

, respectively.

Finding the action of X1 and X2 takes a little work. In some cases, we use our knowledge about the
set of weights. For exampleX1w3 must be zero because w3 is weight !1−3↵−2� and !1−2↵−2� is not
a weight of this representation. For the others we use our knowledge of the action of Y1, Y2,H1,H2,
and bracket relations. For example, since X1v4 = 0, it follows that

X1v3 =X1Y1v4 = (H1 + Y1X1)v4 =H1v4 = v4.

After similar computations we get that the matrices of X1 and X2 are

�

�
�
�
�
�
�
�
�
�
�

�

0 1
0 0

0 2
0 1

0 0
0 −1

0

�

�
�
�
�
�
�
�
�
�
�

�

, and

�

�
�
�
�
�
�
�
�
�
�

�

0 0
0 −1

0 0
0 0

0 1
0 0

0

�

�
�
�
�
�
�
�
�
�
�

�

, respectively.
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Finally, for a matrix g we denote the transpose by tg. When g is a square matrix, we also denote
by tg the transpose about the second diagonal, which may be obtained by conjugating tg by the

matrix
�

�

�

1
�

1

�

�

�

, i.e., with ones from lower left corner to upper right corner and zeros elsewhere.

3. Preliminaries and some general results

3.1. Fourier coe�cients attached to nilpotent orbits. In this section, we recall Fourier co-
e�cients of automorphic forms attached to nilpotent orbits, following the formulation in [GGS17].
Let G be a reductive group defined over F , or a central extension of finite degree. Fix a nontrivial
additive character  of F �A. Let g be the Lie algebra of G(F ) and u be a nilpotent element in g.
The element u defines a function on g(A):

 u ∶ g(A)→ C×

by  u(x) =  ((u,x)), where  is a G-invariant symmetric bilinear form on g(A) which is nonde-
generate on every simple summand of g (such as the Killing form, or a convenient scalar multiple).

Given any semi-simple element s ∈ g, under the adjoint action, g is decomposed to a direct sum of
eigenspaces gsi of h corresponding to eigenvalues i. For any rational number r ∈ Q, let gs≥r = ⊕r′≥rgsr′ .
The element s is called rational semi-simple if all its eigenvalues are in Q. Given a nilpotent element
u, a Whittaker pair is a pair (s, u) with s ∈ g being a rational semi-simple element, and u ∈ gs

−2. The
element s in a Whittaker pair (s, u) is called a neutral element for u if there is a nilpotent element
v ∈ g such that (v, s, u) is an sl2-triple, in this case we call (s, u) a neutral pair. For any X ∈ g, let
gX be the centralizer of X in g.

Given anyWhittaker pair (s, u), define an anti-symmetric form !u on g by !u(X,Y ) ∶= (u, [X,Y ]).
Let us = g

s
≥1 and let ns,u = ker(!u) be the radical of !u�us . Then [us,us] ⊂ g

s
≥2 ⊂ ns,u. By [GGS17,

Lemma 3.2.6], ns,u = g
s
≥2 + g

s
1 ∩ gu. Note that if the Whittaker pair (s, u) comes from an sl2-triple

(v, s, u), then ns,u = gs
≥2. Let Us = exp(us) and Ns,u = exp(ns,u) be the corresponding unipotent

subgroups of G. Abusing of notation, we define a character of Ns,u by  u(n) =  ((u, log(n))).
Let N ′s,u = Ns,u ∩ker( u). Then Us�N

′
s,u is a Heisenberg group with center Ns�N

′
s,u. It follows that

for each Whittaker pair (s, u),  u defines a character of Ns,u(A) which is trivial on Ns,u(F ). Let
ms = g

s
=0 and Ms = exp(ms). Then Ps =MsUs is a parabolic subgroup of G with Levi subgroup Ms

and unipotent radical Us.
Assume that ⇡ is an automorphic representation of G(A). Define a degenerate Whittaker-Fourier

coe�cient of ' ∈ ⇡ by

(3.1.1) Fs,u(')(g) = �
Ns,u(F )�Ns,u(A)

'(ng) u(n)dn, g ∈ G(A).

Let Fs,u(⇡) = {Fs,u(')�' ∈ ⇡}. If s is a neutral element for u, then Fs,u(') is also called a generalized
Whittaker-Fourier coe�cient of '. We are interested in the collection of neutral pairs (s, u) such
that Fs,u(') ≠ 0. It is easy to see that this set is preserved by the natural action of G(F ) on g× g.
We shall refer to an orbit for the action of G(F ) on the nilpotent subvariety of g as a rational
nilpotent orbit. By a stable nilpotent orbit we shall mean the intersection of g with a G(F ) orbit
in g ⊗F F , where F is the algebraic closure of F. The (global) wave-front set n(⇡) of ⇡ is defined
to be the set of rational nilpotent orbits O such that Fs,u(⇡) is nonzero, for some Whittaker pair
(s, u) with u ∈ O and s being a neutral element for u. Note that if Fs,u(⇡) is nonzero for some
Whittaker pair (s, u) with f ∈ O and s being a neutral element for u, then it is nonzero for any
such Whittaker pair (s, u), since the non-vanishing property of such Fourier coe�cients does not
depend on the choice of representatives of O. Let nm(⇡) be the set of maximal elements in n(⇡)
under the natural order of nilpotent orbits.
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Assume that ⇡ is an admissible representation of G(Fv), where v is a finite place of F . Then
similarly we can define a twisted Jacquet module of ⇡ by JNs,u, u(⇡) and consider the (local)
wave-front set n(⇡) and the subset nm(⇡).

The following theorem is one of the main results in [GGS17].

Theorem 3.1.2 (Theorem C, [GGS17]). Let ⇡ be an automorphic representation of G(A). Given
two Whittaker pairs (s, u) and (s′, u), with s being a neutral element for u, if Fs′,u(⇡) is nonzero,
then Fs,u(⇡) is also nonzero.

In the following, we prove a slightly generalized version of Theorem 3.1.2, using similar arguments.
Assume that (s, u) and (s′, u) are two Whittaker pairs with the same u, such that gu ∩g

s
≥1 ⊂ g

s′
≥1.

Let z = s′ − s ∈ gu. And for any rational number 0 ≤ t ≤ 1, let st = s + tz, ut = g
st
≥1, vt = g

st
>1, and

wt = g
st
1 . t is called regular if ut = ut+✏ for any small enough ✏ ∈ Q. t is called critical if it is not

regular. For convenience, we say that 0 is critical and 1 is regular. Fix a Lagrangian m ⊂ gz0 ∩ g
s
1

and let
lt = m + (wt ∩ g

z
<0) + vt + (wt ∩ gu),

rt = m + (wt ∩ g
z
>0) + vt + (wt ∩ gu).

Note that lt and rt defined here agree with those in [GGS17] by applying [GGS17, Lemma 3.2.6].
For i, j ∈ Q, let

gi,j = {X ∈ g � [s,X] = iX, [z,X] = jX}.

Then one can see that wt = ⊕i+tj=1gi,j , vt = ⊕i+tj>1gi,j , t is a critical number if and only if there
exists (i, j) such that i+ tj = 1 and j ≠ 0, and t is a regular number if and only if wt = g1,0 = g

z
0 ∩g

s
1.

And we can rewrite lt and rt as follows:

(3.1.3) lt = m +⊕i+tj=1,j<0gi,j + vt + (⊕i+tj=1,j>0gi,j) ∩ gu + g1,0 ∩ gu,

(3.1.4) rt = m +⊕i+tj=1,j>0gi,j + vt + (⊕i+tj=1,j<0gi,j) ∩ gu + g1,0 ∩ gu.

We summarize the results in [GGS17, Lemma 3.2.7] in the following lemma.

Lemma 3.1.5 (Lemma 3.2.7, [GGS17]). Assume that (s, u) and (s′, u) are two Whittaker pairs
with the same u, such that gu ∩ g

s
≥1 ⊂ g

s′
≥1. Then the following properties hold.

(1) For any t ≥ 0, lt and rt are maximal isotropic subspaces of ut and [lt, rt] ⊂ lt ∩ rt. And

ut�ker(!u�ut) = wt�(wt ∩ g
z
0 +wt ∩ gu)

defines a symplectic structure, with the image of lt and rt being two complementary La-
grangians.

(2) Suppose that 0 ≤ t < t′, and that all the elements in the open interval (t, t′) are regular.
Then rt ⊂ lt′ .

In the following lemma, we analyze the precise structure of lt′�rt, in the situation of Lemma
3.1.5, Part (2).

Lemma 3.1.6. Assume that (s, u) and (s′, u) are two Whittaker pairs with the same u, such that
gu ∩ g

s
≥1 ⊂ gs

′
≥1. Suppose that 0 ≤ t < t′, and that all the elements in the open interval (t, t′) are

regular. Then, lt′�rt = (⊕i+t′j=1,j>0gi,j) ∩ gu, preserving  u.

Proof. By (3.1.3) and (3.1.4),

(3.1.7) lt′ = m +⊕i+t′j=1,j<0gi,j + vt′ + (⊕i+t′j=1,j>0gi,j) ∩ gu + g1,0 ∩ gu.

(3.1.8) rt = m +⊕i+tj=1,j>0gi,j + vt + (⊕i+tj=1,j<0gi,j) ∩ gu + g1,0 ∩ gu.

Since 0 ≤ t < t′, and all the elements in the open interval (t, t′) are regular, one can see that

⊕i+tj=1,j>0gi,j + vt = ⊕i+t′j=1,j<0gi,j + vt′ .
10



Therefore,
lt′ + (⊕i+tj=1,j<0gi,j) ∩ gu = rt + (⊕i+t′j=1,j>0gi,j) ∩ gu.

Note that if i + tj = 1 and j < 0, then i + j < 1. Hence, ⊕i+tj=1,j<0gi,j ⊂ gs
′
<1, Since gu ∩ g

s
≥1 ⊂ gs

′
≥1,

(⊕i+tj=1,j<0gi,j) ∩ gu = {0}. Therefore, lt′�rt = (⊕i+t′j=1,j>0gi,j) ∩ gu, preserving  u.
This completes the proof of the lemma. ⇤
For a Whittaker pair (s, u), let ls ⊂ us be any maximal isotropic subalgebra with respect to the

form !u. And let Ls = exp(ls). Then  u can be extended trivially to a character of Ls(k)�Ls(A).
Let ⇡ be an automorphic representation of G(A). Define the following Fourier coe�cient of f ∈ ⇡:

(3.1.9) F
Ls
s,u(f)(g) = �

Ls(k)�Ls(A)
f(ng) u(n)dn, g ∈ G(A).

Let FLs
s,u(⇡) = {F

Ls
s,u(f)�f ∈ ⇡}.

Next, we recall a lemma as follows.

Lemma 3.1.10 (Lemma 6.0.2, [GGS17]). Let ⇡ be an automorphic representation of G(A). Then,
Fs,u(⇡) ≠ 0 if and only if FLs

s,u(⇡) ≠ 0.

The next theorem is the global analogue of [GGS17, Corollary 3.0.3] with essentially the same
proof. To be complete, we sketch it in the following.

Theorem 3.1.11. Let ⇡ be an automorphic representation of G(A). Assume that (s, u) and (s′, u)
are two Whittaker pairs with the same u, such that gu ∩ g

s
≥1 ⊂ gs

′
≥1. If Fs′,u(⇡) is nonzero, then

Fs,u(⇡) is also nonzero.

Proof. Let (s, u) and (s′, u) be two Whittaker pairs with the same u, such that gu∩g
s
≥1 ⊂ g

s′
≥1. Then

it is clear that s′ − s ∈ gu.
Let t0 = 0 < t1 < t2 < � < tk be the all the critical numbers. Let tk+1 = 1. Then, for 0 ≤ i ≤ k, all the

rational numbers in the open interval (ti, ti+1) are regular. Let Rti = exp(rti), and Lti+1 = exp(lti+1).
Assume that F

Rti+1
sti+1 ,u(⇡) ≠ 0, then F

Lti+1
sti+1 ,u(⇡) ≠ 0 by Lemma 3.1.10. By Lemma 3.1.5, rti ⊂ lti+1 , and

by Lemma 3.1.6, lti+1�rti = (⊕`+ti+1j=1,j>0g`,j) ∩ gu ⊂ wti+1 ∩ gu, which is abelian and normalizes  u.

Then it is clear that F
Rti
sti ,u
(⇡) ≠ 0.

Note that F
Rtk+1
stk+1 ,u(⇡) = Fs′,u(⇡) ≠ 0. Therefore, by the above discussion, Fs,u(⇡) = Fst0 ,u

(⇡) =

F
Rt0
st0 ,u
(⇡) ≠ 0. This completes the proof of the theorem. ⇤

3.2. A few general results. Before we turn to matters that are specific to the problem of descent
from GL7 to G2 by way of GE7, we would like to present some results in a general setting. These
are related to the general problem of computing the twisted Jacquet module

JU, U (Ind
G
Q �),

where G is a reductive p-adic group, Q is a parabolic subgroup of G, U is a subgroup of the
unipotent radical of a second parabolic subgroup, P of G, U is normalized by P, � is a character
of Q and  U is a character of U. In this direction, the most general result of which we are aware is
theorem 5.2 of [BZ77]. This result considers a set-up which is more general than the one we shall
consider here, but it has the defect that one must check a certain finiteness condition which, for
many applications is unnecessary.

The group P acts on the space of characters of U by p ⋅ U(u) =  U(p
−1up). In fact, this action

may be realized as the rational representation of P dual to its action on U�(U,U). Let R U denote
the stabilizer of  U in P. Then for any admissible representation ⇡ of G, the twisted Jacquet module
JU, U (⇡) has the structure of an R U -module.
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We assume that G is equipped with a choice of minimal parabolic subgroup P0 and that P and
Q are both standard, i.e., both contain P0. We also choose a maximal split torus T0 contained
in P0. The space IndGQ � has a filtration by P -modules Iw indexed by the elements of Q�G�P. As
representatives, we choose minimal-length elements of the relative Weyl group. The P -module Iw

corresponding to w may be realized as c − indPP∩w−1Qw��
1
2
Q ○Ad(ẇ), where ẇ is any representative

for w in G.
We say that p ∈ P is w-admissible if p ⋅  U is trivial on U ∩w−1Qw. (Clearly this is relative to

 U , and Q.)

Lemma 3.2.1. For each w, the set of w-admissible elements is a subvariety of P.

Proof. Write [U�(U,U)]∗ for the rational representation of P that is dual to U�(U,U). Then  U

corresponds to an element X of [U�(U,U)]∗(F ). Let V denote the image of U∩w−1Qw in U�(U,U).
Then p is w-admissible if and only if �Ad(p).X, v� = 0 for all v ∈ V. Here �, � is the canonical pairing
between U�(U,U) and [U�(U,U)]∗. Taking a basis of V we obtain a finite number of polynomial
conditions in p which define the w-admissible subvariety. ⇤

Now fix w and let Xw denote the open subset of w-inadmissible elements in P. Let Iow denote
{f ∈ Iw ∶ supp(f) ⊂ Xw}. Then Iow is a sub R U -module of Iw. Let Iw denote the quotient, so we
have a short exact sequence of R U −modules

0→ Iow → Iw → Iw → 0.

Lemma 3.2.2.

JU, U (I
o
w) = 0, hence JU, U (Iw) ≅ JU, U (Iw).

Proof. In general, for an admissible representation (⇡, V ) of P the kernel of the map V → JU, U (V )
is the subspace of elements v such that

�
N
 U(n)⇡(n).v dn = 0

for some compact subgroup N of U. In the case of an induced representation, this is equivalent to

�
N
f(pn) U(n)dn = 0 ∀p ∈ P.

For each fixed p,

�
N
f(pn) U(n)dn = �

N
f(np)p ⋅  U(n)dn,

where p ⋅ U(u) =  U(p
−1up). It’s clear that if p ⋅ U is nontrivial on U ∩w−1Qw, then this integral

will be zero for all su�ciently large N, and if f ∈ Iow, then this holds for all p in the support of f.
We need to show that N can be chosen independently of p. This follows because p ⋅  U depends
continuously on p and the support of f is compact modulo P ∩w−1Qw. ⇤

For each w in our set of representatives for Q�G�P let Pw = P ∩ w−1Qw. Note that the w-
admissible subvariety of P is a union of Pw,R U -double cosets.

Lemma 3.2.3. Assume that w-admissible subvariety of P is a single Pw,R U -double coset PwxR U .

Then, as an R U -module, Iw ≅ c − ind
R U
R U ∩x

−1w−1Qwx
��1�2Q ○Ad(ẇx).

Proof. Recall that Iow is the subset of elements of Iw whose support is in the open set Xw of inad-
missible elements. So, the canonical quotient map Iw → Iw�I

o
w = Iw may be realized as restriction

to the admissible subvariety. Write I
(1)
w for this realization of Iw as a subspace of C∞(PwxR U ).
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Clearly, each element f ∈ I
(1)
w is determined by the function hf(r) = f(xr) ∈ C

∞
(R U ). Thus we

obtain a second realization of Iw as a subspace of C∞(R U ) which we denote I
(2)
w . We claim that

Ī(2)w is precisely c − ind
R U
R U ∩x

−1w−1Qwx
��1�2Q ○Ad(ẇx).

It’s clear that hf(pr) = ��
1�2
Q (ẇxpx

−1ẇ−1)hf(r) for each p ∈ R U ∩ x
−1w−1Qwx, and r ∈ R U .

Moreover, since R U ∩x
−1w−1Qwx�R U maps injectively into P ∩w−1Qw, the support of hf will be

compact modulo x−1w−1Qwx. Thus I
(2)
w is contained in c− ind

R U
R U ∩x

−1w−1Qwx
��1�2Q ○Ad(ẇx). What

remains is to show that this map from I
(2)
w to c − ind

R U
R U ∩x

−1w−1Qwx
��1�2Q ○Ad(ẇx) is surjective.

Given h ∈ c − ind
R U
R U ∩x

−1w−1Qwx
��1�2Q ○Ad(ẇx), we can choose ⌦ a compact open set such that

h is supported on (R U ∩ x
−1w−1Qwx)⌦, a compact open subgroup K1 of R U such that that h is

right-K1-invariant, and a compact open subgroup K2 of P such that K2 ∩R U =K1. Then we can
define

f(g) =
�
��
�
��
�

��1�2Q (ẇqẇ
−1
)h(r), g = qxrk, q ∈ Pw, r ∈ R U , k ∈K2,

0, g ∉ PwxR UK2.

⇤
Using the form , the space [U�(U,U)]∗ may be identified with a subspace [U�(U,U)]− of the

Lie algebra u−P of the unipotent radical U−P of the parabolic that is opposed to P. It is important
to keep in mind that this identification is an isomorphism of MP -modules, where MP is the Levi
of P , but that it is not an isomorphism of P -modules. More precisely, the form  gives us a linear
isomorphism gder → g∗der that sends X ∈ gder to the linear form Y � (X,Y ). Here, gder is the
derived subalgebra of g. We can decompose g into irreducible MP -submodules and those that are
not contained in mP come in dual pairs. More precisely, each irreducible in uP is paired with
an irreducible in u−P . The Lie algebra of U is a direct sum of irreducible components in uP so its
dual is identified with a subspace of u−P . Then the dual of the quotient U�(U,U) is a subspace
of the dual of U. Since (U,U) is MP -invariant [U�(U,U)]

∗ is again a direct sum of irreducible
MP -submodules of u−P . Notice that X ∈ [U�(U,U)]

− implies Ad(m)X ∈ [U�(U,U)]− for all m in M
but not Ad(p)X ∈ [U�(U,U)]− for p in P but not in M.

