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Abstract

It was recently revealed via super-resolution microscopy experiments that the axon plasma
membrane skeleton (APMS) comprises a series of periodically arranged azimuthal actin rings
connected via longitudinal spectrin filaments forming an orthotropic network. The common
perception is that APMS enhances structural stability of the axon but its impact on axon
deformation is unknown. To investigate the response of the APMS to extension, we introduce a
coarse-grain molecular dynamics model consisting of actin particles forming rings and chains of
particles representing spectrin tetramers with repeats than can unfold. We observe that the shape
of force-extension curve is initially linear and the force level depends on the extension rate. Even
during the initial deformation stage, unfolding of spectrin repeats occurs, but the saw-tooth shape
of the corresponding force-extension curve observed in the case of one spectrin tetramer does not
appear in the case of the entire APMS. The reason is that spectrin unfolding is not synchronized
across filaments during extension. If actin-spectrin associations remain intact, the force-extension
response reaches a perfectly plastic region because of increased spectrin unfolding frequency.
However, when actin-spectrin links dissociate, which can happen at moderate and high extension
rates, APMS softens and the resistance force decreases linearly as the axon elongates until it
reaches a point where the APMS is completely severed. Furthermore, when the ring-to-ring
distance is maintained fixed under stretch, the resistance force relaxes exponentially as a function
of time due to additional unfolding of spectrin tetramers following the Kelvin-Voigt representation

of the Zener model.



Introduction

An axon is typically a long cylindrical neuronal projection whose main function is to integrate
electrical signals and transmit them as a single or a sequence of action potentials. It consists of the
plasma membrane and several endoplasmic filaments and organelles including microtubules,
neurofilaments, and mitochondria. The axon plasma membrane (APM) is formed by two main
substructures: the phospholipid bilayer and the membrane skeleton 2. In recent years, significant
progress has been made in relation to the structural characterization of the axon plasma membrane
skeleton (APMS). Importantly, in 2013 it was revealed via super-resolution microscopy that the
APMS comprises a series of periodically arranged azimuthal actin rings connected via longitudinal
spectrin tetramer filaments and other associated molecules with an approximately 190 nm
periodicity of the actin rings (Fig. 1A) 3. In mature neurons (DIV > 10), the lipid bilayer is anchored
to the APMS via ankyrin G, in the axon initial segment (AIS) and proximal axon, and via ankyrin
B in the distal axon *°. Ankyrin links the membrane skeleton and the endoplasmic filamentous
axon skeleton by binding to the carboxyl terminus of beta IV-spectrin, which is located near the
middle area of a spectrin tetramer, and to a microtubule via microtubule-associated proteins ® 7.
The distribution of ankyrin along the axon is thus highly periodic and in an out-of-phase
arrangement with respect to actin. We note that voltage-gated sodium (Na,) channels are
associated to ankyrin G in the AIS and as a result their plasma membrane distribution is also

periodic and out-of-phase with respect to actin rings °.

It is important for axons to maintain their morphology and integrity during deformations which
can be significant even during normal daily activities. It had been routinely hypothesized that

stability of the axon is mainly due to endoplasmic filaments and specifically to bundles of



microtubules because of their large stiffness compared to plasma membrane 3!, However, the
recent discovery of the unique periodic structure of the APMS and its connectivity to endoplasmic
filaments via Ankyrin, offers new possibilities in understanding neuronal axons durability. It was
recently shown that the APMS can significantly shield microtubules during applied tissue stress
12 Additionally, it has been demonstrated that the loss of beta-spectrin, one of the main
components of APMS, in C-elegans leads to spontaneous breaking of axons, which is caused by
mechanical strains generated by mere animal movement, and that such axon breaking phenotype
can be prevented by paralyzing the animal to reduce movement induced mechanical strains '3 14,
It was also recently shown that actin rings are required to maintain microtubule organization '°.
Due to those findings it is now accepted that the APMS in coordination with microtubules and
other axonal filaments such as neurofilaments contributes in maintaining integrity and mechanical

stability of the axon '8,

Axonal extension has attracted a significant interest due to its relation to traumatic axonal injury,
which is an important type of traumatic brain injury leading to localized axon damage, partial
disruption of intracellular transport, and subsequent degeneration '®!°. It has also been shown that
it is related to neurotransmission because it interferes with clustering of neurotransmitter vesicles
20 There is significant experimental evidence that an observable interaction between the
endoplasmic cytoskeleton and the APMS during axon extension experiments occurs >'. However,
it is important to clarify the mechanical behavior of the APMS separately from the endoplasmic
cytoskeleton. While there exists a significant amount of work on modeling of the behavior of the
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entire axon during extension and in particular of the microtubules network ''-?’, there is a very



limited work on modelling extension of the APMS. In this paper, we focus on just that, the

mechanical behavior of the APMS during extension and during relaxation.

One of the main filaments comprised in the APMS is the spectrin tetramer, which is formed by
two antiparallel heterodimers consisting of a- and B-subunits with 22 and 17-triple-helical domains,
respectively 2. Single molecule atomic force microscopy experiments demonstrated that an
individual spectrin repeat mechanically unfolds in an all-or-none process when it is subjected to
25 to 35 pN force and it refolds when it is relaxed 2°. Under tension the alternative topologies
could gain mechanical stability. These distinct properties of spectrin filaments critically determine
the behavior of the APMS and most likely of the entire axon during extension *°. Actin rings are
formed by actin filaments and the associated actin-capping protein adducin and are stable after 7
Days in Vitro (DIV). Actin and spectrin are cross-linked to form the APMS in the presence of
ankyrin. Maturation of the axon is dynamic and it is evolved during the early stages before it

reaches its final structure at approximately DIV 10 >3!,

In this paper, we investigate the mechanical behavior of the APMS under extension and relaxation.
To this end, we develop a spring chain model for spectrin tetramers allowing unfolding of spectrin
repeats under extension and refolding when no force is applied. We validate the model by
comparing numerical and experimental results 2. We also implement a model for actin rings,
which can reproduce the axon’s stiffness as measured via atomic force microscopy 2. By
combining the two models and with the addition of a particle representation of ankyrin, we build
a particle-based model for the APMS. We note that we implement dynamic association between

actin and spectrin allowing, in principle, dissociation and re-forming of actin-spectrin links. Then,



we use the model to investigate the mechanical behavior of the APMS during extension and
relaxation taking into consideration possible unfolding of spectrin filaments and dissociation of

actin-spectrin links.

Model and methods

In this section, we introduce a coarse-grain molecular dynamics (CGMD) model for the APMS
comprising azimuthal actin rings connected to longitudinal foldable spectrin filaments, which are

connected to ankyrin particles (Fig. 1).

