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1 Introduction

Let G be a connected reductive group. In the representation theory of G over local fields F ,

converse theorems seek to uniquely identify a representation from its invariants. Among others,

local gamma factors are important arithmetic invariants which play very important roles in the

theory of Langlands program. More precisely, let F be a nonarchimedean local field, and let ⇡

be an irreducible generic representation of GLn(F ). The family of local twisted gamma factors

�(s,⇡⇥⌧, ), for ⌧ any irreducible generic representation of GLr(F ),  an additive character of

F and s 2 C, can be defined using Rankin–Selberg convolution [12] or the Langlands–Shahidi

method [24]. The local converse problem is to determine which family of local twisted gamma

factors will uniquely determine ⇡. The following is the famous Jacquet’s conjecture on the local

converse problem.

Conjecture 1.1 (Jacquet’s conjecture on the local converse problem) Let ⇡1,⇡2 be irreducible

generic representations of GLn(F ). Suppose that they have the same central character. If

�(s,⇡1 ⇥ ⌧, ) = �(s,⇡2 ⇥ ⌧, ),

as functions of the complex variable s, for all irreducible generic representations ⌧ of GLr(F )

with 1  r  [n
2
], then ⇡1 ⇠= ⇡2.
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Conjecture 1.1 has recently been proved by Chai ([4]), and by Jacquet and the second-named

author ([11]), independently, using di↵erent analytic methods. Hence we have a local converse

theorem for GLn. Local converse theorems for other classical groups also have been proved in

recent years, mainly by Jiang-Soudry ([14], SO2n+1), by Zhang ([25], Sp2n, U2n, [26], U2n+1),

and by Morimoto ([21], U2n). For more references on local converse theorems, we refer to the

introduction of [18].

Nien in [22] proved the finite fields analogue of Conjecture 1.1 for cuspidal representations

of GLn, using special properties of normalized Bessel functions and the twisted gamma factors

defined by Roditty ([23]). In [19], the second-named author and Zhang defined the twisted

gamma factors for generic cuspidal representations of Sp2n, SO2n+1, U2n, and U2n+1, by proving

certain multiplicity one results, and proved the corresponding converse theorems.

The case left for the converse problems of classical groups over nonarchimedean local fields

and finite fields is SO2n. The di�culty is the existence of the outer automorphism. In this paper

and in [10], we develop new ideas and overcome this di�culty, for split SO2n over finite fields

and over nonarchimedean local fields, respectively. More precisely, in this paper, we define

the twisted gamma factors �(⇡ ⇥ ⌧, ) (see Proposition 3.3) for irreducible generic cuspidal

representation ⇡ of SO2l(Fq) and irreducible generic representation ⌧ of GLn(Fq), and prove

the following theorem.

Theorem 1.1 (The Converse Theorem for SO2l, Theorem 8.2) Let ⇡ and ⇡0 be irreducible

cuspidal  -generic representations of split SO2l(Fq) with the same central character. If

�(⇡ ⇥ ⌧, ) = �(⇡0 ⇥ ⌧, ),

for all irreducible generic representations ⌧ of GLn(Fq) with n  l, then ⇡ ⇠= ⇡
0 or ⇡ ⇠= c · ⇡0

,

where c is the outer automorphism.

Theorem 1.1 implies that twisted gamma factors will not distinguish irreducible generic

cuspidal representations ⇡ and c · ⇡ of SO2l(Fq) (see also Corollaries 6.4 and 7.8), which is a

unique phenomenon for SO2l among all the classical groups. This is consistent with the work

of Arthur on the local Langlands correspondence and the local Langlands functoriality, and the

work of Jiang and Soudry on local descent for SO2l over nonarchimedean local fields (see [2]

and [15]). The analogue of Theorem 1.1 for quasi-split non-split SO2l has more subtleties and

has been proved by the first named author for both finite and local fields [8, 9].

Now, we briefly introduce our new idea on proving Theorem 1.1. The following is the key

result. As in other proven cases over finite fields, we make use of the normalized Bessel function

B⇡, of ⇡ which is a particular Whittaker function in the Whittaker model of ⇡ (see Section 4

for the definition).

Theorem 1.2 (Theorem 8.1) Let ⇡ and ⇡0 be irreducible cuspidal  -generic representations

of split SO2l(Fq) with the same central character. If

�(⇡ ⇥ ⌧, ) = �(⇡0 ⇥ ⌧, ),

for all irreducible generic representations ⌧ of GLn with 1  n  l, then we have that

(B⇡, + Bc·⇡, )(g) = (B⇡0, + Bc·⇡0, )(g)

for any g 2 SO2l(Fq).
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Our new idea is that for the GLl twists, instead of considering the normalized Bessel function

B⇡, and Bc·⇡, separately, we consider the summation of normalized Bessel functions B⇡, +

Bc·⇡, . More precisely, to prove Theorem 1.2, as in [19], we study the support of B⇡, on

SO2l(Fq) and partition it based on Bruhat cells: Bn(SO2l) for n = 1, . . . , l and Bc

l
(SO2l). Then

we show that the twists by GLn determine B⇡, and Bc·⇡, on Bruhat cells associated to Weyl

elements in Bn(SO2l) (see Theorem 5.5), for 1  n  l� 2, and the twists by GLl�1 determine

B⇡, and Bc·⇡, on part of the Bruhat cells for those in Bl�1(SO2l) (see Theorem 6.2). However,

the twists by GLl determine the summation of the normalized Bessel functions B⇡, +Bc·⇡, on

the rest of the cells for Bl�1(SO2l) and the cells of Bl(SO2l) and Bc

l
(SO2l) (see Theorem 7.7).

Comparing to the case of Sp2l(Fq) in [19] for example, where the authors show that the support

of the normalized Bessel function B⇡, can be partitioned into l sets, Bn(Sp2l), n = 1, . . . , l,

and for each n, the twists by GLn determine exactly the normalized Bessel function on Bruhat

cells associated to Weyl elements in Bn(Sp2l).

Following is the structure of this paper. In Section 2, we introduce the groups and represen-

tations considered in this paper. In Section 3, we prove the multiplicity one results (Propositions

3.1 and 3.2), and define the zeta integrals and gamma factors. In Section 4, we define Bessel

functions and partition its support (Proposition 4.8). In Sections 5 - 7, we study the GLn

twists, 1  n  l, and show the relation between the GLn twists and the support of Bessel

functions (Theorems 5.5, 6.2, 7.7). In Section 8, we prove Theorem 1.2 and our main result

Theorem 1.1.

2 The groups and representations

Let n, l 2 N and q = p
r for some prime number p 6= 2. Let Fq be the finite field of q elements

and fix a nontrivial additive character  on Fq. Let GLn to be the group of n ⇥ n matrices

with entries in Fq and non-zero determinant. Let In be the identity element and define Jn

recursively by setting J1 = 1 and

Jn =

0

@0 Jn�1

1 0

1

A .

We set SOn = {g 2 GLn | det(g) = 1, tgJng = Jn} to be the split special orthogonal groups.

Let UGLn and USO2l be the subgroups of upper triangular unipotent matrices in GLn and SO2l,

respectively. Fix BSO2l = TSO2lUSO2l to be the Borel subgroup of SO2l with split torus TSO2l .

Set

c = diag(Il�1,

0

@0 1

1 0

1

A , Il�1).

We have c /2 SO2l; however, cSO2lc
�1 = cSO2lc = SO2l. Given a representation ⇡ of SO2l

we define a new representation c · ⇡ of SO2l by c · ⇡(g) = ⇡(cgc). Note that it is possible that

c · ⇡ ⇠= ⇡.

We discuss the embeddings. These are the analogues for finite fields of the local cases found
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in [16, 17]. If n < l we embed SO2n+1 into SO2l via

0

BB@

A B C

D E K

L P Q

1

CCA 7! diag(Il�n�1,M
�1

0

BBBBB@

A B C

1

D E K

L P Q

1

CCCCCA
M, Il�n�1),

where A and Q are n⇥ n matrices and

M = diag(In,

0

@2 �1

1 1

2

1

A , In).

The embedding maps SO2n+1 into the standard Levi subgroup of SO2l that is isomorphic to

GLl�n�1 ⇥ SO2n+2.

If n = l, we embed SO2l into SO2l+1 via

0

@A B

C D

1

A 7! M
�1

0

BB@

A B

1

C D

1

CCAM, (2.1)

where A,B,C, and D are l ⇥ l matrices and M = diag(Il�1, M̃ , Il�1), where

M̃ =

0

BB@

1

4

1

2

�1

2

1

2
0 1

�1

2
1 1

1

CCA .

Note that the embedding takes the torus TSO2l to a torus in SO2l+1, but not the standard one

consisting of diagonal matrices. Indeed, the embedding sends t = diag(t1, . . . , tl, t
�1

l
, . . . , t

�1

1
)

to

diag(s,

0

BB@

1

2
+ 1

4
(tl + t

�1

l
) 1

2
(tl � t

�1

l
) 2( 1

2
� 1

4
(tl + t

�1

l
))

1

4
(tl � t

�1

l
) 1

2
(tl + t

�1

l
) �1

2
(tl � t

�1

l
)

1

2
( 1
2
� 1

4
(tl + t

�1

l
)) �1

4
(tl � t

�1

l
) 1

2
+ 1

4
(tl + t

�1

l
)

1

CCA , s
⇤),

where s = diag(t1, t2, . . . , tl�1) and s
⇤ = diag(t�1

l�1
, . . . , t

�1

2
, t

�1

1
).

Next, we define generic characters and generic representations. Recall that UGLn and USO2l

are the subgroups of upper triangular unipotent matrices in GLn and SO2l respectively and

that we fixed an additive nontrivial character  of Fq. We define a generic character, which by

abuse of notation we still denote by  , on UGLn and USO2l . For u = (ui,j)ni,j=1
2 UGLn , we set

 (u) =  

⇣P
l�1

i=1
ui,i+1

⌘
. For u = (ui,j)li,j=1

2 USO2l we set

 (u) =  

 
l�2X

i=1

ui,i+1 +
1

4
ul�1,l �

1

2
ul�1,l+1

!
.

We say an irreducible representation ⇡ of SO2l is  -generic if

HomUSO2l
(⇡, ) 6= 0.
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Similarly, we say an irreducible representation ⌧ of GLn is  -generic if

HomUGLn
(⌧, ) 6= 0.

A nonzero intertwining operator in these spaces is called a Whittaker functional and it is well

known that Whittaker functionals are unique up to scalars (by uniqueness of Whittaker models).

Fix a nonzero Whittaker functional � 2 HomUSO2l
(⇡, ). For v 2 ⇡, let Wv(g) = �(⇡(g)v)

for any g 2 SO2l and set W(⇡, ) = {Wv | v 2 ⇡}. W(⇡, ) is called the  -Whittaker model of ⇡.

By Frobenius reciprocity, HomUSO2l
(⇡, ) ⇠= HomSO2l(⇡, Ind

SO2l
USO2l

( )). Thus, ⇡ can be realized

as a subrepresentation of IndSO2l
USO2l

( ) via the map ⇡ ! W(⇡, ) given by v 7! Wv. Moreover,

by uniqueness of Whittaker models, this subrepresentation occurs with multiplicity one inside

IndSO2l
USO2l

( ). We also note that the analogous results hold for  -generic representations ⌧ of

GLn.

Let Qn = LnVn be the standard Siegel parabolic subgroup of SO2n+1 with Levi subgroup

Ln
⇠= GLn. For a 2 GLn we let ln(a) = diag(a, 1, a⇤) 2 Ln where a

⇤ = Jn
t
a
�1

Jn. Let ⌧ be an

irreducible generic representation of GLn and set I(⌧) = IndSO2n+1

Qn
⌧. An element ⇠ 2 I(⌧) is a

function ⇠ : SO2n+1 ! ⌧ satisfying

⇠(ln(a)ug) = ⌧(a)(⇠(g)), 8a 2 GLn, u 2 Vn, g 2 SO2n+1.

Let ⇤⌧ 2 HomUGLn
(⌧, �1) be a fixed nonzero homomorphism. For ⇠ 2 I(⌧), we define the

function f⇠ : SO2n+1 ⇥GLn ! C by

f⇠(g, a) = ⇤⌧ (⌧(a)⇠(g)).

Let I(⌧, �1) be the space of functions generated by f⇠, ⇠ 2 I(⌧). Note that for f 2 I(⌧, �1),

we have

f(g, ua) =  
�1(u)f(g, a), 8g 2 SO2n+1, u 2 UGLn , a 2 GLn.

We also let ⌧⇤ be the contragredient representation of GLn defined by ⌧⇤(a) = ⌧(a⇤).

3 Multiplicity one theorems and the gamma factor

The goal of this section is to show that Bessel models for split even special orthogonal groups

over finite fields are unique. Our primary reference for this is [17], but the setup there is local.

Note that the notation of this section (introduced below) agrees with the notation of [6] with

H = N
l�n ⇥ SO2n+1, ⌫ =  

0 in the case n < l ( 0 is extended to be trivial on the special

orthogonal group), and H = SO2l, ⌫ = 1 in the case n = l .

We begin by considering the case n = l. In this case, H is SO2l embedded inside of SO2l+1

as in (2.1). Nonzero intertwining operators in HomSO2l(⇡, ⌧) are called Bessel functionals which

give Bessel models for ⇡ (similar to the Whittaker models). The following proposition shows

that the Bessel models are unique when n = l.

Proposition 3.1 Let Q = LV be a parabolic subgroup of SO2l+1 and � be an irreducible

representation of L. Let ⇡ be an irreducible cuspidal represenation of SO2l and ⌧ = Ind
SO2l+1

Q
�.

Then

dimHomSO2l(⇡, ⌧)  1.
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Proof First, suppose that � is cuspidal. Then, [5, Proposition 5.1] still holds in our case.

Indeed, we can follow their proof closely, except we use the multiplicity one results of [1, 20].

This multiplicity one result was also known earlier in this case [7].

Suppose that � is not cuspidal. Then there exists a parabolic subgroup Q
0 = L

0
V

0 of L and

cuspidal representation �0 of L0 such that � ✓ IndL
Q0�

0
. By transitivity of parabolic induction,

⌧ ✓ Ind
SO2l+1

L0V 0V �
0 ⌦ 1V and hence the proposition follows from the case when � was cuspidal.

Next, we consider the case n < l.We begin by defining the unipotent subgroupN
l�n ✓ SO2l.

Consider the standard parabolic subgroup Pl�n�1 = Ml�n�1Nl�n�1 of SO2l with Levi subgroup

Ml�n�1
⇠= GLl�n�1 ⇥ SO2n+2. Through this isomorphism, we embed UGLl�n�1

inside of SO2l.

We define N
l�n = UGLl�n�1

Nl�n�1. That is,

N
l�n =

8
>><

>>:

0

BB@

u1 v1 v2

I2n+2 v
0
1

u
⇤
1

1

CCA 2 SO2l |u1 2 UGLl�n�1

9
>>=

>>;
.

For v = (vi,j) 2 N
l�n we define a character  0 of N l�n by

 
0(v) =  

 
l�n�2X

i=1

vi,i+1 +
1

4
vl�n�1,l �

1

2
vl�n�1,l+1

!
.

Note that this character is trivial when n = l � 1. Let H = SO2n+1N
l�n, where SO2n+1

is realized via the embedding into SO2n+2 inside Ml�n�1. Extend  0 trivially across SO2n+1

so that  0 is a character of H. Nonzero intertwining operators in HomH(⇡, ⌧ ⌦  
0) are called

Bessel functionals which give Bessel models for ⇡. The below proposition gives the uniqueness

of Bessel models for n < l.

Proposition 3.2 Let Q = LV be a parabolic subgroup of SO2n+1 and � be an irreducible

representation of the Levi subgroup L. Let ⇡ be an irreducible cuspidal representation of SO2l

and ⌧ = IndSO2n+1

Q
�. Then,

dimHomH(⇡, ⌧ ⌦  
0)  1.

