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ABSTRACT. Let n > 1 and 7 be an irreducible unitary supercuspidal representation
of GLo,, over a local non-archimedean field. Assuming the twisted symmetric square
L-function of 7 has a pole at s = 0, we construct the local descent of 7 to the cor-
responding quasi-split even general spin group GSpin,,,. We prove this local descent
is generic, unitary, supercuspidal and multiplicity free. Its irreducible quotients are
“functorially related” to 7, in the analytic sense of a pole of a Rankin—Selberg type
~-function.

1. INTRODUCTION

Let G be a quasi-split classical group defined over a global number field with a ring
of adeles A. Cogdell et al. [CKPSS01, CKPSS04, CPSS11] proved that any globally
generic cuspidal representation o of G(A) has a functorial lift to an automorphic rep-
resentation of GLy(A), for the proper N. Their work was extended to general spin
groups by Asgari and Shahidi [AS06].

The descent method of Ginzburg et al. [GRS97a, GRS97b, GRS99a, GRS99b,
GRS11] (see also [Sou06]) provides the global and local “inverse map” of the functorial
lift, for certain automorphic representations. Given a globally generic automorphic
representation 7 of GLy(A), which is an isobaric sum of cuspidal representations (and
belongs to the image of the weak lift from cuspidal globally generic representations of
G(A)), this method constructs a cuspidal representation of G(A), whose irreducible
subrepresentations o are all globally generic and lift (functorially) to 7. The global
and local descent were first developed for the metaplectic groups and the odd orthogo-
nal groups (e.g., [GRS97a, GRS97b, GRS99al, the orthogonal case was obtained using
the theta correspondence); the global descent for classical groups including orthogo-
nal, symplectic, unitary or metaplectic groups was described in full detail in [GRS11];
and the local even unitary case was settled by Soudry and Tanai [ST15]. The global
descent for general spin groups was developed by Hundley and Sayag [HS16], and for
the exceptional group G, was obtained in the more recent work by Hundley and Liu
[HL19].

The local descent constructs, for a supercuspidal (self-dual or self-dual up to a twist)
representation 7 of GLy over a non-archimedean field, a generic supercuspidal repre-
sentation of G whose irreducible quotients o are all generic and lift to 7. This repre-
sentation of G is irreducible in the metaplectic, odd orthogonal and even unitary cases
([GRS99a, JS03, ST15]), but is expected to be reducible for even special orthogonal or
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even general spin groups, because there is a representation of O,, which lifts functori-
ally to 7 and its restriction to SO, can be of length 2. See Jiang and Soudry [PR12,
Appendix].

The descent method has had numerous applications, including to local and global
functoriality, local Langlands correspondence, rigidity theorems and globalization re-
sults ([JS03, CKPSS04, JS04, Sou06, JNQ10, PR12, JL.14, ST15]). One of its strengths
is that it provides an explicit realization of a Whittaker functional (locally, Whittaker
model) for those representations o. Recently Lapid and Mao [LM17] used the local
realization as an ingredient in the proof of their conjecture on Whittaker—Fourier co-
efficients.

In this work we develop the local descent theory for quasi-split even general spin
groups. Let F' be a non-archimedean local field of characteristic 0, and fix a nontrivial
additive character v of F. Let 7 be an irreducible supercuspidal representation of
GL2,(F), n > 1, and w be a unitary character of F*. The Langlands—Shahidi L-
function L(s, 7, Sym? ®w) (defined in [Sha90]) is holomorphic in Re(s) > 0, and has a
pole at s = 0 precisely when 7 = w™'®7". In that case, by the Langlands functoriality
principle 7 should be the image of the lift of a representation of a unique split or quasi-
split (split over a quadratic extension of F') even general spin group of absolute rank
n + 1. Denote this group by G(F), it is determined by the square-class of o € F*.
We define a unitary supercuspidal generic representation oy, (7,w) of G(F'). Here by
generic we mean generic with respect to some generic character of a maximal unipotent
subgroup Ng(F') of G(F'). Here is our main theorem.

Theorem 1.1. (see Theorem 7.1) Assume L(s,T,Sym? ®w) has a pole at s = 0.

(1) (Non-vanishing) There ezists some o € F™* such that oy, (T,w) # 0.

(2) The representation oy, (T,w) is a supercuspidal, multiplicity free and admissible
representation of G(F). Its irreducible constituents are all unitary and generic.

(3) (Local Functorial Lift) Let o be an irreducible supercuspidal ¢y, o-generic repre-
sentation of G(F'). The Rankin-Selberg v-factor v(s,o X (T®w), ) defined by (3.7)
has a pole at s =1 if and only if c¥ is a quotient of oy, (T,w).

One may expect a description of « in terms of w and the central character of 7.
E.g., if the central character of 7 is trivial, then w should be a square. See [PR12,
Appendix]. Such a result may require an approach different from the one presented
here. Regarding the third property, the above condition on the ~-factor should hold
when o lifts to 7. We mention that Moeglin [Moeg14] obtained this lift, and thereby the
Langlands parameter, for discrete series representations of classical groups (including
the group G).

To prove our result we follow the paradigm introduced by Ginzburg et al. [GRS99a],
but at certain points new ideas are needed. Let us briefly describe our method.

The representation oy, (7, w) is defined using a certain twisted Jacquet module, which
occurs naturally in a local Rankin—Selberg construction for G x GLj and the represen-
tations o x 7. This construction was recently introduced by Cogdell et. al. [ACS17] in
the global setting. We elaborate on the local aspects that we need here. In particular
we prove a local “generic uniqueness” result, by which we can define a Rankin—Selberg
~-function v(s, 0 x (1 ®w), 1) as a proportionality factor between two integrals within
a standard functional equation. One expects this v-factor to coincide with the corre-
sponding Langlands—Shahidi y-factor, at least at the level of zeros and poles, but we
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have not pursued this here. Note that this work does not depend on the results of
[ACS17]. See § 3 for more details.

In order to prove oy, (7,w) is supercuspidal, we consider a “tower” of representations
oy, (I, 7,w), 0 <1 < n, where oy (T,w) = oy, (n, T,w), and show the vanishing of these
representations for all [ < n. The main ingredient we use for the proof is a class of
exceptional representations. In our setting these are the representations of double cov-
erings of general linear groups constructed by Kazhdan and Patterson [KP84], as well
as the representations of double covers of general spin groups developed in [Kapl7b]
(following [BFGO3], see also [LS10] for a more general construction). We mention
that exceptional representations were constructed in greater generality in [Gaol7]. We
take the tensor product of two exceptional representations to form a representation
of the linear group. Such a representation is typically quite large, and may be con-
sidered as a model (see [Kab01, Kapl6a, Kapl6b, Kapl7a]). For example, one may
prove multiplicity one results (e.g., [Kab01]), or analyze the structure of its irreducible
quotients ([Kapl7al). In this spirit, we say that a representation of the linear group
affords an exceptional model if it is a quotient of the tensor product of two exceptional
representations of the double cover of the group.

Consider a supercuspidal representation 7 of GLs, (F’) such that its symmetric square
L-function has a pole at s = 0. According to the results of [Kap16b] (see also [Yam17]),
7 affords an exceptional model and so does the representation parabolically induced
from 7®1 to a general spin group. To prove the vanishing results we use the “smallness”
of the exceptional representations, namely that a large class of their Jacquet modules
vanishes ([BFGO03, Kap17b]).

This technique is parallel to a method of Ginzburg et. al. [GRS99a, GRS99b]. They
used the interplay between Shalika models, which are related to the pole of the exterior
square L-function at s = 0, linear models, and symplectic models (see § 5.1 for a more
precise description). The presence of exceptional representations here is expected and
understood, in light of the role these representations played in the (global) work of
Bump and Ginzburg [BG92] on the integral representation of the symmetric square
L-function, or even in the earlier low rank results [GJ78, PPS89].

To handle the twisted symmetric square L-function we use the recent construction
of twisted exceptional representations for double coverings of general linear groups by
Takeda [Takl4], who used them to develop an integral representation for the global
partial L-function (extending [BG92]). We also rely on a result of Yamana [Yam17]
who proved that if the twisted symmetric square L-function of 7 has a pole at s = 0,
7 admits a (twisted) exceptional model. See § 5.

In § 6, we prove the non-vanishing of the descent oy, (7, w). The main ingredients are
the results of Jiang et. al. [JLS16] on the lifting of nilpotent orbits in the wave-front
sets of representations and the results of Gomez et. al. [GGS17] on relations between
degenerate Whittaker models and generalized Whittaker models of representations.
More explicitly, let LQ(1, 7®w) be the image of the representation parabolically induced
from |det |'/?7 ® w to GSping, ;(F) under the standard intertwining operator (this
image is the Langlands quotient). By [GGS17], the representation LQ(1,7 ® w) has
a nonzero generalized Whittaker model attached to the partition (2n,2n,1). Then by
[JLS16], LQ(1, T®w) admits a similar nonzero model attached to the special expansion
(in the sense of [CM93]) of (2n, 2n, 1), and using [GGS17] we conclude that oy, (7, w) #
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0. Our non-vanishing proof is the local counterpart of the global non-vanishing proof
in [HS16], and is streamlined using the results of [JLS16] and [GGS17].

Let us also comment on the applicability of our results to non-archimedean local fields
of characteristic p > 0. The results on the Rankin—Selberg integrals in § 3 and § 4
remain valid. Note that for § 3.2 the analytic properties of the intertwining operator
follow from Waldspurger [Wal03], and the definition of the local coefficient follows
from Lomeli [Lom15, Lom19, Lom|. The vanishing results of § 5 also hold with two
reservations: one has to verify the applicability of [Yam17], and it is necessary to take
p > 2 because double coverings are used. The non-vanishing arguments in § 6 rely on
the work in [GGS17] which assumes that F' has characteristic 0 (see [GGS17, Remark
5.1.4] for comments on the case of positive characteristic), and the work in [JLS16]
which remains valid when the characteristic p is large enough. The non-vanishing
results may still hold when the characteristic p is large enough with an argument by
contradiction similar to [GRS11, Section 9.2].

Acknowledgements. We would like to thank Mahdi Asgari, Mikhail Borovoi, Wee
Teck Gan, Dmitry Gourevitch, Joseph Hundley, Eitan Sayag, Freydoon Shahidi, David
Soudry and Lei Zhang, for useful correspondences and helpful conversations. We would
also like to thank the referees for many helpful comments and suggestions.

2. GROUPS AND GENERAL NOTATION

Let F' be a non-archimedean local field of characteristic 0. Denote the residual cardi-
nality of F' by g. Let V' be a finite-dimensional vector space over F', and ¢ be a quadratic
form on V' defined over F. Denote the special orthogonal group of ¢ by SO(¢) and its
simply connected cover by Spin(¢). Let pr : Spin(¢) — SO(¢) be the canonical isogeny
and ¢ be the nontrivial element in ker pr. Then (—1,¢) generates an order 2 subgroup
< (=1,¢) > of GL; x Spin(¢). Define GSpin(¢) = (GL; x Spin(¢))/ < (—=1,¢) >. Re-
call that the unipotent subgroups of GSpin(¢) are isomorphic (as algebraic groups) to
the unipotent subgroups of SO(¢). The Weyl groups of GSpin(¢) and SO(¢) are also
isomorphic. Throughout this work, when we say that GSpin(¢) is quasi-split, we mean
it is non-split over F', but split over a quadratic extension of F'.