The Lie algebra g decomposes as q−⊕uQ where q− is the Lie algebra of the parabolic q− opposed
to Q and uQ is the Lie algebra of the unipotent radical of Q. Conjugating by w we have also
g = Ad(w−1)q− ⊕Ad(w−1)uQ.

Lemma 3.2.4. [U�(U,U)]− = ([U�(U,U)]− ∩Ad(w−1)q−)⊕ ([U�(U,U)]− ∩Ad(w−1)uQ).

Proof. Let MQ be the standard Levi factor of Q (containing T0). Let ZMQ denote its center, and

AMQ = ZMQ ∩ T0. Because the space [U�(U,U)]− is preserved by w−1AMQw, we can decompose

[U�(U,U)]− into eigenspaces of w−1AMQw. If � is one of the eigencharacters, then � ○ Ad(w) is
either trivial or a relative root for the torus AMQ . If it is trivial or negative then the �-eigenspace

lies in Ad(w−1)q− and if it is positive then the �-eigenspace lies in Ad(w−1)uQ.
Take X ∈ [U�(U,U)]−. Then using this eigenspace decomposition we can write X = X1 + X2

where X1 ∈ [U�(U,U)]
−
∩Ad(w−1)q−) and X2 ∈ ([U�(U,U)]

−
∩Ad(w−1)uQ). ⇤

Notice that p is w-admissible if and only if the projection of Ad(p)X onto [U�(U,U)]− is in
[U�(U,U)]− ∩Ad(w−1)uQ.

Now write UP for the unipotent radical of the parabolic P. Inside [U�(U,U)]∗ we have the
subspace of [U�(U,UP )]

∗ of linear forms which corresponds to the space of characters of U that
are trivial on (U,UP ). This is an MP -invariant subspace which we can identify with a subspace
[U�(U,UP )]

− of [U�(U,U)]−.
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If X ∈ [U�(U,UP )]
− and p = mu with m ∈MP and u ∈ UP then the projection of Ad(p).X onto

[U�(U,U)]− is Ad(m).X. Put di↵erently, if  U is trivial on (U,UP ) then UP fixes  U , and hence
p ⋅  U =m ⋅  U .

Assume now that  U is trivial on (U,UP ). Then p =mu is w-admissible if and only if Ad(m).X is
in [U�(U,U)]−∩Ad(w−1)uQ, or, equivalently, if Ad(wm)X ∈ uQ. In particular, X must be conjugate
to an element of the subspace [U�(U,U)]− ∩Ad(w−1)uQ.

Corollary 3.2.5. If  U is trivial on (U,UP ) and the space [U�(U,U)]− ∩ Ad(w−1)uQ does not
contain any elements of the orbit of X, then the w-admissible subvariety of P is empty.

Corollary 3.2.6. Suppose that  U is trivial on (U,UP ) and the w-admissible subvariety of P is
nonzero. Then the nilpotent element X attached to  U is conjugate to an element of uQ.

Corollary 3.2.7. If  U is trivial on (U,UP ) and the space uQ does not contain any elements of
the orbit of X, then the w-admissible subvariety of P is empty for all w, and

J(U, U )
(IndGQ(�)) = 0.

Corollary 3.2.8. Let O be the Richardson orbit of Q (the largest stable orbit that intersects uQ).
Let O′ be a stable orbit that is greater than or not related to O. Let (s, u) be any Whittaker pair
with u ∈ O′. Let U = exp(gs

≥2). Then

J(U, u)
(IndGQ(�)) = 0.

Proof. Let P = exp(gs
≥0), then UP = exp(g

s
≥1). The previous corollary applies to this situation, since

(U,UP ) = exp(g
s
≥3) and  u is trivial on it. ⇤

Corollary 3.2.9. Let O be the Richardson orbit of Q. Let O′ be a stable orbit that is greater
than or not related to O. Let (s, u) be any Whittaker pair with u ∈ O′ then JNs,u, u(Ind

G
Q �) = 0.

Proof. Define U as in the previous corollary. Then it follows from the definition of JNs,u, u , because
JNs,u, u(⇡) is a quotient of J(U, u)

(⇡) for any ⇡. ⇤
Remark 3.2.10. (1) Suppose that the weighted Dynkin diagram of O consists of 0’s and 2’s
(namely O is even) and let Q be the parabolic whose Levi contains the simple roots labeled 0 and
whose unipotent radical contains the simple roots labeled 2. Then O is the Richardson orbit of Q.
Cf. [CM93, Theorem 7.1.1, Theorem 7.1.6, Corollary 7.1.7].

(2) Corollary 3.2.9 can also be deduced from the argument in [MW87, Section II.1.3].

4. The A6 Levi of GE7 and Eisenstein series

Recall that P =MU is the standard parabolic subgroup of GE7 whose unipotent radical contains
U↵i if and only if i = 2, with Levi subgroup M and unipotent radical U . In this section, we show
that this Levi subgroup M which is of type A6 is isomorphic to GL7 ×GL1. Then we introduce the
Eisentein series associated to P whose residues at s = 1 generate a residual representation. This
residual representation serves as automorphic kernel of our descent construction.

4.1. The A6 Levi.

Lemma 4.1.1. The group M is isomorphic to GL7 ×GL1.

Proof. Recall that the derived group of a Levi subgroup of a simply connected group is simply
connected. In particular the derived group Mder of M is simply connected, semisimple, of type A6.
This means that it is isomorphic to SL7. To pin down a particular isomorphism we first require
that T ∩Mder is mapped to the standard torus of SL7 (the diagonal elements), and B ∩Mder is
mapped to the standard Borel of SL7 (the upper triangular elements. Any isomorphism satisfying
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these requirements induces a bijection on the set of simple roots which respects the structure of
the root system. There are only two such bijections. For reasons which will become apparent, we
choose to map ↵7 to the first simple root of SL7 and ↵1 to the last. These conditions determine
the isomorphism up to conjugation by an element of T ∩Mder. To make it unique, we can use the
parametrizations x↵: there is a unique isomorphism ◆0 ∶Mder → SL7 such that

x↵1(r)�
�

�
�

�

1
1
1
1
1
1 r
1

�

�
�

�

, x↵3(r)�
�

�
�

�

1
1
1
1
1 r
1
1

�

�
�

�

, . . . x↵7(r)�
�

�
�

�

1 r
1
1
1
1
1
1

�

�
�

�

.

Now M is the product of its derived group and the maximal torus T. A general element of T is of

the form ∏8
i=1 t

↵∨i
i . Of course ∏i≠2,8 t

↵∨i
i lies in M which is mapped to (under ◆0)

�

�
�
�
�
�
�
�
�
�
�

�

t7
t−17 t6

t−16 t5
t−15 t4

t−14 t3
t−13 t1

t−11

�

�
�
�
�
�
�
�
�
�
�

�

.

Since

(t
↵∨2
2 t

↵∨8
8 )

↵j =

�
����
�
����
�

t−12 , j = 4

t−18 , j = 7

1, otherwise,

we can extend ◆0 to a homomorphism ◆1 ∶M → GL7 such that

◆1(t
↵∨2
2 ) =

�

�
�
�
�
�
�
�
�
�
�

�

1
1

1
1

t2
t2

t2

�

�
�
�
�
�
�
�
�
�
�

�

, ◆1(t
↵∨8
8 ) =

�

�
�
�
�
�
�
�
�
�
�

�

t−18
1

1
1

1
1

1

�

�
�
�
�
�
�
�
�
�
�

�

.

For any m ∈M , assume that m =m0t2(m)
↵∨2 t8(m)↵

∨
8 , where m0 ∈Mder. Define the map

◆ ∶M → GL7 ×GL1

m� (◆1(m), t2(m)),

which is a group homomorphism. We claim that ◆ is an isomorphism between M and GL7 ×GL1.
Indeed, assume that ◆(m) = (I7,1), then t2(m) = 1. And then det(◆1(m)) = t

−1
8 (m), which is equal

to det(I7) = 1. Hence, ◆1(m) = ◆0(m0) = I7. Since ◆0 is an isomorphism, we get that m0 is the
identity of M . Hence m =m0t2(m)

↵∨2 t8(m)↵
∨
8 is the identify of M . Therefore, ◆ is an isomorphism.

This completes the proof of the lemma. ⇤
Remark 4.1.2. The inverse of ◆ can be described explicitly as follows: for g ∈ GL7 write g =
g1 � a

−1
I6
� , with g1 ∈ SL7, then

◆−1(g, b) = ◆−10 (g1)a
↵∨8 b↵∨2−↵∨5−2↵∨6−3↵∨7−4↵∨8 .

Remark 4.1.3. The center of GE7 is the image of 2↵∨1 + 3↵
∨

2 + 4↵
∨

3 + 6↵
∨

4 + 5↵
∨

5 + 4↵
∨

6 + 3↵
∨

7 + 2↵
∨

8 .
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Remark 4.1.4. Recall that there is a notion of duality on split algebraic groups (by means of
their root data) which underlies the definition of the L-group. By this duality, the isomorphism
◆ ∶M → GL7 ×GL1 induces a dual isomorphism ◆∨ ∶ GL7 ×GL1 →M.

Remark 4.1.5. For 1 ≤ i ≤ 7 let ei denote the rational character of the standard maximal torus
of GL7 which maps a matrix to its ith diagonal entry. Treat ei also as a rational character of
GL7×GL1 which is trivial on the second factor and let e8 denote projection onto the second factor,
so that e1, . . . , e8 is a Z-basis for the lattice of rational characters of the standard maximal torus
of GL7 ×GL1. Let e

∗

1 , . . . , e
∗

8 be the dual basis for the lattice of cocharacters. Then we see at once
that

↵∨7 = e
∗

1−e
∗

2 , ↵∨6 = e
∗

2−e
∗

3 , ↵∨5 = e
∗

3−e
∗

4 , ↵∨4 = e
∗

4−e
∗

5 , ↵∨3 = e
∗

5−e
∗

6 , ↵∨1 = e
∗

6−e
∗

7 ,

↵∨2 = e
∗

5 + e
∗

6 + e
∗

7 + e
∗

8 , ↵∨8 = −e
∗

1

4.2. Eisenstein series. Take ⇡ an irreducible cuspidal automorphic representation of GL7(A) and
� ∶ A× → C× a Hecke character. Having fixed above an isomorpism ◆ ∶ M → GL7 ×GL1, we may
regard ⇡⊗� as an irreducible cuspidal automorphic representation of M(A). Restriction maps the
lattice X(M) of rational characters of M isomorphically onto a subgroup of the lattice X(T ) of
rational characters of T. This sublattice is generated by the second and eighth fundamental weights
$2 and $8. We denote their preimages in X(M) by $̃2 and $̃8. Then $̃8 extends to a generator
for the lattice of rational characters of GE7 itself. Abusing notation, we still denote this extension
by $̃8. Let P be the standard parabolic whose Levi is M. We consider the family of induced

representations IndGE7(A)
P (A) (⇡⊗�) ⋅ �$̃2�

s, s ∈ C (normalized induction), and the corresponding space

of Eisenstein series.

Lemma 4.2.1. The ratio of products of partial L-functions appearing in the constant term of these
Eisenstein series is

(4.2.2)
LS
(s,⇡ ⊗ �,∧3 × St)LS

(2s, ⇡̃ ⊗ �2!⇡,St×St)

LS(s + 1,⇡ ⊗ �,∧3 × St)LS(2s + 1, ⇡̃ ⊗ �2!⇡,St×St)

Proof. This is standard from the Gindikin-Karpalevic formula and the L-group formalism. The
Lie algebra of the unipotent radical of the parabolic P∨ is a direct sum of two irreducible M∨-
submodules. The highest weights correspond to the coroots ↵∨1 + ↵

∨

2 + 2↵
∨

3 + 3↵
∨

4 + 3↵
∨

5 + 2↵
∨

6 + ↵
∨

7 ,
and 2↵∨1 + 2↵

∨

2 + 3↵
∨

3 + 4↵
∨

4 + 3↵
∨

5 + 2↵
∨

6 + ↵
∨

7 . We must view the corresponding coroots as weights
on the maximal torus of GL7(C)×GL1(C). In terms of the basis e∗1 , . . . , e

∗

8 these two cocharacters
are e∗1 + e

∗

2 + e
∗

3 + e
∗

8 and e∗1 + e
∗

2 + e
∗

3 + e
∗

4 + e
∗

5 + e
∗

6 + 2e
∗

8 , respectively. The highest weight of ∧3 is
e∗1 + e

∗

2 + e
∗

3 , and projection to the GL1 factor is e∗8 and determinant of the GL7 factor. The weight
e∗1 + e

∗

2 + e
∗

3 + e
∗

4 + e
∗

5 + e
∗

6 is the highest weight of the ∧6 representation, which can also be regarded
as the dual to the standard representation twisted by the determinant. ⇤

Let w0 = w[243154234565423143542765423143542654376542], which is the longest Weyl word
which is reduced by the Weyl group of GL7 on both the left and the right. By [MW95, II.1.7]
the constant term of the Eisenstein series applied to a section f of the induced space is given by
f +M(w0).f, where M(w0) is the standard intertwining operator as in [MW95, II.1.6]. By [MW95,
IV.1.11], M(w0).f can have at most a simple pole at s = 1. By (3.1) and (3.5, c) of [KS04], it follows
that 4.2.2 can have at most a simple pole at s = 1.

Since the standard L-functions of cuspidal representations of GL(n) are nonzero on the half plane

Re(s) > 1 (see [JS81, Theorem 5.3]) and are entire on the whole complex plane, LS
(2s,⇡̃⊗�2!⇡ ,St×St)

LS(2s+1,⇡̃⊗�2!⇡ ,St×St)

has no pole and no zero at s = 1. So, LS
(s,⇡⊗�,∧3×St)

LS(s+1,⇡⊗�,∧3×St)
has at most a simple pole at s = 1. Moreover,
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from (3.5, b) of [KS04] a pole of the intertwining operator in the half plane Re(s) ≥ 1 must come

from LS
(s,⇡⊗�,∧3×St)

LS(s+1,⇡⊗�,∧3×St)
.

Proposition 4.2.3. If the Eisenstein series has a pole in the half plane Re(s) > 0, then the residual
representation is square integrable.

Proof. This is an easy application of the square integrability in [MW95] I.4.11. ⇤
According to Lemma 7.5 of [L76], the Eisenstein series can have a square integrable residue only

if ⇡ ⊗ � ○Ad(ẇ0) ≅ ⇡ ⊗ �. We investigate what this condition says explicitly about ⇡ and �.

Lemma 4.2.4. There is a representative ẇ0 for w0 such that the automorphism of GL7 × GL1

induced by Ad(ẇ0) and our choice of isomorphism M → GL7 ×GL1 is

(g, a)� �tg
−1 a3

det g
,

a8

(det g)3
� ,

where tg is defined at the end of Section 2.

Proof. For any choice of representative, the Ad(ẇ0) induces an automorphism of GL7 ×GL1 which
preserves the chosen torus and Borel. When such an automorphism is restricted to SL7 there are
two possibilities: either it is given by conjugation by an element of the torus of GL7 (in which case
we can adjust the representative ẇ0 to make it trivial), or else it is given by g �t g

−1 composed
with conjugation by an element of the torus of GL7 (in which case we can adjust the representative
ẇ0 to make it g �t g

−1).
By inspecting the action of w0 on the simple coroots, one can see that Ad(ẇ0) maps h(t1, . . . , t8)

to

h�
t7t8
t2

,
t38
t2
,
t6t

3
8

t32
,
t5t

5
8

t32
,
t4t

4
8

t32
,
t3t

3
8

t22
,
t1t

2
8

t2
, t8� .

If we push this through the isomorphism with GL7 ×GL1 it becomes

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

t7
t8

t6
t7

t5
t6

t4
t5

t2t3
t4

t1t2
t3

t2
t1

�

�
�
�
�
�
�
�
�
�
�
�
�

�

, t2

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

t1t8
t2

t3t8
t1t2

t4t8
t3t2

t5t8
t4

t6t8
t5

t7t8
t6

t28
t7

�

�
�
�
�
�
�
�
�
�
�
�
�

�

,
t38
t2

�

�
�
�
�
�
�
�
�
�
�
�
�

�

.

We see that on the torus of SL7 (obtained by setting t2 = t8 = 1) this agrees with g �t g
−1. In

general, it can be expressed as (t, t2)� (tt
−1t8,

t38
t2
), and t8 can be expressed as

t32
det g . ⇤

Corollary 4.2.5. If ⌘ is a character, we write ⌘ ⋅ ⇡ for the twist of ⇡ by ⌘ ○ det . Then for any ⇡,�
we have

⇡ ⊗ � ○Ad(ẇ0) ≅ (!
−1
⇡ �

−3
⋅ ⇡̃)⊗ (!3

⇡�
8
).

Corollary 4.2.6. If
⇡ ⊗ � ○Ad(ẇ0) ≅ ⇡ ⊗ �,

then there is a self-contragredient cuspidal representation ⇡0 with trivial central character, and a
character ⌘ such that ⇡ ≅ ⌘−1⇡0 and � = ⌘3.

Proof. If � = !3
⇡�

8 then !3
⇡ = �

−7, so � = (!⇡�
2
)
−3. Setting ⌘ = !−1⇡ �

−2, we have � = ⌘3 and
!⇡ = �

−2⌘−1 = ⌘−7. Then !−1⇡ �
−3
⋅ ⇡̃ = ⌘−2⇡̃. If this is isomorphic to ⇡ then ⇡0 ∶= ⇡ ⊗ ⌘ is self-

contragredient with trivial central character. ⇤
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Remark 4.2.7. LS
(s,⌘−1⇡0 ⊗ ⌘

3,∧3 ⊗ St) = LS
(s,⇡0,∧

3
).

Remark 4.2.8. If a representation ⇡ of GL7 is self-contragredient, then LS
(s,⇡, sym2

) has a simple
pole at s = 1. Indeed, each self-contragredient representation of GLn is of either orthogonal type
(LS
(s,⇡0, sym

2
) has a pole) or symplectic type (LS

(s,⇡0,∧
2
) has a pole). When n is odd ⇡0 must

be of orthogonal type, because LS
(s,⇡0,∧

2
) has no poles in the odd case (see [JS90, S81, K99]).

Corollary 4.2.6 implies that a cuspidal representation whose twisted ∧3 L-function has a pole
is simply a twist of a representation whose untwisted ∧3 L-function has a pole. Since there is no
essential loss of generality, we shall henceforth restrict our attention to untwisted ∧3 L-function,
i.e., we shall assume that � is trivial. In this case we get the following simplification of Corollary
4.2.6.

Lemma 4.2.9. If LS
(s,⇡,∧3) has a pole, then ⇡ = ⌘ ⋅ ⇡0 where ⌘ is cubic, ⇡0 is self-contragredient

with trivial central character and LS
(s,⇡0, sym

2
) has a pole at s = 1.

Definition 4.2.10. Given an irreducible cuspidal automorphic representation ⇡ of GL7(A), we
say that ⇡ is of G2 type if it is self-contragredient, and LS

(s,⇡,∧3) has a pole at s = 1.

Remark 4.2.11. By [KS04, Theorem 1], if LS
(s,⇡,∧3) has a pole at s = 1, then it is simple. By

Lemma 4.2.9, given an irreducible cuspidal automorphic representation ⇡ of GL7(A), if it is of G2

type, then the central character of ⇡ is trivial and LS
(s,⇡, sym2

) has a pole at s = 1.

Proposition 4.2.12. If ⇡ is of G2 type then the Eisenstein series has a simple pole at s = 1.

