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Abstract 

It was recently revealed via super-resolution microscopy experiments that the axon plasma 

membrane skeleton (APMS) comprises a series of periodically arranged azimuthal actin rings 

connected via longitudinal spectrin filaments forming an orthotropic network. The common 

perception is that APMS enhances structural stability of the axon but its impact on axon 

deformation is unknown. To investigate the response of the APMS to extension, we introduce a 

coarse-grain molecular dynamics model consisting of actin particles forming rings and chains of 

particles representing spectrin tetramers with repeats than can unfold. We observe that the shape 

of force-extension curve is initially linear and the force level depends on the extension rate. Even 

during the initial deformation stage, unfolding of spectrin repeats occurs, but the saw-tooth shape 

of the corresponding force-extension curve observed in the case of one spectrin tetramer does not 

appear in the case of the entire APMS. The reason is that spectrin unfolding is not synchronized 

across filaments during extension. If actin-spectrin associations remain intact, the force-extension 

response reaches a perfectly plastic region because of increased spectrin unfolding frequency. 

However, when actin-spectrin links dissociate, which can happen at moderate and high extension 

rates, APMS softens and the resistance force decreases linearly as the axon elongates until it 

reaches a point where the APMS is completely severed. Furthermore, when the ring-to-ring 

distance is maintained fixed under stretch, the resistance force relaxes exponentially as a function 

of time due to additional unfolding of spectrin tetramers following the Kelvin-Voigt representation 

of the Zener model. 
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Introduction 

An axon is typically a long cylindrical neuronal projection whose main function is to integrate 

electrical signals and transmit them as a single or a sequence of action potentials. It consists of the 

plasma membrane and several endoplasmic filaments and organelles including microtubules, 

neurofilaments, and mitochondria. The axon plasma membrane (APM) is formed by two main 

substructures: the phospholipid bilayer and the membrane skeleton 1, 2. In recent years, significant 

progress has been made in relation to the structural characterization of the axon plasma membrane 

skeleton (APMS). Importantly, in 2013 it was revealed via super-resolution microscopy that the 

APMS comprises a series of periodically arranged azimuthal actin rings connected via longitudinal 

spectrin tetramer filaments and other associated molecules with an approximately 190 𝑛𝑚  

periodicity of the actin rings (Fig. 1A) 3. In mature neurons (DIV > 10), the lipid bilayer is anchored 

to the APMS via ankyrin G, in the axon initial segment (AIS) and proximal axon, and via ankyrin 

B in the distal axon 4, 5. Ankyrin links the membrane skeleton and the endoplasmic filamentous 

axon skeleton by binding to the carboxyl terminus of beta IV-spectrin, which is located near the 

middle area of a spectrin tetramer, and to a microtubule via microtubule-associated proteins 6, 7. 

The distribution of ankyrin along the axon is thus highly periodic and in an out-of-phase 

arrangement with respect to actin. We note that voltage-gated sodium ( 𝑁𝑎௩ ) channels are 

associated to ankyrin G in the AIS and as a result their plasma membrane distribution is also 

periodic and out-of-phase with respect to actin rings 3. 

 

It is important for axons to maintain their morphology and integrity during deformations which 

can be significant even during normal daily activities. It had been routinely hypothesized that 

stability of the axon is mainly due to endoplasmic filaments and specifically to bundles of 
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microtubules because of their large stiffness compared to plasma membrane 1, 8-11. However, the 

recent discovery of the unique periodic structure of the APMS and its connectivity to endoplasmic 

filaments via Ankyrin, offers new possibilities in understanding neuronal axons durability. It was 

recently shown that the APMS can significantly shield microtubules during applied tissue stress 

12. Additionally, it has been demonstrated that the loss of beta-spectrin, one of the main 

components of APMS, in C-elegans leads to spontaneous breaking of axons, which is caused by 

mechanical strains generated by mere animal movement, and that such axon breaking phenotype 

can be prevented by paralyzing the animal to reduce movement induced mechanical strains 13, 14. 

It was also recently shown that actin rings are required to maintain microtubule organization 15. 

Due to those findings it is now accepted that the APMS in coordination with microtubules and 

other axonal filaments such as neurofilaments contributes in maintaining integrity and mechanical 

stability of the axon 16-18.  

 

Axonal extension has attracted a significant interest due to its relation to traumatic axonal injury, 

which is an important type of traumatic brain injury leading to localized axon damage, partial 

disruption of intracellular transport, and subsequent degeneration 10, 19. It has also been shown that 

it is related to neurotransmission because it interferes with clustering of neurotransmitter vesicles 

20. There is significant experimental evidence that an observable interaction between the 

endoplasmic cytoskeleton and the APMS during axon extension experiments occurs 21. However, 

it is important to clarify the mechanical behavior of the APMS separately from the endoplasmic 

cytoskeleton. While there exists a significant amount of work on modeling of the behavior of the 

entire axon during extension 22-26 and in particular of the microtubules network 11, 27, there is a very 
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limited work on modelling extension of the APMS. In this paper, we focus on just that, the 

mechanical behavior of the APMS during extension and during relaxation. 

 

One of the main filaments comprised in the APMS is the spectrin tetramer, which is formed by 

two antiparallel heterodimers consisting of α- and β-subunits with 22 and 17-triple-helical domains, 

respectively 28. Single molecule atomic force microscopy experiments demonstrated that an 

individual spectrin repeat mechanically unfolds in an all-or-none process when it is subjected to 

25 to 35 𝑝𝑁 force and it refolds when it is relaxed 29. Under tension the alternative topologies 

could gain mechanical stability. These distinct properties of spectrin filaments critically determine 

the behavior of the APMS and most likely of the entire axon during extension 30. Actin rings are 

formed by actin filaments and the associated actin-capping protein adducin and are stable after 7 

Days in Vitro (DIV). Actin and spectrin are cross-linked to form the APMS in the presence of 

ankyrin. Maturation of the axon is dynamic and it is evolved during the early stages before it 

reaches its final structure at approximately DIV 10 5, 31. 

 

In this paper, we investigate the mechanical behavior of the APMS under extension and relaxation. 

To this end, we develop a spring chain model for spectrin tetramers allowing unfolding of spectrin 

repeats under extension and refolding when no force is applied. We validate the model by 

comparing numerical and experimental results 29. We also implement a model for actin rings, 

which can reproduce the axon’s stiffness as measured via atomic force microscopy 32. By 

combining the two models and with the addition of a particle representation of ankyrin, we build 

a particle-based model for the APMS. We note that we implement dynamic association between 

actin and spectrin allowing, in principle, dissociation and re-forming of actin-spectrin links. Then, 
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we use the model to investigate the mechanical behavior of the APMS during extension and 

relaxation taking into consideration possible unfolding of spectrin filaments and dissociation of 

actin-spectrin links. 

 

Model and methods 

In this section, we introduce a coarse-grain molecular dynamics (CGMD) model for the APMS 

comprising azimuthal actin rings connected to longitudinal foldable spectrin filaments, which are 

connected to ankyrin particles (Fig. 1). 

 

1. Computational model for the axonal actin rings 

The actin rings consist of short actin filaments arranged along the circumference of the axon 3. 

Because the exact molecular structure of the actin rings is not known and whether actin filaments 

are connected side by side or they are in an end-to-end arrangement has not been determined, we 

adopted a coarse-grain particle model that produces stable actin rings but it does not consider 

their specific molecular structure 32. In this coarse-grain particle model, an actin ring contains 39 

actin beads (Fig. 1A) with a bead diameter of approximately 35 𝑛𝑚, which is close to the size of 

actin junctions in red blood cells (RBCs) 33. These beads form a circle with a diameter of 

approximately 434 𝑛𝑚, which is within the range of an actual axon diameter 3, 5.   



7 
 

 

 

 



8 
 

Fig. 1. Organization of the AIS plasma membrane. (A) (Left) Illustration depicting the structure 

of the axon and AIS plasma membrane. (Right) Illustration of the APMS model. The red particles 

represent actin junctions, which form actin rings. Each actin ring has a diameter of 434 𝑛𝑚 and 

comprises 39 actin junctions.  (B) Detailed illustration of the organization of the APMS model. 

An actin particle (red) is connected to a repeat of the terminus of the corresponding spectrin 

filament. The virtual balls of each repeat are enumerated. For example, the first repeat extends 

from virtual ball 𝑁𝑜. 1 to 𝑁𝑜. 15. Each virtual ball comprises three beads interacting via spring 

and L-J potentials. The virtual balls interact directly via a FENE angular potential and indirectly 

via their corresponding beads. 

