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Abstract. Let n > 1 and ⌧ be an irreducible unitary supercuspidal representation
of GL2n over a local non-archimedean field. Assuming the twisted symmetric square
L-function of ⌧ has a pole at s = 0, we construct the local descent of ⌧ to the cor-
responding quasi-split even general spin group GSpin2n. We prove this local descent
is generic, unitary, supercuspidal and multiplicity free. Its irreducible quotients are
“functorially related” to ⌧ , in the analytic sense of a pole of a Rankin–Selberg type
�-function.

1. Introduction

Let G be a quasi-split classical group defined over a global number field with a ring
of adeles A. Cogdell et al. [CKPSS01, CKPSS04, CPSS11] proved that any globally
generic cuspidal representation � of G(A) has a functorial lift to an automorphic rep-
resentation of GLN(A), for the proper N . Their work was extended to general spin
groups by Asgari and Shahidi [AS06].

The descent method of Ginzburg et al. [GRS97a, GRS97b, GRS99a, GRS99b,
GRS11] (see also [Sou06]) provides the global and local “inverse map” of the functorial
lift, for certain automorphic representations. Given a globally generic automorphic
representation ⌧ of GLN(A), which is an isobaric sum of cuspidal representations (and
belongs to the image of the weak lift from cuspidal globally generic representations of
G(A)), this method constructs a cuspidal representation of G(A), whose irreducible
subrepresentations � are all globally generic and lift (functorially) to ⌧ . The global
and local descent were first developed for the metaplectic groups and the odd orthogo-
nal groups (e.g., [GRS97a, GRS97b, GRS99a], the orthogonal case was obtained using
the theta correspondence); the global descent for classical groups including orthogo-
nal, symplectic, unitary or metaplectic groups was described in full detail in [GRS11];
and the local even unitary case was settled by Soudry and Tanai [ST15]. The global
descent for general spin groups was developed by Hundley and Sayag [HS16], and for
the exceptional group G2 was obtained in the more recent work by Hundley and Liu
[HL19].

The local descent constructs, for a supercuspidal (self-dual or self-dual up to a twist)
representation ⌧ of GLN over a non-archimedean field, a generic supercuspidal repre-
sentation of G whose irreducible quotients � are all generic and lift to ⌧ . This repre-
sentation of G is irreducible in the metaplectic, odd orthogonal and even unitary cases
([GRS99a, JS03, ST15]), but is expected to be reducible for even special orthogonal or
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even general spin groups, because there is a representation of O2n which lifts functori-
ally to ⌧ and its restriction to SO2n can be of length 2. See Jiang and Soudry [PR12,
Appendix].

The descent method has had numerous applications, including to local and global
functoriality, local Langlands correspondence, rigidity theorems and globalization re-
sults ([JS03, CKPSS04, JS04, Sou06, JNQ10, PR12, JL14, ST15]). One of its strengths
is that it provides an explicit realization of a Whittaker functional (locally, Whittaker
model) for those representations �. Recently Lapid and Mao [LM17] used the local
realization as an ingredient in the proof of their conjecture on Whittaker–Fourier co-
e�cients.

In this work we develop the local descent theory for quasi-split even general spin
groups. Let F be a non-archimedean local field of characteristic 0, and fix a nontrivial
additive character  of F . Let ⌧ be an irreducible supercuspidal representation of
GL2n(F ), n > 1, and ! be a unitary character of F

⇤. The Langlands–Shahidi L-
function L(s, ⌧, Sym2 ⌦!) (defined in [Sha90]) is holomorphic in Re(s) > 0, and has a
pole at s = 0 precisely when ⌧ ⇠= !

�1⌦⌧_. In that case, by the Langlands functoriality
principle ⌧ should be the image of the lift of a representation of a unique split or quasi-
split (split over a quadratic extension of F ) even general spin group of absolute rank
n + 1. Denote this group by G(F ), it is determined by the square-class of ↵ 2 F

⇤.
We define a unitary supercuspidal generic representation � ↵(⌧,!) of G(F ). Here by
generic we mean generic with respect to some generic character of a maximal unipotent
subgroup NG(F ) of G(F ). Here is our main theorem.

Theorem 1.1. (see Theorem 7.1) Assume L(s, ⌧, Sym2 ⌦!) has a pole at s = 0.

(1) (Non-vanishing) There exists some ↵ 2 F
⇤ such that � ↵(⌧,!) 6= 0.

(2) The representation � ↵(⌧,!) is a supercuspidal, multiplicity free and admissible
representation of G(F ). Its irreducible constituents are all unitary and generic.

(3) (Local Functorial Lift) Let � be an irreducible supercuspidal  NG,↵-generic repre-
sentation of G(F ). The Rankin-Selberg �-factor �(s, �⇥(⌧⌦!), ) defined by (3.7)
has a pole at s = 1 if and only if �_ is a quotient of � ↵(⌧,!).

One may expect a description of ↵ in terms of ! and the central character of ⌧ .
E.g., if the central character of ⌧ is trivial, then ! should be a square. See [PR12,
Appendix]. Such a result may require an approach di↵erent from the one presented
here. Regarding the third property, the above condition on the �-factor should hold
when � lifts to ⌧ . We mention that Mœglin [Mœg14] obtained this lift, and thereby the
Langlands parameter, for discrete series representations of classical groups (including
the group G).

To prove our result we follow the paradigm introduced by Ginzburg et al. [GRS99a],
but at certain points new ideas are needed. Let us briefly describe our method.

The representation � ↵(⌧,!) is defined using a certain twisted Jacquet module, which
occurs naturally in a local Rankin–Selberg construction for G⇥GLk and the represen-
tations �⇥ ⌧ . This construction was recently introduced by Cogdell et. al. [ACS17] in
the global setting. We elaborate on the local aspects that we need here. In particular
we prove a local “generic uniqueness” result, by which we can define a Rankin–Selberg
�-function �(s, �⇥ (⌧ ⌦!), ) as a proportionality factor between two integrals within
a standard functional equation. One expects this �-factor to coincide with the corre-
sponding Langlands–Shahidi �-factor, at least at the level of zeros and poles, but we
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have not pursued this here. Note that this work does not depend on the results of
[ACS17]. See § 3 for more details.

In order to prove � ↵(⌧,!) is supercuspidal, we consider a “tower” of representations
� ↵(l, ⌧,!), 0 < l  n, where � ↵(⌧,!) = � ↵(n, ⌧,!), and show the vanishing of these
representations for all l < n. The main ingredient we use for the proof is a class of
exceptional representations. In our setting these are the representations of double cov-
erings of general linear groups constructed by Kazhdan and Patterson [KP84], as well
as the representations of double covers of general spin groups developed in [Kap17b]
(following [BFG03], see also [LS10] for a more general construction). We mention
that exceptional representations were constructed in greater generality in [Gao17]. We
take the tensor product of two exceptional representations to form a representation
of the linear group. Such a representation is typically quite large, and may be con-
sidered as a model (see [Kab01, Kap16a, Kap16b, Kap17a]). For example, one may
prove multiplicity one results (e.g., [Kab01]), or analyze the structure of its irreducible
quotients ([Kap17a]). In this spirit, we say that a representation of the linear group
a↵ords an exceptional model if it is a quotient of the tensor product of two exceptional
representations of the double cover of the group.

Consider a supercuspidal representation ⌧ of GL2n(F ) such that its symmetric square
L-function has a pole at s = 0. According to the results of [Kap16b] (see also [Yam17]),
⌧ a↵ords an exceptional model and so does the representation parabolically induced
from ⌧⌦1 to a general spin group. To prove the vanishing results we use the “smallness”
of the exceptional representations, namely that a large class of their Jacquet modules
vanishes ([BFG03, Kap17b]).

This technique is parallel to a method of Ginzburg et. al. [GRS99a, GRS99b]. They
used the interplay between Shalika models, which are related to the pole of the exterior
square L-function at s = 0, linear models, and symplectic models (see § 5.1 for a more
precise description). The presence of exceptional representations here is expected and
understood, in light of the role these representations played in the (global) work of
Bump and Ginzburg [BG92] on the integral representation of the symmetric square
L-function, or even in the earlier low rank results [GJ78, PPS89].

To handle the twisted symmetric square L-function we use the recent construction
of twisted exceptional representations for double coverings of general linear groups by
Takeda [Tak14], who used them to develop an integral representation for the global
partial L-function (extending [BG92]). We also rely on a result of Yamana [Yam17]
who proved that if the twisted symmetric square L-function of ⌧ has a pole at s = 0,
⌧ admits a (twisted) exceptional model. See § 5.

In § 6, we prove the non-vanishing of the descent � ↵(⌧,!). The main ingredients are
the results of Jiang et. al. [JLS16] on the lifting of nilpotent orbits in the wave-front
sets of representations and the results of Gomez et. al. [GGS17] on relations between
degenerate Whittaker models and generalized Whittaker models of representations.
More explicitly, let LQ(1, ⌧⌦!) be the image of the representation parabolically induced
from | det |1/2⌧ ⌦ ! to GSpin4n+1(F ) under the standard intertwining operator (this
image is the Langlands quotient). By [GGS17], the representation LQ(1, ⌧ ⌦ !) has
a nonzero generalized Whittaker model attached to the partition (2n, 2n, 1). Then by
[JLS16], LQ(1, ⌧⌦!) admits a similar nonzero model attached to the special expansion
(in the sense of [CM93]) of (2n, 2n, 1), and using [GGS17] we conclude that � ↵(⌧,!) 6=
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0. Our non-vanishing proof is the local counterpart of the global non-vanishing proof
in [HS16], and is streamlined using the results of [JLS16] and [GGS17].

Let us also comment on the applicability of our results to non-archimedean local fields
of characteristic p > 0. The results on the Rankin–Selberg integrals in § 3 and § 4
remain valid. Note that for § 3.2 the analytic properties of the intertwining operator
follow from Waldspurger [Wal03], and the definition of the local coe�cient follows
from Lomeli [Lom15, Lom19, Lom]. The vanishing results of § 5 also hold with two
reservations: one has to verify the applicability of [Yam17], and it is necessary to take
p > 2 because double coverings are used. The non-vanishing arguments in § 6 rely on
the work in [GGS17] which assumes that F has characteristic 0 (see [GGS17, Remark
5.1.4] for comments on the case of positive characteristic), and the work in [JLS16]
which remains valid when the characteristic p is large enough. The non-vanishing
results may still hold when the characteristic p is large enough with an argument by
contradiction similar to [GRS11, Section 9.2].

Acknowledgements. We would like to thank Mahdi Asgari, Mikhail Borovoi, Wee
Teck Gan, Dmitry Gourevitch, Joseph Hundley, Eitan Sayag, Freydoon Shahidi, David
Soudry and Lei Zhang, for useful correspondences and helpful conversations. We would
also like to thank the referees for many helpful comments and suggestions.

2. Groups and general notation

Let F be a non-archimedean local field of characteristic 0. Denote the residual cardi-
nality of F by q. Let V be a finite-dimensional vector space over F , and � be a quadratic
form on V defined over F . Denote the special orthogonal group of � by SO(�) and its
simply connected cover by Spin(�). Let pr : Spin(�) ⇣ SO(�) be the canonical isogeny
and c be the nontrivial element in ker pr. Then (�1, c) generates an order 2 subgroup
< (�1, c) > of GL1 ⇥ Spin(�). Define GSpin(�) = (GL1 ⇥ Spin(�))/ < (�1, c) >. Re-
call that the unipotent subgroups of GSpin(�) are isomorphic (as algebraic groups) to
the unipotent subgroups of SO(�). The Weyl groups of GSpin(�) and SO(�) are also
isomorphic. Throughout this work, when we say that GSpin(�) is quasi-split, we mean
it is non-split over F , but split over a quadratic extension of F .

Let m be a positive integer. Let H = GSpin(�) where dimV = 2m + 1 and � is
isotropic of index m. The group H is split over F . Fix maximal isotropic subspaces
V

± in duality with respect to the symmetric bilinear form (·, ·) associated with �.
Let (e1, . . . , em, em+1, e�m, . . . , e�1) be a basis of V such that V + = Span{e1, . . . , em},
V

� = Span{e�1, . . . , e�m} and for all 1  i, j  m, (ei, e�j) = �i,j and (ei, em+1) =
(em+1, e�j) = 0. The subspaces V +

l
= Span{e1, . . . , el} form a maximal flag

0 ⇢ V
+
1 ⇢ V

+
2 ⇢ · · · ⇢ V

+
m

= V
+

in V . This choice then fixes the Borel subgroup B
0 = T

0 n N
0 of SO(�), where T

0 is
the torus. In general if X 0

< SO(�), we denote its preimage in H under pr by X. Now
B = pr�1(B0) is a Borel subgroup of H, B = T nN where T is a maximal torus.