Proof. We’ve already explained that the Eisenstein series has the same poles as LS
(s,⇡,∧3)

LS(s+1,⇡,∧3)
in

Re(s) ≥ 1.
The exterior cube L-function is holomorphic at 2 by [KS04, Lemma 5.1], so a pole at 1 will be

inherited by the ratio and hence the Eisenstein series. ⇤

Definition 4.2.13. When ⇡ is of G2 type, we can see that the Eisenstein series above has a simple
pole at s = 1. Denote the residual representation by E⇡.

Remark 4.2.14. (1) It is possible for the Eisenstein series to have a pole at one even if
LS
(s,⇡,∧3) has no pole, namely, if L(s,⇡,∧3) vanishes at s = 2. One expects that this

does not occur. For example, if Langlands functoriality holds, then LS
(s,⇡,∧3) is simply

the standard L function of the ∧3 lift of ⇡. This lift doesn’t need to be cuspidal, but if the
Ramanujan conjecture also holds, then both ⇡ and its lift will be tempered at every place,
so that the lift will be an isobaric sum of unitary cuspidal representations. In this case its
standard L function is holomorphic and nonvanishing in Re(s) > 1.

(2) For similar reasons, one expects that LS
(s,⇡,∧3) will have no poles other than possibly at

0 and 1 with poles at 0 and 1 arising when the trivial character is an isobaric summand of
the ∧3 lift.

(3) If ⇡ is of G2 type, then LS
(s,⇡,∧3) must be nonvanishing at s = 2, since the intertwining

operator can have at most a simple pole.
(4) If ⇡ is not of G2 type but LS

(s,⇡,∧3) has a pole at s = 1, then we can still obtain a residual
representation E⇡.

Lemma 4.2.15. If an irreducible automorphic representation ⇡ of GL7(A) is the weak functorial
lift of an irreducible automorphic representation � of G2(A), then

(1) ⇡ is nearly equivalent to it’s contragredient ⇡̃,
(2) LS

(s,⇡,∧3) = LS
(s,⇡, sym2

)LS
(s,⇡).
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Proof. The embedding of G2 into GL7 factors through an embedding of the special orthogonal
group SO7 � GL7. It follows that if ⇡ is a weak functorial lift associated with this embedding, then
⇡v ≅ ⇡̃v at every unramified place v.

Write �a,b for the irreducible representation of G2(C) with highest weight a$G2
1 + b$

G2
2 . (Here

$G2
1 ,$G2

2 are the fundamental weights of G2(C).) The seven-dimensional “standard” representation
of G2(C) is �1,0. Then ∧

3�1,0 ≅ �0,0⊕�1,0⊕�2,0, while sym
2 �1,0 ≅ �0,0⊕�2,0, so ∧

3�1,0 ≅ sym
2 �1,0⊕

�1,0. It follows that for ⇡ the weak functorial lift of � we have

LS
(s,⇡,∧3) = LS

(s,�,∧3�1,0) = L
S
(s,�, sym2 �1,0)L

S
(s,�,�1,0) = L

S
(s,⇡, sym2

)LS
(s,⇡).

⇤
Lemma 4.2.16. If an irreducible cuspidal representation ⇡ of GL7(A) is the weak functorial lift
of an irreducible cuspidal representation � of G2(A), then ⇡ is self-contragredient and LS

(s,⇡,∧3)
has a simple pole at s = 1.

Proof. From part (1) of lemma 4.2.15, and strong multiplicity one for GL7, it follows that ⇡ = ⇡̃.
From part (2) of lemma 4.2.15, we have

LS
(s,⇡,∧3) = LS

(s,⇡, sym2
)LS
(s,⇡).

Now, LS
(s,⇡) is holomorphic and nonvanishing in Re(s) ≥ 1, while LS

(s,⇡, sym2
) has a simple pole

at s = 1, because ⇡ is self-contragredient. Note that self-contragredient representations of GL7(A)
are automatically of orthogonal type. It follows that LS

(s,⇡,∧3) has a simple pole at s = 1. ⇤

5. The nilpotent orbit A6 of E7

In this section we consider the rational orbit structure for the nilpotent orbit of E7 whose Bala-
Carter label is A6 and whose weighted Dynkin diagram is

0 −− 0 −− 2 −− 0 −− 2 −− 0
�

0

We will show that this nilpotent orbit consists of a single rational orbit and the residual represen-
tation E⇡ has a nonzero generalized Whittaker-Fourier coe�cient attached to it.

First, we introduce some notation related to nilpotent orbits. One of the most convenient ways
to specify a nilpotent orbit O in a reductive Lie algebra is by a weighted Dynkin diagram. This
method of specifying nilpotent elements relies on two facts:

(1) Orbits of nilpotent elements are in bijection with orbits of sl2-triples [C93, Theorem 5.5.11].
(2) Once a split maximal torus T and a base � of simple roots (relative to T ) have been fixed,

each sl2-triple is conjugate to a triple (v, s, u) such that s ∈ t, and ↵(s) ≥ 0 for all ↵ ∈ �.
(Since each torus is contained in a maximal one, all maximal tori are conjugate, and every
weight is in the Weyl orbit of a dominant one.)

Definition 5.0.1. The semisimple element s = sO as above is called the standard semisimple
element attached to the orbitO in question. Let PO =MOUO be the parabolic subgroup Ps =MsUs

defined in Section 3.1, with Levi subgroup MO =Ms and unipotent radical UO = Us.

Each element s of t determines a weighted Dynkin diagram

↵1(s) ↵3(s) ↵4(s) ↵5(s) ↵6(s) ↵7(s)
↵2(s)

.

The weighted Dynkin diagram of a nilpotent orbit is then the weighted Dynkin diagram of its
standard semisimple element.
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The map from t to weighted Dynkin diagrams is not injective, but each fiber has a unique element
which is contained in the span of the coroots of G. For any nilpotent orbit, the standard semisimple
element is contained in this subspace of t. In addition, if the weights of the Dynkin diagram are
integral, then the diagram canonically determines a homomorphism from the root lattice into Z,
i.e., a coweight. Whenever convenient, we will use integrally weighted Dynkin diagrams to specify
coweights, nilpotent orbits, and elements of t.

To study the nilpotent orbit A6, we consider the parabolic subgroup Q = LV whose Levi, L
contains the root subgroups attached to ↵1,↵2,↵3,↵5 and ↵7 and whose unipotent radical, V
contains the root subgroups attached to the other simple roots. The derived group of L is isomorphic
to SL3×SL2×SL2×SL2, and we can map L into GL3×GL2×GL2×GL2 so that the induced map
on Lie algebras maps ∑8

i=1 tiH↵i +∑i=1,2,3,5,7 xiX↵i + yiX−↵i to

�

�

�

�

�

�

t3 − t4 x3
y3 t1 − t3 x1

y1 −t1

�

�

�

, �
t2 − t4 x2
y2 −t2

� , �
t5 − t6 x5
y5 t4 − t5

� , �
t7 − t8 x7
y7 t6 − t7

�

�

�

�

.

The image is

(5.0.2) {(g1, g2, g3, g4) ∈ GL3 ×GL2 ×GL2 ×GL2 ∶ det g1 = det g2}.

Denote the isomorphism from L to (5.0.2) by ◆L. Denote the projection of GL3 ×GL2 ×GL2 ×GL2

onto the ith factor by pi for i = 1,2,3,4. We write D for the di↵erential, i.e., the induced map on
Lie algebras. Thus, for example Dp2 ○D◆L maps l→ gl2.

The space of characters of V is identified with the sum of the root spaces g−↵ attached to roots
↵ such that ↵ = ∑7

i=1 ci↵i and 2c4 + 2c6 = 2. Clearly, this is the direct sum of two subspaces

v−1 ∶= �
↵∶c4=1,c6=0

g−↵, and v−2 ∶= �
↵∶c4=0,c6=1

g−↵.

Lemma 5.0.3. Write GSO4 for the usual split similitude orthogonal group in four variables. In
other words, let

J4 =

�

�
�
�

�

1
1

1
1

�

�
�
�

�

, GSO4 ∶= �g ∈ GL4 ∶ gJ4
tg = �(g)J4, �(g) ∈ GL1� .

There is an surjective homomorphism of algebraic groups pr ∶ GL2 ×GL2 → GSO4

pr��
a1 b1
c1 d1

� , �
a2 b2
c2 d2

�� =

�

�
�
�

�

a1 b1
c1 d1

a1 −b1
−c1 d1

�

�
�
�

�

�

�
�
�

�

a2 −b2
a2 b2

−c2 d2
c2 d2

�

�
�
�

�

,

which satisfies �(pr(g1, g2)) = det g1 det g2.

Proof. Write Eij for the 2 × 2 matrix with a 1 at the i, j entry and zeros elsewhere. Then pr
sends (g1, g2) to the matrix of the linear operator X � g1X

tg2 relative to the ordered basis

(E1,1,E2,1,−E1,2,E2,2) of Mat2×2 . Notice that the coordinate vector for the matrix �
a b
c d
� rel-

ative to this ordered basis is t
�a c −b d� . Thus the quadratic form determined by the matrix J4

corresponds to twice the determinant form on Mat2×2, from which it easily follows that GL2 ×GL2

maps into GSO4 (which can also be checked by hand on the matrices above). The formula for �○pr
also follows easily.

It remains to show that the map is surjective. It su�ces to show that the image contains all four
root subgroups and the full torus, and this is straightforward. ⇤
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Lemma 5.0.4. There is an isomorphism of vector groups ◆v−2 ∶ v
−

2 → Mat2×2 which is compatible
with ◆L in the sense that

◆v−2 (Ad(◆
−1
L (g1, g2, g3, g4)).X) = g3◆v−2 (X)g

−1
4 .

Proof. We consider the action of SL3 × SL2 × SL2 × SL2 on v−2 , and easily see that the copies of
SL2 attached to the roots ↵5 and ↵7 act nontrivially, while the copy of SL2 attached to ↵2 and the
SL3 factor act trivially. There is a unique four-dimensional representation of SL2 × SL2 on which
both factors act trivially. Hence, the given action on Mat2×2 is one realization of it, while inclusion
into SL3 × SL2 × SL2 × SL2 at the third and fourth positions composed with Ad ○◆−1L is another.

To construct a specific isomorphism we start by matching our preferred highest weight vectors and
generating the correspondence on the complete bases of weight vectors. Thus, we map X−0000010 (a
highest weight vector in v−2 ) to E12 (a highest weight vector in Mat2×2). Then, since the di↵erential
of ◆L maps X−0000100 to (E21,0). It follows that ad(X−0000100)X−0000010, must be mapped to E21 ⋅

E12 = E22. Of course ad(X−0000100)X−0000010 is a scalar multiple of X−0000110. The scalar depends
on the structure constants for our realization (or equivalently of the corresponding Chevalley basis).
Using GAP, we have [X−0000100,X−0000010] =X−0000110. Continuing in this fashion, we compute:1

◆v−2 (x0000010X−0000010+x0000011X−0000011+x0000110X−0000110+x0000111X−0000111) = �
x0000011 x0000010
x0000111 x0000110

� .

What remains is to check that the action of t
↵∨4
4 t

↵∨6
6 t

↵∨8
8 is the same on both sides. And this is

easy, since

�
t−16

t4
��

x0000011 x0000010
x0000111 x0000110

��
t−18

t6
�

−1

=
�

�

t8
t6
x0000011

1
t26
x0000010

t4t8x0000111
t4
t6
x0000110

�

�

=

�

�

�

�t
↵∨4
4 t

↵∨6
6 t

↵∨8
8 �

−0000011
x0000011 �t

↵∨4
4 t

↵∨6
6 t

↵∨8
8 �

−0000010
x0000010

�t
↵∨4
4 t

↵∨6
6 t

↵∨8
8 �

−0000111
x0000111 �t

↵∨4
4 t

↵∨6
6 t

↵∨8
8 �

−0000110
x0000110

�

�

�

.

⇤
Lemma 5.0.5. There is an isomorphism of vector groups ◆v−1 ∶ v

−

1 → Mat3×4 which is compatible
with ◆L in the sense that

◆v−1 (Ad(◆
−1
L (g1, g2, g3, g4)).X) = g1◆v−1 (X)pr(g2, g3)

−1.

Proof. This is proved by the same method. We record only the essential information. The corre-
spondence between roots ↵ such that X↵ lies in v−1 and entries in an element of Mat3×4 is succinctly
expressed by the following matrix:

�

�

�

−0101100 −0001100 −0101000 −0001000
−0111100 −0011100 −0111000 −0011000
−1111100 −1011100 −1111000 −1011000

�

�

�

.

In the next matrix we record the image of t
↵∨4
4 t

↵∨6
6 t

↵∨8
8 under these twelve roots:

�

�
�

�

t6
t6
t4

1
t4

1
t24

t6t4 t6 1 1
t4

t6t4 t6 1 1
t4

�

�
�

�

.

1We remark that the scalars are not important for the present argument – only the correspondence between roots
and entries is really needed.
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Each entry matches exactly the e↵ect of multiplying by diag(t−14 ,1,1) on the left and diag(t6t4, t6, 1, t
−1
4 )

on the right. Finally, one has to check that diag(t6t4, t6, 1, t−14 )
−1
= pr �� t

−1
4

1
� , � t

−1
6

t4
�� . ⇤

Next we compute the rational orbit structure for the action of GL3 × GSO4 on Mat3×4 by
(g1, g2).Y = g1Y g−12 . Write Matsym3×3 for the space of 3×3 symmetric matrices. The group GL3×GL1

acts by (g, a).Z = agZtg. We have a map Mat3×4 →Matsym3×3 given by Y � Y J t
4Y. Clearly

�g1Y g−12 �J4
t
�g1Y g−12 � = �(g

−1
2 )g1Y J4

tY.

Thus Y1 and Y2 lie in the same GL3 ×GSO4-orbit if and only if Y1
tY1 lies in the same GL3 ×GL1-

orbit as Y2
tY2. It is clear that RankY and RankY tY are both invariants of a GL3×GSO4-orbit, and

that the latter is bounded by the former. It is relatively easy to show that {Y ∈Mat3×4 ∶ RankY =
i,RankY tY = j} is nonempty and a single GL3 ×GSO4-orbit for (i, j) = (0,0), (1,0), (1,1), (2,0),
and (2,1). Also, one can easily find a matrix Y of rank 2 such that Y tY = diag(a, b,0) for any a, b.

Lemma 5.0.6. Take F a field and Y ∈Mat3×4(F ) rank three. Then there exists g ∈ GL3 such that
(gY tY tg) is of the form

�

�

�

1
a

1

�

�

�

.

Proof. Write V for the span of the rows of Y. We choose a suitable basis for V such that the
quadratic form attached to J4, when written in terms of the new basis, has a matrix of the specified
form.

We may write Mat1×4 =W1 ⊕W2 where W1,W2 are two-dimensional isotropic subspaces. Since
dimV > dimW1 there exist nontrivial elements of v which project to 0 in W1. That is V ∩W1 ≠ 0.
Likewise V ∩W2 ≠ 0. Select v1 ∈ V ∩W1 and v2 ∈ V ∩W2.

First suppose that v1 is orthogonal to v2. Then the span of v1 and v2 is a maximal isotropic
subspace W ′

1. Select v3 in the orthogonal complement of W ′

1 and then replace v1, v2 by a new basis
v′1, v

′

2 for W ′

1 such that v′2J4v3 = 0 and v′1J4v3 = 1. Then the basis v′1, v
′

2, v3 fits the bill.
Now suppose that v1 is not orthogonal to v2, and let v3 be any element of V which is linearly

independent of v1 and v2. Then there exist a, b such that v3 − bv1 − cv2 is orthogonal to both v1 and
v2, and the basis v1, v3, v2 fits the bill. ⇤
Corollary 5.0.7.

{Y ∈Mat3×4(F ) ∶ RankY
tY = 3}

is a Zariski open GL3(F ) ×GSO4(F ) orbit over any field F.

Proof. The set is clearly Zariski open. We have shown that each orbit with RankY tY = 3 contains
an element with

Y tY =
�

�

�

1
a

1

�

�

�

.

If the rank is 3 then a is nonzero and we can scale by a−1 in GL1 and then act by diag(a,1,1) in

GL3 to get �
1

1
1
� , which completes the proof that our set is a single orbit. ⇤

Corollary 5.0.8. The nilpotent orbit A6 consists of a single rational orbit.

Proof. We know that each rational orbit in A6 has a representative that lies in v−1(F )⊕v
−

2(F ), and
that two elements of this space Lie in the same G(F ) orbit if and only if they lie in the same L(F )-
orbit. We can identify v−1(F )⊕ v−2(F ) with Mat3×4(F )⊕Mat2×2(F ). It is clear that the action of
L(F ) preserves the Zariski open subset {(Y,X) ∈Mat3×4(F )×Mat2×2(F ) ∶ RankY

tY = 3,RankX =
2}. We show that this set is a single L(F ) orbit. Take (Y1,X1) and (Y2,X2) two elements. Recall
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that L is identified with {(g1, g2, g3, g4) ∈ GL3 ×GL2 ×GL2 ×GL2 ∶ det g1 = det g2}, and note that
(g1, g2, g3, g4) � (g1,pr(g2, g3)) gives a surjective mapping onto GL3 × GSO4. Thus, there exists
(g1, g2, g3) such that Ad(g1, g2, g3, I2).(Y1,X1) = (Y2,X

′

2). Then Ad(I3, I2, I2,X
−1
2 (X

′

2)).(Y2,X
′

2) =

(Y2,X2). ⇤
It will be convenient to select a representative for our open orbit. A representative in Mat3×4 ×Mat2×2

would be
�

�

�

�

�

�

1
1 1

1

�

�

�

, �
1

1
�

�

�

�

.

A convenient representative in v−1 ⊕ v−2 would be X−0101100 + X−0111000 + X−0011100 + X−1011000 +
X−0000110 +X−0000011. This will correspond to the above pair of matrices up to some signs. In par-
ticular it will be an element of the correct orbit. Let w0 = w[243154234654237654]. (This notation
for an element of the Weyl group was introduced in Section 2.) Then there is a representative ẇ0

for w0 such that

Ad(ẇ0).(X−0101100 +X−0111000 +X−0011100 +X−1011000 +X−0000110 +X−0000011)

=X−↵4 +X−↵7 +X−↵1 +X−↵5 +X−↵6 +X−↵3 .

This nilpotent element corresponds to the regular orbit of the A6 Levi. (We remark that if a
standard representative ẅ0 is used then

Ad(ẅ0).(X−0101100 +X−0111000 +X−0011100 +X−1011000 +X−0000110 +X−0000011)

= −X−↵4 +X−↵7 −X−↵1 +X−↵5 +X−↵6 −X−↵3 .

For the sake of completeness, we record our findings regarding the rational orbit decomposition
of Mat3×4.

Proposition 5.0.9. The set

{Y ∈Mat3×4 ∶ RankY = i,RankY J4
tY = j}

is nonempty if and only if 0 ≤ j ≤ i ≤ 2 or i = 3 and 2 ≤ j ≤ 3. It is a single GL3 × GSO4 orbit
unless i = j = 2, in which case it is a union of orbits which are in one-to-one correspondence with
the action of GL2 ×GL1 on Matsym2×2 .

Theorem 5.0.10. E⇡ has a nonzero generalized Fourier coe�cient attached to the rational nilpotent
orbit labeled by A6.