Let m be a positive integer. Let H = GSpin(¢) where dimV = 2m + 1 and ¢ is
isotropic of index m. The group H is split over F. Fix maximal isotropic subspaces
V* in duality with respect to the symmetric bilinear form (-,-) associated with ¢.
Let (e1,...,€m,€mi1,€—m,---,€_1) be a basis of V such that V* = Span{ey,...,en},
V™~ = Span{e_y,...,e_,} and for all 1 < 4,5 < m, (e;,e_;) = &;; and (e;,€pmy1) =
(em+1,e—j) = 0. The subspaces V;* = Span{ey,..., e} form a maximal flag

ocvitcVv,fc-..cvi=v"t

in V. This choice then fixes the Borel subgroup B’ = T" x N’ of SO(¢), where T” is
the torus. In general if X’ < SO(¢), we denote its preimage in H under pr by X. Now
B = pr~'(B’) is a Borel subgroup of H, B =T x N where T is a maximal torus.

For each 1 <1 < m, let Q] = M| x U] denote the maximal parabolic subgroup of
SO(¢) which stabilizes V", and P/ = L; x N < SO(¢) be the parabolic subgroup
stabilizing the flag Vi* C ... C V;". The unipotent radicals are U and N;. Then, e.g.,
Q. = M, x U, is the standard Siegel parabolic subgroup of H. The center C'y of H is
connected (because dim V' is odd) and isomorphic to GL;. Moreover, Cy is identified
with the GL; component of M,, = GL,, x GL;.
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For the group GL;, we let Bgr, = T, X Ner, denote its Borel subgroup of upper
triangular invertible matrices, with the diagonal torus Tgr,. If = (61,...,05,) is a
composition of [, let Pg = Mg x V3 denote the standard parabolic subgroup of GL;
corresponding to 8 (Vs < Ngr,). Also Vs denotes the unipotent subgroup opposite to
V5. Let P; be the mirabolic subgroup of GLy, i.e., the subgroup of invertible matrices
whose last row is (0,...,0,1). For a € GL;, denote its image in M; by ¢;(a). For I <,
GL; < GLy via a + diag(a, I;_;), then ¢(a) = ty(a). Hence we simply denote ¢ = 4.

The algebraic groups in this work will be defined over F', and for any such group X,
we identify X = X (F) (which is an [-group). The center of any group G is denoted
Cg,and if v,y € Gand Y < G, *y = zyz~! and *Y = {*y : y € Y'}. Representations
are always complex and smooth. For a representation p of X, p¥ is the contragredient
representation. We fix a nontrivial additive character ¢ of F.

The induction Ind and compact induction ind functors are normalized as in [BZ77,
1.8]. For a representation p of Y < H on a space V,, a closed unipotent subgroup
U <Y and a character ¢y of U, the Jacquet module Jy 4, (p) is the quotient of V,
by the subspace spanned by {p(u)¢é — ¢¥(u) : v € U, € V,}. For any Yy < Y
let Ny, (U, ¢y ) denote the subgroup of elements y € Y which normalize U and fix ¢
Then Jy 4, (p) is a representation of Ny (U, ¢y ). The action of Ny (U, ¢y ) is normalized
as in [BZ77, 1.8], by the inverse square-root of the modulus character of U.

Throughout this work, all L-functions are the ones defined by Shahidi [Sha90]. The
twisted symmetric square y-factor is also the factor defined in [Sha90], but the standard
v-factor for a pair of representations of GSpin,, x GL,, will be defined here using
Rankin-Selberg integrals. We will not rely on the conjecture that this factor agrees
with the similar factor of [Sha90].

Remark 2.1. [Irreducible supercuspidal representations are injective and projective in
the category of (smooth) representations of G on which Cg acts by a character. In-
deed since Cq is abelian and the index of Cg in Cq s finite, any representation m of
G decomposes into a direct sum of eigenspaces under the action of the quotient group
Ce\Cq. The center Cg acts by a fized character on each of these eigenspaces, and
the statement then follows immediately from the the injectivity and projectivity of ir-
reducible supercuspidal representations in the category of representations with a fixed
central character.

3. THE LOCAL RANKIN-SELBERG INTEGRAL

3.1. The integral and ~v-factor. Let 7 be an irreducible generic representation of
GL,, and w be a quasi-character of F*. Let 1 < n < m and [ = m — n. We define
the family of local Rankin—Selberg integrals for the groups GSpin,,, X GL,,. While the
integrals can also be defined for n > m, this case will not appear in this work. Note
that in § 3.2 and § 4 we will allow n (and thereby [) to vary, in § 5 we shall take
[ > m/2, then in § 7 we specialize to m = 2n.

Let oo € F* and fix a vector yo = ep + §e_p, of length a (i.e., (Yo, ¥ya) = @). Define
the character ¢, of N; by

l

(3.1) Yralu) = ¢(Z(U e e_(i1)) + (U Ya, 1)),

1=2
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where on the r.h.s. (right hand side) u is identified with its projection into N]. The
stabilizer of 1, in P} is isomorphic to the group G = GSpin,,,, which is split over F'
if v is a square in F™*, otherwise it is quasi-split. To see this note that the pointwise
stabilizer of {e;, e_;}1<i<; in SO(@) is SOsg, 41 and inside that group, the stabilizer of
Yo 1s a form of SOy, (see [Kapl3c, § 2.1.1]). In this way we construct an embedding
of G in H. Since P, = (Bgy, x GSpiny, ;) X U, this embedding already determines a
Borel subgroup Bg = T X Ng of G by the requirement (Ngp, X Ng) X Uy = N. We
identify Ng with

2
(3.2) diag(1;, 100 =" 1 'I)eN':2€ Ng, ,, v,x € F"!

0

1

For n > 1, C¢ is disconnected, its identity component C¢ is isomorphic to GL; and
under the embedding G < H, C¢ is identified with Cy.

Denote the Whittaker model of 7 with respect to ¥ng, (2) = (31" zii1) (2 €
Nat,,) by W(T,¢¥ng,,. ). Set Q@ = Q. For a complex parameter s, let V(s, 7 ® w)
denote the space of the (normalized) induced representation

Indf (| det ['~Y210 (7, gy, ) © ).

There are standard notions of holomorphic or meromorphic sections of V(7®@w). Briefly,
a holomorphic section of V(7 ® w) is a function f on C x H such that for each h € H,
s — f(s, h) is holomorphic, and for each s, h — f(s,h) belongs to V (s, 7 ®w). Denote
fs(h) = f(s,h) and hg - fs(h) = fs(hhy). We regard f; as a complex-valued function
by evaluating at the identity.

Define a generic character ¥y, o 0of Ng by ¥ng.o(u) = sz,éLn 1(z)w_l(vn), where u
is given by (3.2) and v, is the last row of v. Note that if one writes the root subgroup
of G corresponding to the simple root €, + €, by (z,y) € F?, the restriction of
UNg,a to (2,y) is given by (2 — $y) in the split case and ¢~ '(5y) in the quasisplit
case (Y., is the character [Kapl3c, (3.1)]). In particular ¢ depends on a. Let
o be an irreducible 9y, o-generic representation of G' and W (o, 9N, ) denote the
corresponding ¥, o- Whittaker model.

For W € W (0, ¥n,.) and a holomorphic section f of V(7 ® w), define the integral

I(s.W, f) = / W(g) / Fo(Bratig)i ) dudg

CeNG\G N

Here Nlﬁl’“ = B O}Qﬁl,a N N; where 3, is a representative for the unique open orbit of
the right-action of G’ x N; on Q\H, which we take to be a fixed element in

—1 021, ) 0 0 Ly
pr (b((h alret D) (0 s 8) (<)1)
(The embedding ¢ was defined in § 2.) This is the local analog of the global Eulerian

integral introduced in [ACS17].

Proposition 3.1. There exists so € R such that I(s, W, f) is absolutely convergent for
all s with Re(s) > sg, for all W € W (o, ¥n,.a) and holomorphic sections f.
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Proof. Since we mod out by C¢ in the domain of integration for the outer integral, the
proof is a straightforward adaptation of the proof of convergence for the integrals for
odd orthogonal groups, see [Sou93, § 4.4-4.6]. O

Lemma 3.2. In the domain Re(s) > so, for all go € G and uy € Ny,
(3-3) I(s,0(g0)W, (gouo) - ) = Yua(uo)I(s, W, f).

Proof. This follows from the fact that I(s, W, f) is invariant with respect to G, G
normalizes V; and stabilizes v o, and from

/ fs (Bl,auuﬂ)w;i (U) du = wl,a(uﬂ)
Nﬂz,a

!

in Re(s) > so. O

[ i du,
Nﬁl,a

l

Theorem 3.3. Let o be an irreducible generic representation of G (with respect to
Yng.a Or a different generic character of Ng). Except for a finite number of values
of 7%, the space of bilinear forms satisfying (3.3) is at most one-dimensional. If o
1s supercuspidal, the dimension is at most one for all s. If however, o is irreducible
supercuspidal and non-generic, the dimension is O for all s.

Proof. The proof is the adaptation of the local uniqueness result for the Rankin—Selberg
integrals for SOg, x GL,, ([Kapl3c, § 4.1], for the global counterpart see [Kap12, § 3.2],
see also the local uniqueness proofs in [Sou93, § 8.2] and [GRS99a, § 6.2]). Briefly,
according to [BZ77, 1.9],

Bil (0, Jn,p. (Indg (| det [*71/27 @ w)))
(3.4) >~ Bily (ind4 (o ® %Ti)a Indgﬂ det |*7%7 @ w)).

Here Bilg (-, -) denotes the space of G-equivariant bilinear forms and R = G x N,. For
h € H, let

Hom(h) = Hom(hR)mQ(h(a ® @/Jf;) ® (| det |S_1/QT Rw),0).

Here for a representation p, "p(z) = p(* 'z), and § = 551/2 : h(él_%l&%(h_lczh)). The
group R acts on the right on Q\H with finitely many orbits. Write H = [], ., QhR
for a finite set 2. According to the Bruhat theory (see e.g., [Sil79, Theorems 1.9.4,
1.9.5]), the space (3.4) injects into the semi-simplification &, ., Hom(h).

According to the proof of [Kap12, Claim 3.1], Hom(h) = 0 unless QhR = QhoR for
some hg € H such that "N is the opposite subgroup N, (see also [GRS11, Proposi-
tion 5.1]). In the quasi-split case this already determines A uniquely; in the split case
there are three such representatives, for two of which »'Q NG is a parabolic subgroup
of G and any morphism in Hom(h) defines a morphism in

(3.5) Homg (o, Ind< (55}@00 DTG det |2 @ w))).

QNG
The latter space is zero outside finitely many values of ¢~* by [GPSR87, Lemma 10.1.2],
which was stated for SO, but immediately implies the similar result for G. Thus there
is only one more representative which we denote by hg in both the split and quasi-split
cases. Note that QhoR = Q..

The above arguments (including [GPSR87, Lemma 10.1.2]) apply whether o is

generic or not.
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Let V' < Ng be the subgroup with z = I,,_; and v = 0, using (3.2) (V' is R; of [Kap12,
§ 3.2, p. 154]). Then Ng = Ngp, x V and "V < "GN U,. Since U,, acts trivially
on the space of |det|*~'/?7 ® w, each morphism in Hom(he) factors through Jy (o).
(Note that V' is not a unipotent radical of a parabolic subgroup of G.) In addition,
each morphism in Hom(ho) factors through Jagy,qas,, noy, , ('] det |'/2=57V ® w), where

¢ is a suitable modulus character. Also note that (CgV)\ ("o '‘QNG) =P,. It follows
that

(3.6) Hom(hg) C Bilp, (v (0), Jro Ny, hoe., (0] det V25V @ w)).

