

LOCAL DESCENT TO QUASI-SPLIT EVEN GENERAL SPIN GROUPS

EYAL KAPLAN, JING FENG LAU, AND BAIYING LIU

ABSTRACT. Let $n > 1$ and τ be an irreducible unitary supercuspidal representation of GL_{2n} over a local non-archimedean field. Assuming the twisted symmetric square L -function of τ has a pole at $s = 0$, we construct the local descent of τ to the corresponding quasi-split even general spin group GSpin_{2n} . We prove this local descent is generic, unitary, supercuspidal and multiplicity free. Its irreducible quotients are “functorially related” to τ , in the analytic sense of a pole of a Rankin–Selberg type γ -function.

1. INTRODUCTION

Let G be a quasi-split classical group defined over a global number field with a ring of adeles \mathbb{A} . Cogdell *et al.* [CKPSS01, CKPSS04, CPSS11] proved that any globally generic cuspidal representation σ of $G(\mathbb{A})$ has a functorial lift to an automorphic representation of $\mathrm{GL}_N(\mathbb{A})$, for the proper N . Their work was extended to general spin groups by Asgari and Shahidi [AS06].

The descent method of Ginzburg *et al.* [GRS97a, GRS97b, GRS99a, GRS99b, GRS11] (see also [Sou06]) provides the global and local “inverse map” of the functorial lift, for certain automorphic representations. Given a globally generic automorphic representation τ of $\mathrm{GL}_N(\mathbb{A})$, which is an isobaric sum of cuspidal representations (and belongs to the image of the weak lift from cuspidal globally generic representations of $G(\mathbb{A})$), this method constructs a cuspidal representation of $G(\mathbb{A})$, whose irreducible subrepresentations σ are all globally generic and lift (functorially) to τ . The global and local descent were first developed for the metaplectic groups and the odd orthogonal groups (e.g., [GRS97a, GRS97b, GRS99a]), the orthogonal case was obtained using the theta correspondence); the global descent for classical groups including orthogonal, symplectic, unitary or metaplectic groups was described in full detail in [GRS11]; and the local even unitary case was settled by Soudry and Tanai [ST15]. The global descent for general spin groups was developed by Hundley and Sayag [HS16], and for the exceptional group G_2 was obtained in the more recent work by Hundley and Liu [HL19].

The local descent constructs, for a supercuspidal (self-dual or self-dual up to a twist) representation τ of GL_N over a non-archimedean field, a generic supercuspidal representation of G whose irreducible quotients σ are all generic and lift to τ . This representation of G is irreducible in the metaplectic, odd orthogonal and even unitary cases ([GRS99a, JS03, ST15]), but is expected to be reducible for even special orthogonal or

2010 *Mathematics Subject Classification.* Primary 11F70, 22E50; Secondary 11F85, 22E55.

Key words and phrases. Local Descent, GSpin Groups, Local Langlands Functoriality.

This research was supported by the ISRAEL SCIENCE FOUNDATION grant No. 421/17 (Kaplan), and by NSF grants DMS-1702218, DMS-1848058, and start-up funds from the Department of Mathematics at Purdue University (Liu).

even general spin groups, because there is a representation of O_{2n} which lifts functorially to τ and its restriction to SO_{2n} can be of length 2. See Jiang and Soudry [PR12, Appendix].

The descent method has had numerous applications, including to local and global functoriality, local Langlands correspondence, rigidity theorems and globalization results ([JS03, CKPSS04, JS04, Sou06, JNQ10, PR12, JL14, ST15]). One of its strengths is that it provides an explicit realization of a Whittaker functional (locally, Whittaker model) for those representations σ . Recently Lapid and Mao [LM17] used the local realization as an ingredient in the proof of their conjecture on Whittaker–Fourier coefficients.

In this work we develop the local descent theory for quasi-split even general spin groups. Let F be a non-archimedean local field of characteristic 0, and fix a nontrivial additive character ψ of F . Let τ be an irreducible supercuspidal representation of $GL_{2n}(F)$, $n > 1$, and ω be a unitary character of F^* . The Langlands–Shahidi L -function $L(s, \tau, \text{Sym}^2 \otimes \omega)$ (defined in [Sha90]) is holomorphic in $\text{Re}(s) > 0$, and has a pole at $s = 0$ precisely when $\tau \cong \omega^{-1} \otimes \tau^\vee$. In that case, by the Langlands functoriality principle τ should be the image of the lift of a representation of a unique split or quasi-split (split over a quadratic extension of F) even general spin group of absolute rank $n + 1$. Denote this group by $G(F)$, it is determined by the square-class of $\alpha \in F^*$. We define a unitary supercuspidal generic representation $\sigma_{\psi_\alpha}(\tau, \omega)$ of $G(F)$. Here by generic we mean generic with respect to some generic character of a maximal unipotent subgroup $N_G(F)$ of $G(F)$. Here is our main theorem.

Theorem 1.1. (see Theorem 7.1) *Assume $L(s, \tau, \text{Sym}^2 \otimes \omega)$ has a pole at $s = 0$.*

- (1) *(Non-vanishing) There exists some $\alpha \in F^*$ such that $\sigma_{\psi_\alpha}(\tau, \omega) \neq 0$.*
- (2) *The representation $\sigma_{\psi_\alpha}(\tau, \omega)$ is a supercuspidal, multiplicity free and admissible representation of $G(F)$. Its irreducible constituents are all unitary and generic.*
- (3) *(Local Functorial Lift) Let σ be an irreducible supercuspidal $\psi_{N_G, \alpha}$ -generic representation of $G(F)$. The Rankin–Selberg γ -factor $\gamma(s, \sigma \times (\tau \otimes \omega), \psi)$ defined by (3.7) has a pole at $s = 1$ if and only if σ^\vee is a quotient of $\sigma_{\psi_\alpha}(\tau, \omega)$.*

One may expect a description of α in terms of ω and the central character of τ . E.g., if the central character of τ is trivial, then ω should be a square. See [PR12, Appendix]. Such a result may require an approach different from the one presented here. Regarding the third property, the above condition on the γ -factor should hold when σ lifts to τ . We mention that Moeglin [Moeg14] obtained this lift, and thereby the Langlands parameter, for discrete series representations of classical groups (including the group G).

To prove our result we follow the paradigm introduced by Ginzburg *et al.* [GRS99a], but at certain points new ideas are needed. Let us briefly describe our method.

The representation $\sigma_{\psi_\alpha}(\tau, \omega)$ is defined using a certain twisted Jacquet module, which occurs naturally in a local Rankin–Selberg construction for $G \times GL_k$ and the representations $\sigma \times \tau$. This construction was recently introduced by Cogdell *et. al.* [ACS17] in the global setting. We elaborate on the local aspects that we need here. In particular we prove a local “generic uniqueness” result, by which we can define a Rankin–Selberg γ -function $\gamma(s, \sigma \times (\tau \otimes \omega), \psi)$ as a proportionality factor between two integrals within a standard functional equation. One expects this γ -factor to coincide with the corresponding Langlands–Shahidi γ -factor, at least at the level of zeros and poles, but we

have not pursued this here. Note that this work does not depend on the results of [ACS17]. See § 3 for more details.

In order to prove $\sigma_{\psi_\alpha}(\tau, \omega)$ is supercuspidal, we consider a “tower” of representations $\sigma_{\psi_\alpha}(l, \tau, \omega)$, $0 < l \leq n$, where $\sigma_{\psi_\alpha}(\tau, \omega) = \sigma_{\psi_\alpha}(n, \tau, \omega)$, and show the vanishing of these representations for all $l < n$. The main ingredient we use for the proof is a class of exceptional representations. In our setting these are the representations of double coverings of general linear groups constructed by Kazhdan and Patterson [KP84], as well as the representations of double covers of general spin groups developed in [Kap17b] (following [BFG03], see also [LS10] for a more general construction). We mention that exceptional representations were constructed in greater generality in [Gao17]. We take the tensor product of two exceptional representations to form a representation of the linear group. Such a representation is typically quite large, and may be considered as a model (see [Kab01, Kap16a, Kap16b, Kap17a]). For example, one may prove multiplicity one results (e.g., [Kab01]), or analyze the structure of its irreducible quotients ([Kap17a]). In this spirit, we say that a representation of the linear group affords an exceptional model if it is a quotient of the tensor product of two exceptional representations of the double cover of the group.

Consider a supercuspidal representation τ of $\mathrm{GL}_{2n}(F)$ such that its symmetric square L -function has a pole at $s = 0$. According to the results of [Kap16b] (see also [Yam17]), τ affords an exceptional model and so does the representation parabolically induced from $\tau \otimes 1$ to a general spin group. To prove the vanishing results we use the “smallness” of the exceptional representations, namely that a large class of their Jacquet modules vanishes ([BFG03, Kap17b]).

This technique is parallel to a method of Ginzburg *et. al.* [GRS99a, GRS99b]. They used the interplay between Shalika models, which are related to the pole of the exterior square L -function at $s = 0$, linear models, and symplectic models (see § 5.1 for a more precise description). The presence of exceptional representations here is expected and understood, in light of the role these representations played in the (global) work of Bump and Ginzburg [BG92] on the integral representation of the symmetric square L -function, or even in the earlier low rank results [GJ78, PPS89].

To handle the twisted symmetric square L -function we use the recent construction of twisted exceptional representations for double coverings of general linear groups by Takeda [Tak14], who used them to develop an integral representation for the global partial L -function (extending [BG92]). We also rely on a result of Yamana [Yam17] who proved that if the twisted symmetric square L -function of τ has a pole at $s = 0$, τ admits a (twisted) exceptional model. See § 5.

In § 6, we prove the non-vanishing of the descent $\sigma_{\psi_\alpha}(\tau, \omega)$. The main ingredients are the results of Jiang *et. al.* [JLS16] on the lifting of nilpotent orbits in the wave-front sets of representations and the results of Gomez *et. al.* [GGS17] on relations between degenerate Whittaker models and generalized Whittaker models of representations. More explicitly, let $\mathrm{LQ}(1, \tau \otimes \omega)$ be the image of the representation parabolically induced from $|\det|^{1/2} \tau \otimes \omega$ to $\mathrm{GSpin}_{4n+1}(F)$ under the standard intertwining operator (this image is the Langlands quotient). By [GGS17], the representation $\mathrm{LQ}(1, \tau \otimes \omega)$ has a nonzero generalized Whittaker model attached to the partition $(2n, 2n, 1)$. Then by [JLS16], $\mathrm{LQ}(1, \tau \otimes \omega)$ admits a similar nonzero model attached to the special expansion (in the sense of [CM93]) of $(2n, 2n, 1)$, and using [GGS17] we conclude that $\sigma_{\psi_\alpha}(\tau, \omega) \neq$

0. Our non-vanishing proof is the local counterpart of the global non-vanishing proof in [HS16], and is streamlined using the results of [JLS16] and [GGS17].