Proof. Take u = X−↵4 +X−↵7 +X−↵1 +X−↵5 +X−↵6 +X−↵3 and s′ a rational semisimple element
which acts by 2 on each simple root space. Then Fs′,u maps an automorphic form to the GL7 non-
degenerate Whittaker-Fourier integral of its constant term along the A6 parabolic. It is clear that
the residual representation supports this coe�cient. Therefore, by Theorem 3.1.2, it also supports
Fs,u, where s is a neutral element for u. ⇤
Remark 5.0.11. We expect that in fact nm(E⇡) = {A6}. Indeed, we expect that if ⇡ is of G2 type
then at each unramified place v, ⇡v is attached to a semisimple conjugacy class of GL7(C) which
intersects the subgroup G2(C). By Corollary 3.2.8, Remark 3.2.10, it follows from the discussion
in §7.3.2 below that if there is even one unramified finite place where this condition holds, then
nm(E⇡) = {A6}.

6. Descent Fourier coefficients and descent modules

From the table on pp. 403-04 of [C93], we learn that there are two conjugacy classes of sl2-triples
in GE7 such that the stabilizer is of type G2. They are known as A′′5 and A2 + 3A1. For the sake of
completeness, we consider Fourier coe�cients and associated descent modules attached to both of
them.
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6.1. A′′5. The weighted Dykin diagram of this orbit is
2 0 0 0 2 2

0
. Let s be the standard

semisimple element attached to the orbit. Then the Levi subgroup whose Lie algebra is gs0 is the
semidirect product of a derived group isomorphic to Spin8 and a four-dimensional torus, while the
space g−2 is the direct sum of two nonisomorphic irreducible eight-dimensional representations of
this Levi and one one-dimensional representation. On each eight-dimensional representation we
have a Spin8-invariant quadratic form, which is unique up to scalar (cf. [FH91], exercise 20.38).

The Levi acts on g
sA′′5
−2 with an open orbit. It is not hard to check that in this case the open

orbit consists of triples such that each eight-dimensional component is anisotropic relative to the
Spin8-invariant form and the one-dimensional component is nonzero (cf. [JN05]). The stabilizer of
any point in this open orbit is the product of the center of GE7 and a group isomorphic to G2. It’s
not hard to check that

f0 ∶=X−0000001 +X−1111000 +X−1011100 +X−0101110 +X−0011110

is in this open orbit. The corresponding copy of g2 is generated by

X±0001000,X±0100000 −X±0010000 +X±0000100,

and we embed G2 into GE7 so that X±↵ = X±0100000 −X±0010000 +X±0000100 and X±� = X±0001000.
Recall that PA′′5 =MA′′5UA′′5 = Ps =MsUs is the parabolic subgroup defined as in Section 3.1, where
s is the standard semisimple element (cf. Definition 5.0.1) attached to A′′5 , MA′′5 =Ms is the Levi
subgroup, and UA′′5 = Us is the unipotent radical. Then UA′′5 contains U↵i if and only if i ≠ 2,3,4,5.

Let  f0
UA′′5

be the character of UA′′5 (F )�UA′′5 (A) attached to f0.

Definition 6.1.1. Let ⇡ be an irreducible cuspidal automorphic representation of GL7(A) which
is of G2 type (as in Definition 4.2.10). Let E⇡ be the residual representation as in Definition 4.2.13.

We define the corresponding descent module D⇡ = D
A′′5
⇡ to be

D⇡ ∶=

�
���
�
���
�

'
�UA′′5 , 

f0
UA′′5

�

�
G2(A)

∶ ' ∈ E⇡

�
���
�
���
�

,

where '
�UA′′5 , 

f0
UA′′5

�

(g) ∶= ∫
UA′′5 (F )�UA′′5 (A)

'(ug) f0
UA′′5
(u)du, g ∈ GE7(A).

6.2. A2 + 3A1. The weighted Dykin diagram of this orbit is
0 0 0 0 0 0

2
. Recall that M is

the standard Levi subgroup isomorphic to GL7 ×GL1, P is the standard parabolic which contains
it, and U is the unipotent radical of P. Then P =MU = PA2+3A1 =MA2+3A1UA2+3A1 as in Definition
5.0.1, M =MA2+3A1 , U = UA2+3A1 .

Let e0 =X−1122100 +X−1112110 +X−1111111 +X−0112210 +X−0112111 and

 e0
U (u) =  (u1122100 + u1112110 + u1111111 + u0112210 + u0112111)

be the corresponding character of U(F )�U(A). We write u ∈ U as ∏↵ x↵(u↵) with the roots taken
in some fixed order. The coordinate u↵ is independent of the choice of order provided the second
coordinate of ↵ is 1.

Lemma 6.2.1. The stabilizer of  e0
U in M is the product of the center and a group isomorphic to

G2.
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Proof. We can identify the space of characters of U(F )�U(A) with the space

u(−1)2 = �

�↵,$∨2 �=−1
u↵.

As representation of gl7, this representation is isomorphic to the exterior cube representation of
GL7. It is well known (cf. pp. 356-57 of [FH91]) that GL7 acts on this representation with an open
orbit, and that the stabilizer of any point in this open orbit is of type G2. Using SageMath, with
adjoint matrices from GAP, we verified that  e0

U is fixed by

x1000000(a)x0001100(−a
2
)x0000100(2a)x0001000(a)x0000001(−a),

x0010000(b)x0000010(b), x−0010000(b)x−0000010(b),

x−1000000(a)x−0001100(a
2
)x−0000100(a)x−0001000(2a)x−0000001(−a).

These subgroups generate a split subgroup of GL7 of type G2. The stabilizer also contains the
center of GE7. It remains to prove that the stabilizer is no larger. For this purpose it su�ces to
prove that our character corresponds to a point in the open orbit. On p. 357 of [FH91] a specific
point in the open orbit is written down; it is a sum of five weight vectors. We easily check that
these five weights correspond to the five roots which appear in  e0

U . Over an algebraically closed
field, the torus acts transitively on the set of linear combinations of these five weight vectors such
that all five coe�cients are nonzero. Therefore the point corresponding to  e0

U is also in the open
orbit. ⇤

We remark that the embedding of G2 into GL7 obtained in this way agrees with the one from
[FH91].

It is convenient to know that the roots in supp( e0
U ) can be simultaneously conjugated to simple

roots. Let R1 = {1122100,1112110,1111111,0112210,0112111}, and w6 = w[423546542314376542].
Then w6 ⋅R1 = {↵1,↵2,↵3,↵5,↵7}.

Definition 6.2.2. Let ⇡ be an irreducible cuspidal automorphic representation of GL7(A) which
is of G2 type (as in Definition 4.2.10). Let E⇡ be the residual representation as in Definition 4.2.13.
We define the corresponding descent module D⇡ = D

A2+3A1
⇡ to be

D⇡ ∶= �'
�U, 

e0
U ��

G2(A)
∶ ' ∈ E⇡� ,

where '�U, 
e0
U �(g) ∶= ∫

U(F )�U(A)
'(ug) e0

U (u)du, g ∈ GE7(A).

Remark 6.2.3. The embedding of G2 which comes from the orbit A2 + 3A1 is closely related to
the appearance of ∧3 in the constant term. Indeed, LS

(s,⇡, r) appears in the constant term of an
Eisenstein series of a group G if and only if r appears in the action of the relevant Levi of LG on
the nilpotent radical of the Lie algebra of the corresponding parabolic. That is, r appears equipped
with a realization as a space of nilpotent elements. In fact, the realization of ∧3 is precisely as the
space gs2 where s is the standard semisimple element attached to A2 + 3A1. That is, the embedding
of G2(C) into GE7(C) on the L-group side as the stabilizer of a point in the representation obtained
from an L-function, and the embedding of G2 into GE7 as the stabilizer of a Fourier coe�cient
are essentially the same embedding. This phenomenon does not occur in the classical situation of
[GRS11], as it requires self-contragredientity of both the group denoted by H and the one denoted
by A in our discussion of the general set-up in the introduction.

In the introduction we remarked on prior work of Ginzburg where H = G2 and A = F4, as well
as prior work of Ginzburg-Hundley where H = F4 and A = E8, where the descent modules fail to
be cuspidal. It is noteworthy that in both of those cases, H and A are self-contragredient and the
embedding of H into A obtained from the L-function is the only embedding of H into A.

25



7. The A′′5 case

Recall from Definition 6.1.1 that in the A′′5 case the descent module D⇡ is defined by applying

the Fourier coe�cient �UA′′5 , 
f0
UA′′5
� from Section 6.1 to the residual representation E⇡, where ⇡ is

an irreducible cuspidal automorphic representation of GL7(A) which is of G2 type. In this section,
we prove the following theorem.

Theorem 7.0.1. Assume that ⇡ is an irreducible cuspidal automorphic representation of GL7(A)
which is of G2 type, and D⇡ is defined as in Definition 6.1.1. Then

(1) D⇡ is generic.
(2) Suppose that there exists a finite place v0 such that ⇡v0 is a principal series representation

of GL7(Fv0) which is attached to a semisimple conjugacy class of GL7(C), and intersects
the subgroup G2(C). Then D⇡ is cuspidal.

(3) Suppose that for almost all finite places v, ⇡v is a principal series representation of GL7(Fv)

which is attached to a semisimple conjugacy class of GL7(C), and intersects the subgroup
G2(C). Then ⇡ is a weak functorial lift of each irreducible summand of D⇡.

7.1. Genericity of the A′′5 descent module. The purpose of this section is to prove that the
descent module D⇡ is generic. The proof can be explained using the language of “unipotent periods”
introduced in [HS16]. Let UG2

max be the standard maximal unipotent subgroup of G2. Let  
G2 be

any character of UG2
max. Then the composite �UG2

max, 
G2� ○ �UA′′5 , 

f0
UA′′5
� makes sense as a unipotent

period on C∞(GE7(F )�GE7(A)). Explicitly, it maps ' ∈ C∞(GE7(F )�GE7(A)) to

�

U
G2
max(F )�U

G2
max(A)

�

U(F )�U(A)

'(u1u2g) 
f0
UA′′5
(u1) G2(u2)du1 du2.

In our discussion of unipotent periods it is helpful to note that

S ←→�
↵∈S

U↵

is a bijection

{S ⊂ � ∶ ↵,� ∈ S,↵ + � ∈ � ∪ {0} �⇒ ↵ + � ∈ S}←→ {T − stable unipotent subgroups of GE7}.

Thus, it is often convenient to specify a unipotent subgroup V of GE7 by identifying �(V,T ). We
adopt a convenient abuse of notation. Let V be a T -stable unipotent subgroup of GE7 and let  V

be a character of it. We shall call {↵ ∈ �(V,T ) ∶  V �U↵(A) �≡ 1} the “support” of  V and denote it

supp V . We denote by (V, V ) or '
(V, V ) the following attached unipotent period

�
V (F )�V (A)

'(vg) V (v)dv, g ∈ GE7(A).

Given two unipotent periods (V, V ) and (U, U), if '
(V, V ) is left-invariant by U(F ), then we

denote the composed period by (U, U) ○ (V, V ).
We recall the concept of equivalence of unipotent periods. Denote by P1�P2 if P2 vanishes

identically on any automorphic representation on which P1 vanishes identically. Two periods P1
and P2 are said to be equivalent (denoted P1 ∼ P2) if P1�P2 and P2�P1.

In the study of Fourier coe�cients of automorphic forms, in particular concerning the global
nonvanishing property, a technical lemma from [GRS11] has been very useful in the theory. We
recall it as follows. Let G be any connected reductive group defined over F . Let C be an F -subgroup
of a maximal unipotent subgroup of G, and let  C be a non-trivial character of [C] = C(F )�C(A).
X,Y are two unipotent F -subgroups, satisfying the following conditions:
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(1) X and Y normalize C;
(2) X ∩ C and Y ∩ C are normal in X and Y , respectively, (X ∩ C)�X and (Y ∩ C)�Y are

abelian;
(3) X(A) and Y (A) preserve  C ;
(4)  C is trivial on (X ∩C)(A) and (Y ∩C)(A);
(5) [X,Y ] ⊂ C;
(6) there is a non-degenerate pairing (X ∩ C)(A)�X(A) × (Y ∩ C)(A)�Y (A) → C∗, given

by (x, y) �  C([x, y]), which is multiplicative in each coordinate, and identifies (Y ∩
C)(F )�Y (F ) with the dual of X(F )(X ∩ C)(A)�X(A), and (X ∩ C)(F )�X(F ) with the
dual of Y (F )(Y ∩C)(A)�Y (A).

Let B = CX and D = CY , and extend  C trivially to characters of [B] = B(F )�B(A) and
[D] =D(F )�D(A), which will be denoted by  B and  D respectively. When there is no confusion,
we will denote both  B and  D by  C .

Lemma 7.1.1 (Lemma 7.1, and Corollary 7.1 [GRS11]). Assume that (C, C ,X,Y ) satisfies all
the above conditions. Let f be an automorphic function of uniformly moderate growth on G(A).
Then

�
[B]

f(vg) B(v)dv = �
(X∩C)(A)�X(A)�[D]

f(uxg) D(u)dudx,∀g ∈ G(A).

The right hand side of the the above equality is convergent in the sense

�
(X∩C)(A)�X(A)

��
[D]

f(uxg) D(u)du�dx <∞,

and this convergence is uniform as g varies in compact subsets of G(A). Moreover (B, B) ∼

(D, D).

We consider the unipotent period �U1, 
a
U1
� where U1 is the T -stable unipotent group attached to

the set of positive roots whose complement is {1011000,0001110,1010000,0000110,1000000,0000010}.
Also  a

U1
(u) =  (u0000001+u1111000+u1011100+u0101110+u0011110+a1u↵2 +a2u↵3 +a3u↵5 +a4u↵4). For

a = (a1, a2, a3, a4) ∈ F
4, we define a character  a

U
G2
max

of UG2
max by  

a

U
G2
max

(u) =  (a4u�+(a1−a2+a3)u↵).

Lemma 7.1.2. The period �U1, 
a
U1
� is equivalent to the composed period �UG2

max, 
a

U
G2
max

�○�UA′′5 , 
f0
UA′′5
� .

Proof. The proof consists of three applications of the “exchange lemma”, Lemma 7.1.1. Each time,
the group X is a product of two commuting root subgroups U�1 , U�2 of GE7, and there are three
roots �1,�2,�3 of GE7 and a root � of G2 such that g2 ∩�

3
i=1 u�i = u�. For the group Y we may

use any complement to U� in U�1U�2U�3 . The roots which determine the groups X and Y in the
successive applications of Lemma 7.1.1 are given in the table below.

X Y �
1000000,0000010 0111000,0101100,0011100 2↵ + �
1010000,0000110 0101000,0011000,0001100 ↵ + �
1011000,0001110 0100000,0010000,0000100 ↵

Checking conditions (1) to (6) for Lemma 7.1.1 is similar to the proof of Lemma 8.1.3.
⇤

Note that the character  a
U1

is attached to

fa ∶= f0 + a1X−↵2 + a2X−↵3 + a3X−↵5 + a4X−↵4 .

Lemma 7.1.3. (1) Let X be a nilpotent element of e7. Then X is in the closure of A6 if and
only if ad(X)14 = 0. In this case ad(X)13 is also 0.
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(2) Let X be in the closure of A6. Then X is in A6 itself if and only if ad(X)12 ≠ 0.

Proof. To any nilpotent element X ∈ e7 we may associate the rank sequence (rankad(X)k)∞k=0.
(All but finitely many entries are zero.) It is clear that the rank sequence is an invariant of the
stable orbit of X. In general the map from stable orbits to rank sequences is not injective, but one
can check (using GAP, for example) that for e7 it is. This lemma can then be proved by inspecting
the rank sequences for all nilpotent orbits in e7, obtained from GAP, while using the chart on p.
442 of [C93] to see which orbits are in the closure of A6. ⇤
Lemma 7.1.4. (1) For a in general position fa is in the orbit E7(a4).

(2) The orbit of fa is in the closure of A6 if and only if at least one of the following conditions
holds:
(a) a4 = 0;
(b) a3 = 0 and a1 = a2;
(c) a1 = a3c1(c1 + 2) and a2 = a3c1(c1 + 1) for some c1.

(3) If a4 = 0, or, a3 = 0 and a1 = a2, then the orbit of fa is strictly less than A6.
(4) If a1 = a3c1(c1 + 2) and a2 = a3c1(c1 + 1), then fa is in A6 if and only if a4 and a1 − a2 + a3

are both nonzero, i.e., the character  a

U
G2
max

is generic.

Proof. Using GAP and SageMath, we compute that for a in general position, Rankad(fa)
14
=

1,Rankad(fa)
13
= 2,Rankad(fa)

12
= 4. It follows that for a in general position, fa is an element of

the orbit E7(a4). An element f of e7 lies in the closure of A6 if and only if ad(f)13 = 0. It lies in
A6 itself, if and only if Rankad(f)12 = 3. Further, Rankad(fa)

14
= 0 if and only if a4 = 0 or

(7.1.5) (a1 − a2)
2
+ a3(a1 − 2a2) = 0.

If a4 = 0, then Rankad(fa)
11
= 0, and fa is in an orbit which is less than A6. If a3 = 0 and a2 = a1,

the same is true.
If a3 ≠ 0 then we may let b1 = a1 − a2, and (7.1.5) becomes b1 − a2 = −

b21
a3
. Then letting c1 =

b1
a3
,

this becomes a2 = c1a3 + c
2
1a3. Also a1 = c1a3 + a2 = 2c1a3 + c

2
1a3. We may compute ad(fa), with

a1, a2 defined by these formulas, using SageMath. After dropping all rows and columns that consist
entirely of zeros, we obtain a 9 × 9 matrix, all of whose entries are divisible by 462a23a4(c1 + 1)

2,
which is easily seen to be rank three if this expression is nonzero. Further, when a1, a2 are defined
by these formulas, we have a1 −a2 +a3 = (c1 + 1)a3. From this we conclude that for any a such that
fa ∈ A6, the character  a

U
G2
max

is generic. ⇤

Remark 7.1.6. Note that the character  a

U
G2
max

is trivial if and only if a4 = a1 − a2 + a3 = 0. We

found that in this case fa is always in the orbit A′′5 .

Lemma 7.1.7. Let U2 be the T -stable unipotent subgroup such that

�(T,U2) = �
+
� {0000100,0000110,0001100,0010000,0011000,1010000},

and  a
U2
∶ U2(A)→ C× the character of U2(F )�U2(A) given by

 a
U2
(u) =  (u0000111+u0101100+u0001110+u0111000+u1011000+a3u0000010+a4u0011100+a1u0100000+a2u1000000).

Let ∗ denote entrywise multiplication in F 4: (c1, c2, c3, c4)∗(a1, a2, a3, a4) = (c1a1, c2a2, c3a3, c4a4).
Then there exists c = (c1, c2, c3, c4) ∈ {±1}

4 such that �U1, 
a
U1
� ∼ �U2, 

c∗a
U2
� for all a ∈ F 4.

Proof. Conjugate by a suitable representative of w[5631]. For any representative, ẇ[5631], we have
ẇ[5631]x↵(r)ẇ[5631]

−1
= xw[5631]↵(cẇ[5631],↵r), for some constants cẇ[5631],↵ which depends on ↵,

the choice of representative, ẇ[5631], and the structure constants of the Chevalley basis. Moreover,
there exist representatives such that cẇ[5631],↵ ∈ {±1} for all ↵. Since the five roots from the original
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A′′5 character can be simultaneously conjugated to simple roots, it follows that we can adjust our
representative by an element of the torus to make these five coe�cients one. ⇤

The character  a
U2

is attached to Ad(ẇ[5631])fc∗a, which is, of course, in the same orbit as fc∗a.