Now by [GPSR&7, Proposition 8.2] (stated for representations of SO, 1 but the proof
is applicable to G as well), Jy (o) admits a finite Jordan-Hélder composition series
as a Pp,-module. This series contains the irreducible representation indﬁ’éLn (Yngr, )
with multiplicity at most 1. In fact the multiplicity is 1 if and only if o is generic
(a Whittaker functional on Jy (o) lifts to a Whittaker functional on o). The similar
assertion applies to Jug y,nnr,, oy, , (0'(|det [/2757Y @ w)) by [BZ76, 5.15]. The result
then follows as in [JPSS83, 2.10], using the structure of irreducible representations of
P, ([BZ76, 5.13)).

Now assume o is supercuspidal. Then (3.5) vanishes for all s (see the remark on
[GPSR&7, p. 117], again for SO,,). Regarding the r.h.s. of (3.6), since the i-th deriva-
tives of Jy (o) (in the sense of [BZ77]) for 0 < i < n all factor through Jacquet modules
(non-twisted — without a character) of standard unipotent radicals of G, they all van-
ish. By [BZ77, Proposition 3.7b, c|, the contribution to (3.6) comes from the n-th
derivatives of both Jy () and Jug nynn,, oy, , (8’ det ['/27*7Y @ w), which correspond to
the Whittaker characters on Ngr,, < P,. This contribution is of dimension one if o is
generic, and 0 otherwise. U

Proposition 3.4. The integral I(s, W, f) can be made a nonzero constant (independent
of s) for some choice of data (W, f) where f is holomorphic.

Proof. See [Kapl3a, Lemma 3.1, Lemma 4.1]. O
Corollary 3.5. I(s, W, f) is a rational function of q—*.

Proof. By Proposition 3.1 and Lemma 3.2, in a right half plane I(s, W, f) can be
regarded as a G-equivariant bilinear form on o x Jy, 4, . (V(s,7 ® w)). The result now
follows from Theorem 3.3 and Proposition 3.4 together with Bernstein’s continuation
principle (in [Ban98]). O

Let A(s,w) : V(s,7®@w) = V(1 —s,(w ! odet)rV ® w) denote the standard inter-
twining operator, defined for Re(s) > 0 by an absolutely convergent integral, where
w is a representative for the long Weyl group element modulo the Weyl group of
the Levi part of (). In this case the local coefficient attached to A(s,w) is given by
7(2s — 1,7,Sym® @ w) ([Sha81, Sha90]). By the results above and in particular, Theo-
rem 3.3, there is a well defined and not identically zero function v(s,o x (T @ w),v) €
C(q~*) such that for all W and f,

(3.7) (s, x (T@W),Y)I(s,W, f) =I(1 —s,W,~v(2s —1,7,Sym* ® w)A(s,w) f).

3.2. The descent map. Assume n > 1, o and 7 are irreducible supercuspidal, 7 and
w are unitary, and o is ¥y, o-generic. Then A(s,w) is holomorphic for Re(s) > 1/2
([Sha81, Lemma 2.2.5]). Its image A(1l,w)V (1,7 ® w) (at s = 1) is isomorphic to the



LOCAL DESCENT TO QUASI-SPLIT EVEN GENERAL SPIN GROUPS 9

Langlands quotient LQ(1,7 ® w) of V(1,7 ® w). For any 1 <1 < m, define a descent
map by Otpa (la T, W) - ‘]Nlﬂl)l,a (LQ<17 T w))

Proposition 3.6. Let f be a holomorphic section. The function I(s, W, f) is holomor-
phic, and I(1 — s, W, A(s,w)[) is holomorphic except perhaps at the poles of A(s,w).

Proof. Since o is supercuspidal, any W is compactly supported modulo CgNg. This
together with the fact that the inner integral [ fs(ﬁl,aug)@blj (u)du stabilizes for large

compact open subgroups of Nlﬁ b (see [Kapl3b, § 4.2]) implies that I(s, W, f) is holo-
morphic. The statement regarding I(1 — s, W, A(s,w) f) follows immediately. O

Theorem 3.7. If y(s,0 x (T ® w),v¥) has a pole at s = 1, then L(s, 7", Sym? ®@w™!)
has a pole at s = 0 and o pairs nontrivially with oy, (I, 7,w). The converse is also true,
under the additional assumption that oy, (1, 7,w) is semi-simple.

Proof. By Proposition 3.4, we may choose data (W, f) where f is holomorphic, such
that I(s,W, f) = 1 for all s € C. According to the definitions and [Sha90, Proposi-
tion 7.3], 7(2s— 1,7, Sym® ®w, 1) has a pole at s = 1 if and only if L(2—2s, 7", Sym*®
w1 does. Since A(1,w) is holomorphic, it follows from (3.7) and Proposition 3.6 that
Y(s,0 X (T ®w), 1)) has a pole at s = 1 if and only if L(2 — 2s,7",Sym® ® w™!) does
and I(1 — s,-, A(s,w)-)|s=1 # 0, which means that I(1 — s, W, A(s,w)f) is nonzero
at s = 1 for some W and holomorphic section f. The latter condition, i.e., that
I(1—s,-, A(s,w)-)|s=1 # 0, implies that Bilg(o, oy, (I, 7,w)) # 0.

Note that if the r.h.s. of (3.7) has a pole at s = 1, then so does v(s,0 X (T @ w), ),
even if I(s, W, f)|s=1 = 0.

For the converse direction we assume oy, (I, 7,w) is semi-simple, L(s, 7", Sym? @w™?)
has a pole at s = 0 and Bilg(o, oy, (I, 7,w)) # 0. Since

INn o (AL w)V (1,7 @w)) = oy, (I, 7,w)

which is semi-simple, ¢V is also a subrepresentation of Jy, y, . (A(1,w)V (1,7 ®w)) and
thereby of Jx, .y, V(0,w™ 7" ® w).

Because the embedding G < H identifies Cg with Cy, Cg acts on the space of
TN V(0,0 7Y ® w) by a fixed character. Hence Remark 2.1 implies that ¢V is a
direct summand of Jy, 4, . V(0,w "7 ® w) and we write

JNl7¢l,aV<Oa w_lTv X w) - Eo—v D E7

where E,v is the space of o¥. This gives rise to a projection A : Jy, 4, V(0,0 7" ®
w) — ¢ which vanishes on E.
Next, denote

A = Bilg(0, Iy V(0,0 ' 7Y @ w)).

By Theorem 3.3 and Proposition 3.4, dim.7# = 1. Hence ¢" appears as a quotient of
TN V (0, w7V @ w) with multiplicity 1. It follows that there is a unique projection
TN V(0,0 7Y @ w) — 0¥, up to scaling.

Since the integral regarded as a bilinear form in .7 is nonzero, it is a (nonzero) scalar
multiple of A. As such, the integral does not vanish upon restriction to A(1,w)V (1, 7®
w), since the latter contains E,v. Therefore I(1 — s,-, A(s,w)-)|s=1 # 0. As explained
above, together with the assumption that L(2—2s, 7, Sym*®w™") has a pole at s = 1,
we infer y(s,0 X (T ® w), ) has a pole at s = 1. O
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4. THE TOWER PROPERTY

We proceed with the notation of § 3.1. In this section we prove that the Jacquet
module Jy, 4, , (Indg(| det |27 ®w)), for a supercuspidal 7, satisfies the so-called tower
property. Namely, for the maximal [ such that this module is nonzero, it is supercus-
pidal.

Recall | = m—n. Let Ug, be the unipotent radical of a standard parabolic subgroup
Qg p of G whose Levi part is isomorphic to GL, X GSpiny,_, (1 <p<nif G is split,
otherwise 1 < p < n —1). Denote U = V1 11-1) X Upyy < Npyy, where Vi, 111y is
identified with its images in H under ¢.

Proposition 4.1. Let m be a representation of H. Fix w = w,; such that pr(w) =

diag( < I IT’) s Lo(m—i—p)+1, (Ip f )) Then Jyg ,(In o (7)) = Juw,.,. (T) as vector spaces.

Proof. Assume p < n. Put N'=*(N; x Ug,), and write the elements of A in the form

I, 0 T d x2

u z a e d I 1 T2
. . ! ! /
[z3u,a,d,e;x1,23] = | 00 L pd ot |, z€ Ngy,, Lin-p+1 7, | € Ng
00 0 20 Ip
00 0 oI

(see (3.2)). Put £ =V, . Throughout the proof we identify Nqr, = {[2;0,0,0,0;0,0] :
z € Ng, } and £ < {[I;;4,0,0,0;0,0]}. Extending 9, trivially on Ug, to a character
of NiUg, gives a character of N, ¢y = “t);,. In particular ¢N|NGLl = ¢NGLZ and
because p < n, Yn|c = 1. Then Jy, (I, (7)) = Jn g (7) (as vector spaces). Note
that Jy . (7) is a representation of “G x N.

For 0 < i < [—1, let £ be the subgroup of £ consisting of matrices (Ij I ) such that
all rows of z except the (I — 7)-th row are 0, and £; denote the subgroup of elements

<IZ” 11) where the last ¢ + 1 rows, i.e., rows [ —7,...,[, are 0.

We argue by repeatedly applying the local “exchange of roots” [GRS99a, Lemma 2.2].
Let C° = {[I;;0,a,d,e;x1, 7]} and Y? = LY. Let X° be the unipotent subgroup of
H consisting of the coordinates in the blocks 1, x9, 2} depicted in [I;;0,0,0,0; 21, x]
above, without the prescribed condition with respect to Ng. The group X° N C° is
normal in X° and the quotient is abelian, because it is isomorphic to F? (note that
if 21 = 0, the conditions imposed on x5 by the definitions of G or H coincide). Also
XC° = Uy, < H. In addition, X° N C? acts trivially on the space of Jy .y, ()
because Vx| xonco = 1. Put 1hco = pr|co. By the local analog of [GRS11, Lemma 7.1},
namely the extension of [GRS99a, Lemma 2.2] to the case where the intersections
X NC or YNC are nontrivial, where X, Y and C are the subgroups defined in [GRS11,
§ 7.1] and [GRS99a, Lemma 2.2] (we take C = C° X = X° YV = Y9 C°nN XY is
nontrivial), Jyoycoy o o (T) = Jxoco g .0 () (as vector spaces), where the characters
... are extended trivially on Y? and X°. Since £ = Ly - £° (direct product), N =
Near, X (Lo x (YO x C?)) and ¥xoc0 = Yipalu,,,»

JUG,p(JNmm,a (W)) = ‘]NGLlﬂZJNGLl (JE()(JYO%CO,wyo,Xco (ﬂ—»)
= ']NGLZ WUNar, (J£0<JUz+p,¢z+p,a (W)))

Next we handle the group £y. For 1 < i < [—1, denote U = Vipti—iniy X Upqr < Npyy.
Embed Negi, , < Nai, via z — diag(z,1), then Ngr, = Nar,_, X V;—1,1). Also note

i—1 i—1



LOCAL DESCENT TO QUASI-SPLIT EVEN GENERAL SPIN GROUPS 11

that ﬁz = ,Ci—H : Li-i—l' Let Cl = ‘/(1_1’1) X Ul+p where ‘/(1_171) < NGLZ; Yl = El; and
X! = Vip+1-1,1)NVipy < Nar,,, (identified with its image under ). Then X'xC'=Ut,
Vo1 = Yipaler and by [GRS99a, Lemma 2.2] (X' N C is trivial), Jy1.er g, ., (1) =
Jx1xC 1 n (7) where again the characters 1 are extended trivially on Y and X'.
Hence

']NGLl WUNgr, (JEO(JXOC'OJZJXOCO (m))) = ']NGL1717¢'NGL . (Je (‘]Ul,wz+p,a (7))

We repeat this argument for i = 1,...,1 — 2, with C""' = V;_,_y 1) x Y, Y1 = LiH1
and X" = Vipu—i—1.1) N Vipy—i), each tlme [GRS99a, Lemma 2. 2] 1rnphes

JNGLZ_Z-WNGLFZ_ (Je, (JXiKCi,TZJXiKCi (m))) = JNGLI_Z-_Iﬂl}NGLlﬂ_71 (JEiJrl (Jui“ﬂliz+p,a (7)))-

Thus Jug , (Jny. (7)) = Jyi-1 g, (1) as claimed (U'™" = U).