Proof The proof is the same as Proposition 3.1, except instead of using the special orthogonal

analogue of [5, Proposition 5.1], we use the special orthogonal analogue of [5, Proposition

5.3]. Again, we also must substitute the appropriate multiplicity one results which follow from

[1, 20].

3.1 The Zeta Integrals

Let ⇡ be an irreducible  -generic cuspidal representation of SO2l and ⌧ be a generic represen-

tation of GLn. Let W 2 W(⇡, ) and f 2 I(⌧, �1). Next, we shall define the zeta “integrals”

 (W, f) analogous to the local integrals of [17]. Note that [17] defines integrals for any n and

l; however, we only need the case of n  l for the converse theorem and so we do not consider

the case of n > l. These integrals lie in the Bessel models and the uniqueness of these models

give rise to the definition of the �-factors.

First, suppose that n = l. Then we define

 (W, f) =
X

g2USO2l
\SO2l

W (g)f(wl,lg, Il),
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where

wl,l =

0

BB@

1

2
· Il

1

2 · Il

1

CCA 2 SO2l+1.

The integral satisfies the property  (g ·W, g · f) =  (W, f) for any g 2 SO2l.

Next, suppose that n < l. Then we define

 (W, f) =
X

g2USO2n+1
\SO2n+1

0

@
X

r2Rl,n

W (rwl,n
g(wl,n)�1)

1

A f(g, Il),

where

w
l,n =

0

BBBBBBBB@

In

Il�n�1

I2

Il�n�1

In

1

CCCCCCCCA

2 SO2l,

and

R
l,n =

8
>>>>>>>><

>>>>>>>>:

0

BBBBBBBB@

In

x Il�n�1

I2

Il�n�1

x
0

In

1

CCCCCCCCA

2 SO2l

9
>>>>>>>>=

>>>>>>>>;

.

The integral satisfies the property  ((gn) · W, g · f) = ( 0)�1(n) (W, f) for any g 2 SO2n+1

and n 2 N
l�n

. Note that in the case n < l, our integral di↵ers from [17] slightly. The di↵erence

is a right translation of the Whittaker function by (wl,n)�1
.

Let n  l. We define an intertwining operator M(⌧, �1) : I(⌧, �1) ! I(⌧⇤, �1) by

M(⌧, �1)f(h, a) =
X

u2Vn

f(wnuh, dna
⇤),

where wn =

0

BB@

In

(�1)n

In

1

CCA, dn = diag(�1, 1,�1, . . . , (�1)n) 2 GLn, a⇤ = Jn
t
a
�1

Jn, and

Vn is the unipotent radical of the standard Siegel parabolic subgroup Qn = LnVn in SO2n+1

with Ln
⇠= GLn.

The following proposition gives the definition of the �-factor.

Proposition 3.3 Let ⇡ be an irreducible  -generic cuspidal representation of SO2l, ⌧ be a

generic representation of GLn, W 2 W(⇡, ), and f 2 I(⌧, �1). Then there exists a complex

constant �(⇡ ⇥ ⌧, ), called the �-factor of ⇡ and ⌧ , such that

�(⇡ ⇥ ⌧, ) (W, f) =  (W,M(⌧, �1)f).
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Proof This is immediate from Propositions 3.1 and 3.2.

We refer to these integrals and �-factors as the twists by GLn.

4 Bessel Functions

In this section, we define Bessel functions and study their properties. The Bessel functions are

particular functions in the Whittaker model of a  -generic representation. The analysis of the

zeta integrals evaluated on Bessel functions is crucial in our proof of the converse theorem.

Consider ⇡ as a representation of BSO2l . Let ⇡(USO2l , ) be the subspace of ⇡ generated by

{⇡(u)v �  (u)v |u 2 USO2l , v 2 ⇡},

and let ⇡USO2l
, = ⇡/⇡(USO2l , ) be the twisted Jacquet module. Since ⇡ is an irreducible

 -generic representation, dim(⇡USO2l
, ) = 1. Let v 2 ⇡ with v /2 ⇡(USO2l , ) and set

v0 =
1

|USO2l |
X

u2USO2l

 
�1(u)⇡(u)v.

By the Jacquet-Langlands lemma [3, Lemma 2.33], v0 6= 0. Recall that we fixed a nonzero

Whittaker functional � 2 HomUSO2l
(⇡, ). Then we have �(v0) 6= 0 and by construction

⇡(u)v0 =  (u)v0 for any u 2 USO2l . Any such vector is called a Whittaker vector of ⇡. For

g 2 SO2l, set

B⇡, (g) =
�(⇡(g)vo)

�(v0)
.

B⇡, is called the normalized Bessel function for ⇡ and it is simple to verify that B⇡, 2 W(⇡, ).

The following proposition follows from the definitions.

Proposition 4.1 B⇡, (I2l) = 1 and B⇡, (u1gu2) =  (u1u2)B⇡, (g) for any g 2 SO2l and

any u1, u2 2 USO2l .

Let W (SO2l) be the Weyl group of SO2l and let �(SO2l) be the set of simple roots. We

say that a Weyl element w 2 W (SO2l) supports Bessel functions if for any ↵ 2 �(SO2l), w↵

is either negative or simple. We let B(SO2l) denote the set of Weyl elements which support

Bessel functions. We call B(SO2l) the Bessel support. Recall BSO2l = TSO2lUSO2l is a fixed

Borel subgroup of SO2l. The following lemma justifies our terminology.

Lemma 4.2 Let ⇡ be an irreducible  -generic representation of SO2l with Bessel function

B⇡, . Then, for any w 2 W (SO2l) \ B(SO2l), we have B⇡, (g) = 0, for any g 2 BSO2lwBSO2l .

Proof Since BSO2l = TSO2lUSO2l = USO2lTSO2l as a set and by Proposition 4.1,

B⇡, (g) = B⇡, (t1u1wt2u2) = B⇡, (u0
1
t
0
1
wt2u2) =  (u0

1
u2)B⇡, (t01wt2),

for some u1, u
0
1
, u2 2 USO2l and t1, t

0
1
, t2 2 TSO2l . Thus it is enough to show that B⇡, (t1wt2) = 0

for any t1, t2 2 TSO2l . By definition of the Weyl group, wt2 = t
0
2
w for some t

0
2
2 TSO2l . Hence,

B⇡, (t1wt2) = B⇡, (t1t02w) and so it is enough to show that B⇡, (tw) = 0 for any t 2 TSO2l .

Since w /2 B(SO2l), there exists ↵ 2 �(SO2l) such that w↵ is positive but not simple. Let

x 2 Fq and let x↵(x) be an element in the root space of ↵ (note that the root space of ↵ lies in

USO2l and is isomorphic to Fq). Then twx↵(x) = xw↵(x0)tw for some x
0 2 Fq (because TSO2l

normalizes USO2l). Since the simple root spaces are exactly the support of  ,  (x↵(x)) is a
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nonzero constant multiple of  (x) and this constant is independent of x. Since w↵ is positive

but not simple,  (xw↵(x0))) =  (0) = 1. Thus, by Proposition 4.1,  (x)B⇡, (tw) = B⇡, (tw)
for any x 2 Fq. Since  is nontrivial, B⇡, (tw) = 0. This proves the lemma.

Next, we determine the support of a Bessel function on the torus.

Lemma 4.3 If t 2 TSO2l and B⇡, (t) 6= 0, then t is in the center of SO2l.

Proof Let t 2 TSO2l such that B⇡, (t) 6= 0 and let � be any simple root of SO2l. For x 2 Fq,

let x�(x) be in the root subgroup of �. Then tx�(x) = x�(�(t)x)t. Hence, by Proposition 4.1,

 (x�(x))B⇡, (t) =  (x�(�(t)x))B⇡, (t).

Thus,  (x�(x)) =  (x�(�(t)x)) for any x 2 Fq and simple root � 2 �(SO2l). Since  is nontrivial

and x is arbitrary, we must have �(t) = 1 for all � 2 �(SO2l). Thus, t is in the center of SO2l

which proves the lemma.

4.1 Bessel Function of the Conjugate representation

In this section, we determine the normalized Bessel function in the  -Whittaker model of the

conjugate representation c · ⇡.
Let  c be the character on USO2l defined by  c(u) =  (cuc). Recall that we fixed a nonzero

Whittaker functional � 2 HomUSO2l
(⇡, ). It follows that � 2 HomUSO2l

(c · ⇡, c) and

Bc·⇡, c(g) =
�(c · ⇡(g)vo)
�(v0)

= B⇡, (cgc)

defines the normalized Bessel function for c · ⇡ in IndSO2l
USO2l

 c. On the other hand, c · ⇡ is also

 -generic, since  c(t̃�1
ut̃) =  (u) for any u 2 USO2l , where

t̃ = diag(Il�1,
�1

2
,�2, Il�1) 2 TSO2l . (4.1)

Let

Bc·⇡, (g) := Bc·⇡, c(t̃
�1

gt̃) = B⇡, (ct̃�1
gt̃c).

Then we have the following.

Proposition 4.4 Bc·⇡, is the normalized Bessel function for c · ⇡ in IndSO2l
USO2l

 .

Proof Let �0 be defined by �0(v) = �(c · ⇡(t̃�1)v). Then, �0 2 HomUSO2l
(c · ⇡, ). Since

t̃c = ct̃
�1, Bc·⇡, is the right translation by t̃

�1 of a Whittaker function of c · ⇡ in IndSO2l
USO2l

 .

Thus, Bc·⇡, is a Whittaker function of c · ⇡.
Next, Bc·⇡, (I2l) = B⇡, (I2l) = 1 and for u1, u2 2 USO2l and g 2 SO2l

Bc·⇡, (u1gu2) = Bc·⇡, c(t̃
�1

u1t̃t̃
�1

gt̃t̃
�1

u2t̃)

=  c(t̃
�1

u1t̃) c(t̃
�1

u2t̃)Bc·⇡, c(t̃
�1

gt̃)

=  (u1) (u2)Bc·⇡, (g).

By Proposition 4.1, Bc·⇡, is the normalized Bessel function of c·⇡ which proves the proposition.
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4.2 Partition of the Bessel Support

In this section we aim to partition the Bessel support and provide some preparation for future

calculations. We define the Weyl elements that appear in the computations of the zeta integrals

and then show that these can be used to partition the Bessel support. When n < l, we embed

wn into SO2l and use the image to define the Weyl elements we are interested in. When n = l,

we take a di↵erent approach since the embedding is SO2l ,! SO2l+1 and wl 2 SO2l+1.

Let n < l and recall that wn =

0

BB@

In

(�1)n

In

1

CCA 2 SO2n+1. Let

ŵn =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

0

BBBBBBBBBBB@

Il�n�1

In

1

1

In

Il�n�1

1

CCCCCCCCCCCA

if n is odd,

0

BBBBBBBBBBB@

Il�n�1

In

1

1

In

Il�n�1

1

CCCCCCCCCCCA

if n is even.

Then the image of wn in SO2l is t
0
n
ŵn, where t

0
n
= t̃ as in (4.1) if n is odd, and t

0
n
= I2l if n

is even. Note that if n is odd, then cwnc = t̃
�1

ŵn, and if n is even then cwnc = ŵn (here we

realize cwnc 2 SO2l via the embedding mentioned before). Recall that

w
l,n =

0

BBBBBBBB@

In

Il�n�1

I2

Il�n�1

In

1

CCCCCCCCA

2 SO2l.

Let

w̃n = w
l,n

ŵn(w
l,n)�1 =

0

BBBBBBBB@

In

Il�n�1

X

Il�n�1

In

1

CCCCCCCCA

,
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where

X =

8
<

:
J2 if n is odd,

I2 if n is even.

This Weyl element w̃n occurs in the computations of the zeta integrals of the twists by GLn and

is also used to partition the Bessel support. w̃n also shows up naturally in the computations of

the zeta integrals after applying the intertwining operator.

Let ↵i be the simple roots of SO2l given by ↵i(t) =
ti

ti+1

for i  l � 1 and ↵l(t) = tl�1tl,

where t = diag(t1, . . . , tl, t
�1

l
, . . . , t

�1

1
). Let �(SO2l), resp. �+(SO2l), be the set of roots, resp.

positive roots, of SO2l. Then, for n  l � 2, the action of w̃n on the simple roots is given by

w̃n↵i = ↵n�i for 1  i  n� 1,

w̃n↵n(t) = t
�1

1
t
�1

n+1
,

w̃n↵i = ↵i for n+ 1  i  l � 2,

w̃n↵l�1 =

8
<

:
↵l if n is odd,

↵l�1 if n is even,

w̃n↵l =

8
<

:
↵l�1 if n is odd,

↵l if n is even.

Note that w̃l�1 sends ↵l�1 and ↵l to negative roots and the rest to simple roots. Specifically,

w̃l�1↵i = ↵l�1�i for 1  i  l � 2,

w̃l�1↵l�1(t) =

8
<

:
t
�1

1
t
�1

l
if l � 1 is odd,

t
�1

1
tl if l � 1 is even,

w̃l�1↵l(t) =

8
<

:
t
�1

1
tl if l � 1 is odd,

t
�1

1
t
�1

l
if l � 1 is even.

Next, we consider the case n = l. Note that the construction of w̃n for n < l arose from the

embedding of the Weyl elements involved in the intertwining operator and the Weyl elements in

the zeta integrals. Reversing this for n = l, would require knowing what Weyl elements in SO2l

embed into certain subsets involving the Weyl element wl 2 SO2l+1. We answer this question

later in Propositions 7.2, 7.3, and 7.4. For now, we motivate our choices by using the following

bijection between P(�(SO2l)) and the Bessel support.

Let ✓w = {↵ 2 �(SO2l) |w↵ 2 �+(SO2l)}. The assignment w 7! ✓w gives a bijection from

B(SO2l) to the power set of �(SO2l), which we denote by P(�(SO2l)). Then, for n < l � 1,

✓w̃n = �(SO2l)\{↵n}. Also, we have ✓w̃l�1
= �(SO2l)\{↵l�1,↵l}. In the cases of [19], the Weyl

elements for which ✓w = �(SO2l)\{↵i} for some i are used to partition the Bessel support. This

suggests that we need at least 2 more Weyl elements which we define below. These correspond

to the sets �(SO2l) \ {↵l�1} and �(SO2l) \ {↵l}.
We extend the definition of w̃n to the case of n = l. We begin by defining w̃

0
l
and define w̃l
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as either this Weyl element or its conjugation by c depending on the parity of l. If l is even, let

w̃
0
l
=

0

@ Il

Il

1

A ,

while if l is odd, let

w̃
0
l
=

0

BBBBB@

Il�1

1

1

Il�1

1

CCCCCA
.

We let wlong be the long Weyl element of SO2l. Then,

wlong =

8
>>>>><

>>>>>:

0

BB@

Jl�1

I2

Jl�1

1

CCA if l is odd,

J2l if l is even.

We have that

wlongw̃
0
l
=

0

@Jl

Jl

1

A

which is the long Weyl element of a standard Levi subgroup that is isomorphic to GLl. This

suggests that ✓w̃0
l
should be �(SO2l)\{↵l�1} or �(SO2l)\{↵l}. We verify this explicitly below.

Also, its conjugation by c is the remaining set since c acts on the simple roots by swapping

↵l�1 and ↵l and fixing the rest. Set w̃0
l

c = cw̃
0
l
c.

We have w̃
0
l
t(w̃0

l
)�1 = diag(t�1

l
, . . . , t

�1

2
, t

(�1)
l+1

1
, t

(�1)
l

1
, t2, . . . , tl). Hence,

w̃
0
l
↵i = ↵l�i for 1  i  l � 2,

w̃
0
l
↵l�1(t) =

8
<

:
t
�1

2
t
�1

1
if l is odd,

↵1(t) if l is even,

w̃
0
l
↵l(t) =

8
<

:
↵1(t) if l is odd,

t
�1

2
t
�1

1
if l is even.