1. Computational model for the axonal actin rings

The actin rings consist of short actin filaments arranged along the circumference of the axon .
Because the exact molecular structure of the actin rings is not known and whether actin filaments
are connected side by side or they are in an end-to-end arrangement has not been determined, we
adopted a coarse-grain particle model that produces stable actin rings but it does not consider
their specific molecular structure *2. In this coarse-grain particle model, an actin ring contains 39
actin beads (Fig. 1A) with a bead diameter of approximately 35 nm, which is close to the size of
actin junctions in red blood cells (RBCs) **. These beads form a circle with a diameter of

approximately 434 nm, which is within the range of an actual axon diameter *°.
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Fig. 1. Organization of the AIS plasma membrane. (A) (Left) [llustration depicting the structure
of the axon and AIS plasma membrane. (Right) Illustration of the APMS model. The red particles
represent actin junctions, which form actin rings. Each actin ring has a diameter of 434 nm and
comprises 39 actin junctions. (B) Detailed illustration of the organization of the APMS model.
An actin particle (red) is connected to a repeat of the terminus of the corresponding spectrin
filament. The virtual balls of each repeat are enumerated. For example, the first repeat extends
from virtual ball No.1 to No. 15. Each virtual ball comprises three beads interacting via spring
and L-J potentials. The virtual balls interact directly via a FENE angular potential and indirectly

via their corresponding beads.

Adjacent actin particles i and j in the same ring are connected via a spring potential
Ubring i) = 1/2 ks (r* — r4#)? and the purely repulsive L-J, or as it is sometime called

Weeks-Chandler-Andersen (WCA) 3* potential

12 6
SaA Saa AA AA
4'AA[< ) <AA)]+8AA < Tt = Tdg
WCA( = Ty iy (1)
AA —
0 > T' ut L] — req
with 744 = 35 nm and 14 1 ; = 755*. We chose the cutoff distance 7| ; of the potential to be the

equilibrium distance between two actin particles (r/4" = 2%/S,,), which means that S,, =
31.18 nm and since, as we will explain in the next section, our unit length is ¢ = 0.61 nm, then
Ssa = 510. The value of the spring constant k, = 38 £/0? is determined based on computational
results in conjunction with the AFM stiffness measurement of the axon plasma membrane *. In

addition, we employ a finitely extensible nonlinear elastic (FENE) bending potential U4 (6) =



0-6,
Aemax

2
—%k;,“AAHmaxln [1 —( ) ] to maintain the circular configuration of the actin rings. In the
FENE bending potential, ki = 3500 KzT determine the bending stiffness of the actin filament.

This value of k{4 resulted in actin filament bending rigidity kpeng = 7.1 X 10726 Nm?2, which is

consistent with a reported experimental value of 7.3 X 10726 Nm?2 35369 is the angle formed by

. . . o 180°(39-2 . I
three consecutive actin beads in the same actin ring, 8, = % = 170.77° is the equilibrium

angle, and Af,,,, = 0.3 6, is the maximum allowed bending angle (Table S1). We note that the
combination of kii# and 46,,,,, in the bending potential equation determines the stiffness of the
structure. The angle A8,,,, defines the maximum local deformation of the actin rings but its exact
value does not affect the behavior of the system near equilibrium. Because of this, we chose to

use 46,4, = 0.3 6, 2.
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Fig. 2. Interaction potentials employed in the APMS model. (A) L-J potential between actin
and the associated spectrin bead. (B) The green curve represents the spring potential between
consecutive spectrin beads in one filament. The black curve represents the purely repulsive WCA
potential between spectrin beads. (C) L-J potential between two end spectrin beads belonging to
the same virtual ball. The cutoff distance for this potential is 1.5 X 21/®¢, which is close to the
corresponding inflection point. (D) L-J potential between spectrin beads from different virtual

balls, which belong to neighboring segments in the same spectrin repeat.

2. Computational model for spectrin filaments

10



A spectrin filament is a tetramer comprised of two identical, intertwined antiparallel heterodimers.
Each dimer in a mature neuron after DIV 10 comprises an all-spectrin filament consisting of 22
homologous triple-helical repeats, and a fIV-spectrin filament in the AIS and proximal axon or a
BIl-spectrin filament in the distal axon, consisting of 17 homologous triple-helical repeats 2% 3137,
In this work, we represent a spectrin tetramer as a chain of 39 repeats. The length of a repeat is
L./39 = 5.1 nm with L, =~ 200 nm being the contour length of a spectrin tetramer (Fig. 1B). It
has been shown that the repeats are mostly 106 amino-acids long, which are arranged in three
antiparallel stranded a-helical coils . Considering that the length of each amino acid is

approximately 0.15nm ¥

, the length of each repeat is estimated to approximately be
106/3 X 0.15nm = 5.3 nm, which matches the repeat length implemented in the spectrin
filament model here 3°. For a-helical segments, the length of the residue is 0.15 nm, whereas, for
non-helical segments, the length is 0.37 nm per residue *°. To obtain the same characteristics of
a-helical segments, we use a virtual ball structure containing 3 beads successively connected via

a spring potential (Fig. 1B). The center of a virtual ball is the center of mass of the three

corresponding spectrin beads.

All three beads in a virtual ball interact via the WCA potential

12 6
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where the equilibrium distance is res =21/6g ss, and Sgg¢ = a. The actual estimation for req is

explained later in this section. In addition, the two end beads i and j in one virtual ball interact
with each other through a Lennard-Jones (L-J) potential

11
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where S¢gp = 0. We chose a cutoff distance of rifBLJ = 1515 S5 because dissociation between the

two end beads at the specific cutoff distance results in an increase of the length of the

corresponding residue measured experimentally *°

A completely unfolded repeat contains not only the non-helical segments, which comprise
elongated residues, but unfolded segments as well *°. The length of a fully unfolded repeat is
approximately 31.7nm based on force-extension AFM measurements obtained by Rief et al. 2% 4!,
In order for our model to represent unfolded segments, we use a three-segment structure. Virtual
balls in the same repeat but in different segments interact via their corresponding spectrin beads
through the Lennard-Jones (L-J) potential (Fig. 2D)

12 6
s s
65 (150 = degq I( gg) - (-ﬁg) l + &ge GG <rii =251

Tij ij
0 ¢ >t = 2575

(4)

where S;; = 0. Considering the size of a virtual ball, which contains 3 spectrin beads, we chose
the cutoff distance of the potential to be 7, ut L = 2.5 req , since it is approximately equivalent to

the inflection point of the corresponding LJ potential between two virtual balls. This potential

allows for unfolding of spectrin segments (Fig. 3).