[t remains to consider p = n (then G is split). There are two standard maximal par-
abolic subgroups Q¢ ,, but they are conjugate, hence it suffices to prove the statement
for one. Write a = 3% and consider h € pr=!(hg) where hy € SOy, is defined by

—B/41/2 1/(28) -1/81/B 1/(28)
ho = diag(l,,_1, ( B/2 0 1/8 ) ) (hy!' = diag(Ln_1, < 10 1/2 ) Im_1)).
B/2 1 —1/B B/2 B/2 —B/4
Then hoYe = €my1 and the only difference between "), @ and (3.1) is that y, in (3.1) is
replaced with e,,;1. The group "G is the stabilizer of "1, and JUGp(‘] Nt () =
v, (Ingpp. (). We choose Qg such that (3.2) for "Ug.,p takes the form {( )
(note that for w in the form (3.2), the column x in "u becomes 0). With this “patch”
we proceed as above, now with p = n: denote N' = “(N; x "Ug,), the elements
[z;u,a,d, e;x1,xs] take the same form except z; = 0; L = V(;l); Yy = M,
Un|Nar, = ¥Ner, and because of the conjugation by h, Y|z = 1. O

(3
)

Regard P4, as a subgroup of H via ¢.

Theorem 4.2. Let 7 be a supercuspidal representation of GL,, and 7 be a subquotient
of Indg(] det |'21 ® w). As vector spaces,

(4.1) T (Mo (1) Z AEE (It ().

In particular Jy, ., (7)) enjoys the following “tower property”: For the largest | such
that Jn, . (7) # 0, In ., (7) is supercuspidal.

Proof. By Proposition 4.1 applied to 7, Ju, ,(Jnu. (7)) = Juy.,. (7). For brevity,
denote the latter representation by p. Observe that p is a representation of P,.;. By
[BZ77, 3.5] (see also [BZ76, 5.15]), there is a filtration of P,;;-modules

0C P CoCor=p pi=@) @) ), pia\p = (@) TH(p).

Here p = U= (®7)""1(p) is the i-th derivative of p, and ®F, UF are the functors from
[BZ77]. Since 7 is supercuspidal and 7 is a constituent of Indg (] det |27 @w), p® =0
for all 1 < i < p by [BZ77, Corollary 2.13a]. Hence p = pp11 = (®1)?(®7)?(p) and
(4.1) follows because (®7)P(p) = Iy, ey (T)-

The second assertion is clear because by (4.1) and the maximality of [, the Jacquet
modules of 7 along the standard maximal parabolic subgroups of G all vanish. 0J
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5. THE VANISHING RESULTS

5.1. Outline of the method. In this section we prove the vanishing of the descent
map in the relevant range (see Theorem 5.5 below). We briefly recall the analogous
result for SOg, 41 (for details see [GRS99a, GRS99b]). Let 7 be an irreducible uni-
tary supercuspidal representation of GL,, such that L(s,7,A?) has a pole at s = 0
(in particular, m is even). Then 7 affords a Shalika model, hence also a linear model,
i.e., 7 embeds into C*°(GLy,/2 X GLy,/2 \ GLy,). It then follows that the representa-
tion parabolically induced from |det |27 to Sps,, injects into C*°(Sp,, X Sp,,, \ SPaym)-
The vanishing properties of the tower of local descent maps are proved by showing
that the corresponding Jacquet modules vanish on C*°(Sp,, X Sp,,, \ Sps,,,) ([GRS99b,
Theorem 17]).

We consider a representation 7 such that the symmetric or twisted symmetric square
L-function has a pole at s = 0. Let us begin with the case of L(s,7,Sym?). One can
find a pair (0,6’) of exceptional representations (in the sense of [KP84]) of a double

cover GL,, of GL,,, such that 7 is a quotient of 6 ® ¢’ ([Yam17, Theorem 3.19], see also
[Kap16b, Theorem 1.3]). Note that the tensor product 66" is a well defined representa-
tion of GL,,. Then in [Kap16b, Proposition 4.1] it was proved that Indf, (| det |'/?7®1)
is a quotient of © ® ©', where © and ©’ are exceptional representations of a double
cover H of H(= GSpin,,, ), defined in [Kapl7b]. The remaining step, proving the
vanishing of the Jacquet modules of © ® ©’, has already been established in [Kap16b,
Theorem 1.1] but only for the “ground level”, i.e., the generic case (I = m). Here we
complete the proof for all [ > m/2.

Now assume w is a unitary character of F'* and L(s, 7, Sym? ®w) has a pole at s = 0.
According to Yamana [Yam17, Theorem 3.19], 7 (or a twist of 7 for odd m) is a quotient
of a tensor product of two “extended exceptional representations” (see § 5.2 below for
the definition). To proceed, we need to define an extended version of the exceptional
representations of H. This can be done along the line of arguments of [Tak14, Kap17b],
then [Kap16b, Proposition 4.1] becomes applicable in this setup as well. In this manner
we treat Sym? and Sym? @w simultaneously.

We further note, for the interested reader, that the case where L(s,7,Sym?) has a
pole at s = 0 is also relevant for the descent construction from GLsg, to SOs,, which
uses the Rankin—Selberg integrals of [Kapl3c|]. The details of that case have not yet
appeared in print, but the expected vanishing result will follow immediately from the
proof here, under a certain mild assumption on the field, by replacing H with SOo,,11
and using non-extended exceptional representations. See [Kapl6b, § 5.

5.2. Exceptional representations. Recall the fixed Borel subgroup B = T'x N of H,
the maximal parabolic subgroups Q) = My X Uy, T' < M}, = GLx X GSpiny,,_z,; and
U, < N, the embedding ¢ : GL,, — M,,, and the fixed character ¥ of F' (see § 2). Let
T = 7T,, denote the “canonical” character of H constructed in [Kapl7b, § 1.2]. Fixing
an identification [,] : GLy X GSping,, 41 — My for each k, this character satisfies
T([a,b]) = det(a) - T r(b) (a € GLy, b € GSping,,_j)41) and in particular for k =m
(then b € GLy), Y([a,b]) = det(a) - b=2. Let H be the double cover of H, constructed
in [Kapl7b] by restricting the double cover of Spin,,, s of Matsumoto [Mat69] and
using the cocycle o of Banks et. al. [BLS99] (in [Kapl7b] we showed that o is block-
compatible). We fix a section s : H — H such that o(h, k') = s(h)s(h/)s(hh/)~!. This
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section restricts to a homomorphism of N. For any X C H let X be its preimage in H.
In particular GLm is defined by restriction from H and it is a nontrivial double cover
of the class studied in [KP84, Takl4]. We have Cz = Ch, in contrast with double
coverings of GLa,, (CN’H denotes the preimage of C'y in H ).

The exceptional representations of H were developed (locally and globally) in [Kap17b],
by adapting the construction of Bump et. al. [BFGO03, BFGO06] for a covering of
SOgm+1. For a convenient summary see [Kapl6b, § 2.8]. Let & be a genuine charac-
ter of Cz, whose restriction to Cz, — and Cp is a genuine lift of 51/ Lo | det |(m+1)/4

and the trivial character, respectlvgiy (note that Cz. < Cf). ThlS determines &
uniquely when m is even, in the odd case there is an additional choice of a Weil factor.

Let p(&) denote the corresponding genuine irreducible representation of T (see e.g.,
[KP84, McN12]). Then indg (p(€)) has a unique irreducible quotient ©y. An excep-

tional representation © of H is then any twist of ©y by a non-genuine character of H,
ie, ® = (xo7Y)- 0Oy where x is a quasi-character of F™*.

The main property of © is that its Jacquet module along a unipotent radical of
a parabolic subgroup is, essentially, an exceptional representation of the stabilizer.
See [Kapl7h, Proposition 2.19] for a more precise statement (see also [BFG03, The-
orem 2.3|). This result and the fact that exceptional representations of GL,, do not
afford a Whittaker functional for m > 2 ([KP84, Kapl7a], see also [Yam17]), imply
through a series of intermediate results, that © is “small” in the sense that it is at-
tached to one of the unipotent orbits next to the minimal one (see [BFGO03]). The
following theorem encapsulates all the vanishing properties of ©.

Regarding the elements of U; as row vectors, any character A of U; takes the form
Au) = ¢ (32" Biu;), with B; € F. The length of ) is defined by 257" 8,80 +
(2. While the length depends on 1, it is zero or not independently of ).

Theorem 5.1. ([BFG03, Theorem 2.6], [BFGO06, Proposition 3], [Kap17b, Lemma 2.25])
For any A\ with nonzero length, Jy, A\(©) = 0.

Corollary 5.2. Let V < Uy (as algebraic groups) and X be a character of V', such that
the action of Ny, (V, ) (see § 2 for this notation) on the set of characters of V\Uy has
finitely many orbits. Assume any extension of X\ to a character of Uy has a nonzero
length. Then Jy\(©) = 0.

Proof. The quotient V\U, is abelian. By [BZ76, 5.9-5.12|, if Jy\y, x(Jva(©)) = 0
when ) varies over a complete set of representatives for the orbits, Jy,(0) = 0 (by
our assumptions, A’ varies over a finite set). Since Jy\y, v (JvA(©)) = Ju, 2, (©) where
A1 extends A, the length of Ay is nonzero and Jy, », (©) = 0 by Theorem 5.1. O

For example when m = 2, if V' is defined by u; = 0, the character A(v) = ¥ (Buz)
satisfies the requirement of the corollary for any 5 # 0.

Corollary 5.3. Let A be a character of Uy defined by the vector (53,0,...,0), where
B # 0. The subgroup U, acts trivially on Jy, A(©).

Proof. We argue exactly as in the proof of [BFG06, Proposition 4]. OJ

As mentioned above, the Jacquet functor takes exceptional representations into ex-
ceptional representations. We describe the particular case of Jy, . Let 6 be the unique
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irreducible quotient of indgz;"m (p(&)), where & is a lift of 5;{; . to a genuine character

of CTGL . This lift is unique when m is even and depends on a Weil factor in the odd
case; still, if we fix one Weil factor, the representations 6, corresponding to the different
lifts are twists of one another by a square-trivial character (see [Kapl7a, Claim 2.6]).