Thus, ✓w̃0
l
= �(SO2l) \ {↵l�1} if l is odd and ✓w̃0

l
= �(SO2l) \ {↵l} if l is even. Similarly, we

have ✓w̃0
l
c = �(SO2l) \ {↵l} if l is odd and ✓w̃0

l
c = �(SO2l) \ {↵l�1} if l is even. Hence, we set

w̃l =

8
<

:
w̃

0
l

c if l is odd,

w̃
0
l

if l is even,

and w̃
c

l
= cw̃lc. Then, ✓w̃l = �(SO2l) \ {↵l} and ✓w̃c

l
= �(SO2l) \ {↵l�1}.

For x 2 GLn, we set tn(x) = diag(x, I2l�2n, x
⇤) 2 SO2l. For n  l � 2, let Bn(SO2l) be the

set of w 2 B(SO2l) such that there exists w
0 2 W (GLn) such that w = tn(w0)w̃n. We also let

Bl(SO2l) be the set of w 2 B(SO2l) such that there exists w0 2 W (GLl) such that w = tl(w0)w̃l
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and cwc 6= w. Also, let Bc

l
(SO2l) be the set of cwc where w 2 Bl(SO2l). We let Bl�1(SO2l)

be the set of w 2 B(SO2l) such that there exists w
0 2 W (GLl) such that w = tl(w0)w̃l and

cwc = w. By convention, we also define B0(SO2l) = {I2l}. Note that ✓I2l = �(SO2l). From

the definition, we have that Bc

l
(SO2l) is the set of w0 2 W (GLl) such that w = t

c

l
(w0)w̃c

l
and

cwc 6= w where t
c

l
(w0) = ctl(w0)c. From Proposition 4.6 below, a similar definition holds for

Bl�1(SO2l). That is, Bl�1(SO2l) is the set of w 2 B(SO2l) such that there exists w0 2 W (GLl�1)

such that w = tl�1(w0)w̃l�1.

We remark on the significance of the condition cwc 6= w in Bl(SO2l). Let fBl(SO2l) be

the set of w 2 B(SO2l) such that there exists w
0 2 W (GLl) such that w = tl(w0)w̃l and

fBc

l
(SO2l) be the set of cwc such that w 2 fBl(SO2l). Then fBl(SO2l) \ fBc

l
(SO2l) = Bl�1(SO2l)

is a nonzero intersection and hence we would not be able to partition the Bessel support with

these sets. Thus it is necessary to include the condition cwc 6= w in the definitions of Bl(SO2l)

and Bc

l
(SO2l). This does not happen for the classical groups considered in [19].

Later, we see that the twists by GLn determine the normalized Bessel function on Bruhat

cells associated to Weyl elements in Bn(SO2l), for n  l � 2, the twists by GLl�1 determine

only a part of the Bruhat cells for those in Bl�1(SO2l), and the twists by GLl determine the

rest of the Bruhat cells for Bl�1(SO2l) and the cells of Bl(SO2l) and Bc

l
(SO2l). The goal for the

rest of this section is to show that these sets partition the Bessel support. Before we show this,

we present some computational results for Bl�1(SO2l).

Proposition 4.5 Let w 2 Bl�1(SO2l) and w
0 2 W (GLl) such that w = tl(w0)w̃l. Then

w
0 =

0

@ w
00

1

1

A ,

where w
00 2 W (GLl�1).

Conversely, if w 2 B(SO2l) is such that w = tl(w0)w̃l where

w
0 =

0

@ w
00

1

1

A ,

for some w
00 2 W (GLl�1), then w 2 Bl�1(SO2l).

Proof We only prove the first claim as the second claim is easy to verify directly. Since

w 2 Bl�1(SO2l), we have cwc = w. Thus, tl(w0)w̃l = ctl(w0)ccw̃lc. First, assume that l is odd,

then cw̃lc = w̃
0
l
. Also ctl(w0) = tl(w0)w̃lw̃

0
l
c and

w̃lw̃
0
l
=

0

BBBBBBBB@

1

Il�2

J2

Il�2

1

1

CCCCCCCCA

.
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Let w0 = (w0
i,j
)l
i,j=1

. Then,

tl(w
0)w̃lw̃

0
l
c =

0

BBBBB@

0 (w0
1,j

)l
j=2

0 w
0
1,1

0 (w0
i,j
)l
i,j=2

0 (w0
i,1
)l
i=2

⇤ 0 ⇤ 0

⇤ 0 ⇤ 0

1

CCCCCA
,

where the ⇤’s represent coordinates in (w0)⇤. On the other hand,

ctl(w
0) =

0

BBBBB@

(w0
i,j
)l�1

i,j=1
(w0

i,l
)l
i=1

0 0

0 0 ⇤ ⇤

w
0
l,1

(w0
l,j
)l
j=2

0 0

0 0 ⇤ ⇤

1

CCCCCA
.

Hence, we must have w
0
i,1

= 0 for any i = 1, . . . , l � 1. Since w
0 is a Weyl element of GLl,

w
0
l,1

= 1 and hence the claim follows.

Next, we consider the case that l is even. Again, we have tl(w0)w̃l = ctl(w0)ccw̃lc and hence

tl(w0)w̃lcw̃lcc = ctl(w0). Again,

w̃lcw̃lc =

0

BBBBBBBB@

1

Il�2

J2

Il�2

1

1

CCCCCCCCA

.

The rest of this case follows exactly as above. This completes the proof of the proposition.

The following proposition relates Bl�1(SO2l) with w̃l�1.

Proposition 4.6 Suppose that w 2 Bl�1(SO2l). Then there exists ! 2 W (GLl�1) such

that w = tl�1(!)w̃l�1. Conversely, if w 2 B(SO2l) is such that w = tl�1(!)w̃l�1 for some

! 2 W (GLl�1), then w 2 Bl�1(SO2l).

Proof By Proposition 4.5, w = tl(w0)w̃l where

w
0 =

0

@ w
00

1

1

A ,

for some w
00 2 W (GLl�1). We show that the claim follows with ! = w

00
.

If l is even, then

w = tl(w
0)w̃l =

0

BB@

w
00

J2

(w00)⇤

1

CCA .

It is immediate to check then tl�1(w00)w̃l�1 = w. Hence ! = w
00 gives the claim.
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If l is odd, then

w = tl(w
0)w̃l =

0

BB@

w
00

I2

(w00)⇤

1

CCA .

Again, it is immediate to check then tl�1(w00)w̃l�1 = w. Hence ! = w
00 gives the claim. This

completes the proof of the proposition.

For 0  n  l, let

Pn = {✓ ✓ �(SO2l) |w✓ 2 Bn(SO2l)},

and

P
c

l
= {✓ ✓ �(SO2l) |w✓ 2 Bc

l
(SO2l)}.

The next proposition is crucial to show that the sets Bn(SO2l) for 0  n  l and Bc

l
(SO2l) form

a partition of the Bessel support.

Proposition 4.7 For n < l � 1,

Pn = {✓ 2 �(SO2l) | {↵n+1, . . . ,↵l} ✓ ✓ ✓ �(SO2l) \ {↵n}}.

We also have P0 = �(SO2l),

Pl = {✓ 2 �(SO2l) | {↵l�1} ✓ ✓ ✓ �(SO2l) \ {↵l}},

P
c

l
= {✓ 2 �(SO2l) | {↵l} ✓ ✓ ✓ �(SO2l) \ {↵l�1}},

and

Pl�1 = {✓ 2 �(SO2l) | ✓ ✓ �(SO2l) \ {↵l�1,↵l}}.

Proof First, assume that n  l � 2 and suppose ✓ 2 Pn. Then, w✓ 2 Bn(SO2l). Thus, there

exists w0 2 W (GLn) such that w = tn(w0)w̃n. tn(w0) acts on t = diag(t1, . . . , tl, t
�1

l
, . . . , t

�1

1
) by

permuting the ti’s for 1  i  n. By direct computation, {↵n+1, . . . ,↵l} ✓ ✓ ✓ �(SO2l) \ {↵n}.
Suppose that n  l � 2 and {↵n+1, . . . ,↵l} ✓ ✓ ✓ �(SO2l) \ {↵n}. First we show that w✓

takes the set {↵l�1,↵l} to itself. Suppose that w✓↵l = ↵j for some j  l � 2 for contradiction.

Let t = diag(t1, . . . , tl, t
�1

l
, . . . , t

�1

1
) and s = w✓tw

�1

✓
= diag(s1, . . . , sl, s

�1

l
, . . . , s

�1

1
). Then,

w✓↵l(t) = tjt
�1

j+1
. So, w✓↵l�1(t) = tjtj+1. That is, w✓↵l�1 is a positive, nonsimple root. But

w✓ should be in the Bessel support and hence we have a contradiction. Therefore, w✓ takes the

set {↵l�1,↵l} to itself. So, sl�1 = tl�1 and sl = tl or sl = t
�1

l
.

Next, we show that w✓↵i = ↵i for n + 1  i  l � 2. We do this by considering ↵l�2,

then ↵l�3, and so on until we reach ↵n+1. We have w✓↵l�2(t) = t
"

j
t
�1

l�1
for some j  l � 2 and

" = ±1. If " = �1, this is a negative root, but it should be simple by assumption. Thus " = 1

and w✓↵l�2 is a positive root. In this case, w✓↵l�2 is simple if and only if j = l � 2. Hence,

sl�2 = tl�2. We repeat this argument for ↵l�3 and then ↵l�4 and so on until we obtain ↵n+1.

In summary, we have w↵i = ↵i for n+ 1  i  l � 2. Hence, si = ti for n+ 1  i  l � 1 and

sl 2 {tl, t�1

l
}.

Then, w✓↵n(t) = t
"

j
t
�1

n+1
for some j  n and " = ±1. Since w✓↵n is negative, " = �1. Finally,

since w✓↵i is either simple or negative for i  n� 1, it follows that si 2 {t�1

1
, . . . , t

�1
n

} for any

i  n. Let w0 2 W (GLn) be the Weyl element which takes diag(t1, . . . , tn) to diag(s�1

1
, . . . , s

�1
n

).
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Then, w✓ = tn(w0)w̃n for some w
0 2 W (GLn) (note that the X in the definition of w̃n comes

from needing det(w✓) = 1 and this also determines the action of w✓ on ↵l�1 and ↵l). Therefore,

for n < l � 1, we have

Pn = {✓ 2 �(SO2l) | {↵n+1, . . . ,↵l} ✓ ✓ ✓ �(SO2l) \ {↵n}}.

Next, we examine Pl�1. Suppose ✓ 2 Pl�1. Then, w✓ 2 Bl�1(SO2l). Thus, there exists

w
0 2 W (GLl) such that w✓ = tl(w0)w̃l. Also, cw✓c = w✓. By Proposition 4.5,

w
0 =

0

@ w
00

1

1

A ,

for some w
00 2 W (GLl�1). Since w̃ltw̃

�1

l
= diag(t±1

l
, . . . , t

�1

1
, t1, . . . , t

⌥1

l
), it follows that the

(l, l)-entry of w✓tw
�1

✓
is t±1

l
(the sign depends on the parity of l). Hence w✓↵l(t) = t

�1

j
t
±1

l
for

some j  l � 1 and hence w✓↵l is a negative root. So, ↵l /2 ✓. w✓↵l�1(t) = t
�1

j
t
⌥1

l
is also a

negative root. So ↵l�1 /2 ✓ and hence ✓ ✓ �(SO2l) \ {↵l�1,↵l}.
Now we suppose that ✓ ✓ �(SO2l) \ {↵l�1,↵l}. Then w✓↵l�1 and w✓↵l�1 are negative. Let

s = w✓tw
�1

✓
= diag(s1, . . . , sl, s

�1

l
, . . . , s

�1

1
). Then w✓↵l�1(t) = sl�1s

�1

l
and w✓↵l(t) = sl�1sl.

We show that sl�1 = t
�1

j
for some j by contradiction. Suppose sl�1 = tj If sl = tk, then

w✓↵l(t) = tjtk is a positive root which is a contradiction. But, if sl = t
�1

k
, then w✓↵l�1(t) = tjtk

is positive and hence we have another contradiction. Therefore, we must have sl�1 = t
�1

j
.

Our next step is to show that sl = tl or sl = t
�1

l
depending on the parity of l. Since

sl�1 = t
�1

j
, w✓↵l�2(t) = sl�2tj . Since w✓ 2 B(SO2l), this root must be simple or negative. It

is simple if sl�2 = t
�1

j+1
. It is negative if sl�2 = t

�1
r

for some r < j. In either case we have

that sl�2 = t
�1
r

for some r. By continuing this process for all the roots, we find that for each

n < l there exists a unique jn such that sn = t
�1

jn
Suppose that sl 6= tl and sl 6= t

�1

l
for

contradiction. Then, there exists n such that sn = t
�1

l
. Then w✓↵n(t) = t

�1

l
tjn+1

. This root is

positive for any index jn+1. It is simple when jn+1 = l � 1. Thus we must have sn+1 = t
�1

l�1
.

Next, w✓↵n+1(t) = t
�1

l�1
tjn+2

. This root is positive for any index jn+2 < l� 1. It is simple when

jn+1 = l�2. Thus we must have sn+2 = t
�1

l�2
. Continuing in this fashion we find that si = t

�1

l+n�i

for n  i  l�2. Thus w✓↵l�1(t) = t
�1

l+n�(l�2)
tj where j  l+n�(l�2). This is always a positive

root. However, by assumption, it is negative. Hence we have a contradiction. Therefore, we

must have sl = tl or sl = t
�1

l
. Thus, w✓tw

�1

✓
= diag(t�1

j1
, . . . , t

�1

jl�1
, t
✏

l
, t

�✏
l

, tjl�1
, . . . , tj1) for some

✏ 2 {±1}. Let w
00 2 W (GLl�1) be such that w

00diag(t1, . . . , tl�1)(w00)�1 = diag(tjl�1
, . . . , tj1).

Then, tl�1(w00)w̃l�1 = w✓ (note that the parity of l determines ✏ since we need the determinant

to be 1) and hence w✓ 2 B(SO2l). Therefore, we have

Pl�1 = {✓ 2 �(SO2l) | ✓ ✓ �(SO2l) \ {↵l�1,↵l}}.

Next, we show the claim for Pl. Suppose that w✓ = tl(w0)w̃l for some w
0 2 W (GLl) with

cw✓c 6= w✓. For l odd, we have

w̃ltw̃
�1

l
= diag(tl, t

�1

l�1
, . . . , t

�1

2
, t

�1

1
, t1, t2, . . . , tl�1, t

�1

l
),

and for l even

w̃ltw̃
�1

l
= diag(t�1

l
, t

�1

l�1
, . . . , t

�1

2
, t

�1

1
, t1, t2, . . . , tl�1, tl).
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Let w0 = (w0
i,j
)l
i,j=1

. Since cw✓c 6= w✓, by Proposition 4.5, w0
l,1

= 0. Let

w✓tw
�1

✓
= diag(s1, . . . , sl, s

�1

l
, . . . , s

�1

1
).

For l odd, si 2 {t�1

1
, . . . , t

�1

l�1
, tl} and for l even si 2 {t�1

1
, . . . , t

�1

l�1
, t

�1

l
}. Since w

0
l,1

= 0,

sl 6= t
±1

l
. Thus, w✓↵l�1 = sl�1s

�1

l
= sl�1tr and w✓↵l�1 = sl�1sl = sl�1t

�1
r

for some r < l.