Let us also comment on the applicability of our results to non-archimedean local fields of characteristic $p > 0$. The results on the Rankin–Selberg integrals in § 3 and § 4 remain valid. Note that for § 3.2 the analytic properties of the intertwining operator follow from Waldspurger [Wal03], and the definition of the local coefficient follows from Lomeli [Lom15, Lom19, Lom]. The vanishing results of § 5 also hold with two reservations: one has to verify the applicability of [Yam17], and it is necessary to take $p > 2$ because double coverings are used. The non-vanishing arguments in § 6 rely on the work in [GGS17] which assumes that F has characteristic 0 (see [GGS17, Remark 5.1.4] for comments on the case of positive characteristic), and the work in [JLS16] which remains valid when the characteristic p is large enough. The non-vanishing results may still hold when the characteristic p is large enough with an argument by contradiction similar to [GRS11, Section 9.2].

Acknowledgements. We would like to thank Mahdi Asgari, Mikhail Borovoi, Wee Teck Gan, Dmitry Gourevitch, Joseph Hundley, Eitan Sayag, Freydoon Shahidi, David Soudry and Lei Zhang, for useful correspondences and helpful conversations. We would also like to thank the referees for many helpful comments and suggestions.

2. GROUPS AND GENERAL NOTATION

Let F be a non-archimedean local field of characteristic 0. Denote the residual cardinality of F by q . Let V be a finite-dimensional vector space over F , and ϕ be a quadratic form on V defined over F . Denote the special orthogonal group of ϕ by $\mathrm{SO}(\phi)$ and its simply connected cover by $\mathrm{Spin}(\phi)$. Let $\mathrm{pr} : \mathrm{Spin}(\phi) \rightarrow \mathrm{SO}(\phi)$ be the canonical isogeny and c be the nontrivial element in $\ker \mathrm{pr}$. Then $(-1, c)$ generates an order 2 subgroup $\langle (-1, c) \rangle$ of $\mathrm{GL}_1 \times \mathrm{Spin}(\phi)$. Define $\mathrm{GSpin}(\phi) = (\mathrm{GL}_1 \times \mathrm{Spin}(\phi)) / \langle (-1, c) \rangle$. Recall that the unipotent subgroups of $\mathrm{GSpin}(\phi)$ are isomorphic (as algebraic groups) to the unipotent subgroups of $\mathrm{SO}(\phi)$. The Weyl groups of $\mathrm{GSpin}(\phi)$ and $\mathrm{SO}(\phi)$ are also isomorphic. Throughout this work, when we say that $\mathrm{GSpin}(\phi)$ is quasi-split, we mean it is non-split over F , but split over a quadratic extension of F .

Let m be a positive integer. Let $H = \mathrm{GSpin}(\phi)$ where $\dim V = 2m + 1$ and ϕ is isotropic of index m . The group H is split over F . Fix maximal isotropic subspaces V^\pm in duality with respect to the symmetric bilinear form (\cdot, \cdot) associated with ϕ . Let $(e_1, \dots, e_m, e_{m+1}, e_{-m}, \dots, e_{-1})$ be a basis of V such that $V^+ = \mathrm{Span}\{e_1, \dots, e_m\}$, $V^- = \mathrm{Span}\{e_{-1}, \dots, e_{-m}\}$ and for all $1 \leq i, j \leq m$, $(e_i, e_{-j}) = \delta_{i,j}$ and $(e_i, e_{m+1}) = (e_{m+1}, e_{-j}) = 0$. The subspaces $V_l^+ = \mathrm{Span}\{e_1, \dots, e_l\}$ form a maximal flag

$$0 \subset V_1^+ \subset V_2^+ \subset \dots \subset V_m^+ = V^+$$

in V . This choice then fixes the Borel subgroup $B' = T' \ltimes N'$ of $\mathrm{SO}(\phi)$, where T' is the torus. In general if $X' < \mathrm{SO}(\phi)$, we denote its preimage in H under pr by X . Now $B = \mathrm{pr}^{-1}(B')$ is a Borel subgroup of H , $B = T \ltimes N$ where T is a maximal torus.

For each $1 \leq l \leq m$, let $Q'_l = M'_l \ltimes U'_l$ denote the maximal parabolic subgroup of $\mathrm{SO}(\phi)$ which stabilizes V_l^+ , and $P'_l = L'_l \ltimes N'_l < \mathrm{SO}(\phi)$ be the parabolic subgroup stabilizing the flag $V_1^+ \subset \dots \subset V_l^+$. The unipotent radicals are U'_l and N'_l . Then, e.g., $Q_m = M_m \ltimes U_m$ is the standard Siegel parabolic subgroup of H . The center C_H of H is connected (because $\dim V$ is odd) and isomorphic to GL_1 . Moreover, C_H is identified with the GL_1 component of $M_m \cong \mathrm{GL}_m \times \mathrm{GL}_1$.

For the group GL_l , we let $B_{\mathrm{GL}_l} = T_{\mathrm{GL}_l} \ltimes N_{\mathrm{GL}_l}$ denote its Borel subgroup of upper triangular invertible matrices, with the diagonal torus T_{GL_l} . If $\beta = (\beta_1, \dots, \beta_r)$ is a composition of l , let $P_\beta = M_\beta \ltimes V_\beta$ denote the standard parabolic subgroup of GL_l corresponding to β ($V_\beta < N_{\mathrm{GL}_l}$). Also V_β^- denotes the unipotent subgroup opposite to V_β . Let \mathcal{P}_l be the mirabolic subgroup of GL_l , i.e., the subgroup of invertible matrices whose last row is $(0, \dots, 0, 1)$. For $a \in \mathrm{GL}_l$, denote its image in M_l by $\iota_l(a)$. For $l \leq l'$, $\mathrm{GL}_l < \mathrm{GL}_{l'}$ via $a \mapsto \mathrm{diag}(a, I_{l'-l})$, then $\iota_l(a) = \iota_{l'}(a)$. Hence we simply denote $\iota = \iota_l$.

The algebraic groups in this work will be defined over F , and for any such group X , we identify $X = X(F)$ (which is an l -group). The center of any group G is denoted C_G , and if $x, y \in G$ and $Y < G$, ${}^x y = xyx^{-1}$ and ${}^x Y = \{{}^x y : y \in Y\}$. Representations are always complex and smooth. For a representation ρ of X , ρ^\vee is the contragredient representation. We fix a nontrivial additive character ψ of F .

The induction Ind and compact induction ind functors are normalized as in [BZ77, 1.8]. For a representation ρ of $Y < H$ on a space V_ρ , a closed unipotent subgroup $U < Y$ and a character ψ_U of U , the Jacquet module $J_{U, \psi_U}(\rho)$ is the quotient of V_ρ by the subspace spanned by $\{\rho(u)\xi - \psi(u)\xi : u \in U, \xi \in V_\rho\}$. For any $Y_0 < Y$ let $N_{Y_0}(U, \psi_U)$ denote the subgroup of elements $y \in Y_0$ which normalize U and fix ψ_U . Then $J_{U, \psi_U}(\rho)$ is a representation of $N_Y(U, \psi_U)$. The action of $N_Y(U, \psi_U)$ is normalized as in [BZ77, 1.8], by the inverse square-root of the modulus character of U .

Throughout this work, all L -functions are the ones defined by Shahidi [Sha90]. The twisted symmetric square γ -factor is also the factor defined in [Sha90], but the standard γ -factor for a pair of representations of $\mathrm{GSpin}_{2n} \times \mathrm{GL}_m$ will be defined here using Rankin–Selberg integrals. We will not rely on the conjecture that this factor agrees with the similar factor of [Sha90].

Remark 2.1. *Irreducible supercuspidal representations are injective and projective in the category of (smooth) representations of G on which C_G° acts by a character. Indeed since C_G is abelian and the index of C_G° in C_G is finite, any representation π of G decomposes into a direct sum of eigenspaces under the action of the quotient group $C_G^\circ \backslash C_G$. The center C_G acts by a fixed character on each of these eigenspaces, and the statement then follows immediately from the injectivity and projectivity of irreducible supercuspidal representations in the category of representations with a fixed central character.*

3. THE LOCAL RANKIN–SELBERG INTEGRAL

3.1. The integral and γ -factor. Let τ be an irreducible generic representation of GL_m and ω be a quasi-character of F^* . Let $1 \leq n \leq m$ and $l = m - n$. We define the family of local Rankin–Selberg integrals for the groups $\mathrm{GSpin}_{2n} \times \mathrm{GL}_m$. While the integrals can also be defined for $n > m$, this case will not appear in this work. Note that in § 3.2 and § 4 we will allow n (and thereby l) to vary, in § 5 we shall take $l > m/2$, then in § 7 we specialize to $m = 2n$.

Let $\alpha \in F^*$ and fix a vector $y_\alpha = e_m + \frac{\alpha}{2}e_{-m}$ of length α (i.e., $(y_\alpha, y_\alpha) = \alpha$). Define the character $\psi_{l, \alpha}$ of N_l by

$$(3.1) \quad \psi_{l, \alpha}(u) = \psi\left(\sum_{i=2}^l (u \cdot e_i, e_{-(i-1)}) + (u \cdot y_\alpha, e_{-l})\right),$$

where on the r.h.s. (right hand side) u is identified with its projection into N'_l . The stabilizer of $\psi_{l,\alpha}$ in P_l is isomorphic to the group $G = \mathrm{GSpin}_{2n}$, which is split over F if α is a square in F^* , otherwise it is quasi-split. To see this note that the pointwise stabilizer of $\{e_i, e_{-i}\}_{1 \leq i \leq l}$ in $\mathrm{SO}(\phi)$ is SO_{2n+1} and inside that group, the stabilizer of y_α is a form of SO_{2n} (see [Kap13c, § 2.1.1]). In this way we construct an embedding of G in H . Since $P_l \cong (B_{\mathrm{GL}_l} \times \mathrm{GSpin}_{2n+1}) \ltimes U_l$, this embedding already determines a Borel subgroup $B_G = T_G \ltimes N_G$ of G by the requirement $(N_{\mathrm{GL}_l} \times N_G) \ltimes U_l = N$. We identify N_G with

$$(3.2) \quad \left\{ \mathrm{diag}(I_l, \begin{pmatrix} z & v & x - \frac{2}{\alpha}v & u \\ 1 & 0 & 0 & -\frac{2}{\alpha}v' \\ & 1 & 0 & x' \\ & & 1 & v' \\ & & & z^* \end{pmatrix}, I_l) \in N' : z \in N_{\mathrm{GL}_{n-1}}, v, x \in F^{n-1} \right\}.$$

For $n > 1$, C_G is disconnected, its identity component C_G° is isomorphic to GL_1 and under the embedding $G < H$, C_G° is identified with C_H .