 

 Adjacent actin particles 𝑖  and 𝑗  in the same ring are connected via a spring potential  

𝑈௦௣௥௜௡௚
஺஺ ሺ𝑟௜௝

஺஺ሻ ൌ 1 2⁄ 𝑘஺ሺ𝑟௜௝
஺஺ െ 𝑟௘௤

஺஺ሻଶ and the purely repulsive L-J, or as it is sometime called 

Weeks-Chandler-Andersen (WCA) 34 potential  

𝑈ௐ஼஺
஺஺ ሺ𝑟ij
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4𝜀஺஺ ቈ൬

ௌಲಲ
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ಲಲ൰

ଵଶ

െ ൬
ௌಲಲ
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ಲಲ൰

଺

቉ ൅ 𝜀஺஺               𝑟ij
஺஺ ൏ 𝑟cut, LJ

஺஺ ൌ 𝑟௘௤
஺஺

                     0                                   𝑟ij
஺஺ ൐ 𝑟cut, LJ

஺஺ ൌ 𝑟௘௤
஺஺

                                 (1)   

 with 𝑟௘௤
஺஺ ൌ 35 𝑛𝑚 and 𝑟cut, LJ

஺஺ ൌ 𝑟௘௤
஺஺. We chose the cutoff distance 𝑟cut, LJ

஺஺  of the potential to be the 

equilibrium distance between two actin particles ሺ𝑟௘௤
஺஺ ൌ 2ଵ ଺⁄ 𝑆஺஺ሻ , which means that 𝑆஺஺ ≅

31.18 𝑛𝑚 and since, as we will explain in the next section, our unit length is 𝜎 ൌ 0.61 𝑛𝑚, then 

𝑆஺஺ ≅ 51𝜎. The value of the spring constant 𝑘஺ ൌ 38 𝜀/𝜎ଶ is determined based on computational 

results in conjunction with the AFM stiffness measurement of the axon plasma membrane 32. In 

addition, we employ a finitely extensible nonlinear elastic (FENE) bending potential 𝑈௕
஺஺ሺ𝜃ሻ ൌ
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െ
ଵ

ଶ
𝑘௕

஺஺∆𝜃௠௔௫𝑙𝑛 ൤1 െ ቀ ఏିఏబ

∆ఏ೘ೌೣ
ቁ

ଶ
൨  to maintain the circular configuration of the actin rings. In the 

FENE bending potential, 𝑘௕
஺஺ ൌ 3500 𝐾஻𝑇 determine the bending stiffness of the actin filament. 

This value of 𝑘௕
஺஺ resulted in actin filament bending rigidity 𝜅௕௘௡ௗ ൌ 7.1 ൈ 10ିଶ଺ 𝑁𝑚ଶ, which is 

consistent with a reported experimental value of 7.3 ൈ 10ିଶ଺ 𝑁𝑚ଶ 35, 36. 𝜃 is the angle formed by 

three consecutive actin beads in the same actin ring, 𝜃଴ ൌ ଵ଼଴°ሺଷଽିଶሻ

ଷଽ
ൌ 170.77° is the equilibrium 

angle, and ∆𝜃௠௔௫ ൌ 0.3 𝜃଴ is the maximum allowed bending angle (Table S1). We note that the 

combination of 𝑘௕
஺஺ and 𝛥𝜃௠௔௫ in the bending potential equation determines the stiffness of the 

structure. The angle ∆𝜃௠௔௫ defines the maximum local deformation of the actin rings but its exact 

value does not affect the behavior of the system near equilibrium. Because of this, we chose to 

use 𝛥𝜃௠௔௫ ൌ 0.3 𝜃଴ 32. 
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Fig. 2. Interaction potentials employed in the APMS model. (A) L-J potential between actin 

and the associated spectrin bead. (B) The green curve represents the spring potential between 

consecutive spectrin beads in one filament. The black curve represents the purely repulsive WCA 

potential between spectrin beads. (C) L-J potential between two end spectrin beads belonging to 

the same virtual ball. The cutoff distance for this potential is 1. 5 ൈ 2ଵ/଺𝜎, which is close to the 

corresponding inflection point. (D) L-J potential between spectrin beads from different virtual 

balls, which belong to neighboring segments in the same spectrin repeat. 

 

2. Computational model for spectrin filaments 
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A spectrin filament is a tetramer comprised of two identical, intertwined antiparallel heterodimers. 

Each dimer in a mature neuron after DIV 10 comprises an αII-spectrin filament consisting of 22 

homologous triple-helical repeats, and a βIV-spectrin filament in the AIS and proximal axon or a 

βII-spectrin filament in the distal axon, consisting of 17 homologous triple-helical repeats 28, 31, 37. 

In this work, we represent a spectrin tetramer as a chain of 39 repeats. The length of a repeat is 

𝐿௖/39 ൌ 5.1 𝑛𝑚 with 𝐿௖ ≃ 200 𝑛𝑚 being the contour length of a spectrin tetramer (Fig. 1B). It 

has been shown that the repeats are mostly 106 amino-acids long, which are arranged in three 

antiparallel stranded α-helical coils 38. Considering that the length of each amino acid is 

approximately 0.15 𝑛𝑚  39, the length of each repeat is estimated to approximately be 

106/3 ൈ 0.15𝑛𝑚 ൌ  5.3 𝑛𝑚 , which matches the repeat length implemented in the spectrin 

filament model here 39.  For α-helical segments, the length of the residue is 0.15 𝑛𝑚, whereas, for 

non-helical segments, the length is 0.37 𝑛𝑚 per residue 40. To obtain the same characteristics of 

α-helical segments, we use a virtual ball structure containing 3 beads successively connected via 

a spring potential (Fig. 1B). The center of a virtual ball is the center of mass of the three 

corresponding spectrin beads.  

 

All three beads in a virtual ball interact via the WCA potential 

𝑈ௐ஼஺
ௌௌ ሺ𝑟ij

ௌௌሻ ൌ ቐ
4𝜀ௌௌ ቈ൬

ௌೄೄ
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ೄೄ൰

ଵଶ

െ ൬
ௌೄೄ

௥ij
ೄೄ൰

଺

቉ ൅ 𝜀ௌௌ               𝑟ij
ௌௌ ൏ 𝑟cut, LJ

ௌௌ ൌ 𝑟௘௤
ௌௌ

                     0                                   𝑟ij
ௌௌ ൐ 𝑟cut, LJ

ௌௌ ൌ 𝑟௘௤
ௌௌ

                                                (2) 

where the equilibrium distance is 𝑟𝑒𝑞
𝑆𝑆 ൌ 21 6⁄ 𝑆𝑆𝑆, and 𝑆ௌௌ ൌ 𝜎. The actual estimation for 𝑟௘௤

ௌௌ is 

explained later in this section. In addition, the two end beads 𝑖 and 𝑗 in one virtual ball interact 

with each other through a Lennard-Jones (L-J) potential 
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𝑈௅௃
ௌௌ஻ሺ𝑟௜௝
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4𝜀𝑆𝑆𝐵 ቈ൬ௌೄೄಳ

௥೔ೕ
ೄೄಳ൰

12
െ ൬ௌೄೄಳ

௥೔ೕ
ೄೄಳ൰

6
቉ ൅ 𝜀𝑆𝑆𝐵         𝑟ij

𝑆𝑆𝐵 ൏ 𝑟cut, LJ
𝑆𝑆𝐵 ൌ 1.5 𝑟𝑒𝑞

𝑆𝑆

                    0                                 𝑟ij
𝑆𝑆𝐵 ൐ 𝑟cut, LJ

𝑆𝑆𝐵 ൌ 1.5𝑟𝑒𝑞
𝑆𝑆

                          (3) 

where 𝑆ௌௌ஻ ൌ 𝜎. We chose a cutoff distance of 𝑟cut, LJ
ௌௌ஻ ൌ 1.5 𝑟௘௤

ௌௌ because dissociation between the 

two end beads at the specific cutoff distance results in an increase of the length of the 

corresponding residue measured experimentally 39. 

 

A completely unfolded repeat contains not only the non-helical segments, which comprise 

elongated residues, but unfolded segments as well 39. The length of a fully unfolded repeat is 

approximately 31.7𝑛𝑚 based on force-extension AFM measurements obtained by Rief et al. 29, 41. 