For each 1  l  m, let Q
0

l
= M

0

l
n U

0

l
denote the maximal parabolic subgroup of

SO(�) which stabilizes V
+
l
, and P

0

l
= L

0

l
n N

0

l
< SO(�) be the parabolic subgroup

stabilizing the flag V
+
1 ⇢ . . . ⇢ V

+
l
. The unipotent radicals are U

0

l
and N

0

l
. Then, e.g.,

Qm = MmnUm is the standard Siegel parabolic subgroup of H. The center CH of H is
connected (because dimV is odd) and isomorphic to GL1. Moreover, CH is identified
with the GL1 component of Mm

⇠= GLm ⇥GL1.
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For the group GLl, we let BGLl
= TGLl

n NGLl
denote its Borel subgroup of upper

triangular invertible matrices, with the diagonal torus TGLl
. If � = (�1, . . . , �r) is a

composition of l, let P� = M� n V� denote the standard parabolic subgroup of GLl

corresponding to � (V� < NGLl
). Also V

�

�
denotes the unipotent subgroup opposite to

V�. Let Pl be the mirabolic subgroup of GLl, i.e., the subgroup of invertible matrices
whose last row is (0, . . . , 0, 1). For a 2 GLl, denote its image in Ml by ◆l(a). For l  l

0,
GLl < GLl0 via a 7! diag(a, Il0�l), then ◆l(a) = ◆l0(a). Hence we simply denote ◆ = ◆l.

The algebraic groups in this work will be defined over F , and for any such group X,
we identify X = X(F ) (which is an l-group). The center of any group G is denoted
CG, and if x, y 2 G and Y < G, x

y = xyx
�1 and x

Y = {xy : y 2 Y }. Representations
are always complex and smooth. For a representation ⇢ of X, ⇢_ is the contragredient
representation. We fix a nontrivial additive character  of F .

The induction Ind and compact induction ind functors are normalized as in [BZ77,
1.8]. For a representation ⇢ of Y < H on a space V⇢, a closed unipotent subgroup
U < Y and a character  U of U , the Jacquet module JU, U (⇢) is the quotient of V⇢
by the subspace spanned by {⇢(u)⇠ �  (u)⇠ : u 2 U, ⇠ 2 V⇢}. For any Y0 < Y

let NY0(U, U) denote the subgroup of elements y 2 Y0 which normalize U and fix  U .
Then JU, U (⇢) is a representation of NY (U, U). The action of NY (U, U) is normalized
as in [BZ77, 1.8], by the inverse square-root of the modulus character of U .

Throughout this work, all L-functions are the ones defined by Shahidi [Sha90]. The
twisted symmetric square �-factor is also the factor defined in [Sha90], but the standard
�-factor for a pair of representations of GSpin2n ⇥GLm will be defined here using
Rankin–Selberg integrals. We will not rely on the conjecture that this factor agrees
with the similar factor of [Sha90].

Remark 2.1. Irreducible supercuspidal representations are injective and projective in
the category of (smooth) representations of G on which C

�

G
acts by a character. In-

deed since CG is abelian and the index of C�

G
in CG is finite, any representation ⇡ of

G decomposes into a direct sum of eigenspaces under the action of the quotient group
C

�

G
\CG. The center CG acts by a fixed character on each of these eigenspaces, and

the statement then follows immediately from the the injectivity and projectivity of ir-
reducible supercuspidal representations in the category of representations with a fixed
central character.

3. The local Rankin–Selberg integral

3.1. The integral and �-factor. Let ⌧ be an irreducible generic representation of
GLm and ! be a quasi-character of F ⇤. Let 1  n  m and l = m � n. We define
the family of local Rankin–Selberg integrals for the groups GSpin2n ⇥GLm. While the
integrals can also be defined for n > m, this case will not appear in this work. Note
that in § 3.2 and § 4 we will allow n (and thereby l) to vary, in § 5 we shall take
l > m/2, then in § 7 we specialize to m = 2n.

Let ↵ 2 F
⇤ and fix a vector y↵ = em + ↵

2 e�m of length ↵ (i.e., (y↵, y↵) = ↵). Define
the character  l,↵ of Nl by

 l,↵(u) =  (
lX

i=2

(u · ei, e�(i�1)) + (u · y↵, e�l)),(3.1)
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where on the r.h.s. (right hand side) u is identified with its projection into N
0

l
. The

stabilizer of  l,↵ in Pl is isomorphic to the group G = GSpin2n, which is split over F
if ↵ is a square in F

⇤, otherwise it is quasi-split. To see this note that the pointwise
stabilizer of {ei, e�i}1il in SO(�) is SO2n+1 and inside that group, the stabilizer of
y↵ is a form of SO2n (see [Kap13c, § 2.1.1]). In this way we construct an embedding
of G in H. Since Pl

⇠= (BGLl
⇥GSpin2n+1)n Ul, this embedding already determines a

Borel subgroup BG = TG n NG of G by the requirement (NGLl
⇥ NG) n Ul = N . We

identify NG with
8
><

>:
diag(Il,

0

B@
z v x �

2
↵
v u

1 0 0 �
2
↵
v
0

1 0 x
0

1 v
0

z
⇤

1

CA , Il) 2 N
0 : z 2 NGLn�1 , v, x 2 F

n�1

9
>=

>;
.(3.2)

For n > 1, CG is disconnected, its identity component C
�

G
is isomorphic to GL1 and

under the embedding G < H, C�

G
is identified with CH .

Denote the Whittaker model of ⌧ with respect to  NGLm
(z) =  (

P
m�1
i=1 zi,i+1) (z 2

NGLm) by W (⌧, NGLm
). Set Q = Qm. For a complex parameter s, let V (s, ⌧ ⌦ !)

denote the space of the (normalized) induced representation

IndH

Q
(| det |s�1/2

W (⌧, NGLm
)⌦ !).

There are standard notions of holomorphic or meromorphic sections of V (⌧⌦!). Briefly,
a holomorphic section of V (⌧ ⌦ !) is a function f on C⇥H such that for each h 2 H,
s 7! f(s, h) is holomorphic, and for each s, h 7! f(s, h) belongs to V (s, ⌧ ⌦!). Denote
fs(h) = f(s, h) and h0 · fs(h) = fs(hh0). We regard fs as a complex-valued function
by evaluating at the identity.

Define a generic character  NG,↵ of NG by  NG,↵(u) =  
�1
NGLn�1

(z) �1(vn), where u

is given by (3.2) and vn is the last row of v. Note that if one writes the root subgroup
of G corresponding to the simple root ✏n�1 + ✏n by (x, y) 2 F

2, the restriction of
 NG,↵ to (x, y) is given by  �1(14x�

↵

2 y) in the split case and  �1(12y) in the quasisplit
case ( �1

NG,↵
is the character [Kap13c, (3.1)]). In particular  NG,↵ depends on ↵. Let

� be an irreducible  NG,↵-generic representation of G and W (�, NG,↵) denote the
corresponding  NG,↵-Whittaker model.

For W 2 W (�, NG,↵) and a holomorphic section f of V (⌧ ⌦ !), define the integral

I(s,W, f) =

ˆ

C
�
GNG\G

W (g)

ˆ

N
�l,↵
l

fs(�l,↵ug) 
�1
l,↵
(u) du dg .

Here N
�l,↵

l
= �

�1
l,↵

Q�l,↵ \Nl where �l,↵ is a representative for the unique open orbit of
the right-action of GnNl on Q\H, which we take to be a fixed element in

pr�1

✓
◆(
⇣

0
2
↵
Im�l

Il 0

⌘
)

✓
0 0 Il
0 I2m�2l+1 0
Il 0 0

◆
(�1)lIm

◆
.

(The embedding ◆ was defined in § 2.) This is the local analog of the global Eulerian
integral introduced in [ACS17].

Proposition 3.1. There exists s0 2 R such that I(s,W, f) is absolutely convergent for
all s with Re(s) > s0, for all W 2 W (�, NG,↵) and holomorphic sections f .
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Proof. Since we mod out by C
�

G
in the domain of integration for the outer integral, the

proof is a straightforward adaptation of the proof of convergence for the integrals for
odd orthogonal groups, see [Sou93, § 4.4–4.6]. ⇤
Lemma 3.2. In the domain Re(s) > s0, for all g0 2 G and u0 2 Nl,

I(s, �(g0)W, (g0u0) · f) =  l,↵(u0)I(s,W, f) .(3.3)

Proof. This follows from the fact that I(s,W, f) is invariant with respect to G, G

normalizes Nl and stabilizes  l,↵, and fromˆ

N
�l,↵
l

fs(�l,↵uu0) 
�1
l,↵
(u) du =  l,↵(u0)

ˆ

N
�l,↵
l

fs(�l,↵u) 
�1
l,↵
(u) du,

in Re(s) > s0. ⇤
Theorem 3.3. Let � be an irreducible generic representation of G (with respect to
 NG,↵ or a di↵erent generic character of NG). Except for a finite number of values
of q�s, the space of bilinear forms satisfying (3.3) is at most one-dimensional. If �
is supercuspidal, the dimension is at most one for all s. If however, � is irreducible
supercuspidal and non-generic, the dimension is 0 for all s.

Proof. The proof is the adaptation of the local uniqueness result for the Rankin–Selberg
integrals for SO2n ⇥GLm ([Kap13c, § 4.1], for the global counterpart see [Kap12, § 3.2],
see also the local uniqueness proofs in [Sou93, § 8.2] and [GRS99a, § 6.2]). Briefly,
according to [BZ77, 1.9],

BilG(�, JNl, l,↵
(IndH

Q
(| det |s�1/2

⌧ ⌦ !)))

⇠= BilH(ind
H

R
(� ⌦  

�1
l,↵
), IndH

Q
(| det |s�1/2

⌧ ⌦ !)).(3.4)

Here BilG(·, ·) denotes the space of G-equivariant bilinear forms and R = GnNl. For
h 2 H, let

Hom(h) = Hom(hR)\Q(
h(� ⌦  

�1
l,↵
)⌦ (| det |s�1/2

⌧ ⌦ !), �).

Here for a representation ⇢, h
⇢(x) = ⇢(h

�1
x), and � = �

�1/2
Q

· h(��1
R
�
�1
R\(h�1Qh)). The

group R acts on the right on Q\H with finitely many orbits. Write H =
`

h2⌦ QhR

for a finite set ⌦. According to the Bruhat theory (see e.g., [Sil79, Theorems 1.9.4,
1.9.5]), the space (3.4) injects into the semi-simplification

L
h2⌦ Hom(h).

According to the proof of [Kap12, Claim 3.1], Hom(h) = 0 unless QhR = Qh0R for
some h0 2 H such that h0Nl is the opposite subgroup N

�

l
(see also [GRS11, Proposi-

tion 5.1]). In the quasi-split case this already determines h uniquely; in the split case
there are three such representatives, for two of which h

�1
Q\G is a parabolic subgroup

of G and any morphism in Hom(h) defines a morphism in

HomG(�, Ind
G

h�1
Q\G

(��1/2
h�1

Q\G
· h�1

(�| det |1/2�s
⌧
_ ⌦ !))).(3.5)

The latter space is zero outside finitely many values of q�s by [GPSR87, Lemma 10.1.2],
which was stated for SO2n but immediately implies the similar result for G. Thus there
is only one more representative which we denote by h0 in both the split and quasi-split
cases. Note that Qh0R = Q�l,↵R.

The above arguments (including [GPSR87, Lemma 10.1.2]) apply whether � is
generic or not.
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Let V < NG be the subgroup with z = In�1 and v = 0, using (3.2) (V is R0

l
of [Kap12,

§ 3.2, p. 154]). Then NG = NGLn n V and h0V <
h0G \ Um. Since Um acts trivially

on the space of | det |s�1/2
⌧ ⌦ !, each morphism in Hom(h0) factors through JV (�).

(Note that V is not a unipotent radical of a parabolic subgroup of G.) In addition,
each morphism in Hom(h0) factors through Jh0Nl\Mm,h0 l,↵

(�0| det |1/2�s
⌧
_ ⌦ !), where

�
0 is a suitable modulus character. Also note that (CGV )\(h�1

0 Q \G) = Pn. It follows
that

Hom(h0) ⇢ BilPn(JV (�), Jh0Nl\Mm,h0 l,↵
(�0| det |1/2�s

⌧
_ ⌦ !)).(3.6)

Now by [GPSR87, Proposition 8.2] (stated for representations of SO2n+1 but the proof
is applicable to G as well), JV (�) admits a finite Jordan–Hölder composition series
as a Pn-module. This series contains the irreducible representation indPn

NGLn
( NGLn

)
with multiplicity at most 1. In fact the multiplicity is 1 if and only if � is generic
(a Whittaker functional on JV (�) lifts to a Whittaker functional on �). The similar
assertion applies to Jh0Nl\Mm,h0 l,↵

(�0(| det |1/2�s
⌧
_ ⌦ !)) by [BZ76, 5.15]. The result

then follows as in [JPSS83, 2.10], using the structure of irreducible representations of
Pn ([BZ76, 5.13]).