If sl�1 = tl, then w✓↵l�1 is positive and we must have r = l � 1 so that it is simple. Then,

w✓↵l = tlt
�1

l�1
is negative and hence we have {↵l�1} ✓ ✓ ✓ �(SO2l) \ {↵l}. If sl�1 = t

�1

l
, then

w✓↵l�1 is again positive since r < l. We must have r = l � 1 to ensure it is simple. But, then

w✓↵l�2(t) = tjtl for some j < l � 1. This root is positive and never simple. Hence we have a

contradiction. Thus sl�1 6= t
�1

l
. Thus we have shown the claim for sl�1 = tl (and t

�1

l
for which

we had a contradiction) so far. Suppose sl�1 = t
�1

j
for some j < l. Then w✓↵l�1(t) = t

�1

j
tr

and w✓↵l(t) = t
�1

j
t
�1
r

. So w✓↵l is always negative. w✓↵l�1 is negative if j < r and simple if

j = r + 1. We show that we must have j = r + 1. Suppose j < r for contradiction. Then there

exists n such that sn = tl or t
�1

l
. Suppose sn = tl. Then w✓↵n(t) = sns

�1

n+1
= tltjn+1

. This root

is positive and only simple if jn+1 = l � 1. Then w✓↵n+1(t) = t
�1

l�1
tjn+2

for some jn+2 < l � 1.

Again this root is always positive and is simple only if jn+2 = l � 2. Continuing this, we find

si = t
�1

l+n�i
for n + 1  i  l. Thus we have k = n and w✓↵l�1(t) = t

�1

n+1
tn is simple and

w✓↵l(t) = t
�1

n+1
t
�1
n

is negative. Therefore, {↵l�1} ✓ ✓ ✓ �(SO2l) \ {↵l}. We address the final

case. Suppose that sn = t
�1

l
. Then w✓↵n(t) = t

�1

l
tjn+1

with jn+1 < l. This root is always

positive. It is simple only if jn+1 = l�1. The rest of this case follows exactly as in the previous

case. Again we find {↵l�1} ✓ ✓ ✓ �(SO2l) \ {↵l} and ✓ 2 Pl.

Next, suppose that {↵l�1} ✓ ✓ ✓ �(SO2l) \ {↵l}. Let

w✓tw
�1

✓
= diag(s1, . . . , sl, s

�1

l
, . . . , s

�1

1
).

Then, w✓↵l�1(t) = sl�1s
�1

l
is simple and w✓↵l�1(t) = sl�1sl is negative. Suppose first that the

simple root w✓↵l�1(t) is sl�1s
�1

l
= trt

�1

r+1
for some r < l. If sl = tr+1, then w✓↵l(t) = trtr+1

is positive which is a contradiction. Therefore, we must have sl�1 = t
�1

r+1
and sl = t

�1
r

. Hence,

w✓↵l�2(t) = sl�2s
�1

l�1
= t

✏

jl�2
tr+1 where ✏ 2 {±1}. This is simple if ✏ = �1 and jl�2 = r + 2.

It is negative if ✏ = �1 and jl�2 < r + 1. In either case, we have sl�2 = t
�1

jl�2
. We can continue

this argument until we arrive at sn+1 = t
�1

l�1
. That is, si = t

�1

ji
for n + 1  i  l. The next

root is w✓↵n(t) = sns
�1

n+1
= t

✏

jn
tl�1 where ✏ 2 {±1}. This is simple for two cases: when jn = l

and ✏ = ±1. ✏ is determined by the parity of l. Specifically, if ✏ = 1, then l must be odd and

if ✏ = �1, then l must be even. Suppose that sn = tl. Then w✓↵n�1(t) = sn�1s
�1
n

= t
✏

jn�1
t
�1

l

where jn�1 < r and ✏ 2 {±1}. Since jn�1 < r < l�1, this root can never be simple. Thus it must

be negative and so ✏ = �1. That is, sn�1 = t
�1

jn�1
. Continuing in the above manner, we again

find that si = t
�1

ji
for i < n. Let w00 2 W (GLl) be such that w00diag(tl, t

�1

l�1
, . . . , t

�1

1
)(w00)�1 =

diag(s1, . . . , sl). Then, w✓ = tl(w00)w̃l 2 Bl(SO2l). Next, we must address the case sn = t
�1

l
.

Then w✓↵n�1(t) = sn�1s
�1
n

= t
✏

jn�1
tl where jn�1 < r and ✏ 2 {±1}. Since jn�1 < r < l � 1,

this root can never be simple. Thus it must be negative and so ✏ = �1. That is, sn�1 = t
�1

jn�1
.

Continuing in the above manner, we again find that si = t
�1

ji
for i < n. Let w00 2 W (GLl) be

such that w00diag(t�1

l
, t

�1

l�1
, . . . , t

�1

1
)(w00)�1 = diag(s1, . . . , sl). Then, w✓ = tl(w00)w̃l 2 Bl(SO2l).

Thus, if w✓↵l�1(t) = trt
�1

r+1
for some r < l, then

Pl = {✓ 2 �(SO2l) | {↵l�1} ✓ ✓ ✓ �(SO2l) \ {↵l}},
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Suppose that w✓↵l�1(t) is the remaining simple root sl�1s
�1

l
= tl�1tl. If sl�1 = tl�1 then w✓↵l

is simple which is a contradiction. Thus, we must have sl�1 = tl and sl = t
�1

l�1
.

Thus, w✓↵l�2(t) = sl�2t
�1

l
. This root cannot be simple and hence we must have sl�2 = t

�1

jl�2
.

Next, w✓↵l�3(t) = sl�3tjl�2
= t

✏

jl�3
tjl�2

. This root is always positive and not simple if ✏ = 1.

Thus we must have sl�3 = t
�1

jl�3
. Continuing in this manner for all the remaining roots shows

that for any i  l � 2 we have si 2 {t�1

1
, · · · , t�1

l�2
}. Thus,

w✓ =

0

BB@

w1

w2

w
0
1

1

CCA ,

where w1diag(t
�1

l�2
, . . . , t

�1

1
)w�1

1
= diag(s1, . . . , sl�2), and

w2 =

0

BBBBB@

0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0

1

CCCCCA
.

Note that det(w2) = �1 and hence this is only possible if l is odd (for l even, detw✓ = �1). Let

w
00 2 W (GLl) be such that w

00diag(tl, t
�1

l�1
, . . . , t

�1

1
)(w00)�1 = diag(s1, . . . , sl). Then, we have

w✓ = tl(w00)w̃l 2 Bl(SO2l). Thus, in both the cases of w✓↵l�1(t), we have

Pl = {✓ 2 �(SO2l) | {↵l�1} ✓ ✓ ✓ �(SO2l) \ {↵l}}.

Finally, conjugation by c fixes the roots ↵i for i  l�2 and maps ↵l�1 7! ↵l and ↵l 7! ↵l�1.

Using the result for Pl, it is straightforward to check that

P
c

l
= {✓ 2 �(SO2l) | {↵l} ✓ ✓ ✓ �(SO2l) \ {↵l�1}}.

This finishes the proof of the proposition.

Next, we interpret the previous proposition in terms of the Bessel support.

Proposition 4.8 The sets Bn(SO2l) for n = 0, 1, . . . , l and Bc

l
(SO2l) form a partition of

B(SO2l).

Proof We have that
l�2G

n=0

Pn t Pl t P
c

l
t Pl�1 = P(�(SO2l)),

the power set of �(SO2l). The claim then follows from Proposition 4.7.

We need the following proposition to show that the zeta integrals are nonzero in later

sections.

Proposition 4.9 If w 2 W (GLl) and w 6= Il, then tl(w) /2 B(SO2l). In particular, if a 2 GLl

and a is not upper triangular, then B⇡, (tl(a)) = 0.

Proof We use the partition of the Bessel support in Proposition 4.8. First, suppose that

tl(w) = tn(w0)w̃n for some n with 1  n  l and w
0 2 W (GLn). Then, w̃n 2 W (GLl).
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However, this is not the case for any n. Next, suppose tl(w) = ctl(w0)w̃lc (this is the case that

tl(w) 2 Bc

l
(SO2l)). Thus, ctl(w)c = tl(w0)w̃l. Let w = (wi,j)li,j=1

. Then,

ctl(w)c =

0

BBBBB@

(wi,j)
l�1

i,j=1
0 (wi,l)

l�1

i=1
0

0 ⇤ 0 ⇤

(wl,j)
l�1

j=2
0 wl,l 0

0 ⇤ 0 ⇤

1

CCCCCA
.

If l is even then,

tl(w
0)w̃l =

0

@ w
0

(w0)⇤

1

A .

Hence, wl,l = 0 and wi,j = 0 for any 1  i, j  l � 1. Thus,

w =

0

@0(l�1)⇥(l�1) ⇤

⇤ 0

1

A .

But, w 2 W (GLl) and hence this is not possible.

If l is odd, we have

tl(w
0)w̃l =

0

@0l⇥(l�1) (w0
i,1
)l
i=1

0l⇥1 (w0
i,j
)l
i=1,j=2

⇤ 0 ⇤ 0

1

A .

Again, wi,j = 0 for any 1  i, j  l � 1, but since w 2 W (GLl), this is not possible. Therefore,

w /2 Bc

l
(SO2l) and w /2 Bn(SO2l) for any n. By Proposition 4.8, w /2 B(SO2l).

For the second part of the claim, suppose a 2 GLl is not upper triangular, Then, by the

Bruhat decomposition of GLl, there exists w 2 W (GLl) such that w 6= Il and a = u1twu2

where t 2 TGLl and u1, u2 2 UGLl . We obtain B⇡, (tl(a)) = B⇡, (tl(t)tl(w)) (tl(u1)) (tl(u2)).

However, tl(w) /2 B(SO2l) and hence B⇡, (tl(t)tl(w)) = 0. Thus, we have proven the proposition.

5 Twists by GLn for n  l � 2

In this section, we calculate the zeta integrals for twists up to GLl�2. Let v 2 ⌧ be a fixed

vector and define ⇠v 2 I(⌧) by supp(⇠v) = Qn and

⇠v(ln(a)u) = ⌧(a)v, 8a 2 GLn, u 2 Vn,

where ln(a) = diag(a, 1, a⇤) and Qn = LnVn is the standard Siegel parabolic of SO2n+1. Let

fv = f⇠v 2 I(⌧, �1). That is, fv(g, a) = ⇤⌧ (⌧(a)⇠v(g)), where ⇤⌧ 2 HomUGLn
(⌧, �1), a 2

GLn, and g 2 SO2n+1. We also fix the Whittaker function Wv(a) = ⇤⌧ (⌧(a)v). We show that

the zeta integrals in this case are nonzero.

Proposition 5.1  (B⇡, , fv) = Wv(In). In particular, we may choose v 2 ⌧ such that

 (B⇡, , fv) 6= 0.

Proof By definition,

 (B⇡, , fv) =
X

g2USO2n+1
\SO2n+1

0

@
X

r2Rl,n

B⇡, (rwl,n
g(wl,n)�1)

1

A fv(g, In).
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The support of fv(g, In) is contained in VnLn. Since Vn ✓ USO2n+1
, we have

 (B⇡, , fv) =
X

a2UGLn\GLn

0

@
X

r2Rl,n

B⇡, (rwl,n
ln(a)(w

l,n)�1)

1

AWv(a).

The embedding of SO2n+1 into SO2l takes ln(a) to qn(a) = diag(Il�n�1, a, I2, a
⇤
, Il�n�1). We

have w
l,n

qn(a)(wl,n)�1 = diag(a, I2l�2n, a
⇤). Let

rx =

0

BBBBBBBB@

In

x Il�n�1

I2

Il�n�1

x
0

In

1

CCCCCCCCA

2 R
l,n

.

Then,

rxw
l,n

qn(a)(w
l,n)�1 =

0

BBBBBBBB@

a

xa Il�n�1

I2

Il�n�1

x
0
a
⇤

a
⇤

1

CCCCCCCCA

.

By Proposition 4.9, B⇡, (rxwl,n
qn(a)(wl,n)�1) = 0 unless a is upper triangular and x = 0.

Hence,

 (B⇡, , fv) =
X

a2TGLn

B⇡, (tn(a))Wv(a).

Finally, by Lemma 4.3,  (B⇡, , fv) = Wv(In). If we choose v to be a Whittaker vector for ⌧ ,

then Wv(In) 6= 0. This completes the proof of the proposition.

Let f̃v = M(⌧, �1)fv and W
⇤
v
(a) = ⇤⌧ (⌧(dna⇤)v). The following lemma is the analogue of

[19, Lemma 3.6] and holds for any n. The proof follows similarly.

Lemma 5.2 1. If f̃v(g, In) 6= 0, then g 2 QnwnQn = QnwnVn.

2. If x 2 Vn, then f̃v(wnx, In) = W
⇤
v
(In).

3. For a 2 GLn and x 2 Vn, f̃v(ln(a)wnx, In) = W
⇤
v
(a).

In [19], each twist utilizes [22, Lemma 3.1]. For twists up to GLl�2, [22, Lemma 3.1] would

be su�cient. However, for twists by GLl�1 and GLl, it is expedient to have the below lemma.

Note that [22, Lemma 3.1] is precisely the case when X = GLn in the below lemma.

Lemma 5.3 Suppose X is a subset of GLn for which ux 2 X for any u 2 UGLn and x 2 X.

Let H be a function on X such that H(ug) =  (u)H(g) for any u 2 UGLn and g 2 X. Suppose

that X

x2X

H(x)Wv(x) = 0

for any v 2 ⌧ and with ⌧ running through all generic irreducible representations of GLn. Then,

H(x) = 0 for any x 2 X.
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Proof Let H
0 be the function on GLn defined by H

0(g) = H(g) if g 2 X and H
0(g) = 0 if

g /2 X. Then, H 0(ug) =  (u)H 0(g) for any u 2 UGLn and g 2 GLn. By [22, Lemma 3.1], H 0 ⌘ 0

on GLn and hence the lemma follows.

The following theorem shows that, for n  l � 2, the twists by GLn determine that the

Bessel functions are equal on Bn(SO2l). Note that w̃n fixes ↵l�1 and ↵l when n is even and

switches them when n is odd. Recall that t
0
n
= t̃ = diag(Il�1,

�1

2
,�2, Il�1) if n is odd and

t
0
n
= I2l if n is even. We explain the inclusion of the term t

0
n
in the below theorem. Let x 2 Fq

and x↵l(x) be an element of the root space of ↵l. By Proposition 4.1, we have

B⇡, (tn(a)w̃nx↵l(x)) = B⇡, (tn(a)w̃n)(� (x)/2).

When n is odd,

B⇡, (tn(a)t̃w̃nx↵l(x)) = B⇡, (x↵l�1
(x)tn(a)t̃w̃n) = B⇡, (tn(a)t̃w̃n)( (x)/4).

Since  is nontrivial, it follows that B⇡, (tn(a)w̃n) = 0. However, if we include t
0
n
= t̃, we have

B⇡, (tn(a)t̃w̃nx↵l(x)) = B⇡, (tn(a)t̃w̃n)(� (x)/2)

and

B⇡, (tn(a)t̃w̃nx↵l(x)) = B⇡, (x↵l�1
(�2x)tn(a)t̃w̃n) = B⇡, (tn(a)t̃w̃n)(� (x)/2).

Thus, B⇡, (tn(a)t̃w̃n) may be nonzero.

When n is even, we have

B⇡, (tn(a)w̃nx↵l(x)) = B⇡, (x↵l(x)tn(a)w̃n) = B⇡, (tn(a)w̃n)(� (x)/2)

and so t
0
n
= I2l su�ces. Thus, we see that the inclusion of the term t

0
n
is necessary in the below

theorem.

Theorem 5.4 Let ⇡ and ⇡0 be irreducible cuspidal  -generic representations of SO2l which

share the same central character. If �(⇡ ⇥ ⌧, ) = �(⇡0 ⇥ ⌧, ) for all irreducible generic

representations ⌧ of GLn, then B⇡, (tn(a)t0nw̃n) = B⇡0, (tn(a)t0nw̃n) for any a 2 GLn.