In order for our model to represent unfolded segments, we use a three-segment structure. Virtual 

balls in the same repeat but in different segments interact via their corresponding spectrin beads 

through the Lennard-Jones (L-J) potential (Fig. 2D) 

𝑈௅௃
ீீሺ𝑟𝑖𝑗

𝐺𝐺ሻ ൌ ቐ
4𝜀ீீ ቈ൬
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଺

቉ ൅ 𝜀ீீ               𝑟ij
ீீ ൏ 𝑟cut, LJ

ீீ ൌ 2.5 𝑟௘௤
ௌௌ

                     0                                   𝑟ij
ீீ ൐ 𝑟cut, LJ

ீீ ൌ 2.5 𝑟௘௤
ௌௌ

                                  (4) 

where 𝑆ீீ ൌ 𝜎. Considering the size of a virtual ball, which contains 3 spectrin beads, we chose 

the cutoff distance of the potential to be 𝑟cut, LJ
ீீ ൌ 2.5 𝑟௘௤

ௌௌ, since it is approximately equivalent to 

the inflection point of the corresponding LJ potential between two virtual balls. This potential 

allows for unfolding of spectrin segments (Fig. 3).  

Overall, in our spectrin filament model, we use a chain of 1755 beads connected by a spring 

potential 𝑈௦௣௥௜௡௚
ௌௌ ሺ𝑟௜௝

ௌௌሻ ൌ 1 2⁄ 𝑘ௌሺ𝑟௜௝
ௌௌ െ 𝑟௘௤

ௌௌሻଶ  in series (Table S2). The equilibrium distance 
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between two consecutive virtual balls is 𝑟௘௤
஻஻ ≅ 𝐿௖ ሺ5 ൈ 39ሻ⁄ ≅ 1.03 𝑛𝑚, where 𝐿௖ ≅ 200 𝑛𝑚. 

Two consecutive repeats contain 10 virtual balls or 15 beads along their length (see Fig. 1B) 

resulting to an equilibrium distance between two beads within a virtual ball 𝑟௘௤
ௌௌ ≅

𝑟௘௤
஻஻  ൈ 10 / 15 ≅ 0.685 𝑛𝑚. A spectrin tetramer is a chain comprising 39 repeats. Each repeat 

contains 45 beads grouped in 15 virtual balls, which are arranged in 3 segments of 5 virtual balls 

per segment. Furthermore, all spectrin beads interact via the WCA potential (Eq. 2), where the 

equilibrium distance is 𝑟𝑒𝑞
𝑆𝑆 ൌ 21 6⁄ 𝜎 ൌ 0.685 𝑛𝑚 yielding a unit length of 𝜎 ≅ 0.61 nm. 

 

Fig. 3. Representation of a spectrin repeat. There are 3 segments in one repeat. The same color 

beads are within one segment of a repeat. (A) Folded spectrin repeat. (B) Unfolded spectrin 

repeat. 

 

Finally, in each segment we apply the FENE bending potential of 𝑈௕
஻஻ ൌ െ ଵ

ଶ
𝑘௕

஻஻ 𝛥𝜃௠௔௫   𝑙𝑛 ൤1 െ

ቀ ఏିఏబ

௱ఏ೘ೌೣ
ቁ

ଶ
൨  between consecutive virtual balls to stabilize the shape of the spectrin repeat (Table 

S2), where 𝑘௕
஻஻ ൌ 5𝐾஻𝑇 is the stiffness that directly controls the bending rigidity of segments. The 

angle formed by the three consecutive spectrin virtual balls of the same segment is  𝜃 with an 
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equilibrium angle 𝜃଴ ൌ 180°, which means that the consecutive virtual balls are initially located 

along a straight line (Fig. 1B). The maximum allowed deformation angle is 𝛥𝜃௠௔௫ ൌ 0.3 𝜃଴. We 

note that, similar to actin rings, the combination of 𝑘௕
஻஻ and 𝛥𝜃௠௔௫ determines the stiffness of the 

structure. However, the value of 𝛥𝜃௠௔௫ does not affect the behavior of a spectrin filament at small 

deformations near thermal equilibrium. Because of this, we choose to use 𝛥𝜃௠௔௫ ൌ 0.3 𝜃଴, which 

gives margin for flexibility to the bending potential 42.  

 

The persistence length of a free spectrin filament  

To obtain the persistence length of spectrin filaments and determine if the spectrin filament model 

is a good approximation for the spectrin tetramer in thermodynamic equilibrium, we record the 

evolution of the end-to-end distance (𝑟௘௘) of a single spectrin filament during 107 time steps after 

it reaches thermal equilibrium. The end-to-end distances follow a Gaussian distribution (Fig. 4) 

with a mean value of  〈𝑟௘௘
ଶ 〉ଵ ଶ⁄ ≅ 133.54 𝜎 ≅ 81.5 nm  at 𝐾஻𝑇 𝜀⁄ ൌ 0.22 , where  𝐾஻  is the 

Boltzmann’s constant and 𝑇 is the temperature which is 300°𝐾 in the simulation 32. This result is 

close to the experimental value of approximately 80.5 𝑛𝑚 for free spectrin tetramers at room 

temperature 43. The relation between the persistence length and the end-to-end distance for flexible 

filaments (𝑙௣ ൏൏ 𝐿௖) is given by 〈𝑟௘௘
ଶ 〉ଵ ଶ⁄ ≅ ඥ2𝑙௣𝐿௖ 44, and the contour length of spectrin filament 

is approximately 200 𝑛𝑚 37, 45. Based on the above quantities, we compute the persistence length 

of a spectrin filament to be 16.6 𝑛𝑚, which is close to the reported experimental values of 10 𝑛𝑚 

46 and 20 𝑛𝑚 43. 
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Fig. 4. Probability distribution of end-to-end distance (𝒓𝒆𝒆) of the free spectrin filament 

model during 𝟏𝟎𝟕 time steps at 𝑻 ൌ  𝟑𝟎𝟎 °𝑲. The associated normalized Gaussian probability 

density is also shown (red line). 

 

3. Computational Model of the APMS 

We combine the actin ring and spectrin filament models described above along with a particle 

representation of ankyrin to simulate the APMS (Fig. 5). The spectrin filaments in a normal 

neuronal axons are extended to approximately their contour length. The APMS behaves as an 

orthotropic material with different mechanical properties in the azimuthal direction compared to 

longitudinal direction. We note that the main difference between the current work and the work by 

Zhang et al. 32 is that here the spectrin filaments are extendable while in the previous work they 

were not. This difference allows us to study extension of the APMS axons beyond the artificial 

limit set by the spectrin contour length and to also study relaxation of the APMS. 
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Fig. 5. APMS model. (A) A section of the axon plasma membrane skeleton model comprising 

representation of one actin ring, spectrin filaments, and ankyrin particles. (B) The insert shows 

partially unfolded spectrin filaments during extension. 

 

Association between actin rings and spectrin filaments 

Super-resolution microscopy experiments have shown that the axonal actin rings are distributed 

periodically along the axon with a period of approximately 190 𝑛𝑚  connected by several spectrin 

tetramers 3, 47. We model the association between the end of the spectrin filament and the 

corresponding actin ring as a L-J potential 𝑈௅௃
஺ௌሺ𝑟௜௝ሻ ൌ 4𝜀ଶൣሺ𝑆஺ௌ/𝑟௜௝

஺ௌሻଵଶ െ ሺ26𝜎/𝑟௜௝
஺ௌሻ଺൧ ൅ 𝜀ଶ , 

where 𝑟௜௝
஺ௌ is the distance between actin and spectrin beads (Fig. 2A). The equilibrium distance 

between actin and spectrin is 2ଵ/଺ ൈ 26 𝜎 ≅ 17.84 𝑛𝑚  resulting to an actin junction size of 

approximately 35.68 𝑛𝑚 48. In the normal RBC the spectrin-actin junction association energy at 

equilibrium is approximately 17 𝐾𝑐𝑎𝑙 𝑚𝑜𝑙𝑒⁄ ൌ 0.74 𝑒𝑉 49. Because the actin-spectrin association 

energy in the APMS is not known, we selected it to be at a level similar with the one in RBCs. In 

particular, we investigated the behavior of the APMS when the actin-spectrin association energy 
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takes the values of 0.11 𝑒𝑉, 0.22 𝑒𝑉, 0.43 𝑒𝑉, 0.86 𝑒𝑉, and 1.72 𝑒𝑉. We note that association 

between actin and spectrin 𝑈௅௃
஺ௌሺ𝑟௜௝ሻ is annulled when the actin-spectrin distance  𝑟௜௝ is larger than 

the capture distance of 𝑅cut, LJ
஺ௌ ൌ ሺ26/7ሻଵ ଺⁄ ൈ  26𝜎 and it can be reformed when 𝑟௜௝ ൏  𝑅cut, LJ

஺ௌ . 