Now assume � is supercuspidal. Then (3.5) vanishes for all s (see the remark on
[GPSR87, p. 117], again for SO2n). Regarding the r.h.s. of (3.6), since the i-th deriva-
tives of JV (�) (in the sense of [BZ77]) for 0 < i < n all factor through Jacquet modules
(non-twisted — without a character) of standard unipotent radicals of G, they all van-
ish. By [BZ77, Proposition 3.7b, c], the contribution to (3.6) comes from the n-th
derivatives of both JV (�) and Jh0Nl\Mm,h0 l,↵

(�0| det |1/2�s
⌧
_ ⌦!), which correspond to

the Whittaker characters on NGLn < Pn. This contribution is of dimension one if � is
generic, and 0 otherwise. ⇤
Proposition 3.4. The integral I(s,W, f) can be made a nonzero constant (independent
of s) for some choice of data (W, f) where f is holomorphic.

Proof. See [Kap13a, Lemma 3.1, Lemma 4.1]. ⇤
Corollary 3.5. I(s,W, f) is a rational function of q�s.

Proof. By Proposition 3.1 and Lemma 3.2, in a right half plane I(s,W, f) can be
regarded as a G-equivariant bilinear form on � ⇥ JNl, l,↵

(V (s, ⌧ ⌦ !)). The result now
follows from Theorem 3.3 and Proposition 3.4 together with Bernstein’s continuation
principle (in [Ban98]). ⇤

Let A(s, w) : V (s, ⌧ ⌦ !) ! V (1 � s, (!�1 � det)⌧_ ⌦ !) denote the standard inter-
twining operator, defined for Re(s) � 0 by an absolutely convergent integral, where
w is a representative for the long Weyl group element modulo the Weyl group of
the Levi part of Q. In this case the local coe�cient attached to A(s, w) is given by
�(2s� 1, ⌧, Sym2 ⌦ !) ([Sha81, Sha90]). By the results above and in particular, Theo-
rem 3.3, there is a well defined and not identically zero function �(s, �⇥ (⌧ ⌦ !), ) 2
C(q�s) such that for all W and f ,

�(s, � ⇥ (⌧ ⌦ !), )I(s,W, f) = I(1� s,W, �(2s� 1, ⌧, Sym2 ⌦ !)A(s, w)f).(3.7)

3.2. The descent map. Assume n > 1, � and ⌧ are irreducible supercuspidal, ⌧ and
! are unitary, and � is  NG,↵-generic. Then A(s, w) is holomorphic for Re(s) > 1/2
([Sha81, Lemma 2.2.5]). Its image A(1, w)V (1, ⌧ ⌦ !) (at s = 1) is isomorphic to the
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Langlands quotient LQ(1, ⌧ ⌦ !) of V (1, ⌧ ⌦ !). For any 1  l  m, define a descent
map by � ↵(l, ⌧,!) = JNl, l,↵

(LQ(1, ⌧ ⌦ !)).

Proposition 3.6. Let f be a holomorphic section. The function I(s,W, f) is holomor-
phic, and I(1� s,W,A(s, w)f) is holomorphic except perhaps at the poles of A(s, w).

Proof. Since � is supercuspidal, any W is compactly supported modulo CGNG. This
together with the fact that the inner integral

´
fs(�l,↵ug) 

�1
l,↵
(u)du stabilizes for large

compact open subgroups of N
�l,↵

l
(see [Kap13b, § 4.2]) implies that I(s,W, f) is holo-

morphic. The statement regarding I(1� s,W,A(s, w)f) follows immediately. ⇤
Theorem 3.7. If �(s, � ⇥ (⌧ ⌦ !), ) has a pole at s = 1, then L(s, ⌧_, Sym2 ⌦!�1)
has a pole at s = 0 and � pairs nontrivially with � ↵(l, ⌧,!). The converse is also true,
under the additional assumption that � ↵(l, ⌧,!) is semi-simple.

Proof. By Proposition 3.4, we may choose data (W, f) where f is holomorphic, such
that I(s,W, f) = 1 for all s 2 C. According to the definitions and [Sha90, Proposi-
tion 7.3], �(2s�1, ⌧, Sym2⌦!, ) has a pole at s = 1 if and only if L(2�2s, ⌧_, Sym2⌦
!
�1) does. Since A(1, w) is holomorphic, it follows from (3.7) and Proposition 3.6 that

�(s, � ⇥ (⌧ ⌦ !), ) has a pole at s = 1 if and only if L(2 � 2s, ⌧_, Sym2 ⌦ !
�1) does

and I(1 � s, ·, A(s, w)·)|s=1 6= 0, which means that I(1 � s,W,A(s, w)f) is nonzero
at s = 1 for some W and holomorphic section f . The latter condition, i.e., that
I(1� s, ·, A(s, w)·)|s=1 6= 0, implies that BilG(�, � ↵(l, ⌧,!)) 6= 0.

Note that if the r.h.s. of (3.7) has a pole at s = 1, then so does �(s, � ⇥ (⌧ ⌦ !), ),
even if I(s,W, f)|s=1 = 0.

For the converse direction we assume � ↵(l, ⌧,!) is semi-simple, L(s, ⌧_, Sym2 ⌦!�1)
has a pole at s = 0 and BilG(�, � ↵(l, ⌧,!)) 6= 0. Since

JNl, l,↵
(A(1, w)V (1, ⌧ ⌦ !)) ⇠= � ↵(l, ⌧,!)

which is semi-simple, �_ is also a subrepresentation of JNl, l,↵
(A(1, w)V (1, ⌧ ⌦!)) and

thereby of JNl, l,↵
V (0,!�1

⌧
_ ⌦ !).

Because the embedding G < H identifies C
�

G
with CH , C

�

G
acts on the space of

JNl, l,↵
V (0,!�1

⌧
_ ⌦ !) by a fixed character. Hence Remark 2.1 implies that �_ is a

direct summand of JNl, l,↵
V (0,!�1

⌧
_ ⌦ !) and we write

JNl, l,↵
V (0,!�1

⌧
_ ⌦ !) = E�_ � E,

where E�_ is the space of �_. This gives rise to a projection ⇤ : JNl, l,↵
V (0,!�1

⌧
_ ⌦

!) ! �
_ which vanishes on E.

Next, denote

H = BilG(�, JNl, l,↵
V (0,!�1

⌧
_ ⌦ !)).

By Theorem 3.3 and Proposition 3.4, dimH = 1. Hence �_ appears as a quotient of
JNl, l,↵

V (0,!�1
⌧
_ ⌦!) with multiplicity 1. It follows that there is a unique projection

JNl, l,↵
V (0,!�1

⌧
_ ⌦ !) ! �

_, up to scaling.
Since the integral regarded as a bilinear form in H is nonzero, it is a (nonzero) scalar

multiple of ⇤. As such, the integral does not vanish upon restriction to A(1, w)V (1, ⌧⌦
!), since the latter contains E�_ . Therefore I(1� s, ·, A(s, w)·)|s=1 6= 0. As explained
above, together with the assumption that L(2�2s, ⌧_, Sym2⌦!�1) has a pole at s = 1,
we infer �(s, � ⇥ (⌧ ⌦ !), ) has a pole at s = 1. ⇤
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4. The tower Property

We proceed with the notation of § 3.1. In this section we prove that the Jacquet
module JNl, l,↵

(IndH

Q
(| det |1/2⌧⌦!)), for a supercuspidal ⌧ , satisfies the so-called tower

property. Namely, for the maximal l such that this module is nonzero, it is supercus-
pidal.

Recall l = m�n. Let UG,p be the unipotent radical of a standard parabolic subgroup
QG,p of G whose Levi part is isomorphic to GLp ⇥GSpin2(n�p) (1  p  n if G is split,
otherwise 1  p  n � 1). Denote U = V(p+1,1l�1) n Up+l < Np+l, where V(p+1,1l�1) is
identified with its images in H under ◆.

Proposition 4.1. Let ⇡ be a representation of H. Fix w = wp,l such that pr(w) =

diag(
⇣

Ip

Il

⌘
, I2(m�l�p)+1,

⇣
Il

Ip

⌘
). Then JUG,p(JNl, l,↵

(⇡)) ⇠= JU , l+p,↵
(⇡) as vector spaces.

Proof. Assume p < n. Put N = w(NloUG,p), and write the elements of N in the form

[z; u, a, d, e; x1, x2] =

0

@
Ip 0 x1 d x2

u z a e d
0

0 0 I2(n�p)+1 a
0
x
0
1

0 0 0 z
⇤ 0

0 0 0 u
0
Ip

1

A , z 2 NGLl
,

✓
Ip x1 x2

I2(n�p)+1 x
0
1

Ip

◆
2 NG

(see (3.2)). Put L = V
�

(p,l). Throughout the proof we identify NGLl
= {[z; 0, 0, 0, 0; 0, 0] :

z 2 NGLl
} and L < {[Il; u, 0, 0, 0; 0, 0]}. Extending  l,↵ trivially on UG,p to a character

of NlUG,p gives a character of N ,  N = w
 l,↵. In particular  N |NGLl

=  NGLl
and

because p < n,  N |L = 1. Then JUG,p(JNl, l,↵
(⇡)) ⇠= JN , N (⇡) (as vector spaces). Note

that JN , N (⇡) is a representation of w
GnN .

For 0  i  l�1, let Li be the subgroup of L consisting of matrices
⇣

Ip

z Il

⌘
such that

all rows of z except the (l � i)-th row are 0, and Li denote the subgroup of elements⇣
Ip

z Il

⌘
where the last i+ 1 rows, i.e., rows l � i, . . . , l, are 0.

We argue by repeatedly applying the local “exchange of roots” [GRS99a, Lemma 2.2].
Let C

0 = {[Il; 0, a, d, e; x1, x2]} and Y
0 = L0. Let X

0 be the unipotent subgroup of
H consisting of the coordinates in the blocks x1, x2, x

0

1 depicted in [Il; 0, 0, 0, 0; x1, x2]
above, without the prescribed condition with respect to NG. The group X

0 \ C
0 is

normal in X
0 and the quotient is abelian, because it is isomorphic to F

p (note that
if x1 = 0, the conditions imposed on x2 by the definitions of G or H coincide). Also
X

0
C

0 = Ul+p < H. In addition, X
0 \ C

0 acts trivially on the space of JN , N (⇡)
because  N |X0\C0 = 1. Put  C0 =  N |C0 . By the local analog of [GRS11, Lemma 7.1],
namely the extension of [GRS99a, Lemma 2.2] to the case where the intersections
X\C or Y \C are nontrivial, where X, Y and C are the subgroups defined in [GRS11,
§ 7.1] and [GRS99a, Lemma 2.2] (we take C = C

0, X = X
0, Y = Y

0; C0 \ X
0 is

nontrivial), JY 0nC0, Y 0nC0 (⇡)
⇠= JX0C0, X0C0 (⇡) (as vector spaces), where the characters

 ... are extended trivially on Y
0 and X

0. Since L = L0 · L0 (direct product), N =
NGLl

n (L0 n (Y 0 n C
0)) and  X0C0 =  l+p,↵|Ul+p

,

JUG,p(JNl, l,↵
(⇡)) ⇠= JNGLl

, NGLl
(JL0(JY 0nC0, Y 0nC0 (⇡)))

⇠= JNGLl
, NGLl

(JL0(JUl+p, l+p,↵
(⇡))).

Next we handle the group L0. For 1  i  l�1, denote U i = V(p+l�i,1i)nUp+l < Np+l.
Embed NGLi�1 < NGLi via z 7! diag(z, 1), then NGLi = NGLi�1 n V(i�1,1). Also note
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that Li = Li+1 · Li+1. Let C
1 = V(l�1,1) n Ul+p where V(l�1,1) < NGLl

; Y 1 = L1; and
X

1 = V(p+l�1,1)\V(p,l) < NGLl+p
(identified with its image under ◆). ThenX

1nC
1 = U1,

 C1 =  l+p,↵|C1 and by [GRS99a, Lemma 2.2] (X1 \C
1 is trivial), JY 1nC1, Y 1nC1 (⇡)

⇠=
JX1nC1, X1nC1 (⇡) where again the characters  ... are extended trivially on Y

1 and X
1.

Hence

JNGLl
, NGLl

(JL0(JX0C0, X0C0 (⇡)))
⇠= JNGLl�1

, NGLl�1
(JL1(JU1, l+p,↵

(⇡))).

We repeat this argument for i = 1, . . . , l � 2, with C
i+1 = V(l�i�1,1) n U i, Y i+1 = Li+1

and X
i+1 = V(p+l�i�1,1) \ V(p,l�i), each time [GRS99a, Lemma 2.2] implies

JNGLl�i
, NGLl�i

(JLi(JXinCi, XinCi
(⇡))) ⇠= JNGLl�i�1

, NGLl�i�1
(JLi+1(JU i+1, l+p,↵

(⇡))).