Denote the Whittaker model of τ with respect to $\psi_{N_{\mathrm{GL}_m}}(z) = \psi(\sum_{i=1}^{m-1} z_{i,i+1})$ ($z \in N_{\mathrm{GL}_m}$) by $W(\tau, \psi_{N_{\mathrm{GL}_m}})$. Set $Q = Q_m$. For a complex parameter s , let $V(s, \tau \otimes \omega)$ denote the space of the (normalized) induced representation

$$\mathrm{Ind}_Q^H(|\det|^{s-1/2} W(\tau, \psi_{N_{\mathrm{GL}_m}}) \otimes \omega).$$

There are standard notions of holomorphic or meromorphic sections of $V(\tau \otimes \omega)$. Briefly, a holomorphic section of $V(\tau \otimes \omega)$ is a function f on $\mathbb{C} \times H$ such that for each $h \in H$, $s \mapsto f(s, h)$ is holomorphic, and for each $s, h \mapsto f(s, h)$ belongs to $V(s, \tau \otimes \omega)$. Denote $f_s(h) = f(s, h)$ and $h_0 \cdot f_s(h) = f_s(hh_0)$. We regard f_s as a complex-valued function by evaluating at the identity.

Define a generic character $\psi_{N_G, \alpha}$ of N_G by $\psi_{N_G, \alpha}(u) = \psi_{N_{\mathrm{GL}_{n-1}}}^{-1}(z)\psi^{-1}(v_n)$, where u is given by (3.2) and v_n is the last row of v . Note that if one writes the root subgroup of G corresponding to the simple root $\epsilon_{n-1} + \epsilon_n$ by $(x, y) \in F^2$, the restriction of $\psi_{N_G, \alpha}$ to (x, y) is given by $\psi^{-1}(\frac{1}{4}x - \frac{\alpha}{2}y)$ in the split case and $\psi^{-1}(\frac{1}{2}y)$ in the quasisplit case ($\psi_{N_G, \alpha}^{-1}$ is the character [Kap13c, (3.1)]). In particular $\psi_{N_G, \alpha}$ depends on α . Let σ be an irreducible $\psi_{N_G, \alpha}$ -generic representation of G and $W(\sigma, \psi_{N_G, \alpha})$ denote the corresponding $\psi_{N_G, \alpha}$ -Whittaker model.

For $W \in W(\sigma, \psi_{N_G, \alpha})$ and a holomorphic section f of $V(\tau \otimes \omega)$, define the integral

$$I(s, W, f) = \int_{C_G^\circ N_G \backslash G} W(g) \int_{N_l^{\beta_{l,\alpha}}} f_s(\beta_{l,\alpha} u g) \psi_{l,\alpha}^{-1}(u) du dg.$$

Here $N_l^{\beta_{l,\alpha}} = \beta_{l,\alpha}^{-1} Q \beta_{l,\alpha} \cap N_l$ where $\beta_{l,\alpha}$ is a representative for the unique open orbit of the right-action of $G \ltimes N_l$ on $Q \backslash H$, which we take to be a fixed element in

$$\mathrm{pr}^{-1} \left(\iota \left(\begin{pmatrix} 0 & \frac{2}{\alpha} I_{m-l} \\ I_l & 0 \end{pmatrix} \right) \begin{pmatrix} 0 & 0 & I_l \\ 0 & I_{2m-2l+1} & 0 \\ I_l & 0 & 0 \end{pmatrix} (-1)^l I_m \right).$$

(The embedding ι was defined in § 2.) This is the local analog of the global Eulerian integral introduced in [ACS17].

Proposition 3.1. *There exists $s_0 \in \mathbb{R}$ such that $I(s, W, f)$ is absolutely convergent for all s with $\mathrm{Re}(s) > s_0$, for all $W \in W(\sigma, \psi_{N_G, \alpha})$ and holomorphic sections f .*

Proof. Since we mod out by C_G° in the domain of integration for the outer integral, the proof is a straightforward adaptation of the proof of convergence for the integrals for odd orthogonal groups, see [Sou93, § 4.4–4.6]. \square

Lemma 3.2. *In the domain $\operatorname{Re}(s) > s_0$, for all $g_0 \in G$ and $u_0 \in N_l$,*

$$(3.3) \quad I(s, \sigma(g_0)W, (g_0u_0) \cdot f) = \psi_{l,\alpha}(u_0)I(s, W, f).$$

Proof. This follows from the fact that $I(s, W, f)$ is invariant with respect to G , G normalizes N_l and stabilizes $\psi_{l,\alpha}$, and from

$$\int_{N_l^{\beta_{l,\alpha}}} f_s(\beta_{l,\alpha}uu_0)\psi_{l,\alpha}^{-1}(u) du = \psi_{l,\alpha}(u_0) \int_{N_l^{\beta_{l,\alpha}}} f_s(\beta_{l,\alpha}u)\psi_{l,\alpha}^{-1}(u) du,$$

in $\operatorname{Re}(s) > s_0$. \square

Theorem 3.3. *Let σ be an irreducible generic representation of G (with respect to $\psi_{N_G,\alpha}$ or a different generic character of N_G). Except for a finite number of values of q^{-s} , the space of bilinear forms satisfying (3.3) is at most one-dimensional. If σ is supercuspidal, the dimension is at most one for all s . If however, σ is irreducible supercuspidal and non-generic, the dimension is 0 for all s .*

Proof. The proof is the adaptation of the local uniqueness result for the Rankin–Selberg integrals for $\operatorname{SO}_{2n} \times \operatorname{GL}_m$ ([Kap13c, § 4.1], for the global counterpart see [Kap12, § 3.2], see also the local uniqueness proofs in [Sou93, § 8.2] and [GRS99a, § 6.2]). Briefly, according to [BZ77, 1.9],

$$(3.4) \quad \begin{aligned} & \operatorname{Bil}_G(\sigma, J_{N_l, \psi_{l,\alpha}}(\operatorname{Ind}_Q^H(|\det|^{s-1/2}\tau \otimes \omega))) \\ & \cong \operatorname{Bil}_H(\operatorname{ind}_R^H(\sigma \otimes \psi_{l,\alpha}^{-1}), \operatorname{Ind}_Q^H(|\det|^{s-1/2}\tau \otimes \omega)). \end{aligned}$$

Here $\operatorname{Bil}_G(\cdot, \cdot)$ denotes the space of G -equivariant bilinear forms and $R = G \ltimes N_l$. For $h \in H$, let

$$\operatorname{Hom}(h) = \operatorname{Hom}_{(hR) \cap Q}({}^h(\sigma \otimes \psi_{l,\alpha}^{-1}) \otimes (|\det|^{s-1/2}\tau \otimes \omega), \delta).$$

Here for a representation ρ , ${}^h\rho(x) = \rho({}^{h^{-1}}x)$, and $\delta = \delta_Q^{-1/2} \cdot {}^h(\delta_R^{-1}\delta_{R \cap (h^{-1}Qh)}^{-1})$. The group R acts on the right on $Q \backslash H$ with finitely many orbits. Write $H = \coprod_{h \in \Omega} QhR$ for a finite set Ω . According to the Bruhat theory (see e.g., [Sil79, Theorems 1.9.4, 1.9.5]), the space (3.4) injects into the semi-simplification $\bigoplus_{h \in \Omega} \operatorname{Hom}(h)$.

According to the proof of [Kap12, Claim 3.1], $\operatorname{Hom}(h) = 0$ unless $QhR = Qh_0R$ for some $h_0 \in H$ such that ${}^{h_0}N_l$ is the opposite subgroup N_l^- (see also [GRS11, Proposition 5.1]). In the quasi-split case this already determines h uniquely; in the split case there are three such representatives, for two of which ${}^{h^{-1}}Q \cap G$ is a parabolic subgroup of G and any morphism in $\operatorname{Hom}(h)$ defines a morphism in

$$(3.5) \quad \operatorname{Hom}_G(\sigma, \operatorname{Ind}_{h^{-1}Q \cap G}^G(\delta_{h^{-1}Q \cap G}^{-1/2} \cdot {}^{h^{-1}}(\delta |\det|^{1/2-s}\tau^\vee \otimes \omega))).$$

The latter space is zero outside finitely many values of q^{-s} by [GPSR87, Lemma 10.1.2], which was stated for SO_{2n} but immediately implies the similar result for G . Thus there is only one more representative which we denote by h_0 in both the split and quasi-split cases. Note that $Qh_0R = Q\beta_{l,\alpha}R$.

The above arguments (including [GPSR87, Lemma 10.1.2]) apply whether σ is generic or not.

Let $V < N_G$ be the subgroup with $z = I_{n-1}$ and $v = 0$, using (3.2) (V is R'_l of [Kap12, § 3.2, p. 154]). Then $N_G = N_{\mathrm{GL}_n} \ltimes V$ and ${}^{h_0}V < {}^{h_0}G \cap U_m$. Since U_m acts trivially on the space of $|\det|^{s-1/2}\tau \otimes \omega$, each morphism in $\mathrm{Hom}(h_0)$ factors through $J_V(\sigma)$. (Note that V is not a unipotent radical of a parabolic subgroup of G .) In addition, each morphism in $\mathrm{Hom}(h_0)$ factors through $J_{h_0 N_l \cap M_m, {}^{h_0} \psi_{l,\alpha}}(\delta' |\det|^{1/2-s} \tau^\vee \otimes \omega)$, where δ' is a suitable modulus character. Also note that $(C_G V) \setminus ({}^{h_0^{-1}} Q \cap G) = \mathcal{P}_n$. It follows that

$$(3.6) \quad \mathrm{Hom}(h_0) \subset \mathrm{Bil}_{\mathcal{P}_n}(J_V(\sigma), J_{h_0 N_l \cap M_m, {}^{h_0} \psi_{l,\alpha}}(\delta' |\det|^{1/2-s} \tau^\vee \otimes \omega)).$$

Now by [GPSR87, Proposition 8.2] (stated for representations of SO_{2n+1} but the proof is applicable to G as well), $J_V(\sigma)$ admits a finite Jordan–Hölder composition series as a \mathcal{P}_n -module. This series contains the irreducible representation $\mathrm{ind}_{N_{\mathrm{GL}_n}}^{\mathcal{P}_n}(\psi_{N_{\mathrm{GL}_n}})$ with multiplicity at most 1. In fact the multiplicity is 1 if and only if σ is generic (a Whittaker functional on $J_V(\sigma)$ lifts to a Whittaker functional on σ). The similar assertion applies to $J_{h_0 N_l \cap M_m, {}^{h_0} \psi_{l,\alpha}}(\delta' |\det|^{1/2-s} \tau^\vee \otimes \omega)$ by [BZ76, 5.15]. The result then follows as in [JPSS83, 2.10], using the structure of irreducible representations of \mathcal{P}_n ([BZ76, 5.13]).