Overall, in our spectrin filament model, we use a chain of 1755 beads connected by a spring

potential U pnng( =1/2kg (ri — 157 )% inseries (Table S2). The equilibrium distance

12



between two consecutive virtual balls is 7577 = L./(5 x 39) = 1.03 nm, where L, = 200 nm.

Two consecutive repeats contain 10 virtual balls or 15 beads along their length (see Fig. 1B)

resulting to an equilibrium distance between two beads within a virtual ball 7} =

re%B X 10 /15 = 0.685 nm. A spectrin tetramer is a chain comprising 39 repeats. Each repeat

contains 45 beads grouped in 15 virtual balls, which are arranged in 3 segments of 5 virtual balls

per segment. Furthermore, all spectrin beads interact via the WCA potential (Eq. 2), where the

equilibrium distance is 55 = 2'/°a = 0.685 nm yielding a unit length of & = 0.61 nm.

Fig. 3. Representation of a spectrin repeat. There are 3 segments in one repeat. The same color
beads are within one segment of a repeat. (A) Folded spectrin repeat. (B) Unfolded spectrin

repeat.

Finally, in each segment we apply the FENE bending potential of UP? = — % kBB 40,4, In [1 —

_ 2
(—9 % ) ] between consecutive virtual balls to stabilize the shape of the spectrin repeat (Table

Aemax
S2), where kFB = 5KgT is the stiffness that directly controls the bending rigidity of segments. The

angle formed by the three consecutive spectrin virtual balls of the same segment is 8 with an

13



equilibrium angle 8, = 180°, which means that the consecutive virtual balls are initially located
along a straight line (Fig. 1B). The maximum allowed deformation angle is 46,,,, = 0.3 6,. We
note that, similar to actin rings, the combination of k5? and 480,,,, determines the stiffness of the
structure. However, the value of 46,,,, does not affect the behavior of a spectrin filament at small
deformations near thermal equilibrium. Because of this, we choose to use 46,4, = 0.3 8,, which
gives margin for flexibility to the bending potential *2.

The persistence length of a free spectrin filament

To obtain the persistence length of spectrin filaments and determine if the spectrin filament model
is a good approximation for the spectrin tetramer in thermodynamic equilibrium, we record the
evolution of the end-to-end distance (7,,) of a single spectrin filament during 10’ time steps after
it reaches thermal equilibrium. The end-to-end distances follow a Gaussian distribution (Fig. 4)
with a mean value of (r2)Y/2 = 133.54 ¢ = 81.5nm at KzT/e = 0.22, where Kj is the
Boltzmann’s constant and T is the temperature which is 300°K in the simulation *2. This result is
close to the experimental value of approximately 80.5 nm for free spectrin tetramers at room
temperature **. The relation between the persistence length and the end-to-end distance for flexible

filaments (I, << L) is given by (r2)*/? = /2L ,L. *, and the contour length of spectrin filament

is approximately 200 nm 7%, Based on the above quantities, we compute the persistence length
of a spectrin filament to be 16.6 nm, which is close to the reported experimental values of 10 nm

46 and 20 nm *3.

14
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Fig. 4. Probability distribution of end-to-end distance (7,.) of the free spectrin filament
model during 107 time steps at T = 300 °K. The associated normalized Gaussian probability

density is also shown (red line).

3. Computational Model of the APMS

We combine the actin ring and spectrin filament models described above along with a particle
representation of ankyrin to simulate the APMS (Fig. 5). The spectrin filaments in a normal
neuronal axons are extended to approximately their contour length. The APMS behaves as an
orthotropic material with different mechanical properties in the azimuthal direction compared to
longitudinal direction. We note that the main difference between the current work and the work by

Zhang et al. 3

is that here the spectrin filaments are extendable while in the previous work they
were not. This difference allows us to study extension of the APMS axons beyond the artificial

limit set by the spectrin contour length and to also study relaxation of the APMS.
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Fig. 5. APMS model. (A) A section of the axon plasma membrane skeleton model comprising
representation of one actin ring, spectrin filaments, and ankyrin particles. (B) The insert shows

partially unfolded spectrin filaments during extension.

Association between actin rings and spectrin filaments

Super-resolution microscopy experiments have shown that the axonal actin rings are distributed

periodically along the axon with a period of approximately 190 nm connected by several spectrin

tetramers > 47. We model the association between the end of the spectrin filament and the
A

corresponding actin ring as a L-J potential U/ (1)) = 4&,[(Sas/1%)*? — (260/1°)%] + ¢,

where ri‘?s is the distance between actin and spectrin beads (Fig. 2A). The equilibrium distance
between actin and spectrin is 2'/® X 26 ¢ = 17.84 nm resulting to an actin junction size of
approximately 35.68 nm *®. In the normal RBC the spectrin-actin junction association energy at
equilibrium is approximately 17 Kcal /mole = 0.74 eV *°. Because the actin-spectrin association

energy in the APMS is not known, we selected it to be at a level similar with the one in RBCs. In

particular, we investigated the behavior of the APMS when the actin-spectrin association energy

16



takes the values of 0.11 eV, 0.22 eV, 0.43 eV, 0.86 eV, and 1.72 eV. We note that association

between actin and spectrin U f}s (7;j) 1s annulled when the actin-spectrin distance 7 is larger than

the capture distance of RS | ; = (26/7)/® X 260 and it can be reformed when 1;; < R&: | ).

Association between the APMS and the lipid bilayer

The phospholipid bilayer is associated to ankyrin G (in the AIS and proximal axon) or ankyrin B
(in the distal axon) via channels linked to ankyrin such as voltage-gated sodium channels (Na,,),
which are connected to ankyrin G, or voltage-gated calcium channels (Ca,,), which are connected
to ankyrin B #3032 Ankyrin is then connected to BIV spectrin, in the AIS and proximal axon, or
to BII spectrin, in the distal axon, in the middle of the spectrin tetramer tethering the phospholipid
bilayer to the APMS * 3!, This arrangement is supported by super-resolution microscopy data
which show that Na,, channels exhibit a periodic distribution pattern that alternates with actin rings
and co-localizes with ankyrin G in AIS **7. We assign only one Na,, channel per ankyrin molecule.
The reason for this is that the resulting Na,, channel density is approximately 150 channels per
um?, which lies within the range of 110 to 300 channels per um? measured in the AIS 3.
Following the same principle, we assign one Na,, per ankyrin B in the distal axon too. We note
however that the number of channels connected to ankyrin does not affect our model since we only
consider one anchoring point for the phospholipid bilayer per ankyrin. In our model, an ankyrin

particle is connected to the 20" repeat of the spectrin filament by a spring potential USK (ri j) =

1/2ko(ry; — 13k )2, where the equilibrium distance is 75X = 12.84 nm. This distance corresponds

eq
to the sum of the radius of a spectrin particle (0.34 nm) and the effective radius of the cytoplasmic
) 54

domain of the ankyrin complex connected to a Na,, channels (~12.5 nm) °*. We also restrict the

17



radial motion of ankyrin particles via a spring potential, which simulates the coupling of the Na,,

channels and consequently of ankyrin to the lipid bilayer.