The exceptional representations of GL,, are thus 6y and its twists § = (x odet) -6, (see
[KP84, BG92, Kab01]). Then

(5.1) 32 Ju, (Qg) = | det |V, @ 1

([Kapl6b, (2.8)], the Jacquet functor there was not normalized; see also [Kapl7b,
Claim 2.21]). Note that the direct factors of M, commute in the cover, but this
is a special phenomenon, which does not hold for My with k& < m. Equality (5.1)
implies (almost formally) that when we take a unitary quotient 7 of  ® @', there is a
suitable unitary character w of F* (depending on # and ") and a pair of exceptional
representations (0,0') of H, such that Indgm(| det |'/27 ® w) is a quotient of © ® ©’
([Kapl6b, Proposition 4.1]).

As explained in § 5.1, to handle the twisted symmetric square L-function we need
to consider a wider class of exceptional representations, which we call extended excep-
tional representations (exceptional ones are included in the definition). For GL, these
representations are formed by extending the Weil representation of Sp, to a subgroup
of GLy of finite index, then inducing to GLs ([Gel76, GPS80]). For GL,, they were
constructed by Banks [Ban94] under the assumption that F' is p-adic of odd residual
characteristic. The general case of GL,, is due to Takeda [Takl4, § 2.2-2.4].

We begin with a brief description of his construction. Let x be a unitary character of
F* such that x(—1) = —1. Denote by w,, the irreducible summand of the Weil repre-

sentation w,, of §1§2 consisting of odd functions. One can extend w, to a representation
—~ (2 —~
w,, , of the subgroup GL; : of GLg, where GLgQ) = {g € GLy : det g € (F*)?}, by letting

Car, act by x. More precisely if s : GLy — é\ig is the chosen section, the action is
given by s(aly) — x(a)vy (a), where 7, is the Weil factor corresponding to an additive

character ¢’ of F. The extended exceptional representation 65 = Indgf(%) (wy,, ) 18 irTe-
Lo ’

ducible supercuspidal and unitary, and independent of the choice of ¥’. (In contrast,
the exceptional representations of [KP84] are not supercuspidal.)

Now assume m is even and let 8 = (2™/2) be a composition of m. Consider the
representation

IndZ (03 .. B03)07,).

Here & is the metaplectic tensor product ([Kab01, Mez04]), which in this case is canon-
ical (see [Tak16, Remark 4.3]). Since the inducing data is tempered, the Langlands
quotient theorem — proved for metaplectic groups by Ban and Jantzen [BJ13] im-
plies that it has a unique irreducible quotient 8Y, which is defined to be an extended
exceptional representation of GL,,. The representation 0 is also the image of the
intertwining operator with respect to the longest Weyl element relative to Pg. We also

have the following the “periodicity result” ([Tak14, Proposition 2.36])
T, (03) = (05® ... @05)55,"
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(in loc. cit. Jy, was not normalized). See [KP84, Theorem 1.2.9] for this statement on
exceptional representations. As above, we can twist 6% by x; odet for a quasi-character
X1-

~ We follow a similar paradigm to construct extended exceptional representations of
H. Let R = A x V be the standard parabolic subgroup of H with A = Mz x GL;.
Consider the representation

I = Ind? (03 ... ®63) @ 1)51 ).

Again, according to the Langlands quotient theorem [BJ13] this representation has a
unique irreducible quotient ©X. Since the inducing data is supercuspidal, according
to [BZ77, Corollary 2.13c] Jy (I1X) is glued from (that is, admits a filtration whose
subquotients are)

(Y. .. 265) @ 1)8Y),

where w varies over the Weyl elements of H which satisfy YA = A and are reduced
modulo the Weyl group of A. The periodicity result becomes

(5.2) Jv(0X) = (6& ... ®6)) @ 1)65 .

See [Kapl7b, Proposition 2.16] for this statement for ©. A family of extended excep-
tional representations can be obtained by varying y, and twisting using x; o Y.

Let £ = B x Z be a standard parabolic subgroup of H. By [BZ77, Corollary 2.13],
if ZN A is nontrivial, Jz(©X) = 0, and if B contains A, J(©X) is irreducible (combine
loc. cit. with the transitivity of the Jacquet functor and (5.2)).

By virtue of the above observations, the results of [Kapl7b, § 2.3.1] for © are ap-
plicable to ©X as well. Also note that Yamana [Yam17] proved 6% does not afford a
Whittaker functional when m > 3. Thus the arguments of [Kapl7bh, § 2.3.2] are valid
as well, in particular [Kap17b, Lemma 2.25], and we deduce that Theorem 5.1 and its
corollaries are applicable also to ©X.

The analog of (5.1) holds as well (see [Kapl7b, Claim 2.21]), with (O, 6y) replaced
by (©X,6X), whence the proof of [Kapl6b, Proposition 4.1] extends to ©X. By that
proposition, if 7 is a quotient of 0X ' ® 6,,, Indgm(| det |27 ® ) is a quotient of two
extended exceptional representations of H.

Since ©X enjoys the same properties of © relevant to this work, namely Theorem 5.1,
Corollary 5.2 and Corollary 5.3, we omit x and simply write © in all cases.

5.3. The generic Jacquet modules of O. Recall the Weil representation of the
metaplectic group. In this section we prove that the Jacquet module of an extended
exceptional representation © with respect to Cy, (the center of U;) and a “generic
character” is a direct sum of Weil representations. For [ = m this was proved in
[Kap16b, Theorem 1.4].

Assume 0 < [ < m is even and set [ = 2j and C' = Cp, & F'*!. Let ¢; denote a
character of C' whose stabilizer in @); is Sp; X Uj; such a character is called generic and
for convenience we may assume it is defined by v;(c) = (>_1_, i)

Put r = [(2(m — 1) +1). Let H be a generalized Heisenberg group of rank r + 1.
Identify H with the set of elements (a, b; ¢), where a and b are rows in F'/2, ¢ € F, and
the product is given by

(a,b;c) - (d',b; ) = (a +d,b+b,c+ + 3(a,b) <_J'r/2 J7-/2> Y, b’)) :
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Here J, /5 is the /2 x /2 permutation matrix having 1 on its anti-diagonal and ‘(a’, ')
is the transpose of (a’,b"). We have the epimorphism ¢ : U; — H defined by

J
l(u) = (a1, ..., a;,b1,...,bj, %(Z Cii = Cltij+i))s

=1

where by, ...,b; are the first j rows of v and ay,...,a; are the last and we recall that
u is written using the notation of (5.4) (with z = I;). Also let R < H be the subgroup
consisting of elements (0, b;0).

Since v; is trivial on the kernel of ¢, we may regard Je,(©) as a smooth represen-
tation of H, and as such it is the direct sum of irreducible Weil representations wy,
where 1) is our fixed character of F. s s

The representation w, extends to a representation of Sp, x H, where Sp, is the
metaplectic double cover of Sp,. Using the action of Sp; on each of the 2(m — 1) + 1
columns of v we construct an embedding of Sp; in Sp,. Moreover, the covering Sp,
obtained by restricting H does not split over Sp;, hence it is the metaplectic double
cover, therefore the embedding extends to an embedding of the coverings, also denoted
¢ (one may also apply the strong block compatibility property of the cocycle [BLS99,
Theorem 2.7] to deduce this).

As a smooth representation of a generalized Jacobi group, J¢y,(©) is isomorphic to

a representation k ® wy, where (kK ®@ wy)(l(g)h) = K(g) @ wy(l(g)h) for g € Sp, and
h € H, and k is a non-genuine representation (see e.g., [Tke94, § 1]). The following
claim proves k is trivial.

Theorem 5.4. As a representation of §f)l X H, Jow, (©) is isomorphic to a (possibly
infinite) direct sum of copies of the representation wy.

Proof. The proof of [Kapl6b, Theorem 1.4] (when | = m) carries over to [ < m, we
describe the argument briefly. We need to show « is a trivial representation. Let

r={( )} <

It is enough to show Jyyyy, (k) = 0, where ¥5(y) = ¥(By), for all 8 # 0. Consider

1 0 y b 0 0
I_o
1
V = Ioy(m—1)+1
1
I

< Uj.

— o Yoo x

The mapping /¢ is an isomorphism of V" onto the direct product £(Y')- Ry, where Ry < R
consists of elements (0, (b,0,...,0);0) with b € F2™=D+1 First observe that

(5.3) Ipsor(Jew, (©)) = 0.

This follows because this space is a quotient of JV.(CQUI),(%O@%(@) which vanishes by
Corollary 5.2. Indeed for ¢ € C' N Uy, 9j(c) = ¢(c1,1), thus any extension of (g o £));
to a character of U; is a character of nonzero length (the extension is defined by a

character of V{;;_o) taken from one of 2 orbits under the action of GL;_y < P1;-9)).
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Since Jg(wy) is one-dimensional ([Kapl6b, Claim 2.4]), there is a vector ¢ in the
space of wy, such that the Jacquet integrals

soy’RZ//Ww(yr)sodrdy
Y R

do not vanish for all compact subgroups Y <Y and R < R (see [BZ76, 2.33]). Then
given ¢ in the space of k, arguing as in [Kapl6b, p. 922] using the fact that Jz(wy) is
one-dimensional and (5.3), one shows that for sufficiently large ) and R,

[ swees wdye = <o
Yy
This implies that ¢ vanishes in Jyyy,y, (%) ([BZ76, 2.33]). O

5.4. Vanishing results. Let 7 be an irreducible unitary supercuspidal representation
of GL,,, and w be a unitary character of F*. Assume L(s, 7, Sym?®w) has a pole at
s = 0. We prove oy, (I, 7,w) =0 for m/2 <1 < m.

If m is even, by [Yam17, Theorem 3.19(1)] 7 is a quotient of 6% ® 6, where the
extended exceptional representations are determined (non-uniquely) by 7 and w. Then
according to [Kapl6b, Proposition 4.1] there is a pair of extended exceptional repre-
sentations (©,©') of H such that Indg), (| det |'/?7 ® w) is a quotient of © ® ©.

When m is odd, let w, be the central character of 7 and n = w='w=(m~Y/2 By
[Yam17, Theorem 3.19(2)], (nodet)7 is a quotient of  ® # and moreover * = w, then
[Kap16b, Proposition 4.1] implies Ind{ (|det|"/?(n o det)r ® 1) is a quotient of some
© ® ©'. Since

Indg), (| det I"2(nodet)r ®1) = (noT) Indg, (| det 112 @ n?),
Indg, (| det |'/?7 ® w) is a quotient of (0", ) with ©” = (n~! o 1)O.
Theorem 5.5. For any ©, © and m/2 <1 <m, Jy,y, (0 ®6') =0. In particular,
oy (I, T,w) =0 form/2 <1 <m.

Remark 5.6. We do not assume anything on o (except that o # 0). This is reasonable
because Theorem 5.1 applies to any character of nonzero length.

Proof. For [ = m this is [Kap16b, Theorem 1.1]. The framework of the proof for I < m
is similar, but the proof involves several new difficulties (e.g., see Lemma 5.7 below).
Recall the unipotent radical N; of P, which we write in the form

(5.4) N, = {( Io(m—1)+1 U’) tZ E NGLZ}-

2*

Let C' = Cy,. The group M, acts on the characters of C' with [//2] orbits. We choose
representatives for these orbits: ¥y(c) = 1 and

Yi(c) = @D(Z Cl-2j+ii)s 0<yg<|l/2].