We have seen in Lemma 7.1.4 that if this orbit is greater than or equal to A6, then  
c∗a

U
G2
max

will be

a generic character of UG2
max. But the set of such characters is permuted transitively by the torus of

G2. Hence, all such characters are equivalent. That is �U2, 
a
U2
� ∼ �U2, 

b
U2
� whenever the nilpotent

elements attached to  a
U2

and  b
U2

are both attached to orbits that are greater than or equal to A6.

Lemma 7.1.8. Let U3 be the T -stable unipotent subgroup such that

�(T,U2) = �
+
� {0000001,0000100,0001000,0001100,0010000,0011000},

and let  a
U3
∶ U3(A) → C× be the character given by  a

U3
(u) =  (u0001110 + u0101100 + u0000111 +

u0111000+u1010000+a3u0000011+a4u0011100+a1u0101000+a2u1000000). Then there exists d ∈ {±1}4 such

that �U2, 
a
U2
� ∼ �U3, 

d∗a
U3
� for all a ∈ F 4.

Proof. Exchange ↵7 for 0000110 and ↵4 for 1010000, applying Lemma 7.1.1, and then conjugate
by a suitable representative for w[47]. ⇤
Lemma 7.1.9. Let U5 be the unipotent subgroup attached to E7(a4). Thus U↵i is in U5 for i = 1,4
and 7. Let U4 be the subgroup of U5 defined by the condition u↵4 = 0. And  

a
U4

be the character of

this group defined by the same formula as  a
U3
. Then �U3, 

a
U3
� ∼ �U4, 

a
U4
� .

Proof. We exchange 0100000 for 0011000, 0000010 for 0001100, and then 0000110 for 0000001,
applying Lemma 7.1.1. ⇤
Proposition 7.1.10. For a ∈ F 4 and b ∈ F, let  a,b

U5
be the character given by  a,b

U5
(ux↵4(r)) =

 a
U4
(u) (br), for u ∈ U4(A) and r ∈ A. Then an automorphic representation supports the period

�U4, 
a
U4
� if and only if it supports �U5, 

a,b
U5
� for some b.

Proof. Given an automorphic form ' we perform Fourier expansion of '
�U4, 

a
U4
�
along the one-

dimensional unipotent group U↵4(F )�U↵4(A). ⇤
Let M{2,3,5,6} be the standard Levi subgroup of GE7 which contains U↵i if and only if i = 2,3,5,

or 6. (Thus, M{2,3,5,6} is the standard Levi factor of a standard parabolic whose unipotent radical
is the group U5.)

Proposition 7.1.11. Let ya =X−0001110+X−0101100+X−0000111+X−0111000+X−1010000+a3X−0000011+

a4X−0011100 + a1X−0101000 + a2X−1000000, which is the nilpotent element associated to  a
U4

and  a,0
U5

.
Let e′0 =X−1010000 +X−0000011 +X−0111000 +X−0101100 +X−0011100 +X−0001110. If ya is in the orbit A6

then there exists m in M{2,3,5,6} such that Ad(m).ya = e
′

0. In particular, if  
e′0
U5

is the character of

U5(A) attached to e′0, then the periods (U5, 
a,0
U5
) and (U5, 

e′0
U5
) are equivalent.

Proof. Computations that are very similar to those done in the proof of Lemma 7.1.4 show that ya
is in A6 if and only if a4, a3 ≠ 0, a1 = 2c1a3 + c

2
1a3, a2 = −(c

2
1a3 + c1a3), with c1 ≠ −1. Let

u1(b1, b2, b3, b4, b5) = x0100000(b1)x0010000(b2)x0000100(b3)x0000010(b4)x0000110(b5),

l1(b1, b2, b3, b4, b5) = x−0100000(b1)x−0010000(b2)x−0000100(b3)x−0000010(b4)x−0000110(b5).

Then u1(a3a4c1,−(a3c
2
1 + a3c1), c1a3,−a3a4c

2
1, a

2
3a4c

2
1) maps ya to

X−0001110 +X−0101100 +X−0000111 +X−0111000 +X−1010000 + (a3 + a3c1)X−0000011 + a4X−0011100.
29



Then acting on this by

l1 �
1

2a3a4(c1 + 1)
,−

1

2a3(c1 + 1)
,−

1

a3(c1 + 1)
,−

1

2a3a4(c1 + 1)
,−

1

4a23a4(c1 + 1)
2
�

produces

X−0001110 +X−0101100 +X−0111000 +X−1010000 + (a3 + a3c1)X−0000011 + a4X−0011100.

Then acting by a suitable torus element produces e′0. ⇤
Lemma 7.1.12. Let w3 = w[24315423465423765]. Then there is a representative ẇ3 for w3 in
GE7(F ) such that ẇ3e

′

0 =X−↵1 +X−↵3 +X−↵4 +X−↵5 +X−↵6 +X−↵7 .

Proof. One may check (using LiE, for example) that w3 maps the six roots which appear in the
expression for e′0 to the six negative simple roots in the GL7 subgroup. It follows that the identity
holds up to nonzero scalars for any representative ẇ[24315423465423765]. We may then adjust by
an element of T (F ) to make all the scalars one. ⇤

Remark 7.1.13. Let s =
2 0 2 0 0 2

0
be the standard semisimple element attached to the

orbit E7(a4). Then (U5, 
e′0
U5
) = Fs,e′0 .

Lemma 7.1.14. Let s′ = w−13 .
2 2 2 2 2 2

2
. Then Fs′,e′0(E⇡) ≠ 0.

Proof. Let e2 = w3e
′

0 =X−↵1 +X−↵3 +X−↵4 +X−↵5 +X−↵6 +X−↵7 and s′′ =
2 2 2 2 2 2

2
. Then

as in the proof of Theorem 5.0.10, Fs′′,e2 maps an automorphic form to the GL7 non-degenerate
Whittaker-Fourier integral of its constant term along the A6 parabolic. Therefore, Fs′′,e2(E⇡) ≠ 0.
Since for ' ∈ E⇡, Fs′,e′0(')(g) = Fs′′,e2(')(w3g), Fs′,e′0(E⇡) ≠ 0. ⇤
Lemma 7.1.15. Fs,e′0 � Fs′,e′0 . Hence, Fs,e′0(E⇡) ≠ 0.
Proof. By Theorem 3.1.11, we only need to check that

gu ∩ g
s
≥1 ⊂ g

s′
≥1.

Here u = e′0, s =
2 0 2 0 0 2

0
. In order to check this condition, it is convenient to embed u

into a neutral pair. The element u is in the orbit A6 and it is not hard to check that w[4].u lies in

the unipotent radical determined by
0 0 2 0 2 0

0
. It follows that w[4].u forms a neutral pair

with
0 0 2 0 2 0

0
, and thence that u forms a neutral pair with

w[4].
0 0 2 0 2 0

0
=
0 2 −2 2 2 0

2
=∶ s0.

Now, we know that gu ⊂ g
s0
≤0. Hence gu ∩ g

s
≥1 ⊂ g

s0
≤0 ∩ g

s
≥1. It’s not hard to check that gs0

≤0 ∩ g
s
≥1 is

the sum of the root subgroups attached to the following roots:

{1011000,0001000,0101000,0011000,0001100,1000000,0000001}

and from there its not hard to check that gs0
≤0 ∩ g

s
≥1 ⊂ g

s′
≥1.

In fact, it turns out that s′ = 7s − 6s0. It immediately follows that if s acts on X with a positive
eigenvalue, and s0 acts on X with a nonpositive eigenvalue, then s′ acts on X with a positive
eigenvalue, which is what we wanted. ⇤
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Corollary 7.1.16. If  a

U
G2
max

is generic, then E⇡ supports �UG2
max, 

a

U
G2
max

� ○ �UA′′5 , 
f0
UA′′5
� .

Proof. If  a

U
G2
max

is generic, then – since  a

U
G2
max

depends only on a1 − a2 + a3 – we may assume that

a1 = a2 = 0. In this case, by Lemma 7.1.4, the element fa is in A6. Hence, if c and d are as in
Lemmas 7.1.7 and 7.1.8 respectively, then yc∗d∗a, which is conjugate to fa, is also in A6. From
Proposition 7.1.11, Lemmas 7.1.12 and 7.1.15, and Remark 7.1.13, it follows that E⇡ supports
(U5, 

a,0
U5
). Then, by Proposition 7.1.10 and Lemmas 7.1.9, 7.1.8, 7.1.7, and 7.1.2, it supports

�UG2
max, 

a

U
G2
max

� ○ �UA′′5 , 
f0
UA′′5
� as well. ⇤

Reformulating Corollary 7.1.16 gives the main theorem of this section.

Theorem 7.1.17. D⇡ is generic.

Remark 7.1.18. (1) It can be shown that for each a ∈ F 4 there is a unique b ∈ F such that the

nilpotent element attached to the character  c∗d∗a,b
U5

is in the closure of A6, and that this element

is in A6 if and only if  a

U
G2
max

is a generic character.

(2) If ⇡ is not of G2 type but LS
(s,⇡,∧3) has a pole at s = 1, then Theorem 7.1.17 is still valid

for the residual representation E⇡ with exactly the same proof.
(3) It follows from the proof above that given any irreducible automorphic representation ⇧ of

GE7(A), if Fs,e′0(⇧) ≠ 0, then the �UA′′5 , 
f0
UA′′5
�-Fourier coe�cients of ⇧ are generic. In particular,

this applies to the residue of our Eisenstein series at 1, whenever it exists.

7.2. Local descent. Since the results of [GGS17] hold in both the local and global settings, the
same set of arguments given in the global setting above also provides a local analogue.

Theorem 7.2.1. Let Fv be a nonarchimedean local field. Suppose that an irreducible admissible

representation ⇧v of GE7(Fv) supports the twisted Jacquet module attached to �U5, 
a,0
U5
� with

ya (see Proposition 7.1.11) in the orbit A6. Then the �UA′′5 , 
f0
UA′′5
�-twisted Jacquet module of ⇧v

supports twisted Jacquet modules attached to UG2
max and all generic characters of UG2

max. In particular,
this holds when ⇧v is the local component of any irreducible summand of E⇡ where ⇡ has the
property that LS

(s,⇡,∧3) has a pole at s = 1.

7.3. Unramified constituents of E⇡.
7.3.1. Unramified lifting. Let � be an unramified character ofGL7(Fv) where Fv is nonarchimedean.
Recall that our isomorphism of the Levi M of GE7 with GL7 ×GL1 maps h(t1, . . . , t8) to

�

�
�
�
�
�
�
�
�
�
�

�

t−18 t7
t−17 t6

t−16 t5
t−15 t4

t−14 t2t3
t−13 t2t1

t−11 t2

�

�
�
�
�
�
�
�
�
�
�

�

.

Thus, it identifies � with a matrix t̃ = diag(t̃1, . . . , t̃7) in GL7(C) such that

�(h(t1, . . . , t8)) = t̃
n7−n8
1 t̃n6−n7

2 t̃n5−n6
3 t̃n4−n5

4 t̃n2+n3−n4
5 t̃n1+n2−n3

6 t̃n2−n1
7 ,

where ni = ord(ti), for i = 1, . . . ,8.
31



If t̃ ∈ G2(C) then t̃3 =
t̃1
t̃2
, t̃4 = 1, t̃5 =

t̃2
t̃1
, t̃6 = t̃

−1
2 , and t̃7 = t̃

−1
1 , hence

�(h(t1, . . . , t8)) = (t̃1)
n1−2n2−n3+n4+n5−n6+n7−n8(t̃2)

−n1+2n3−n4−n5+2n6−n7 .

We can rephrase this as follows. Let �1 = $1 − 2$2 − $3 + $4 + $5 − $6 + $7 − $8, and �2 =
−$1 + 2$3 −$4 −$5 + 2$6 −$7, and let �i be the unramified character of GL1(Fv) attached to t̃i
for i = 1,2. Then

(7.3.1) �(t) = �1(t
�1)�2(t

�2), for t = h(t1, . . . , t8) ∈M.

This element t̃ ∈ G2(C) ⊂ GL7(C) also determines a character µ of the standard torus of G2. If
↵ is the short simple root of G2 and � is the long simple root, then ↵∨ is the long simple coroot
and is identified with the long simple root of the dual group, while �∨ is identified with the short
simple root of the dual. Then

µ �t↵
∨

1 t�
∨

2 � = �
t̃1
t̃2
�

n2

�
t̃22
t̃1
�

n1

= (t̃1)
−n1+n2(t̃2)

2n1−n2 ,

where ni = ord(ti) for i = 1,2.

7.3.2. Degeneration. Recall that P is the standard parabolic subgroup of GE7 whose unipotent
radical contains U↵i if and only if i = 2, and Q is the standard parabolic subgroup of GE7 whose
unipotent radical contains U↵i if and only if i = 4 or 6.

Suppose now that ⇡v is a principal series representation of GL7(Fv) which is attached to a

character of the form (7.3.1). We consider the representation IndGE7(Fv)

P (Fv)
⇡v ⋅ �$̃2�. If ⇡v is the local

component of a cuspidal representation ⇡ of G2 type, then the residual representation E⇡ is a

quotient of IndGE7(A)
P (A) ⇡ ⋅ �$̃2�. It may be reducible, but it is in the discrete spectrum, and if ⇧ is any

irreducible summand, then ⇧v is a quotient of IndGE7(Fv)

P (Fv)
⇡v ⋅ �$̃2�. Moreover, if ⇧v is unramified,

then it is the unique unramified constituent of IndGE7(Fv)

P (Fv)
⇡v ⋅ �$̃2�.

Lemma 7.3.2. Let w6 be w[423546542314376542] as in Section 6.2, so w6 maps the five roots in
the character  e0

U to {↵i ∶ i = 1,2,3,5,7}. Let w0 denote the longest element of the Weyl group of
GE7 which is reduced by P on the left and right. Then w6w0 maps �1 to $4 −$6 −$8, �2 to
−$4 + 2$6 −$8, and $2 to ⇢Q − ⇢B + 3�2$8.

Proof. This can be checked using a computer software package such as LiE. ⇤

Since w6w0�1 pairs trivially with all coroots in the Levi of Q, it induces a rational character ⌫1
of this Levi. Similarly, w6w0�2 induces a rational character ⌫2.

Corollary 7.3.3. The unramified constituent of IndGE7(Fv)

P (Fv)
⇡v �$̃2� is equal to that of

(7.3.4) IndGE7(Fv)

Q(Fv)
(�1 ○ ⌫1)(�2 ○ ⌫2)$̃

3�2
8 .

Proposition 7.3.5. Let (s, u) be a Whittaker pair such that u is contained in an orbit which
is greater than or not related to A6. Let U = exp(gs

≥2). Then both J(U, u)
and JNs,u, u kill the

representation (7.3.4).

Proof. This follows from Corollary 3.2.8 (cf. Remark 3.2.10) ⇤
32



7.4. Cuspidality of the A′′5 descent module. The purpose of this section is to show that D⇡ is
cuspidal, provided that there exists a finite place v0 such that ⇡v0 is a principal series representation
of GL7(Fv0) which is attached to a character of the form (7.3.1). There are two maximal parabolic
subgroups of G2. Recall that � denotes the long simple root of G2 and ↵ denotes the short one,
and for � ∈ {�,↵}, P� denotes the maximal parabolic subgroup of G2 whose Levi, M� contains the
root subgroup U� attached to �. N� denotes the unipotent radical of P� .

7.4.1. Constant term along N↵.

Lemma 7.4.1. Let hP↵ = 2↵∨ + 4�∨. This is the standard semisimple element of G2 which is
attached to the parabolic P↵.

(1) The embedding of G2 into GE7 identifies hP↵ with 2↵∨2 + 2↵
∨

3 + 4↵
∨

4 + 2↵
∨

5 .

(2) The weight attached to this semisimple element is
−2 0 2 0 −2 0

0
.

(3) The Weyl element wP↵ = w[134567245631] maps this weight to the dominant weight
2 0 0 0 0 0

0
.

(4) Let
f1 =X−0100000 +X−0011000 +X−0001100 +X−0000110 +X−0000011.

Then there exists a representative ẇP↵ for wP↵ which maps f0 to f1.

Proof. The embedding fixed in section 6.1 maps ↵∨ to ↵∨2 + ↵
∨

4 + ↵
∨

5 and �∨ to ↵∨4 so (1) is clear.
Parts (2) and (3) can be checked using LiE. As for part (4), let

Sf1 = {−0100000,−0011000,−0001100,−0000110,−0000011}.

Then we can first check using LiE that the wP↵ maps the five roots � such that X� appears in f0
to the five roots of Sf1 . This ensures that any representative ẇP↵ maps f0 to ∑�∈Sf1

c�X� for some

quintuple (c�)�∈Sf1
of elements of F×. Since ẇP↵ is unique up to an arbitrary element of the torus

T (F ), it su�ces to show that for any such quintuple (c�)�∈Sf1
, there is an element t ∈ T (F ) which

acts on X� by c� for each � ∈ Sf1 . Since E8 is of adjoint type and GE7 contains the full torus of
E8, the elements of F× by which t acts on X↵1 , . . . ,X↵7 can be chosen arbitrarily. Since the Sf1 is
a subset of a basis of the root lattice, it follow that the scalars by which t acts on {X� ∶ � ∈ Sf1}

can be chosen arbitrarily as well. ⇤
Lemma 7.4.2. Let U1 be the unipotent subgroup of GE7 such that �(U1, T ) = �+(GE7, T ) �
{↵1,↵2,↵3,↵5,↵6,1010000,0000110}. Let  

f0
U1

be the character of U1 determined by f0, and let tri

denote the trivial character of N↵. Then the composed period (N↵, tri) ○ �UA′′5 , 
f0
UA′′5
� is equivalent

to �U1, 
f0
U1
� .

Proof. This follows from the exchange lemma (Lemma 7.1.1). (Cf. Lemma 7.1.2.) ⇤

Now let U2 = wP↵U1w
−1
P↵

. Then it follows from part (4) of lemma 7.4.1 that �U1, 
f0
U1
� is equivalent

to �U2, 
f1
U2
� .

Lemma 7.4.3. Let S3 be the set which contains all positive roots of E7 except

0000001,0000100,0010000,1000000,1010000,1011000,1011100,1011110,1011111,

in addition to −1000000,−1010000. This set is closed under addition, and hence determines a
unipotent subgroup U3. The nilpotent element f1 determines a character of U3(A) which we denote

by  f1
U3
. Then �U2, 

f1
U2
� is equivalent to �U3, 

f1
U3
� .
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Proof. We apply the exchange lemma (Lemma 7.1.1) six times, exchanging −1111100 for 1122100,
−1111000 for 1112100, −1011111 for 1111111, −1011110 for 1111110, −1011100 for 1111100, and
−1011000 for 1111000. ⇤

Lemma 7.4.4. For a, b ∈ F , let f2(a, b) = f1 +aX−1011110 + bX−1011111. Let U4 be the product of U3

and the two-dimensional unipotent group corresponding to 1011110 and 1011111. Then

�U3, 
f1
U3
� = �

a,b∈F

�U4, 
f2(a,b)
U4

� .

Proof. This follows from taking the Fourier expansion on the two-dimensional unipotent group
corresponding to 1011110 and 1011111. ⇤

Lemma 7.4.5. The element f2(a, b) lies in the orbit D6(a1) unless a = b = 0.

Proof. This was checked using GAP and SageMath. An element X of e7 is in D6(a1) if and only
if Rankad(X)k is given as in the table for the listed values of k.

k 10 11 12 13 14
Rankad(X)k 11 6 3 2 1

.