 

Association between the APMS and the lipid bilayer 

The phospholipid bilayer is associated to ankyrin G (in the AIS and proximal axon) or ankyrin B 

(in the distal axon) via channels linked to ankyrin such as voltage-gated sodium channels ሺ𝑁𝑎௩ሻ, 

which are connected to ankyrin G, or voltage-gated calcium channels (𝐶𝑎௩), which are connected 

to ankyrin B 4, 50-52. Ankyrin is then connected to βIV spectrin, in the AIS and proximal axon, or 

to βII spectrin, in the distal axon, in the middle of the spectrin tetramer tethering the phospholipid 

bilayer to the APMS 4, 51. This arrangement is supported by super-resolution microscopy data 

which show that 𝑁𝑎௩ channels exhibit a periodic distribution pattern that alternates with actin rings 

and co-localizes with ankyrin G in AIS 3, 47. We assign only one 𝑁𝑎௩ channel per ankyrin molecule. 

The reason for this is that the resulting 𝑁𝑎௩ channel density is approximately 150 channels per 

𝜇𝑚ଶ , which lies within the range of 110  to 300  channels per 𝜇𝑚ଶ  measured in the AIS 53. 

Following the same principle, we assign one 𝑁𝑎௩ per ankyrin B in the distal axon too. We note 

however that the number of channels connected to ankyrin does not affect our model since we only 

consider one anchoring point for the phospholipid bilayer per ankyrin. In our model, an ankyrin 

particle is connected to the 20th repeat of the spectrin filament by a spring potential 𝑈ௌ௄൫𝑟௜௝൯ ൌ

1 2⁄ k଴൫𝑟௜௝ െ  r௘௤
ௌ௄൯

ଶ
, where the equilibrium distance is 𝑟௘௤

ௌ௄ ൌ 12.84 nm. This distance corresponds 

to the sum of the radius of a spectrin particle (0.34 𝑛𝑚) and the effective radius of the cytoplasmic 

domain of the ankyrin complex connected to a 𝑁𝑎௩ channels (~12.5 𝑛𝑚) 54. We also restrict the 
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radial motion of ankyrin particles via a spring potential, which simulates the coupling of the 𝑁𝑎௩ 

channels and consequently of ankyrin to the lipid bilayer. 

 

Representation of microtubules in the APMS model 

In addition to the actin and spectrin membrane skeleton, microtubules and neurofilaments play 

critical roles in maintaining the mechanical structure of the axon. In our model, we consider that 

microtubules interact with actin to keep the equilibrium ring-to-ring distance at 185 𝑛𝑚 . To 

simulate this effect of microtubules, we introduce the FENE potential 𝑈௠௧ ൌ

െ ଵ

ଶ
 𝑘௠௧  𝛥𝑑௠௔௫ 𝑙𝑛 ቈ1 െ ൬

ௗିௗ೐೜
ೃೃ

௱ௗ೘ೌೣ
൰

ଶ

቉. The equilibrium distance between the centers of the two actin 

rings is set to 𝑑௘௤
ோோ ൌ 185 nm, the maximum allowed deformation is 𝛥𝑑௠௔௫ ൌ 0.3 𝑑௘௤

ோோ, and the 

distance between two consecutive actin rings is d , which is calculated by measuring the mean 

value of the corresponding coordinate of particles belonging to the same ring. Finally, we 

determine that 𝑘௠௧ ≃ 239 𝐾஻𝑇 𝜎⁄ ≃ 19,822  𝐾஻𝑇 𝑑௘௤
ோோ⁄  at 𝑇 ൌ 300 ௢𝐾 based on the longitudinal 

Young’s modulus of the axon 𝐸௅ ≃ 10 𝑘𝑃𝑎 55. The parameters of this FENE potential can be 

found in Table S1 32. 

 

Summary of the axon computational model  

The model of the spectrin filament consists of 1,755 particles and the model of each actin ring 

comprises 39 particles. The model of the entire APMS consists of 137,085 particles. We use the 

Beeman’s algorithm to integrate the equations of motion. The temperature of the system is 

controlled by the Nose-Hoover thermostat at 𝐾஻𝑇 𝜀⁄ ൌ 0.22. The model is implemented in the 

NVT ensemble with a timescale of 𝑡௦ ൌ ඥ𝑚𝜎ଶ 𝜀⁄  and time step of ∆𝑡 ൌ 0.01 𝑡௦ . We first 
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equilibrate the models for 10଺  time steps and then run it for 10 ൈ  10଺  time steps after 

equilibration. We performed the simulations on a high-performance computing cluster at the 

University of Connecticut and on the San Diego Supercomputer Center supported by the Extreme 

Science and Engineering Discovery Environment 56. 

 

Langevin equation for actin and ankyrin particles 

As we have mentioned previously, the axon plasma membrane consists of the APMS and the lipid 

bilayer, which comprises not only phospholipids and cholesterol but also several integral 

monotopic and transmembrane proteins 57. The spectrin filaments are located underneath the lipid 

bilayer towards the cytoplasm and because of this, they do not extensively interact with the lipid 

bilayer during axon extension. Actin rings and ankyrin particles on the other hand directly interfere 

with the lipid bilayer during extension. In our simulation, we distinguish between these two cases 

by employing the Langevin equation for the motion of actin and ankyrin particles while for the 

spectrin particles we only consider the Nose-Hoover thermostat 58. Specifically, the motion of 

ankyrin and actin particles is governed by the equation 

  𝑚௜
ௗమ𝒓೔

ௗ௧మ ൌ 𝑭௜ െ 𝑓
ௗ𝒓೔

ௗ௧
൅ 𝑭௜

஻ (5) 

Where 𝑚௜ represents the mass of particle 𝑖, 𝑓 is the friction coefficient, which is identified to be 

50 𝑚௜ /𝑡௦ .  𝑟௜  is the position vector of particle 𝑖 and 𝑡 is time 59. 𝑭௜  is the force acting on the 

particle due to accumulated deterministic particle interaction potential 𝑈 , 𝑭௜
஻  is related to the 

environmental Gaussian white noise and it obeys the fluctuation-dissipation theorem: 

〈𝑭𝑖
𝐵〉 ൌ 0                                                                                                                                                         (6) 

〈𝑭𝑖
𝐵𝑭𝑗

𝐵〉 ൌ
ଶ௞ಳ்௙ఋ೔ೕ

∆௧
                                                                                                                                                 (7) 
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where 𝑘஻ is the Boltzmann’s constant, 𝑇 ൌ 300°𝐾 is the absolute environmental temperature, 𝛿௜௝ 

is the Kronecker delta, and ∆𝑡 is the time step 60. The energy unit is 𝑘஻𝑇. The time step for the 

numerical solution of the Langevin equation is ∆𝑡 ൌ 0.01𝑡௦, which is the same as the time step for 

the Newtonian equation governing the motion of all other particles of the APMS model. 

 

Results and Discussion 

We first simulate the behavior of a single spectrin filament during extension and validate our 

model using published experimental data, which show that spectrin tetramers unfold when the 

extension force reaches a critical value. Then, we study how the APMS behaves during large 

extensions at different extension rates and for different actin-spectrin association energies. We 

also examine how unfolding of spectrin tetramers influences resistance of APMS during 

extension. Additionally, we explore possible actin-spectrin dissociation and resulting partial or 

complete axon rupture. Finally, we study relaxation of the APMS model when the axon’s length 

is held fixed after extension. 