Here c is regarded as an [ x [ matrix. Denote the stabilizer of ¢; in @); by St;,

Stj = (GLi—2; X Spy; x GSpiny(,, p)41) X Vii—zj25)) % Ul
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By virtue of the Geometric Lemma of Bernstein and Zelevinsky ([BZ77, Theorem 5.2]
and [BZ76, 5.9-5.12]), as a representation of @);, © is glued from

indg (Jou,(©)),  0<j<[1/2).

A similar result applies to ©', where we use ¢)~! for the representatives of the orbits.
In turn © ® ©’ is glued from tensor products of such representations, with indices j, j'.
According to [Kapl7a, Lemma 2.3], when we apply the Jacquet functor with respect
to N; and v, , only those with j = j’ remain. Since the tensor product of two genuine
representations is a non-genuine representation, we need to show that for all 7,

(5.5) Tt (ndE, (Jep, (0) ® Jg 1 (61))) = 0.

Since v; is trivial on U;_o; N C' (e.g., on C'if j = 0), Joy, (O) is a representation of
E =U,_5;/(Ui—3; N C) and thereby of U,_s; (which is the trivial group when j =1/2).
We apply a filtration argument to Jeo, (©) as a U_y;-module. Since there are infinitely
many orbits of characters of U;_y; with respect to the action of St;, we will carry out
the argument in stages. Let U ,; = Uj_5; N Uy and define inductively Uj ,; = (Ui_y; N
Ui)/( 2;11 Ulk—Qj) for1 <i<1-2j (UZZ—Zj X HZ_:11 Ulk—Qj)' Set £' = Ulz—2j/(c N UZZ—Qj)’
namely the i-th row of FE.

Lemma 5.7. The representation Jcy,(©) is glued from the representations
Ju,_s,c 00 (©), 0 <k <min(m—1,l—2j),
where A is a character of Ui_qj, Ao = 1 and for k > 0, A\g(u) = Hle Y(U—9j—it1,1—it1)-

The proof is given below, after the proof of the theorem.

The lemma holds trivially when j = [/2; when | = m, the lemma (whose proof is
now shorter) shows that U;_,; acts trivially on Jy,_, ¢ a, (©), simplifying the following
arguments; the case [ < m involves zero length characters defined on U; N Uj_y;.

If 0 <k <1—2j4, Vi_oj—x) is nontrivial. The group V{;_g;_xx) normalizes U;_o; and
stabilizes A, we prove that its action on Jy,_, ¢, (©) is trivial. The set of characters
of Vii_9j_k ) is partitioned into finitely many orbits, under the action of M;_g;_ )
embedded in the stabilizer of Ay, via diag(z,y) — «(diag(x, v, [k, y)) (v € GLi—2j_g,
y € GLj). Thus it suffices to show that for any nontrivial character y of Vii_gj_i 1),

(5'6) Jv(l—Qj—k,k)KUl72jv/»‘>‘k'¢'j (@) =0.

Indeed, as in [Kap16b, Claim 3.3] applying [GRS99a, Lemma 2.2] and another conjuga-
tion we see that Jy,_, 0, y;Cure, (©) is a quotient of Jy, ,(©), where v(u) = 1(uy),
and the action of the (I —2j — k + 1)-th row of U, given by the restriction of \j to this

row transforms into a nontrivial action of U;. This contradicts Corollary 5.3 unless
(5.6) holds.

Let Stjr = Nuy_y,nq (Ui—2;C, Ary)j). As a representation of §5j, Jo,,(©) is filtered
by ind?;;k Ju,_y;000;(©) With k varying as in Lemma 5.7. Applying the same argument
t0 Jey-1(0"), the Lhus. of (5.5) is filtered by Ju,y,, indg! (I xp) where 0 < k, k' <
min(m — [,] — 2j) and

S S, ,
I g = mdgtj’k Jui; 00, (0) ® mdgtj’k, JUI_QJ-C,A,;,W;I(@ )-
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We prove Jy, 4, . indgt’j (IL; k) vanishes by analyzing distributions on the orbits of
the right action of NN, on the (infinite) homogenous space St;\@;. By the Frobenius
reciprocity, the space of distributions on the orbit St;h/N; is isomorphic to

H(h) = Homg, (" 1L 1, Via)-

Here Sj, = "'St; N N;. We show 2 (h) = 0 for all h, then IN o indgtlj(l_[%k’k/) =0 by
[BZ76, Theorem 6.9] concluding the proof of (5.5).

Let Q = QZQQZ,QJ'. Since St]\Q Sp2j \GLQJ, and Q\QZ/NI l 27, 2])\ GL[ /NGLl
can be parameterized using the Weyl group of GL;, we can assume h = tw, where
t € GLg; is a representative of Spy; \ GLy; and w is a permutation matrix in GLl.

We note that one can take ¢ € Py;. To see this consider b = (Z; Zj) € GLy; where
by is a block of size (25 — 1) x (25 — 1). If by € GLgy;_1, we can find z; € Sp,; such
that 210 € Pj_11) (the last row of x; will be (-bsty' 1)), then take a torus element
Ty € SpQJ for which zoz1b € Py;. If by & GLy;_1, then because the first 25 — 1 columns
of b contain a nonzero minor of order 2j—1, we can find a permutation matrix o € Sps;

such that zob = (b, v, ) and 0] € GLg;_1.

The action of U;_s; on the space of II; ;, i is given by A » = /\k)\,g,l. Note that GLy;
stabilizes wj,k,k"

First we claim J#(h) = 0 unless St;hN; = St;twN,; for w = (12]_ 11’21). This is
trivial when j = 0 or [ = 2j, assume 0 < j < [/2. If w is not of this form, then because

. . —1

¢l,04|NGLl = wNGLﬂ 77bl,a and h/\j,k,k/ do not coincide on NGLl ﬂh Ul_gj (Nl = NGLZ X Ul)

Assume w takes this form and 0 < j < /2. Since v, is trivial on the first [ — 1 rows
of U;/C and restricts to a character of nonzero length on the last row, now 1, and
"\, k4 do not agree on U; N h_lUl_Qj unless k = k’ > 0. Note that the case k + k' =1
is ruled out because the lengths of both Ag|gi—2; and \g/|gi-2; are zero.

We can thus assume k& = £’ > 0, in which case Aj ;v = Ajrr = 1. Consider k < [—2j.
Because Vj_oj_ ) < St; and h_IV(l,Qj,k,k) < N, we have h_IV(l,Qj,M) < S}, then by
(5.6), "I = Tty T s4). Since Yialty, , 0 # 1 G

ool
—2j—k,k)

_1‘/(l—2j—lc,k))a again J#(h) = 0 unless V{j_9;_px) is trivial which is only possible if
k =1—2j (because k > 0). In particular if j = 0, our assumption m/2 < [ implies
m —1 <l=1—2j whence k <1 — 2j, so that s (h) = 0 for all k in this case.

It remains to consider 0 < j < [l/2] and k = | — 2j. Since U;_5; is a normal
subgroup of St; which acts trivially on II; = Ilj;_251-2j, II; = Jy,_, (I;) then by
[Kap17a, Lemma 2.3,

Hj = indgz;,l, ,(Ej(@, @/))7 Ej<@7 @/) = JUZ—Qjcv)\l—ijj <@> ® JUZ 2, C AL w‘l(@l)'

1—2j5

1

—k,k)

Note that *'II; = md ‘l 2_(h_1:](@ 0").

To describe St;;_o; we introduce the following notation. For 0 < a < m, iden-
tify GSpin,,,; with the natural direct factor of M,,_,, and for a > [ let Q} =
M} x U denote the standard maximal parabolic subgroup of GSpin,,,; with M =
GL; x GSme(a_l)H. Also let GLlA_Qj denote the embedding of GL;_; in My_o; given
by b — «(diag(b, I5;,b)). With this notation

m— l+2])

Stji25 = ((GLZ 5j XSPa; X GSpiNy(,_oy40j)41) X U X Ul—g;.
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In order to prove J#(h) = 0 we study distributions on the orbits of the right action
of Sj, on h_IStj,l_gj\h_lStj. By the Frobenius reciprocity, the space of distributions on
("' St;,-9;)(" " g)Sh, where g € St;, is isomorphic to

A (h, g) = Homg, ,(W""2;(0,0"),¢y4).

Here Sh,g = (gh)ilstj,l,Qj N Sh.

To parameterize the representatives " g (g € St;), note that * ' «(diag(1;_s;, Vioji_2;)))
is contained in S because U; < St; N N; is normalized by h. Thus we can assume
g = u(diag(1;, d))go where d € GL;_; and gy is a representative of Q?S;\ GSping(,,—jy41-

Let H = v(diaglli—jw 1))(UZ‘ —2h+dg ) which is the generalized Heisenberg group of rank
r+1=25(2(m—20425)+1)+1 (see § 5.3). Since H < St; NSt 125, Ju,_y,cn_s50;(O)
is a representation of H. In addition Spy; < St; N St;;_j, thus Jy,_,.cx_,0,(0) is a

representation of éI)Qj X H.

Lemma 5.8. As a representation of §132j X H, Ju,_y,cn_050,(©) ds isomorphic to a
(possibly infinite) direct sum of copies of the representation wy.

We proceed to prove € (h) = 0. According to Lemma 5.8, as a representation of
Spy; X H the representation Z;(6, ©') is a direct sum of representations wy ® wy-1.

Since g and h normalize U, and H < U; < St;, G < hilSt NN, =5, Also
Gy < (gh)” Stjl 95, because H < St;;_o;. Therefore WM ™'H < Sh,g- Note that
V.l am-14 is nontrivial if and only if [ = 2j (because of the conjugation by w™!, note

that j > 0 and that w is trivial when [ = 2j). By the definitions, any morphism in
€ (h, g) factors through

T30 (7 25(0,00) = W7 1y (2,(0,60)).

These are representations of WM™ and of the stabilizer of r/)la|<gh) 15, 10 (gh)~" Spy;-
This stabilizer is 9"~ Sp qunless [ < 27, in which case it is %)~ (Spl NP;) because
Y o 1s nontrivial only on the last row of Cy\H, and the action of g on the characters of
each row of Cy\#H carries nontrivial characters to nontrivial ones as well as preserves
their length.

Since g Commutes with +(GL;), 4" Spy; = e Spy; = W Spy;) (recall h = tw).
Hence (9M)~ Spj < h_IStj, and clearly (M7 Spy; < (gh)_lsth_Zj. Identify Nar,,
Wlth L(dl&g([l QJ,NGLQJ.)), wleGLQj = 1(NgL,,). Put Sph; = e Spy; NNGL,,- Then
(gh)™ Sp nv NGLQJ. = 1(Spj;). Also 1(Sph;) < t(NaL,,) < Ni. Thus (Spj;) < Sh.
Moreover 1(Spj;) belongs to the stabilizer of ¢y |n-1,,: This is clear for I < 27, and
holds when [ = 2j because as explained above we can take ¢t € P, then «(Sp;) =
" (Sp, N Nar,) < @M (Sp, NPy).

Therefore it suffices to show

(57) HOmL(Spgj)((gh)_l JH7(gh)1/Jl,a (ww X wzﬁ*l)’ ’(/}l’a) =0.