Now assume σ is supercuspidal. Then (3.5) vanishes for all s (see the remark on [GPSR87, p. 117], again for SO_{2n}). Regarding the r.h.s. of (3.6), since the i -th derivatives of $J_V(\sigma)$ (in the sense of [BZ77]) for $0 < i < n$ all factor through Jacquet modules (non-twisted — without a character) of standard unipotent radicals of G , they all vanish. By [BZ77, Proposition 3.7b, c], the contribution to (3.6) comes from the n -th derivatives of both $J_V(\sigma)$ and $J_{h_0 N_l \cap M_m, {}^{h_0} \psi_{l,\alpha}}(\delta' |\det|^{1/2-s} \tau^\vee \otimes \omega)$, which correspond to the Whittaker characters on $N_{\mathrm{GL}_n} < \mathcal{P}_n$. This contribution is of dimension one if σ is generic, and 0 otherwise. \square

Proposition 3.4. *The integral $I(s, W, f)$ can be made a nonzero constant (independent of s) for some choice of data (W, f) where f is holomorphic.*

Proof. See [Kap13a, Lemma 3.1, Lemma 4.1]. \square

Corollary 3.5. *$I(s, W, f)$ is a rational function of q^{-s} .*

Proof. By Proposition 3.1 and Lemma 3.2, in a right half plane $I(s, W, f)$ can be regarded as a G -equivariant bilinear form on $\sigma \times J_{N_l, \psi_{l,\alpha}}(V(s, \tau \otimes \omega))$. The result now follows from Theorem 3.3 and Proposition 3.4 together with Bernstein’s continuation principle (in [Ban98]). \square

Let $A(s, w) : V(s, \tau \otimes \omega) \rightarrow V(1-s, (\omega^{-1} \circ \det) \tau^\vee \otimes \omega)$ denote the standard intertwining operator, defined for $\mathrm{Re}(s) \gg 0$ by an absolutely convergent integral, where w is a representative for the long Weyl group element modulo the Weyl group of the Levi part of Q . In this case the local coefficient attached to $A(s, w)$ is given by $\gamma(2s-1, \tau, \mathrm{Sym}^2 \otimes \omega)$ ([Sha81, Sha90]). By the results above and in particular, Theorem 3.3, there is a well defined and not identically zero function $\gamma(s, \sigma \times (\tau \otimes \omega), \psi) \in \mathbb{C}(q^{-s})$ such that for all W and f ,

$$(3.7) \quad \gamma(s, \sigma \times (\tau \otimes \omega), \psi) I(s, W, f) = I(1-s, W, \gamma(2s-1, \tau, \mathrm{Sym}^2 \otimes \omega) A(s, w) f).$$

3.2. The descent map. Assume $n > 1$, σ and τ are irreducible supercuspidal, τ and ω are unitary, and σ is $\psi_{N_G, \alpha}$ -generic. Then $A(s, w)$ is holomorphic for $\mathrm{Re}(s) > 1/2$ ([Sha81, Lemma 2.2.5]). Its image $A(1, w) V(1, \tau \otimes \omega)$ (at $s = 1$) is isomorphic to the

Langlands quotient $\mathrm{LQ}(1, \tau \otimes \omega)$ of $V(1, \tau \otimes \omega)$. For any $1 \leq l \leq m$, define a descent map by $\sigma_{\psi_\alpha}(l, \tau, \omega) = J_{N_l, \psi_{l,\alpha}}(\mathrm{LQ}(1, \tau \otimes \omega))$.

Proposition 3.6. *Let f be a holomorphic section. The function $I(s, W, f)$ is holomorphic, and $I(1 - s, W, A(s, w)f)$ is holomorphic except perhaps at the poles of $A(s, w)$.*

Proof. Since σ is supercuspidal, any W is compactly supported modulo $C_G N_G$. This together with the fact that the inner integral $\int f_s(\beta_{l,\alpha} u g) \psi_{l,\alpha}^{-1}(u) du$ stabilizes for large compact open subgroups of $N_l^{\beta_{l,\alpha}}$ (see [Kap13b, § 4.2]) implies that $I(s, W, f)$ is holomorphic. The statement regarding $I(1 - s, W, A(s, w)f)$ follows immediately. \square

Theorem 3.7. *If $\gamma(s, \sigma \times (\tau \otimes \omega), \psi)$ has a pole at $s = 1$, then $L(s, \tau^\vee, \mathrm{Sym}^2 \otimes \omega^{-1})$ has a pole at $s = 0$ and σ pairs nontrivially with $\sigma_{\psi_\alpha}(l, \tau, \omega)$. The converse is also true, under the additional assumption that $\sigma_{\psi_\alpha}(l, \tau, \omega)$ is semi-simple.*

Proof. By Proposition 3.4, we may choose data (W, f) where f is holomorphic, such that $I(s, W, f) = 1$ for all $s \in \mathbb{C}$. According to the definitions and [Sha90, Proposition 7.3], $\gamma(2s - 1, \tau, \mathrm{Sym}^2 \otimes \omega, \psi)$ has a pole at $s = 1$ if and only if $L(2 - 2s, \tau^\vee, \mathrm{Sym}^2 \otimes \omega^{-1})$ does. Since $A(1, w)$ is holomorphic, it follows from (3.7) and Proposition 3.6 that $\gamma(s, \sigma \times (\tau \otimes \omega), \psi)$ has a pole at $s = 1$ if and only if $L(2 - 2s, \tau^\vee, \mathrm{Sym}^2 \otimes \omega^{-1})$ does and $I(1 - s, \cdot, A(s, w) \cdot)|_{s=1} \neq 0$, which means that $I(1 - s, W, A(s, w)f)$ is nonzero at $s = 1$ for some W and holomorphic section f . The latter condition, i.e., that $I(1 - s, \cdot, A(s, w) \cdot)|_{s=1} \neq 0$, implies that $\mathrm{Bil}_G(\sigma, \sigma_{\psi_\alpha}(l, \tau, \omega)) \neq 0$.

Note that if the r.h.s. of (3.7) has a pole at $s = 1$, then so does $\gamma(s, \sigma \times (\tau \otimes \omega), \psi)$, even if $I(s, W, f)|_{s=1} = 0$.

For the converse direction we assume $\sigma_{\psi_\alpha}(l, \tau, \omega)$ is semi-simple, $L(s, \tau^\vee, \mathrm{Sym}^2 \otimes \omega^{-1})$ has a pole at $s = 0$ and $\mathrm{Bil}_G(\sigma, \sigma_{\psi_\alpha}(l, \tau, \omega)) \neq 0$. Since

$$J_{N_l, \psi_{l,\alpha}}(A(1, w)V(1, \tau \otimes \omega)) \cong \sigma_{\psi_\alpha}(l, \tau, \omega)$$

which is semi-simple, σ^\vee is also a subrepresentation of $J_{N_l, \psi_{l,\alpha}}(A(1, w)V(1, \tau \otimes \omega))$ and thereby of $J_{N_l, \psi_{l,\alpha}}V(0, \omega^{-1}\tau^\vee \otimes \omega)$.

Because the embedding $G < H$ identifies C_G° with C_H , C_G° acts on the space of $J_{N_l, \psi_{l,\alpha}}V(0, \omega^{-1}\tau^\vee \otimes \omega)$ by a fixed character. Hence Remark 2.1 implies that σ^\vee is a direct summand of $J_{N_l, \psi_{l,\alpha}}V(0, \omega^{-1}\tau^\vee \otimes \omega)$ and we write

$$J_{N_l, \psi_{l,\alpha}}V(0, \omega^{-1}\tau^\vee \otimes \omega) = E_{\sigma^\vee} \oplus E,$$

where E_{σ^\vee} is the space of σ^\vee . This gives rise to a projection $\Lambda : J_{N_l, \psi_{l,\alpha}}V(0, \omega^{-1}\tau^\vee \otimes \omega) \rightarrow \sigma^\vee$ which vanishes on E .

Next, denote

$$\mathcal{H} = \mathrm{Bil}_G(\sigma, J_{N_l, \psi_{l,\alpha}}V(0, \omega^{-1}\tau^\vee \otimes \omega)).$$

By Theorem 3.3 and Proposition 3.4, $\dim \mathcal{H} = 1$. Hence σ^\vee appears as a quotient of $J_{N_l, \psi_{l,\alpha}}V(0, \omega^{-1}\tau^\vee \otimes \omega)$ with multiplicity 1. It follows that there is a unique projection $J_{N_l, \psi_{l,\alpha}}V(0, \omega^{-1}\tau^\vee \otimes \omega) \rightarrow \sigma^\vee$, up to scaling.

Since the integral regarded as a bilinear form in \mathcal{H} is nonzero, it is a (nonzero) scalar multiple of Λ . As such, the integral does not vanish upon restriction to $A(1, w)V(1, \tau \otimes \omega)$, since the latter contains E_{σ^\vee} . Therefore $I(1 - s, \cdot, A(s, w) \cdot)|_{s=1} \neq 0$. As explained above, together with the assumption that $L(2 - 2s, \tau^\vee, \mathrm{Sym}^2 \otimes \omega^{-1})$ has a pole at $s = 1$, we infer $\gamma(s, \sigma \times (\tau \otimes \omega), \psi)$ has a pole at $s = 1$. \square

4. THE TOWER PROPERTY

We proceed with the notation of § 3.1. In this section we prove that the Jacquet module $J_{N_l, \psi_{l,\alpha}}(\text{Ind}_Q^H(|\det|^{1/2}\tau \otimes \omega))$, for a supercuspidal τ , satisfies the so-called tower property. Namely, for the maximal l such that this module is nonzero, it is supercuspidal.