Thus JUG,p(JNl, l,↵
(⇡)) ⇠= JU l�1, l+p,↵

(⇡) as claimed (U l�1 = U).
It remains to consider p = n (then G is split). There are two standard maximal par-

abolic subgroups QG,p, but they are conjugate, hence it su�ces to prove the statement
for one. Write ↵ = �

2 and consider h 2 pr�1(h0) where h0 2 SO2m+1 is defined by

h0 = diag(Im�1,

✓
��/4 1/2 1/(2�)
�/2 0 1/�
�/2 1 �1/�

◆
, Im�1) (h�1

0 = diag(Im�1,

✓
�1/� 1/� 1/(2�)

1 0 1/2
�/2 �/2 ��/4

◆
, Im�1)).

Then h0y↵ = em+1 and the only di↵erence between h
 l,↵ and (3.1) is that y↵ in (3.1) is

replaced with em+1. The group h
G is the stabilizer of h

 l,↵, and h
JUG,p(JNl, l,↵

(⇡)) ⇠=
JhUG,p

(JNl,
h l,↵

(⇡)). We choose QG,p such that (3.2) for h
UG,p takes the form {

�
In u

0 In

�
}

(note that for u in the form (3.2), the column x in h
u becomes 0). With this “patch”

we proceed as above, now with p = n: denote N = w(Nl o h
UG,p), the elements

[z; u, a, d, e; x1, x2] take the same form except x1 = 0; L = V
�

(p,l);  N = wh
 l,↵,

 N |NGLl
=  NGLl

and because of the conjugation by h,  N |L = 1. ⇤

Regard Pp+1 as a subgroup of H via ◆.

Theorem 4.2. Let ⌧ be a supercuspidal representation of GLm and ⇡ be a subquotient
of IndH

Q
(| det |1/2⌧ ⌦ !). As vector spaces,

JUG,p(JNl, l,↵
(⇡)) ⇠= ind

Pp+1

NGLp+1
(JNl+p, l+p,↵

(⇡)).(4.1)

In particular JNl, l,↵
(⇡) enjoys the following “tower property”: For the largest l such

that JNl, l,↵
(⇡) 6= 0, JNl, l,↵

(⇡) is supercuspidal.

Proof. By Proposition 4.1 applied to ⇡, JUG,p(JNl, l,↵
(⇡)) ⇠= JU , l+p,↵

(⇡). For brevity,
denote the latter representation by ⇢. Observe that ⇢ is a representation of Pp+1. By
[BZ77, 3.5] (see also [BZ76, 5.15]), there is a filtration of Pp+1-modules

0 ⇢ ⇢p+1 ⇢ . . . ⇢ ⇢1 = ⇢, ⇢i = (�+)i�1(��)i�1(⇢), ⇢i+1\⇢i = (�+)i�1 +(⇢(i)).

Here ⇢(i) =  �(��)i�1(⇢) is the i-th derivative of ⇢, and �⌥
, ⌥ are the functors from

[BZ77]. Since ⌧ is supercuspidal and ⇡ is a constituent of IndH

Q
(| det |1/2⌧ ⌦!), ⇢(i) = 0

for all 1  i  p by [BZ77, Corollary 2.13a]. Hence ⇢ = ⇢p+1 = (�+)p(��)p(⇢) and
(4.1) follows because (��)p(⇢) = JNl+p, l+p,↵

(⇡).
The second assertion is clear because by (4.1) and the maximality of l, the Jacquet

modules of ⇡ along the standard maximal parabolic subgroups of G all vanish. ⇤
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5. The vanishing results

5.1. Outline of the method. In this section we prove the vanishing of the descent
map in the relevant range (see Theorem 5.5 below). We briefly recall the analogous
result for SO2n+1 (for details see [GRS99a, GRS99b]). Let ⌧ be an irreducible uni-
tary supercuspidal representation of GLm such that L(s, ⌧,^2) has a pole at s = 0
(in particular, m is even). Then ⌧ a↵ords a Shalika model, hence also a linear model,
i.e., ⌧ embeds into C

1(GLm/2 ⇥GLm/2 \GLm). It then follows that the representa-
tion parabolically induced from | det |1/2⌧ to Sp2m injects into C

1(Sp
m
⇥ Sp

m
\ Sp2m).

The vanishing properties of the tower of local descent maps are proved by showing
that the corresponding Jacquet modules vanish on C

1(Sp
m
⇥ Sp

m
\ Sp2m) ([GRS99b,

Theorem 17]).
We consider a representation ⌧ such that the symmetric or twisted symmetric square

L-function has a pole at s = 0. Let us begin with the case of L(s, ⌧, Sym2). One can
find a pair (✓, ✓0) of exceptional representations (in the sense of [KP84]) of a double

cover fGLm of GLm, such that ⌧ is a quotient of ✓⌦ ✓0 ([Yam17, Theorem 3.19], see also
[Kap16b, Theorem 1.3]). Note that the tensor product ✓⌦✓0 is a well defined representa-
tion of GLm. Then in [Kap16b, Proposition 4.1] it was proved that IndH

Qm
(| det |1/2⌧⌦1)

is a quotient of ⇥ ⌦ ⇥0, where ⇥ and ⇥0 are exceptional representations of a double
cover eH of H(= GSpin2m+1), defined in [Kap17b]. The remaining step, proving the
vanishing of the Jacquet modules of ⇥⌦⇥0, has already been established in [Kap16b,
Theorem 1.1] but only for the “ground level”, i.e., the generic case (l = m). Here we
complete the proof for all l > m/2.

Now assume ! is a unitary character of F ⇤ and L(s, ⌧, Sym2 ⌦!) has a pole at s = 0.
According to Yamana [Yam17, Theorem 3.19], ⌧ (or a twist of ⌧ for oddm) is a quotient
of a tensor product of two “extended exceptional representations” (see § 5.2 below for
the definition). To proceed, we need to define an extended version of the exceptional
representations of eH. This can be done along the line of arguments of [Tak14, Kap17b],
then [Kap16b, Proposition 4.1] becomes applicable in this setup as well. In this manner
we treat Sym2 and Sym2 ⌦! simultaneously.

We further note, for the interested reader, that the case where L(s, ⌧, Sym2) has a
pole at s = 0 is also relevant for the descent construction from GL2n to SO2n, which
uses the Rankin–Selberg integrals of [Kap13c]. The details of that case have not yet
appeared in print, but the expected vanishing result will follow immediately from the
proof here, under a certain mild assumption on the field, by replacing H with SO2m+1

and using non-extended exceptional representations. See [Kap16b, § 5].

5.2. Exceptional representations. Recall the fixed Borel subgroup B = TnN ofH,
the maximal parabolic subgroups Qk = Mk nUk, T < Mk

⇠= GLk ⇥GSpin2(m�k)+1 and
Uk < N , the embedding ◆ : GLm ! Mm, and the fixed character  of F (see § 2). Let
⌥ = ⌥m denote the “canonical” character of H constructed in [Kap17b, § 1.2]. Fixing
an identification [, ] : GLk ⇥GSpin2(m�k)+1 ! Mk for each k, this character satisfies
⌥([a, b]) = det(a) ·⌥m�k(b) (a 2 GLk, b 2 GSpin2(m�k)+1) and in particular for k = m

(then b 2 GL1), ⌥([a, b]) = det(a) · b�2. Let eH be the double cover of H, constructed
in [Kap17b] by restricting the double cover of Spin2m+3 of Matsumoto [Mat69] and
using the cocycle � of Banks et. al. [BLS99] (in [Kap17b] we showed that � is block-
compatible). We fix a section s : H ! eH such that �(h, h0) = s(h)s(h0)s(hh0)�1. This
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section restricts to a homomorphism of N . For any X ⇢ H let eX be its preimage in eH.
In particular fGLm is defined by restriction from eH, and it is a nontrivial double cover
of the class studied in [KP84, Tak14]. We have C eH = eCH , in contrast with double

coverings of GL2m ( eCH denotes the preimage of CH in eH).
The exceptional representations of eH were developed (locally and globally) in [Kap17b],

by adapting the construction of Bump et. al. [BFG03, BFG06] for a covering of
SO2m+1. For a convenient summary see [Kap16b, § 2.8]. Let ⇠ be a genuine charac-

ter of C eT , whose restriction to C eTGLm
and C eH is a genuine lift of �1/4

BGLm
· | det |(m+1)/4

and the trivial character, respectively (note that C eTGLm
< C eT ). This determines ⇠

uniquely when m is even, in the odd case there is an additional choice of a Weil factor.
Let ⇢(⇠) denote the corresponding genuine irreducible representation of eT (see e.g.,

[KP84, McN12]). Then ind
eH
eB (⇢(⇠)) has a unique irreducible quotient ⇥0. An excep-

tional representation ⇥ of eH is then any twist of ⇥0 by a non-genuine character of H,
i.e., ⇥ = (� �⌥) ·⇥0 where � is a quasi-character of F ⇤.

The main property of ⇥ is that its Jacquet module along a unipotent radical of
a parabolic subgroup is, essentially, an exceptional representation of the stabilizer.
See [Kap17b, Proposition 2.19] for a more precise statement (see also [BFG03, The-

orem 2.3]). This result and the fact that exceptional representations of fGLm do not
a↵ord a Whittaker functional for m > 2 ([KP84, Kap17a], see also [Yam17]), imply
through a series of intermediate results, that ⇥ is “small” in the sense that it is at-
tached to one of the unipotent orbits next to the minimal one (see [BFG03]). The
following theorem encapsulates all the vanishing properties of ⇥.

Regarding the elements of U1 as row vectors, any character � of U1 takes the form
�(u) =  

�P2m�1
i=1 �iui

�
, with �i 2 F . The length of � is defined by 2

P
m�1
i=1 �i�2m�i +

�
2
m
. While the length depends on  , it is zero or not independently of  .

Theorem 5.1. ([BFG03, Theorem 2.6], [BFG06, Proposition 3], [Kap17b, Lemma 2.25])
For any � with nonzero length, JU1,�(⇥) = 0.

Corollary 5.2. Let V < U1 (as algebraic groups) and � be a character of V , such that
the action of NM1(V,�) (see § 2 for this notation) on the set of characters of V \U1 has
finitely many orbits. Assume any extension of � to a character of U1 has a nonzero
length. Then JV,�(⇥) = 0.

Proof. The quotient V \U1 is abelian. By [BZ76, 5.9–5.12], if JV \U1,�
0(JV,�(⇥)) = 0

when �
0 varies over a complete set of representatives for the orbits, JV,�(⇥) = 0 (by

our assumptions, �0 varies over a finite set). Since JV \U1,�
0(JV,�(⇥)) = JU1,�1(⇥) where

�1 extends �, the length of �1 is nonzero and JU1,�1(⇥) = 0 by Theorem 5.1. ⇤
For example when m = 2, if V is defined by u1 = 0, the character �(v) =  (�u2)

satisfies the requirement of the corollary for any � 6= 0.

Corollary 5.3. Let � be a character of U1 defined by the vector (�, 0, . . . , 0), where
� 6= 0. The subgroup U2 acts trivially on JU1,�(⇥).

Proof. We argue exactly as in the proof of [BFG06, Proposition 4]. ⇤
As mentioned above, the Jacquet functor takes exceptional representations into ex-

ceptional representations. We describe the particular case of JUm . Let ✓0 be the unique
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irreducible quotient of ind
fGLm
eBGLm

(⇢(⇠0)), where ⇠0 is a lift of �1/4
BGLm

to a genuine character

of C eTGLm
. This lift is unique when m is even and depends on a Weil factor in the odd

case; still, if we fix one Weil factor, the representations ✓0 corresponding to the di↵erent
lifts are twists of one another by a square-trivial character (see [Kap17a, Claim 2.6]).

The exceptional representations of fGLm are thus ✓0 and its twists ✓ = (��det) · ✓0 (see
[KP84, BG92, Kab01]). Then

�
1/2
Qm

JUm(⇥0) = | det |(m�1)/4
✓0 ⌦ 1(5.1)

([Kap16b, (2.8)], the Jacquet functor there was not normalized; see also [Kap17b,
Claim 2.21]). Note that the direct factors of Mm commute in the cover, but this
is a special phenomenon, which does not hold for Mk with k < m. Equality (5.1)
implies (almost formally) that when we take a unitary quotient ⌧ of ✓ ⌦ ✓

0, there is a
suitable unitary character ! of F ⇤ (depending on ✓ and ✓0) and a pair of exceptional
representations (⇥,⇥0) of eH, such that IndH

Qm
(| det |1/2⌧ ⌦ !) is a quotient of ⇥ ⌦ ⇥0

([Kap16b, Proposition 4.1]).
As explained in § 5.1, to handle the twisted symmetric square L-function we need

to consider a wider class of exceptional representations, which we call extended excep-
tional representations (exceptional ones are included in the definition). For fGL2 these

representations are formed by extending the Weil representation of fSp2 to a subgroup
of fGL2 of finite index, then inducing to fGL2 ([Gel76, GPS80]). For fGLm they were
constructed by Banks [Ban94] under the assumption that F is p-adic of odd residual

characteristic. The general case of fGLm is due to Takeda [Tak14, § 2.2–2.4].
We begin with a brief description of his construction. Let � be a unitary character of

F
⇤ such that �(�1) = �1. Denote by !�

 
the irreducible summand of the Weil repre-

sentation ! of fSp2 consisting of odd functions. One can extend !�

 
to a representation

!
�

 ,�
of the subgroup fGL

(2)

2 of fGL2, where GL(2)
2 = {g 2 GL2 : det g 2 (F ⇤)2}, by letting

CGL2 act by �. More precisely if s : GL2 ! fGL2 is the chosen section, the action is
given by s(aI2) 7! �(a)� 0(a), where � 0 is the Weil factor corresponding to an additive

character  0 of F . The extended exceptional representation ✓�2 = Ind
fGL2

fGL
(2)
2

(!�

 ,�
) is irre-

ducible supercuspidal and unitary, and independent of the choice of  0. (In contrast,
the exceptional representations of [KP84] are not supercuspidal.)

