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1 Introduction

Let G be a connected reductive group. In the representation theory of G over local fields F,
converse theorems seek to uniquely identify a representation from its invariants. Among others,
local gamma factors are important arithmetic invariants which play very important roles in the
theory of Langlands program. More precisely, let F' be a nonarchimedean local field, and let 7
be an irreducible generic representation of GL,, (F'). The family of local twisted gamma factors
(s, 7 x 7,1), for 7 any irreducible generic representation of GL,.(F'), ¢ an additive character of
F and s € C, can be defined using Rankin—Selberg convolution [12] or the Langlands—Shahidi
method [24]. The local converse problem is to determine which family of local twisted gamma
factors will uniquely determine 7. The following is the famous Jacquet’s conjecture on the local

converse problem.

Conjecture 1.1 (Jacquet’s conjecture on the local converse problem) Let 71, 7o be irreducible

generic representations of GL,, (F'). Suppose that they have the same central character. If

’Y(Saﬂ-l X T, ¢) = ,Y(Saﬂ-Q X Taw)a

as functions of the complex variable s, for all irreducible generic representations 7 of GL,(F)
with 1 <7 < [3], then m = 7.
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Conjecture 1.1 has recently been proved by Chai ([4]), and by Jacquet and the second-named
author ([11]), independently, using different analytic methods. Hence we have a local converse
theorem for GL,,. Local converse theorems for other classical groups also have been proved in
recent years, mainly by Jiang-Soudry ([14], SO2,+1), by Zhang ([25], Spa,,, U2n, [26], U2st1),
and by Morimoto ([21], Us,). For more references on local converse theorems, we refer to the
introduction of [18].

Nien in [22] proved the finite fields analogue of Conjecture 1.1 for cuspidal representations
of GL,,, using special properties of normalized Bessel functions and the twisted gamma factors
defined by Roditty ([23]). In [19], the second-named author and Zhang defined the twisted
gamma factors for generic cuspidal representations of Sp,,,, SO2p+1, Uayp, and Ugp41, by proving
certain multiplicity one results, and proved the corresponding converse theorems.

The case left for the converse problems of classical groups over nonarchimedean local fields
and finite fields is SOg,,. The difficulty is the existence of the outer automorphism. In this paper
and in [10], we develop new ideas and overcome this difficulty, for split SOs,, over finite fields
and over nonarchimedean local fields, respectively. More precisely, in this paper, we define
the twisted gamma factors y(m x 7,1) (see Proposition 3.3) for irreducible generic cuspidal
representation 7 of SO (F,) and irreducible generic representation 7 of GL,(F,), and prove

the following theorem.

Theorem 1.1 (The Converse Theorem for SOg;, Theorem 8.2) Let m and ©' be irreducible

cuspidal 1p-generic representations of split SOq(Fy) with the same central character. If

y(m x 7,0h) = (7" x 71,1),

for all irreducible generic representations T of GL,,(Fy) with n <1, then m 2 7' or m = ¢ -7,
where ¢ is the outer automorphism.

Theorem 1.1 implies that twisted gamma factors will not distinguish irreducible generic
cuspidal representations 7 and ¢ - m of SOy (F,) (see also Corollaries 6.4 and 7.8), which is a
unique phenomenon for SOg; among all the classical groups. This is consistent with the work
of Arthur on the local Langlands correspondence and the local Langlands functoriality, and the
work of Jiang and Soudry on local descent for SO, over nonarchimedean local fields (see [2]
and [15]). The analogue of Theorem 1.1 for quasi-split non-split SOg; has more subtleties and
has been proved by the first named author for both finite and local fields [8, 9].

Now, we briefly introduce our new idea on proving Theorem 1.1. The following is the key
result. As in other proven cases over finite fields, we make use of the normalized Bessel function
Br ., of m which is a particular Whittaker function in the Whittaker model of = (see Section 4
for the definition).

Theorem 1.2 (Theorem 8.1) Let m and 7' be irreducible cuspidal ¥-generic representations
of split SO (Fy) with the same central character. If

V(mxT) = (7" x 7, 9),
for all irreducible generic representations T of GL,, with 1 <n <, then we have that

(Bﬂﬂb + BC'TF,w)(g) = (Bﬂ",w + Bc~7r/,1/1)(g)
for any g € SO« (F,).
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Our new idea is that for the GL; twists, instead of considering the normalized Bessel function
By and B..r y separately, we consider the summation of normalized Bessel functions By +
Be.rp. More precisely, to prove Theorem 1.2, as in [19], we study the support of B, on
S04 (F,) and partition it based on Bruhat cells: B, (SOq;) for n =1,...,1 and Bf(SOg;). Then
we show that the twists by GL,, determine By  and B..r, on Bruhat cells associated to Weyl
elements in B, (SOq;) (see Theorem 5.5), for 1 <n <1 — 2, and the twists by GL;_; determine
Br ., and Be.r 4 on part of the Bruhat cells for those in B;_1(SOg;) (see Theorem 6.2). However,
the twists by GL; determine the summation of the normalized Bessel functions By y + Be.x ¢ on
the rest of the cells for B;_;(SO9;) and the cells of B;(SOq9;) and Bf(SOg;) (see Theorem 7.7).
Comparing to the case of Spy;(F,) in [19] for example, where the authors show that the support
of the normalized Bessel function B , can be partitioned into [ sets, B,,(Spy), n = 1,...,1,
and for each n, the twists by GL,, determine exactly the normalized Bessel function on Bruhat

cells associated to Weyl elements in B, (Spy;).

Following is the structure of this paper. In Section 2, we introduce the groups and represen-
tations considered in this paper. In Section 3, we prove the multiplicity one results (Propositions
3.1 and 3.2), and define the zeta integrals and gamma factors. In Section 4, we define Bessel
functions and partition its support (Proposition 4.8). In Sections 5 - 7, we study the GL,
twists, 1 < n < [, and show the relation between the GL,, twists and the support of Bessel
functions (Theorems 5.5, 6.2, 7.7). In Section 8, we prove Theorem 1.2 and our main result
Theorem 1.1.

2 The groups and representations

Let n,l € N and ¢ = p” for some prime number p # 2. Let F, be the finite field of ¢ elements
and fix a nontrivial additive character ¢ on ;. Let GL, to be the group of n x n matrices
with entries in F, and non-zero determinant. Let I,, be the identity element and define J,

recursively by setting J; = 1 and

0 Jnfl
1 0

We set SO,, = {g € GL, |det(g) = 1,'gJ,g = Jn} to be the split special orthogonal groups.
Let Uqr,, and Uso,, be the subgroups of upper triangular unipotent matrices in GL,, and SOy,
respectively. Fix Bso,, = T50,,Uso,, to be the Borel subgroup of SO9; with split torus Tso,,-

Set

_ 01
c= dla’g(-[lflu 7Il71)'
1 0

We have ¢ ¢ SOs;; however, cSO9;¢™! = ¢SO c = SO4. Given a representation m of SOy
we define a new representation ¢ -7 of SO by ¢ - 7(g) = m(cgc). Note that it is possible that
c-mEm.

We discuss the embeddings. These are the analogues for finite fields of the local cases found
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in [16, 17]. If n < I we embed SOag,+1 into SOy, via

A B C

A B C .

D E K|+ diag(Il—n—laM71 M7 Il—n—1)7
D E K

L P Q
L P Q

where A and @ are n X n matrices and
i 2 -1
M = dlag(-[rn 7171)

The embedding maps SOg,11 into the standard Levi subgroup of SOg; that is isomorphic to
GL;—p—1 X SO2p42.
If n =, we embed SOg; into SOg;41 via
A B
— Mt 1 M, (2.1)
C D

A B
¢ D

where A, B,C, and D are [ x | matrices and M = diag(I;_y, M, I;_1), where

Iz o7
M={1 0o 1
S+ 101
Note that the embedding takes the torus Tso,, to a torus in SOg;11, but not the standard one
consisting of diagonal matrices. Indeed, the embedding sends t = diag(t1, ..., t, tfl, . 7t;l)
to

sttt -t 25— ti+gh)
diag(s, T -t L+t h Stti—th s,
sa—gt+t ) Fl-th) s+ttt
where s = diag(t1,t2,...,t—1) and s* = diag(t," "}, ..., t3 ', 7).
Next, we define generic characters and generic representations. Recall that Ugr,, and Uso,,
are the subgroups of upper triangular unipotent matrices in GL,, and SOg; respectively and

that we fixed an additive nontrivial character ) of F,. We define a generic character, which by

abuse of notation we still denote by ¢, on Ugr, and Uso,,. For u = (u; ;)7;_;, € UcL,, we set
-1
Y(u) =9 (Z¢:1 Ui,i+1) . For u = (u;;)} j—; € Uso,, we set

-2
1 1
Y(u) =7 (Z il + W10~ 2“1—1,z+1> :

i=1

We say an irreducible representation 7w of SOq; is 1-generic if

Homyyg,,, (m,9) # 0.
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Similarly, we say an irreducible representation 7 of GL,, is ¥-generic if

HOInUGLn (7—7 d)) # 0.

A nonzero intertwining operator in these spaces is called a Whittaker functional and it is well
known that Whittaker functionals are unique up to scalars (by uniqueness of Whittaker models).

Fix a nonzero Whittaker functional I' € Homyyg,  (7,%). For v € m, let W, (g) = I'(w(g)v)
for any g € SOg; and set W(m,9) = {W, |v € m}. W(m, ) is called the ¢-Whittaker model of 7.
By Frobenius reciprocity, Homyg,, (m,7) =2 Homgo,, (T, IndSUgé; (1)). Thus, 7 can be realized
as a subrepresentation of Ind[SJCS)CZ)l2 l (v) via the map m — W(w,¢) given by v — W,,. Moreover,
by uniqueness of Whittaker models, this subrepresentation occurs with multiplicity one inside
Indfjgé; l (). We also note that the analogous results hold for -generic representations 7 of
GL,,.

Let Q,, = L,,V,, be the standard Siegel parabolic subgroup of SOs, 1 with Levi subgroup
L, = GL,. For a € GL,, we let l,,(a) = diag(a, 1,a*) € L, where a* = J,'a='J,. Let 7 be an
irreducible generic representation of GL,, and set I(7) = Ind%?f”’“r. An element ¢ € I(7) is a
function £ : SOg,, 1 — 7 satisfying

E(ln(a)ug) = 7(a)(&(9)),Va € GLy,,u € Vi, g € SOgp41.

Let A, € Homy,, (7,97') be a fixed nonzero homomorphism. For & € I(7), we define the
function f¢ : SO2p41 X GL,, = C by

fe(g,a) = Ar(7(a)é(g)).

Let I(7,4~1) be the space of functions generated by f¢,& € I(7). Note that for f € I(r,9~1),

we have

f(g7ua) = w_l(u)f(g7a)7v.g S SOZnJrhu S UGL"7a S GLn

We also let 7* be the contragredient representation of GL,, defined by 7*(a) = 7(a*).

3 Multiplicity one theorems and the gamma factor

The goal of this section is to show that Bessel models for split even special orthogonal groups
over finite fields are unique. Our primary reference for this is [17], but the setup there is local.
Note that the notation of this section (introduced below) agrees with the notation of [6] with
H = N'"" x SOg,,1, v = 1’ in the case n < [ (¢’ is extended to be trivial on the special
orthogonal group), and H = SOs;, v =1 in the case n =1 .

We begin by considering the case n = [. In this case, H is SOy embedded inside of SOg;41
as in (2.1). Nonzero intertwining operators in Homgo,, (7, 7) are called Bessel functionals which
give Bessel models for 7 (similar to the Whittaker models). The following proposition shows

that the Bessel models are unique when n = 1.

Proposition 3.1 Let Q = LV be a parabolic subgroup of SOgiy1 and o be an irreducible
representation of L. Let w be an irreducible cuspidal represenation of SOq and T = IndsQoz”la.

Then

dim Homgo,, (m, 7) < 1.
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Proof  First, suppose that o is cuspidal. Then, [5, Proposition 5.1] still holds in our case.
Indeed, we can follow their proof closely, except we use the multiplicity one results of [1, 20].
This multiplicity one result was also known earlier in this case [7].

Suppose that o is not cuspidal. Then there exists a parabolic subgroup Q' = L'V’ of L and
cuspidal representation ¢’ of L’ such that o C Indé,a’ . By transitivity of parabolic induction,
T C Indi,o‘ﬁl,}r} o’ ® 1y and hence the proposition follows from the case when o was cuspidal.