 

1. Unfolding of the Spectrin Filament  

To study extension of a spectrin tetramer, we first equilibrate the filament for 10଺ time steps and 

then stretch one of its ends at the constant speed of 0.05 𝜎/𝑡௦ while the other end is fixed. As the 

distance between the two ends of the filament increases, the extension force increases up to the 

point where a repeat unfolds and the extension force abruptly decreases (Fig. 6). We note that a 

spectrin repeat unfolds in an all-or-none process. Hence, the peak force marks the unfolding force 

of a repeat whereas a distance between two consecutive peaks reflects the length increase (∆𝐿) of 

the spectrin filament due to unfolding of one of the spectrin repeats. The sequential unfolding of 
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spectrin repeats exhibits a clear saw-tooth pattern. The peak of the extension force leading to repeat 

unfolding lies between 33 𝑝𝑁 to 41 𝑝𝑁 (Fig. 6), which is close to reported experimental values of 

25 𝑝𝑁 to 35 𝑝𝑁 29. Our model predicts that the average distance between two adjacent unfolding 

peaks is  ∆𝐿 ൌ 32.2 േ 0.8 𝑛𝑚  at an extension speed of  0.05 𝜎/𝑡௦ . This result is close to the 

experimental value of ∆𝐿 ൌ 31.7 േ 0.5 𝑛𝑚 29, 41. The elongation speed of the AFM experiments, 

which produced a result very similar to our simulations, was 0.3 𝜇𝑚/𝑠 29. This corresponds to a 

characteristic time 𝑡௦ ≅ 1.0 ൈ 10ିସ𝑠. We note that at higher extension rates the pick unfolding 

forces are higher. Specifically, at  0.10 𝜎/𝑡௦, 0.20 𝜎/𝑡௦, and  0.40 𝜎/𝑡௦ the maximum forces are 

38 𝑝𝑁, 44 𝑝𝑁, and 56 𝑝𝑁 respectively. 

 

Fig. 6. Force-extension curves for a section of a spectrin filament. Each unfolding event 

increases the length of the spectrin filament by ∆𝐿 ൌ 32.2 േ 0.8 𝑛𝑚  at an extension speed 

of 0.05 𝜎/𝑡௦.  

 

2. Extension of the periodic APMS 

In this section, we extend the APMS model at different extension rates and actin-spectrin 

association energies and illustrate how spectrin unfolding and actin-spectrin dissociation impact 

the corresponding force-extension curves. The results are shown in Fig. 7. We chose the 
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association energies 1.72 𝑒𝑉, 0.86 𝑒𝑉, 0.43 𝑒𝑉, 0.22 𝑒𝑉, and 0.11 𝑒𝑉, which range from stable 

to unstable configurations for the extension rates of 0.05 𝜎/𝑡௦ , 0.10 𝜎/𝑡௦ , 0.20 𝜎/𝑡௦ , and 

0.40 𝜎/𝑡௦. Considering that 𝜎 ൌ 0.61 𝑛𝑚 the actual extension rates are 0.3 𝜇𝑚 ോ 𝑠, 0.6 𝜇𝑚 ോ 𝑠, 

1.2 𝜇𝑚 ോ 𝑠, and 2.4 𝜇𝑚 ോ 𝑠 respectively. The original distance between actin rings at initiation of 

stretching is 160 𝑛𝑚, which is smaller than the contour length 𝐿௖  of a spectrin filament. The 

corresponding actual strain rates are 1.87 𝑠ିଵ, 3.75 𝑠ିଵ, 7.5 𝑠ିଵ and 15 𝑠ିଵ.  
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Fig. 7. APMS extension properties under different actin-spectrin association energies and 

extension rates. The association energy of the simulation corresponding to blue line is 1.72eV. 

From the orange line to the green line, the association energy between actin and spectrin end varies 

from 0.86 eV, 0.43 eV, 0.215 eV, and 0.108 eV respectively, at extension rates (A) 0.05 𝜎/𝑡௦, (B) 

0.10 𝜎/𝑡௦ , (C) 0.20 𝜎/𝑡௦  and (D) 0.40 𝜎/𝑡௦ . The dash line represents extension of spectrin 

filaments with respect to axon’s physiological length. 

 

We found that at the low extension rates of 0.05 𝜎/𝑡௦  and 0.10 𝜎/𝑡௦ and at association energies 

of 1.72 𝑒𝑉 and 0.86 𝑒𝑉 there is no dissociation between actin and spectrin meaning that the entire 

force-extension curve is the result of spectrin unfolding. Specifically, extension brings spectrin 

filaments to their contour length followed by random unfolding (see Movie S1). The force-

extension curves have two clearly distinct regions. Initially, the force-extension curve is linear. In 

the second region the average extension force does not increase meaning that the structure behaves 

as a perfectly plastic material. In both regions, the linear response region and perfect plasticity 

behavior region, we observe unfolding of filaments. The only difference between the two regions 

is that the frequency of unfolding is much higher in the plastic region compared to linear response 

region as it is shown in the case of 0.05 𝜎 ോ 𝑡௦ extension rate and 0.86 𝑒𝑉 (Fig. S1). Unfolding 

events are marked with vertical arrows. To better characterize the deformation mechanisms, we 

next gradually reduce the extension starting at 180 𝑛𝑚 displacement, after reaching the plastic 

region, and at the same rates (0.05 𝜎 ോ 𝑡௦ and 0.10 𝜎 ോ 𝑡௦) and association energies (0.86 𝑒𝑉 and 

1.72 𝑒𝑉) as with the extension simulations (Fig. S2). We find that there is permanent deformation 

when the resisting force reaches its initial value. We observe that the permanent extension is due 



24 
 

to the fact that unfolded sections of spectrin tetramers fold back only partially, at least during our 

simulations time range. 

 

To further clarify the linear force-extension increase, we perform axon extension simulations when 

1, 2, 6, 12, and 24 spectrin filaments are attached to each pair of actin rings. In Fig. S3, we plot the 

extension force vs. the displacement for all cases above for 0.05 𝜎 ോ 𝑡௦ extension rate and 0.86 𝑒𝑉 

and we mark unfolding events with vertical arrows. We observe that in the case of one filament, 

the unfolding events are associated with characteristic abrupt drops in the extension force. 

However, in the case of two filaments we observe cases where unfolding is not associated with a 

clear drop of the resisting force (Fig. S3). As the number of spectrin filaments increases to 6, 12, 

and 24, the force-extension curve has an initial linear increase section despite the occurrence of 

unfolding events (Fig. S3). This is due to non-synchronized unfolding events.  

 

At the lower association energies of 0.43 eV, 0.215 eV, and 0.11 eV and at the extension rates of 

0.05 𝜎/𝑡௦  and 0.10 𝜎/𝑡௦ , in addition to unfolding, we encounter actin-spectrin dissociation 

causing a softening of the APMS after the extension force reaches a critical value (see Fig. 7A and 

7B,  table S3, Movie S2). As we can see in Fig. 7A, at 0.11 𝑒𝑉 association energy, the critical 

force is about 100 𝑝𝑁 after which the stiffness of the APMS decreases and becomes gradually 

almost zero because of extensive dissociation resulting in a final APMS configuration, which 

cannot sustain any load. The small resisting force is due to viscous resistance. The same trend is 

apparent for both 0.22 𝑒𝑉 and 0.43 𝑒𝑉 association energies (Fig. 7A). The difference between 

0.05 𝜎/𝑡௦  and 0.10 𝜎/𝑡௦  extension rates is that actin-spectrin dissociation occurs at larger 

extension forces for the higher extension rate of 0.10 𝜎/𝑡௦ compared to the lower rate of 0.05 𝜎/𝑡௦ 
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(Fig. 7A, B). We indeed show in Fig. S4 that at 0.43 𝑒𝑉 and 0.05 𝜎/𝑡௦ actin-spectrin dissociation 

starts at approximately 380 𝑝𝑁 force and increases gradually to almost complete actin-spectrin 

disruption at very large extension. The numbers above the arrows in the graph of Fig. S4 indicate 

the cumulative dissociated actin-spectrin junctions at the corresponding time point. As the 

extension increases, the number of dissociated junctions tends to 39, which is the total number of 

actin-spectrin associations per actin ring in our model, and the total resisting force decreases to 

viscous resistance. We note that increment of decrease is not one because we output configurations 

every 10ସ time steps. At 0.43 𝑒𝑉 and 0.1 𝜎/𝑡௦ actin-spectrin dissociation starts at approximately 

420 𝑝𝑁 force and it similarly increases gradually to almost complete actin-spectrin disruption at 

approximately 200 𝑛𝑚 extension.  It is important to point out that at 0.10 𝜎/𝑡௦ extension rate and 

for 0.11 𝑒𝑉 there is no spectrin unfolding during extension but only actin-spectrin dissociation 

illustrated by a sharper force-extension decrease curve – from ≅ 100 𝑝𝑁  resisting force at ≅

20 𝑛𝑚 extension to ≅ 0 𝑝𝑁 resisting force at ≅ 30 𝑛𝑚 extension - than in the corresponding case 

at 0.05 𝜎/𝑡௦  extension rate - from ≅ 90 𝑝𝑁  resisting force at ≅ 20 𝑛𝑚  extension to ≅ 0 𝑝𝑁 

resisting force at ≅ 40 𝑛𝑚 extension - where in addition to actin-spectrin dissociation spectrin 

unfolding occurs as well (Table S3 and Fig. 7B). 