Proof By Proposition 5.1, we have  (B⇡, , fv) =  (B⇡0, , fv) = Wv(In). From our assump-

tion, �(⇡ ⇥ ⌧, ) = �(⇡0 ⇥ ⌧, ) for all irreducible generic representations ⌧ of GLn, and hence

it follows that  (B⇡, , f̃v) =  (B⇡0, , f̃v). By definition,

 (B⇡, , f̃v) =
X

g2USO2n+1
\SO2n+1

0

@
X

r2Rl,n

B⇡, (rwl,n
g(wl,n)�1)

1

A f̃v(g, In).

By Lemma 5.2,

 (B⇡, , f̃v) =
X

a2UGLn\GLn

x2Vn

0

@
X

r2Rl,n

B⇡, (rwl,n
ln(a)wnx(w

l,n)�1)

1

A f̃v(ln(a)wnx, In).

The embedding of SO2n+1 into SO2l takes wn to t
0
n
ŵn (see §4.2) and ln(a) to the element

qn(a) = diag(Il�n�1, a, I2, a
⇤
, Il�n�1). The embedding also takes the unipotent element x =
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0

BB@

In ⇤ ⇤

1 ⇤

In

1

CCA to x̃ = diag(Il�n�1,

0

BB@

In ⇤ ⇤

I2 ⇤

In

1

CCA , Il�n�1), and we have

x̃(wl,n)�1 = (wl,n)�1

0

BBBBBBBB@

In 0 ⇤ 0 ⇤

Il�n�1 0 0 0

I2 0 ⇤

Il�n�1 0

In

1

CCCCCCCCA

.

The character is trivial on the last unipotent matrix and hence, by Lemma 5.2,

 (B⇡, , f̃v) = |Vn|
X

a2UGLn\GLn

0

@
X

r2Rl,n

B⇡, (rwl,n
qn(a)t

0
n
ŵn(w

l,n)�1)

1

AW
⇤
v
(a).

Next, wl,n
qn(a) = tn(a)wl,n where tn(a) = diag(a, I2l�2n, a

⇤). Also, wl,n
t
0
n
= t

0
n
w

l,n
. Let

rx =

0

BBBBBBBB@

In

x Il�n�1

I2

Il�n�1

x
0

In

1

CCCCCCCCA

2 R
l,n

.

Then, rxtn(a)t0n = tn(a)t0nrax. Recall that w̃n = w
l,n

ŵn(wl,n)�1
. Then,

 (B⇡, , f̃v) = |Vn|
X

a2UGLn\GLn

0

@
X

rx2Rl,n

B⇡, (tn(a)t0nraxw̃n)

1

AW
⇤
v
(a).

Note that

raxw̃n = w̃n

0

BBBBBBBB@

In x
0(a⇤)

Il�n�1 xa

I2

Il�n�1

In

1

CCCCCCCCA

.

The character is trivial on the last unipotent element and hence

 (B⇡, , f̃v) = |Vn||Rl,n|
X

a2UGLn\GLn

B⇡, (tn(a)t0nw̃n)W
⇤
v
(a).

Since  (B⇡, , f̃v) =  (B⇡0, , f̃v), it follows that

0 =
X

a2UGLn\GLn

(B⇡, � B⇡0, )(tn(a)t
0
n
w̃n)W

⇤
v
(a).

Let f be the function on GLn defined by f(a) = (B⇡, �B⇡0, )(tn(a)t0nw̃n). Then, f(ua) =

 (u)f(a) and

0 =
X

a2UGLn\GLn

f(a)W ⇤
v
(a).



Converse Theorem for Finite Split SO2l 23

By Lemma 5.3, f(a) = 0 for any a 2 GLn which proves the theorem.

As a consequence, we see that the twists by GLn determine the Bessel functions on the

Bruhat cells for w 2 Bn(SO2l).

Theorem 5.5 Let ⇡ and ⇡0 be irreducible cuspidal  -generic representations of SO2l which

share the same central character. If �(⇡ ⇥ ⌧, ) = �(⇡0 ⇥ ⌧, ) for all irreducible generic

representations ⌧ of GLn, then B⇡, (b1wb2) = B⇡0, (b1wb2) for any b1, b2 2 BSO2l and w 2
Bn(SO2l).

Proof We have b1wb2 = u1twu2 for some t 2 TSO2l , and u1, u2,2 USO2l . By Proposition 4.1,

it su�ces to show that B⇡, (tw) = B⇡0, (tw). We shall see that the support of these functions

on TSO2lBn(SO2l) is contained in the set {tn(a)t0nw̃n, |, a 2 GLn}. Suppose that B⇡, (tw) 6= 0.

By definition of Bn(SO2l), there exists w0 2 W (GLn) such that w = tn(w0)w̃n. Recall that

w̃n↵i = ↵n�i for 1  i  n� 1,

w̃n↵n(t) = t
�1

1
t
�1

n+1
,

w̃n↵i = ↵i for n+ 1  i  l � 2,

w̃n↵l�1 =

8
<

:
↵l if n is odd,

↵l�1 if n is even,

w̃n↵l =

8
<

:
↵l�1 if n is odd,

↵l if n is even.

Also tn(w0)↵i = ↵i for any n + 1  i  l. Let x 2 Fq and x↵i(x) be an element of the root

space of ↵i. By Proposition 4.1, for n+ 1 6= i  l � 2 we have

B⇡, (twx↵i(x)) = B⇡, (tw) (x).

On the other hand,

B⇡, (twx↵i(x)) = B⇡, (tw) (↵i(t)x).

Since  is nontrivial, we must have ↵i(t) = 1 for any n + 1  i  l � 2. That is, ti = ti+1 for

any n+ 1  i  l � 2.

Similarly,

B⇡, (twx↵l(x)) = B⇡, (tw)(� (x)/2)

and

B⇡, (twx↵l�1
(x)) = B⇡, (tw)( (x)/4).

When n is odd,

B⇡, (twx↵l(x)) = B⇡, (x↵l�1
(↵l�1(t)x)tw) = B⇡, (tw)( (↵l�1(t)x)/4),

and

B⇡, (twx↵l�1
(x)) = B⇡, (x↵l(↵l(t)x)tw) = B⇡, (tw)(� (↵l(t)x)/2),

Since  is nontrivial, we have ↵l�1(t)

4
= �1

2
and �↵l(t)

2
= 1

4
.Write t = diag(t1, . . . , tl, t

�1

l
, . . . , t

�1

1
).

We find that tl�1 = ±1 and tl = ⌥ 1

2
. Furthermore, ti = ti+1 = tl�1 = ±1 for any n + 1 

i  l � 2. Let a = diag(t1, . . . , tn)w0
. Then tw = tn(a)t̃w̃n if tl�1 = 1 and by Theorem 5.4, we
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have B⇡, (tw) = B⇡0, (tw). If tl�1 = �1, then tw = �tn(a)t̃w̃n. Since ⇡ and ⇡0 have the same

central character, say �, by Theorem 5.4,

B⇡, (tw) = B⇡, (�tn(a)t̃w̃n)

= �(�1)B⇡, (tn(a)t̃w̃n)

= �(�1)B⇡0, (tn(a)t̃w̃n)

= B⇡0, (�tn(a)t̃w̃n)

= B⇡0, (tw).

This proves the corollary when n is odd.

Suppose now that n is even. We have

B⇡, (twx↵l(x)) = B⇡, (x↵l(↵l(t)x)tw) = B⇡, (tw)( (↵l(t)x)/4),

and

B⇡, (twx↵l�1
(x)) = B⇡, (x↵l�1

(↵l�1(t)x)tw) = B⇡, (tw)(� (↵l�1(t)x)/2),

Since  is nontrivial, we have ↵l�1(t) = 1 and ↵l(t) = 1. Write t = diag(t1, . . . , tl, t
�1

l
, . . . , t

�1

1
).

We find that tl�1 = tl = ±1. Furthermore, ti = ti+1 = tl�1 = ±1 for any n + 1  i  l � 2.

Let a = diag(t1, . . . , tn)w0
. Then tw = tn(a)w̃n if tl�1 = 1 and by Theorem 5.4, we have

B⇡, (tw) = B⇡0, (tw). If tl�1 = �1, then tw = �tn(a)w̃n. Since ⇡ and ⇡0 have the same central

character, say �, by Theorem 5.4,

B⇡, (tw) = B⇡, (�tn(a)w̃n)

= �(�1)B⇡, (tn(a)w̃n)

= �(�1)B⇡0, (tn(a)w̃n)

= B⇡0, (�tn(a)w̃n)

= B⇡0, (tw).

This proves the corollary when n is even.

6 Twists by GLl�1

In this section, we consider the twists of GLl�1. The arguments of this section are similar to

the previous section, except that Rl,n and w
l,n are trivial which leads to minor di↵erences.

Let v 2 ⌧ be a fixed vector and define ⇠v 2 I(⌧) by supp(⇠v) = Ll�1Vl�1 = Ql�1 and

⇠v(ll�1(a)u) = ⌧(a)v, 8a 2 GLl�1, u 2 Vl�1.

Let fv = f⇠v 2 I(⌧, �1). That is, for ⇤⌧ 2 HomUGLl�1
(⌧, �1), a 2 GLl�1, and g 2 SO2l�1, we

have fv(g, a) = ⇤⌧ (⌧(a)⇠v(g)). We also let Wv(a) = ⇤⌧ (⌧(a)v). We show that the zeta integrals

in this case are nonzero.

Proposition 6.1 Suppose B⇡, be the normalized Bessel function of ⇡. Then, we have

 (B⇡, , fv) = Wv(Il�1). In particular, we may choose v 2 ⌧ such that  (B⇡, , fv) 6= 0.

Proof By definition,

 (B⇡, , fv) =
X

g2USO2l�1
\SO2l�1

B⇡, (g)fv(g, Il�1).
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The support of fv(·, Il�1) is Ql�1. Thus,

 (B⇡, , fv) =
X

a2UGLl�1
\GLl�1

B⇡, (ll�1(a))fv(ll�1(a), Il�1).

Under the embedding of SO2l�1 into SO2l, ll�1(a) maps to tl�1(a). Hence,

 (B⇡, , fv) =
X

a2UGLl�1
\GLl�1

B⇡, (tl�1(a))Wv(a).

By Proposition 4.9, B⇡, (tl�1(a)) = 0 unless a is upper triangular. Thus, by Lemma 4.3,

 (B⇡, , fv) = Wv(Il�1).

If we choose v to be a Whittaker vector for ⌧ , then Wv(Il�1) 6= 0. This proves the proposition.

The next theorem shows that the twists by GLl�1 determine that the Bessel functions are

equal on a subset of the Bruhat cells in Bl�1(SO2l). More specifically, by Proposition 4.1, to

determine the normalized Bessel functions on a Bruhat cell of w 2 Bl�1(SO2l), it is enough to

determine it on TSO2lw. The below theorem determines the subset of TSO2lw for t 2 TSO2l such

that the l-th coordinate is tl = 1 if n is odd and tl =
1

2
if n is even. Using the central character

we can determine tl = ±1 if n is odd and tl = ± 1

2
if n is even. Later, Theorem 7.7 shows that

the twists by GLl determine the remaining part where tl 6= ±1 if n is odd and tl 6= ± 1

2
if n is

even.

Theorem 6.2 Let ⇡ and ⇡0 be irreducible cuspidal  -generic representations of SO2l which

share the same central character. If �(⇡ ⇥ ⌧, ) = �(⇡0 ⇥ ⌧, ) for all irreducible generic

representations ⌧ of GLl�1, then we have B⇡, (tl�1(a)t0l�1
w̃l�1) = B⇡0, (tl�1(a)t0l�1

w̃l�1) for

any a 2 GLl�1.

Proof By Proposition 6.1,  (B⇡, , fv) =  (B⇡0, , fv) = Wv(Il�1). From our assumption,

�(⇡ ⇥ ⌧, ) = �(⇡0 ⇥ ⌧, ) for all irreducible generic representations ⌧ of GLl�1, and hence it

follows that  (B⇡, , f̃v) =  (B⇡0, , f̃v). By definition,

 (B⇡, , f̃v) =
X

g2USO2l�1
\SO2l�1

B⇡, (g)f̃v(g, Il�1).

From Lemma 5.2, we get

 (B⇡, , f̃v) =
X

a2UGLl�1
\GLl�1

u2Vl�1

B⇡, (ll�1(a)wl�1u)W
⇤
v
(a).

The embedding of SO2l�1 into SO2l takes ll�1(a) to tl�1(a) and wl�1 to t
0
l�1

w̃l�1. Let

u =

0

BB@

Il�1 x y

1 x
0

Il�1

1

CCA .
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Then the embedding takes u to

ũ =

0

BBBBB@

Il�1 x
x

2
y

1 x
0

2

1 x
0

Il�1

1

CCCCCA
.

Since  (ũ) = 1, we have

 (B⇡, , f̃v) = |Vl�1|
X

a2UGLl�1
\GLl�1

B⇡, (tl�1(a)t
0
l�1

w̃l�1)W
⇤
v
(a).

From  (B⇡, , f̃v) =  (B⇡0, , f̃v), it follows that

0 =
X

a2UGLl�1
\GLl�1

(B⇡, � B⇡0, )(tl�1(a)t
0
l�1

w̃l�1)W
⇤
v
(a).

Let f be the function on GLl�1 defined by f(a) = (B⇡, � B⇡0, )(tl�1(a)t0l�1
w̃l�1). Then,

f(ua) =  (u)f(a) and

0 =
X

a2GLl�1

f(a)W ⇤
v
(a).

By Lemma 5.3, f(a) = 0 for any a 2 GLl�1 which gives the theorem.

The following corollary shows that Theorems 5.5 and 6.2 hold for the Bessel functions of

c · ⇡ and c · ⇡0 as well.

Corollary 6.3 Let ⇡ and ⇡0 be irreducible cuspidal  -generic representations of SO2l which

share the same central character. If �(⇡ ⇥ ⌧, ) = �(⇡0 ⇥ ⌧, ) for all irreducible generic

representations ⌧ of GLn for any n  l � 1, then Bc·⇡, (tn(a)t0nw̃n) = Bc·⇡0, (tn(a)t0nw̃n) for

any a 2 GLn.

Proof By Theorems 5.5 and 6.2 , B⇡, (tn(a)t0nw̃n) = B⇡0, (tn(a)t0nw̃n) for any a 2 GLn. Also,

B⇡, (tn(a)t0nw̃n) = B⇡, (ct̃�1
t̃ctn(a)t

0
n
w̃nct̃

�1
t̃c) = Bc·⇡, (t̃ctn(a)t

0
n
w̃nct̃

�1)

= Bc·⇡, (tn(a)t
0
n
w̃n).

for any n  l � 1. This proves the corollary.

The following corollary shows the equivalence of �-factors of conjugate representations for

n  l � 1. This is not necessary to show the converse theorem, but when later paired with

its analogue for n = l, Corollary 7.8, it shows that the �-factor cannot distinguish between a

representation and its conjugate. In the setting of local fields, this is known [2, 13].

Corollary 6.4 Let ⇡ be an irreducible cuspidal  -generic representation of SO2l. Then we

have �(⇡ ⇥ ⌧, ) = �(c · ⇡ ⇥ ⌧, ) for all irreducible generic representations ⌧ of GLn for any

n  l � 1.

Proof We abuse notation and consider the zeta integrals simultaneously for each n  l � 1.

By Propositions 5.1 and 7.1 we can choose v 2 ⌧ such that  (B⇡, , fv) =  (Bc·⇡, , fv) 6= 0. By

the proofs of theorems 5.5 and 6.2,

 (B⇡, , f̃v) = |Vn||Rl,n|
X

a2UGLn\GLn

B⇡, (tn(a)t0nw̃n)W
⇤
v
(a).
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Since for any n  l � 1, we have

B⇡, (tn(a)t0nw̃n) = B⇡, (ct̃�1
t̃ctn(a)t

0
n
w̃nct̃

�1
t̃c)

= Bc·⇡, (t̃ctn(a)t
0
n
w̃nct̃

�1)

= Bc·⇡, (tn(a)t
0
n
w̃n),

it follows that  (B⇡, , f̃v) =  (Bc·⇡, , f̃v). Finally, since  (B⇡, , fv) =  (Bc·⇡, , fv) is nonzero,

we have �(⇡⇥ ⌧, ) = �(c · ⇡⇥ ⌧, ) for all irreducible generic representations ⌧ of GLn for any

n  l � 1. This concludes the proof of the corollary.