GAP was used to obtain adjoint matrices for a Chevalley basis of e7. These were then loaded into
SageMath, in order to work in the polynomial ring Z[a, b]. The matrices ad(f(a, b))k were then
computed, starting with k = 1 and continuing until the zero matrix was obtained. Next, we deleted
any rows and columns consisting entirely of zeros to obtain a sequence of smaller matrices, which
we refer to as the nonzero parts of the matrices ad(f(a, b))k. Clearly, each matrix has the same
rank as its nonzero part. Next, we computed the ranks of the matrices ad(f(a, b))k, deducing that
as an element of e7(Z[a, b]), f2(a, b) lies in the orbit D6(a1). This implies that for any specific
scalars a and b, f2(a, b) lies in the Zariski closure of D6(a1).

Now, each stable orbit which is less than D6(a1) is contained in the closure of either E7(a5) or
D5. (See, for example, the diagram on p. 442 of [C93].)

If X lies in the closure of E7(a5) then ad(X)14 = 0. The nonzero part of ad(f(a, b))14 is

�
−1716a2 −1716ab
−1716ab −1716 b2

� .

We deduce that if f(a, b) is in the closure of E7(a5) then a = b = 0.
If X lies in the closure of D5, then rankad(X)11 ≤ 4. A suitable permutation of the rows and

columns of the nonzero part of ad(f(a, b))11 puts it into the form

�

�
�
�

�

0 0 0 A
0 0 B 0
0 −

tB 0 0
−
tA 0 0 0

�

�
�
�

�

where

A = �
0 264a −330a −66 b −528a2 −330a2 −528ab 330ab

66a 330 b −264 b 0 −528ab −330ab −528 b2 330 b2
� ,

B = �
−594a −528a2 −528ab 1188a2 1188ab
−594 b −528ab −528 b2 1188ab 1188 b2

� .

It’s fairly easy to see that if (a, b) ≠ (0,0), then A and −tA are of rank 2, B and −tB are of rank
1, and ad(f(a, b))11 is of rank 6. ⇤
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Lemma 7.4.6. Let U ′4 = w[31]U4w[13], which is the unipotent radical of a parabolic subgroup
and contains the root subgroup U↵i attached to the simple root ↵i if i = 2,3, or 6. Let ẇ[31]
be a representative for w[31] and f ′2(a, b) = Ad(ẇ[31])f2(a, b) then for any smooth automorphic
function '

'
�U4, 

f2(a,b)
U4

�
(g) = '

�U ′4, f ′2(a,b)
U ′4 �

(ẇ[31]g).

In particular the periods �U4, 
f2(a,b)
U4

� and �U ′4, 
f ′2(a,b)
U ′4 � are equivalent.

Proposition 7.4.7. Let E = ⊗vEv be an irreducible automorphic representation of GE7(A) and
assume that there is a finite place v0 such that Ev0 is induced from a character of the group Q from

Section 7.3.2. Then E does not support the coe�cient �U ′4, 
f ′2(a,b)
U ′4 � for (a, b) ≠ (0,0).

Proof. This follows from Corollary 3.2.7, since the Richardson orbit of Q is A6 (cf. Remark 3.2.10)
and f ′2(a, b) is in D6(a1) by Lemma 7.4.5. ⇤
Proposition 7.4.8. Let S5 be the set which contains all positive roots of E7 except

0000001,0000100,0010000,1000000,1010000.

Then for any smooth automorphic function ',

'
(U4, 

f1
U4
)
(g) = �A�A

'
(U5, 

f1
U5
)
(x−1000000(r1)x−1010000(r2)g)dr1 dr2.

In particular, �U4, 
f2(0,0)
U4

� is equivalent to �U5, 
f2(0,0)
U5

� .

Proof. This is another application of the exchange lemma (Lemma 7.1.1). ⇤
Lemma 7.4.9. Let U6 be the product of U5 and the two-dimensional unipotent group U↵1U↵1+↵3 .

For a, b ∈ F, let f3(a, b) = f1 + aX−↵1 + bX−1010000. Then �U5, 
f2(0,0)
U5

� = ∑a,b∈F �U6, 
f3(a,b)
U6

� .

Proof. This is again just a Fourier expansion. ⇤
Lemma 7.4.10. The residual representation E⇡ does not support the period �U6, 

f3(0,0)
U6

� .

Proof. This holds because U6 contains the full unipotent radical of the standard maximal parabolic

subgroup of E7 whose Levi is of type D6, and the character  f3(0,0)
U6

is trivial on this subgroup.

Thus �U6, 
f3(0,0)
U6

� factors through the constant term attached to this maximal parabolic. But

that parabolic is not associate to the one used in constructing our Eisenstein series, so neither the
Eisenstein series nor its residue will support this constant term. ⇤
Proposition 7.4.11. If (a, b) ≠ (0,0) then f3(a, b) lies in the orbit D6.

Proof. We use the same method which we used above to find the orbit of f2(a, b). ⇤
Proposition 7.4.12. Let E = ⊗vEv be an irreducible automorphic representation of GE7(A) and
assume that there is a finite place v0 such that Ev0 is induced from a character of the group Q from

Section 7.3.2. Then E does not support the coe�cient �U6, 
f3(a,b)
U6

� for (a, b) ≠ (0,0).

Proof. This follows from Corollary 3.2.7 and Lemma 7.4.11, because the Richardson orbit of Q is
A6 (cf. Remark 3.2.10). ⇤

Hence, we have the following theorem.

Theorem 7.4.13. Let ⇡ be an irreducible cuspidal automorphic representation of GL7(A) which
is of G2 type, such that ⇡v0 is induced from a character of the form 7.3.1 at some finite place v0.

Then the constant term of E
�UA′′5 , 

f0
UA′′5

�

⇡ along N↵ is zero.
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7.4.2. Constant term along N�. Let hP� = 4↵∨ + 6�∨. This is the standard semisimple element
of G2 which is attached to the parabolic P� . The embedding of G2 into GE7 identifies hP� with

4↵∨2 +4↵
∨

3 +6↵
∨

4 +4↵
∨

5 . The weight attached to this semisimple element is
−4 2 0 2 −4 0

2
. The

Weyl element wP� = w[3,4,1,3,2,4,5,6,7,4,3,2,4,5,6,4,3,1] maps this to the dominant weight
0 2 0 0 0 0

0
.

Lemma 7.4.14. Let U1 be the unipotent subgroup of GE7 such that �(U1, T ) = �+(GE7, T ) �
{0001000,1011000,0001110,1010000,0000110,1000000,0000010}. Let  f0

U1
be the character of U1

determined by f0, and let tri denote the trivial character of N�(A) Then the composed period

(N� , tri) ○ �UA′′5 , 
f0
UA′′5
� is equivalent to �U1, 

f0
U1
� .

Proof. This follows from the exchange lemma (Lemma 7.1.1). (Cf. Lemma 7.1.2.) ⇤

Now let U2 = wP�U1w
−1
P�

and

f1 =X−0100000 +X−0001000 +X−0000100 +X−0000010 +X−0000001.

Then there exists a representative ẇP� for wP� which maps f0 to f1, so �U1, 
f0
U1
� is equivalent to

�U2, 
f1
U2
� .

Lemma 7.4.15. Let S3 be the set which contains all positive roots of E7 except

0010000,0011000,0011100,0111000,1000000,1010000,1011000,

1011100,1011110,1111000,1111100,1122100,1122110,1122210,

in addition to

−1111000,−1011100,−1011000,−0011000,−1122100,−1010000,−0010000,

This set is closed under addition, and hence determines a unipotent subgroup U3. The nilpotent

element f1 determines a character of U3(A) which we denote  f1
U3
. Then �U2, 

f1
U2
� is equivalent to

�U3, 
f1
U3
� .

Proof. We apply the exchange lemma (Lemma 7.1.1) five times, exchanging −1122210 for 1123210,
−1122111 for 1122211, −0011100 for 0011110, −0111000 for 0111100, −1122110 for 1122111. ⇤
Lemma 7.4.16. For a ∈ F , let f2(a) = f1 + aX−1122210. Let U4 be the product of U3 and the
one-dimensional unipotent group corresponding to 1122210. Then

�U3, 
f1
U3
� = �

a∈F

�U4, 
f2(a)
U4
� .

Proof. This follows from taking the Fourier expansion on the one-dimensional unipotent group
corresponding to 1122210. ⇤
Lemma 7.4.17. The element f2(a) lies in the orbit D6(a1) unless a = 0.

Proof. The method is similar to that of Lemma 7.4.5. ⇤
Proposition 7.4.18. Let E = ⊗vEv be an irreducible automorphic representation of GE7(A) and
assume that there is a finite place v0 such that Ev0 is induced from a character of the group Q from

Section 7.3.2. Then E does not support the coe�cient �U4, 
f2(a)
U4
� for a ≠ 0.
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Proof. Recall that for S ⊂ {1,2,3,4,5,6,7}, PS denotes the standard parabolic subgroup whose
Levi contains the root subgroups attached to the simple roots {↵i ∶ i ∈ S} and unipotent radical
contains the root subgroups attached to the simple roots {↵i ∶ i ∉ S}. Let w = w[425423413]. Let
U ′4 = wU4w

−1, which is contained in the unipotent radical of P{2,3,5,6}. Let ẇ be a representative for
w and f ′2(a) = Ad(ẇ)f2(a) then for any smooth automorphic function '

'
�U4, 

f2(a)
U4

�
(g) = '

�U ′4, f ′2(a)
U ′4 �

(ẇg).

In particular the periods �U4, 
f2(a)
U4
� and �U ′4, 

f ′2(a)
U ′4 � are equivalent.

Hence, it su�ces to show that E does not support the coe�cient �U ′4, 
f ′2(a)
U ′4 � for a ≠ 0. This

follows from Corollary 3.2.7 and Lemma 7.4.17, because the Richardson orbit of Q is A6 (cf.
Remark 3.2.10). ⇤
Proposition 7.4.19. Let S5 be the set which contains all positive roots of E7 except

0010000,0011000,0111000,1000000,1010000,1011000,1111000,1122100,

in addition to −1010000,−0010000. Then �U4, 
f2(0)
U4
� is equivalent to �U5, 

f2(0)
U5
� .

Proof. This is another application of the exchange lemma (Lemma 7.1.1) five times: exchang-
ing −1011100 for 1011110, −1111000 for 1111100, −1122100 for 1122110, −0011000 for 0011100,
−1011000 for 1011100. ⇤
Lemma 7.4.20. Let U6 be the product of U5 and the one-dimensional unipotent group

U1122100.

For a ∈ F, let f3(a) = f1 + aX−1122100. Then

�U5, 
f2(0)
U5
� = �

a∈F

�U6, 
f3(a)
U6
� .

Proof. This is again just a Fourier expansion. ⇤
Proposition 7.4.21. If a ≠ 0 then f3(a) lies in the orbit D6.

Proof. The method is similar to that of Lemma 7.4.5. ⇤
Proposition 7.4.22. Let E = ⊗vEv be an irreducible automorphic representation of GE7(A) and
assume that there is a finite place v0 such that Ev0 is induced from a character of the group Q from

Section 7.3.2. Then E does not support the coe�cient �U6, 
f3(a)
U6
� for a ≠ 0.

Proof. Let U ′6 = w[3,4,1,3]U6w[3,4,1,3]. Let ẇ[3,4,1,3] be a representative for w[3,4,1,3] and
f ′3(a) = Ad(ẇ[3,4,1,3])f3(a) then for any '

'
�U6, 

f3(a)
U6

�
(g) = '

�U ′6, f ′3(a)
U ′6 �

(ẇ[3,4,1,3]g).

In particular the periods �U6, 
f3(a)
U6
� and �U ′6, 

f ′3(a)
U ′6 � are equivalent.

Hence, it su�ces to show that E does not support the coe�cient �U ′6, 
f ′3(a)
U ′6 � for a ≠ 0.

Now, write sD6 for the standard semisimple element attached to the orbit D6. Let VD6 be the

unipotent group whose Lie algebra is g
sD6
≥2 . Then U ′6 = VD6U0000100U0001100, and  

f ′3(a)
U ′6 is trivial on

U0000100U0001100. So '
�U ′6, f ′3(a)

U ′6 �

may be written as a double integral with the inner integral being

'
�VD6

, 
f ′3(a)
VD6

�

. So, it su�ces to show that the coe�cient (VD6 , 
f ′3(a)
VD6
) vanishes on E . This follows
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from Corollary 3.2.7 and Lemma 7.4.21, because the Richardson orbit of Q is A6 (cf. Remark
3.2.10), and D6 is greater than A6. The role of “P” in Corollary 3.2.7 is played by P{4}. ⇤
Lemma 7.4.23. Let U7 be the product of U6 and the two-dimensional unipotent group

U0111000U1111000.

For a, b ∈ F, let f4(a, b) = f1 + aX−0111000 + bX−1111000. Then

�U6, 
f3(0)
U6
� = �

a,b∈F

�U7, 
f4(a,b)
U7

� .

Proof. This is again just a Fourier expansion. ⇤
Proposition 7.4.24. If (a, b) ≠ (0,0) then f4(a, b) lies in the orbit D6(a1).

Proof. The method is similar to that of Lemma 7.4.5. ⇤
Proposition 7.4.25. Let E = ⊗vEv be an irreducible automorphic representation of GE7(A) and
assume that there is a finite place v0 such that Ev0 is induced from a character of the group Q from

Section 7.3.2. Then E does not support the coe�cient �U7, 
f4(a,b)
U7

� for (a, b) ≠ (0,0).

Proof. Let U ′7 = w[13]U7w[31], and f ′4(a, b) = Ad(ẇ[13]).f4(a, b). Then U ′7 = U{3,4}. We apply
Corollary 3.2.7, with P = P{3,4}. Since the Richardson orbit of Q is A6 (cf. Remark 3.2.10), it

follows from Lemma 7.4.24 that Ev0 does not support the coe�cient �U ′7, 
f ′4(a,b)
U ′7 � , which is clearly

equivalent to �U7, 
f4(a,b)
U7

� . ⇤

Proposition 7.4.26. Let S8 be the set which contains all positive roots of E7 except

0010000,1010000.

Then �U7, 
f4(0,0)
U7

� is equivalent to �U8, 
f4(0,0)
U8

� .

Proof. This is another application of the exchange lemma (Lemma 7.1.1) twice: exchanging −1010000
for 1011000, −0010000 for 0011000. ⇤
Lemma 7.4.27. Let U9 be the product of U8 and the two-dimensional unipotent group U0010000U1010000.
For a, b ∈ F, let f5(a, b) = f1 + aX−0010000 + bX−1010000. Then

�U8, 
f4(0,0)
U8

� = �

a,b∈F

�U9, 
f5(a,b)
U9

� .

Proof. This is again just a Fourier expansion. ⇤
Proposition 7.4.28. If (a, b) ≠ (0,0) then f5(a, b) lies in the orbit D6.

Proof. The method is similar to that of Lemma 7.4.5. ⇤
Proposition 7.4.29. Let E = ⊗vEv be an irreducible automorphic representation of GE7(A) and
assume that there is a finite place v0 such that Ev0 is induced from a character of the group Q from

Section 7.3.2. Then E does not support the coe�cient �U9, 
f5(a,b)
U9

� for (a, b) ≠ (0,0).

Proof. Note that U9 is the full unipotent radical of the parabolic P{1}. We apply Corollary 3.2.7
with P = P{1}. The result follows from Lemma 7.4.28, because the Richardson orbit of Q is A6 (cf.
Remark 3.2.10). ⇤

Lemma 7.4.30. The residual representation E⇡ does not support the period �U9, 
f5(0,0)
U9

� .
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Proof. This holds because U9 contains the full unipotent radical of the standard maximal parabolic

subgroup P{1,2,4,5,6,7}, and the character  f5(0,0)
U9

is trivial on this subgroup. Thus �U9, 
f5(0,0)
U9

�

factors through the constant term attached to this maximal parabolic. But that parabolic is not
associate to the one used in constructing our Eisenstein series, so neither the Eisenstein series nor
its residue will support this constant term. ⇤

Hence, we have the following theorem.

Theorem 7.4.31. Let ⇡ be an irreducible cuspidal automorphic representation of GL7(A) which
is of G2 type, such that ⇡v0 is induced from a character of the form 7.3.1 at some finite place v0.

Then the constant term of E
�UA′′5 , 

f0
UA′′5

�

⇡ along N� is zero.

Therefore, Theorems 7.4.13 and 7.4.31 together imply the following theorem on the cuspidality

of our descent module E
�UA′′5 , 

f0
UA′′5

�

⇡ .

Theorem 7.4.32. Let ⇡ be an irreducible cuspidal automorphic representation of GL7(A) which
is of G2 type, such that ⇡v0 is induced from a character of the form 7.3.1 at some finite place v0.

Then E
�UA′′5 , 

f0
UA′′5

�

⇡ is a cuspidal automorphic representation of G2(A).

Remark 7.4.33. It follows from the proof above that given any irreducible automorphic repre-
sentation ⇧ of GE7(A), if D6(a1),D6 ∉ n(⇧) and the constant terms of ⇧ along P{2,3,4,5,6,7} and

P{1,2,4,5,6,7} are identically zero, then the �UA′′5 , 
f0
UA′′5
�-Fourier coe�cients of ⇧ are cuspidal.

7.5. Unramified local descent. The purpose of this section is to show that ⇡ is a weak functorial
lift of each irreducible summand of D⇡, provided that for almost all finite places v, ⇡v is a principal
series representation of GL7(Fv) which is attached to a character of the form (7.3.1).

Recall that PA′′5 = MA′′5UA′′5 = Ps = MsUs is the parabolic subgroup defined as in Section 3.1,
where s = sA′′5 is the standard semisimple element (cf. Definition 5.0.1) attached to A′′5 , MA′′5 =Ms

is the Levi subgroup, and UA′′5 = Us is the unipotent radical.
We consider the twisted Jacquet module

J
UA′′5 , 

f0
UA′′5
�IndGE7(Fv)

Q(Fv)
(�1 ○ ⌫1)(�2 ○ ⌫2)$̃

3�2
8 � .

For �i and ⌫i, see §7.3. To that end we study the space of double cosetsQ(Fv)�GE7(Fv)�G2(Fv)UA′′5 (Fv),
where G2 is embedded into MA′′5 as the stabilizer of f0.

For � ∈ Q(Fv)�GE7(Fv)�G2(Fv)UA′′5 (Fv) we say that � is admissible if  f0
UA′′5
�
UA′′5 ∩(�−1Q�)

≡ 1.

Each double coset contains elements of the form wµ with w in the Weyl group of minimal length in
its (Q,PA′′5 )-double coset, and µ ∈MA′′5 (Fv). Indeed, µ may be taken modulo G2(Fv) on the right

and MA′′5 ∩w
−1Qw – which is a standard parabolic subgroup of MA′′5– on the left. Then

 f0
UA′′5
�
UA′′5 ∩(�−1Q�)

≡ 1 ⇐⇒ µ ⋅  f0
UA′′5
�
UA′′5 ∩(w−1Qw)

≡ 1.

Note also that µ ⋅ f0
UA′′5
=  Ad(µ).f0

UA′′5
. Clearly Ad(µ).f0 is in the open orbit for the action of MA′′5 on

g
sA′′5
−2 .
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Lemma 7.5.1. Let �A′′5 (2) = {↵ ∈ � ∶ �↵, sA′′5 � = 2}. Then ∑↵∈�A′′5 (2) a↵X−↵ is in A′′5 if and only if

(a0011110a0101110 − a0001110a0111110 − a0000110a0112110 − a0000010a0112210)
2
×

× (a1011100a1111000 − a1011000a1111100 + a1010000a1112100 + a1000000a1122100)
2a20000001 ≠ 0.