Next, we consider the case n < [. We begin by defining the unipotent subgroup N'=" C SOs;.
Consider the standard parabolic subgroup P,_,,_1 = M;_,,_1N;_,_1 of SOg; with Levi subgroup
M;_p—1 =2 GL;_;,—1 X SOgy,42. Through this isomorphism, we embed Ugy, ,, , inside of SOy;.
We define N*=" = Ugr,, , ,Ni—n—1. That is,

Uy U1 U2
l—n
N = I2n+2 Ui S SOQ[ "11/1 S UGLl,n,l
ui

For v = (v; ;) € N'=" we define a character ¢’ of N'=" by

l—n—2 1 1
Y'(v) =1 ( Z Viit1 + JUn—1l— 2Ul—n—1,1+1> .
=1

Note that this character is trivial when n = [ — 1. Let H = SOg,,1 N, where SO, 41
is realized via the embedding into SOg,, 4o inside M;_,_;. Extend ¢’ trivially across SOz;,11
so that ¢’ is a character of H. Nonzero intertwining operators in Hompg (7,7 ® ') are called
Bessel functionals which give Bessel models for . The below proposition gives the uniqueness
of Bessel models for n < .

Proposition 3.2 Let Q = LV be a parabolic subgroup of SOsy,41 and o be an irreducible
representation of the Levi subgroup L. Let m be an irreducible cuspidal representation of SOq
and T = Indcsgo%“a. Then,

dim Hompy (7,7 @ ¢') < 1.

Proof The proof is the same as Proposition 3.1, except instead of using the special orthogonal
analogue of [5, Proposition 5.1], we use the special orthogonal analogue of [5, Proposition
5.3]. Again, we also must substitute the appropriate multiplicity one results which follow from
[1, 20]. O

3.1 The Zeta Integrals

Let 7 be an irreducible 1-generic cuspidal representation of SO9; and 7 be a generic represen-
tation of GL,,. Let W € W(m,¢) and f € I(7,%~!). Next, we shall define the zeta “integrals”
U(W, f) analogous to the local integrals of [17]. Note that [17] defines integrals for any n and
l; however, we only need the case of n <[ for the converse theorem and so we do not consider
the case of n > [. These integrals lie in the Bessel models and the uniqueness of these models
give rise to the definition of the v-factors.

First, suppose that n = [. Then we define

vW, )= Y. W) f(wg L),

9€Us0,, \SO2
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where

N/

wy = 1 € SO2;41.
21

N

The integral satisfies the property U(g- W, g - f) = (W, f) for any g € SOq;.
Next, suppose that n < I. Then we define

(W, f) = > > wrwtrg(wt™) Y | fg, 1),

gGUsozn+1 \S02n+1 reRLn

where
I,
-
wh™ = I € SOy,
Il—n—l
I,
and
I,
€ Ilfnfl
R = I € SOy
Il—n—l
x’ I,

The integral satisfies the property W((gn) - W,g - f) = (1)~ (n)¥ (W, f) for any g € SO2,41
and n € N'=". Note that in the case n < I, our integral differs from [17] slightly. The difference
is a right translation of the Whittaker function by (w’™)~1.
Let n < [. We define an intertwining operator M (7, 1) : I(7,9~1) — I(7*,¢~1) by
M(r, ") f(h,a) = Y f(wpuh,dpa®),
uEV,
I,
where w,, = (-1)" , d, = diag(—1,1,—1,...,(=1)") € GL,, a* = J,'a™'J,, and
I
V., is the unipotent radical of the standard Siegel parabolic subgroup @, = L.V, in SOsgy,41
with L, & GL,.
The following proposition gives the definition of the y-factor.
Proposition 3.3 Let m be an irreducible 1-generic cuspidal representation of SOy, T be a
generic representation of GL,, W € W(w,), and f € I(1,%~1). Then there exists a complex
constant y(m X 7,1), called the v-factor of ™ and 7, such that

Y X T )W, f) = U(W, M(r,07)f).



8 Hazeltine A. and Liu B.

Proof This is immediate from Propositions 3.1 and 3.2. O

We refer to these integrals and ~y-factors as the twists by GL,,.

4 Bessel Functions

In this section, we define Bessel functions and study their properties. The Bessel functions are
particular functions in the Whittaker model of a -generic representation. The analysis of the
zeta integrals evaluated on Bessel functions is crucial in our proof of the converse theorem.

Consider 7 as a representation of Bso,,. Let m(Uso,,, %) be the subspace of 7 generated by
{r(wv —P(u)v|u e Usozs v € T},

and let myg, = 7/m(Usoy, ) be the twisted Jacquet module. Since 7 is an irreducible
-generic representation, dim(myg,, ) = 1. Let v € m with v ¢ 7(Uso,,,9) and set

1 -1
vo = P (u)m(u)v.
|Usozl| Uegs:ozl
By the Jacquet-Langlands lemma [3, Lemma 2.33], vg # 0. Recall that we fixed a nonzero
Whittaker functional I' € Homyyg,, (m,%). Then we have I'(vg) # 0 and by construction
m(uw)vg = Y(u)vy for any u € Usp,,. Any such vector is called a Whittaker vector of 7. For

g € SO9, set
L(r(g)vo)
['(vo)

By is called the normalized Bessel function for 7 and it is simple to verify that B, , € W(m, ).

BTr,’LZJ (g) =

The following proposition follows from the definitions.

Proposition 4.1 By y(Iy) = 1 and By y(uigus) = (uiu2)Br y(g) for any g € SOy and
any ui, u2 € Uso,,-

Let W(SOq;) be the Weyl group of SOg; and let A(SOg;) be the set of simple roots. We
say that a Weyl element w € W (SOq;) supports Bessel functions if for any a € A(SOg;), wa
is either negative or simple. We let B(SOg;) denote the set of Weyl elements which support
Bessel functions. We call B(SOg;) the Bessel support. Recall Bso,, = T50,,Uso,, is a fixed

Borel subgroup of SOy;. The following lemma justifies our terminology.

Lemma 4.2 Let w be an irreducible i-generic representation of SOq; with Bessel function
Br.y. Then, for any w € W(SOg) \ B(SOg;), we have By (g) =0, for any g € Bso,, wBso,,.

Proof  Since Bso,, = 150,,Us0,, = Uso,,150,, as a set and by Proposition 4.1,
Bry(9) = Bry (tiuawtaug) = Br oy (uitiwizug) = v (ujug) Bry (tiwts),

for some uy, uf, us € Uso,, and t1,t),ta € Tso,,. Thus it is enough to show that B, (t1wts) =0
for any t1,t2 € Ts0,,. By definition of the Weyl group, wty = thw for some t}, € Tso,,. Hence,
By (t1wts) = Br oy (t1thw) and so it is enough to show that B, (tw) = 0 for any ¢ € Tso,,-
Since w ¢ B(SOy), there exists o € A(SOg;) such that wa is positive but not simple. Let
x € F, and let x,(z) be an element in the root space of a (note that the root space of « lies in
Uso,, and is isomorphic to Fy). Then twxq(x) = Xya(a')tw for some 2’ € Fy (because Tso,,

normalizes Uso,,). Since the simple root spaces are exactly the support of ¥, ¥(x4(x)) is a
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nonzero constant multiple of ¢(z) and this constant is independent of . Since wa is positive

but not simple, ¥ (xya(z’))) = (0) = 1. Thus, by Proposition 4.1, ¥(x)Br 4 (tw) = Br 4 (tw)

for any x € IF,. Since v is nontrivial, By 4 (tw) = 0. This proves the lemma. O
Next, we determine the support of a Bessel function on the torus.

Lemma 4.3 Ift € Tso,, and Bry(t) # 0, then t is in the center of SOq;.

Proof Let t € Tso,, such that By ,(t) # 0 and let § be any simple root of SOg;. For = € F,,
let x5(z) be in the root subgroup of §. Then txs(x) = x5(d(¢)x)t. Hence, by Proposition 4.1,

P (x5(2)) B (t) = P (x5(0(t)2)) Brr, (1)

Thus, ¥(xs(x)) = ¥(x5(5(t)z)) for any © € F, and simple root § € A(SOq;). Since ¢ is nontrivial
and z is arbitrary, we must have §(¢) = 1 for all 6 € A(SOq;). Thus, ¢ is in the center of SOy
which proves the lemma. U

4.1 Bessel Function of the Conjugate representation

In this section, we determine the normalized Bessel function in the ¢-Whittaker model of the
conjugate representation c - 7.

Let 1. be the character on Ugo,, defined by 9.(u) = ¥(cuc). Recall that we fixed a nonzero
Whittaker functional I' € Homyy,,, (,9). It follows that I' € Homy,, (¢ m,.) and

F(C ) W(g)vo)

T"(00) = Bry(cgc)

Berp.(9) =

defines the normalized Bessel function for ¢ - 7 in Ind%?él .. On the other hand, c- 7 is also
21

1p-generic, since 9.(t~ut) = 1 (u) for any u € Uso,,, where
o 1
t= dlag(Il_l, 5 -2, Il—l) € Ts0,,- (41)

Let
Berw(9) == Ber . (t71gt) = Bw,,/,(cf_lgfc).

Then we have the following.

Proposition 4.4 B..;y is the normalized Bessel function for c- 7 in Indzsjgé;w.
Proof Let I be defined by I'(v) = I'(c- n(f~')v). Then, I € Homyy,, (¢ - m,4). Since

Usoy, 2/]

tc = ct71, Be.xy is the right translation by £~ of a Whittaker function of ¢ - 7 in Ind
Thus, Be.x, is a Whittaker function of ¢ - .

Next, Be.rp(l21) = Bry(I2) = 1 and for ui,us € Uso,, and g € SOy
Be.rap(uigtin) = Be oy, (F  undt " gt~ ust)
= wc(7571ulf)wc(£71uzf)l3’c.ﬂ,¢c (t~1gt)
= 1/)(U1)1/J(U2)Bcw,w(9)

By Proposition 4.1, B..x 4 is the normalized Bessel function of ¢-m which proves the proposition.
O
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4.2 Partition of the Bessel Support

In this section we aim to partition the Bessel support and provide some preparation for future
calculations. We define the Weyl elements that appear in the computations of the zeta integrals
and then show that these can be used to partition the Bessel support. When n < [, we embed
wy, into SO9; and use the image to define the Weyl elements we are interested in. When n =1,

we take a different approach since the embedding is SOg; — SOg;41 and w; € SOgp4 1.

I’VL
Let n <[ and recall that w,, = (-1 € SO9,+1. Let
I,
Lfnfl
I,
1
if nisodd,
1
I,
N h—n—l
Wp =
I na
I,
1 .
if niseven.
1
I,
Lfnfl

Then the image of w, in SOy is t/ 1, where t/, =t as in (4.1) if n is odd, and t, = I if n
is even. Note that if n is odd, then cw,c = t~ b, and if n is even then cw,c = Wy, (here we
realize cw,c € SO9; via the embedding mentioned before). Recall that

I,
Il—n—l
wh = I € SOy,

Let

Lfnfl

Il—n—l
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where

Jo ifnisodd,
X =

I, if niseven.

This Weyl element w,, occurs in the computations of the zeta integrals of the twists by GL,, and
is also used to partition the Bessel support. w,, also shows up naturally in the computations of

the zeta integrals after applying the intertwining operator.

Let «; be the simple roots of SOy given by «;(t) = t'til for i <1—1and o(t) = t;_1t;,

where ¢t = diag(ty, ... ,tl,tl_l, .t ). Let ®(SOy), resp. ®1(SOy;), be the set of roots, resp.
positive roots, of SOg;. Then, for n <[ — 2, the action of w, on the simple roots is given by

Wy = O for 1 <4 <n—1,
Wnan(t) =t 'L,
Wpo; =o; forn+1<i<1]—2,
(o7} if nisodd,

ﬁ)nal—l = . .
aj_1 ifniseven,

~ )1 ifnisodd,
WwpQ =
«p ifniseven.

Note that w;_1 sends ;1 and «a; to negative roots and the rest to simple roots. Specifically,

ﬁ)l,lai = ]—-1—4 for 1 < 1 < [ — 2,

} ty' !t ifl— lisodd,
Wi—10q-1(t) = )
ty 't ifl —liseven,

3 t7';,  ifl — lisodd,
wg_lal(t) = L .
t;t; - ifl—1liseven.

Next, we consider the case n = [. Note that the construction of w,, for n < [ arose from the
embedding of the Weyl elements involved in the intertwining operator and the Weyl elements in
the zeta integrals. Reversing this for n = [, would require knowing what Weyl elements in SOq;
embed into certain subsets involving the Weyl element w; € SO9;11. We answer this question
later in Propositions 7.2, 7.3, and 7.4. For now, we motivate our choices by using the following
bijection between P(A(SOg;)) and the Bessel support.