Now assume m is even and let � = (2m/2) be a composition of m. Consider the
representation

Ind
fGLm
eP�

((✓�2 e⌦ . . . e⌦✓�2 )�
1/4
P�

).

Here e⌦ is the metaplectic tensor product ([Kab01, Mez04]), which in this case is canon-
ical (see [Tak16, Remark 4.3]). Since the inducing data is tempered, the Langlands
quotient theorem — proved for metaplectic groups by Ban and Jantzen [BJ13] im-
plies that it has a unique irreducible quotient ✓�

m
, which is defined to be an extended

exceptional representation of fGLm. The representation ✓
�

m
is also the image of the

intertwining operator with respect to the longest Weyl element relative to P�. We also
have the following the “periodicity result” ([Tak14, Proposition 2.36])

JV�
(✓�

m
) = (✓�2 e⌦ . . . e⌦✓�2 )�

�1/4
P�
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(in loc. cit. JV�
was not normalized). See [KP84, Theorem I.2.9] for this statement on

exceptional representations. As above, we can twist ✓�
m
by �1�det for a quasi-character

�1.
We follow a similar paradigm to construct extended exceptional representations of

eH. Let R = A n V be the standard parabolic subgroup of H with A ⇠= M� ⇥ GL1.
Consider the representation

⇧� = Ind
eH
eR (((✓

�

2
e⌦ . . . e⌦✓�2 )⌦ 1)�1/4

R
).

Again, according to the Langlands quotient theorem [BJ13] this representation has a
unique irreducible quotient ⇥�. Since the inducing data is supercuspidal, according
to [BZ77, Corollary 2.13c] JV (⇧�) is glued from (that is, admits a filtration whose
subquotients are)

w(((✓�2 e⌦ . . . e⌦✓�2 )⌦ 1)�1/4
R

),

where w varies over the Weyl elements of H which satisfy w
A = A and are reduced

modulo the Weyl group of A. The periodicity result becomes

JV (⇥
�) = ((✓�2 e⌦ . . . e⌦✓�2 )⌦ 1)��1/4

R
.(5.2)

See [Kap17b, Proposition 2.16] for this statement for ⇥. A family of extended excep-
tional representations can be obtained by varying �, and twisting using �1 �⌥.

Let E = B n Z be a standard parabolic subgroup of H. By [BZ77, Corollary 2.13],
if Z \A is nontrivial, JZ(⇥�) = 0, and if B contains A, JZ(⇥�) is irreducible (combine
loc. cit. with the transitivity of the Jacquet functor and (5.2)).

By virtue of the above observations, the results of [Kap17b, § 2.3.1] for ⇥ are ap-
plicable to ⇥� as well. Also note that Yamana [Yam17] proved ✓�

m
does not a↵ord a

Whittaker functional when m � 3. Thus the arguments of [Kap17b, § 2.3.2] are valid
as well, in particular [Kap17b, Lemma 2.25], and we deduce that Theorem 5.1 and its
corollaries are applicable also to ⇥�.

The analog of (5.1) holds as well (see [Kap17b, Claim 2.21]), with (⇥0, ✓0) replaced
by (⇥�, ✓�

m
), whence the proof of [Kap16b, Proposition 4.1] extends to ⇥�. By that

proposition, if ⌧ is a quotient of ✓�
�1

m
⌦ ✓m, Ind

H

Qm
(| det |1/2⌧ ⌦ �) is a quotient of two

extended exceptional representations of eH.
Since ⇥� enjoys the same properties of ⇥ relevant to this work, namely Theorem 5.1,

Corollary 5.2 and Corollary 5.3, we omit � and simply write ⇥ in all cases.

5.3. The generic Jacquet modules of ⇥. Recall the Weil representation of the
metaplectic group. In this section we prove that the Jacquet module of an extended
exceptional representation ⇥ with respect to CUl

(the center of Ul) and a “generic
character” is a direct sum of Weil representations. For l = m this was proved in
[Kap16b, Theorem 1.4].

Assume 0 < l  m is even and set l = 2j and C = CUl
⇠= F

l⇥l. Let  j denote a
character of C whose stabilizer in Ql is Spl

nUl; such a character is called generic and
for convenience we may assume it is defined by  j(c) =  (

P
j

i=1 ci,i).
Put r = l(2(m � l) + 1). Let H be a generalized Heisenberg group of rank r + 1.

Identify H with the set of elements (a, b; c), where a and b are rows in F
r/2, c 2 F , and

the product is given by

(a, b; c) · (a0, b0; c0) =
⇣
a+ a

0
, b+ b

0
, c+ c

0 + 1
2(a, b)

⇣
Jr/2

�Jr/2

⌘
t(a0, b0)

⌘
.
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Here Jr/2 is the r/2⇥r/2 permutation matrix having 1 on its anti-diagonal and t(a0, b0)
is the transpose of (a0, b0). We have the epimorphism ` : Ul ! H defined by

`(u) = (a1, . . . , aj, b1, . . . , bj,
1
2(

jX

i=1

ci,i � cl+i,l+i)),

where b1, . . . , bj are the first j rows of v and a1, . . . , aj are the last and we recall that
u is written using the notation of (5.4) (with z = Il). Also let R < H be the subgroup
consisting of elements (0, b; 0).

Since  j is trivial on the kernel of `, we may regard JC, j(⇥) as a smooth represen-
tation of H, and as such it is the direct sum of irreducible Weil representations ! ,
where  is our fixed character of F .

The representation ! extends to a representation of fSp
r
n H, where fSp

r
is the

metaplectic double cover of Sp
r
. Using the action of Sp

l
on each of the 2(m � l) + 1

columns of v we construct an embedding of Sp
l
in Sp

r
. Moreover, the covering fSp

l

obtained by restricting eH does not split over Sp
l
, hence it is the metaplectic double

cover, therefore the embedding extends to an embedding of the coverings, also denoted
` (one may also apply the strong block compatibility property of the cocycle [BLS99,
Theorem 2.7] to deduce this).

As a smooth representation of a generalized Jacobi group, JC, j(⇥) is isomorphic to

a representation  ⌦ ! , where ( ⌦ ! )(`(g)h) = (g) ⌦ ! (`(g)h) for g 2 fSp
l
and

h 2 H, and  is a non-genuine representation (see e.g., [Ike94, § 1]). The following
claim proves  is trivial.

Theorem 5.4. As a representation of fSp
l
nH, JC, j(⇥) is isomorphic to a (possibly

infinite) direct sum of copies of the representation ! .

Proof. The proof of [Kap16b, Theorem 1.4] (when l = m) carries over to l < m, we
describe the argument briefly. We need to show  is a trivial representation. Let

Y =
n⇣ 1 y

Il�2
1

⌘o
< Sp

l
.

It is enough to show J`(Y ), �
() = 0, where  �(y) =  (�y), for all � 6= 0. Consider

V =

8
>><

>>:

0

BB@

1 0 y b 0 0 ⇤

Il�2 0
1 0
I2(m�l)+1 b

0

1 y
0

Il�2 0
1

1

CCA

9
>>=

>>;
< U1.

The mapping ` is an isomorphism of V onto the direct product `(Y ) ·R1, where R1 < R

consists of elements (0, (b, 0, . . . , 0); 0) with b 2 F
2(m�l)+1. First observe that

JV, ��`
(JC, j(⇥)) = 0.(5.3)

This follows because this space is a quotient of JV ·(C\U1),( ��`) j(⇥) which vanishes by
Corollary 5.2. Indeed for c 2 C \ U1,  j(c) =  (c1,1), thus any extension of ( � � `) j

to a character of U1 is a character of nonzero length (the extension is defined by a
character of V(1,l�2) taken from one of 2 orbits under the action of GLl�2 < P(1,l�2)).
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Since JR(! ) is one-dimensional ([Kap16b, Claim 2.4]), there is a vector ' in the
space of ! such that the Jacquet integrals

'
Y,R =

ˆ
Y

ˆ
R

! (yr)' dr dy

do not vanish for all compact subgroups Y < Y and R < R (see [BZ76, 2.33]). Then
given ⇠ in the space of , arguing as in [Kap16b, p. 922] using the fact that JR(! ) is
one-dimensional and (5.3), one shows that for su�ciently large Y and R,ˆ

Y

(y)⇠ �1
�
(y) dy ⌦ '

Y,R = 0.

This implies that ⇠ vanishes in J`(Y ), �
() ([BZ76, 2.33]). ⇤

5.4. Vanishing results. Let ⌧ be an irreducible unitary supercuspidal representation
of GLm, and ! be a unitary character of F ⇤. Assume L(s, ⌧, Sym2 ⌦!) has a pole at
s = 0. We prove � ↵(l, ⌧,!) = 0 for m/2 < l  m.

If m is even, by [Yam17, Theorem 3.19(1)] ⌧ is a quotient of ✓!
m
⌦ ✓m where the

extended exceptional representations are determined (non-uniquely) by ⌧ and !. Then
according to [Kap16b, Proposition 4.1] there is a pair of extended exceptional repre-
sentations (⇥,⇥0) of eH such that IndH

Qm
(| det |1/2⌧ ⌦ !) is a quotient of ⇥⌦⇥0.

When m is odd, let !⌧ be the central character of ⌧ and ⌘ = !
�1
⌧
!
�(m�1)/2. By

[Yam17, Theorem 3.19(2)], (⌘ � det)⌧ is a quotient of ✓⌦ ✓
0 and moreover ⌘2 = !, then

[Kap16b, Proposition 4.1] implies IndH

Qm
(| det |1/2(⌘ � det)⌧ ⌦ 1) is a quotient of some

⇥⌦⇥0. Since

IndH

Qm
(| det |1/2(⌘ � det)⌧ ⌦ 1) = (⌘ �⌥) IndH

Qm
(| det |1/2⌧ ⌦ ⌘

2),

IndH

Qm
(| det |1/2⌧ ⌦ !) is a quotient of (⇥00

,⇥0) with ⇥00 = (⌘�1 �⌥)⇥.

Theorem 5.5. For any ⇥, ⇥0 and m/2 < l  m, JNl, l,↵
(⇥⌦ ⇥0) = 0. In particular,

� ↵(l, ⌧,!) = 0 for m/2 < l  m.

Remark 5.6. We do not assume anything on ↵ (except that ↵ 6= 0). This is reasonable
because Theorem 5.1 applies to any character of nonzero length.

Proof. For l = m this is [Kap16b, Theorem 1.1]. The framework of the proof for l  m

is similar, but the proof involves several new di�culties (e.g., see Lemma 5.7 below).
Recall the unipotent radical Nl of Pl, which we write in the form

Nl =
n⇣

z v c

I2(m�l)+1 v
0

z
⇤

⌘
: z 2 NGLl

o
.(5.4)

Let C = CUl
. The group Ml acts on the characters of C with bl/2c orbits. We choose

representatives for these orbits:  0(c) = 1 and

 j(c) =  (
jX

i=1

cl�2j+i,i), 0 < j  bl/2c.

Here c is regarded as an l ⇥ l matrix. Denote the stabilizer of  j in Ql by Stj,

Stj = (GLl�2j ⇥ Sp2j ⇥GSpin2(m�l)+1)n V(l�2j,2j))n Ul.
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By virtue of the Geometric Lemma of Bernstein and Zelevinsky ([BZ77, Theorem 5.2]
and [BZ76, 5.9–5.12]), as a representation of eQl, ⇥ is glued from

ind
eQl
eStj
(JC, j(⇥)), 0  j  bl/2c.