Representation of microtubules in the APMS model

In addition to the actin and spectrin membrane skeleton, microtubules and neurofilaments play
critical roles in maintaining the mechanical structure of the axon. In our model, we consider that
microtubules interact with actin to keep the equilibrium ring-to-ring distance at 185 nm. To

simulate this effect of microtubules, we introduce the FENE potential U, =

d-dBR

2
—% ki Adpax In [1 - ( ) l The equilibrium distance between the centers of the two actin

max

rings is set to dig = 185 nm, the maximum allowed deformation is Adq, = 0.3 d§5, and the
distance between two consecutive actin rings is d , which is calculated by measuring the mean
value of the corresponding coordinate of particles belonging to the same ring. Finally, we
determine that k,, = 239 KzT /o =~ 19,822 KzT/d§F at T = 300 °K based on the longitudinal

Young’s modulus of the axon E; ~ 10 kPa *°. The parameters of this FENE potential can be

found in Table S1 2.

Summary of the axon computational model

The model of the spectrin filament consists of 1,755 particles and the model of each actin ring
comprises 39 particles. The model of the entire APMS consists of 137,085 particles. We use the
Beeman’s algorithm to integrate the equations of motion. The temperature of the system is

controlled by the Nose-Hoover thermostat at KzT /e = 0.22. The model is implemented in the

NVT ensemble with a timescale of t, =/ ma?/e and time step of At =0.01t;,. We first
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equilibrate the models for 10° time steps and then run it for 10 X 10° time steps after
equilibration. We performed the simulations on a high-performance computing cluster at the
University of Connecticut and on the San Diego Supercomputer Center supported by the Extreme
Science and Engineering Discovery Environment >°.
Langevin equation for actin and ankyrin particles
As we have mentioned previously, the axon plasma membrane consists of the APMS and the lipid
bilayer, which comprises not only phospholipids and cholesterol but also several integral
monotopic and transmembrane proteins °’. The spectrin filaments are located underneath the lipid
bilayer towards the cytoplasm and because of this, they do not extensively interact with the lipid
bilayer during axon extension. Actin rings and ankyrin particles on the other hand directly interfere
with the lipid bilayer during extension. In our simulation, we distinguish between these two cases
by employing the Langevin equation for the motion of actin and ankyrin particles while for the
spectrin particles we only consider the Nose-Hoover thermostat >®. Specifically, the motion of
ankyrin and actin particles is governed by the equation

m L= F,— f 4y pP (5)
Where m; represents the mass of particle i, f is the friction coefficient, which is identified to be
50 m; /tg. 7; is the position vector of particle i and t is time >°. F; is the force acting on the
particle due to accumulated deterministic particle interaction potential U, F? is related to the
environmental Gaussian white noise and it obeys the fluctuation-dissipation theorem:

(F7)=0 (6)

ZkBTf(Sij

BB\ —
(FEFFy = =22

(7)
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where kg is the Boltzmann’s constant, T = 300°K is the absolute environmental temperature, §;;

is the Kronecker delta, and At is the time step ®. The energy unit is kzT. The time step for the
numerical solution of the Langevin equation is At = 0.01t,, which is the same as the time step for

the Newtonian equation governing the motion of all other particles of the APMS model.

Results and Discussion

We first simulate the behavior of a single spectrin filament during extension and validate our
model using published experimental data, which show that spectrin tetramers unfold when the
extension force reaches a critical value. Then, we study how the APMS behaves during large
extensions at different extension rates and for different actin-spectrin association energies. We
also examine how unfolding of spectrin tetramers influences resistance of APMS during
extension. Additionally, we explore possible actin-spectrin dissociation and resulting partial or
complete axon rupture. Finally, we study relaxation of the APMS model when the axon’s length

1s held fixed after extension.

1. Unfolding of the Spectrin Filament

To study extension of a spectrin tetramer, we first equilibrate the filament for 10° time steps and
then stretch one of its ends at the constant speed of 0.05 g/t while the other end is fixed. As the
distance between the two ends of the filament increases, the extension force increases up to the
point where a repeat unfolds and the extension force abruptly decreases (Fig. 6). We note that a
spectrin repeat unfolds in an all-or-none process. Hence, the peak force marks the unfolding force
of a repeat whereas a distance between two consecutive peaks reflects the length increase (AL) of

the spectrin filament due to unfolding of one of the spectrin repeats. The sequential unfolding of

20



spectrin repeats exhibits a clear saw-tooth pattern. The peak of the extension force leading to repeat
unfolding lies between 33 pN to 41 pN (Fig. 6), which is close to reported experimental values of
25 pN to 35 pN ?°. Our model predicts that the average distance between two adjacent unfolding
peaks is AL = 32.2 + 0.8 nm at an extension speed of 0.05 o /t,. This result is close to the
experimental value of AL = 31.7 + 0.5 nm 2% #!. The elongation speed of the AFM experiments,
which produced a result very similar to our simulations, was 0.3 um/s %°. This corresponds to a
characteristic time t; = 1.0 X 10~*s. We note that at higher extension rates the pick unfolding
forces are higher. Specifically, at 0.10 o/t,, 0.20 g/tg, and 0.40 o/t the maximum forces are

38 pN, 44 pN, and 56 pN respectively.

60 r
50
40t
30

Force (pN)

50 100 150 200 250 300
Extension (nm)

Fig. 6. Force-extension curves for a section of a spectrin filament. Each unfolding event
increases the length of the spectrin filament by AL = 32.2 + 0.8 nm at an extension speed

of 0.05 a/t;.