Proof. Direct computation using SageMath, with adjoint matrices obtained using GAP. ⇤

Proposition 7.5.2. The set of reduced representatives w forQ�GE7�PA′′5 such that  f
UA′′5
�
UA′′5 ∩w−1Qw

≡

1 for some f in the open MA′′5 -orbit of g
sA′′5
−2 has only one element, namely,

w0 ∶= w[4231435423165423143542654317654231435426543176].

Proof. If  f
UA′′5
�
UA′′5 ∩w−1Qw

≡ 1 with f = ∑↵∈�A′′5 (2) a↵X−↵, then

{↵ ∈ �A′′5 (2) ∶ w↵ < 0}

contains {↵ ∈ �A′′5 (2) ∶ a↵ ≠ 0}. If f is in the open orbit, then it follows from Lemma 7.5.1, that
{↵ ∈ �A′′5 (2) ∶ a↵ ≠ 0} contains

(1) the root 0000001,
(2) two roots of the form 1 ∗ ∗ ∗ ∗00 that add up to 2122100,
(3) two roots of the form 0 ∗ ∗ ∗ ∗10 that add up to 0112220.

One can check using LiE that Q�GE7�PA′′5 has 786 elements. Of these, only 342 map 0000001 to a
negative root. Of these 342 only 120 map two roots of the form 1 ∗∗∗∗00 that add up to 2122100
to negative roots, and of these 120 only one maps two roots of the form 0 ∗ ∗ ∗ ∗10 that add up to
0112220 to negative roots. Thus there is only one element of Q�GE7�PA′′5 such that

�
��
�
��
�

f ∈ g
sA′′5
−2 ∶  

f
UA′′5
�
UA′′5 ∩w−1Qw

≡ 1
�
��
�
��
�

contains elements of the orbit A′′5 . This element is w0. ⇤

Lemma 7.5.3. The orbit A′′5 is a single rational orbit.

Proof. The space g
sA′′5
−2 decomposes as a direct sum of three irreducible MA′′5 -modules:

�X0000001�, v010 ∶= �X0000010,X0000110,X0001110,X0101110,X0011110,X0111110,X0112110,X0112210�,

v100 ∶= �X1000000,X1010000,X1011000,X1111000,X1011100,X1111100,X1112100,X1122100�.

We identify an element of g
sA′′5
−2 with a triple (x, y, z) where x and y are column vectors of size

8 and z is a scalar. The action of MA′′5 on g
sA′′5
−2 then induces a rational homomorphism MA′′5 →

GL8 × GL8 × GL1. From Lemma 7.5.1, the triple (x, y, z) corresponds to an element of A′′5 if
q1(x)q2(y)z ≠ 0, where q1 and q2 are two quadratic forms. The derived group of MA′′5 is isomorphic
to Spin8, and its image in GL8 ×GL8 ×GL1 preserves the forms q1 and q2. That is, the image the
derived group is contained in SO8(q1) × SO8(q2) × {1}. By Propositions 1 and 4 of [I70], we can
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map any triple which corresponds to an element of A′′5 to one of the form

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0
0
0
a
1
0
0
0

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

,

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0
0
0
b
1
0
0
0

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

, z

�

�
�
�
�
�
�
�
�
�
�
�
�

�

using an element of the derived group of MA′′5 . It then su�ces to show that the torus of GE7

contains an element t which acts by a−1 on X−1111000 by b−1 on X−0101110 by z−1 on X−0000001 and
by 1 on X−1011100 and X−0011110. Since the images of t under the 7 simple roots of E7 can be chosen
arbitrarily, this is easy. ⇤
Proposition 7.5.4. Let P1,w0 ∶=MA′′5 ∩w

−1
0 Qw0. Then P1,w0 acts transitively on

�
��
�
��
�

f ∈ g
sA′′5
−2 (F ) ∩A

′′

5 ∶  
f
UA′′5
�
UA′′5 ∩w

−1
0 Qw0

≡ 1
�
��
�
��
�

.

In the language of §3.2, the w0-admissible subvariety of PA′′5 is equal to P1,w0 ⋅G2UA′′5 .

Proof. Write f ∈ g
sA′′5
−2 as ∑↵ a↵X−↵, and identify it with a triple (x, y, z) as above, given by

tx = �a1000000 a1010000 a1011000 a1111000 a1011100 a1111100 a1112100 a1122100� ,

ty = �a0000010 a0000110 a0001110 a0101110 a0011110 a0111110 a0112110 a0112210� .

The group P1,w0 is the standard parabolic subgroup of MA′′5 whose Levi contains U±↵2 and U±↵3 ,
and whose unipotent radical contains U↵4 and U↵5 . This parabolic preserves a flag in each of the
spaces v100 and v010 which is compatible with the order placed on the roots above. Specifically
write

x =

�
�
�
�
�
�
�
�
�

x1
x2
x3
x4

�
�
�
�
�
�
�
�
�

, y =

�
�
�
�
�
�
�
�
�
�
�

y1
y2
y
3

y4
y5

�
�
�
�
�
�
�
�
�
�
�

,

where xi is a column vector of size 2 for each i, y
3
is a column vector of size four, and yi is a

scalar for i = 1,2,4,5. Then the standard Levi subgroup of P1,w0 respects this decomposition. The

condition  f
UA′′5
�
UA′′5 ∩w

−1
0 Qw0

≡ 1 is equivalent to a0112110 = a0112210 = a1112100 = a1122100 = 0, i.e., to

x4 = 0, y4 = y5 = 0.
The triple (x, y, z) corresponds to an element of A′′5 if z ≠ 0 and x and y are each anisotropic

relative to a certain quadratic form (cf. Lemma 7.5.1). When x4, y4 and y5 are trivial, this forces
y
3
, and �

x2
x3
� to be anisotropic.

The derived group of the Levi of P1,w0 is isomorphic to SL2×SL2, its action on the y
3
component

of v010 can be identified with the action of SL2 × SL2 on 2 × 2 matrices by (g1, g2) ⋅ Y = g1Y g−12 .
Anisotropic elements correspond to matrices Y with detY ≠ 0. Clearly, each such matrix is in
the same orbit as a diag(a,1) for some a. It follows that each f is in the same orbit as one with
a0011110 = a0101110 = 0, a0111110 = 1. The condition f ∈ A′′5 forces a0001110 ≠ 0. Once y

3
is of this

form, the subgroup of SL2 × SL2 which preserves it is isomorphic to SL2. The four-dimensional
space corresponding to x2 and x3 can then be identified with 2×2 matrices with this SL2 acting by
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g ⋅X = gX (matrix multiplication). Once again, detX ≠ 0 for �
x2
x3
� anisotropic. Hence we can choose

a suitable element of SL2 so that gX = diag(b,1). Hence we can arrange a1111100 = 1, a1011100 =
a1111000 = 0. The condition f ∈ A′′5 then forces a1011000 ≠ 0. Now, acting by a suitable element of
the torus, we can arrange a1011000 = a0001110 = a0000001 = 1 without changing the existing conditions
a0111110 = a1111100 = 1. Finally, we can act by an element x0011000(a)x0101100(b)x0001100(c)x0111000(d)
to make x1, y1 and y2 trivial. ⇤

Proposition 7.5.5. The twisted Jacquet module J
UA′′5 , 

f0
UA′′5
�IndGE7

Q �(�1 ○ ⌫1)(�2 ○ ⌫2)$̃
3�2
8 �� is

isomorphic as a representation of G2 to IndG2
BG2

µ, where µ is given in Section 7.3.1, BG2 is the Borel

subgroup of G2 obtained by intersecting G2 with our standard Borel of GE7.

Proof. It now follows from the results of §3.2 that

J
UA′′5 , 

f0
UA′′5
�IndGE7

Q �(�1 ○ ⌫1)(�2 ○ ⌫2)$̃
3�2
8 �� = JUA′′5 , 

f0
UA′′5
�Iw0� ,

where

Iw0 ≅ c − ind
G2UA′′5
G2UA′′5 ∩w

−1
0 Qw0

�(�1 ○ ⌫1)(�2 ○ ⌫2)$̃
3�2
8 � �

1
2
Q ○Ad(w0).

The group G2∩w
−1
0 Qw0 is the standard Borel subgroup of G2, while UA′′5 ∩w

−1
0 Qw0 is the product

of the roots subgroups attached to the following five roots:

{0112110,0112210,0112211,1112100,1122100}.

Let J denote the sum of these five roots.
We compute

J = −2$1 + 2$4 +$5 − 2$6 −$7 −$8,

⌫1 ○Ad(w0) = −$1 +$4 −$5 −$6 +$7 +$8,

⌫2 ○Ad(w0) = −$4 + 2$5 − 2$7 +$8,

$̃8 ○Ad(w0) = $̃8,

�
1
2
Q = 3$4 + 2$6 − 13$8,

�
1
2
Q ○Ad(w0) = −8$1 + 3$4 + 2$5 − 8$6 − 2$7 + 13$8.

Each of these induces a rational character of the standard torus TG2 of the embedded G2. If the
fundamental weights are denoted $G2

1 and $G2
2 , then

J =$G2
1 + 2$

G2
2 ,

⌫1 ○Ad(w0)�
TG2

= −$G2
1 +$

G2
2 ,

⌫2 ○Ad(w0)�
TG2

= 2$G2
1 −$

G2
2 ,

$̃8 ○Ad(w0)�
TG2

= 0,

�
1
2
Q ○Ad(w0)�

TG2

= 2$G2
1 + 3$

G2
2 .

Thus (�1 ○⌫1)(�2 ○⌫2)$̃
3�2
8 ○Ad(w0)�

TG2

is precisely, the character µ given in Section 7.3.1, and an

element h of Iw0 satisfies h(utg) = µ(t)�
1
2
Q(w0tw

−1
0 )h(g) for u in the standard maximal unipotent

of G2 and t ∈ TG2 .
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Now, for h ∈ Iw0 let

W.h(g) ∶= �
(UA′′5 ∩w

−1
0 Qw0)�UA′′5

h(ug) f0
UA′′5
(u)du.

(This is convergent, since the support of h is compact modulo (UA′′5G2∩w
−1
0 Qw0).) Then the kernel

of W is the kernel of the canonical map Iw0 → JUA′′5 , 
f0
UA′′5
�Iw0� . That is, the image of W is a

concrete realization of J
UA′′5 , 

f0
UA′′5
�Iw0� . (The proof is the same as in [HS16], Section 10.) Further,

direct computation shows that

W.h(u1u2tg) =  
f0
UA′′5
(u1)µ(t)�

1
2
Q ○Ad(w0)(t)�t�

−JW.h(g), u1 ∈ UA′′5 , u2 ∈ U
G2
max, t ∈ TG2 , g ∈ G2.

But

��
1
2
Q ○Ad(w0) − J� �

TG2

=$G2
1 +$

G2
2 = �

1
2
BG2

.

Hence restriction from G2UA′′5 to G2 is a linear isomorphism from the image of W onto IndG2
BG2
(µ).

⇤

Hence, we have proved the following theorem.

Theorem 7.5.6. Assume that for almost all finite places v, ⇡v is a principal series representation
of GL7(Fv) which is attached to a character of the form (7.3.1), then every irreducible summand
of D⇡ weakly functorial lifts to ⇡.

Remark 7.5.7. It follows from the proof above that given any irreducible automorphic repre-
sentation ⇧ of GE7(A) and any finite local place v, if ⇧v has the form as in (7.3.4), then the

�UA′′5 , 
f0
UA′′5
�-twisted Jacquet module of ⇧v has the form IndG2

BG2
µ, where µ is given in Section

7.3.1.

8. The A2 + 3A1 case

Recall from Definition 6.2.2 that in the A2 + 3A1 case the descent module D⇡ is defined by
applying the Fourier coe�cient �U, e0

U � from Section 6.2 to the residual representation E⇡, where
⇡ be an irreducible cuspidal automorphic representation of GL7(A) which is of G2 type. In this
section, we prove the following theorem.

Theorem 8.0.1. Assume that ⇡ is an irreducible cuspidal automorphic representation of GL7(A)
which is of G2 type, and D⇡ is defined as in Definition 6.2.2. Then

(1) D⇡ is generic.
(2) D⇡ is not cuspidal. Actually, D⇡ supports all degenerate Whittaker Fourier coe�cients of

G2.

We also study the unramified local descent as in Section 7.5, which is motivated by the question
of whether irreducible subquotients of D⇡ would lift functorially back to ⇡, and provides evidence
that they might well not.

8.1. Nonvanishing Fourier coe�cients of the descent module. The main goal of this subsec-
tion is to prove (in the following theorem) that the descent module supports the Whittaker-Fourier
integral along the maximal unipotent of G2 against any character of this group. In particular, it is
globally generic, but not cuspidal, and it’s constant term along the Borel is nontrivial.
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Theorem 8.1.1. Recall that UG2
max is the standard maximal unipotent subgroup of G2, let  

G2 be
any character of UG2

max(F )�U
G2
max(A). Write (UG2

max, 
G2) for the corresponding (possibly) degenerate

Whittaker-Fourier integral. That is for any f ∈ C∞(G2(F )�G2(A)),

f (U
G2
max, 

G2)
(g) ∶= �

U
G2
max(F )�U

G2
max(A)

f(ug) G2(u)du.

Then (UG2
max, 

G2) does not vanish identically on the descent module D⇡. That is, there is some

D ∈ D⇡ such that D(U
G2
max, 

G2)
≠ 0.

Define V1 ∶= UUG2
max and define  V1 ∶ V1(F )�V1(A) → C× by  V1(u1u2) =  

e0
U (u1) 

G2(u2), for
u1 ∈ U, u2 ∈ U

G2
max (this is a well-defined character of V1(F )�V1(A)). Then the composed period

(UG2
max, 

G2) ○ (U, e0
U ) = (V1, V1). Theorem 8.1.1 is therefore an immediate consequence of the

following theorem.

Theorem 8.1.2. The period (V1, V1) does not vanish identically on E⇡.

Lemma 8.1.3. Let

S0
2 = �

0100000,0101000,0111000,0101100,1111000,0111100,0101110,1111100,
0112100,0111110,0101111,1112100,1111110,0112110,0111111

� .

Let S2 = �
+
� S0

2 and let S′2 = S
0
2 ∪ {1223210,1223211}. Let V2 and V ′2 be the T -stable unipotent

subgroups of GE7 corresponding to S2 and S′2.
Let  V2 denote a character of V2 such that supp V2 is contained in

{1000000,0010000,0001000,0000100,0000010,0000001,1111111,1122100,1112110,0112210,0112111},

and  V2 �V1(A)∩V2(A)
=  V1 �V1(A)∩V2(A)

. Then for any automorphic function f ∶ GE7(F )�GE7(A)→ C
of uniformly moderate growth, and any g ∈ GE7(A),

f (V1, V1
)
(g) = �

(V2∩V ′2(A))�V ′2(A)
f (V2, V2

)
(v′2g)dv

′

2.

Moreover, (V1, V1) ∼ (V2, V2).

Proof. The proof is by nine successive applications of Lemma 7.1.1. The applications come in three
basic types. In the first type there are two roots �1 ∈ �(M,T ), �1 ∈ �(U,T ) such that X = U�1 and
Y = U�1 . In these cases g2 ∩u�1 = {0}, and the roots �1,�1 are given in the table below. Recall that
g2 is the Lie algebra of the G2.

In the second type, there are two roots �1,�2 ∈ �(M,T ) and � ∈ �lg,+
G2

(positive long roots of G2)
such that g2 ∩ u�1 ⊕ u�2 = u�. In these cases, there is a root � ∈ �(U,T ) such that X = U� which has
a pairing with U�1U�2 as in Lemma 7.1.1, and U�, is the right kernel of this pairing. We may take
Y to be any complement of U� in U�1U�2 so that the group D in Lemma 7.1.1 contains the whole
group U�1U�2 . For these cases, the roots �1,�2 and � are given in the table below.

The third type is similar to the second, except that � is a short root of G2. In this case, (cf.
proof of Lemma 6.2.1) there are four roots �1,�2,�3,�4 ∈ �(M,T ) such that g2 ∩�

4
i=1 u�i = u�.

Moreover, there is a unique pair of them such that the sum is another root �5 ∈ �(M,T ). The
product ∏5

i=1U�i is a T -stable subgroup. In fact it is the smallest T -stable subgroup of GE7 which
contains U�. We denote it V�. It is two-step nilpotent with center U�5 . In these cases the group X
is a product ∏3

i=1U�i which has a pairing with V� as in Lemma 7.1.1, and U�U�5 , is the right kernel
of this pairing. For Y, we may select any subgroup of V� which contains U�5 , such that the image
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in the abelian quotient V��U�5 is complementary to the image of U�. In the table below we give
�1,�2,�3 and �1, . . . ,�5 with �5 in parentheses.

X Y �
0100000 1011111
0101000 0011111,1011110 3↵ + 2�
0111000 0001111,1011100 3↵ + �
0101100 0011110

1111000,0111100,0101110 0000111,0001110,0011100,1011000, (1011111) 2↵ + �
1111100,0112100,0101111 0000011,0011000,0000110,1010000, (0011110) ↵ + �

0111110 0001100
1112100 0000010,0010000 �

1111110,0112110,0111111 0000001,0001000,0000100,1000000, (0001100) ↵

At the first stage, the group B is just V1. In each stage later it is the group D obtained from the
previous stage. At each stage the group C may be thought of as the subgroup of B obtained by
deleting the roots listed below “X” in the table. More precisely, the Lie algebra, c, of C is the
largest subalgebra of the Lie algebra, b, of B, whose projection onto u�i is trivial for each i. The
group D is the product of C and the root subgroups attached to the roots listed under “Y ” in the
table.

Checking conditions (1) to (6) for Lemma 7.1.1 is fairly routine. The order in which the nine
applications of Lemma 7.1.1 are carried out is important. It is useful to consider the bigrading in
which the root subgroup U� , where � = ∑

7
i=1 ci↵i gets grading (c2, (∑

7
i=1 ci)− c2). Notice that as the

table is read top-to-bottom the second component of this grading is nondecreasing in the column
labelled “X” and nonincreasing in the column labelled “Y ”. This determines a partial ordering on
the nine rows. It’s fairly easy to check most of the conditions of Lemma 7.1.1 provided this partial
ordering is respected, but (3) and (6) take some care, particularly for applications of the third type.
We discuss the first application of the third type in some detail and leave all the remaining details
to the reader.

For the first application of the third type, X = U1111000U0111100U0101110 ≅ u1111000 ⊕ u0111100 ⊕
u0101110, while V� = U0000111U0001110U0011100U1011000U1011111. The center of V� is U�5 = U1011111.
The quotient V�(A)�U1011111(A) may be identified with u0000111⊕ u0001110⊕ u0011100⊕ u1011000. The
character of C(A) which we consider is given by

 e0
C (exp c) =  ((e0, c)), (c ∈ c(A)).

In order to check conditions (3) and (6) we must consider the pairing

⌥(x, y) ∶=  e0
C ([x, y]),

where

[x, y] = xyx−1y−1, x ∈X(A), y ∈ V�(A).
(It is trivial on X(A)×U�5(A) and hence may be regarded as a pairing on X(A)×V��U�5(A).) The
pairing ⌥ satisfies

(8.1.4) ⌥(expa, exp b) =  ((e0, [a, b])) =  (!e0(a, b)),

where

[a, b] = ab − ba, a ∈ u1111000 ⊕ u0111100 ⊕ u0101110, b ∈ u0000111 ⊕ u0001110 ⊕ u0011100 ⊕ u1011000.