 

Next, we describe the behavior of the APMS at the extension rate of 0.20 𝜎/𝑡௦ for different actin-

spectrin association energies. At 1.72 𝑒𝑉 association energy, we did not observe actin-spectrin 

dissociation but only spectrin unfolding. The force-extension curve increases linearly until the 

yield point is reached at approximately 120 𝑛𝑚 extension where considerable spectrin unfolding 

occurs. At larger strains APMS behaves as a perfectly plastic material without further increase in 

load bearing capacity (Fig. 7C). At association energies 0.86 𝑒𝑉  and 0.43 𝑒𝑉  both spectrin 
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unfolding and actin-spectrin dissociation occur after approximately 110 𝑛𝑚 and 70 𝑛𝑚 extension 

respectively resulting in a decreasing load bearing capacity as it is shown by the negative slope of 

the force-extension curves (Fig. 7C). At 0.43 𝑒𝑉 and at approximately 190 nm extension APMS 

completely ruptures and it cannot support any load. Fig. S4C shows the cumulative number of 

disrupted actin-spectrin junctions during extension. Complete disruption occurs at approximately 

190 𝑛𝑚  extension. We finally note that at 0.22 𝑒𝑉  and 0.11 𝑒𝑉  actin-spectrin association 

energies, we do not observe unfolding of spectrin repeats but only actin-spectrin dissociation 

resulting in an abrupt decrease of the extension force to almost zero at approximately 40 𝑛𝑚 and 

20 𝑛𝑚 extension respectively corresponding to a complete rupture of the axon.  

 

When the extension rate is 0.40 𝜎/𝑡௦ at 1.72 𝑒𝑉 and 0.86 𝑒𝑉 actin-spectrin association energies, 

the force resistance increases linearly until extensions reach approximately 120 𝑛𝑚 and 80 𝑛𝑚 

respectively, where actin-spectrin links rupture and extensive spectrin unfolding occur. At larger 

extensions force decreases because of actin-spectrin dissociations, which weaken the APMS. An 

extension larger than 210 𝑛𝑚  is required for complete collapse of APMS (Fig. 7D). At the 

association energies of 0.43 𝑒𝑉, 0.215 𝑒𝑉, and 0.108 𝑒𝑉, we did not observe spectrin unfolding 

but only actin-spectrin dissociation resulting in an abrupt decrease of the extension force to almost 

zero at approximately 50, 30, and 15 𝑛𝑚 extensions respectively corresponding to a complete 

axon rupture (see table S3, Movie S3). Fig. S4D clearly shows that the rate of actin-spectrin 

disruption for 0.43 𝑒𝑉association energy and 0.40 𝜎 𝑡௦⁄  extension rate is higher than in the case of 

0.43 𝑒𝑉association energy and 0.20 𝜎 𝑡௦⁄ . In this case complete disruption occurs at only 90 𝑛𝑚 

extension.  
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Fig. 8. Force required to initiate extension at extension rates 0.05 𝜎/𝑡௦, 0.10 𝜎/𝑡௦, 0.20 𝜎/𝑡௦ and 

0.40 𝜎/𝑡௦. 

 

Finally, we investigate the force required to initiate extension at different extension rates. We 

observe that this force increases from approximately 44 𝑝𝑁 at 0.05 𝜎/𝑡௦ extension rate to  69 𝑝𝑁 

at 0.10 𝜎/𝑡௦, 118 𝑝𝑁 at 0.20 𝜎/𝑡௦, and 220 𝑝𝑁 at 0.40 𝜎/𝑡௦ extension rate (Fig. 8). The reason 

for this increase is the viscous resistance of the lipid bilayer to the relative motion of the actin rings 

and ankyrin G particles during extension. This resistance is represented by the Langevin equation 

(Eq. 5). We also note that the fitted straight line intersects the force axis not at zero force but at 

~20 𝑝𝑁 at zero elongation. This is because the distance between the actin rings is not equal to the 

equilibrium end-to-end distance of spectrin, which is approximately 81.5 𝑛𝑚, but it is 165 𝑛𝑚. 

As a result, a force is required to maintain this distance. To confirm this hypothesis, we perform a 

simple calculation of the required force, using the worm-like-chain (WLC) model expression  
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, where 𝑥 ൌ 130 𝑛𝑚 is the spectrin filament initial length, which is 

obtained by subtracting the actin diameter of 35 𝑛𝑚 from the distance of 165 𝑛𝑚 between two 
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actin rings. 𝐿௖ ≃ 190 𝑛𝑚 is the contour length, 𝑙௣ ≃ 16.6 𝑛𝑚 is the spectrin persistence length, 

𝑇 ≅ 300 ௢𝐾, and 𝑘஻ ≅ 1.38 ൈ 10ିଶଷ 𝐽 𝐾ିଵ is the Boltzmann’s constant . The required force to 

maintain the length of each spectrin filament to 130 𝑛𝑚 is approximately 0.73 𝑝𝑁 and since the 

number of spectrin filaments between two actin rings is 39, the required overall force is predicted 

to approximately be 28.6 𝑝𝑁 which is close to our observed value (see Fig. 8). 

 

3. APMS relaxation properties 

In this section, we examine how the force required to keep APMS stretched at a constant 

displacement changes as a function of time. APMS relaxation behavior depends on the initial 

extension, on the extension rate, and on the actin-spectrin association energy since these factors 

determine the degree of spectrin unfolding and actin-spectrin dissociation. We first investigate 

APMS relaxation for 0.05 𝜎/𝑡௦ extension rate and 0.86 𝑒𝑉 association energy. In this case, there 

is no actin-spectrin dissociation, which would have changed the structure of the APMS at different 

extensions. The numerical experiment is designed as follows. First, we run the simulation for 

2 ൈ 10ହ  time steps to reach thermal equilibrium and then extend the APMS model. During 

extension, some of the spectrin repeats unfold. When the extension distance reaches a chosen value, 

we fix the position of the two actin rings. At this point, the required applied force sharply drops 

(Fig. 9) because the resistance to the movement of the actin rings by the solution and the plasma 

membrane ceases, since it depends on the axon extension speed, and because of additional rapid 

spectrin repeats unfolding as it is illustrated in Fig. S5. Keeping the APMS at fixed extension, 

more spectrin repeats unfold (see Movie S4) resulting in an increase of the contour length of the 

corresponding spectrin tetramers and a further decrease of the applied force required to maintain 

the spectrin filaments extended. Repetition of the relaxation experiment, for different degrees of 
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extension, results in a reduction of the extension force with time in all cases (Fig. 9). The 

viscoelastic behavior of the APMS during relaxation is due to particle-particle interactions during 

repeat unfolding. To model relaxation of the APMS, we adopt the three-element viscoelastic or 

Zener model comprising a Voigt element ሺ𝑘ଶ, 𝜂ଶሻ connected in series with a spring 𝑘ଵ (Fig. S6). 

𝜂ଶ is the viscosity of the material represented as a dashpot viscosity. The governing equation of 

the Zener model is:  
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where 𝜖 ൌ 𝜖଴𝐻ሺ𝑡 െ 𝑡଴ሻ. The time dependence of the required force is given by the expression 𝑓 ൌ
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೟೎൨ , where 𝑡௖ ൌ 𝜂ଶ ሺ𝑘ଵ ൅ 𝑘ଶሻ⁄  is the displacement relaxation time 61. 