2. Extension of the periodic APMS

In this section, we extend the APMS model at different extension rates and actin-spectrin
association energies and illustrate how spectrin unfolding and actin-spectrin dissociation impact
the corresponding force-extension curves. The results are shown in Fig. 7. We chose the
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association energies 1.72 eV, 0.86 eV, 0.43 eV, 0.22 eV, and 0.11 eV, which range from stable
to unstable configurations for the extension rates of 0.05a/t; , 0.10 /ts, 0.20 o /t;, and
0.40 o/t,. Considering that ¢ = 0.61 nm the actual extension rates are 0.3 um /s, 0.6 um /s,
1.2 um /s, and 2.4 um / s respectively. The original distance between actin rings at initiation of
stretching is 160 nm, which is smaller than the contour length L. of a spectrin filament. The

corresponding actual strain rates are 1.87 s™1, 3.75s71, 7.5 s  and 15 s71.
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Fig. 7. APMS extension properties under different actin-spectrin association energies and
extension rates. The association energy of the simulation corresponding to blue line is 1.72eV.
From the orange line to the green line, the association energy between actin and spectrin end varies
from 0.86 eV, 0.43 eV, 0.215 eV, and 0.108 eV respectively, at extension rates (A) 0.05 a/t,, (B)
0.100/t,, (C) 0.20 6/t;, and (D) 0.40 g/t,. The dash line represents extension of spectrin

filaments with respect to axon’s physiological length.

We found that at the low extension rates of 0.05 o /t; and 0.10 o/t and at association energies
of 1.72 eV and 0.86 eV there is no dissociation between actin and spectrin meaning that the entire
force-extension curve is the result of spectrin unfolding. Specifically, extension brings spectrin
filaments to their contour length followed by random unfolding (see Movie S1). The force-
extension curves have two clearly distinct regions. Initially, the force-extension curve is linear. In
the second region the average extension force does not increase meaning that the structure behaves
as a perfectly plastic material. In both regions, the linear response region and perfect plasticity
behavior region, we observe unfolding of filaments. The only difference between the two regions
is that the frequency of unfolding is much higher in the plastic region compared to linear response
region as it is shown in the case of 0.05 o / t; extension rate and 0.86 eV (Fig. S1). Unfolding
events are marked with vertical arrows. To better characterize the deformation mechanisms, we
next gradually reduce the extension starting at 180 nm displacement, after reaching the plastic
region, and at the same rates (0.05 o / t; and 0.10 o / t,) and association energies (0.86 eV and
1.72 eV) as with the extension simulations (Fig. S2). We find that there is permanent deformation

when the resisting force reaches its initial value. We observe that the permanent extension is due
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to the fact that unfolded sections of spectrin tetramers fold back only partially, at least during our

simulations time range.

To further clarify the linear force-extension increase, we perform axon extension simulations when
1,2, 6,12, and 24 spectrin filaments are attached to each pair of actin rings. In Fig. S3, we plot the
extension force vs. the displacement for all cases above for 0.05 o / t; extension rate and 0.86 eV
and we mark unfolding events with vertical arrows. We observe that in the case of one filament,
the unfolding events are associated with characteristic abrupt drops in the extension force.
However, in the case of two filaments we observe cases where unfolding is not associated with a
clear drop of the resisting force (Fig. S3). As the number of spectrin filaments increases to 6, 12,
and 24, the force-extension curve has an initial linear increase section despite the occurrence of

unfolding events (Fig. S3). This is due to non-synchronized unfolding events.

At the lower association energies of 0.43 eV, 0.215 eV, and 0.11 eV and at the extension rates of
0.050/t; and 0.10 0/t;, in addition to unfolding, we encounter actin-spectrin dissociation
causing a softening of the APMS after the extension force reaches a critical value (see Fig. 7A and
7B, table S3, Movie S2). As we can see in Fig. 7A, at 0.11 eV association energy, the critical
force is about 100 pN after which the stiffness of the APMS decreases and becomes gradually
almost zero because of extensive dissociation resulting in a final APMS configuration, which
cannot sustain any load. The small resisting force is due to viscous resistance. The same trend is
apparent for both 0.22 eV and 0.43 eV association energies (Fig. 7A). The difference between
0.050/t; and 0.10 o/t; extension rates is that actin-spectrin dissociation occurs at larger

extension forces for the higher extension rate of 0.10 o /t; compared to the lower rate of 0.05 /¢,

24



(Fig. 7A, B). We indeed show in Fig. S4 that at 0.43 eV and 0.05 o /¢, actin-spectrin dissociation
starts at approximately 380 pN force and increases gradually to almost complete actin-spectrin
disruption at very large extension. The numbers above the arrows in the graph of Fig. S4 indicate
the cumulative dissociated actin-spectrin junctions at the corresponding time point. As the
extension increases, the number of dissociated junctions tends to 39, which is the total number of
actin-spectrin associations per actin ring in our model, and the total resisting force decreases to
viscous resistance. We note that increment of decrease is not one because we output configurations
every 10* time steps. At 0.43 eV and 0.1 o/t actin-spectrin dissociation starts at approximately
420 pN force and it similarly increases gradually to almost complete actin-spectrin disruption at
approximately 200 nm extension. It is important to point out that at 0.10 o/t extension rate and
for 0.11 eV there is no spectrin unfolding during extension but only actin-spectrin dissociation
illustrated by a sharper force-extension decrease curve — from = 100 pN resisting force at =
20 nm extension to = 0 pN resisting force at = 30 nm extension - than in the corresponding case
at 0.05 o/t extension rate - from = 90 pN resisting force at = 20 nm extension to = 0 pN
resisting force at = 40 nm extension - where in addition to actin-spectrin dissociation spectrin

unfolding occurs as well (Table S3 and Fig. 7B).

Next, we describe the behavior of the APMS at the extension rate of 0.20 o/t for different actin-
spectrin association energies. At 1.72 el association energy, we did not observe actin-spectrin
dissociation but only spectrin unfolding. The force-extension curve increases linearly until the
yield point is reached at approximately 120 nm extension where considerable spectrin unfolding
occurs. At larger strains APMS behaves as a perfectly plastic material without further increase in

load bearing capacity (Fig. 7C). At association energies 0.86 eV and 0.43 eV both spectrin
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unfolding and actin-spectrin dissociation occur after approximately 110 nm and 70 nm extension
respectively resulting in a decreasing load bearing capacity as it is shown by the negative slope of
the force-extension curves (Fig. 7C). At 0.43 eV and at approximately 190 nm extension APMS
completely ruptures and it cannot support any load. Fig. S4C shows the cumulative number of
disrupted actin-spectrin junctions during extension. Complete disruption occurs at approximately
190 nm extension. We finally note that at 0.22 eV and 0.11 eV actin-spectrin association
energies, we do not observe unfolding of spectrin repeats but only actin-spectrin dissociation
resulting in an abrupt decrease of the extension force to almost zero at approximately 40 nm and

20 nm extension respectively corresponding to a complete rupture of the axon.