Let 0, = {a € A(SOg) |wa € ®+(SOqg)}. The assignment w +— 6, gives a bijection from
B(SOq;) to the power set of A(SOy;), which we denote by P(A(SOsg;)). Then, for n <1 —1,
05, = A(SO9)\{an}. Also, we have Oz, , = A(SOq;)\{ai—1,a;}. In the cases of [19], the Weyl
elements for which 0, = A(SOg;)\{a;} for some i are used to partition the Bessel support. This
suggests that we need at least 2 more Weyl elements which we define below. These correspond

to the sets A(SOg) \ {c;—1} and A(SOg) \ {ay}.
We extend the definition of w, to the case of n =[. We begin by defining w; and define
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as either this Weyl element or its conjugation by ¢ depending on the parity of . If [ is even, let

W) = a
I
while if [ is odd, let
I
1
] =
1
I 4
We let wiong be the long Weyl element of SOy;. Then,
Ji—1
I if lisodd,
Wlong =
Ji—1
Joy if liseven.
We have that
- Ji
WiongW; = 7

which is the long Weyl element of a standard Levi subgroup that is isomorphic to GL;. This
suggests that 6, should be A(SOg) \{ay—1} or A(SOg;)\ {ay}. We verify this explicitly below.
Also, its conjugation by c¢ is the remaining set since ¢ acts on the simple roots by swapping
a;—1 and oy and fixing the rest. Set ;¢ = cwjc.

TV ES Y
We have @jt(a]) ! = diag(t; %, ..., t5 67 48 1y, ..., 1)), Hence,

Wy =y for 1 <i <1 —2,

tolt7t iflisodd,
W1 (t)=4 > '
aq(t) ifliseven,

~ o (t if [isodd,
wyoy(t) = _1(_)1 .
ty t; " ifliseven.
Thus, 05 = A(SO2) \ {ay—1} if I is odd and 077 = A(SOz) \ {ay} if I is even. Similarly, we
have 6z/c = A(SOg2) \ {au} if [ is odd and Oz7c = A(SO2) \ {ay—1} if [ is even. Hence, we set
wy® iflisodd,
w; =

w; ifliseven,

and wf = cwie. Then, 0z, = A(SOx) \ {ar} and Oge = A(SO2) \ {1}

For © € GL,,, we set t,,(z) = diag(z, Isj—an, z*) € SOq;. For n <1 — 2, let B,,(SOq9;) be the
set of w € B(SOq;) such that there exists w’ € W(GL,,) such that w = ¢, (w")w,. We also let
B;(SO4;) be the set of w € B(SO4;) such that there exists w’ € W(GL;) such that w = ¢;(w’)w,
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and cwc # w. Also, let Bf(SOq;) be the set of cwe where w € B;(SOg;). We let B;_1(SOq)
be the set of w € B(SOg;) such that there exists w’ € W(GL;) such that w = ¢;(w')w; and
cwe = w. By convention, we also define By(SOg;) = {I}. Note that 01, = A(SOg). From
the definition, we have that Bf(SOq) is the set of w’ € W(GL;) such that w = tf(w’)wf and
cwe # w where tf(w') = ctj(w')c. From Proposition 4.6 below, a similar definition holds for
B;-1(SOq;). That is, B;_1(SOq;) is the set of w € B(SO4;) such that there exists w’ € W(GL;_1)
such that w = t;_1 (w")W;_1.

We remark on the significance of the condition cwe # w in B;(SOq;). Let E(SOQl) be
the set of w € B(SOg;) such that there exists w’ € W(GL;) such that w = ¢ (w')w; and
]évf(SOgl) be the set of cwe such that w € EZ/(SOQZ). Then g(SOQZ) N EZE(SOQZ) = B;_1(SOq)
is a nonzero intersection and hence we would not be able to partition the Bessel support with
these sets. Thus it is necessary to include the condition cwe # w in the definitions of B;(SOq;)

and Bf(SOg;). This does not happen for the classical groups considered in [19].

Later, we see that the twists by GL,, determine the normalized Bessel function on Bruhat
cells associated to Weyl elements in B,,(SOq;), for n <1 — 2, the twists by GL;_; determine
only a part of the Bruhat cells for those in B;_1(SOq;), and the twists by GL; determine the
rest of the Bruhat cells for B;_1(SOq;) and the cells of B;(SOg;) and Bf(SOq;). The goal for the
rest of this section is to show that these sets partition the Bessel support. Before we show this,

we present some computational results for B;_1(SOgq;).

Proposition 4.5 Let w € B;_1(SOq;) and w' € W(GL;) such that w = t;(w')w;. Then

where w' € W(GL;_1).
Conversely, if w € B(SOq;) is such that w = t;(w’)w; where

for some w" € W(GL;_1), then w € B;_1(SOq).

Proof We only prove the first claim as the second claim is easy to verify directly. Since
w € B;_1(S049;), we have cwe = w. Thus, t;(w")w; = ct;(w’)ccwe. First, assume that [ is odd,
then cwjc = ;. Also ct;(w’) = t;(w’)wwjc and
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et w' = (w; ;) ._4. en,
L / ;7] 271 1 Th
0 (wll,j)é’ﬂ 0 Wy 1
tl (U)/)’[I)lwlc — 0 (wivj)ia]=2 0 (w£71)é=2
* 0 * 0
* 0 * 0

where the #’s represent coordinates in (w’)*. On the other hand,

1—
(wg,j)i,jlzl (“4,1)5:1 00
0 0 * %
Ctl(wl) - / / N\l
Wy 1 (wl,j)j:2 00
0 0 * %
Hence, we must have wg’l =0 forany : = 1,...,] — 1. Since w’ is a Weyl element of GL;,

wy ; = 1 and hence the claim follows.
Next, we consider the case that [ is even. Again, we have ¢;(w')w; = ct;(w’)ccw;c and hence

ty(w)wewyee = ety(w'). Again,

wycw;c = Ja

1

The rest of this case follows exactly as above. This completes the proof of the proposition. [

The following proposition relates B;_1(SO2;) with w;_1.

Proposition 4.6 Suppose that w € B;_1(SOq;). Then there exists w € W(GL;_1) such
that w = t;_1(w)w;—1. Conversely, if w € B(SOq;) is such that w = t;_1(w)w;—1 for some
w € W(GL_1), then w € B;_1(SOq).

Proof By Proposition 4.5, w = ¢;(w’)w; where

for some w” € W(GL;_1). We show that the claim follows with w = w”.

If [ is even, then

w =t (w)w; = Jo

(w//)*

It is immediate to check then t;_;(w”)w;—1 = w. Hence w = w’ gives the claim.
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If [ is odd, then

w = tl(w')ﬁ)l = I
(w//)*
Again, it is immediate to check then ¢;_;(w”)W;—1 = w. Hence w = w"” gives the claim. This
completes the proof of the proposition. O

For 0 <n <, let
P, = {9 - A(SOQ[) ‘we S Bn(SOQl)},

and
Pf={6 C A(SOq;) |wy € Bf(SOq)}.

The next proposition is crucial to show that the sets B,,(SOq;) for 0 < n <1 and Bf(SOq;) form

a partition of the Bessel support.

Proposition 4.7 Forn <l —1,
P, ={0 € A(SOq) | {ant1s---, a1} T O CA(SO) \ {an}}.
We also have Py = A(SO),
P ={0 € A(SO2)[{ou-1} €6 € A(SOz) \ {ai}},
Py ={0€ A(SOx) [{au} € 0 € A(SO2) \ {cu-1}},

and
P_i= {9 S A(SOQ[) |9 - A(SOQ[) \ {Ozlfl,al}}.

Proof  First, assume that n <[ — 2 and suppose 6 € P,. Then, wy € B, (SOq;). Thus, there
exists w’ € W(GL,) such that w = t,,(w')i,,. t,(w') acts on t = diag(t1,...,t;,t; ..., ;") by
permuting the ¢;’s for 1 < i < n. By direct computation, {a,41,...,} €8 C A(SOg)\ {an}.

Suppose that n <1 —2 and {ap41,...,0} €0 C A(SOg) \ {an,}. First we show that wy
takes the set {a;—1,a;} to itself. Suppose that wya; = a; for some j <[ — 2 for contradiction.
Let t = diag(t1,...,t;, ;' .., 17 ") and s = wetw, ' = diag(s1,...,s1,8 ",...,57"). Then,
weay(t) = tjtj__&l. So, wgaq_1(t) = t;t;41. That is, wgay_1 is a positive, nonsimple root. But
wy should be in the Bessel support and hence we have a contradiction. Therefore, wy takes the
set {ay_1,q;} to itself. So, s;—1 =t;—1 and s; =t; or s, = t;l.

Next, we show that wga; = «; for n +1 < i < [ — 2. We do this by considering «;_o,
then «a;_3, and so on until we reach «;,+1. We have wga;_o(t) = t?tl:ll for some j <[ — 2 and
e = 1. If e = —1, this is a negative root, but it should be simple by assumption. Thus ¢ =1
and wya;_s is a positive root. In this case, wgay_o is simple if and only if j = [ — 2. Hence,
Sj—o = t;—o. We repeat this argument for o;_3 and then a;_4 and so on until we obtain ;1.
In summary, we have wa; = o; forn+1 <7 <[l —2. Hence, s; =t; forn+1<i<[—1and
s € {ti,t; .

Then, wga, (t) = t;t;{l for some j < n and € = +1. Since wy,, is negative, ¢ = —1. Finally,
since wygaqy is either simple or negative for i < n — 1, it follows that s; € {tfl, ..., t1} for any
i <n.Let w' € W(GL,) be the Weyl element which takes diag(t1, . .. ,t,) to diag(s; ', ..., s;1).

’r n
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Then, wy = t,(w')w, for some w’ € W(GL,) (note that the X in the definition of @,, comes
from needing det(wy) = 1 and this also determines the action of wy on o;_; and «;). Therefore,

for n <1 —1, we have
Py = {0 € A(SOu) [ {ami1,- -1} €0 C ASOn) \ {an}}.

Next, we examine P,_;. Suppose § € P,_;. Then, wy € B;_1(SOq;). Thus, there exists
w’ € W(GL;) such that wyg = ¢;(w")w;. Also, cwgc = wy. By Proposition 4.5,

for some w” € W(GL;_1). Since wytd; ! = diag(tF', ..., t7 " t1,...,tF!), it follows that the
(1,1)-entry of wptw, * is tF' (the sign depends on the parity of 7). Hence wgay(t) = tj_ltlil for
some j < [ — 1 and hence wpay is a negative root. So, a; ¢ 0. weay_1(t) = t;ltfl is also a
negative root. So a;_1 ¢ 0 and hence 6 C A(SOg) \ {a—1, ;}.

Now we suppose that § C A(SOg) \ {oy—1, }. Then wpay—1 and wyay—; are negative. Let
s = wgtwe_l = diag(sy, - . .,sl,sl_l, oo, 87h). Then wyay_1(t) = sl_lsl_l and wepay(t) = s;-158;.
We show that s;_1 = tj_l for some j by contradiction. Suppose s;_1 = t; If s; = t;, then
weoy(t) = t;t is a positive root which is a contradiction. But, if s; = t,;l, then wyay—1(t) = t;ty
is positive and hence we have another contradiction. Therefore, we must have s;_1 = t;l.

Our next step is to show that s; = ¢; or s5; = t;l depending on the parity of [. Since
Sj_1 = tj_l, wgay_2(t) = s;_at;. Since wy € B(SOg;), this root must be simple or negative. It
is simple if §;_o = tj__&l. It is negative if s;_o = t;l for some r < j. In either case we have
that s;_o = t,-! for some 7. By continuing this process for all the roots, we find that for each
n < | there exists a unique j, such that s, = t;nl Suppose that s; # ¢; and s; # t;l for
contradiction. Then, there exists n such that s, = ¢; '. Then wya, () = ¢, 't;, ,,. This root is
positive for any index j,41. It is simple when j,4+1 = [ — 1. Thus we must have s,11 = tl__ll.
Next, wgan4+1(t) = tl__lltjn+2. This root is positive for any index j,1o < I —1. It is simple when
Jn+1 = [—2. Thus we must have s,, 12 = tf_lz. Continuing in this fashion we find that s; = tlj_ln_i
forn <14 <1—2. Thus wga;—1(t) = tf_:n_(l_2
root. However, by assumption, it is negative. Hence we have a contradiction. Therefore, we

ytj where j < I+n—(1—2). This is always a positive

must have s; = t; or §; = tl_l. Thus, wgtwg_l = diag(tj_ll, . ,tj_lfl, it Sty ...ty ) for some
€ € {£1}. Let w” € W(GL;—1) be such that w”diag(t1,...,t,—1)(w”)~! = diag(t;, ,,....,t;)-
Then, t;_1(w”)W;—1 = wy (note that the parity of I determines e since we need the determinant

to be 1) and hence wy € B(SOq;). Therefore, we have
P_, = {9 S A(SOQ[) |9 - A(SOQ[) \ {Oél—l, Oél}}.