Recall $l = m - n$. Let $U_{G,p}$ be the unipotent radical of a standard parabolic subgroup $Q_{G,p}$ of G whose Levi part is isomorphic to $\text{GL}_p \times \text{GSpin}_{2(n-p)}$ ($1 \leq p \leq n$ if G is split, otherwise $1 \leq p \leq n-1$). Denote $\mathcal{U} = V_{(p+1, 1^{l-1})} \ltimes U_{p+l} < N_{p+l}$, where $V_{(p+1, 1^{l-1})}$ is identified with its images in H under ι .

Proposition 4.1. *Let π be a representation of H . Fix $w = w_{p,l}$ such that $\text{pr}(w) = \text{diag}(\begin{pmatrix} I_p & \\ I_l & I_p \end{pmatrix}, I_{2(m-l-p)+1}, \begin{pmatrix} I_l & \\ I_p & \end{pmatrix})$. Then $J_{U_{G,p}}(J_{N_l, \psi_{l,\alpha}}(\pi)) \cong J_{\mathcal{U}, \psi_{l+p,\alpha}}(\pi)$ as vector spaces.*

Proof. Assume $p < n$. Put $\mathcal{N} = {}^w(N_l \rtimes U_{G,p})$, and write the elements of \mathcal{N} in the form

$$[z; u, a, d, e; x_1, x_2] = \begin{pmatrix} I_p & 0 & x_1 & d & x_2 \\ u & z & a & e & d' \\ 0 & 0 & I_{2(n-p)+1} & a' & x'_1 \\ 0 & 0 & 0 & z^* & 0 \\ 0 & 0 & 0 & u' & I_p \end{pmatrix}, \quad z \in N_{\text{GL}_l}, \quad \begin{pmatrix} I_p & x_1 & x_2 \\ & I_{2(n-p)+1} & x'_1 \\ & & I_p \end{pmatrix} \in N_G$$

(see (3.2)). Put $\mathcal{L} = V_{(p,l)}^-$. Throughout the proof we identify $N_{\text{GL}_l} = \{[z; 0, 0, 0, 0; 0, 0] : z \in N_{\text{GL}_l}\}$ and $\mathcal{L} < \{[I_l; u, 0, 0, 0; 0, 0]\}$. Extending $\psi_{l,\alpha}$ trivially on $U_{G,p}$ to a character of $N_l U_{G,p}$ gives a character of \mathcal{N} , $\psi_{\mathcal{N}} = {}^w\psi_{l,\alpha}$. In particular $\psi_{\mathcal{N}}|_{N_{\text{GL}_l}} = \psi_{N_{\text{GL}_l}}$ and because $p < n$, $\psi_{\mathcal{N}}|_{\mathcal{L}} = 1$. Then $J_{U_{G,p}}(J_{N_l, \psi_{l,\alpha}}(\pi)) \cong J_{\mathcal{N}, \psi_{\mathcal{N}}}(\pi)$ (as vector spaces). Note that $J_{\mathcal{N}, \psi_{\mathcal{N}}}(\pi)$ is a representation of ${}^wG \ltimes \mathcal{N}$.

For $0 \leq i \leq l-1$, let \mathcal{L}^i be the subgroup of \mathcal{L} consisting of matrices $\begin{pmatrix} I_p & \\ z & I_l \end{pmatrix}$ such that all rows of z except the $(l-i)$ -th row are 0, and \mathcal{L}_i denote the subgroup of elements $\begin{pmatrix} I_p & \\ z & I_l \end{pmatrix}$ where the last $i+1$ rows, i.e., rows $l-i, \dots, l$, are 0.

We argue by repeatedly applying the local “exchange of roots” [GRS99a, Lemma 2.2]. Let $C^0 = \{[I_l; 0, a, d, e; x_1, x_2]\}$ and $Y^0 = \mathcal{L}^0$. Let X^0 be the unipotent subgroup of H consisting of the coordinates in the blocks x_1, x_2, x'_1 depicted in $[I_l; 0, 0, 0, 0; x_1, x_2]$ above, without the prescribed condition with respect to N_G . The group $X^0 \cap C^0$ is normal in X^0 and the quotient is abelian, because it is isomorphic to F^p (note that if $x_1 = 0$, the conditions imposed on x_2 by the definitions of G or H coincide). Also $X^0 C^0 = U_{l+p} < H$. In addition, $X^0 \cap C^0$ acts trivially on the space of $J_{\mathcal{N}, \psi_{\mathcal{N}}}(\pi)$ because $\psi_{\mathcal{N}}|_{X^0 \cap C^0} = 1$. Put $\psi_{C^0} = \psi_{\mathcal{N}}|_{C^0}$. By the local analog of [GRS11, Lemma 7.1], namely the extension of [GRS99a, Lemma 2.2] to the case where the intersections $X \cap C$ or $Y \cap C$ are nontrivial, where X, Y and C are the subgroups defined in [GRS11, § 7.1] and [GRS99a, Lemma 2.2] (we take $C = C^0$, $X = X^0$, $Y = Y^0$; $C^0 \cap X^0$ is nontrivial), $J_{Y^0 \ltimes C^0, \psi_{Y^0 \ltimes C^0}}(\pi) \cong J_{X^0 C^0, \psi_{X^0 C^0}}(\pi)$ (as vector spaces), where the characters ψ_{\dots} are extended trivially on Y^0 and X^0 . Since $\mathcal{L} = \mathcal{L}_0 \cdot \mathcal{L}^0$ (direct product), $\mathcal{N} = N_{\text{GL}_l} \ltimes (\mathcal{L}_0 \ltimes (Y^0 \ltimes C^0))$ and $\psi_{X^0 C^0} = \psi_{l+p, \alpha}|_{U_{l+p}}$,

$$\begin{aligned} J_{U_{G,p}}(J_{N_l, \psi_{l,\alpha}}(\pi)) &\cong J_{N_{\text{GL}_l}, \psi_{N_{\text{GL}_l}}}(J_{\mathcal{L}_0}(J_{Y^0 \ltimes C^0, \psi_{Y^0 \ltimes C^0}}(\pi))) \\ &\cong J_{N_{\text{GL}_l}, \psi_{N_{\text{GL}_l}}}(J_{\mathcal{L}_0}(J_{U_{l+p}, \psi_{l+p, \alpha}}(\pi))). \end{aligned}$$

Next we handle the group \mathcal{L}_0 . For $1 \leq i \leq l-1$, denote $\mathcal{U}^i = V_{(p+l-i, 1^i)} \ltimes U_{p+l} < N_{p+l}$. Embed $N_{\text{GL}_{i-1}} < N_{\text{GL}_i}$ via $z \mapsto \text{diag}(z, 1)$, then $N_{\text{GL}_i} = N_{\text{GL}_{i-1}} \ltimes V_{(i-1, 1)}$. Also note

that $\mathcal{L}_i = \mathcal{L}^{i+1} \cdot \mathcal{L}_{i+1}$. Let $C^1 = V_{(l-1,1)} \ltimes U_{l+p}$ where $V_{(l-1,1)} < N_{\mathrm{GL}_l}$; $Y^1 = \mathcal{L}^1$; and $X^1 = V_{(p+l-1,1)} \cap V_{(p,l)} < N_{\mathrm{GL}_{l+p}}$ (identified with its image under ι). Then $X^1 \ltimes C^1 = \mathcal{U}^1$, $\psi_{C^1} = \psi_{l+p,\alpha}|_{C^1}$ and by [GRS99a, Lemma 2.2] ($X^1 \cap C^1$ is trivial), $J_{Y^1 \ltimes C^1, \psi_{Y^1 \ltimes C^1}}(\pi) \cong J_{X^1 \ltimes C^1, \psi_{X^1 \ltimes C^1}}(\pi)$ where again the characters ψ_{\dots} are extended trivially on Y^1 and X^1 . Hence

$$J_{N_{\mathrm{GL}_l}, \psi_{N_{\mathrm{GL}_l}}} (J_{\mathcal{L}_0} (J_{X^0 C^0, \psi_{X^0 C^0}}(\pi))) \cong J_{N_{\mathrm{GL}_{l-1}}, \psi_{N_{\mathrm{GL}_{l-1}}}} (J_{\mathcal{L}_1} (J_{\mathcal{U}^1, \psi_{l+p,\alpha}}(\pi))).$$

We repeat this argument for $i = 1, \dots, l-2$, with $C^{i+1} = V_{(l-i-1,1)} \ltimes \mathcal{U}^i$, $Y^{i+1} = \mathcal{L}^{i+1}$ and $X^{i+1} = V_{(p+l-i-1,1)} \cap V_{(p,l-i)}$, each time [GRS99a, Lemma 2.2] implies

$$J_{N_{\mathrm{GL}_{l-i}}, \psi_{N_{\mathrm{GL}_{l-i}}}} (J_{\mathcal{L}_i} (J_{X^i \ltimes C^i, \psi_{X^i \ltimes C^i}}(\pi))) \cong J_{N_{\mathrm{GL}_{l-i-1}}, \psi_{N_{\mathrm{GL}_{l-i-1}}}} (J_{\mathcal{L}_{i+1}} (J_{\mathcal{U}^{i+1}, \psi_{l+p,\alpha}}(\pi))).$$

Thus $J_{U_{G,p}}(J_{N_l, \psi_{l,\alpha}}(\pi)) \cong J_{\mathcal{U}^{l-1}, \psi_{l+p,\alpha}}(\pi)$ as claimed ($\mathcal{U}^{l-1} = \mathcal{U}$).