When the extension rate is 0.40 o/ts at 1.72 eV and 0.86 eV actin-spectrin association energies,
the force resistance increases linearly until extensions reach approximately 120 nm and 80 nm
respectively, where actin-spectrin links rupture and extensive spectrin unfolding occur. At larger
extensions force decreases because of actin-spectrin dissociations, which weaken the APMS. An
extension larger than 210 nm is required for complete collapse of APMS (Fig. 7D). At the
association energies of 0.43 eV, 0.215 eV, and 0.108 eV, we did not observe spectrin unfolding
but only actin-spectrin dissociation resulting in an abrupt decrease of the extension force to almost
zero at approximately 50, 30, and 15 nm extensions respectively corresponding to a complete
axon rupture (see table S3, Movie S3). Fig. S4D clearly shows that the rate of actin-spectrin
disruption for 0.43 eVassociation energy and 0.40 o/t extension rate is higher than in the case of
0.43 eVassociation energy and 0.20 ¢ /t,. In this case complete disruption occurs at only 90 nm

extension.
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0.40 o /t,.

Finally, we investigate the force required to initiate extension at different extension rates. We
observe that this force increases from approximately 44 pN at 0.05 o/t extension rate to 69 pN
at 0.10 o/t,;, 118 pN at 0.20 a/t, and 220 pN at 0.40 o/t extension rate (Fig. 8). The reason
for this increase is the viscous resistance of the lipid bilayer to the relative motion of the actin rings
and ankyrin G particles during extension. This resistance is represented by the Langevin equation
(Eq. 5). We also note that the fitted straight line intersects the force axis not at zero force but at
~20 pN at zero elongation. This is because the distance between the actin rings is not equal to the
equilibrium end-to-end distance of spectrin, which is approximately 81.5 nm, but it is 165 nm.
As aresult, a force is required to maintain this distance. To confirm this hypothesis, we perform a

simple calculation of the required force, using the worm-like-chain (WLC) model expression

Flp _ 1

=-1-5H"72- 2+ ~, where x = 130 nm is the spectrin filament initial length, which is
kgT 4 Le 4 L

obtained by subtracting the actin diameter of 35 nm from the distance of 165 nm between two
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actin rings. L, = 190 nm is the contour length, [, = 16.6 nm is the spectrin persistence length,
T = 300 °K, and kg = 1.38 x 10723 ] K~1 is the Boltzmann’s constant . The required force to
maintain the length of each spectrin filament to 130 nm is approximately 0.73 pN and since the
number of spectrin filaments between two actin rings is 39, the required overall force is predicted

to approximately be 28.6 pN which is close to our observed value (see Fig. 8).

3. APMS relaxation properties

In this section, we examine how the force required to keep APMS stretched at a constant
displacement changes as a function of time. APMS relaxation behavior depends on the initial
extension, on the extension rate, and on the actin-spectrin association energy since these factors
determine the degree of spectrin unfolding and actin-spectrin dissociation. We first investigate
APMS relaxation for 0.05 o/t extension rate and 0.86 eV association energy. In this case, there
is no actin-spectrin dissociation, which would have changed the structure of the APMS at different
extensions. The numerical experiment is designed as follows. First, we run the simulation for
2 x 10° time steps to reach thermal equilibrium and then extend the APMS model. During
extension, some of the spectrin repeats unfold. When the extension distance reaches a chosen value,
we fix the position of the two actin rings. At this point, the required applied force sharply drops
(Fig. 9) because the resistance to the movement of the actin rings by the solution and the plasma
membrane ceases, since it depends on the axon extension speed, and because of additional rapid
spectrin repeats unfolding as it is illustrated in Fig. S5. Keeping the APMS at fixed extension,
more spectrin repeats unfold (see Movie S4) resulting in an increase of the contour length of the
corresponding spectrin tetramers and a further decrease of the applied force required to maintain

the spectrin filaments extended. Repetition of the relaxation experiment, for different degrees of
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extension, results in a reduction of the extension force with time in all cases (Fig. 9). The
viscoelastic behavior of the APMS during relaxation is due to particle-particle interactions during
repeat unfolding. To model relaxation of the APMS, we adopt the three-element viscoelastic or
Zener model comprising a Voigt element (k,,7,) connected in series with a spring k; (Fig. S6).
1, 1s the viscosity of the material represented as a dashpot viscosity. The governing equation of

the Zener model is:

N2 df f _ M2kq de kiksy € (8)

ki+k, dt T katkp dt | kqtks

where € = €gH(t — ty). The time dependence of the required force is given by the expression f =

Ne Kk 1+
0 ky+k,

kqi+k;,
ko

t
e fc] , where t, =1,/ (ks + k;) is the displacement relaxation time °'.

Using least squares and nonlinear curve-fitting in Matlab, we find that the numerical data fit the
analytical solution of the Zener model for the values shown in table S4. The average k; =
0.94 mN / m and the average k, = 0.255 mN / m whereas 1, is smaller at low extension (time
step = 0.6 X 10°) when unfolding during relaxation is limited and has a higher average value of
N, = 0.23mN s/m at larger initial extensions when unfolding is more widespread. k; determines
the elastic resistance of the APMS at the initiation of relaxation and corresponds to a Young’s
modulus similar to the one produced by the model. k, is connected in series with k; and determine
the final decrease in stiffness of the APMS because of spectrin tetramers unfolding. 7, is an

indicator of unfolding frequency during relaxation.
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Fig. 9. APMS extensional relaxation properties at different extension distances. (A) Evolution
of the extension force of the APMS at 0.05 g/t, extension rate and 0.86 eV actin-spectrin

association energy. (B) Extension at different time steps.