Next, we show the claim for P,. Suppose that wy = t;(w’)w; for some w’ € W(GL;) with

cwgc # wy. For | odd, we have
;= diag(ty, t Y, -ty Lt bt b, ),

and for [ even

;' = diag(t; Gty T eyt ).
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Let w' = (w) )}

i.j)ij=1- Since cwgc # wg, by Proposition 4.5, w; ; = 0. Let

-1 . -1 ~1
wotw, -~ = diag(si,..., 51,8 ,...,81 ).

For [ odd, s; € {t;',....t;.\,t;} and for [ even s; € {t;",...,t;",¢;'}. Since w], = 0,
s # tlil. Thus, wpa;_1 = sl,lsfl = s;_1t, and weay_1 = S§;_18] = sl,ltr’l for some r < [.
If s;_1 = t;, then wya;_1 is positive and we must have r = [ — 1 so that it is simple. Then,
WOy = tltlill is negative and hence we have {a;_1} C 0 C A(SOqg) \ {ou}. If ;-1 = tfl, then
wpy—1 is again positive since r < [. We must have r = [ — 1 to ensure it is simple. But, then
wgoy_o(t) = t;t; for some j < I — 1. This root is positive and never simple. Hence we have a
contradiction. Thus s;_1 # tfl. Thus we have shown the claim for s;_1 = #; (and tfl for which
we had a contradiction) so far. Suppose s;_1 = t;l for some j < I. Then wyoy_1(t) = t;ltr
and wyay(t) = tj_ltr_l. So wya; is always negative. wgay_1 is negative if 7 < r and simple if
j =1+ 1. We show that we must have j = r + 1. Suppose j < r for contradiction. Then there
exists n such that s, = t; or tfl. Suppose s, = t;. Then wya,(t) = sns;}rl = Ut;,.,- This root
is positive and only simple if j,11 =1 — 1. Then wga,1(t) = tf_lltjn” for some j,y1o <1 —1.
Again this root is always positive and is simple only if j,+2 = I — 2. Continuing this, we find
8 = tljrlnfi for n + 1 < i < [. Thus we have k = n and wya;_1(t) = t;}rltn is simple and
wooy(t) = t, 1t " is negative. Therefore, {oy_1} C 6 C A(SOg) \ {oy}. We address the final

case. Suppose that s, = tfl. Then wya,(t) = t;lt with j,+1 < [. This root is always

Jn41
positive. It is simple only if j,,41 = { — 1. The rest of this case follows exactly as in the previous
case. Again we find {ay_1} € 0 C A(SOq9) \ {o;} and 6 € P,.

Next, suppose that {a;_1} € 0 C A(SOg) \ {aq}. Let

—1 : —1 -1
wotw, ~ = diag(si, ..., 51,85 ,...,5] ).

Then, wpay_1(t) = sl,lsfl is simple and wga;_1(t) = s;_15; is negative. Suppose first that the
simple root wepay_1(t) is sl_lsl_l = trt,n__i1 for some r < I. If ; = t,41, then wyay(t) = tytr11
is positive which is a contradiction. Therefore, we must have s;_1 = ¢, jl and s; = t, 1. Hence,
S otr+1 where € € {£1}. This is simple if e = —1 and j;_o = r + 2.
It is negative if e = —1 and j;_o < r + 1. In either case, we have s;_o = t]iz. We can continue

wpay—_o(t) = sl_gsl__ll =t

this argument until we arrive at s,4; = tlill. That is, s; = til for n +1 <4 < [. The next
root is wya, (t) = SnST_lj_l =15 tia where € € {£1}. This is simple for two cases: when j, =1
and € = +£1. € is determined by the parity of [. Specifically, if ¢ = 1, then [ must be odd and
if € = —1, then [ must be even. Suppose that s, = t;. Then wpa,, _1(t) = 15, = t;niltlfl
where j,_1 < rand € € {£1}. Since j,_1 < r < [—1, this root can never be simple. Thus it must
be negative and so € = —1. That is, s,-1 = tj_nl,l- Continuing in the above manner, we again
find that s; = t;l for i < n. Let w” € W(GL;) be such that w”diag(t;,¢; ", ..., t; ) (w”) ™ =
diag(sy,...,s;). Then, wy = t;(w”)w; € B;(SOq). Next, we must address the case s, = tl_l.
Then woa, _1(t) = sp_15," = t5 _,ti where j, 1 <7 and € € {£1}. Since j,—1 <7 <l—1,
anl_l_
Continuing in the above manner, we again find that s; = tj_il for i < n. Let w” € W(GL;) be
such that w”diag(t; ', t; Y, ..., t7 ") (w”)~! = diag(s1, ..., s1). Then, wy = t;(w")w; € By(SOx).
Thus, if wea;—1(t) = trt;h for some r < [, then

Py ={0 € A(SOx) [{au—1} € 6 € A(SO2) \ {au}},

this root can never be simple. Thus it must be negative and so ¢ = —1. That is, s,_1 =t
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Suppose that wgay_1(t) is the remaining simple root sl,lsfl =t;_1t;. If 551 = t;_1 then wyy

is simple which is a contradiction. Thus, we must have s;_; = ¢; and s; = tl:ll.

-1
Ji—2"
This root is always positive and not simple if € = 1.

Thus, wpay_o(t) = Sl_Qtl_l. This root cannot be simple and hence we must have s;_o =t
€

AN
Ji—-3

. Continuing in this manner for all the remaining roots shows

Next, wgal,g(t) = Slfgtjl_z, =1 Ji_o-

Thus we must have s;_3 = ;'

that for any i <1 — 2 we havjel;; e {t;', -+, t;,}. Thus,
w1
Wy = W2 )
w
where wldiag(tf_127 .. ,tfl)wfl = diag(s1,...,S—2), and
01 00
0 0 0 1
wo =
1 0 00
0 010

Note that det(ws) = —1 and hence this is only possible if { is odd (for [ even, detwy = —1). Let
w"” € W(GL;) be such that w”diag(t;,t; ", ...,t7 ") (w”)~! = diag(si,...,s;). Then, we have
wy = ty(w”)w; € By(SOg;). Thus, in both the cases of wpay_1(t), we have

B ={0 € A(SOg) [{ar1} €0 € A(SO2) \ {eu}}-

Finally, conjugation by c fixes the roots o; for i < 1—2 and maps o;_1 — oy and a; — a;_1.
Using the result for P, it is straightforward to check that

B = {0 € A(SOz) [ {au} € 0 € A(SO2) \ {ai-1}}-

This finishes the proof of the proposition. O

Next, we interpret the previous proposition in terms of the Bessel support.

Proposition 4.8 The sets B,,(SOg) for n = 0,1,...,1 and Bf(SOq) form a partition of
B(SO4).

Proof We have that

-2
|_| P, U P UPUP_; =P(A(SOy)),
n=0
the power set of A(SOsg;). The claim then follows from Proposition 4.7. O

We need the following proposition to show that the zeta integrals are nonzero in later
sections.
Proposition 4.9 Ifw € W(GL;) and w # I, then t;(w) ¢ B(SOs;). In particular, if a € GL;
and a is not upper triangular, then B . (t;(a)) = 0.

Proof We use the partition of the Bessel support in Proposition 4.8. First, suppose that
ti(w) = t,(w)w, for some n with 1 < n < and w’ € W(GL,). Then, w, € W(GL;).
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However, this is not the case for any n. Next, suppose #;(w) = ct;(w’)w;c (this is the case that

ti(w) € B{(SOq;)). Thus, ct)(w)e = t;(w')w;. Let w = (wm)” 1- Then,

(wij)isty 0 (win)iZy 0

0 * 0 *
cti(w)e = -
(wl,j)jZQ 0 wy,1 0
0 * 0 *
If [ is even then,
w/
tl(w’)@l =

(w')*

Hence, w;; = 0 and w; ; = 0 for any 1 <4,5 <! —1. Thus,

Ou—nyx@-1) *
* 0

But, w € W(GL;) and hence this is not possible.
If [ is odd, we have

0 o w' {7 0 wh . {7 .
tl(’wl)wl _ l><(l 1) ( z,l)z_l Ix1 ( 1,j)1_1,3_2
* 0 * 0
Again, w; j = 0 for any 1 < 4,5 <1— 1, but since w € W(GL;), this is not possible. Therefore,
w ¢ Bf(SOg) and w ¢ B,,(SOy;) for any n. By Proposition 4.8, w ¢ B(SOq;).

For the second part of the claim, suppose a € GL; is not upper triangular, Then, by the
Bruhat decomposition of GL;, there exists w € W(GL;) such that w # I, and a = ujtwus
where t € T, and uy,up € Ugr,. We obtain By y(ti(a)) = Br .y (ti(t)ti(w))(t(u1)) (i (uz)).
However, t;(w) ¢ B(SOg;) and hence By (¢;(¢)t;(w)) = 0. Thus, we have proven the proposition.

O

5 Twists by GL,, for n <[ —2
In this section, we calculate the zeta integrals for twists up to GL;_s. Let v € 7 be a fixed
vector and define £, € I(7) by supp({,) = @ and

&u(ln(a)u) = T(a)v,Va € GL,,u € V,,,

where l,(a) = diag(a,1,a*) and @, = L,V,, is the standard Siegel parabolic of SOg,41. Let

fo = fe, € I(r,971). That is, f,(g,a) = A;(7(a)é,(g)), where A, € Homyyg,, (1,971, a €
GL,, and g € SOz,+1. We also fix the Whittaker function W, (a) = A, (7(a)v). We show that

the zeta integrals in this case are nonzero.

Proposition 5.1 V(B .y, fu) = Wy(I,). In particular, we may choose v € T such that
\IJ(Bw,va) # 0.

Proof By definition,

\P(Bﬂ,wafv) = Z Z wa rwl ng n)_l) fv(galn)-

gEUs()ZnJrl \SOgn+1 reRLn
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The support of f,(g, 1) is contained in V;,L,,. Since V,, C Uso,,_,, we have

V(Bry, f) = Y Y Brplrat (@) (w™) ) | Wela).

a€Ugr, \GL, \reRbLm

The embedding of SOs,1 into SOy takes I,,(a) to qn(a) = diag(lj—n—1,0a, I2,a*, I;_pn_1). We
have w'"q, (a)(w"™) ™! = diag(a, I2_2,,a*). Let

I,
x I_p_1
Ty = I € Rb™.
I
x I,
Then,
a
xza Ij_,_1
rew' gy (a)(wh") Tt = I
Ii_n
z'a*  a*

By Proposition 4.9, By 4 (r,w' g, (a)(wh™)~™1) = 0 unless a is upper triangular and = = 0.

Hence,
Y(Bry, fo) = Z By (tn(a))Wy(a).
a€Tar,
Finally, by Lemma 4.3, U (B y, fu) = Wy (I,). If we choose v to be a Whittaker vector for 7,
then W, (I,) # 0. This completes the proof of the proposition. O

Let f, = M(7,%~ ") f, and W*(a) = A, (7(dna*)v). The following lemma is the analogue of
[19, Lemma 3.6] and holds for any n. The proof follows similarly.
Lemma 5.2 1. If fu(g, 1) # 0, then g € QuuwnQp = Qnw, V.

2. If x € Vy,, then fy(wpx, I,) = Wi(I,).

3. Fora € GL, and x € Vy,, fu(ln(a)w,z, I,,)) = W (a).
In [19], each twist utilizes [22, Lemma 3.1]. For twists up to GL;_2, [22, Lemma 3.1] would
be sufficient. However, for twists by GL;_; and GLy, it is expedient to have the below lemma.

Note that [22, Lemma 3.1] is precisely the case when X = GL,, in the below lemma.