A similar result applies to ⇥0, where we use  �1 for the representatives of the orbits.
In turn ⇥⌦⇥0 is glued from tensor products of such representations, with indices j, j0.
According to [Kap17a, Lemma 2.3], when we apply the Jacquet functor with respect
to Nl and  l,↵ only those with j = j

0 remain. Since the tensor product of two genuine
representations is a non-genuine representation, we need to show that for all j,

JNl, l,↵
(indQl

Stj
(JC, j(⇥)⌦ J

C, 
�1
j
(⇥0))) = 0.(5.5)

Since  j is trivial on Ul�2j \ C (e.g., on C if j = 0), JC, j(⇥) is a representation of
E = Ul�2j/(Ul�2j \ C) and thereby of Ul�2j (which is the trivial group when j = l/2).
We apply a filtration argument to JC, j(⇥) as a Ul�2j-module. Since there are infinitely
many orbits of characters of Ul�2j with respect to the action of Stj, we will carry out
the argument in stages. Let U1

l�2j = Ul�2j \U1 and define inductively U
i

l�2j = (Ul�2j \
Ui)/(

Q
i�1
k=1 U

k

l�2j) for 1 < i  l � 2j (U i

l�2j n
Q

i�1
k=1 U

k

l�2j). Set E
i = U

i

l�2j/(C \ U
i

l�2j),
namely the i-th row of E.

Lemma 5.7. The representation JC, j(⇥) is glued from the representations

JUl�2jC,�k j(⇥), 0  k  min(m� l, l � 2j),

where �k is a character of Ul�2j, �0 = 1 and for k > 0, �k(u) =
Q

k

i=1  (ul�2j�i+1,l�i+1).

The proof is given below, after the proof of the theorem.
The lemma holds trivially when j = l/2; when l = m, the lemma (whose proof is

now shorter) shows that Ul�2j acts trivially on JUl�2jC,�k j(⇥), simplifying the following
arguments; the case l < m involves zero length characters defined on Ui \ Ul�2j.

If 0 < k < l� 2j, V(l�2j�k,k) is nontrivial. The group V(l�2j�k,k) normalizes Ul�2j and
stabilizes �k, we prove that its action on JUl�2jC,�k j(⇥) is trivial. The set of characters
of V(l�2j�k,k) is partitioned into finitely many orbits, under the action of M(l�2j�k,k)

embedded in the stabilizer of �k j via diag(x, y) 7! ◆(diag(x, y, Il�k, y)) (x 2 GLl�2j�k,
y 2 GLk). Thus it su�ces to show that for any nontrivial character µ of V(l�2j�k,k),

JV(l�2j�k,k)nUl�2j ,µ�k j(⇥) = 0.(5.6)

Indeed, as in [Kap16b, Claim 3.3] applying [GRS99a, Lemma 2.2] and another conjuga-
tion we see that JV(l�2j�k,k)Ul�2jC,µ�k j(⇥) is a quotient of JU1,⌫(⇥), where ⌫(u) =  (u1),
and the action of the (l� 2j� k+1)-th row of Ul given by the restriction of �k to this
row transforms into a nontrivial action of U2. This contradicts Corollary 5.3 unless
(5.6) holds.

Let Stj,k = NMl�2j\Ql
(Ul�2jC,�k j). As a representation of eStj, JC, j(⇥) is filtered

by ind
eStj
eStj,k

JUl�2jC,�k j(⇥) with k varying as in Lemma 5.7. Applying the same argument

to J
C, 

�1
j
(⇥0), the l.h.s. of (5.5) is filtered by JNl, l,↵

indQl
Stj

(⇧j,k,k0) where 0  k, k
0 

min(m� l, l � 2j) and

⇧j,k,k0 = ind
eStj
eStj,k

JUl�2jC,�k j(⇥)⌦ ind
eStj
eStj,k0

J
Ul�2jC,�

�1
k0  

�1
j
(⇥0).
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We prove JNl, l,↵
indQl

Stj
(⇧j,k,k0) vanishes by analyzing distributions on the orbits of

the right action of Nl on the (infinite) homogenous space Stj\Ql. By the Frobenius
reciprocity, the space of distributions on the orbit StjhNl is isomorphic to

H (h) = HomSh
(h

�1
⇧j,k,k0 , l,↵).

Here Sh = h
�1
Stj \Nl. We show H (h) = 0 for all h, then JNl, l,↵

indQl
Stj

(⇧j,k,k0) = 0 by
[BZ76, Theorem 6.9] concluding the proof of (5.5).

Let Q = Ql\Ql�2j. Since Stj\Q = Sp2j \GL2j, and Q\Ql/Nl = P(l�2j,2j)\GLl /NGLl

can be parameterized using the Weyl group of GLl, we can assume h = tw, where
t 2 GL2j is a representative of Sp2j \GL2j and w is a permutation matrix in GLl.

We note that one can take t 2 P2j. To see this consider b =
�
b1 b2
b3 b4

�
2 GL2j where

b1 is a block of size (2j � 1) ⇥ (2j � 1). If b1 2 GL2j�1, we can find x1 2 Sp2j such
that x1b 2 P(2j�1,1) (the last row of x1 will be ( �b3b

�1
1 1 )), then take a torus element

x2 2 Sp2j for which x2x1b 2 P2j. If b1 62 GL2j�1, then because the first 2j � 1 columns
of b contain a nonzero minor of order 2j�1, we can find a permutation matrix x0 2 Sp2j

such that x0b =
⇣

b
0
1 b

0
2

b
0
3 b

0
4

⌘
and b

0

1 2 GL2j�1.

The action of Ul�2j on the space of ⇧j,k,k0 is given by �j,k,k0 = �k�
�1
k0 . Note that GL2j

stabilizes  j,k,k0 .

First we claim H (h) = 0 unless StjhNl = StjtwNl for w =
⇣

Il�2j

I2j

⌘
. This is

trivial when j = 0 or l = 2j, assume 0 < j < l/2. If w is not of this form, then because
 l,↵|NGLl

=  NGLl
,  l,↵ and h

�j,k,k0 do not coincide on NGLl
\ h

�1
Ul�2j (Nl = NGLl

nUl).
Assume w takes this form and 0  j < l/2. Since  l,↵ is trivial on the first l�1 rows

of Ul/C and restricts to a character of nonzero length on the last row, now  l,↵ and
h
�j,k,k0 do not agree on Ul \ h

�1
Ul�2j unless k = k

0
> 0. Note that the case k + k

0 = 1
is ruled out because the lengths of both �k|El�2j and �k0 |El�2j are zero.

We can thus assume k = k
0
> 0, in which case �j,k,k0 = �j,k,k = 1. Consider k < l�2j.

Because V(l�2j�k,k) < Stj and h
�1
V(l�2j�k,k) < Nl, we have h

�1
V(l�2j�k,k) < Sh then by

(5.6), h
�1
⇧j,k,k = Jh�1

V(l�2j�k,k)
(h

�1
⇧j,k,k). Since  l,↵|h�1

V(l�2j�k,k)
6= 1 (h

�1
V(l�2j�k,k) =

w
�1
V(l�2j�k,k)), again H (h) = 0 unless V(l�2j�k,k) is trivial which is only possible if

k = l � 2j (because k > 0). In particular if j = 0, our assumption m/2 < l implies
m� l < l = l � 2j whence k < l � 2j, so that H (h) = 0 for all k in this case.

It remains to consider 0 < j  bl/2c and k = l � 2j. Since Ul�2j is a normal
subgroup of Stj which acts trivially on ⇧j = ⇧j,l�2j,l�2j, ⇧j = JUl�2j

(⇧j) then by
[Kap17a, Lemma 2.3],

⇧j = ind
Stj
Stj,l�2j

(⌅j(⇥,⇥
0)), ⌅j(⇥,⇥

0) = JUl�2jC,�l�2j j(⇥)⌦ J
Ul�2jC,�

�1
l�2j 

�1
j
(⇥0).

Note that h
�1
⇧j = ind

h�1
Stj

h�1Stj,l�2j
(h

�1
⌅j(⇥,⇥0)).

To describe Stj,l�2j we introduce the following notation. For 0  a  m, iden-
tify GSpin2a+1 with the natural direct factor of Mm�a, and for a � l let Q

a

l
=

M
a

l
n U

a

l
denote the standard maximal parabolic subgroup of GSpin2a+1 with M

a

l
=

GLl ⇥GSpin2(a�l)+1. Also let GL4

l�2j denote the embedding of GLl�2j in M2l�2j given
by b 7! ◆(diag(b, I2j, b)). With this notation

Stj,l�2j = ((GL4

l�2j ⇥Sp2j ⇥GSpin2(m�2l+2j)+1)n U
m�l+2j
l

)n Ul�2j.
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In order to prove H (h) = 0 we study distributions on the orbits of the right action
of Sh on h

�1
Stj,l�2j\h

�1
Stj. By the Frobenius reciprocity, the space of distributions on

(h
�1
Stj,l�2j)(h

�1
g)Sh, where g 2 Stj, is isomorphic to

H (h, g) = HomSh,g
((gh)

�1
⌅j(⇥,⇥

0), l,↵).

Here Sh,g = (gh)�1
Stj,l�2j \ Sh.

To parameterize the representatives h
�1
g (g 2 Stj), note that h

�1
◆(diag(Il�2j, V(2j,l�2j)))

is contained in Sh because Ul < Stj \ Nl is normalized by h. Thus we can assume
g = ◆(diag(Il, d))g0 where d 2 GLl�2j and g0 is a representative of Q

m�l

l�2j\GSpin2(m�l)+1.

Let H = ◆(diag(Il�2j ,w
�1))(Um�2l+4j

2j ) which is the generalized Heisenberg group of rank
r+1 = 2j(2(m�2l+2j)+1)+1 (see § 5.3). Since H < Stj \Stj,l�2j, JUl�2jC,�l�2j j(⇥)
is a representation of H. In addition Sp2j < Stj \ Stj,l�2j, thus JUl�2jC,�l�2j j(⇥) is a

representation of fSp2j nH.

Lemma 5.8. As a representation of fSp2j n H, JUl�2jC,�l�2j j(⇥) is isomorphic to a
(possibly infinite) direct sum of copies of the representation ! .

We proceed to prove H (h) = 0. According to Lemma 5.8, as a representation of
Sp2j nH the representation ⌅j(⇥,⇥0) is a direct sum of representations ! ⌦ ! �1 .

Since g and h normalize Ul, and H < Ul < Stj, (gh)�1H <
h
�1
Stj \ Nl = Sh. Also

(gh)�1H <
(gh)�1

Stj,l�2j, because H < Stj,l�2j. Therefore (gh)�1H < Sh,g. Note that
 l,↵|(gh)�1

H
is nontrivial if and only if l = 2j (because of the conjugation by w

�1, note
that j > 0 and that w is trivial when l = 2j). By the definitions, any morphism in
H (h, g) factors through

J(gh)�1
H, l,↵

((gh)
�1
⌅j(⇥,⇥

0)) ⇠= (gh)�1
JH,(gh) l,↵

(⌅j(⇥,⇥
0)).

These are representations of (gh)�1H and of the stabilizer of  l,↵|(gh)�1
H

in (gh)�1
Sp2j.

This stabilizer is (gh)�1
Sp2j unless l < 2j, in which case it is (gh)�1

(Sp
l
\Pl) because

 l,↵ is nontrivial only on the last row of CH\H, and the action of g on the characters of
each row of CH\H carries nontrivial characters to nontrivial ones as well as preserves
their length.

Since g commutes with ◆(GLl), (gh)�1
Sp2j = h

�1
Sp2j = ◆(t

�1
Sp2j) (recall h = tw).

Hence (gh)�1
Sp2j <

h
�1
Stj, and clearly (gh)�1

Sp2j <
(gh)�1

Stj,l�2j. Identify NGL2j

with ◆(diag(Il�2j, NGL2j)),
w

�1
NGL2j = ◆(NGL2j). Put Spt

2j = t
�1

Sp2j \NGL2j . Then
(gh)�1

Sp2j \w
�1
NGL2j = ◆(Spt

2j). Also ◆(Spt

2j) < ◆(NGL2j) < Nl. Thus ◆(Spt

2j) < Sh,g.
Moreover ◆(Spt

2j) belongs to the stabilizer of  l,↵|(gh)�1
H
: This is clear for l < 2j, and

holds when l = 2j because as explained above we can take t 2 Pl, then ◆(Spt

l
) =

t
�1
(Sp

l
\t
NGLl

) < (gh)�1
(Sp

l
\Pl).