Using least squares and nonlinear curve-fitting in Matlab, we find that the numerical data fit the 

analytical solution of the Zener model for the values shown in table S4. The average 𝑘ଵ ≅

0.94 𝑚𝑁 ോ 𝑚 and the average 𝑘ଶ ≅ 0.255 𝑚𝑁 ോ 𝑚 whereas 𝜂ଶ is smaller at low extension (time 

step ≅ 0.6 ൈ 10଺) when unfolding during relaxation is limited and has a higher average value of 

𝜂ଶ ≅ 0.23𝑚𝑁 𝑠 𝑚⁄  at larger initial extensions when unfolding is more widespread. 𝑘ଵ determines 

the elastic resistance of the APMS at the initiation of relaxation and corresponds to a Young’s 

modulus similar to the one produced by the model. 𝑘ଶ is connected in series with 𝑘ଵ and determine 

the final decrease in stiffness of the APMS because of spectrin tetramers unfolding. 𝜂ଶ  is an 

indicator of unfolding frequency during relaxation. 
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Fig. 9. APMS extensional relaxation properties at different extension distances. (A) Evolution 

of the extension force of the APMS at 0.05 𝜎/𝑡௦  extension rate and 0.86 𝑒𝑉  actin-spectrin 

association energy. (B) Extension at different time steps. 

 

 

We also examine the relaxation behavior of the APMS when the extension rate is 0.40 ఙ

௧ೞ
 and the 

actin-spectrin association energy is 0.86 𝑒𝑉. In this case, in addition to spectrin unfolding actin-

spectrin dissociation and softening of the APMS occurs (Fig. 10). Dissociation occurs for time 

larger than 2.5 ൈ 10ହ𝑡௦ when the stress curve starts decreasing with time. We again note that at 

the beginning of relaxation the resistance force drops sharply because the viscous resistance to 

actin rings becomes zero when the extension stops and because of additional rapid repeat unfolding 

(Fig. S7). Using the Zener model, we determine the parameters 𝑘ଵ, 𝑘ଶ, and 𝜂ଶ (see table S5). For 

the case of maximum extension without actin-spectrin dissociation (magenta curve in Fig. 10), we 

find that 𝑘ଵ ≅ 1.18 𝑚𝑁 𝑚⁄ , 𝑘ଶ ≅ 0.101 𝑚𝑁 𝑚⁄ , and 𝜂ଶ ≅ 0.163 𝑚𝑁 𝑠 𝑚⁄ . We observe that the 

spring constants 𝑘ଵ and 𝑘ଶ are at the same order as in the first case since there is no actin-spectrin 
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dissociation. For larger extensions the average 𝑘ଵ ≅ 0.63 𝑚𝑁 𝑚⁄  and the average 𝑘ଶ ≅

0.07 𝑚𝑁 𝑚⁄  whereas 𝜂ଶ ≅ 0.11 𝑚𝑁 𝑠 𝑚⁄ . We observe that 𝑘ଵ is lower than the corresponding 

value when actin-spectrin dissociation has not occurred as it is expected. The value of 𝑘ଶ and 𝜂ଶ 

are also lower because actin-spectrin dissociation results to a lower degree of actual unfolding 

since only the connected spectrin tetramers unfold. We note that literature values for the viscosity 

of the RBC membrane, measured via micropipette experiments vary between 0.6 and 2.7𝜇𝑁 𝑠 𝑚⁄  

62, which is approximately 100 times smaller than the value measured here. We compare to the 

RBC membrane because its membrane skeleton comprises spectrin filaments connected to actin 

junctions as in the APMS. However, in the RBC membrane skeleton spectrin filaments form an 

isotropic hexagonal network when stretched 1, 63. The difference in the viscosities is expected 

because in the RBC at equilibrium the spectrin filaments have a junction-to-junction distance of 

~80 𝑛𝑚 and even at very large deformations relaxation does not involve unfolding but mostly 

reduced entropic entanglement 64. In the case of the neuronal axon on the other hand, spectrin 

filaments are near their contour length and extension and relaxation involves unfolding which is 

determined by spectrin-spectrin interactions between spectrin-repeats. 
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Fig. 10. APMS extensional relaxation properties at different extension distances. (A) 

Evolution of the extension force of the APMS at 0.40 𝜎/𝑡௦  extension rate and 0.86 𝑒𝑉  actin-

spectrin association energy. (B) Extension at different time steps. 

 

Discussion 

The discovery of the periodic APMS and the related periodic arrangement of ankyrin G and sodium 

channels in the AIS is a major development in our understanding of axonal mechanics and 

functionality. Before this discovery, it was commonly thought that parallel longitudinal bundles of 

microtubules are not only the substrate for vesicular transport but they are the structural backbone 

of the axon as well 6, 15.  Since then, it has been acknowledged that the APMS provides lateral 

stiffness to the axon via the actin rings 32 and that it shields microtubules from axial stress 12. It 

has also been shown that the APMS can act as a tensile shock absorber 21. 
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Besides its role in the mechanical behavior of axons, the APMS is very important for the stability 

of microtubules, and consequently, the stability of the axon, as well since APMS-dependent 

polymerization of microtubules is required for their maintenance 15. An important structural 

element of the APMS is ankyrin G, which is an AIS scaffold protein acting as a master organizer, 

as it is responsible for the recruitment of most AIS-enriched proteins 65, 66. In relation to its 

structural function, the amino terminus of ankyrin G binds to βIV-spectrin 47 and the C terminus 

binds to microtubule fascicles via plus-end-binding proteins EB1 and EB3 7 and via Ndel1 6, 67. In 

a similar fashion, in the distal axon ankyrin-B binds to βII-spectrin 3, 68 and to microtubules 5. 

These associations in both cases establish anchoring of the APMS to the endoplasmic microtubules 

network and subsequent mechanical stability of the axon. In addition, ankyrin G is associated with 

𝑁𝑎௩  channels resulting in a periodic distribution of 𝑁𝑎௩  in the AIS and proximal axon. 𝑁𝑎௩ 

channels then assist tethering of the lipid bilayer to the APMS. It has also been shown that 

periodicity of 𝑁𝑎௩ does not affect the action potential but it only localizes ionic currents 69. 

 

It is known that axonal extension and torsion caused by mechanical forces can directly alter the 

structure of an axon and/or trigger biochemical degradation 14, 17, 70, 71. Force experiments usually 

involve extension of an entire axon via a microneedle 21, 22, 72 and it has been observed that axon 

typically have a viscoelastic response to extension 21, 22. Modeling of the mechanical behavior of 

axons during stretching or torsion, usually including growth or injury, typically involves discrete 

representation of microtubules cross-linked by tau proteins 11, 21, 27, 71, 73-76. Finite elements 

approaches are used to solve the resulting governing equations including viscoelastic responses 25, 

71. A similar finite element-based approach uses a homogenized representation of the axon and it 

often is part of brain tissue modelling 77-79. 
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A very significant question is if the APMS directly influences axonal mechanics. It has been shown 

that treatment of rat hippocampal neurons with latrunculin B, which inhibits actin polymerization, 

reduces lateral Young’s modulus from 4.6 േ 1.5 𝑘𝑃𝑎  to 2.2 േ 0.6 𝑘𝑃𝑎  32 indicating that actin 

rings are important for the mechanical behavior of the axon.  It has also been shown recently that 

APMS plays a prominent mechanical role acting as a tension buffer in tensile experiments and that 

chick dorsal root ganglion axons have a strain softening response  21. Treatment of neurons with 

F-actin stabilizer drug Jasplakinolide results in a significant increase of axonal stiffness at least at 

the same level as caused by treatment with the microtubule stabilizer drug taxol. Treatment of 

neurons with Nocodazole, which is a microtubule disrupting drug, or with latrunculin-A, which is 

an F-actin disrupting drug, made the axons fragile in tensile experiments 21. Furthermore, it has 

been demonstrated, exploiting mutations in β-spectrin and microtubule network, that APMS in 

combination with the microtubule network protects axons during extension and torsion 14, 17. All 

those results illustrate the importance of the APMS in axonal extension experiments. 

 

In this work, we developed a CGMD model of the APMS to investigate its response to extension 

taking into consideration that, while actin rings are stable, spectrin repeats can unfold under tension. 