Lemma 5.3 Suppose X is a subset of GL,, for which ux € X for any u € Ugr, and xz € X.
Let H be a function on X such that H(ug) = ¥ (u)H(g) for any u € Ugr, and g € X. Suppose
that

Z H(z)W,(z) =0

zeX
for any v € T and with T running through all generic irreducible representations of GL,,. Then,
H(z) =0 for any z € X.
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Proof Let H' be the function on GL,, defined by H'(g) = H(g) if g € X and H'(g) = 0 if
g ¢ X. Then, H'(ug) = ¥(u)H'(g) for any v € Ugt,, and g € GL,,. By [22, Lemma 3.1], H' =0
on GL,, and hence the lemma follows. O

The following theorem shows that, for n < [ — 2, the twists by GL,, determine that the
Bessel functions are equal on B, (SOg;). Note that w,, fixes oy—1 and a; when n is even and
switches them when n is odd. Recall that t/, = ¢t = diag(I,_1, %1, —2,1;_1) if n is odd and
t;, = I if n is even. We explain the inclusion of the term t;, in the below theorem. Let 2 € F,

and x,, (z) be an element of the root space of a;. By Proposition 4.1, we have
Br,y (tn (@) 0nXe, () = Bry (tn(a)dn ) (=1(x)/2).
When n is odd,

Bﬂ,w(tn(a)fwnxaz (@) = By (Xa,_, (¥)tn(a)tn) = Br,y (ta(@)ti,) (1(x)/4).
Since 9 is nontrivial, it follows that By 4 (t,(a)w,) = 0. However, if we include t/, = ¢, we have
Bz (tn(a)tnXa, (2)) = Br y (tn(a)tbn) (—(z)/2)

and

Br o (tn(@)t0nXo, () = Br (%o, (—22)tn (@)tibn) = Br g (tn (a)tin ) (—1)(2)/2).

Thus, Br 4 (t,(a)tid,) may be nonzero.

When n is even, we have

Bz (tn(a)0nXa, () = Bry(Xa, (%)tn(a)Wn) = Bz y (tn(a)wn)(—(x)/2)

and so ¢/, = Iy suffices. Thus, we see that the inclusion of the term ¢/, is necessary in the below

theorem.

Theorem 5.4 Let m and 7’ be irreducible cuspidal v-generic representations of SOq which
share the same central character. If v(m x 1,9) = ~v(x’ x 7,4) for all irreducible generic

representations T of GLy,, then By y(t,(a)t, w,) = By (tn ()t Wy) for any a € GL,,.

Proof By Proposition 5.1, we have ¥ (B y, fo) = ¥ (B .y, fo) = Wy(I). From our assump-
tion, y(m X 7,%) = y(7’ x 7,%) for all irreducible generic representations 7 of GL,,, and hence
it follows that W(By.y, fo) = ¥(Bsr .y, fu). By definition,

\I}(Bﬂywva) = Z Z Bﬂ,w(rwlmg(wlm)_l) fv(gaIn)'

9€Us0,,, 11 \SO2n41 \r€RL™

By Lemma 5.2,

\I/(B‘fr,wva): Z Z Bﬂ,w(Twl’nln(a)wnx(wl’n)il) fv(ln(a)wnl'vln)-

a€UgL, \GL, \r€RL"
zeVy

The embedding of SOs,,11 into SOy, takes w, to t/ W, (see §4.2) and I, (a) to the element
gn(a) = diag(l;—n—1,0a,Iz,a*,I;_,,_1). The embedding also takes the unipotent element = =
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I, * = I, * x
1 « | toZ=diag(lj_pn_1, I, x |,l—n_1), and we have
I, I

x(wl,n) 1_ (wl,n)—l 12 0 %
Il—n—l 0
In

The character is trivial on the last unipotent matrix and hence, by Lemma 5.2,

‘I’(Bmw»fv) = Vil Z Z wa rw" "qn(a )t wn( )_1) W (a).

a€UqL, \GL, \reRl:n
Next, w!"q,(a) = t,(a)w"™ where t,(a) = diag(a, Iyj_an,a*). Also, w'™t! =t/ wh™. Let
L,
x DL n
Ty = I € R
Iy
x I,

Then, 7,t,(a)t!, = t,(a)t!,re.. Recall that @, = w"™b, (w"™)~1. Then,

U(Br, fo) = Val > D Bray(ta(a)thraztin) | Wyi(a).
acUgr, \GL, \rz€eRL"
Note that
Iy z'(a”)
Il—n—l Ta
TazWn = Wy I
Ilfnfl

I,
The character is trivial on the last unipotent element and hence

U(Br, fo) = VallB™" Y0 Brltala)t@n) W) (a).

a€Ugr, \GLy,
Since ¥ (B, y, fv) = U (B y» f;), it follows that
0= > (Bry —Bey)tala)thdn)W; (a).
a€UgL, \GLn
Let f be the function on GL,, defined by f(a) = (Br,y — B y)(tn(a)t,wy). Then, f(ua) =
¢(u) f(a) and
0= >  fl@W(a)

a€Ugr, \GL,



Converse Theorem for Finite Split SOq; 23

By Lemma 5.3, f(a) = 0 for any a € GL,, which proves the theorem. O
As a consequence, we see that the twists by GL, determine the Bessel functions on the
Bruhat cells for w € B,,(SOq;).

Theorem 5.5 Let m and 7' be irreducible cuspidal 1-generic representations of SOg which
share the same central character. If v(m x 7,9) = ~(x' x 1,9) for all irreducible generic
representations T of GLy,, then By y(biwbs) = Bar y(biwby) for any bi,ba € Bso,, and w €
B,.(SOq).

Proof  We have bywby = ujtwusg for some t € Tgo,,, and v, us, € Uso,,. By Proposition 4.1,
it suffices to show that By ,(tw) = By 4 (tw). We shall see that the support of these functions

on T50,,B,(SOg) is contained in the set {t,(a)t, Wy, |, a € GL,}. Suppose that B, (tw) # 0.
By definition of B,,(SO4g;), there exists w’ € W (GL,,) such that w = ¢, (w')w,. Recall that

Wyt = Oy Tor 1 <4 <n—1,
~ —1,—1
Wy (t) =17, 1,

Wpo; = o forn+1<i <1 —2,

~ o ifnisodd,
Wpo—1 =

aj_1 ifniseven,

~ ap_1 ifnisodd,
Wpop =

«; ifniseven.

Also tp(w)oy; = «; for any n+1 < ¢ <[. Let z € F, and x,,(x) be an element of the root
space of a;. By Proposition 4.1, for n 4+ 1 # 7 <[ — 2 we have

Br oy (twXe, () = By y (tw)y(z).

On the other hand,

By (twxa, () = By (tw) (o (t)x).
Since ¢ is nontrivial, we must have «;(t) = 1 for any n + 1 < i <[ — 2. That is, t; = t;4; for
anyn+1<i<[—2.

Similarly,

By (twXa, (2)) = Br g (tw)(—1)()/2)
and

By (twxa,_, () = By y (tw) (¥ () /4).
When n is odd,

By (twXa, (2)) = Bry(Xa,_, (u—1(t)2)tw) = By (tw) (¥ (eu-1(t)z)/4),
and
Bry (twxa, , (2)) = Bry(Xa, (u(t)z)tw) = By (tw)(—(u(t)z)/2),

at) — =1 and =20 — 1 Write t = diag(ty,..., ¢, % ... 67 0).

We find that ¢;_; = +1 and ¢; = :F%. Furthermore, t; = t;41 = t;_1 = £1 forany n + 1 <
i <1—2. Let a = diag(ty,...,t,)w’. Then tw = t,(a)tw, if t;_; = 1 and by Theorem 5.4, we

Since ¥ is nontrivial, we have
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have By (tw) = By (tw). If 1 = —1, then tw = —t,,(a)t,. Since 7 and 7’ have the same
central character, say x, by Theorem 5.4,

Br oy (tw) = Br oy (—tn(a)lin)
= X(=1)Bry (tn(a)tn)
= X(=1)Br s (tn(a) )
= Br y(—tn(a)tin)
= B (tw).

This proves the corollary when n is odd.

Suppose now that n is even. We have

By (twXe, (7)) = Br,y (%o, (a1 (t)z)tw) = By y (tw) (P (au(t)z) /4),
and
By (twxe,_, () = Bry (Xa,_, (-1 (t)x)tw) = By (tw) (= (qu-1(t)x) /2),

Since 1) is nontrivial, we have a;_1(t) = 1 and oy (t) = 1. Write ¢ = diag(ty,..., 1, t;l, Looth.
We find that t;_; = ¢t; = £1. Furthermore, ¢t; = t;41 = ;-1 =l forany n+1 < <[ —2.
Let a = diag(ty,...,t,)w’. Then tw = t,(a)w, if ¢,—1 = 1 and by Theorem 5.4, we have
By y(tw) = By o (tw). If t;_1 = —1, then tw = —t,,(a)w,. Since m and 7" have the same central
character, say x, by Theorem 5.4,

By (tw) = By p(—tn(a)in)
= X(=1) By (tn(a)wn)
= X(=1)Br y(tn(a)in)
= By (—tn(a)in)
= Bar y(tw).
This proves the corollary when n is even. O

6 Twists by GL;_;

In this section, we consider the twists of GL;_;. The arguments of this section are similar to
the previous section, except that Rb™ and wh™ are trivial which leads to minor differences.
Let v € 7 be a fixed vector and define &, € I(7) by supp(&,) = Li—1V,—1 = Q;—1 and

&(li—1(a)u) = T(a)v,Ya € GLj_1,u € V1.

Let f, = fe, € I(r,41). That is, for A, € Homy,,,, | (1,971),a € GL;_1, and g € SOg;_1, we
have f,(g,a) = A-(7(a)é(g)). We also let W, (a) = A-(7(a)v). We show that the zeta integrals

in this case are nonzero.

Proposition 6.1 Suppose By, be the normalized Bessel function of w. Then, we have
V(B fo) = Wy(li1—1). In particular, we may choose v € T such that U(By 4, fu) # 0.

Proof By definition,
U (B, fo) = > Brew(9)fo(g, Ti1).

9€Us0,;,_1 \SO21—1



Converse Theorem for Finite Split SOq; 25
The support of f,(-, ;1) is Q;—1. Thus,

\II(B‘frw’fv) = Z B‘frﬂl)(ll—l(a))fv(ll—l(a)aIl—l)'

a€Ucr;_, \GLi—1

Under the embedding of SOg;_1 into SO, {;_1(a) maps to t;_1(a). Hence,

W(Bﬂ,wva) = Z qu/,(tl_l(a))Wv(a).

a€Ugr,_,\GLi—1

By Proposition 4.9, B 4 (t;—1(a)) = 0 unless a is upper triangular. Thus, by Lemma 4.3,
U(Br,p, fo) = Wy (Li-1).

If we choose v to be a Whittaker vector for 7, then W, (I;_1) # 0. This proves the proposition.
O

The next theorem shows that the twists by GL;_; determine that the Bessel functions are
equal on a subset of the Bruhat cells in B;_;(SOq;). More specifically, by Proposition 4.1, to
determine the normalized Bessel functions on a Bruhat cell of w € B;_1(SOq), it is enough to
determine it on Tsp,,w. The below theorem determines the subset of Tgo,,w for t € Tgp,, such
that the [-th coordinate is ¢; = 1 if n is odd and ¢; = % if n is even. Using the central character
we can determine t; = +1 if n is odd and ¢; = j:% if n is even. Later, Theorem 7.7 shows that
the twists by GL; determine the remaining part where t; # £1 if n is odd and t; # j:% if n is

even.

Theorem 6.2 Let m and ' be irreducible cuspidal 1-generic representations of SOg; which
share the same central character. If v(m x 7,9) = ~y(x' X 7,4) for all irreducible generic
representations T of GLj_1, then we have By y(ti—1(a)t]_Wi—1) = By y(ti—1(a)t]_jwi—1) for
any a € GL;_1.

Proof By Proposition 6.1, U(Bx .y, fu) = ¥(Br .y, fu) = Wy(lj—1). From our assumption,
y(m x T,9) = y(7" x 7,9) for all irreducible generic representations T of GL;_1, and hence it
follows that W(B, y, fo) = (B 4, fu). By definition,

U(Br oy o) = > Br(9)fo(g. Ti-1).-

9€Us0,;, ;1 \SO21—1

From Lemma 5.2, we get

Y (Bry, fo) = > By (li-1(a)wi—1u)Wy (a).
G«GUGLZ_l\GLZ—l
ueV;_1

The embedding of SOg;_1 into SOq; takes [;_1(a) to t;_1(a) and w;_1 to t;_,W;—1. Let
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Then the embedding takes u to

Ly z 5y

1 z’

o= 2
1 2
I

Since ¢(@) = 1, we have

U (B, fo) = Vi1l > By (ti—1(a)tj_ywi—1)W; (a).
a€Ugr,_, \GLi—1

From U(By.y, fo) = U(By .y, fo), it follows that

0= > (B — B ) (ti-1(a)t]_y0i-1) W (a).
a€Ugr;_,\GLi—1

Let f be the function on GL;_; defined by f(a) = (Br,y — B y)(ti—1(a)t;_,@;—1). Then,

f(ua) =4 (u)f(a) and
0="> fl@W;(a).
a€GL;_1

By Lemma 5.3, f(a) = 0 for any a € GL;_; which gives the theorem. O

The following corollary shows that Theorems 5.5 and 6.2 hold for the Bessel functions of
c¢-mand c- 7' as well.