7 Twists by GLl

In this section, we consider the twists by GLl. These twists are significantly di↵erent from

the previous twists. Note that we still need to determine the Bessel support on the Bruhat

cells corresponding to Weyl elements in Bl(SO2l) and Bc

l
(SO2l), and the Bessel support on the

rest of Bruhat cells corresponding to Weyl elements in Bl�1(SO2l) that are not determined by

Theorem 6.2. The di↵erence from previous cases is that c acts nontrivially on these sets.

Let v 2 ⌧ be a fixed vector and define ⇠v 2 I(⌧) by supp(⇠v) = LlVl = Ql and

⇠v(ll(a)u) = ⌧(a)v,

for any a 2 GLl, u 2 Vl. Let fv = f⇠v 2 I(⌧, �1). That is fv(g, a) = ⇤⌧ (⌧(a)⇠v(g)), where

⇤⌧ 2 HomUGLl
(⌧, �1), a 2 GLl, and g 2 SO2l+1. Let Wv(a) = ⇤⌧ (⌧(a)v). The following

proposition shows that the zeta integrals in this case are nonzero.

Proposition 7.1  (B⇡, , fv) = Wv(wl,l). In particular, we may choose v 2 ⌧ such that

 (B⇡, , fv) 6= 0.

Proof By definition.

 (B⇡, , fv) =
X

g2USO2l
\SO2l

B⇡, (g)fv(wl,lg, Il).

By definition, the support of fv(·, Il) is Ql. Thus,

 (B⇡, , fv) =
X

a2UGLl
\GLl

B⇡, (tl(a))fv(wl,lll(a), Il).

By Proposition 4.9, B⇡, (tl(a)) = 0 for any a which isn’t upper triangular. Thus, by Lemma

4.3,  (B⇡, , fv) = Wv(wl,l). If we let ṽ be a Whittaker vector for ⌧ and v = ⌧(w�1

l,l
)ṽ, then

 (B⇡, , fv) = Wv(wl,l) = Wṽ(Il) 6= 0. This proves the proposition.

The support of f̃v = M(⌧, �1)fv is QlwlVl. Recall that the twists by GLn for n  l � 2

determine the Bessel functions on the Bruhat cells for Bn(SO2l), while the twists by GLl�1

only determine a portion of the Bruhat cells for Bl�1(SO2l). We first show that the rest of the

Bruhat cells, along with the Bruhat cells for Bl(SO2l) and Bc

l
(SO2l), embed into QlwlVl. This

follows from the next three propositions.

Proposition 7.2 Let w 2 Bl�1(SO2l) and t = diag(t1, . . . , tl, t
�1

l
, . . . , t

�1

1
) 2 TSO2l . Then

tw 2 QlwlVl (via the embedding of SO2l into SO2l+1) if and only if tl 6= 1 if l is odd, or tl 6= �1

2

if l is even.
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Proof We begin with a sketch of the proof. We first compute the embedding of the torus in

coordinates and the embedding of the Weyl element w, then compute QlwlVl in terms of block

matrices. We see that the lower left corner is determined by the torus. In particular, this lower

left corner must be invertible if tw 2 QlwlVl and the determinant of this block gives us the

condition we need. We proceed with the details of the proof.

Recall that the embedding sends t = diag(t1, . . . , tl, t
�1

l
, . . . , t

�1

1
) to

diag(s,

0

BB@

1

2
+ 1

4
(tl + t

�1

l
) 1

2
(tl � t

�1

l
) 2( 1

2
� 1

4
(tl + t

�1

l
))

1

4
(tl � t

�1

l
) 1

2
(tl + t

�1

l
) �1

2
(tl � t

�1

l
)

1

2
( 1
2
� 1

4
(tl + t

�1

l
)) �1

4
(tl � t

�1

l
) 1

2
+ 1

4
(tl + t

�1

l
)

1

CCA , s
⇤),

where s = diag(t1, t2, . . . , tl�1). By Proposition 4.5, there exists w
0 2 W (GLl) such that

w = tl(w0)w̃l and

w
0 =

0

@ w
00

1

1

A ,

for some w
00 2 W (GLl�1). Then,

w =

0

BB@

w
00

J
l�1

2

(w00)⇤

1

CCA .

Thus, the embedding into SO2l+1 of w is
0

BB@

w
00

A
l�1

(w00)⇤

1

CCA ,

where

A =

0

BB@

�1

8

3

4

9

4

�3

8

5

4

3

4

9

16

�3

8

�1

8

1

CCA .

Note that Al�1 = I3 when l is odd.

Thus, we can compute the embedding of tw in SO2l+1. We obtain
0

BB@

diag(t1, . . . , tl�1)w00

Z

diag(t�1

l�1
, . . . , t

�1

1
)(w00)⇤

1

CCA ,

where

Z =

0

BB@

1

2
+ 1

4
(tl + t

�1

l
) 1

2
(tl � t

�1

l
) 2( 1

2
� 1

4
(tl + t

�1

l
))

1

4
(tl � t

�1

l
) 1

2
(tl + t

�1

l
) �1

2
(tl � t

�1

l
)

1

2
( 1
2
� 1

4
(tl + t

�1

l
)) �1

4
(tl � t

�1

l
) 1

2
+ 1

4
(tl + t

�1

l
)

1

CCAA
l�1

.
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Next, we turn towards computing QlwlVl. Let a 2 GLl and n1, n2 2 Vl. We wish to compute

ll(a)n1wln2. Write

n1 =

0

BB@

Il X Y

1 X
0

Il

1

CCA ,

where X 2 Fl

q
, Y 2 Matl⇥l(Fq), X 0 = �t

XJl, and JlY + t
X

0 · X 0 + t
Y Jl = 0. Similarly, we

write

n2 =

0

BB@

Il M N

1 M
0

Il

1

CCA .

Then,

ll(a)n1wln2 =

0

BB@

aY aX + aYM a+ aXM
0 + aY N

X
0 1 +X

0
M M

0 +X
0
N

a
⇤

a
⇤
M a

⇤
N

1

CCA .

Thus, tw = ll(a)n1wln2 has a solution as long as we can find a suitable a
⇤
. We see that

a
⇤ =

0

@ Z3,1

diag(t�1

l�1
, . . . , t

�1

1
)(w00)⇤

1

A where Z3,1 is the (3, 1)-entry of Z. Such a
⇤ exists as

long as this matrix is invertible. Hence we need Z3,1 6= 0.

If l is odd, then Z3,1 = 1

2
( 1
2
� 1

4
(tl + t

�1

l
)). This is nonzero as long as tl 6= 1 and hence the

proposition follows.

If l is even then Z3,1 = 1

4
+ 1

4
tl +

1

16
t
�1

l
. This is nonzero as long as tl 6= �1

2
and hence the

proposition follows. This finishes the proof of the proposition.

Next we examine the Bruhat cells for Bl(SO2l) and Bc

l
(SO2l).

Proposition 7.3 Let w 2 Bl(SO2l). Then, for any t 2 TSO2l , we have tw 2 QlwlVl under the

embedding of SO2l into SO2l+1.

Proof Since w 2 Bl(SO2l), w /2 Bl�1(SO2l). By Proposition 4.5, there exists w
0 2 W (GLl)

such that w = tl(w0)w̃l where w0 = (w0
i,j
)l
i,j=1

2 W (GLl) with w
0
l,1

= 0. Similarly, we also write

(w0)⇤ = (w0⇤
i,j
)l
i,j=1

.

As in the previous proof, we compute QlwlVl. Let a 2 GLl and n1, n2 2 Vl. We wish to

compute ll(a)n1wln2. Write

n1 =

0

BB@

Il X Y

1 X
0

Il

1

CCA ,

where X 2 Fl

q
, Y 2 Matl⇥l(Fq), X 0 = �t

XJl, and JlY + t
X

0 · X 0 + t
Y Jl = 0. Similarly, we

write

n2 =

0

BB@

Il M N

1 M
0

Il

1

CCA .
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Then,

ll(a)n1wln2 =

0

BB@

aY aX + aYM a+ aXM
0 + aY N

X
0 1 +X

0
M M

0 +X
0
N

a
⇤

a
⇤
M a

⇤
N

1

CCA .

We proceed by computing the image of w under the embedding given by Equation 2.1.

Recall that we defined the matrix

M̃ =

0

BB@

1

4

1

2

�1

2

1

2
0 1

�1

2
1 1

1

CCA

which was used in the embedding. The image of the embedding depends on the parity of l.

Let l be even. Then the embedding of SO2l into SO2l+1 takes w to

0

BBBBBBBBB@

0(l�1)⇥(l�1)

⇣
0 0 (w0

i,1
)l�1

i=1

⌘
M̃ (w0

i,j
)i=l�1,j=l

i=1,j=2

M̃
�1

0

BB@

0

0

(w0⇤
1,j

)l�1

j=1

1

CCA M̃
�1

0

BB@

0 0 0

0 1 0

0 0 0

1

CCA M̃ M̃
�1

0

BB@

(w0
l,j
)l
j=2

0

0

1

CCA

(w0⇤
i,j
)i=l,j=l�1

i=2,j=1

⇣
(w0⇤

i,l
)l
i=2

0 0
⌘
M̃ 0(l�1)⇥(l�1)

1

CCCCCCCCCA

.

Thus, tw = ll(a)n1wln2 as long as we can find a such that

a
⇤ =

0

@
t
�1

l (w
0⇤
1,j)

l�1

j=1

4

1

4

diag(t�1

l�1
, . . . , t

�1

1
)(w0⇤

i,j
)i=l,j=l�1

i=2,j=1
diag(t�1

l�1
, . . . , t

�1

1
)
(w

0⇤
i,l)

l
i=2

4

1

A .

This is possible as the determinant of this matrix is nonzero. Indeed, the determinant of this

matrix is (up to a sign) 1

16
t
�1

l
t
�1

l�1
· · · t�1

1
since (w0)⇤ 2 W (GLl) and (w0⇤

i,j
)i=l,j=l�1

i=2,j=1
contains a

row of zeroes. Therefore, tw 2 QlwlVl for any t 2 TSO2l .

The proof for l odd is similar. We obtain that tw = ll(a)n1wln2 as long as we can find a

such that

a
⇤ =

0

@
t
�1

l (w
0⇤
1,j)

l�1

j=1

4

1

4

diag(t�1

l�1
, . . . , t

�1

1
)(w0⇤

i,j
)i=l,j=l�1

i=2,j=1
diag(t�1

l�1
, . . . , t

�1

1
)
�(w

0⇤
i,l)

l
i=2

2

1

A .

Again, this is always possible as the determinant of this matrix is (up to a sign) 1

8
t
�1

l
· · · t�1

1
.

Therefore, tw 2 QlwlVl for any t 2 TSO2l which concludes the proof of the proposition.

Proposition 7.4 Let w 2 Bc

l
(SO2l). Then for any t 2 TSO2l tw 2 QlwlVl under the embedding

of SO2l into SO2l+1.

Proof The proof is similar to that of the previous proposition. We record the a
⇤’s for future

reference.

For l even, we have tw = ll(a)n1wln2 where a 2 GLl and n1, n2 2 Vl if

a
⇤ =

0

@
�tl(w

0⇤
1,j)

l�1

j=1

2

1

4

diag(t�1

l�1
, . . . , t

�1

1
)(w0⇤

i,j
)i=l,j=l�1

i=2,j=1
diag(t�1

l�1
, . . . , t

�1

1
)
�(w

0⇤
i,l)

l
i=2

2

1

A .



Converse Theorem for Finite Split SO2l 31

For l odd, we have tw = ll(a)n1wln2 where a 2 GLl and n1, n2 2 Vl if

a
⇤ =

0

@
�tl(w

0⇤
1,j)

l�1

j=1

2

1

4

diag(t�1

l�1
, . . . , t

�1

1
)(w0⇤

i,j
)i=l,j=l�1

i=2,j=1
diag(t�1

l�1
, . . . , t

�1

1
)
(w

0⇤
i,l)

l
i=2

4

1

A .

The next 2 lemmas relate Bessel function for ⇡ and c · ⇡. In particular, the below lemma

shows that the contribution of the zeta integral from Bc

l
(SO2l) for ⇡ can be described using an

integral over Bl(SO2l) and the Bessel function for c · ⇡.
Lemma 7.5 Let ⇡ be an irreducible cuspidal  -generic representations of SO2l. Then we have

X

t2TSO2l
,w2Bc

l (SO2l),u2USO2l

B⇡, (twu)f̃v(wl,ltwu, Il) =
X

t2TSO2l
,w2Bl(SO2l),u2USO2l

Bc·⇡, (twu)f̃v(wl,ltwu, Il).

Proof We write Let t = diag(t1, . . . , tl�1, tl, t
�1

l
, t

�1

l�1
, . . . , t

�1

1
). By Proposition 4.1, we have

B⇡, (twu) = B⇡, (tw) (u) for any t 2 TSO2l , u 2 USO2l , and w 2 W (SO2l). Also,

B⇡, (tw) = B⇡, (ct̃�1
t̃ctwct̃

�1
t̃c) = Bc·⇡, (t̃ctwct̃

�1) = Bc·⇡, (t
0
cwc),

where t
0 = t̃ctc(cwct̃�1(cwc)�1). For w 2 Bc

l
(SO2l), we have cwc 2 Bl(SO2l). By Proposition

4.5, there exists w0 2 W (GLl) such that cwc = tl(w0)w̃l where w
0 = (w0

i,j
)l
i,j=1

2 W (GLl) with

w
0
l,1

= 0. We also let (w0)⇤ = (w0⇤
i,j
)l
i,j=1

and r be such that w0
r,1

= 1.

For l even, (cwct̃�1(cwc)�1) = tl(diag(1, . . . , 1,�2, 1, . . . , 1)) where �2 is the r-th entry.

Thus, t0 = tl(diag(t1, . . . , tr�1,�2tr, tr+1, . . . , tl�1,
�t

�1

l
2

)). Let a1, a2 2 GLl and n1, n2, n3, n4 2
Vl be such that tw = ll(a1)n1wln2 and tcwc = ll(a2)n3wln4. By the proofs of Proposition 7.3

and 7.4, we have

a
⇤
1
=

0

@
�tl(w

0⇤
1,j)

l�1

j=1

2

1

4

diag(t�1

l�1
, . . . , t

�1

1
)(w0⇤

i,j
)i=l,j=l�1

i=2,j=1
diag(t�1

l�1
, . . . , t

�1

1
)
�(w

0⇤
i,l)

l
i=2

2

1

A ,

and

a
⇤
2
=

0

@
t
�1

l (w
0⇤
1,j)

l�1

j=1

4

1

4

diag(t�1

l�1
, . . . , t

�1

1
)(w0⇤

i,j
)i=l,j=l�1

i=2,j=1
diag(t�1

l�1
, . . . , t

�1

1
)
(w

0⇤
i,l)

l
i=2

4

1

A .

Performing the change of variables tr 7! �tr
2

and tl 7!
�t

�1

l
2

takes t
0 7! t and a

⇤
1
7! a

⇤
2
. Note

that w0⇤
l+1�r,l

= 1 and this is the coordinate for t�1
r

. Thus we obtain the claim for l even:
X

t2TSO2l
,w2Bc

l (SO2l),u2USO2l

B⇡, (twu)f̃v(wl,ltwu, Il)

=
X

t2TSO2l
,w2Bc

l (SO2l),u2USO2l

Bc·⇡, (t
0
cwcu)f̃v(wl,ltwu, Il)

=
X

t2TSO2l
,w2Bl(SO2l),u2USO2l

Bc·⇡, (twu)f̃v(wl,ltwu, Il).