It remains to consider $p = n$ (then G is split). There are two standard maximal parabolic subgroups $Q_{G,p}$, but they are conjugate, hence it suffices to prove the statement for one. Write $\alpha = \beta^2$ and consider $h \in \mathrm{pr}^{-1}(h_0)$ where $h_0 \in \mathrm{SO}_{2m+1}$ is defined by

$$h_0 = \mathrm{diag}(I_{m-1}, \begin{pmatrix} -\beta/4 & 1/2 & 1/(2\beta) \\ \beta/2 & 0 & 1/\beta \\ \beta/2 & 1 & -1/\beta \end{pmatrix}, I_{m-1}) \quad (h_0^{-1} = \mathrm{diag}(I_{m-1}, \begin{pmatrix} -1/\beta & 1/\beta & 1/(2\beta) \\ 1 & 0 & 1/2 \\ \beta/2 & \beta/2 & -\beta/4 \end{pmatrix}, I_{m-1})).$$

Then $h_0 y_\alpha = e_{m+1}$ and the only difference between ${}^h\psi_{l,\alpha}$ and (3.1) is that y_α in (3.1) is replaced with e_{m+1} . The group hG is the stabilizer of ${}^h\psi_{l,\alpha}$, and ${}^hJ_{U_{G,p}}(J_{N_l, \psi_{l,\alpha}}(\pi)) \cong J_{hU_{G,p}}(J_{N_l, {}^h\psi_{l,\alpha}}(\pi))$. We choose $Q_{G,p}$ such that (3.2) for ${}^hU_{G,p}$ takes the form $\{ \begin{pmatrix} I_n & u \\ 0 & I_n \end{pmatrix} \}$ (note that for u in the form (3.2), the column x in ${}^h u$ becomes 0). With this “patch” we proceed as above, now with $p = n$: denote $\mathcal{N} = {}^w(N_l \ltimes {}^hU_{G,p})$, the elements $[z; u, a, d, e; x_1, x_2]$ take the same form except $x_1 = 0$; $\mathcal{L} = V_{(p,l)}^-$; $\psi_{\mathcal{N}} = {}^{wh}\psi_{l,\alpha}$, $\psi_{\mathcal{N}}|_{N_{\mathrm{GL}_l}} = \psi_{N_{\mathrm{GL}_l}}$ and because of the conjugation by h , $\psi_{\mathcal{N}}|_{\mathcal{L}} = 1$. \square

Regard \mathcal{P}_{p+1} as a subgroup of H via ι .

Theorem 4.2. *Let τ be a supercuspidal representation of GL_m and π be a subquotient of $\mathrm{Ind}_Q^H(|\det|^{1/2}\tau \otimes \omega)$. As vector spaces,*

$$(4.1) \quad J_{U_{G,p}}(J_{N_l, \psi_{l,\alpha}}(\pi)) \cong \mathrm{ind}_{N_{\mathrm{GL}_{p+1}}}^{\mathcal{P}_{p+1}} (J_{N_{l+p}, \psi_{l+p,\alpha}}(\pi)).$$

In particular $J_{N_l, \psi_{l,\alpha}}(\pi)$ enjoys the following “tower property”: For the largest l such that $J_{N_l, \psi_{l,\alpha}}(\pi) \neq 0$, $J_{N_l, \psi_{l,\alpha}}(\pi)$ is supercuspidal.

Proof. By Proposition 4.1 applied to π , $J_{U_{G,p}}(J_{N_l, \psi_{l,\alpha}}(\pi)) \cong J_{\mathcal{U}, \psi_{l+p,\alpha}}(\pi)$. For brevity, denote the latter representation by ρ . Observe that ρ is a representation of \mathcal{P}_{p+1} . By [BZ77, 3.5] (see also [BZ76, 5.15]), there is a filtration of \mathcal{P}_{p+1} -modules

$$0 \subset \rho_{p+1} \subset \dots \subset \rho_1 = \rho, \quad \rho_i = (\Phi^+)^{i-1}(\Phi^-)^{i-1}(\rho), \quad \rho_{i+1} \setminus \rho_i = (\Phi^+)^{i-1}\Psi^+(\rho^{(i)}).$$

Here $\rho^{(i)} = \Psi^-(\Phi^-)^{i-1}(\rho)$ is the i -th derivative of ρ , and Φ^\pm, Ψ^\pm are the functors from [BZ77]. Since τ is supercuspidal and π is a constituent of $\mathrm{Ind}_Q^H(|\det|^{1/2}\tau \otimes \omega)$, $\rho^{(i)} = 0$ for all $1 \leq i \leq p$ by [BZ77, Corollary 2.13a]. Hence $\rho = \rho_{p+1} = (\Phi^+)^p(\Phi^-)^p(\rho)$ and (4.1) follows because $(\Phi^-)^p(\rho) = J_{N_{l+p}, \psi_{l+p,\alpha}}(\pi)$.

The second assertion is clear because by (4.1) and the maximality of l , the Jacquet modules of π along the standard maximal parabolic subgroups of G all vanish. \square

5. THE VANISHING RESULTS

5.1. Outline of the method. In this section we prove the vanishing of the descent map in the relevant range (see Theorem 5.5 below). We briefly recall the analogous result for SO_{2n+1} (for details see [GRS99a, GRS99b]). Let τ be an irreducible unitary supercuspidal representation of GL_m such that $L(s, \tau, \wedge^2)$ has a pole at $s = 0$ (in particular, m is even). Then τ affords a Shalika model, hence also a linear model, i.e., τ embeds into $C^\infty(\mathrm{GL}_{m/2} \times \mathrm{GL}_{m/2} \backslash \mathrm{GL}_m)$. It then follows that the representation parabolically induced from $|\det|^{1/2}\tau$ to Sp_{2m} injects into $C^\infty(\mathrm{Sp}_m \times \mathrm{Sp}_m \backslash \mathrm{Sp}_{2m})$. The vanishing properties of the tower of local descent maps are proved by showing that the corresponding Jacquet modules vanish on $C^\infty(\mathrm{Sp}_m \times \mathrm{Sp}_m \backslash \mathrm{Sp}_{2m})$ ([GRS99b, Theorem 17]).

We consider a representation τ such that the symmetric or twisted symmetric square L -function has a pole at $s = 0$. Let us begin with the case of $L(s, \tau, \mathrm{Sym}^2)$. One can find a pair (θ, θ') of exceptional representations (in the sense of [KP84]) of a double cover $\widetilde{\mathrm{GL}}_m$ of GL_m , such that τ is a quotient of $\theta \otimes \theta'$ ([Yam17, Theorem 3.19], see also [Kap16b, Theorem 1.3]). Note that the tensor product $\theta \otimes \theta'$ is a well defined representation of GL_m . Then in [Kap16b, Proposition 4.1] it was proved that $\mathrm{Ind}_{Q_m}^H(|\det|^{1/2}\tau \otimes 1)$ is a quotient of $\Theta \otimes \Theta'$, where Θ and Θ' are exceptional representations of a double cover \widetilde{H} of $H (= \mathrm{GSpin}_{2m+1})$, defined in [Kap17b]. The remaining step, proving the vanishing of the Jacquet modules of $\Theta \otimes \Theta'$, has already been established in [Kap16b, Theorem 1.1] but only for the “ground level”, i.e., the generic case ($l = m$). Here we complete the proof for all $l > m/2$.

Now assume ω is a unitary character of F^* and $L(s, \tau, \mathrm{Sym}^2 \otimes \omega)$ has a pole at $s = 0$. According to Yamana [Yam17, Theorem 3.19], τ (or a twist of τ for odd m) is a quotient of a tensor product of two “extended exceptional representations” (see § 5.2 below for the definition). To proceed, we need to define an extended version of the exceptional representations of \widetilde{H} . This can be done along the line of arguments of [Tak14, Kap17b], then [Kap16b, Proposition 4.1] becomes applicable in this setup as well. In this manner we treat Sym^2 and $\mathrm{Sym}^2 \otimes \omega$ simultaneously.

We further note, for the interested reader, that the case where $L(s, \tau, \mathrm{Sym}^2)$ has a pole at $s = 0$ is also relevant for the descent construction from GL_{2n} to SO_{2n} , which uses the Rankin–Selberg integrals of [Kap13c]. The details of that case have not yet appeared in print, but the expected vanishing result will follow immediately from the proof here, under a certain mild assumption on the field, by replacing H with SO_{2m+1} and using non-extended exceptional representations. See [Kap16b, § 5].

5.2. Exceptional representations. Recall the fixed Borel subgroup $B = T \ltimes N$ of H , the maximal parabolic subgroups $Q_k = M_k \ltimes U_k$, $T < M_k \cong \mathrm{GL}_k \times \mathrm{GSpin}_{2(m-k)+1}$ and $U_k < N$, the embedding $\iota : \mathrm{GL}_m \rightarrow M_m$, and the fixed character ψ of F (see § 2). Let $\Upsilon = \Upsilon_m$ denote the “canonical” character of H constructed in [Kap17b, § 1.2]. Fixing an identification $[,] : \mathrm{GL}_k \times \mathrm{GSpin}_{2(m-k)+1} \rightarrow M_k$ for each k , this character satisfies $\Upsilon([a, b]) = \det(a) \cdot \Upsilon_{m-k}(b)$ ($a \in \mathrm{GL}_k$, $b \in \mathrm{GSpin}_{2(m-k)+1}$) and in particular for $k = m$ (then $b \in \mathrm{GL}_1$), $\Upsilon([a, b]) = \det(a) \cdot b^{-2}$. Let \widetilde{H} be the double cover of H , constructed in [Kap17b] by restricting the double cover of Spin_{2m+3} of Matsumoto [Mat69] and using the cocycle σ of Banks *et. al.* [BLS99] (in [Kap17b] we showed that σ is block-compatible). We fix a section $\mathfrak{s} : H \rightarrow \widetilde{H}$ such that $\sigma(h, h') = \mathfrak{s}(h)\mathfrak{s}(h')\mathfrak{s}(hh')^{-1}$. This

section restricts to a homomorphism of N . For any $X \subset H$ let \tilde{X} be its preimage in \tilde{H} . In particular $\tilde{\mathrm{GL}}_m$ is defined by restriction from \tilde{H} , and it is a nontrivial double cover of the class studied in [KP84, Tak14]. We have $C_{\tilde{H}} = \tilde{C}_H$, in contrast with double coverings of GL_{2m} (\tilde{C}_H denotes the preimage of C_H in \tilde{H}).

The exceptional representations of \tilde{H} were developed (locally and globally) in [Kap17b], by adapting the construction of Bump *et. al.* [BFG03, BFG06] for a covering of SO_{2m+1} . For a convenient summary see [Kap16b, § 2.8]. Let ξ be a genuine character of $C_{\tilde{T}}$, whose restriction to $C_{\tilde{T}_{\mathrm{GL}_m}}$ and $C_{\tilde{H}}$ is a genuine lift of $\delta_{B_{\mathrm{GL}_m}}^{1/4} \cdot |\det|^{(m+1)/4}$ and the trivial character, respectively (note that $C_{\tilde{T}_{\mathrm{GL}_m}} < C_{\tilde{T}}$). This determines ξ uniquely when m is even, in the odd case there is an additional choice of a Weil factor. Let $\rho(\xi)$ denote the corresponding genuine irreducible representation of \tilde{T} (see e.g., [KP84, McN12]). Then $\mathrm{ind}_{\tilde{B}}^{\tilde{H}}(\rho(\xi))$ has a unique irreducible quotient Θ_0 . An exceptional representation Θ of \tilde{H} is then any twist of Θ_0 by a non-genuine character of H , i.e., $\Theta = (\chi \circ \Upsilon) \cdot \Theta_0$ where χ is a quasi-character of F^* .