We also examine the relaxation behavior of the APMS when the extension rate is O.40tE and the
S

actin-spectrin association energy is 0.86 eV/. In this case, in addition to spectrin unfolding actin-
spectrin dissociation and softening of the APMS occurs (Fig. 10). Dissociation occurs for time
larger than 2.5 X 10°t, when the stress curve starts decreasing with time. We again note that at
the beginning of relaxation the resistance force drops sharply because the viscous resistance to
actin rings becomes zero when the extension stops and because of additional rapid repeat unfolding
(Fig. S7). Using the Zener model, we determine the parameters kq, k,, and 77, (see table S5). For
the case of maximum extension without actin-spectrin dissociation (magenta curve in Fig. 10), we
find that k; = 1.18 mN/m, k, = 0.101 mN/m, and n, = 0.163 mN s/m. We observe that the

spring constants k; and k, are at the same order as in the first case since there is no actin-spectrin
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dissociation. For larger extensions the average k; = 0.63mN/m and the average k, =
0.07 mN/m whereas n, = 0.11 mN s/m. We observe that k; is lower than the corresponding
value when actin-spectrin dissociation has not occurred as it is expected. The value of k, and 1,
are also lower because actin-spectrin dissociation results to a lower degree of actual unfolding
since only the connected spectrin tetramers unfold. We note that literature values for the viscosity
of the RBC membrane, measured via micropipette experiments vary between 0.6 and 2.7uN s/m
62 which is approximately 100 times smaller than the value measured here. We compare to the
RBC membrane because its membrane skeleton comprises spectrin filaments connected to actin
junctions as in the APMS. However, in the RBC membrane skeleton spectrin filaments form an
isotropic hexagonal network when stretched ! ©. The difference in the viscosities is expected
because in the RBC at equilibrium the spectrin filaments have a junction-to-junction distance of
~80 nm and even at very large deformations relaxation does not involve unfolding but mostly
reduced entropic entanglement ®. In the case of the neuronal axon on the other hand, spectrin
filaments are near their contour length and extension and relaxation involves unfolding which is

determined by spectrin-spectrin interactions between spectrin-repeats.
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Fig. 10. APMS extensional relaxation properties at different extension distances. (A)
Evolution of the extension force of the APMS at 0.40 o/t extension rate and 0.86 eV actin-

spectrin association energy. (B) Extension at different time steps.

Discussion

The discovery of the periodic APMS and the related periodic arrangement of ankyrin G and sodium
channels in the AIS is a major development in our understanding of axonal mechanics and
functionality. Before this discovery, it was commonly thought that parallel longitudinal bundles of
microtubules are not only the substrate for vesicular transport but they are the structural backbone

of the axon as well & 13,

Since then, it has been acknowledged that the APMS provides lateral
stiffness to the axon via the actin rings *? and that it shields microtubules from axial stress '%. It

has also been shown that the APMS can act as a tensile shock absorber 2'.
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Besides its role in the mechanical behavior of axons, the APMS is very important for the stability
of microtubules, and consequently, the stability of the axon, as well since APMS-dependent
polymerization of microtubules is required for their maintenance '°. An important structural
element of the APMS is ankyrin G, which is an AIS scaffold protein acting as a master organizer,
as it is responsible for the recruitment of most AlS-enriched proteins ® %, In relation to its
structural function, the amino terminus of ankyrin G binds to BIV-spectrin *’ and the C terminus
binds to microtubule fascicles via plus-end-binding proteins EB1 and EB3 7 and via Ndell %7, In
a similar fashion, in the distal axon ankyrin-B binds to BlII-spectrin * ®® and to microtubules °.
These associations in both cases establish anchoring of the APMS to the endoplasmic microtubules
network and subsequent mechanical stability of the axon. In addition, ankyrin G is associated with
Na, channels resulting in a periodic distribution of Na, in the AIS and proximal axon. Na,
channels then assist tethering of the lipid bilayer to the APMS. It has also been shown that

periodicity of Na,, does not affect the action potential but it only localizes ionic currents .

It is known that axonal extension and torsion caused by mechanical forces can directly alter the
structure of an axon and/or trigger biochemical degradation '*!77% 7!, Force experiments usually

21,22,72 and it has been observed that axon

involve extension of an entire axon via a microneedle
typically have a viscoelastic response to extension 2?2, Modeling of the mechanical behavior of
axons during stretching or torsion, usually including growth or injury, typically involves discrete
representation of microtubules cross-linked by tau proteins '+ 2! 27 71. 7376 Finite elements
approaches are used to solve the resulting governing equations including viscoelastic responses >
I, A similar finite element-based approach uses a homogenized representation of the axon and it

often is part of brain tissue modelling 7.
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A very significant question is if the APMS directly influences axonal mechanics. It has been shown
that treatment of rat hippocampal neurons with latrunculin B, which inhibits actin polymerization,
reduces lateral Young’s modulus from 4.6 + 1.5 kPa to 2.2 + 0.6 kPa * indicating that actin
rings are important for the mechanical behavior of the axon. It has also been shown recently that
APMS plays a prominent mechanical role acting as a tension buffer in tensile experiments and that
chick dorsal root ganglion axons have a strain softening response 2!. Treatment of neurons with
F-actin stabilizer drug Jasplakinolide results in a significant increase of axonal stiffness at least at
the same level as caused by treatment with the microtubule stabilizer drug taxol. Treatment of
neurons with Nocodazole, which is a microtubule disrupting drug, or with latrunculin-A, which is
an F-actin disrupting drug, made the axons fragile in tensile experiments 2!. Furthermore, it has
been demonstrated, exploiting mutations in B-spectrin and microtubule network, that APMS in
combination with the microtubule network protects axons during extension and torsion '* 7. All

those results illustrate the importance of the APMS in axonal extension experiments.

In this work, we developed a CGMD model of the APMS to investigate its response to extension
taking into consideration that, while actin rings are stable, spectrin repeats can unfold under tension.
We note that we modeled the microtubule network implicitly considering only its effect on
maintaining the distance of actin rings at approximately 190 nm at equilibrium. One question is
then if the force-extension curve of the entire APMS exhibits the characteristic saw-tooth pattern
observed in single spectrin filament extension experiments 2°. Another important question is about
the effect of extension rate to the force response. Finally, we examine the behavior of the APMS

model during relaxation.
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The APMS model comprises longitudinal spectrin tetramers, which connect azimuthal rings. We
validated our CGMD model of spectrin tetramers by using experimental results that confirm the
persistence length of our model #***¢. The saw-tooth shape of the force-extension curve caused by
unfolding of spectrin repeats during extension simulations were also validated via experimental
results in terms of the maximum resistance forces and the overall shape of the force-extension
curve 2!, The model of the actin rings follows closely the model used in our previous publication
which has been validated against AFM experiments *2. One important consideration is the actin-
spectrin association energy. Because its value for the axon is not known, we used values
0.11,0.22,0.43,0.86, and 1.72 eV, which are in the same order of magnitude as the actin junction
-spectrin association energy observed in wild-type human RBCs, which is approximately 0.74 eV
49 Another important point is that we implemented the Langevin equation for the motion of the
actin rings and ankyrin particles because actin rings and ankyrin directly and indirectly through

their associated proteins interact with the lipid bilayer during extension.