For l is odd, we obtain a di↵erent change of variables which matches the a
⇤’s in the odd

cases of Propositions 7.3 and 7.4. We omit the details. Again, we find that
X

t2TSO2l
,w2Bc

l (SO2l),u2USO2l

B⇡, (twu)f̃v(wl,ltwu, Il)
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=
X

t2TSO2l
,w2Bl(SO2l),u2USO2l

Bc·⇡, (twu)f̃v(wl,ltwu, Il).

The contribution of Bl�1(SO2l) to the zeta integral is more nuanced. Since cwc = w for

w 2 Bl�1(SO2l), one has to split the integral in half and then conjugate one half in order to

obtain an integral involving a sum of Bessel functions for ⇡ and c · ⇡. Note that from Theorem

6.2 it follows that we need to only consider the subset of the torus defined by

Tl = {t = diag(t1, . . . , tl, t
�1

l
, . . . , t

�1

1
) 2 TSO2l | tl 6= ±cl},

where cl = 1 if l is odd or 1

2
if l is even.

Lemma 7.6 Let ⇡ be an irreducible cuspidal  -generic representation of SO2l. There exists

a subset Al ✓ Tl, specified in the proof, such that
X

t2Tl,w2Bl�1(SO2l),u2USO2l

B⇡, (twu)f̃v(wl,ltwu, Il) =
X

t2Al,w2Bl�1(SO2l),u2USO2l

(B⇡, + Bc·⇡, )(twu)f̃v(wl,ltwu, Il).

Proof Let t = diag(t1, . . . , tl�1, tl, t
�1

l
, t

�1

l�1
, . . . , t

�1

1
). We have

B⇡, (tw) = B⇡, (ct̃�1
t̃ctwct̃

�1
t̃c) = Bc·⇡, (t̃ctwct̃

�1) = Bc·⇡, (t
0
cwc),

where t
0 = t̃ctc(cwct̃�1(cwc)�1). For w 2 Bl�1(SO2l), cwc = w. Hence t

0 = t̃ctcwt̃
�1

w
�1 and

Bc·⇡, (t0cwc) = Bc·⇡, (t0w).

If l is even, then wt̃
�1

w
�1 = t̃ and hence t

0 = diag(t1, . . . , tl�1,
t
�1

l
4
, 4tl, t

�1

l�1
, . . . , t

�1

1
). The

map tl 7!
t
�1

l
4

sends t0 to t and 1

4
+ 1

4
tl +

1

16
t
�1

l
to itself. The fixed points of the map tl 7!

t
�1

l
4

are tl = ± 1

2
. Furthermore, the mapping is an involution. Therefore, we can partition F⇥

q
\{± 1

2
}

into two disjoint sets A and B such that if tl 2 A then
t
�1

l
4

2 B. Hence, we partition Tl into two

sets Al and Bl such that t 2 Al if and only if tl 2 A. Note that in this case tw = ll(a)n1wln2

for a 2 GLl and n1, n2 2 Vl with

a
⇤ =

0

@
1

4
+ 1

4
tl +

1

16
t
�1

l

diag(t�1

l�1
, . . . , t

�1

1
)(w00)⇤

1

A .

The map tl 7!
t
�1

l
4

takes a⇤ 7! a
⇤
. Therefore,

X

t2Tl,w2Bl�1(SO2l),u2USO2l

B⇡, (twu)f̃v(wl,ltwu, Il)

=
X

t2Al,w2Bl�1(SO2l),u2USO2l

B⇡, (twu)f̃v(wl,ltwu, Il)

+
X

t2Bl,w2Bl�1(SO2l),u2USO2l

B⇡, (twu)f̃v(wl,ltwu, Il)

=
X

t2Al,w2Bl�1(SO2l),u2USO2l

(B⇡, + Bc·⇡, )(twu)f̃v(wl,ltwu, Il).

The case for l odd is similar. We have wt̃�1
w

�1 = t̃
�1 and hence t0 = ctc. The map tl 7! t

�1

l

sends t0 to t and 1

2
( 1
2
� 1

4
(tl + t

�1

l
)) to itself. The fixed points of the map tl 7! t

�1

l
are tl = ±1.

Furthermore, the mapping is an involution. Therefore, we can partition F⇥
q
\ {±1} into two
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disjoint sets A and B such that if tl 2 A then t
�1

l
2 B. Furthermore we partition Tl into two

sets Al and Bl such that t 2 Al if and only if tl 2 A. Note that in this case tw = ll(a)n1wln2

for a 2 GLl and n1, n2 2 Vl with

a
⇤ =

0

@
1

2
( 1
2
� 1

4
(tl + t

�1

l
))

diag(t�1

l�1
, . . . , t

�1

1
)(w00)⇤

1

A .

The map tl 7! t
�1

l
takes a⇤ 7! a

⇤
. As in the previous case, we find

X

t2Tl,w2Bl�1(SO2l),u2USO2l

B⇡, (twu)f̃v(wl,ltwu, Il)

=
X

t2Al,w2Bl�1(SO2l),u2USO2l

(B⇡, + Bc·⇡, )(twu)f̃v(wl,ltwu, Il).

Hence we have proven the lemma for any l.

We are ready to compute the sets determined by the twists by GLn, n  l. We remark that

it is possible to prove the below theorem assuming that the �-factors are equal only for twists

by GLl. Indeed, computations of the embedding of SO2l into SO2l+1 show that any element

of a Bruhat cell corresponding to Bn(SO2l) for n  l � 2 does not embed into the support of

f̃v (and we obtain a similar result for the set determined by Theorem 6.2). However, this is

not necessary for the converse theorem. Instead, we use the results of the previous sections to

eliminate the contributions from Bruhat cells corresponding to Bn(SO2l) for n  l� 2 (and the

set determined by Theorem 6.2).

Theorem 7.7 Let ⇡ and ⇡0 be irreducible cuspidal  -generic representations of SO2l with the

same central character. If �(⇡ ⇥ ⌧, ) = �(⇡0 ⇥ ⌧, ) for all irreducible generic representations

⌧ of GLn where n  l, then

(1)

(B⇡, + Bc·⇡, )(tw) = (B⇡0, + Bc·⇡0, )(tw),

for any t 2 TSO2l and w 2 Bl(SO2l) [ Bc

l
(SO2l);

(2)

(B⇡, + Bc·⇡, )(tw) = (B⇡0, + Bc·⇡0, )(tw),

for any w 2 Bl�1(SO2l) and t 2 TSO2l with tl 6= ±1 if l is odd or tl 6= ± 1

2
if l is even.

Proof By Proposition 7.1, we have  (B⇡, , fv) =  (B⇡0, , fv) = Wv(wl,l). By assumption,

�(⇡ ⇥ ⌧, ) = �(⇡0 ⇥ ⌧, ) for all irreducible generic representations ⌧ of GLl, and hence we

have that  (B⇡, , f̃v) =  (B⇡0, , f̃v). By definition,

 (B⇡, , f̃v) =
X

g2USO2l
\SO2l

B⇡, (g)f̃v(wl,lg, Il),

and hence

0 =
X

g2USO2l
\SO2l

(B⇡, � B⇡0, )(g)f̃v(wl,lg, Il).
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Let Tl = {t = diag(t1, . . . , tl, t
�1

l
, . . . , t

�1

1
) 2 TSO2l | tl 6= ±cl} where cl = 1 if l is odd or 1

2
if l is

even. Since �(⇡ ⇥ ⌧, ) = �(⇡0 ⇥ ⌧, ) for all irreducible generic representations ⌧ of GLn with

n  l � 1, by Propositions 7.2, 7.3, 7.4, and Theorems 5.5 and 6.2,

0 =
X

t2TSO2l
,w2Bl(SO2l),u2USO2l

(B⇡, � B⇡0, )(twu)f̃v(wl,ltwu, Il)

+
X

t2TSO2l
,w2Bc

l (SO2l),u2USO2l

(B⇡, � B⇡0, )(twu)f̃v(wl,ltwu, Il)

+
X

t2Tl,w2Bl�1(SO2l),u2USO2l

(B⇡, � B⇡0, )(twu)f̃v(wl,ltwu, Il).

By Lemma 7.5,

X

t2TSO2l
,w2Bl(SO2l),u2USO2l

(B⇡, � B⇡0, )(twu)f̃v(wl,ltwu, Il)

+
X

t2TSO2l
,w2Bc

l (SO2l),u2USO2l

(B⇡, � B⇡0, )(twu)f̃v(wl,ltwu, Il)

=
X

t2TSO2l
,w2Bl(SO2l),u2USO2l

(B⇡, � B⇡0, + Bc·⇡, � Bc·⇡0, )(twu)f̃v(wl,ltwu, Il).

By Lemma 7.6,

X

t2Tl,w2Bl�1(SO2l),u2USO2l

(B⇡, � B⇡0, )(twu)f̃v(wl,ltwu, Il)

=
X

t2Al,w2Bl�1(SO2l),u2USO2l

(B⇡, � B⇡0, + Bc·⇡, � Bc·⇡0, )(twu)f̃v(wl,ltwu, Il).

Therefore, we have that

0 =
X

t2TSO2l
,w2Bl(SO2l),u2USO2l

(B⇡, � B⇡0, + Bc·⇡, � Bc·⇡0, )(twu)f̃v(wl,ltwu, Il)

+
X

t2Al,w2Bl�1(SO2l),u2USO2l

(B⇡, � B⇡0, + Bc·⇡, � Bc·⇡0, )(twu)f̃v(wl,ltwu, Il).

Next, we define a function f on a subset of GLl so that we may apply Lemma 5.3. The

first step in this is to describe the arguments of the W
⇤
v
’s. That is, we describe ai, where the

image of tw under the embedding into SO2l+1 is ll(ai)n1wln2 where ai 2 GLl and n1, n2 2 Vl

and i = 1, 2 if w 2 Bl(SO2l) or w 2 Bl�1(SO2l) respectively. We recall the setup. For

w 2 Bc

l
(SO2l), by Proposition 4.5, there exists w

0 2 W (GLl) such that w = tl(w0)w̃l where

w
0 = (w0

i,j
)l
i,j=1

2 W (GLl) with w
0
l,1

= 0. We also let (w0)⇤ = (w0⇤
i,j
)l
i,j=1

and r be such that

w
0
r,1

= 1.

First, suppose that l is even. Let

a
⇤
1
=

0

@
t
�1

l (w
0⇤
1,j)

l�1

j=1

4

1

4

diag(t�1

l�1
, . . . , t

�1

1
)(w0⇤

i,j
)i=l,j=l�1

i=2,j=1
diag(t�1

l�1
, . . . , t

�1

1
)
(w

0⇤
i,l)

l
i=2

4

1

A .
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Then,

a
⇤
1
=

0

BBBBBBBBB@

1 tr

. . .

1
. . .

1

1

CCCCCCCCCA

diag

✓
t
�1

l

4
, t

�1

l�1
, . . . , t

�1

r+1
,
t
�1
r

4
, t

�1

r�1
, . . . , t

�1

1

◆
w

0⇤
.

where tr is the (1, l � r + 1) entry of the unipotent matrix. Thus, we obtain

a1 =

0

BBBBBBBBB@

1
. . .

1 �tr

. . .

1

1

CCCCCCCCCA

diag (t1, · · · , tr�1, 4tr, tr+1, · · · , tl�1, 4tl)w
0
,

where �tr is the (r, l) entry of the unipotent matrix. This determines a on the Bl(SO2l) sum.

Let tw0 2 TGLl be such that

tw0diag (t1, · · · , tr�1, 4tr, tr+1, · · · , tl�1, 4tl) = diag (t1, · · · , tr�1, tr, tr+1, · · · , tl�1, tl) .

That is, tw0 is a diagonal matrix consisting of 1’s on the diagonal, except in the (r, r) and (l, l)

coordinates where it is 1

4
.

Next, we consider the a2 in the Bl�1(SO2l) sum. Let w0 =

0

@ w
00

1

1

A and

a
⇤
2
=

0

@
1

4
+ 1

4
tl +

1

16
t
�1

l

diag(t�1

l�1
, . . . , t

�1

1
)(w00)⇤

1

A .

Then,

a
⇤
2
=

0

BBBBBB@

1

4
+ 1

4
tl +

1

16
t
�1

l

t
�1

l�1

. . .

t
�1

1

1

CCCCCCA
(w0)⇤.

Hence

a2 =

0

BBBBBB@

t1

. . .

tl�1

( 1
4
+ 1

4
tl +

1

16
t
�1

l
)�1

1

CCCCCCA
w

0
.

Recall we partitioned F⇥
q
\{± 1

2
} into two disjoint sets A and B such that if tl 2 A then

t
�1

l
4

2 B.

Suppose tl, sl 2 A with 1

4
+ 1

4
tl +

1

16
t
�1

l
= 1

4
+ 1

4
sl +

1

16
s
�1

l
. This gives a quadratic equation in



36 Hazeltine A. and Liu B.

sl whose roots are sl = tl and sl =
t
�1

l
4
. Since s, t 2 Al it follows that we must have tl = sl. Let

AGLl =

8
>>>>>><

>>>>>>:

0

BBBBBB@

t1

. . .

tl�1

( 1
4
+ 1

4
tl +

1

16
t
�1

l
)�1

1

CCCCCCA
| t1, . . . , tl�1 2 F⇥

q
, tl 2 A

9
>>>>>>=

>>>>>>;

.

The following map is well defined on AGLl :

⇠

0

BBBBBB@

t1

. . .

tl�1

( 1
4
+ 1

4
tl +

1

16
t
�1

l
)�1

1

CCCCCCA
= diag(t1, . . . , tl).

Let u = (ui,j)li,j=1
. Note that ul,l+1 = 0. Then, the embedding of u in SO2l+1 is

u̇ =

0

BBB@

(ui,j)
i,j=l�1

i,j=1

⇣
(ui,l)

l�1

i=1

4
� (ui,l+1)

l�1

i=1

2
⇤ ⇤

⌘
⇤

I3 ⇤

⇤

1

CCCA
.

Let ũ =

0

@(ui,j)
i,j=l�1

i,j=1

(ui,l)
l�1

i=1

4
� (ui,l+1)

l�1

i=1

2

0 1

1

A . Then u̇ = ll(ũ)n3. where n3 2 Vl. The em-

bedding takes twu to ll(ai)n1wln2ll(ũ)n3 = n4ll(aiũ⇤)wln5 where n4, n5 2 Vl and i = 1, 2 if

w 2 Bl(SO2l) or w 2 Bl�1(SO2l) respectively. Thus, by Proposition 5.2, f̃v(wl,ltwu, Il) =

W
⇤
v
(diag( 1

2
, . . . ,

1

2
)aiũ⇤).

Next, we define a function on a subset of GLl using its Bruhat decomposition. Specifically,

we partition the Weyl group of W (GLl) into W1(GLl) and W2(GLl) where w
0 2 W1(GLl) if

w
0 6=

0

@ w
00

1

1

A for any w
00 2 W (GLl�1). and w

0 2 W2(GLl) if w
0 =

0

@ w
00

1

1

A for some

w
00 2 W (GLl�1). By Proposition 4.5, we have w = tl(w0)w̃l 2 Bl(SO2l) if w0 2 W1(GLl) and

w = tl(w0)w̃l 2 Bl�1(SO2l) if w0 2 W2(GLl). Let

Xl =

0

@
G

w02W1(GLl)

UGLlTGLlw
0
UGLl

1

A
G
0

@
G

w02W2(GLl)

UGLlAGLlw
0
UGLl

1

A .

Recall the definition of tw0 above. For g = u1tw
0
u2 2 UGLlTGLlw

0
UGLl such that w

0 2
W1(GLl) we define

f(g) = (B⇡, � B⇡0, + Bc·⇡, � Bc·⇡0, )(tl(diag(2, . . . , 2)tl(u1tw0tw
0
u2)w̃l).