Corollary 6.3 Let m and 7' be irreducible cuspidal 1-generic representations of SOg; which
share the same central character. If v(m x 7,9) = (7’ x 1,9) for all irreducible generic
representations T of GL,, for any n <1 —1, then Be.x y(tn(a)t, W) = Bear y(tn(a)t),wy,) for
any a € GL,.
Proof By Theorems 5.5 and 6.2 , By y (tn(a)t,Wy,) = Br (tn(a)t),wy,) for any a € GL,,. Also,
By (tn(a)t,y,) = Bﬂ,w(cfflfctn(a)tilzbncfflfc) = Ber y (tetn (@)t et t)
= Be.r g (tn(a)ty, bn).

for any n <1 — 1. This proves the corollary. O

The following corollary shows the equivalence of ~-factors of conjugate representations for
n < [ — 1. This is not necessary to show the converse theorem, but when later paired with
its analogue for n = [, Corollary 7.8, it shows that the v-factor cannot distinguish between a
representation and its conjugate. In the setting of local fields, this is known [2, 13].
Corollary 6.4 Let w be an irreducible cuspidal v¥-generic representation of SOg;. Then we

have y(m x 1,4) = y(c- 7 X T,9) for all irreducible generic representations T of GL,, for any
n<l-—1.

Proof We abuse notation and consider the zeta integrals simultaneously for each n <[ — 1.
By Propositions 5.1 and 7.1 we can choose v € 7 such that V(B 4, fu) = ¥(Be.r,y, fo) # 0. By
the proofs of theorems 5.5 and 6.2,

U(Brp, fo) = VallR > Bry(tala)ty,dn) Wy (a).
a€UcgL, \GL,
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Since for any n <[ — 1, we have

Br oy (tn(a)thiby,) = Bry(ct tict, (a)t,wact e
= Ber yp(tety (@)t buct ™)
= Ber g (tn(a)ty i),

it follows that ¥ (B 4, fv) = U(Ber s fv) Finally, since ¥(Bxr. 4, fv) = ¥(Be.r.p, fov) is nonzero,
we have y(m x 7,9) = v(c- 7 x 7,%) for all irreducible generic representations 7 of GL,, for any

n <[ — 1. This concludes the proof of the corollary. O

7 Twists by GL;

In this section, we consider the twists by GL;. These twists are significantly different from
the previous twists. Note that we still need to determine the Bessel support on the Bruhat
cells corresponding to Weyl elements in B;(SOg;) and Bf(SOg;), and the Bessel support on the
rest of Bruhat cells corresponding to Weyl elements in B;_1(SOq;) that are not determined by
Theorem 6.2. The difference from previous cases is that ¢ acts nontrivially on these sets.

Let v € 7 be a fixed vector and define &, € I(7) by supp(&,) = LV, = Q; and

&(li(a)u) = 7(a)v,

for any a € GL;,u € V. Let f, = fe, € I(1,91). That is f,(g9,a) = A-(7(a)éy(g)), where
A € Homy,,, (r,971),a € GL;, and g € SOg41. Let W,(a) = A,(7(a)v). The following

proposition shows that the zeta integrals in this case are nonzero.

Proposition 7.1 U(B; g, fu) = Wy(w). In particular, we may choose v € T such that
\II(Bw,w,fv) 7£ 0.

Proof By definition.

\I/(Bﬂ','l/)?f'u) = Z Bﬂ,'l/)(g)fu(wl,lgvll)'

9€Us0,,\SO2

By definition, the support of f, (-, I;) is @;. Thus,

U(Bry: fo) = Y, Bru(ti(@)folwiili(a), T).
a€Uar; \GL,

By Proposition 4.9, By (ti(a)) = 0 for any a which isn’t upper triangular. Thus, by Lemma
4.3, U(Bry, fo) = Wy(wy,). If we let © be a Whittaker vector for 7 and v = T(’U};ll)f), then
V(B fo) = Wy(wi) = Wi(I;) # 0. This proves the proposition. O

The support of f, = M(7,%~ 1) f, is Quw;V;. Recall that the twists by GL, for n <1 —2
determine the Bessel functions on the Bruhat cells for B,,(SOq;), while the twists by GL;_1
only determine a portion of the Bruhat cells for B;_1(SOg;). We first show that the rest of the
Bruhat cells, along with the Bruhat cells for B;(SO9;) and Bf(SOq;), embed into Q;w;V;. This
follows from the next three propositions.
Proposition 7.2 Let w € B;_1(SOy) and t = diag(t1,...,t;,t; ,...,t7") € Tso,. Then
tw € Quw,V; (via the embedding of SOq; into SOg41) if and only if t; # 1 if l is odd, ort; # _71

if | is even.
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Proof We begin with a sketch of the proof. We first compute the embedding of the torus in
coordinates and the embedding of the Weyl element w, then compute Q;w;V; in terms of block
matrices. We see that the lower left corner is determined by the torus. In particular, this lower
left corner must be invertible if tw € Q;w;V; and the determinant of this block gives us the
condition we need. We proceed with the details of the proof.

Recall that the embedding sends ¢ = diag(t1, ..., i, tfl, . ,tfl) to

diag(s, Tt -t 3

where s = diag(ty,t2,...,8—-1). By Proposition 4.5, there exists w’ € W(GL;) such that

w = t(w")w; and

w = v
1
for some w” € W(GL;—_1). Then,
w//
w = Jt
(w//)*
Thus, the embedding into SOg; 41 of w is
w//
Al—l ,
(wl/)*
where
=1 3 9
8 1 1
_ |l =3 5 3
A=15 7 4
9 =3 =1
6 8 3

Note that A~1 = I3 when [ is odd.
Thus, we can compute the embedding of tw in SOg; 1. We obtain

diag(ty,...,t—1)w"”

diag(t; ), ..., t7 1) (w")*
where
stiti+th)  st-th 26— it+h)
Z=| -t W+ Fw-gh (AT
R TURRT B R B S OB
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Next, we turn towards computing Q;w;V;. Let a € GL; and n1,ns € V;. We wish to compute

li(a)niwing. Write

L X Y
ny = 1 X/ )
I

where X € Fé, Y € Mat;(Fy), X' = —'XJ;, and J;Y +'X’'- X' + 'Y J; = 0. Similarly, we

write

I, M N
ng = 1 M
I
Then,
aY aX+aYM a+aXM +aYN
Wa)mwmne = | X' 1+ X'M M + X'N
a* a* M a*N

Thus, tw = [;(a)niwyng has a solution as long as we can find a suitable a*. We see that

Z
a* = > where Zs1 is the (3,1)-entry of Z. Such a* exists as
diag(t; '), .. ., t7 ) (w")*

long as this matrix is invertible. Hence we need Zs; # 0.

If [ is odd, then Z5; = %(% - i(tl + tfl)). This is nonzero as long as t; # 1 and hence the
proposition follows.

If [ is even then Z3; = % + itl + 1—16tfl. This is nonzero as long as t; # %1 and hence the
proposition follows. This finishes the proof of the proposition. O

Next we examine the Bruhat cells for B;(SOq;) and Bf(SOq;).

Proposition 7.3 Let w € B;(SOq;). Then, for any t € Tso,,, we have tw € Qw;V; under the
embedding of SOg; into SOg;41.

Proof Since w € B;(SOy), w ¢ B;_1(SO4;). By Proposition 4.5, there exists w’ € W(GLy;)

i )i =1 € W(GLy) with wy y = 0. Similarly, we also write

such that w = #;(w')w; where w’ = (w; ;

(w')* = (w;*j)ijzl
As in the previous proof, we compute Q;w;V;. Let a € GL; and nq,n, € V;. We wish to

compute I;(a)njwyny. Write

L X Y
ny = 1 X',
I

where X € Ffl, Y € Mat;;(Fy), X' = ='XJ;, and JY +'X’ - X' + 'Y J; = 0. Similarly, we
write
I, M N

ng = 1 M
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Then,
aY aX+a¥YM a+aXM +aYN
Lha)nqwne = | X' 14+X'M M +X'N
a* a*M a*N

We proceed by computing the image of w under the embedding given by Equation 2.1.
Recall that we defined the matrix

R
4 2 2
=] 1
M=|1 0 1
=1
Zz 11

which was used in the embedding. The image of the embedding depends on the parity of I.
Let [ be even. Then the embedding of SOg; into SO9;41 takes w to

O@-1)x(-1) (0 0 (w§71)§;%) Mo ()T
0 00 0 (wy ;)5=2
Ve 0 M~tlo 1 o|M M 0
(wll*])é;ll 000 0
(wi*])zlzj;lfl ((w;*z)izz 0 O)M Ou-1x@-1)

Thus, tw = [;(a)njw;ny as long as we can find a such that
(w4 1
* 4 4 .
. _ _ i=lj=l—1 . _ —1y (wi)iz
diag(t; ), t; 1)("”2?})?:23:1 diag(t, '), .. ., ] 1)#

This is possible as the determinant of this matrix is nonzero. Indeed, the determinant of this
matrix is (up to a sign) ¢, -+ -t ! since (w')* € W(GL;) and (w{*j)zlzjjill_l contains a
row of zeroes. Therefore, tw € Qw;V; for any t € Tso,,.
The proof for { odd is similar. We obtain that tw = [;(a)njw;ns as long as we can find a
such that
t (Wit 1
* 4 4
o I P | 1y —(wi)is
diag(t; 4, ..., 1 )(101»73»)#27]4:1 diag(t;—y,...,t] ) —5—>
Again, this is always possible as the determinant of this matrix is (up to a sign) étl_l o

Therefore, tw € Qw;V; for any t € Tgo,, which concludes the proof of the proposition. O

Proposition 7.4 Letw € Bf(SOq;). Then for anyt € Tso,, tw € QwV; under the embedding
Of SOQl mnto SOQ[+1.

Proof The proof is similar to that of the previous proposition. We record the a*’s for future
reference.

For [ even, we have tw = [;(a)njw;ns where a € GL; and ny,ns € V) if

w -1
*tl(wll,j)jzl 1

* 2 4
a = ERY

. _ - i=l,j=l— . - —1y —(wih)io
dlag(tl_ll, coty 1)(w§:"j)§=2?j=1 ! dlag(tl_ll, cet] 1)%
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For [ odd, we have tw = [;(a)njwny where a € GL; and ny,ny € V, if

—tl(w/ffj);;ll 1
2 1
@ = 1 1/ gw vi=lj=l—1 1 1y (Wi}
: — - * \1=0,)=— 3 - - i,1)i=2
diag(t; ..., t; )(wi,j)izz,jzl diag(t; =y, ..., t; ) 1

O

The next 2 lemmas relate Bessel function for 7 and ¢ - 7. In particular, the below lemma

shows that the contribution of the zeta integral from Bf(SOg;) for m can be described using an
integral over B;(SOg;) and the Bessel function for ¢ - .

Lemma 7.5 Let 7 be an irreducible cuspidal -generic representations of SOq;. Then we have

Z By (twu) fo (wy twu, ) = Z B (twr) o (wy twu, I;).

tETsozl ,2wEBY (SO21) 7U€U802l tETSO2l ,2weBy (SOQ{),UEUSOQL

Proof We write Let ¢t = diag(tq, ... ,tl,l,tl,tl_l,tl__ll, ...,171). By Proposition 4.1, we have
By (twu) = By (tw)y(u) for any t € Tso,,, u € Uso,,, and w € W(SOq;). Also,

By (tw) = By (et tctwet ' ic) = Be.y y (tetwet ™) = Be.p (Y cwe),

where t' = tcte(cwet L (cwe)™t). For w € BF(SOy), we have cwe € B;(SOq;). By Proposition
4.5, there exists w’ € W(GL;) such that cwe = t;(w')w; where w’ = (w} ;)i ;_; € W(GL;) with
wy ; = 0. We also let (w')* = (ng‘j)ﬁﬁjzl and r be such that w; ; = 1.