The results provide a clear picture of how the APMS responds to extension. We observed that
during extension, even at moderate displacements and at low extension rates, unfolding of spectrin
repeat is common (Fig. S1). We also noticed that actin-spectrin dissociation, which results to
APMS softening, depends on the association energy level, as expected, and on the extension rate,
with faster extension rates making the network more brittle (Fig. 7, S4). The resisting force during
extension is on the order of 0.5 nN, which is one order of magnitude lower than forces developed
during extension experiments 2! 72, This is justified since in those experiments the entire axon,

including the microtubule network, was resisting to extension.
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The force-extension relationship is initially linear despite unfolding or spectrin filaments. To
clarify if this is due to the viscous effect of the Langevin equation, which is involved in the motion
of the actin rings and the ankyrin particles, or it is due to not synchronized unfolding of spectrin
filaments, we investigated several cases. In particular, we built APMS models with 1, 2, 6, 12, and
24 spectrin filaments with and without implementing the Langevin equations for the actin rings
and the corresponding ankyrin particles for the case of 0.05 o / t, extension rate and 0.86 eV
actin-spectrin association energy. We observed that the viscous forces did not affect the overall
shape of the force-extension curves but they shifted the overall force to higher values (Figs. S3,
S8 and S9). We can clearly see that in both cases — with and without viscous forces — abrupt
changes in the force-extension curve are observed only in the case of one filament between each
pair of rings (Figs. S3 and S8). We also note that the average load bearing is constant after an initial
increase similarly to the complete APMS model force-extension curve. In the case of two spectrin
filaments, we can still see a saw-tooth resembling pattern, which is correlated with multiple repeats
unfolding occurring in a distance much smaller than 32.2 + 0.8 nm, which is the characteristic
distance for single spectrin filament unfolding %. As the number of filaments increases multiple
repeats unfold in very short distances, compared to the characteristic length of 32.2 + 0.8 nm,

obscuring individual saw-tooth shapes independently if we consider the Langevin equation.

It is interesting to explore how our results compare to experimental results with respect to a
combination of strain and strain rates. As we mentioned at the beginning of the “results” section
the corresponding actual strain rates are 1.87 s™1, 3.75s71, 7.5 s71 and 15 s~ 1, while the strain

reaches up to 100%. It is known that strain rates exceeding 10 s~* cause diffuse axonal injury .
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It has been found that during mild to severe traumatic brain injury (TBI) events caused by blunt-
force, brain tissue is subjected to 10 — 50% strains and up to 50 s~ strain rates ’> 3!, It is also
known that brain tissue deformations caused by electromagnetic or sonic-based directed energy

1 and approach 1000 s~ 3283 Clearly our simulations are

can occur at high strain rates > 100 s~
in the range of low and moderate strain rates 5. Because of this, we ran an additional simulation
at 30 s~ strain rate for the highest assumed actin-spectrin association energy of 1.72 eV. We
observed that at this strain rate all actin-spectrin junctions were dissociated at the very beginning
of the simulation. This means that the actin-spectrin membrane skeleton is very brittle at strain

rates higher than 15 s™1

and it cannot sustain fast impact loading. This finding is in agreement
with experimental results, which show that at low strain rates axons can accommodate even up to
100% strain without microstructural defects including defects in microtubules °. However, at
moderate and high strain rates axons sustain significant injury leading to swelling, degeneration,
and cell death!®7?. Axonal injury in those cases has mainly been attributed to microtubule rupture,
detachment of tau proteins, and disruption of microtubules organization ' 7> %3, Here, we propose
that dissociation of actin-spectrin junctions and subsequent compromise of the APMS is an

additional factor, which plays an important role in axon degeneration under large strains and high

strain rates.

At large extensions, the behavior of the APMS is perfectly plastic as long as actin-spectrin
dissociation does not occur (Fig. 7A, B). When actin-spectrin dissociation occurs, because of
reduced actin-spectrin association energy and/or because of increased extension rate, the APMS
softens. This results in a decreasing resisting force as extension increases because of accumulated

defects in the membrane skeleton. At the final stages, the APMS is completely ruptured and the
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force resisting to extension approaches zero (Fig. 7). We note that when actin-spectrin dissociation
occurs but not spectrin repeats unfolding takes place, the force-extension curve abruptly drops
close to zero at large extension rates (0.2 and 0.4 ¢ / t5) and at low actin-spectrin association
energies (0.11 and 0.22 eV) (Fig. 7C, D). We also confirmed that rupture of the APMS at actin-
spectrin binding sites is not reversible not only during extension but also at equilibrium because
spectrin filaments are at entropic tension and after dissociation they recoil from their original
configuration with a 190 nm end-to-end distance to their equilibrium free-end configuration with

a 81.5 nm end-to-end distance.

Finally, we investigated the behavior of the APMS model during relaxation which is due to
additional spectrin unfolding when the extension is held constant for a large number of time steps.
To analytically model the process, we used the Kelvin-Voigt representation of the Zener model
which comprises two spring elements (k4, k,) and one dashpot element 7,. The viscous response
is due to sliding interactions between repeats during the process of unfolding. We note that when
extension stops and relaxation response starts, we observed a sharp drop to the resisting force. This
drop was due to discontinuation of the drag force applied to actin rings and to rapid unfolding of
actin repeats. This is clearly illustrated in Figs. S7, S9, and S10 which correspond to 0.86 eV and
0.05 0 / ts (Fig. S9) and 0.4 ¢ / t, (Figs. S7 and S10) cases. The arrows, which indicate when a
repeat unfolding happens, clearly show that at the sharp drops of the resisting forces, rapid spectrin

unfolding occurs.

Conclusion:
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We investigated how the recently discovered periodic APMS endows the axon with structural
stability during extension, which can be significant even in everyday activities. Specifically, we
introduced a coarse-grain molecular dynamics model for the APMS consisting of actin rings
connected by extendable longitudinal spectrin filaments and implemented breakable actin-spectrin
protein associations. We showed that APMS protects an axon from catastrophic collapse during
large extensions by acting as a series of molecular dashpots buffering tension. We predicted that
during extension the force response is initially linear despite limited unfolding of spectrin repeats.
However, at larger deformations unfolding spreads out and the APMS becomes perfectly plastic
protecting the membrane skeleton from disruption. We also showed that reduction of extension of
the APMS until the resisting force reaches its initial value results in a permanent APMS
displacement because spectrin filaments only partially folded back to their original configuration.
Overall, at low extension rates, spectrin unfolding and ensuing reduction of the force resisting to
axon extension shield APMS from actin-spectrin dissociation and fragmentation. At higher
extension rates, in addition to unfolding, rupture of actin-spectrin links occurs softening and finally
severing the axon. Finally, during relaxation simulations, the required extension force decreases

exponentially, due to continuous unfolding of spectrin filaments.
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