Therefore it su�ces to show

Hom◆(Spt2j)
((gh)

�1
J
H,(gh) l,↵

(! ⌦ ! �1), l,↵) = 0.(5.7)

On the one hand, by [Kap16b, Claim 2.5] if ⌫ is any character of CH\H (trivial or
not), JH,⌫(! ⌦ ! �1) is the trivial one-dimensional representation of the stabilizer of
⌫ in Sp

r
(note that Sp

r
acts transitively on the nontrivial characters of CH\H). Thus

(gh)�1
JH,(gh) l,↵

(! ⌦ ! �1) is trivial. On the other hand by O↵en and Sayag [OS08,
Proposition 2], for any generic character  of NGL2j ,  |Spt2j 6= 1 for all t 2 GL2j (use
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Hr,r
0
with r = 0 and r

0 = 2j, in their notation). Since  l,↵|◆(NGL2j
) is generic we conclude

(5.7) whence H (h, g) = 0 and thereby H (h) = 0, in all cases. ⇤

Proof of Lemma 5.7. We apply a filtration argument to JC, j(⇥) according to the orbits
of characters of El�2j with respect to the action of Stj. If µ is such a character and is
nontrivial, we can assume it takes the form

b 7!  (✏b1 + (1� ✏)b2j+1 + (1� ✏)�b2(m�l+j)+1), b 2 F
2(m�l+j)+1 ⇠= E

l�2j
,

✏ 2 {0, 1} and � 2 F is either 0 or a representative of a coset of (F ⇤)2\F ⇤. In particular
the number of orbits is finite. Here if j = 0, we can already take ✏ = 0.

If ✏ = 0 and � 6= 0, we can use a conjugation of El�2j such that JEl�2j ,µ(JC, j(⇥))
becomes a quotient of JV,�(⇥), where � is a character of V < U1 and any extension of �
to a character of U1 is of nonzero length. But by Corollary 5.2 (or directly Theorem 5.1
when l � 2j = 1) with V \U1 = V(1,l�2j�1) and the action of GLl�2j�1 < P(1,l�2j�1) on
the characters of V(1,l�2j�1), under which there are only 2 orbits, the Jacquet module
vanishes. Hence � = 0 in all cases (for all ✏).

If ✏ = 1, we argue as in [Kap16b, pp. 924–925]: Consider another filtration, now of
JEl�2j ,µ(JC, j(⇥)) along V(l�2j,1)\Ul�2j�1

⇠= F
l�2j�1. Using the action of the transpose

of Pl�2j we see there is only one orbit of characters to consider, the trivial (because µ

is nontrivial on b1). Applying [GRS99a, Lemma 2.2] we can replace V(l�2j,1) \ Ul�2j�1

with V
�

(l�2j�1,1), and we also conjugate by o1 where

oi = ◆(diag(1,
⇣

1
Il�2j�2

1

⌘
))◆(

�
1

Il�2j�i

�
), 1  i  l � 2j.

Note that if l � 2j = 1, V �

(l�2j�1,1) is trivial and the conjugation is not needed. Then
J
V

�
(l�2j�1,1)

(JEl�2j ,µ(JC, j(⇥))) becomes a quotient of JU1,�(⇥), where �(u) =  (u1), and

the action of the top left coordinate of C under  j becomes a nontrivial action of U2,
contradicting Corollary 5.3 unless JEl�2j ,µ(JC, j(⇥)) = 0. Thus we can assume ✏ = 0.

We deduce JC, j(⇥) is filtered by JEl�2j(JC, j(⇥)) and JEl�2j ,�(JC, j(⇥)), where
�(b) =  (b2j+1). To unify the notation let �i denote the character of E which is
trivial on E

i
0
for i0 6= i, and is given by b 7!  (bl�i+1) on E

i (1  i  l � 2j). Then
JC, j(⇥) is filtered by J

El�2j ,�
dl�2j
l�2j

(JC, j(⇥)) with dl�2j 2 {0, 1}.

We proceed with E
l�2j�1 and consider J

El�2j ,�
dl�2j
l�2j

(JC, j(⇥)). Assume dl�2j = 0.

The above parametrization of µ applies here to the nontrivial characters of El�2j�1.
Then for ✏ = 0 we argue exactly as before to deduce � = 0.

If ✏ = 1, we argue as above with V(l�2j,1) \ Ul�2j�2
⇠= F

l�2j�2, and using [GRS99a,
Lemma 2.2] we replace V(l�2j,1)\Ul�2j�2 with V

�

(l�2j�2,1). Since the action of the leftmost

coordinate of El�2j on JEl�2j(JC, j(⇥)) is now trivial and ✏ = 1, we apply [GRS99a,
Lemma 2.2] once more to replace this coordinate with diag(Il�2j�2, V(1,1)), then we
conjugate by o2 to deduce J

V
�
(l�2j�1,1)

(JEl�2j�1El�2j ,µ(JC, j(⇥))) is a quotient of JU1,�(⇥)

on which U2 acts nontrivially, because of the conjugation of the top left coordinate
of C. Hence JEl�2j�1El�2j ,µ(JC, j(⇥)) = 0 by Corollary 5.3. Thus JEl�2j(JC, j(⇥)) is
filtered by J

El�2j�1El�2j ,�
dl�2j�1
l�2j�1

(JC, j(⇥)) with dl�2j�1 2 {0, 1}.
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For the case dl�2j = 1, the nontrivial characters µ of El�2j�1 under the action of the
stabilizer of �l�2j inside Stj take the form

b 7!  (✏b1 + (1� ✏)b2j+2 + (1� ✏)�b2(m�l+j) + ✏1b2(m�l+j)+1),

where ✏ and � are as above (if j = 0, ✏ = 0) and ✏1 2 {0, 1}.
If ✏ = 0 and � 6= 0, again JEl�2j�1El�2j ,µ�l�2j

(JC, j(⇥)) = 0 by Corollary 5.2: A
conjugation of µ will take it to a character of a subgroup of U1 whose extensions to U1

all have nonzero lengths. Hence we can assume � = 0 (for all ✏).
If ✏1 = 1, we can conjugate by ◆(diag(Il�2j�2, ( 1

1 1 ))) to assume µ is nontrivial on
b2j+1, and again apply Corollary 5.2 to deduce the Jacquet module vanishes. Thus
✏1 = 0 in all cases.

Now for ✏ = 1 we argue as in the case dl�2j = 0 and ✏ = 1, applying [GRS99a,
Lemma 2.2] twice and deducing the vanishing by Corollary 5.3. Note that �l�2j does
not interfere with the argument and we still use the top left coordinate of C.

We deduce J
El�2j ,�

dl�2j
l�2j

(JC, j(⇥)) is filtered by J
El�2j�1El�2j ,�

dl�2j�1
l�2j�1 �

dl�2j
l�2j

(JC, j(⇥)),

where dl�2j�1 2 {0, 1}.
For El�2j�2 the reasoning is similar. Briefly, the nontrivial characters µ of El�2j�2

take the form

b 7!  (✏b1 + (1� ✏)b2j+3 + (1� ✏)�b2(m�l+j)�1 + ✏2b2(m�l+j) + ✏1b2(m�l+j)+1).

Here when dl�2j = 0, we can already take ✏1 = 0 and if dl�2j�1 = 0, ✏2 = 0. Corollary 5.2
implies that for ✏ = 0, one must have � = 0. If ✏1 = 1 or ✏2 = 1, we use a conjugation

by either ◆(diag(Il�2j�3,

⇣
1
1

1 1

⌘
)) or ◆(diag(Il�2j�3, ( 1

1 1 ))), then apply Corollary 5.2 to

deduce the vanishing. Thus ✏1 = ✏2 = 0. For the case ✏ = 1 the auxiliary unipotent
subgroups are V(l�2j,1) \ Ul�2j�3

⇠= F
l�2j�3, V

�

(l�2j�3,1) and diag(Il�2j�3, V(1,2)), one
conjugates by o3 then applies Corollary 5.3.

Repeating these arguments for i = l� 2j� 3, . . . , 1 we obtain a filtration of JC, j(⇥)
as a representation of E by the modules JE,�d

(JC, j(⇥)) = JUl�2jC,�d j(⇥), where d

varies over {0, 1}l�2j and �d =
Q

l�2j
i=1 �

di
i
. Moreover |{i : di = 1}|  m� l, otherwise �d

can be conjugated into a character whose restriction to some E
i is b 7!  (b2j+m�l+1),

then JUl�2jC,�d j(⇥) = 0 by Corollary 5.2.
The statement of the lemma now follows using another conjugation, to arrange the

characters �d in the requested form. ⇤
Proof of Lemma 5.8. The first step is to show JUl�2jC,�l�2j j(⇥) is isomorphic to a
Jacquet module of ⇥ which factors through U2l�4j. We can assume j < l/2, other-
wise this is trivially true. Using conjugations by elements in NQl�2j

(Ul�2jC, j), we

can replace �l�2j with the character u 7!
Q

l�2j
i=1  (ui,2j+i) (of E) which we re-denote by

�l�2j. Write a general element u 2 Ul�2jC in the form
0

BBBBBBBB@

1 ⇤ x1 ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤

Il�2j�1 ⇤ y x2 ⇤ ⇤ ⇤ ⇤ ⇤ ⇤

I2j c
j

⇤ ⇤

1 ⇤ ⇤

Il�2j�1 ⇤ ⇤

I2(m�2l+2j)+1 ⇤ ⇤

Il�2j�1 x
0
2 ⇤

1 y
0

x
0
1

I2j ⇤ ⇤

Il�2j�1

1

1

CCCCCCCCA

.
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Here the coordinates marked by asterisks are either arbitrary or already determined
by the other coordinates and the quadratic form defining SO2m+1, and similarly x

0

i
and

y
0 are uniquely determined by xi and y and the form. With this notation �l�2j(u) =
 (x1 +

P
l�2j�1
i=1 (x2)i,i) and  j(u) =  (

P
j

i=1(c
j)i,i). Also note that if l � 2j � 1 = 0,

the rows and columns in the matrix above corresponding to y and x2 are omitted.
Conjugating u by o = ◆(diag(1,

�
1

Il�1

�
)), we obtain

0

BBBBBBBB@

1 x1 ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤

1 ⇤ ⇤

y Il�2j�1 ⇤ x2 ⇤ ⇤ ⇤ ⇤ ⇤ ⇤

I2j c
j

⇤ ⇤

Il�2j�1 ⇤ ⇤

I2(m�2l+2j)+1 ⇤ ⇤

Il�2j�1 x
0
2 ⇤

I2j ⇤ ⇤

Il�2j�1

y
0 1 x

0
1
1

1

CCCCCCCCA

.

Apply [GRS99a, Lemma 2.2] to exchange y with the missing roots of U1 (to the right
of x1). Then o

JUl�2jC,�l�2j j(⇥) ⇠= JU,�l�2j j(⇥) where U is the subgroup of elements
0

BBBBBBBB@

1 x1 ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤

1 ⇤ ⇤

Il�2j�1 ⇤ x2 ⇤ ⇤ ⇤ ⇤ ⇤ ⇤

I2j c
j

⇤ ⇤

Il�2j�1 ⇤ ⇤

I2(m�2l+2j)+1 ⇤ ⇤

Il�2j�1 x
0
2 ⇤

I2j ⇤ ⇤

Il�2j�1 ⇤

1 x
0
1
1

1

CCCCCCCCA

.

Note that �l�2j and  j (defined as above) are also characters of U . Since JU,�l�2j j(⇥)
factors through JU1,⌫(⇥) where ⌫(u) =  (u1), and UU2 is a group, by Corollary 5.3
JU,�l�2j j(⇥) = JUU2,�l�2j j(⇥) with �l�2j j extended to UU2 trivially on U2.

Looking at the inner (2(m�2)+1)⇥(2(m�2)+1) block of UU2 we see the subgroup
U

m�2
l�1�2jCU

m�2
l�1

, �l�2j|Um�2
l�1�2j

= �l�1�2j (the character �l�1�2j of Um�2
l�1�2j) and  j|C

Um�2
l�1

which is given by the restriction of  j to c
j is a generic character of C

U
m�2
l�1

, in fact the

generic character of the form chosen after (5.4). We are thus in a position to apply
the above procedure again, to the inner (2(m � 2) + 1) ⇥ (2(m � 2) + 1) block, with
(l, j,m) replaced by (l � 1, j,m� 2).

Repeating this l � 2j times we deduce JUl�2jC,�l�2j j(⇥) ⇠= JN2l�4joCj , � j
(⇥), where

C
j = C

U
m�2l+4j
2j

,  j is the generic character of Cj and  � is the character of NGL2l�4j

defined by  �(z) =  (
P

l�2j
i=1 z2i�1,2i), i.e., the character of the so called semi-Whittaker

functional (see [BG92, Tak14]). This Jacquet module factors through JU2l�4j
as promised.

Next, by [Kap17b, Proposition 2.19] and [Kap17b, Lemma 2.13] and because JU2l�4j
(⇥)

is irreducible (see [Kap17b, p. 641]),

JU2l�4j
(⇥) = Ind

fM2l�4j

fGL
(2)
2l�4j⇥ĜSpin2(m�2l+4j)+1

(✓(2) ⌦⇥).

Here GL(2)
2l�4j = {g 2 GL2l�4j : det g 2 (F ⇤)2}; ✓ is an extended exceptional repre-

sentation of fGLl�2j and ✓
(2) denotes its restriction to GL(2)

2l�4j; and ⇥ is an extended

exceptional representation of ĜSpin2(m�2l+4j)+1. Note that by [Kap16b, (2.1)], GL(2)
2l�4j
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and GSpin2(m�21+4j)+1 commute in fM2l�4j whence the tensor product here is the stan-
dard one.