The main property of Θ is that its Jacquet module along a unipotent radical of a parabolic subgroup is, essentially, an exceptional representation of the stabilizer. See [Kap17b, Proposition 2.19] for a more precise statement (see also [BFG03, Theorem 2.3]). This result and the fact that exceptional representations of $\tilde{\mathrm{GL}}_m$ do not afford a Whittaker functional for $m > 2$ ([KP84, Kap17a], see also [Yam17]), imply through a series of intermediate results, that Θ is “small” in the sense that it is attached to one of the unipotent orbits next to the minimal one (see [BFG03]). The following theorem encapsulates all the vanishing properties of Θ .

Regarding the elements of U_1 as row vectors, any character λ of U_1 takes the form $\lambda(u) = \psi(\sum_{i=1}^{2m-1} \beta_i u_i)$, with $\beta_i \in F$. The length of λ is defined by $2 \sum_{i=1}^{m-1} \beta_i \beta_{2m-i} + \beta_m^2$. While the length depends on ψ , it is zero or not independently of ψ .

Theorem 5.1. ([BFG03, Theorem 2.6], [BFG06, Proposition 3], [Kap17b, Lemma 2.25])
For any λ with nonzero length, $J_{U_1, \lambda}(\Theta) = 0$.

Corollary 5.2. Let $V < U_1$ (as algebraic groups) and λ be a character of V , such that the action of $N_{M_1}(V, \lambda)$ (see § 2 for this notation) on the set of characters of $V \backslash U_1$ has finitely many orbits. Assume any extension of λ to a character of U_1 has a nonzero length. Then $J_{V, \lambda}(\Theta) = 0$.

Proof. The quotient $V \backslash U_1$ is abelian. By [BZ76, 5.9–5.12], if $J_{V \backslash U_1, \lambda'}(J_{V, \lambda}(\Theta)) = 0$ when λ' varies over a complete set of representatives for the orbits, $J_{V, \lambda}(\Theta) = 0$ (by our assumptions, λ' varies over a finite set). Since $J_{V \backslash U_1, \lambda'}(J_{V, \lambda}(\Theta)) = J_{U_1, \lambda_1}(\Theta)$ where λ_1 extends λ , the length of λ_1 is nonzero and $J_{U_1, \lambda_1}(\Theta) = 0$ by Theorem 5.1. \square

For example when $m = 2$, if V is defined by $u_1 = 0$, the character $\lambda(v) = \psi(\beta u_2)$ satisfies the requirement of the corollary for any $\beta \neq 0$.

Corollary 5.3. Let λ be a character of U_1 defined by the vector $(\beta, 0, \dots, 0)$, where $\beta \neq 0$. The subgroup U_2 acts trivially on $J_{U_1, \lambda}(\Theta)$.

Proof. We argue exactly as in the proof of [BFG06, Proposition 4]. \square

As mentioned above, the Jacquet functor takes exceptional representations into exceptional representations. We describe the particular case of J_{U_m} . Let θ_0 be the unique

irreducible quotient of $\text{ind}_{\tilde{B}_{\text{GL}_m}}^{\widetilde{\text{GL}}_m}(\rho(\xi_0))$, where ξ_0 is a lift of $\delta_{B_{\text{GL}_m}}^{1/4}$ to a genuine character of $C_{\tilde{B}_{\text{GL}_m}}$. This lift is unique when m is even and depends on a Weil factor in the odd case; still, if we fix one Weil factor, the representations θ_0 corresponding to the different lifts are twists of one another by a square-trivial character (see [Kap17a, Claim 2.6]). The exceptional representations of $\widetilde{\text{GL}}_m$ are thus θ_0 and its twists $\theta = (\chi \circ \det) \cdot \theta_0$ (see [KP84, BG92, Kab01]). Then

$$(5.1) \quad \delta_{Q_m}^{1/2} J_{U_m}(\Theta_0) = |\det|^{(m-1)/4} \theta_0 \otimes 1$$

([Kap16b, (2.8)]), the Jacquet functor there was not normalized; see also [Kap17b, Claim 2.21]). Note that the direct factors of M_m commute in the cover, but this is a special phenomenon, which does not hold for M_k with $k < m$. Equality (5.1) implies (almost formally) that when we take a unitary quotient τ of $\theta \otimes \theta'$, there is a suitable unitary character ω of F^* (depending on θ and θ') and a pair of exceptional representations (Θ, Θ') of \widetilde{H} , such that $\text{Ind}_{Q_m}^H(|\det|^{1/2} \tau \otimes \omega)$ is a quotient of $\Theta \otimes \Theta'$ ([Kap16b, Proposition 4.1]).

As explained in § 5.1, to handle the twisted symmetric square L -function we need to consider a wider class of exceptional representations, which we call extended exceptional representations (exceptional ones are included in the definition). For $\widetilde{\text{GL}}_2$ these representations are formed by extending the Weil representation of $\widetilde{\text{Sp}}_2$ to a subgroup of $\widetilde{\text{GL}}_2$ of finite index, then inducing to $\widetilde{\text{GL}}_2$ ([Gel76, GPS80]). For $\widetilde{\text{GL}}_m$ they were constructed by Banks [Ban94] under the assumption that F is p -adic of odd residual characteristic. The general case of $\widetilde{\text{GL}}_m$ is due to Takeda [Tak14, § 2.2–2.4].

We begin with a brief description of his construction. Let χ be a unitary character of F^* such that $\chi(-1) = -1$. Denote by ω_ψ^- the irreducible summand of the Weil representation ω_ψ of $\widetilde{\text{Sp}}_2$ consisting of odd functions. One can extend ω_ψ^- to a representation $\omega_{\psi, \chi}^-$ of the subgroup $\widetilde{\text{GL}}_2^{(2)}$ of $\widetilde{\text{GL}}_2$, where $\text{GL}_2^{(2)} = \{g \in \text{GL}_2 : \det g \in (F^*)^2\}$, by letting C_{GL_2} act by χ . More precisely if $\mathfrak{s} : \text{GL}_2 \rightarrow \widetilde{\text{GL}}_2$ is the chosen section, the action is given by $\mathfrak{s}(aI_2) \mapsto \chi(a)\gamma_{\psi'}(a)$, where $\gamma_{\psi'}$ is the Weil factor corresponding to an additive character ψ' of F . The extended exceptional representation $\theta_2^\chi = \text{Ind}_{\widetilde{\text{GL}}_2^{(2)}}^{\widetilde{\text{GL}}_2}(\omega_{\psi, \chi}^-)$ is irreducible supercuspidal and unitary, and independent of the choice of ψ' . (In contrast, the exceptional representations of [KP84] are not supercuspidal.)

Now assume m is even and let $\beta = (2^{m/2})$ be a composition of m . Consider the representation

$$\text{Ind}_{\tilde{P}_\beta}^{\widetilde{\text{GL}}_m}((\theta_2^\chi \tilde{\otimes} \dots \tilde{\otimes} \theta_2^\chi) \delta_{P_\beta}^{1/4}).$$

Here $\tilde{\otimes}$ is the metaplectic tensor product ([Kab01, Mez04]), which in this case is canonical (see [Tak16, Remark 4.3]). Since the inducing data is tempered, the Langlands quotient theorem — proved for metaplectic groups by Ban and Jantzen [BJ13] — implies that it has a unique irreducible quotient θ_m^χ , which is defined to be an extended exceptional representation of $\widetilde{\text{GL}}_m$. The representation θ_m^χ is also the image of the intertwining operator with respect to the longest Weyl element relative to P_β . We also have the following the “periodicity result” ([Tak14, Proposition 2.36])

$$J_{V_\beta}(\theta_m^\chi) = (\theta_2^\chi \tilde{\otimes} \dots \tilde{\otimes} \theta_2^\chi) \delta_{P_\beta}^{-1/4}$$

(in *loc. cit.* J_{V_β} was not normalized). See [KP84, Theorem I.2.9] for this statement on exceptional representations. As above, we can twist θ_m^χ by $\chi_1 \circ \det$ for a quasi-character χ_1 .

We follow a similar paradigm to construct extended exceptional representations of \tilde{H} . Let $R = A \ltimes V$ be the standard parabolic subgroup of H with $A \cong M_\beta \times \mathrm{GL}_1$. Consider the representation

$$\Pi^\chi = \mathrm{Ind}_{\tilde{R}}^{\tilde{H}}(((\theta_2^\chi \tilde{\otimes} \dots \tilde{\otimes} \theta_2^\chi) \otimes 1) \delta_R^{1/4}).$$

Again, according to the Langlands quotient theorem [BJ13] this representation has a unique irreducible quotient Θ^χ . Since the inducing data is supercuspidal, according to [BZ77, Corollary 2.13c] $J_V(\Pi^\chi)$ is glued from (that is, admits a filtration whose subquotients are)

$${}^w(((\theta_2^\chi \tilde{\otimes} \dots \tilde{\otimes} \theta_2^\chi) \otimes 1) \delta_R^{1/4}),$$

where w varies over the Weyl elements of H which satisfy ${}^w A = A$ and are reduced modulo the Weyl group of A . The periodicity result becomes

$$(5.2) \quad J_V(\Theta^\chi) = ((\theta_2^\chi \tilde{\otimes} \dots \tilde{\otimes} \theta_2^\chi) \otimes 1) \delta_R^{-1/4}.$$

See [Kap17b, Proposition 2.16] for this statement for Θ . A family of extended exceptional representations can be obtained by varying χ , and twisting using $\chi_1 \circ \Upsilon$.

Let $E = B \ltimes Z$ be a standard parabolic subgroup of H . By [BZ77, Corollary 2.13], if $Z \cap A$ is nontrivial, $J_Z(\Theta^\chi) = 0$, and if B contains A , $J_Z(\Theta^\chi)$ is irreducible (combine *loc. cit.* with the transitivity of the Jacquet functor and (5.2)).