To check condition (3), we have to check that X(A) and Y (A) preserve  C . This amounts to
checking that ⌥ is trivial on X(A) ×U��U�5(A) and on Y (A) ×U��U�5(A). The former is obvious,
since u� = g2 ∩�

4
i=1 u�i . The latter is also obvious, since Y ⊂ V� and V��U�5 is abelian. To check
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condition (6), we have to check that ⌥ is nondegenerate on X(A) × Y (A)�U�5(A) for any Y such
that Y �U�5 is complementary to U��U�5 . In other words, we have to show that

{y ∈ V�(A) ∶ ⌥(x, y) = 1 ∀x ∈X(A)} = U�(A).
By equation (8.1.4), this reduces to showing that

{b ∈ u0000111 ⊕ u0001110 ⊕ u0011100 ⊕ u1011000 ∶ (e0, [a, b]) = 0 ∀a ∈ u1111000 ⊕ u0111100 ⊕ u0101110} = u�.

Now (e0, [a, b]) = −([b, e0], a), which is certainly trivial if b ∈ u�, since [b, e0] = 0 for all b ∈ g2. On
the other hand, if b ∉ u� = g2 ∩�

4
i=1 u�i , then [b, e0] is nonzero, hence ([b, e0], a) ≠ 0 for some a ∈ e7

because  is nondegenerate, and hence ([b, e0], a) ≠ 0 for some a ∈ u1111000 ⊕ u0111100 ⊕ u0101110
because  respects the bigrading. ⇤
Remark 8.1.5. As noted, for applications of Lemma 7.1.1 of the second and third types, the group
Y is not uniquely determined, but can be taken as any complement to a given subgroup. This is
the reason that  V2 may be chosen with some degree of freedom. In addition we have a degree of
freedom in the choice of  G2 .

In order to proceed further, it will be convenient to write  V2 and  G2 explicitly in coordinates.
There exist a1, a3, a4, a5, a6, a7 ∈ F such that

 V2(v) =  (v1122100+v1112110+v1111111+v0112210+v0112111+a1v↵1+a3v↵3+a4v↵4+a5v↵5+a6v↵6+a7v↵7)

for all v ∈ V2. Then  
G2(u) =  ((a1 + a4 + a5 + a6)u↵ + (a3 + a6)u�) for all u ∈ U

G2
max. Rewrite  V2 as

 a
V2

with a = {a1, a3, a4, a5, a6, a7}.

Lemma 8.1.6. Let

S3 = �
+
∪{−↵4}�{0000001,0001000,0001100,0001111,0011000,0101000,0112100,0112111,1011000,

1112100,1112111,1123211,0100000,0010000,0000100,0000010},

and let V3 be the corresponding T -stable unipotent subgroup. Let  a′
V3
∶ V3(A)→ C× be given by

 (v0000111+v0111100+v0101110+v1010000+v0011110+a
′

1v0101100+a
′

3v0000011+a
′

4v0011100+a
′

5v↵1+a
′

6v0111000+a
′

7v0001110).

Let w4 = w[745632451342]. Then there is a representative ẇ4 for w4 such that for each a there

exists a′ with a′i being nonzero scalar multiple of ai and f
(V3, 

a′
V3
)
(g) = f

(V2, 
a
V2
)
(ẇ4g) for all f ∈

C∞(GE7(F )�GE7(A)) and g ∈ GE7(A), whence (V2, 
a
V2
) ∼ (V3, 

a′
V3
).

Proof. Let

R1 = {1122100,1112110,1111111,0112210,0112111},R2 = {↵i ∶ 1 ≤ i ≤ 7, i ≠ 2},

R′1 = {0000111,0111100,0101110,1010000,0011110},

R′2 = {0101100,0000011,0011100,1000000,0111000,0001110}.

Then w4R1 = R
′

1, and w4R2 = R
′

2.
For any representative ẇ4 for w4, V3 = ẇ4V2ẇ

−1
4 , and

 a
V2
(ẇ−14 vẇ4) =  

�

�

�

�

↵∈R1

cẇ4,↵vw4↵ +

7

�
i=1
i≠2

aicẇ4,↵ivw4↵i

�

�

�

,

for some nonzero constants cẇ4,↵ depending on the choice of the representative ẇ4. The point is to
show that ẇ4 may be chosen so that cẇ4,↵ = 1 for all ↵ ∈ R1. Now, ẇ4 is unique up to an element
of the maximal torus T of GE7, so it su�ces to check that the mapping T → GL5

1 induced by
the five elements of R1 is surjective. This follows from the fact that these five elements can be
simultaneously conjugated to simple roots, as seen in Section 6.2. ⇤
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Remark 8.1.7. Recall that the descent Fourier coe�cient is attached to the standard semisimple

element
0 0 0 0 0 0

2
. The regular nilpotent orbit of g2 is attached to a standard semisimple

element of g2, which may then mapped to a semisimple element of ge7, namely
2 2 2 2 2 2

−12
.

The sum is
2 2 2 2 2 2

−10
. If we regard it as a coweight, it is not dominant. The dominant

element of its Weyl orbit is
2 0 2 0 0 2

0
, which is the standard semisimple element attached to

a nilpotent orbit of E7 whose Bala-Carter label is E7(a4). The element w4 maps
2 2 2 2 2 2

−10

to
2 0 2 0 0 2

0
. This was the original motivation for considering w4, V3, and  

a′
V3
.

Lemma 8.1.8. Let

S4 = �
+
∪ {−↵4} � {0000001,0001000,0001100,0001111,0011000,0101000,0112100,1011000,

0100000,0010000,0000100,0000010},

and let V4 be the corresponding unipotent subgroup. Let  a′
V4

be the character such that  a′
V4
�
V3(A)

=

 a′
V3

and  a′
V4
�
U�
≡ 1 for � ∈ �(V4, T ) ��(V3, T ). Then (V3, 

a′
V3
)�(V4, 

a′
V4
).

Proof. One may write (V4, 
a′
V4
) as a double integral with (V3, 

a′
V3
) as inner integral. ⇤

Lemma 8.1.9. Let S5 = S4∪{0001111,0000001}�{−↵4,0000110}. Let V5 be the corresponding T -

stable unipotent group. Let  a′
V5
∶ V5(A)→ C× be the character such that  a′

V5
�V4∩V5(A) =  

a′
V4
�V4∩V5(A)

and  a′
V5
�U↵7U0001111(A) ≡ 1. Then

f
(V4, 

a′
V4
)
(g) = �

A
�

A

f
(V5, 

a′
V5
)
(x−↵4(r1)x0000110(r2)g)dr1 dr2.

Moreover, (V5, 
a′
V5
) ∼ (V4, 

a′
V4
).

Proof. This is another application of Lemma 7.1.1. ⇤

The key feature of V5 is that it is contained in the unipotent subgroup attached to the weighted

Dynkin diagram
2 0 2 0 0 2

0
for the orbit E7(a4). Further supp 

a′
V5

is contained in

{↵7,0001110,0011100,0101100,0111000,0000011,0011110,1010000,0101110,0111100,0000111},

which is contained in the two-graded piece for this weighting.

Let V6 be the full unipotent group for
2 0 2 0 0 2

0
(that is, all root subgroups with weights

bigger than or equal to 2) and  a′
V6

be the character of it with  a′
V6
�
V5
=  a′

V5
and supp a′

V6
= supp a′

V5
.

Then for any automorphic function f of uniformly moderate growth, f
(V6, 

a′
V6
)
can be written as a

double integral with inner integral f
(V5, 

a′
V5
)
. Hence (V5, 

a′
V5
) � (V6, 

a′
V6
). Notice that (V6, 

a′
V6
) is a

unipotent period of the type considered in Section 3.1.
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Lemma 8.1.10. Let

Xa′ = X−1010000 +X−0000111 +X−0011110 +X−0101110 +X−0111100

+ a′7X−0001110 + a
′

4X−0011100 + a
′

1X−0101100 + a
′

6X−0111000 + a
′

3X−0000011 + a
′

5X−1000000,

and

e′0 =X−1010000 +X−0000011 +X−0111000 +X−0101100 +X−0011100 +X−0001110.

Then

(1) Xa′ is an element of the closure of the orbit A6 if and only if

(8.1.11) − 1716(a′1a
′

3a
′

5 + a
′

3a
′

4a
′

5 − 2a
′

1a
′

3a
′

7 − a
′

3a
′

5a
′

7 − a
′

5a
′

6a
′

7)
2a′24 a

′2
5 a
′2
6 = 0.

(2) When a′5 = 0, the element Xa′ lies in A6 if and only if a′1a
′

3a
′

4a
′

6a
′

7 ≠ 0.
(3) If Xa′ is in A6 then it is conjugate to e′0.

Proof. We may regard Xa′ first as an element of the Lie algebra e7 over a polynomial ring in
six indeterminates and compute its rank sequence as such. This can be done, for example, by
obtaining 133× 133 matrices for ad(X�) for the relevant roots � from GAP and then loading them
into SageMath. This tells us what orbit Xa′ lies in for a′ in general position, and allows us to
obtain polynomial conditions for Xa′ to lie in a smaller orbit.

It turns out that for a′ in general position, Xa′ lies in the orbit E7(a4). The largest value of k
such that Xk

a′ ≠ 0 is 14, and X14
a′ is rank one, with only one nonzero entry. This nonzero entry is

the left hand side of (8.1.11). As mentioned in Lemma 7.1.3, Xa′ is in A6 if and only if it’s 14th
power is 0.

From the diagram on p. 442 of [C93], we see that there are three stable orbits which are less
than E7(a4) but not less than A6. Their Bala-Carter labels are D5 +A1,D6(a1), and D5. For X in
any of these orbits we have rankad(X)14 = 1. This proves the first part.

It is then clear that a′5 = 0 implies Xa′ is in the closure of A6. Referring again to the diagram
on p. 442 of [C93], we see that O < A6 ⇐⇒ O ≤ E7(a5). By inspecting the rank sequences of
these two orbits, we can see that if X ∈ A6, then rankad(X)12 = 3, while if X ∈ E7(a5), then
rankad(X)12 = 0. When a′5 = 0, if we calculate the matrix ad(Xa′)12 (as an element of e7 over a
polynomial ring) and then discard all rows and columns which consist entirely of zeros, we obtain
the following three by three matrix

�

�

�

0 0 −462a′31 a
′2
2 a
′

4a
′

6a
′2
7

0 924a′21 a
′2
2 a
′2
4 a
′2
6 a
′2
7 0

−462a′31 a
′2
2 a
′

4a
′

6a
′2
7 0 0

�

�

�

.

This completes the proof of the second part.
To prove the third part we consider

X ′a′ =X−1010000 + a′3X−0000011 + a′6X−0111000 + a′1X−0101100 + a′4X−0011100 + a′7X−0001110,

and

u(b1, . . . , b5) ∶= x−↵2(b1)x−↵3(b2)x−↵5(b3)x−↵5−↵6(b4)x−↵6(b5).

Using SageMath, one can check that for each a′1, a
′

3, a
′

4, a
′

6, a
′

7 (all nonzero) there exists unique
b1, . . . , b5 such that

Ad(u(b1, . . . , b5)).Xa′ =X ′a′ .
These six roots which appear in X ′a′ may be simultaneously conjugated to simple roots (cf.

Lemma 7.1.12). Hence we can conjugate X ′a′ to e′0 using a suitable element of the torus. ⇤
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Corollary 8.1.12. Let  ′V6
∶ V6 → C× be given by

 ′V6
(v) =  (v0001110 + v0011100 + v0101100 + v0111000 + v0000011 + v1010000).

Then for each a′ = (a′1, a
′

3, a
′

4,0, a
′

6, a
′

7) with a′i ≠ 0 for i = 1,3,4,6,7, there exists ⌫a′ ∈ GE6(F ) such

that ⌫a′V6⌫
−1
a′ = V6 and  

′

V6
(⌫a′v⌫−1a′ ) =  V6(v), for all v ∈ V6(A). Hence f (V6, V6

)
(g) = f (V6, ′V6)(⌫a′g)

for all smooth automorphic functions f ∶ GE7(F )�GE7(A)→ C and all g ∈ GE7(A), and in partic-

ular (V6, 
a′
V6
) ∼ (V6, 

′

V6
).

This completes the proof of Theorem 8.1.1, since (V6, 
′

V6
) has appeared previously as (U5, 

e′0
U5
),

and it was already shown in Lemma 7.1.15 that E⇡ supports this period.

8.1.1. Remarks. The proof of Theorem 8.1.1 can be summarized as follows. For c = (c1, c2), let

 G2
c (u) =  (c1u↵ + c2u�) for u ∈ U

G2
max. Then (U

G2
max, 

G2
c ) ○ (U, 

e0
U ) divides (V6, 

a′
V6
) whenever c is

the image of a′ under a certain linear map. In this situation, every representation which supports

(V6, 
a′
V6
) must also support (UG2

max, 
G2
c ) ○ (U, 

e0
U ). For any c, we can choose a′ which maps to

c and corresponds to an element of the orbit A6. The residual representation E⇡ supports the

Fourier coe�cient (V6, 
a′
V6
) whenever a′ corresponds to an element of A6. Therefore it supports

(UG2
max, 

G2
c ) ○ (U, 

e0
U ) for all c.

In particular, the conclusion applies not only to E⇡, but to any automorphic representation

⇧ which supports the Fourier coe�cient (V6, 
a′
V6
) whenever a′ corresponds to an element of A6.

Moreover, it is reasonable to ask whether A6 can be replaced by a smaller orbit. In this connection
we note that taking a′3 = a

′

5 = 1 and the rest zero, or, a′5 = a
′

6 = 1 and the rest zero, gives an element
Xa′ in the orbit 2A2 +A1, which lies immediately above the orbit A2 + 3A1 attached to  e0

U .
If ⇡ is not of G2 type but LS

(s,⇡,∧3) has a pole at s = 1, then Theorem 8.1.1 is still valid for
the residual representation E⇡ with exactly the same proof.

8.2. Local descent. Since the results of [GGS17] hold in both the local and global settings, the
same set of arguments given in the global setting above also provides a local analogue.

Theorem 8.2.1. Let Fv be a nonarchimedean local field. Suppose that an irreducible admissible

representation ⇧v of GE7(Fv) supports the twisted Jacquet module attached to (V6, 
a′
V6
) with a′

now in F 6
v corresponding to an element of A6. Then the (U, e0

U )-twisted Jacquet module of ⇧v

supports (twisted and untwisted) Jacquet modules attached to UG2
max and all characters of UG2

max. In
particular, this holds when ⇧v is the local component of any irreducible subquotient ⇧ of E⇡ where
⇡ has the property that LS

(s,⇡,∧3) has a pole at s = 1.

8.3. Unramified local descent. One may now consider the twisted Jacquet module

JU, 
e0
U
�IndGE7(Fv)

Q(Fv)
(�1 ○ ⌫1)(�2 ○ ⌫2)$̃

3�2
8 � .

If ⇡ is an irreducible cuspidal automorphic representation of GL7 with ⇡v being induced from a
character of the form (7.3.1) and � is an irreducible quotient of E⇡, then �v will be a quotient of
this twisted Jacquet module.

The study of such a twisted Jacquet module is closely connected with the structure of the double
coset space Q(Fv)�GE7(Fv)�G2(Fv)U(Fv). Notice that this space is infinite, since

dimGE7 = 134, dimQ + dimG2 + dimU = 133.

This stands in contrast to the situation encountered in [GRS11, HS16], where [BZ77, Theorem 5.2]
could be applied.

Moreover, suppose we say that a double coset is admissible if its elements � satisfy  e0
U �U∩(�−1Q�) ≡

1. Then we have
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Lemma 8.3.1. The set of admissible double cosets in Q(Fv)�GE7(Fv)�G2(Fv)U(Fv) is infinite.

Proof. We can sort the elements of Q(Fv)�GE7(Fv)�G2(Fv)U(Fv) according to which element
of Q(Fv)�GE7(Fv)�P (Fv). Of course this latter double coset space is finite and represented by
elements of the Weyl group. We use elements w of the Weyl group that are of minimal length in
their double coset. For each such w

� � Q(Fv)w�G2(Fv)U(Fv)

is induces a bijection between the set of Q(Fv),G2(Fv)U(Fv)-double cosets in Q(Fv)wP (Fv) and
(M(Fv) ∩w

−1Q(Fv)w)�M(Fv)�G2(Fv). Moreover for � ∈M(Fv),

 e0
U �U∩�−1w−1Qw� ≡ 1 ⇐⇒ [� ⋅  

e0
U ]�U∩w−1Qw ≡ 1.

We consider the longest element w0 of Q(Fv)�GE7(Fv)�P (Fv), and show that

�� ∈ (M(Fv) ∩w
−1
0 Q(Fv)w0)�M(Fv)�G2(Fv) ∶ � ⋅  

e0
U �U∩w−10 Qw0

≡ 1�

is infinite.
To do this we first compute M ∩w−10 Qw0 and find that it is the product of the GL1 factor of M

and the parabolic of type (2,2,3) in the Levi factor. Note that the dimension of this parabolic is
33.

If we let GL7(Fv) act on  e0
U , then the stabilizer is G2(Fv), and so the orbit is a variety of

dimension 35. Recall that  e0
U is identified with a nilpotent element X of ge7, lying in gs

−2 for the

semisimple element
0 0 0 0 0 0

2
, our variety is then identified with the GL7-orbit of X in gs

−2.

Finally, we compute that {↵ ∈ �(U,T ) ∶ w0↵ > 0} = {1123321}. Because w0 is of shortest length in
Qw0P, this implies that U ∩w−10 Qw0 = U1123321. This means that the condition � ⋅ e0

U �U∩w−10 Qw0
≡ 1

amounts to a single polynomial equation on the entries of �, so we get a 34-dimensional subvariety.
Clearly, our 33-dimensional parabolic can not act transitively on this subvariety. ⇤
Lemma 8.3.2. At least eight di↵erent Q(Fv), P (Fv)-double cosets contain admissible Q(Fv),
G2(Fv)U(Fv)-double cosets.

Proof. Indeed, there are eight distinct Kostant representatives w for elements of Q�GE7�P such
that  e0

U �U∩w−1Qw ≡ 1. I.e., there are eight Kostant representatives such that

�� ∈ (M(Fv) ∩w
−1Q(Fv)w)�M(Fv)�G2(Fv) ∶ � ⋅  

e0
U �U∩w−1Qw ≡ 1�

contains the identity. (And possibly other representatives that it is nonempty but does not contain
the identity.) ⇤
Remark 8.3.3. We expect that if ⇡ is of G2 type then the local components of ⇡ at unramified
places will be induced from characters of the form (7.3.1), with �1,�2 being unitary characters.
However, we would expect that in general �1,�2 would not satisfy any special condition that would
permit (7.3.4) to be reducible. The representation (7.3.4) has a P -module filtration parametrized
by the elements of Q�GE7�P, and Lemma 8.3.2 suggests that at least eight of the P -modules in this
filtration will have nontrivial twisted Jacquet modules. Thus the local unramified descent appears
to be highly reducible.

This is consistent with our global results. We would expect an irreducible cuspidal automorphic
representation ⇡ of G2 type to be a weak functorial lift attached to the embedding G2(C)� GL7(C)
of some generic cuspidal automorphic representation of G2(A). In the classical cases considered in
[GRS11] and [HS16], the descent recovers the original cuspidal representation that was lifted (up to
near equivalence). In our case, our global results let us know that the descent module also contains
noncuspidal functions. In general, we would not expect any noncuspidal automorphic forms to
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lift weakly to ⇡. Hence our noncuspidality result predicts that the descent module will not consist
solely of automorphic forms which lift weakly to ⇡.
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