We compute JN2l�4jC
j , � j

(⇥) using [BZ77, Theorem 5.2]. Let St0
j
= Stm�2l+4j

j
denote

the stabilizer of  j in Q
m�2l+4j
2j (St0

j
= Sp2j nU

m�2l+4j
2j ). Because the space

GL(2)
2l�4j GSpin2(m�2l+4j)+1 \M2l�4j/GL2l�4j St

0

j

is trivial,

JU2l�4jC
j , j

(⇥) = JCj , j
(JU2l�4j

(⇥)) = Ind
^GLl�2j St

0
j

fGL
(2)
l�2j⇥

eSt0j
(✓(2) ⌦ JCj , j

(⇥)).

Since GL(2)
2l�4j \GL2l�4j is a finite abelian group, JU2l�4jC

j , j
(⇥)|fGL

(2)
2l�4j⇥

eSt0j
is isomorphic

to
L

a
(✓(2) ⌦ %aJCj , j

(⇥)), where %a is the character of GSpin2(m�2l+2j)+1 given by
%a(g) = (⌥(g), a)2, (, )2 is the quadratic Hilbert symbol and a varies over (F ⇤)2\F ⇤

(see [Kap16b, (2.1)] and [Kap17b, p. 634]).
Now JN2l�4jC

j , � j
(⇥) = JNGL2l�4j

, �JU2l�4jC
j , j

(⇥) and

JNGL2l�4j
, �(✓(2) ⌦ %aJCj , j

(⇥)) = JNGL2l�4j
, �(✓(2))⌦ %aJCj , j

(⇥)

= JNGL2l�4j
, �(✓)⌦ %aJCj , j

(⇥).

By [Tak14, Proposition 2.51], dim JNGL2l�4j
, �(✓) = 1. Finally, under the above conju-

gations Sp2j nH is bijected into St0
j
, then the result follows from Theorem 5.4 applied

to GSpin2(m�2l+4j)+1 and JCj , j
(⇥). ⇤

6. The non-vanishing results

We prove a non-vanishing result for the descent map (see Theorem 6.5 below).

6.1. Generalized and degenerate Whittaker models. We recall the generalized
and degenerate Whittaker models attached to nilpotent orbits, following the formula-
tion of [GGS17]. Let A be an algebraic reductive group (defined over F , A = A(F ),
see § 2), a denote the Lie algebra of A and  denote the Killing form on a. For a 2 A,
let Aa denote the centralizer of a in A, and similarly ax denotes the centralizer of x 2 a
in a.

Any nilpotent u 2 a defines a function  u : a ! C⇤ by  u(x) =  ((u, x)). In this
sense we regard u as an element of a⇤.

If y 2 a is semisimple, a decomposes (under the adjoint action) into a direct sum of
eigenspaces ay

�i
of y corresponding to eigenvalues �i. The element y is called rational

semisimple if the eigenvalues of ady are all rational. In this case define for r 2 Q,
ay
�r

= ��i�ra
y

�i
and uy = ay

�1.
AWhittaker pair is a pair (y, u) where y is a rational semisimple element and u 2 ay

�2.
If (y, u) is a Whittaker pair, we say that y is a neutral element for u if there exists
v 2 ay2 such that (v, y, u) is an sl2-triple. In this case we also call (y, u) a neutral pair.

For a Whittaker pair (y, u), bu(X, Y ) = (u, [X, Y ]) is an anti-symmetric form on a.
Let ny,u be the radical of the restriction of bu to uy. Then [uy, uy] ⇢ ay

�2 ⇢ ny,u. By
[GGS17, Lemma 3.2.6], ny,u = ay

�2 + ay1 \ au. If (s, u) is a neutral pair, ny,u = ay
�2. Let

Uy = exp(uy) and Ny,u = exp(ny,u) be the corresponding unipotent subgroups of H.
Define a character of Ny,u by  u(x) =  ((u, log(x))). Let N

 

y,u
= Ny,u \ ker( u). If

Uy 6= Ny,u, then the quotient Uy/N
 

y,u
is a Heisenberg group and its center is Ny,u/N

 

y,u
.
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Let ⇢ be an irreducible representation of A (⇢ is then admissible because F is p-adic)
and (y, u) be a Whittaker pair. The Jacquet module JNy,u, u(⇢) is called a degener-
ate Whittaker model of ⇢. If (y, u) is neutral, JNy,u, u(⇢) is also called a generalized
Whittaker model of ⇢. The wave-front set n(⇢) of ⇢ is defined to the set of nilpotent
orbits O for which JNy,u, u(⇢) 6= 0, for some neutral pair (y, u) with u 2 O. (This is
well defined, i.e., independent of the choice of a neutral pair). Let nmax(⇢) be the set
of maximal elements in n(⇢) under the natural order of nilpotent orbits. We will use
the following theorem, which follows immediately from [GGS17, Theorem A]:

Theorem 6.1. Let (y, u) be a neutral pair and (y0, u0) be a Whittaker pair. If u

belongs to the closure Ay0u
0 of the orbit of u0 in a⇤ under the coadjoint action of Ay0,

JNy0,u0 , u0 (⇢) 6= 0 implies JNy,u, u(⇢) 6= 0.

Let A be either G or H. In this case, since the projection GSpin2k ! SO2k splits
over unipotent subgroups, as in the corresponding orthogonal cases (SO2n and SO2m+1),
the nilpotent orbits of A are parameterized by pairs (↵,�), where ↵ is an orthogonal
partition (even parts occur with even multiplicities) and � is a set of non-degenerate
quadratic forms (see e.g., [Wp01, § I.6]). With ⇢ as above, we say that ⇢ admits an ↵
generalized model if there is u in the nilpotent orbit attached to (↵,�) for some � and
a semisimple y 2 a such that (y, u) is a neutral pair and JNy,u, u(⇢) 6= 0. When the
pair (y, u) is not important we simply denote this Jacquet module by ⇢↵. In addition
let pmax(⇢) be the set of partitions corresponding to the nilpotent orbits in nmax(⇢).

An orthogonal partition ↵ is called special if the number of odd parts smaller than
every even number occurring in the partition is even ([JLS16, Definition 10.1], see also
[CM93, § 6.3]). For example, if m is even, then (m,m, 1) is not special. In this case,
(m+ 1,m� 1, 1) is special, called the special expansion of (m,m, 1), i.e., the smallest
orthogonal special partition of 2m + 1 which is greater than (m,m, 1). By the main
results of [JLS16] (generalizing [Mœg96]), any ↵ 2 pmax(⇢) is special.

6.2. Non-vanishing results. Assume m is even. Let ⌧ and ! be as in § 3.2 and put
⇢ = LQ(1, ⌧ ⌦ !).

Proposition 6.2. ⇢ admits an (m,m, 1) generalized model.

Proof. By [Wp01, § I.6], there is only one nilpotent orbit O corresponding to the
partition (m,m, 1). By Theorem 6.1, it su�ces to show that the Jacquet module
JN, (⇢) is nonzero, where  restricts to a nontrivial character on each of the long
simple roots of H and is trivial on the unique short simple root. Thus JN, (⇢) =
JNGLm , NGLm

(JUm(⇢)). Since ⇢ is a quotient of V (1, ⌧ ⌦ !) and ⌧ is supercuspidal,

JUm(⇢) is nonzero and its irreducible constituents are isomorphic to unramified twists
of ⌧⌦! ([BZ77, Corollary 2.13]), each of which is automatically generic (in fact JUm(⇢)
is of length 1), whence JN, (⇢) 6= 0. ⇤
Remark 6.3. See [LM15, Appendix 3] for the similar assertion for symplectic groups
but when ⌧ is tempered; see also [GRS02, § 5.7].

Proposition 6.4. ⇢ admits an (m+ 1,m� 1, 1) generalized model.

Proof. By Proposition 6.2 and [JLS16, Theorem 11.1], pmax(⇢) contains the special
expansion of (m,m, 1), i.e., the smallest orthogonal special partition of 2m + 1 which
is greater than (m,m, 1). This partition is (m+ 1,m� 1, 1). Note that m is even. ⇤
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Theorem 6.5. Let m = 2n. There exists ↵ 2 F
⇤ such that � ↵(n, ⌧,!) 6= 0.

Proof. According to [Wp01, § I.6], the nilpotent orbits corresponding to (m + 1,m �
1, 1) are parameterized by certain one-dimensional quadratic forms, i.e., square-classes
{↵m+1,↵m�1,↵1}, corresponding to the parts (m+1), (m�1) and 1. In fact by [JLS16,
Proposition 8.1] we can take the square-classes to be ↵m+1 = ↵, ↵m�1 = �↵ and ↵1 = 1
for some ↵ 2 F

⇤.
By Proposition 6.4, there is a neutral pair (y, u) such that JNy,u, u(⇢) 6= 0, where u

belongs to an orbit corresponding to (m+1,m�1, 1) and {↵,�↵, 1}. One can assume
u = u1 + u2 where u1 =

P
n�1
i=1 x�ei+ei+1(1) + x�en+e2n(1) + x�en�e2n(↵/2), u2 is any

representative of the nilpotent orbit in the Levi part of the stabilizer of u1 which is
GSpin

m
(�) for a certain quadratic form �, corresponding to the partition ((m� 1), 1)

and square-classes {�↵, 1}. Let y1 be such that (y1, u1) is a neutral pair.
Now, by letting certain torus element in the Levi part of the stabilizer of u1 go to

zero, it is easy to see u1 2 Hyu. Then by Theorem 6.1, JNy1,u1 , u1
(⇢) 6= 0 and the result

follows because JNy1,u1 , u1
(⇢) ⇠= � ↵(n, ⌧,!). ⇤

7. The local descent

Theorem 7.1. Let ⌧ be an irreducible unitary supercuspidal representation of GL2n

(n > 1) and ! be a unitary character of F ⇤ such that L(s, ⌧, Sym2 ⌦!) has a pole at
s = 0. Let m = 2n and denote � ↵(⌧,!) = � ↵(n, ⌧,!).

(1) There exists some ↵ 2 F
⇤ such that � ↵(⌧,!) 6= 0.

(2) The representation � ↵(⌧,!) is a supercuspidal, multiplicity free and admissible
representation of G. Its irreducible constituents are all unitary and generic (for
some generic characters of NG).

(3) Let � be an irreducible supercuspidal  NG,↵-generic representation of G. The
Rankin-Selberg �-factor �(s, � ⇥ (⌧ ⌦ !), ) has a pole at s = 1 if and only if
�
_ is a quotient of � ↵(⌧,!).

Proof. Part (1) follows immediately from Theorem 6.5. Then Theorems 4.2 and 5.5
imply � ↵(⌧,!) is supercuspidal.

We show that � ↵(⌧,!) is semi-simple. Because C
�

G
⇠= CH under the embedding

G < H, C�

G
acts on the space of � ↵(⌧,!) by a fixed character. This character is unitary

because LQ(1, ⌧ ⌦ !) is unitary, by [Sha90, Theorem 8.1b]. Thus by Remark 2.1, any
irreducible subrepresentation � of � ↵(⌧,!) (which is necessarily supercuspidal) is a
direct summand of � ↵(⌧,!). Therefore � ↵(⌧,!) is semi-simple.

The representation � ↵(⌧,!) is now multiplicity free by Theorem 3.3 (for s = 1),
since it is semi-simple and its quotients are supercuspidal. The semi-simplicity of
� ↵(⌧,!) and Theorem 3.3 also imply that the irreducible constituents of � ↵(⌧,!) are
generic. Furthermore, because C

�

G
\CG is finite and as mentioned above, C�

G
acts on

� ↵(⌧,!) by a unitary character, the irreducible constituents are unitary (an irreducible
supercuspidal representation with a unitary central character is unitary).

Because � ↵(⌧,!) is semi-simple and multiplicity free, and the action of C
�

G
on

its space is given by a fixed character, we deduce that � ↵(⌧,!) is admissible (for
any compact open K < G, there are only finitely many irreducible supercuspidal
representations of G with a nonzero K-fixed vector and a fixed C

�

G
-action).

Finally assume L(s, ⌧, Sym2 ⌦!) has a pole at s = 0. Using the identity

L(s, ⌧ ⇥ !⌧) = L(s, ⌧, Sym2 ⌦!)L(s, ⌧,^2 ⌦ !)



LOCAL DESCENT TO QUASI-SPLIT EVEN GENERAL SPIN GROUPS 27

(see [Sha92, Lemma 3.6], [Yam17, Theorem 3.19] and [Hen10]) and by [JPSS83, § 8], we
deduce ⌧ ⇠= !

�1 ⌦ ⌧
_. Hence L(s, ⌧, Sym2 ⌦!) = L(s, ⌧_, Sym2 ⌦!�1) (by the results

of [Hen10]). Then the last assertion follows from Theorem 3.7. ⇤
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