We note that we modeled the microtubule network implicitly considering only its effect on 

maintaining the distance of actin rings at approximately 190 𝑛𝑚 at equilibrium. One question is 

then if the force-extension curve of the entire APMS exhibits the characteristic saw-tooth pattern 

observed in single spectrin filament extension experiments 29. Another important question is about 

the effect of extension rate to the force response. Finally, we examine the behavior of the APMS 

model during relaxation. 
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The APMS model comprises longitudinal spectrin tetramers, which connect azimuthal rings. We 

validated our CGMD model of spectrin tetramers by using experimental results that confirm the 

persistence length of our model 43, 46. The saw-tooth shape of the force-extension curve caused by 

unfolding of spectrin repeats during extension simulations were also validated via experimental 

results in terms of the maximum resistance forces and the overall shape of the force-extension 

curve 29, 41. The model of the actin rings follows closely the model used in our previous publication 

which has been validated against AFM experiments 32. One important consideration is the actin-

spectrin association energy. Because its value for the axon is not known, we used values 

0.11, 0.22, 0.43, 0.86, and 1.72 𝑒𝑉, which are in the same order of magnitude as the actin junction 

-spectrin association energy observed in wild-type human RBCs, which is approximately 0.74 𝑒𝑉 

49. Another important point is that we implemented the Langevin equation for the motion of the 

actin rings and ankyrin particles because actin rings and ankyrin directly and indirectly through 

their associated proteins interact with the lipid bilayer during extension. 

 

The results provide a clear picture of how the APMS responds to extension. We observed that 

during extension, even at moderate displacements and at low extension rates, unfolding of spectrin 

repeat is common (Fig. S1). We also noticed that actin-spectrin dissociation, which results to 

APMS softening, depends on the association energy level, as expected, and on the extension rate, 

with faster extension rates making the network more brittle (Fig. 7, S4). The resisting force during 

extension is on the order of 0.5 𝑛𝑁, which is one order of magnitude lower than forces developed 

during extension experiments 21, 72. This is justified since in those experiments the entire axon, 

including the microtubule network, was resisting to extension.  
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The force-extension relationship is initially linear despite unfolding or spectrin filaments. To 

clarify if this is due to the viscous effect of the Langevin equation, which is involved in the motion 

of the actin rings and the ankyrin particles, or it is due to not synchronized unfolding of spectrin 

filaments, we investigated several cases. In particular, we built APMS models with 1, 2, 6, 12, and 

24 spectrin filaments with and without implementing the Langevin equations for the actin rings 

and the corresponding ankyrin particles for the case of 0.05 𝜎 ോ 𝑡௦  extension rate and 0.86 𝑒𝑉 

actin-spectrin association energy. We observed that the viscous forces did not affect the overall 

shape of the force-extension curves but they shifted the overall force to higher values (Figs. S3, 

S8 and S9). We can clearly see that in both cases – with and without viscous forces – abrupt 

changes in the force-extension curve are observed only in the case of one filament between each 

pair of rings (Figs. S3 and S8). We also note that the average load bearing is constant after an initial 

increase similarly to the complete APMS model force-extension curve. In the case of two spectrin 

filaments, we can still see a saw-tooth resembling pattern, which is correlated with multiple repeats 

unfolding occurring in a distance much smaller than 32.2 േ 0.8 𝑛𝑚, which is the characteristic 

distance for single spectrin filament unfolding 29. As the number of filaments increases multiple 

repeats unfold in very short distances, compared to the characteristic length of 32.2 േ 0.8 𝑛𝑚, 

obscuring individual saw-tooth shapes independently if we consider the Langevin equation.  

 

It is interesting to explore how our results compare to experimental results with respect to a 

combination of strain and strain rates. As we mentioned at the beginning of the “results” section 

the corresponding actual strain rates are 1.87 𝑠ିଵ, 3.75 𝑠ିଵ, 7.5 𝑠ିଵ and 15 𝑠ିଵ, while the strain 

reaches up to 100%. It is known that strain rates exceeding 10 𝑠ିଵ cause diffuse axonal injury 80. 
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It has been found that during mild to severe traumatic brain injury (TBI) events caused by blunt-

force, brain tissue is subjected to 10 െ 50% strains and up to 50 𝑠ିଵ strain rates 73, 81. It is also 

known that brain tissue deformations caused by electromagnetic or sonic-based directed energy 

can occur at high strain rates ൐ 100 𝑠ିଵ and approach 1000 𝑠ିଵ 82, 83. Clearly our simulations are 

in the range of low and moderate strain rates 82. Because of this, we ran an additional simulation 

at 30 𝑠ିଵ strain rate for the highest assumed actin-spectrin association energy of 1.72 𝑒𝑉. We 

observed that at this strain rate all actin-spectrin junctions were dissociated at the very beginning 

of the simulation. This means that the actin-spectrin membrane skeleton is very brittle at strain 

rates higher than 15 𝑠ିଵ and it cannot sustain fast impact loading. This finding is in agreement 

with experimental results, which show that at low strain rates axons can accommodate even up to 

100% strain without microstructural defects including defects in microtubules 9. However, at 

moderate and high strain rates axons sustain significant injury leading to swelling, degeneration, 

and cell death10, 73. Axonal injury in those cases has mainly been attributed to microtubule rupture, 

detachment of tau proteins, and disruption of microtubules organization 10, 73, 83. Here, we propose 

that dissociation of actin-spectrin junctions and subsequent compromise of the APMS is an 

additional factor, which plays an important role in axon degeneration under large strains and high 

strain rates.  

 

At large extensions, the behavior of the APMS is perfectly plastic as long as actin-spectrin 

dissociation does not occur (Fig. 7A, B). When actin-spectrin dissociation occurs, because of 

reduced actin-spectrin association energy and/or because of increased extension rate, the APMS 

softens. This results in a decreasing resisting force as extension increases because of accumulated 

defects in the membrane skeleton. At the final stages, the APMS is completely ruptured and the 
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force resisting to extension approaches zero (Fig. 7). We note that when actin-spectrin dissociation 

occurs but not spectrin repeats unfolding takes place, the force-extension curve abruptly drops 

close to zero at large extension rates (0.2 and 0.4 𝜎 ോ 𝑡௦) and at low actin-spectrin association 

energies (0.11 and 0.22 𝑒𝑉) (Fig. 7C, D). We also confirmed that rupture of the APMS at actin-

spectrin binding sites is not reversible not only during extension but also at equilibrium because 

spectrin filaments are at entropic tension and after dissociation they recoil from their original 

configuration with a 190 𝑛𝑚 end-to-end distance to their equilibrium free-end configuration with 

a 81.5 𝑛𝑚 end-to-end distance.  

 

Finally, we investigated the behavior of the APMS model during relaxation which is due to 

additional spectrin unfolding when the extension is held constant for a large number of time steps. 

To analytically model the process, we used the Kelvin-Voigt representation of the Zener model 

which comprises two spring elements ሺ𝑘ଵ, 𝑘ଶሻ and one dashpot element 𝜂ଶ. The viscous response 

is due to sliding interactions between repeats during the process of unfolding. We note that when 

extension stops and relaxation response starts, we observed a sharp drop to the resisting force. This 

drop was due to discontinuation of the drag force applied to actin rings and to rapid unfolding of 

actin repeats. This is clearly illustrated in Figs. S7, S9, and S10 which correspond to 0.86 𝑒𝑉 and 

0.05 𝜎 ോ 𝑡௦ (Fig. S9) and 0.4 𝜎 ോ 𝑡௦ (Figs. S7 and S10) cases. The arrows, which indicate when a 

repeat unfolding happens, clearly show that at the sharp drops of the resisting forces, rapid spectrin 

unfolding occurs.  

 

 Conclusion: 
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We investigated how the recently discovered periodic APMS endows the axon with structural 

stability during extension, which can be significant even in everyday activities. Specifically, we 

introduced a coarse-grain molecular dynamics model for the APMS consisting of actin rings 

connected by extendable longitudinal spectrin filaments and implemented breakable actin-spectrin 

protein associations. We showed that APMS protects an axon from catastrophic collapse during 

large extensions by acting as a series of molecular dashpots buffering tension. We predicted that 

during extension the force response is initially linear despite limited unfolding of spectrin repeats. 

However, at larger deformations unfolding spreads out and the APMS becomes perfectly plastic 

protecting the membrane skeleton from disruption. We also showed that reduction of extension of 

the APMS until the resisting force reaches its initial value results in a permanent APMS 

displacement because spectrin filaments only partially folded back to their original configuration. 

Overall, at low extension rates, spectrin unfolding and ensuing reduction of the force resisting to 

axon extension shield APMS from actin-spectrin dissociation and fragmentation. At higher 

extension rates, in addition to unfolding, rupture of actin-spectrin links occurs softening and finally 

severing the axon. Finally, during relaxation simulations, the required extension force decreases 

exponentially, due to continuous unfolding of spectrin filaments. 
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