For g = u1tw
0
u2 2 UGLlAGLlw

0
UGLl such that w0 2 W2(GLl) we define

f(g) = (B⇡, � B⇡0, + Bc·⇡, � Bc·⇡0, )(tl(diag(2, . . . , 2))tl(u1⇠(t)w
0
u2)w̃l).
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We have f(ug) =  (u)f(g) for any u 2 UGLl and g 2 Xl. Also, tl(g)w̃l = w̃ltl(g⇤) for any

g 2 GLl (we are still assuming that l is even). Therefore,

0 =
X

t2TGLl
,w2W1(GLl),u2USO2l

f(diag(
1

2
, . . . ,

1

2
)twũ⇤)W ⇤

v
(diag(

1

2
, . . . ,

1

2
)twũ⇤)

+
X

t2AGLl
,w2W2(GLl),u2USO2l

f(diag(
1

2
, . . . ,

1

2
)twũ⇤)W ⇤

v
(diag(

1

2
, . . . ,

1

2
)twũ⇤).

Thus, by Lemma 5.3, f must identically vanish on Xl. Therefore, for l even, we have that

(B⇡, + Bc·⇡, )(tw) = (B⇡0, + Bc·⇡0, )(tw) for any t 2 SO2l and any w 2 Bl(SO2l) [Bc

l
(SO2l).

Also, (B⇡, + Bc·⇡, )(tw) = (B⇡0, + Bc·⇡0, )(tw) for any w 2 Bl�1(SO2l) and t 2 Al. Also,

conjugating the previous equation by t̃c gives (B⇡, + Bc·⇡, )(tw) = (B⇡0, + Bc·⇡0, )(tw) for

any w 2 Bl�1(SO2l) and t 2 Bl hence the theorem for l even.

Next, suppose that l is odd. Let

a
⇤
1
=

0

@
t
�1

l (w
0⇤
1,j)

l�1

j=1

4

1

4

diag(t�1

l�1
, . . . , t

�1

1
)(w0⇤

i,j
)i=l,j=l�1

i=2,j=1
diag(t�1

l�1
, . . . , t

�1

1
)
�(w

0⇤
i,l)

l
i=2

2

1

A .

Then,

a
⇤
1
=

0

BBBBBBBBB@

1 �tr
2

. . .

1
. . .

1

1

CCCCCCCCCA

diag

✓
t
�1

l

4
, t

�1

l�1
, . . . , t

�1

r+1
,
�t

�1
r

2
, t

�1

r�1
, . . . , t

�1

1

◆
w

0⇤
,

where tr is the (1, l � r + 1) entry of the unipotent matrix. Thus, we obtain

a1 =

0

BBBBBBBBB@

1
. . .

1 tr
2

. . .

1

1

CCCCCCCCCA

diag (t1, · · · , tr�1,�2tr, tr+1, · · · , tl�1, 4tl)w
0
,

where �tr is the (r, l) entry of the unipotent matrix. This determines a on the Bl(SO2l) sum.

Let tw0 2 TGLl be such that

tw0diag (t1, · · · , tr�1,�2tr, tr+1, · · · , tl�1, 4tl) = diag (t1, · · · , tr�1, tr, tr+1, · · · , tl�1, tl) .

That is, tw0 is a diagonal matrix consisting of 1’s on the diagonal, except in the (r, r) and (l, l)

coordinates where it is �1

2
and 1

4
respectively.

Next, we consider the a in the Bl�1(SO2l) sum. Let w0 =

0

@ w
00

1

1

A and

a
⇤
2
=

0

@
1

2
( 1
2
� 1

4
(tl + t

�1

l
))

diag(t�1

l�1
, . . . , t

�1

1
)(w00)⇤

1

A .
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Then,

a
⇤
2
=

0

BBBBBB@

1

2
( 1
2
� 1

4
(tl + t

�1

l
))

t
�1

l�1

. . .

t
�1

1

1

CCCCCCA
(w0)⇤.

Hence

a2 =

0

BBBBBB@

t1

. . .

tl�1

( 1
2
( 1
2
� 1

4
(tl + t

�1

l
)))�1

1

CCCCCCA
w

0
.

Recall we partitioned F⇥
q
\{± 1

2
} into two disjoint sets A and B such that if tl 2 A then t

�1

l
2 B.

Suppose tl, sl 2 A with 1

2
( 1
2
� 1

4
(tl+ t

�1

l
)) = 1

2
( 1
2
� 1

4
(sl+s

�1

l
)). This gives a quadratic equation

in sl whose roots are sl = tl and sl = t
�1

l
. Since s, t 2 Al it follows that we must have tl = sl.

Let

AGLl =

8
>>>>>><

>>>>>>:

0

BBBBBB@

t1

. . .

tl�1

( 1
2
( 1
2
� 1

4
(tl + t

�1

l
)))�1

1

CCCCCCA
| t1, . . . , tl�1 2 F⇥

q
, tl 2 A

9
>>>>>>=

>>>>>>;

.

The following map is well defined on AGLl :

⇠

0

BBBBBB@

t1

. . .

tl�1

( 1
2
( 1
2
� 1

4
(tl + t

�1

l
)))�1

1

CCCCCCA
= diag(t1, . . . , tl).

Let u = (ui,j)li,j=1
. Note that ul,l+1 = 0. Then, the embedding of u in SO2l+1 is

u̇ =

0

BBB@

(ui,j)
i,j=l�1

i,j=1

⇣
(ui,l)

l�1

i=1

4
� (ui,l+1)

l�1

i=1

2
⇤ ⇤

⌘
⇤

I3 ⇤

⇤

1

CCCA
.

Let ũ =

0

@(ui,j)
i,j=l�1

i,j=1

(ui,l)
l�1

i=1

4
� (ui,l+1)

l�1

i=1

2

0 1

1

A . Then u̇ = ll(ũ)n3. where n3 2 Vl. The em-

bedding takes twu to ll(ai)n1wln2ll(ũ)n3 = n4ll(aiũ⇤)wln5 where n4, n5 2 Vl and i = 1, 2 if

w 2 Bl(SO2l) or w 2 Bl�1(SO2l) respectively. Thus, by Proposition 5.2, f̃v(wl,ltwu, Il) =

W
⇤
v
(diag( 1

2
, . . . ,

1

2
)aiũ⇤).

Next, we define a function on a subset of GLl using its Bruhat decomposition. Specifically,

we partition the Weyl group of W (GLl) into two sets, W1(GLl) and W2(GLl), by w
0 2 W1(GLl)
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if w0 6=

0

@ w
00

1

1

A for any w
00 2 W (GLl�1) and w

0 2 W2(GLl) if w0 =

0

@ w
00

1

1

A for some

w
00 2 W (GLl�1). By Proposition 4.5, we have w = tl(w0)w̃l 2 Bl(SO2l) if w0 2 W1(GLl) and

w = tl(w0)w̃l 2 Bl�1(SO2l) if w0 2 W2(GLl). Let

Xl =

0

@
G

w02W1(GLl)

UGLlTGLlw
0
UGLl

1

A
G
0

@
G

w02W2(GLl)

UGLlAGLlw
0
UGLl

1

A .

Recall the definition of tw0 above. For g = u1tw
0
u2 2 UGLlTGLlw

0
UGLl such that w

0 2
W1(GLl) we define

f(g) = (B⇡, � B⇡0, + Bc·⇡, � Bc·⇡0, )(tl(diag(2, . . . , 2)tl(u1tw0tw
0
u2)w̃l).

For g = u1tw
0
u2 2 UGLlAGLlw

0
UGLl with w

0 2 W2(GLl) we define

f(g) = (B⇡, � B⇡0, + Bc·⇡, � Bc·⇡0, )(tl(diag(2, . . . , 2))tl(u1⇠(t)w
0
u2)w̃l).

We have f(ug) =  (u)f(g) for any u 2 UGLl and g 2 Xl. Let g = (gi,j)li,j=1
and g

⇤ = (g⇤
i,j
)l
i,j=1

.

Then

tl(g)w̃l = w̃l

0

BBBBB@

(gi,j)
l�1

i,j=1
0 (gi,l)

l�1

i=1
0

0 g
⇤
1,1

0 (g⇤
1,j

)l
j=2

(gl,j)
l�1

j=1
0 gl,l 0

0 (g⇤
i,1
)l
i=2

0 (g⇤
i,j
)l
i,j=2

1

CCCCCA
.

In particular, if u 2 UGLl , then

tl(u)w̃l = w̃l

0

BBBBB@

(gi,j)
l�1

i,j=1
0 (gi,l)

l�1

i=1
0

1 0 (g⇤
1,j

)l
j=2

1 0

(g⇤
i,j
)l
i,j=2

1

CCCCCA
,

and the last matrix is upper triangular. Therefore,

0 =
X

t2TGLl
,w2W1(GLl),u2USO2l

f(diag(
1

2
, . . . ,

1

2
)twũ⇤)W ⇤

v
(diag(

1

2
, . . . ,

1

2
)twũ⇤)

+
X

t2AGLl
,w2W2(GLl),u2USO2l

f(diag(
1

2
, . . . ,

1

2
)twũ⇤)W ⇤

v
(diag(

1

2
, . . . ,

1

2
)twũ⇤).

Thus, by Lemma 5.3, f must identically vanish on Xl. Therefore, for l odd, we have that

(B⇡, + Bc·⇡, )(tw) = (B⇡0, + Bc·⇡0, )(tw) for any t 2 SO2l and w 2 Bl(SO2l). Also, we have

(B⇡, + Bc·⇡, )(tw) = (B⇡0, + Bc·⇡0, )(tw) for any w 2 Bl�1(SO2l) and t 2 Al. Conjugation

by t̃c gives (B⇡, + Bc·⇡, )(tw) = (B⇡0, + Bc·⇡0, )(tw) for any w 2 Bl�1(SO2l) and t 2 Bl for l

odd.

Finally, for any l, we have (B⇡, + Bc·⇡, )(tw) = (B⇡0, + Bc·⇡0, )(tw) for any t 2 SO2l and

w 2 Bl(SO2l). Also,

B⇡, (tw) = B⇡, (ct̃�1
t̃ctwct̃

�1
t̃c)

= Bc·⇡, (t̃ctwct̃
�1)
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= Bc·⇡, (t
0
cwc),

where t
0 = t̃ctc(cwct̃�1(cwc)�1). Hence for any t 2 SO2l and w 2 Bc

l
(SO2l), we have that

(B⇡, + Bc·⇡, )(tw) = (B⇡0, + Bc·⇡0, )(tw) and thus we have proved the theorem.

The following corollary, when combined with Corollary 6.4, shows that �-factor is unable

to distinguish between a representation and its conjugate. That is, �(⇡⇥ ⌧, ) = �(c · ⇡⇥ ⌧, )

for all irreducible generic representations ⌧ of GLn with n  l.

Corollary 7.8 Let ⇡ be an irreducible cuspidal  -generic representation of SO2l. Then we

have �(⇡ ⇥ ⌧, ) = �(c · ⇡ ⇥ ⌧, ) for all irreducible generic representations ⌧ of GLl.

Proof By Corollary 6.4, �(⇡⇥ ⌧, ) = �(c ·⇡⇥ ⌧, ) for all irreducible generic representations

⌧ of GLn with n  l � 1. So, by Theorems 5.5 and 6.2,

 (B⇡, , f̃v)� (Bc·⇡, , f̃v)

=
X

t2TSO2l
,w2Bl(SO2l),u2USO2l

(B⇡, � Bc·⇡, )(twu)f̃v(wl,ltwu, Il)

+
X

t2TSO2l
,w2Bc

l (SO2l),u2USO2l

(B⇡, � Bc·⇡, )(twu)f̃v(wl,ltwu, Il)

+
X

t2Tl,w2Bl�1(SO2l),u2USO2l

(B⇡, � Bc·⇡, )(twu)f̃v(wl,ltwu, Il).

Performing the change of variables as in the proof of Theorem 7.7 on the B⇡, sums gives

 (B⇡, , f̃v)� (Bc·⇡, , f̃v) = 0. By Proposition 7.1, we may choose a nonzero v 2 ⌧ such that

 (B⇡, , fv) =  (Bc·⇡, , fv) = Wv(wl,l) 6= 0. Thus, we have �(⇡ ⇥ ⌧, ) = �(c · ⇡ ⇥ ⌧, ). This

proves the corollary.

8 The converse theorem

In this section, we prove the converse theorem. First, we combine the results of the previous

sections to obtain the following theorem.

Theorem 8.1 Let ⇡ and ⇡0 be irreducible cuspidal  -generic representations of split SO2l(Fq)

with the same central character. If

�(⇡ ⇥ ⌧, ) = �(⇡0 ⇥ ⌧, ),

for all irreducible generic representations ⌧ of GLn with n  l, then we have that

(B⇡, + Bc·⇡, )(g) = (B⇡0, + Bc·⇡0, )(g)

for any g 2 SO2l(Fq).

Proof By the Bruhat decomposition, we may assume g = u1twu2 2 BSO2lwBSO2l for some

w 2 W (SO2l). By Proposition 4.1 and the definition of the Bessel support, it is enough to show

that (B⇡, +Bc·⇡, )(tw) = (B⇡0, +Bc·⇡0, )(tw) for any t 2 TSO2l and w 2 B(SO2l). This follows

from Lemma 4.3 (we use that ⇡ and ⇡0 have the same central character here), Proposition 4.8,

Theorems 5.5, 6.2, 7.7, and Corollary 6.3. This concludes the proof of the theorem.

Theorem 8.2 (The Converse Theorem for SO2l) Let ⇡ and ⇡0 be irreducible cuspidal  -generic

representations of split SO2l(Fq) with the same central character. If

�(⇡ ⇥ ⌧, ) = �(⇡0 ⇥ ⌧, ),
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for all irreducible generic representations ⌧ of GLn(Fq) with n  l, then ⇡ ⇠= ⇡
0 or ⇡ ⇠= c · ⇡0

.

Proof By Theorem 8.1, (B⇡, +Bc·⇡, ) = (B⇡0, +Bc·⇡0, ) on all of SO2l.We letW⇡,Wc·⇡,W⇡0 ,

and Wc·⇡0 be the Whittaker models of ⇡, c · ⇡,⇡0, and c · ⇡0 respectively.

First, suppose that ⇡ is isomorphic to c · ⇡. By uniqueness of Whittaker models, we have

B⇡, + Bc·⇡, = 2B⇡, 2 W⇡. Then, 2B⇡, = B⇡0, + Bc·⇡0, and hence W⇡ \W⇡0 �Wc·⇡0 6= 0.

Since W⇡ is isomorphic to ⇡ and is hence irreducible, we have that W⇡ \W⇡0 �Wc·⇡0 = W⇡ and

therefore, by uniqueness of Whittaker models, W⇡ must be isomorphic to one of W⇡0 or Wc·⇡0 .

Second, suppose ⇡ is not isomorphic to c · ⇡. We have that B⇡, 2 W⇡. We also have

that B⇡0, + Bc·⇡0, � Bc·⇡, 2 W⇡0 �Wc·⇡0 �Wc·⇡. Thus, W⇡ \W⇡0 �Wc·⇡0 �Wc·⇡ 6= 0 and

hence the intersection is a nonzero subrepresentation of W⇡. Since W⇡ is isomorphic to ⇡ and

is hence irreducible, we have that W⇡ \W⇡0 �Wc·⇡0 �Wc·⇡ = W⇡ and therefore, by uniqueness

of Whittaker models, W⇡ must be isomorphic to one of Wc·⇡,W⇡0 , or Wc·⇡0 . By assumption,

W⇡ is not isomorphic to Wc·⇡ and hence must be isomorphic to W⇡0 or Wc·⇡0 .

Therefore, in either case, we have shown the converse theorem.
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