For [ even, (cwct~'(cwe)™!) = t;(diag(1,...,1,-2,1,...,1)) where —2 is the r-th entry.
Thus, ¢ = t;(diag(t1, .., tr—1, —2tr, trg1, .- s ti—1, %;1)) Let aq,a> € GL; and ny,n9,n3,n4 €
V; be such that tw = [;(a1)niwing and tcwe = Ij(az)nzwiny. By the proofs of Proposition 7.3

and 7.4, we have

-1
*tl(wllfj)j:1

1
* 2 1
ay = . 1 —1\, s yi=lj=l—1 . -1 N I I
diag(t; "y, ..., t; )(wi,j)i=2,j=1 diag(t; "y, ... t] ) —57=—
and )
t o (wil §;11 1
a; — 4 4 ,
. _ _ i=l,j=l—1 1. - —1y (Wi)iz
diag(t; ), ..., t; 1)(102:’});:2,]]':1 diag(t; ), ... t; 1) —=2
-1
Performing the change of variables ¢, — _2“ and t; — tQ’ takes ¢’ — t and aj — a}. Note
that wﬁHfT’l =1 and this is the coordinate for t;l. Thus we obtain the claim for [ even:
Z Bre s (twu) fo (wy stwu, 1)
teTSOQl ,’wEBf(SOZl),UEUsozl
= Z Ber (t'cwcu)ﬂ,(wl,ltwu, 1)
tETSOZl 7w€Bf(Sozl)7u€Usom
= Z Bc.ﬂ,d,(twu)fv (wy twu, I;).

t€Ts0,, ,wEB(S02:1),u€Uso,,

For [ is odd, we obtain a different change of variables which matches the a*’s in the odd

cases of Propositions 7.3 and 7.4. We omit the details. Again, we find that
Z Bre s (twu) fo (wy twu, I))

t€Ts0,, ,wEB{(S02;),u€Uso,,
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= > Be.r o (twe) fo (wytwu, 1))

tET502l ,’LUGBZ(SOQZ),’U.GUSQZZ

O

The contribution of B;_1(SO2;) to the zeta integral is more nuanced. Since cwe = w for

w € B;_1(SOq;), one has to split the integral in half and then conjugate one half in order to

obtain an integral involving a sum of Bessel functions for 7 and ¢ - 7. Note that from Theorem
6.2 it follows that we need to only consider the subset of the torus defined by

Ty = {t = diag(t1,...,t1,t; *,...,t7") € Tso,, | i # a1},
where ¢; = 1 if [ is odd or % if [ is even.

Lemma 7.6 Let m be an irreducible cuspidal 1-generic representation of SOs;. There exists
a subset Ay C Ty, specified in the proof, such that

Z B-rr,l/l (twu)fv(wl,ltwuv Il) = Z (Bﬂ,w + Bc.m/,)(twu)ﬁ,(wutwu, Il)-

tETl7w€Bl,1(S02[)7u€Uso2l teAl,weBl71(802[)7ueUSO2l

Proof Let t = diag(t1,...,ti—1,t;, ¢, Y, ..., t7 ). We have
By (tw) = By (et tctwet 'ic) = Bep y (tetwet ™) = Bep oy (H cwe),
where t' = tcte(cwet ! (cwe) ™). For w € By_1(SOq), cwe = w. Hence t' = tctcwt tw™! and
B (t' cwe) = Ber o (H'w).
~ ~ -1
If [ is even, then wt lw™! =t and hence ¢’ = diag(t1,...,t_1, tlT, 4tl,t;_11, .t h). The
1 —1

map t; — tlT sends t’ to ¢t and i + %tl + 1—16751_1 to itself. The fixed points of the map ¢; — tlT
are t; = j:%. Furthermore, the mapping is an involution. Therefore, we can partition F \{j:%}

—1
into two disjoint sets A and B such that if t; € A then t’T € B. Hence, we partition 7; into two
sets A; and By such that ¢ € A; if and only if ¢; € A. Note that in this case tw = ;(a)njwins
for a € GL; and nq,ne € V; with

1,1 1,1

itttk
diag(t; '), ... 17 ) (w")*
-1

The map t; — t’T takes a* +— a*. Therefore,

Z Br .y (twu) fo (wytwu, I)
teTl7w€B171(802l),u€USOQL
= Z B o (tw) fo (wy stwu, I))
tEAl,wEBl_l(SOQZ),uGUso2l
+ Z Bre s (twu) fo (wy gtwu, 1)
t€B;,weEB;-1(802;),u€Uso0,,
= > (Br,y + Bem,) (bwa) fu (wigtwu, 1),

tEAL,wEBlfl(SOQZ),uEUSOm

The case for [ odd is similar. We have wt 'w™! = #~! and hence ¢’ = cte. The map t; — ¢, !
sends ¢’ to t and 1(3 — 3(t;+¢; ")) to itself. The fixed points of the map ¢, — t; ' are t; = 1.

Furthermore, the mapping is an involution. Therefore, we can partition F \ {£1} into two
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disjoint sets A and B such that if ¢; € A then t;l € B. Furthermore we partition 7; into two
sets A; and B; such that ¢ € A; if and only if ¢; € A. Note that in this case tw = [;(a)njw;ns
for a € GL; and nq,ne € V; with
. 13— b+ )
diag(t; '), ... 17 ) (w")*

The map ¢; — tl_l takes a* — a*. As in the previous case, we find

Z Bﬂv’lb(twu)fv(wl)ltwu, Il)
tET17w6B1—1(Sozl),UGUsom
= Z (Bﬂ,'lj) + Bc-fr,q/})(twu)fv (u}l’ltu)u7 Il)

teA; 711)€BL71(SOQZ)7ueU502l

Hence we have proven the lemma for any [. O

We are ready to compute the sets determined by the twists by GL,,, n <I. We remark that
it is possible to prove the below theorem assuming that the ~-factors are equal only for twists
by GL;. Indeed, computations of the embedding of SOg; into SOg;11 show that any element
of a Bruhat cell corresponding to B,,(SOq;) for n < [ — 2 does not embed into the support of
fv (and we obtain a similar result for the set determined by Theorem 6.2). However, this is
not necessary for the converse theorem. Instead, we use the results of the previous sections to
eliminate the contributions from Bruhat cells corresponding to B, (SOq;) for n <1—2 (and the
set determined by Theorem 6.2).

Theorem 7.7 Let m and 7' be irreducible cuspidal 1-generic representations of SOy with the
same central character. If v(m x 7,9) = y(7' x 7,%) for all irreducible generic representations
7 of GL,, where n <1, then

(1)
(B + Bery) (tw) = (Brr yp + Berr ) (tw),

for any t € Tso,, and w € Bi(SOq;) UB{(SO);

(2)
(B, + Beryp) (tw) = (Brr oy + Berr ) (tw),

for any w € B;_1(S04;) and t € Tso,, with t; # £1 if | is odd or t; # £L if I is even.

Proof By Proposition 7.1, we have (B, fu) = ¥(Br .y, fo) = Wy(w;,). By assumption,
v(m x 1,9) = (7" x 7,4) for all irreducible generic representations 7 of GL;, and hence we
have that U(Bx .y, fo) = (B .y, fu). By definition,

\II(BWW?JZU) = Z Bﬂﬂ/)(g)fv(wl,lgvll)’
9€Us0,,\SO2

and hence
0= Y (Brw—Brw)9)folwg, T).

9€Us0,; \SO2
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Let Ty = {t = diag(t1,...,ti,t; ', ..., 17 ") € Tso, | t1 # ¢} where ¢; = 1 if I is odd or 2 if lis
even. Since y(m X 7,1) = (' x 7,) for all irreducible generic representations 7 of GL,, with
n <1 —1, by Propositions 7.2, 7.3, 7.4, and Theorems 5.5 and 6.2,

0= Z (Br,p — Bur ) (twu) fo (wytwu, 1))
t€Ts0,, ,wEBI(S021),u€Usoy,
+ > (Bry — By ) (twu) fo (wy twu, T))
tETSOZl 7’UJEBZC(S02[),U€USOQL
+ Z (Brep — Bar ) (twu) fo (wytwu, I)).
teT,weB;-1(S02;),u€Uso,,
By Lemma 7.5,
> By — By ) (twu) fo(wy twu, T))
tETSozl ,wEBl(Sozl)vUEUsozl
+ Z (Br.y — Brr ) (twu) fo (wytwu, 1)
tETSOQL,’wEBlC(SOQZ),uEUSOm
= > By — Bty + By — B ) (twr) f (wy gtwu, I).
t€Ts0,,,wEB(S02;),u€Uso,,
By Lemma 7.6,
> (Brp = B ) (bw) o (wy twu, )
teT,weB;-1(S02:),u€Uso,,
= > (B = B g+ Beor s = Beowr ) (bwar) fo (wiptwu, 1),

tEAL,wEBlfl(SOQZ),uEUsom

Therefore, we have that

0= > (B = Bt + B = Beorr ) (tw) fo (wi stwu, 1)
t€Ts0,, ,wEBI(S02:1),u€Usoy,
+ > (B = Brrp + By = Beors ) (tw) fo (wy gtwu, 1)

teA;,weB;-1(S02;),u€Us0,,

Next, we define a function f on a subset of GL; so that we may apply Lemma 5.3. The
first step in this is to describe the arguments of the W ’s. That is, we describe a;, where the
image of tw under the embedding into SOg;41 is [;(a;)niwine where a; € GL; and ni,ns €'V,
and i = 1,2 if w € B;(SOg) or w € B;_1(SOq;) respectively. We recall the setup. For
w € Bf(SOg), by Proposition 4.5, there exists w’ € W(GL;) such that w = ¢;(w’)@; where
w' = (wj )} ;= € W(GL;) with wy, = 0. We also let (w')* = (wf*)} ,—; and 7 be such that
wy.q =1

First, suppose that [ is even. Let

—1 * \1—1
t (w2
1

=

*
al - ; - 7%\

i - - =l,j=l— 3 - —1y (wil)iz
diag(t; Yy, 07 ) (wiy)iZor diag(th, . ) =2
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Then,

tl_l 1 ! 1
. — - — - /
QT: 1 dlag <47tl—1""’t’r+1’Z’t’rl""’tl >w*

1

where t,. is the (1,1 — r + 1) entry of the unipotent matrix. Thus, we obtain

1

ay = 1 —tT- dlag (tlv"' at’r'—174t7'at7‘+1a"' 7tl—174tl)w/a

where —t,. is the (r,1) entry of the unipotent matrix. This determines a on the B;(SOg;) sum.
Let t,,y € Ty, be such that
tw’dia'g (th SR P 4t7”7 t'r’+17 syt 4tl) = dlag (t17 SRR Ay 7 t'r‘+17 syt tl) .

That is, t, is a diagonal matrix consisting of 1’s on the diagonal, except in the (r,r) and (I,1)

coordinates where it is %.

"

w
Next, we consider the ay in the B;_1(SOg;) sum. Let v’ = and
1
1,1 1,-1
a; _ yian Ztl + ﬁtl
diag(t; '), ... 17 ) (w")*
Then,
1,1 1,-1
1t zht 16t
t
ay = o (w')*
!
Hence
1y
a9 = ’ w/.

ti—1
—1\—
(% + %tl + %th ) !

-1
Recall we partitioned I \{#1} into two disjoint sets A and B such that if ¢, € A then tlT € B.
Suppose t;, s; € A with i + ifl + %t;l = i + isl + %3[1. This gives a quadratic equation in
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-1
$; whose roots are s; = t; and s; = tlT. Since s,t € A; it follows that we must have ¢; = s;. Let
ty

Agr, = ' ‘t1,...,t1_1€F;,tl€A
ti—1

(43 +LH7?
The following map is well defined on Agy,:
tq
g . :diag(tl,...,tl).
t—1
(F+3t+Et7H7!