On the one hand, by [Kapl6b, Claim 2.5] if v is any character of Cy\H (trivial or
not), Ja,,(wy ® wy-1) is the trivial one-dimensional representation of the stabilizer of
v in Sp, (note that Sp, acts transitively on the nontrivial characters of Cy\H). Thus

71J7_l7(gh)wla<ww ® wy-1) is trivial. On the other hand by Offen and Sayag [OSO08,
Proposition 2], for any generic character ¢ of Ngr,;, w’Spéj # 1 for all t € GLy; (use
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H™" withr = 0 and 7" = 24, in their notation). Since ¥ 4|, Now,,) 18 generic we conclude
(5.7) whence S (h,g) = 0 and thereby .7 (h) = 0, in all cases. O

Proof of Lemma 5.7. We apply a filtration argument to Jg 4, (©) according to the orbits
of characters of E'~% with respect to the action of St;. If u is such a character and is
nontrivial, we can assume it takes the form

b P(eby + (1 — )bojyr + (1 — €)Bbapm_r4jy41), b€ FAMTIHIT = pl=2i

€ €{0,1} and 8 € F is either 0 or a representative of a coset of (£*)?\ F™*. In particular
the number of orbits is finite. Here if j = 0, we can already take € = 0.

If ¢ = 0 and § # 0, we can use a conjugation of E'"%* such that Jgi-2; ,(Jcy, (©))
becomes a quotient of Jy,(©), where X is a character of V' < U; and any extension of A
to a character of U is of nonzero length. But by Corollary 5.2 (or directly Theorem 5.1
when [ — 25 = 1) with V\U; = V{1,-2;-1) and the action of GLi_9;_1 < F1,;-2j—1) on
the characters of V{1 ;_2;_1), under which there are only 2 orbits, the Jacquet module
vanishes. Hence § = 0 in all cases (for all €).

If e =1, we argue as in [Kapl6b, pp. 924-925]: Consider another filtration, now of
Jpi-2 4 (Jeyy, (©)) along Vij_oj1y NUj_oj—1 = F'~%~1. Using the action of the transpose
of P,_o; we see there is only one orbit of characters to consider, the trivial (because
is nontrivial on b;). Applying [GRS99a, Lemma 2.2] we can replace Vii_9;1) N Ui—g;—1
with ‘/(;2].7171), and we also conjugate by o; where

o, = udiag(L, (( neas Dil(r, 1), 1<i<I-2j

Note that if [ — 25 = 1, ‘/(1_72]'71,1) is trivial and the conjugation is not needed. Then

(Jpi-2i 4 (Jow, (©))) becomes a quotient of Ji, A(©), where A(u) = ¥(u1), and
the action of the top left coordinate of C' under 1); becomes a nontrivial action of Us,
contradicting Corollary 5.3 unless Jgi-2; ,(Jo,(©)) = 0. Thus we can assume ¢ = 0.

We deduce Joy,(0) is filtered by Jgi—2i(Jowy, (©)) and Jgi2j z(Jow, (©)), where
A(b) = 1(byj+1). To unify the notation let \; denote the character of E which is
trivial on E¥ for i’ # 4, and is given by b+ 1p(b_;1) on E* (1 < i <1 —25). Then
Jow, (©) is filtered by J . N (Jow, (©)) with d;_y; € {0,1}.

We proceed with E'=2/=! and consider JEZ_ZJ.’/\;?_Q?]-(JC,%(@)). Assume dj_y; = 0.

The above parametrization of ;1 applies here to the nontrivial characters of E'=2%~1,
Then for € = 0 we argue exactly as before to deduce § = 0.

If € = 1, we argue as above with Vj;_g;1) N Uj_gj_2 = F""272 and using [GRS99a,
Lemma 2.2] we replace Vii—2j,y)NU_2j_2 with V(l_—Qj—2,1)‘ Since the action of the leftmost
coordinate of E'"* on Jgi-2i(Jey, (©)) is now trivial and € = 1, we apply [GRS99a,
Lemma 2.2] once more to replace this coordinate with diag(l;_o;_2,V(1,1)), then we
conjugate by o2 to deduce J, o (Jpi-2-1p1-2 ,(Jow, (©))) is a quotient of Jy, £(O)

1—25—1,1)
on which U, acts nontrivially, because of the conjugation of the top left coordinate

of C. Hence Jgi—2j-1p1-2 ,(Jcy,(©)) = 0 by Corollary 5.3. Thus Jgi-2;(Jowy, (©)) is
filtered by JElfzjilElﬁj’)\;i:?il (Jow, (©)) with di_g;—1 € {0,1}.
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For the case d;_s; = 1, the nontrivial characters u of E'~%~! under the action of the
stabilizer of \;_y; inside St; take the form

b (eby + (1 — €)bgjro + (1 — €)Bbam—11j) + €1b2(m—14j)+1)

where € and ( are as above (if j =0, ¢ =0) and ¢ € {0,1}.

If e =0 and 8 # 0, again JEl—Qj—lEl—2j7MA172j(Jcﬂ/)j(("))) = 0 by Corollary 5.2: A
conjugation of u will take it to a character of a subgroup of U; whose extensions to Uy
all have nonzero lengths. Hence we can assume § = 0 (for all ).

If e, = 1, we can conjugate by ¢(diag(l;—9;—2,({))) to assume p is nontrivial on
bsj11, and again apply Corollary 5.2 to deduce the Jacquet module vanishes. Thus
€; = 0 in all cases.

Now for € = 1 we argue as in the case dj_»; = 0 and € = 1, applying [GRS99a,
Lemma 2.2] twice and deducing the vanishing by Corollary 5.3. Note that \;_o; does
not interfere with the argument and we still use the top left coordinate of C'

We deduce JEZ*Qj’/\;iSJQ.j(JC,wj(@)) is filtered by ‘]ElﬂjflElf?J',Afi;?i’llAfﬁgff(Jc’d’j(@))’

where d;_;_1 € {0, 1}.
For E;_5;_5 the reasoning is similar. Briefly, the nontrivial characters p of Ej_s; o
take the form

b= Y(eby + (1 — €)bgjps + (1 — €)Bbam—i15)—1 + €2ba(m—115) + €102(m—14j)+1)-

Here when d;_9; = 0, we can already take ¢; = 0 and if d;_9;_; = 0, e = 0. Corollary 5.2
implies that for e = 0, one must have = 0. If e, =1 or €, = 1, we use a conjugation

by either ¢(diag(1;—o2;—3, (1 1 1))) or ¢(diag(f;—2;—3, (1 1))), then apply Corollary 5.2 to
deduce the vanishing. Thus €; = €3 = 0. For the case ¢ = 1 the auxiliary unipotent
subgroups are V(j_gj1) N Uj_gj_3 = F'7%73 Vii_gj_31) and diag(l;—2j-3, V{12)), one
conjugates by oz then applies Corollary 5.3.

Repeating these arguments for i = [ —2j —3,..., 1 we obtain a filtration of J¢y,(©)
as a representation of £ by the modules Jg,(Jow,(©)) = Ju,_y;000,(0), where d
varies over {0, 1Y% and Ay = [['=¥ A%, Moreover |{i : d; = 1}| < m — I, otherwise \g
can be conjugated into a character whose restriction to some E* is b +— ¥(bajym—i+1),
then Jy,_,.c a0, (©) = 0 by Corollary 5.2.

The statement of the lemma now follows using another conjugation, to arrange the
characters Ay in the requested form. 0

Proof of Lemma 5.8. The first step is to show JUz_sz«\z_zj?/)j(G)) is isomorphic to a
Jacquet module of © which factors through Uy_4;. We can assume j < [/2, other-
wise this is trivially true. Using conjugations by elements in Ng,_, (Ui_2;C,1;), we
can replace \_y; with the character u — =2 4(u; 2;4:) (of E) which we re-denote by
Ai—2;. Write a general element u € U;_5;C in the form

1 * I * * * * ok * *
Il,gj,l * Yy x9 * * * % * *
) J

I, c * *

1 * *
Il_2]'_1 * *
Iy(m—21425)+1 * *

!
L9051 Ty *
/ /
1 Y T}
I, * *

L9051
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Here the coordinates marked by asterisks are either arbitrary or already determined
by the other coordinates and the quadratic form defining SOs,,, 11, and similarly x} and
y" are uniquely determined by z; and y and the form. With this notation A\_s;(u) =
Uz + Ziﬁjfl(asg)m) and ;(u) = ( le(cj)i,i). Also note that if | —2j — 1 =0,
the rows and columns in the matrix above corresponding to y and xy are omitted.
Conjugating u by o = «(diag(1, (;,_, '))), we obtain

1z * * * * * * * %
1 * *
y Ij_oj1 * T2 * * * * * %
) J
Iy, c * *
11_2]'_1 * *
Iy(m—21425)+1 * *
[l—2j—l a:’2 *
I, * *
951
/ !
Y 1z
1

Apply [GRS99a, Lemma 2.2] to exchange y with the missing roots of Uy (to the right
of x1). Then °Jy,_,.cn o4, (©) = Ju_y,0,(0©) where U is the subgroup of elements

1z * * * * * * * * ok
! Ij_oj_1 * T2 * * * I * i
Iy cJ * *

1172j71 * *

I2(m72l+2j)+1 * *

Il—2j—1 $/2 *

Igj * *

L2951 =

1)

[y

Note that A;_o; and ; (defined as above) are also characters of U. Since Jy,_,,y,;(©)
factors through Jy, () where v(u) = ¢ (u;), and UU, is a group, by Corollary 5.3
Juni_a;0;(©) = Juty n o0, (©) With Ai_5;9; extended to UU; trivially on Us.

Looking at the inner (2(m—2)+1) x (2(m—2)+1) block of UU, we see the subgroup
UZTIEMCU;’:% )\Z_Qj’UlﬂzIE2j = A\_1-2; (the character \;_;_y; of Ul”fffzj) and wj]cUlmIQ

which is given by the restriction of ¥; to ¢/ is a generic character of CUlmI2, in fact the

generic character of the form chosen after (5.4). We are thus in a position to apply
the above procedure again, to the inner (2(m — 2) 4+ 1) x (2(m — 2) + 1) block, with
(I, 3,m) replaced by (I — 1,7, m — 2).

Repeating this [ — 25 times we deduce Juy,_, cn_ o0, (©) = Jn,_y;xci yoy,; (©), Where

O = CUQm,_zz+4j, t; is the generic character of CV and 1° is the character of Nary,_y;
J

defined by ¢°(z) = @Z)(Zﬁj] Z2i-1,2i), i.€., the character of the so called semi-Whittaker
functional (see [BG92, Tak14]). This Jacquet module factors through Jy,,_,. as promised.