Let u= (ui,j)éyjzl. Note that u; ;11 = 0. Then, the embedding of u in SOg;44 is

C\Bg=l-1 (ui)iZ] (wiip1)iZ]
(Um)i,jzl ( 1 - 2 * ok *

U = I3 *

*

P 1— 1—
(U‘ ‘)7?]_:[—1 (ui,l)i:i _ (ui,l+1)i:i
3/4,j=1 4 2

0 1
bedding takes twu to lj(a;)niwineli(i)ns = nali(a;0*)wins where ng,ns € V; and i = 1,2 if
w € Bi(SOg) or w € B;_1(SOq;) respectively. Thus, by Proposition 5.2, fv(wl,ltwu,ll) =
Wy (diag(3, ..., $)a;u").
Next, we define a function on a subset of GL; using its Bruhat decomposition. Specifically,
we partition the Weyl group of W(GL,) into W1(GL;) and W2(GL;) where w’ € W1(GL;) if

Let 4 = . Then @ = l;(a)ns. where ng € V;. The em-

" "
w

w
w' #£ for any w” € W(GL;—1). and w' € W(GL;) if v’ = for some
1 1

w” € W(GL;_1). By Proposition 4.5, we have w = t;(w")w; € B;(SO4) if w’ € W;(GL;) and
w = tl(w')ﬁ)l c Bl_l(Sozl) ifw € WQ(GL[) Let

X = |_| Ucr, Tcr,w'Uct, |_| |_| Ucr, Acr,w'Ucr,
w' €Wy (GL[) w,eWQ(GL[)

Recall the definition of ¢, above. For g = ujtw'us € Ugr,Tar,w'UqL, such that w' €
W1 (GL;) we define

f(g) = (Bﬂ—,w — Bﬂgw + Bc'ﬂ'ﬂ/} — Bc,ﬂ-/,w)(tl(diag(z ey 2)tl(u1tw/tw’u2)ﬁ)1).
For g = uytw'us € Ugr, Agr,w'Ugr, such that w' € Wa(GL;) we define

f(g> = (BTK',’L/J - B‘n”,w + BC~7T,'¢) - Bc~7r’,'¢;)(tl(diag(27 ey 2))tl(u1§(t)w/u2)7jjl)
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We have f(ug) = ¢¥(u)f(g) for any u € Ugr, and g € X;. Also, #;(g)w; = wit;(g*) for any
g € GL; (we are still assuming that [ is even). Therefore,

.1 1 U | 1 .
0= Z f(dlag(i,...,i)twu W, (dlag(i,...,i)twu )
tETGLl,wEWl(GLl),uEUsom
4 > F(diag(S, ..., Sytwi W (diag(~, ..., H)wir*),
2777772 v 2777772

teAgr, ,weW2(GL;),u€Uso,,
Thus, by Lemma 5.3, f must identically vanish on X;. Therefore, for [ even, we have that
(Brp + Ber ) (tw) = (Brs p + Beorr ) (tw) for any t € SO and any w € By (SOg;) UBF(SOg).
Also, (Br.yp + Bery)(tw) = (Brryp + Berr ) (tw) for any w € B;_1(SO9) and t € A;. Also,
conjugating the previous equation by e gives (Br,y + Bery)(tw) = (Brr oy + Bers ) (tw) for
any w € B;_1(SO9) and t € B; hence the theorem for [ even.
Next, suppose that [ is odd. Let

b (i) 1
aik — 4 4 ( / )l
. 1 —1 w\i=lj=l—1 5. —1 —1y —(wil)iz
diag(t; "y, ...ty )(wi)izsl=y - diag(t, =y, ...t ) —5—=>
Then,
1 -
o vt 1
* . — — — - 1£3
aj = 1 diag <4,tll,...,tr+1, 2T N ST )w ,
1

where ¢, is the (1,1 — r 4+ 1) entry of the unipotent matrix. Thus, we obtain

1

ap = 1 % diag(tla"' 7tr71;_2tratr+17"' 7tl71»4tl)wlv

1

where —t,. is the (r,1) entry of the unipotent matrix. This determines a on the B;(SOq;) sum.
Let ¢, € T, be such that

tw/diag (tlv e 7tT‘—1a 72t7‘7 t7‘+17 e 7tl—1a 4tl) = dlag (tlv e 7tT‘—17 tT7 t'r‘+17 e atl—lv tl) .
That is, ¢, is a diagonal matrix consisting of 1’s on the diagonal, except in the (r,7) and (I,1)

coordinates where it is _71 and i respectively.

Next, we consider the a in the B;_1(SOg;) sum. Let v’ = and

N[

2

diag(t; '}, ... 17 ) (w")*
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Then,
t+th)

N
—~
N

=

Hence

t1—1
-1 _
(3G —st+t )™
Recall we partitioned [} \{£3} into two disjoint sets A and B such that if ¢, € A then t;' e B.
Suppose t;,s; € Awith 2(3 —2(t;+t,")) = 3(3 — 2(s;+s;")). This gives a quadratic equation
in s; whose roots are s; = t; and s; = tl_l. Since s,t € A; it follows that we must have ¢; = s;.
Let

tq

Agr, = ’ ‘tl,...,tl_1€F;,tl€A
ti—1

GG -1+t

The following map is well defined on Agy,:
tq
ti—1

(3(z =3+ )"

Let u= (ui,j)é,jzl' Note that u; ;11 = 0. Then, the embedding of v in SOg;41 is

[N

R e S (700 it S (TR e Lt
(’lh,j)@j:l ( - y 5=t &k *
U= Ig *

*

P 1— 1—
(’LL‘ ‘)7?]_:[—1 (ui,l)i:i _ (ui,l+1)i:i
,9/4,j=1 4 2

0 1
bedding takes twu to lj(a;)niwineli(i)ng = ngli(a;t*)wins where ng,ns € V; and ¢ = 1,2 if
w € Bi(SOg) or w € B;—1(SOq;) respectively. Thus, by Proposition 5.2, fv(wl,ltwu,ll) =
Wy (diag(3, ..., 3)a;u").
Next, we define a function on a subset of GL; using its Bruhat decomposition. Specifically,
we partition the Weyl group of W (GL;) into two sets, W1 (GL;) and Wa(GL;), by w’ € W1(GLy)

Let 4 = . Then @ = [;(@)ng. where ng € V;. The em-
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w// 1
if w' # . for any w” € W(GL;—1) and w' € Wy(GL,) if v’ = . for some

w” € W(GL;_1). By Proposition 4.5, we have w = t;(w")w; € B;(SOq) if w’ € W1 (GL;) and
w =1 (w’)zbl S Blfl(SOQI) ifw e WQ(GL[) Let

X = || UoLTerwUea || | || UcLAcr,w'Ucr,
w €W (GLy) w €W (GLy)

Recall the definition of ¢, above. For g = ujtw'us € Ugr,Tar,w'Uqgy, such that w' €
W1(GL;) we define

f(g) = (BWﬂb — Bﬂlﬂﬂ + Bc~7r,1/) — Bc.ﬂ/,,/,)(tl(diag(Q, . ,Q)tl (ultw/tw/ug)ﬂ)l).
For g = ujtw'uy € Ugr, Agr,w'Ugr, with w’ € W5(GL;) we define
f(g) = (quﬁ — B-,r/ﬂp + Bc.ﬂ—ﬂl, — Boﬂ-/’w)(tl(diag(Q, ey 2))tl(u1§(t)w’u2)ﬁ)l).

We have f(ug) = ¢(u)f(g) for any u € Ugy, and g € X;. Let g = (gi,j)é,jzl and g* = ( zj)é,jzl'
Then

- 1—

(gi,j)i,j1:1 0 (gi,l>i:% 0

. 0 91 0 (97 ;)=

ti(g)wr = 1wy Iy b L=z

(gl,j)j:1 0 gi, 0
0 (9;1)2:2 0 (g;:j)é,j:Q

In particular, if u € Ugy,, then
- -
(gi7j)i,j1:1 0 (g%l)i:% 0
1 0 (gi])§:2

tl (u)@l = U~)l /7J s

(g;k,j)li,j:Z

and the last matrix is upper triangular. Therefore,

1 1 1 1
0= > f(diag(5, ., 5)twa )W (diag(5, ..., 5 Jtwi”)
t€TaL, ,wEW1(GLy),u€Uso,,
+ Z f(diag(1 1)twﬂ*)V[/*(diag(1 1)twa*)
2777772 v 277772

t€Acr, wEW2(GLy),u€Uso,,

Thus, by Lemma 5.3, f must identically vanish on X;. Therefore, for I odd, we have that
(B, + Beor ) (tw) = (B + Berr ) (tw) for any t € SOg; and w € B;(SOq;). Also, we have
(B, + Ber ) (tw) = (Brr oy + Berr ) (tw) for any w € B;_1(SOg) and t € A;. Conjugation
by tc gives (B, + Beor ) (tw) = (Brr 1y + Beorr ) (tw) for any w € B;—1(SO;) and t € B; for
odd.

Finally, for any [, we have (By y + Berp)(tw) = (Brr y + Berr ) (tw) for any ¢ € SO9; and
w € By(SOq;). Also,

By (tw) = By (et Hetwetic)
= Bepy (tctwet ™)
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= Be (' cwe),

where t' = tcte(cwet=!(cwe)!). Hence for any ¢t € SOy and w € Bf(SOg;), we have that
(B, + Ber,y) (tw) = (Brr .y + Berr ) (tw) and thus we have proved the theorem. O

The following corollary, when combined with Corollary 6.4, shows that y-factor is unable
to distinguish between a representation and its conjugate. That is, y(7 X 7,¢) = y(c- 7 X 7,)
for all irreducible generic representations 7 of GL,, with n <.

Corollary 7.8 Let w be an irreducible cuspidal ¥ -generic representation of SOg;. Then we

have y(m x 1,9) = v(c- 7 X 7,%) for all irreducible generic representations T of GL;.

Proof By Corollary 6.4, y(m x 7,%) = v(c- 7 x 7,) for all irreducible generic representations
7 of GL,, with n <[ —1. So, by Theorems 5.5 and 6.2,

\II<BTr,1/;7 fv) - @(Bc-w,wa .fv)

= Z (Bﬂ,w - Bc-w,¢)(twu)fv<wl,ltwuv Il)
t€Ts0,, ,wEBI(S021),u€Uso,,
+ > (Brw = Beor) (tw) fo (wigtwu, 1)
tETSOZl 7’LUEBZC(S02[),UEUSO2Z
+ Z (Bﬂﬂ/) - Bc.ﬂ,w)(twu)fv(wl7ltwu, Il)-

teT,weB;-1(S02:1),u€Uso,,
Performing the change of variables as in the proof of Theorem 7.7 on the B, sums gives
U(Br s fv) —U(Ber s fv) = 0. By Proposition 7.1, we may choose a nonzero v € 7 such that
U(Br.p, fo) = ¥(Ber,p, fo) = Wy(wy,) # 0. Thus, we have y(m x 7,¢) = y(c- 7 x 7,%). This
proves the corollary. O

8 The converse theorem

In this section, we prove the converse theorem. First, we combine the results of the previous
sections to obtain the following theorem.

Theorem 8.1 Let m and 7’ be irreducible cuspidal 1-generic representations of split SO (Fy)
with the same central character. If
Y(mxT4) =y(7" x 7, 9),

for all irreducible generic representations T of GL,, with n <1, then we have that

(Br.p + Ber,w)(9) = (Br .y + Berr ) (9)
for any g € SO« (F,).

Proof By the Bruhat decomposition, we may assume g = ujtwus € Bso,, wBso,, for some
w € W(SOs;). By Proposition 4.1 and the definition of the Bessel support, it is enough to show
that (Bﬂ-ﬂp +Bc.ﬂ-7w)(tw) = (Bﬂ/7¢+36.ﬂ-/7w)(tw) for any t € TSOzL and w € B(SOQ[) This follows
from Lemma 4.3 (we use that m and 7’ have the same central character here), Proposition 4.8,
Theorems 5.5, 6.2, 7.7, and Corollary 6.3. This concludes the proof of the theorem. O

Theorem 8.2 (The Converse Theorem for SO9;) Let m and 7’ be irreducible cuspidal 1)-generic

representations of split SO (F,) with the same central character. If

V(m x 74p) = (7 x 7,9),
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for all irreducible generic representations 7 of GLy,(F,) with n <1, then w2 7' or m & c- 7.

Proof By Theorem 8.1, (B y+Ber,yp) = (Brr.p+Benr ) on all of SOg;. We let Wo, W, Wi,
and W,..» be the Whittaker models of 7,c- 7, 7', and ¢ - 7’ respectively.

First, suppose that 7 is isomorphic to ¢ - 7. By uniqueness of Whittaker models, we have
By + Berny =2Br .y € Wy, Then, 2B, = By y + Be.nrp and hence W, N W @ Wer # 0.
Since W is isomorphic to 7 and is hence irreducible, we have that W, "W, @ We..» = W, and
therefore, by uniqueness of Whittaker models, W, must be isomorphic to one of W, or W,../.

Second, suppose 7 is not isomorphic to ¢ - . We have that B, , € W,;. We also have
that Brr oy + Berrp — Bemy € Wt @ Wear @ W Thus, W "W @ Wer @ Wer # 0 and
hence the intersection is a nonzero subrepresentation of W,.. Since W is isomorphic to 7 and
is hence irreducible, we have that W, "W, & W,...» & W.., = W, and therefore, by uniqueness
of Whittaker models, W, must be isomorphic to one of We.., Wy, or W..». By assumption,
W is not isomorphic to W.., and hence must be isomorphic to W, or W,...

Therefore, in either case, we have shown the converse theorem. O
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