Next, by [Kap17b, Proposition 2.19] and [Kap17b, Lemma 2.13] and because Jy,,_,.(©)
is irreducible (see [Kapl7b, p. 641)),

JU2174j (6) = Ind]\fl(;;lj e (0(2) X 6)

GLg;~ 45 X GSping(p, —914-45) 41

Here GLg)_M = {g € GLy_4; : detg € (F*)?}; 0 is an extended exceptional repre-

sentation of (Eil_gj and 0 denotes its restriction to GLgl 4 and © is an extended

e~

exceptional representation of GSpiny,, 944541 Note that by [Kap16b, (2.1)], GLg)_M
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and GSping,,_91445)4+1 cOmmute in Mgl_4j whence the tensor product here is the stan-
dard one. A

We compute Jy,, _,.ci you,; (@) using [BZ77, Theorem 5.2]. Let St; = St;”—2l+4] denote
the stabilizer of ¢, in Q;ZL._QHA‘] (St = Spy; ><U§;_2H4J). Because the space

GLSLLJ' GSpiny 91145y 41 \ M5/ GLoy—y; St;‘

is trivial,
GLy_o; St/
JU21—4jCj7¢j (@) = ch7¢j(JU2l—4j (8)) = Ind&l(z)% i/ (9(2) ® ch7¢j (@))
1—2j XSt;
Since GLS)_M \ GLg;_4; is a finite abelian group, Ju,, _,.ciy, ()| @ ~ is isomorphic

GLg;_4; XSt
to @,(0® @ 04Jciy, (©)), where g, is the character of GSpiny(,_g425)41 given by
0a(9) = (T(g),a)2, (,)2 is the quadratic Hilbert symbol and a varies over (F*)*\F*
(see [Kapl6b, (2.1)] and [Kapl7b, p. 634]).
Now JN21—4jCj7¢°¢j (@) = JNGLQ,_4]- e JU21—4jCj7¢j (@) and

JNGL2l_4j e (9(2) & QaJC’jﬂ/Jj (6)) = JNGL21_4j e (Q(Z)) ® QajCj,iﬁj (@>
= JNGL2l_4j 4° (0) ® QaJCjﬂ/Jj (©).
By [Tak14, Proposition 2.51], dim INery 4 o (#) = 1. Finally, under the above conju-

gations Sp,y; XH is bijected into St;-, then the result follows from Theorem 5.4 applied
to GSpiny(,_or14j)+1 and Jeos 4, (©). O

6. THE NON-VANISHING RESULTS

We prove a non-vanishing result for the descent map (see Theorem 6.5 below).

6.1. Generalized and degenerate Whittaker models. We recall the generalized
and degenerate Whittaker models attached to nilpotent orbits, following the formula-
tion of [GGS17]. Let A be an algebraic reductive group (defined over F, A = A(F),
see § 2), a denote the Lie algebra of A and x denote the Killing form on a. For a € A,
let A, denote the centralizer of a in A, and similarly a, denotes the centralizer of x € a
in a.

Any nilpotent v € a defines a function ¢, : @ — C* by ¢, (z) = ¥(k(u,x)). In this
sense we regard u as an element of a*.

If y € a is semisimple, a decomposes (under the adjoint action) into a direct sum of
eigenspaces ai’\i of y corresponding to eigenvalues \;. The element y is called rational
semisimple if the eigenvalues of ady are all rational. In this case define for r € Q,
al, = ®x>ay and uy =a?;.

A Whittaker pair is a pair (y,u) where y is a rational semisimple element and u € a” .
If (y,u) is a Whittaker pair, we say that y is a neutral element for u if there exists
v € a¥ such that (v,y,u) is an sly-triple. In this case we also call (y,u) a neutral pair.

For a Whittaker pair (y,u), b,(X,Y) = k(u, [X,Y]) is an anti-symmetric form on a.
Let n,, be the radical of the restriction of b, to u,. Then [u,,u,] C a%, C n,,. By
[GGS17, Lemma 3.2.6], n,,, = a%, + a/ Na,. If (s,u) is a neutral pair, n,, = aZ,. Let
U, = exp(u,) and N,, = exp(n,,) be the corresponding unipotent subgroups of H.
Define a character of Ny, by ¥, (z) = ¥(k(u,log(x))). Let NJ, = Ny, Nker(yy). If
U, # Ny ., then the quotient Uy/N?fu is a Heisenberg group and its center is Nyﬂ/N;f’u.
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Let p be an irreducible representation of A (p is then admissible because F' is p-adic)
and (y,u) be a Whittaker pair. The Jacquet module Jy, , s, (p) is called a degener-
ate Whittaker model of p. If (y,u) is neutral, Jy, , 4, (p) is also called a generalized
Whittaker model of p. The wave-front set n(p) of p is defined to the set of nilpotent
orbits O for which Jy, , 4,(p) # 0, for some neutral pair (y,u) with u € O. (This is
well defined, i.e., independent of the choice of a neutral pair). Let n™**(p) be the set
of maximal elements in n(p) under the natural order of nilpotent orbits. We will use
the following theorem, which follows immediately from [GGS17, Theorem A]:

Theorem 6.1. Let (y,u) be a neutral pair and (y',u') be a Whittaker pair. If u
belongs to the closure Ay’ of the orbit of u' in a* under the coadjoint action of A,

JN / /,1/11/ (p) # O Zmplzes JNy,uywu (p> # O

y'u

Let A be either G or H. In this case, since the projection GSpiny, — SOq splits
over unipotent subgroups, as in the corresponding orthogonal cases (SOs,, and SOq,,41),
the nilpotent orbits of A are parameterized by pairs («, ®), where « is an orthogonal
partition (even parts occur with even multiplicities) and ® is a set of non-degenerate
quadratic forms (see e.g., [Wp01, § 1.6]). With p as above, we say that p admits an «
generalized model if there is u in the nilpotent orbit attached to (a, ®) for some ¢ and
a semisimple y € a such that (y,u) is a neutral pair and Jy, , 4, (p) 7 0. When the
pair (y,u) is not important we simply denote this Jacquet module by p,. In addition
let p™*(p) be the set of partitions corresponding to the nilpotent orbits in n™*(p).

An orthogonal partition « is called special if the number of odd parts smaller than
every even number occurring in the partition is even ([JLS16, Definition 10.1], see also
[CM93, § 6.3]). For example, if m is even, then (m,m,1) is not special. In this case,
(m+ 1,m — 1,1) is special, called the special expansion of (m,m, 1), i.e., the smallest
orthogonal special partition of 2m + 1 which is greater than (m,m,1). By the main
results of [JLS16] (generalizing [Moeg96]), any a € p™**(p) is special.

6.2. Non-vanishing results. Assume m is even. Let 7 and w be as in § 3.2 and put
p=LQ(L, T R®w).

Proposition 6.2. p admits an (m,m, 1) generalized model.

Proof. By [Wp01, § 1.6], there is only one nilpotent orbit O corresponding to the
partition (m,m,1). By Theorem 6.1, it suffices to show that the Jacquet module
Jnw(p) is nonzero, where 1 restricts to a nontrivial character on each of the long
simple roots of H and is trivial on the unique short simple root. Thus Jy(p) =
JNGLm7¢NGLm<JUm(p))' Since p is a quotient of V(1,7 ® w) and 7 is supercuspidal,
Ju,, (p) is nonzero and its irreducible constituents are isomorphic to unramified twists
of T®w ([BZ77, Corollary 2.13]), each of which is automatically generic (in fact Jy,, (p)
is of length 1), whence Jy 4 (p) # 0. O

Remark 6.3. See [LM15, Appendix 3] for the similar assertion for symplectic groups
but when T is tempered; see also [GRS02, § 5.7].

Proposition 6.4. p admits an (m + 1,m — 1,1) generalized model.

Proof. By Proposition 6.2 and [JLS16, Theorem 11.1], p™**(p) contains the special
expansion of (m,m, 1), i.e., the smallest orthogonal special partition of 2m + 1 which
is greater than (m,m, 1). This partition is (m + 1,m — 1,1). Note that m is even. O
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Theorem 6.5. Let m = 2n. There exists o € F* such that oy, (n,T,w) # 0.

Proof. According to [Wp01, § 1.6], the nilpotent orbits corresponding to (m + 1,m —
1,1) are parameterized by certain one-dimensional quadratic forms, i.e., square-classes
{@m+1, m—1, a1}, corresponding to the parts (m+1), (m—1) and 1. In fact by [JLS16,
Proposition 8.1] we can take the square-classes to be a1 = a, a1 = —aand a; =1
for some o € F™.

By Proposition 6.4, there is a neutral pair (y,u) such that Jy, , 4, (p) # 0, where u
belongs to an orbit corresponding to (m+1,m—1,1) and {a, —a, 1}. One can assume
u = uy 4+ uy where uy = S0 0 e (1) + e ten (1) + T ey, (0/2), ug is any
representative of the nilpotent orbit in the Levi part of the stabilizer of u; which is
GSpin,,(¢) for a certain quadratic form ¢, corresponding to the partition ((m — 1),1)
and square-classes {—a, 1}. Let y; be such that (y;,u;) is a neutral pair.

Now, by letting certain torus element in the Levi part of the stabilizer of u; go to
zero, it is easy to see uy € Hyu. Then by Theorem 6.1, Jy, . v, (p) # 0 and the result

follows because Jy, , ., (p) = 0y, (n,T,w). O

7. THE LOCAL DESCENT

Theorem 7.1. Let 7 be an irreducible unitary supercuspidal representation of GLa,
(n > 1) and w be a unitary character of F* such that L(s,7,Sym* ®w) has a pole at
s =0. Let m = 2n and denote oy, (T,w) = oy, (n, T, w).

(1) There exists some aw € F* such that oy, (T,w) # 0.

(2) The representation oy, (T,w) is a supercuspidal, multiplicity free and admissible
representation of G. Its irreducible constituents are all unitary and generic (for
some generic characters of Ng).

(3) Let o be an irreducible supercuspidal Yy, o-generic representation of G. The
Rankin-Selberg ~y-factor v(s,0 X (T ® w),¥) has a pole at s = 1 if and only if

a¥ is a quotient of oy, (T,w).

Proof. Part (1) follows immediately from Theorem 6.5. Then Theorems 4.2 and 5.5
imply oy, (7,w) is supercuspidal.

We show that oy, (7,w) is semi-simple. Because Cg = Cpy under the embedding
G < H, Cg acts on the space of oy, (7,w) by a fixed character. This character is unitary
because LQ(1, 7 ® w) is unitary, by [Sha90, Theorem 8.1b]. Thus by Remark 2.1, any
irreducible subrepresentation o of oy, (7,w) (which is necessarily supercuspidal) is a
direct summand of oy, (7,w). Therefore oy, (7,w) is semi-simple.

The representation oy, (7,w) is now multiplicity free by Theorem 3.3 (for s = 1),
since it is semi-simple and its quotients are supercuspidal. The semi-simplicity of
oy, (T,w) and Theorem 3.3 also imply that the irreducible constituents of o, (7, w) are
generic. Furthermore, because C&\Cy is finite and as mentioned above, Cg acts on
oy, (T,w) by a unitary character, the irreducible constituents are unitary (an irreducible
supercuspidal representation with a unitary central character is unitary).

Because oy, (7,w) is semi-simple and multiplicity free, and the action of Cg on
its space is given by a fixed character, we deduce that oy, (7,w) is admissible (for
any compact open K < @, there are only finitely many irreducible supercuspidal
representations of G with a nonzero K-fixed vector and a fixed Cg-action).

Finally assume L(s, 7, Sym? ®w) has a pole at s = 0. Using the identity

L(s,7 x wt) = L(s,7,Sym? ®@w)L(s, 7, \* @ w)
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(see [Sha92, Lemma 3.6], [Yam17, Theorem 3.19] and [Hen10]) and by [JPSS83, § 8], we
deduce 7 = w™' ® 7V. Hence L(s,7,Sym?®w) = L(s,7",Sym?®w™!) (by the results
of [Hen10]). Then the last assertion follows from Theorem 3.7. O
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