By virtue of the above observations, the results of [Kap17b, § 2.3.1] for Θ are applicable to Θ^χ as well. Also note that Yamana [Yam17] proved θ_m^χ does not afford a Whittaker functional when $m \geq 3$. Thus the arguments of [Kap17b, § 2.3.2] are valid as well, in particular [Kap17b, Lemma 2.25], and we deduce that Theorem 5.1 and its corollaries are applicable also to Θ^χ .

The analog of (5.1) holds as well (see [Kap17b, Claim 2.21]), with (Θ_0, θ_0) replaced by $(\Theta^\chi, \theta_m^\chi)$, whence the proof of [Kap16b, Proposition 4.1] extends to Θ^χ . By that proposition, if τ is a quotient of $\theta_m^{\chi^{-1}} \otimes \theta_m$, $\mathrm{Ind}_{Q_m}^H(|\det|^{1/2} \tau \otimes \chi)$ is a quotient of two extended exceptional representations of \tilde{H} .

Since Θ^χ enjoys the same properties of Θ relevant to this work, namely Theorem 5.1, Corollary 5.2 and Corollary 5.3, we omit χ and simply write Θ in all cases.

5.3. The generic Jacquet modules of Θ . Recall the Weil representation of the metaplectic group. In this section we prove that the Jacquet module of an extended exceptional representation Θ with respect to C_{U_l} (the center of U_l) and a “generic character” is a direct sum of Weil representations. For $l = m$ this was proved in [Kap16b, Theorem 1.4].

Assume $0 < l \leq m$ is even and set $l = 2j$ and $C = C_{U_l} \cong F^{l \times l}$. Let ψ_j denote a character of C whose stabilizer in Q_l is $\mathrm{Sp}_l \ltimes U_l$; such a character is called generic and for convenience we may assume it is defined by $\psi_j(c) = \psi(\sum_{i=1}^j c_{i,i})$.

Put $r = l(2(m-l) + 1)$. Let \mathcal{H} be a generalized Heisenberg group of rank $r+1$. Identify \mathcal{H} with the set of elements $(a, b; c)$, where a and b are rows in $F^{r/2}$, $c \in F$, and the product is given by

$$(a, b; c) \cdot (a', b'; c') = \left(a + a', b + b', c + c' + \frac{1}{2}(a, b) \begin{pmatrix} & J_{r/2} \\ -J_{r/2} & \end{pmatrix} {}^t(a', b') \right).$$

Here $J_{r/2}$ is the $r/2 \times r/2$ permutation matrix having 1 on its anti-diagonal and ${}^t(a', b')$ is the transpose of (a', b') . We have the epimorphism $\ell : U_l \rightarrow \mathcal{H}$ defined by

$$\ell(u) = (a_1, \dots, a_j, b_1, \dots, b_j, \frac{1}{2}(\sum_{i=1}^j c_{i,i} - c_{l+i, l+i})),$$

where b_1, \dots, b_j are the first j rows of v and a_1, \dots, a_j are the last and we recall that u is written using the notation of (5.4) (with $z = I_l$). Also let $R < \mathcal{H}$ be the subgroup consisting of elements $(0, b; 0)$.

Since ψ_j is trivial on the kernel of ℓ , we may regard $J_{C, \psi_j}(\Theta)$ as a smooth representation of \mathcal{H} , and as such it is the direct sum of irreducible Weil representations ω_ψ , where ψ is our fixed character of F .

The representation ω_ψ extends to a representation of $\widetilde{\mathrm{Sp}}_r \ltimes \mathcal{H}$, where $\widetilde{\mathrm{Sp}}_r$ is the metaplectic double cover of Sp_r . Using the action of Sp_l on each of the $2(m-l)+1$ columns of v we construct an embedding of Sp_l in $\widetilde{\mathrm{Sp}}_r$. Moreover, the covering $\widetilde{\mathrm{Sp}}_l$ obtained by restricting \widetilde{H} does not split over Sp_l , hence it is the metaplectic double cover, therefore the embedding extends to an embedding of the coverings, also denoted ℓ (one may also apply the strong block compatibility property of the cocycle [BL99, Theorem 2.7] to deduce this).

As a smooth representation of a generalized Jacobi group, $J_{C, \psi_j}(\Theta)$ is isomorphic to a representation $\kappa \otimes \omega_\psi$, where $(\kappa \otimes \omega_\psi)(\ell(g)h) = \kappa(g) \otimes \omega_\psi(\ell(g)h)$ for $g \in \widetilde{\mathrm{Sp}}_l$ and $h \in \mathcal{H}$, and κ is a non-genuine representation (see e.g., [Ike94, § 1]). The following claim proves κ is trivial.

Theorem 5.4. *As a representation of $\widetilde{\mathrm{Sp}}_l \ltimes \mathcal{H}$, $J_{C, \psi_j}(\Theta)$ is isomorphic to a (possibly infinite) direct sum of copies of the representation ω_ψ .*

Proof. The proof of [Kap16b, Theorem 1.4] (when $l = m$) carries over to $l < m$, we describe the argument briefly. We need to show κ is a trivial representation. Let

$$Y = \left\{ \begin{pmatrix} 1 & & y \\ & I_{l-2} & \\ & & 1 \end{pmatrix} \right\} < \mathrm{Sp}_l.$$

It is enough to show $J_{\ell(Y), \psi_\beta}(\kappa) = 0$, where $\psi_\beta(y) = \psi(\beta y)$, for all $\beta \neq 0$. Consider

$$V = \left\{ \begin{pmatrix} 1 & 0 & y & b & 0 & 0 & * \\ & I_{l-2} & & & & 0 & 0 \\ & & 1 & & & 0 & 0 \\ & & & I_{2(m-l)+1} & & b' & \\ & & & & 1 & y' & \\ & & & & & I_{l-2} & 0 \\ & & & & & & 1 \end{pmatrix} \right\} < U_1.$$

The mapping ℓ is an isomorphism of V onto the direct product $\ell(Y) \cdot R_1$, where $R_1 < R$ consists of elements $(0, (b, 0, \dots, 0); 0)$ with $b \in F^{2(m-l)+1}$. First observe that

$$(5.3) \quad J_{V, \psi_\beta \circ \ell}(J_{C, \psi_j}(\Theta)) = 0.$$

This follows because this space is a quotient of $J_{V \cdot (C \cap U_1), (\psi_\beta \circ \ell) \psi_j}(\Theta)$ which vanishes by Corollary 5.2. Indeed for $c \in C \cap U_1$, $\psi_j(c) = \psi(c_{1,1})$, thus any extension of $(\psi_\beta \circ \ell) \psi_j$ to a character of U_1 is a character of nonzero length (the extension is defined by a character of $V_{(1, l-2)}$ taken from one of 2 orbits under the action of $\mathrm{GL}_{l-2} < P_{(1, l-2)}$).

Since $J_R(\omega_\psi)$ is one-dimensional ([Kap16b, Claim 2.4]), there is a vector φ in the space of ω_ψ such that the Jacquet integrals

$$\varphi^{\mathcal{Y}, \mathcal{R}} = \int_{\mathcal{Y}} \int_{\mathcal{R}} \omega_\psi(yr) \varphi \, dr \, dy$$

do not vanish for all compact subgroups $\mathcal{Y} < Y$ and $\mathcal{R} < R$ (see [BZ76, 2.33]). Then given ξ in the space of κ , arguing as in [Kap16b, p. 922] using the fact that $J_R(\omega_\psi)$ is one-dimensional and (5.3), one shows that for sufficiently large \mathcal{Y} and \mathcal{R} ,

$$\int_{\mathcal{Y}} \kappa(y) \xi \psi_\beta^{-1}(y) \, dy \otimes \varphi^{\mathcal{Y}, \mathcal{R}} = 0.$$

This implies that ξ vanishes in $J_{\ell(Y), \psi_\beta}(\kappa)$ ([BZ76, 2.33]). \square

5.4. Vanishing results. Let τ be an irreducible unitary supercuspidal representation of GL_m , and ω be a unitary character of F^* . Assume $L(s, \tau, \mathrm{Sym}^2 \otimes \omega)$ has a pole at $s = 0$. We prove $\sigma_{\psi_\alpha}(l, \tau, \omega) = 0$ for $m/2 < l \leq m$.

If m is even, by [Yam17, Theorem 3.19(1)] τ is a quotient of $\theta_m^\omega \otimes \theta_m$ where the extended exceptional representations are determined (non-uniquely) by τ and ω . Then according to [Kap16b, Proposition 4.1] there is a pair of extended exceptional representations (Θ, Θ') of \tilde{H} such that $\mathrm{Ind}_{Q_m}^H(|\det|^{1/2} \tau \otimes \omega)$ is a quotient of $\Theta \otimes \Theta'$.

When m is odd, let ω_τ be the central character of τ and $\eta = \omega_\tau^{-1} \omega^{-(m-1)/2}$. By [Yam17, Theorem 3.19(2)], $(\eta \circ \det)\tau$ is a quotient of $\theta \otimes \theta'$ and moreover $\eta^2 = \omega$, then [Kap16b, Proposition 4.1] implies $\mathrm{Ind}_{Q_m}^H(|\det|^{1/2} (\eta \circ \det)\tau \otimes 1)$ is a quotient of some $\Theta \otimes \Theta'$. Since

$$\mathrm{Ind}_{Q_m}^H(|\det|^{1/2} (\eta \circ \det)\tau \otimes 1) = (\eta \circ \Upsilon) \mathrm{Ind}_{Q_m}^H(|\det|^{1/2} \tau \otimes \eta^2),$$

$\mathrm{Ind}_{Q_m}^H(|\det|^{1/2} \tau \otimes \omega)$ is a quotient of (Θ'', Θ') with $\Theta'' = (\eta^{-1} \circ \Upsilon)\Theta$.

Theorem 5.5. *For any Θ, Θ' and $m/2 < l \leq m$, $J_{N_l, \psi_{l,\alpha}}(\Theta \otimes \Theta') = 0$. In particular, $\sigma_{\psi_\alpha}(l, \tau, \omega) = 0$ for $m/2 < l \leq m$.*

Remark 5.6. *We do not assume anything on α (except that $\alpha \neq 0$). This is reasonable because Theorem 5.1 applies to any character of nonzero length.*

Proof. For $l = m$ this is [Kap16b, Theorem 1.1]. The framework of the proof for $l \leq m$ is similar, but the proof involves several new difficulties (e.g., see Lemma 5.7 below).

Recall the unipotent radical N_l of P_l , which we write in the form

$$(5.4) \quad N_l = \left\{ \begin{pmatrix} z & v \\ & I_{2(m-l)+1} & v' \\ & & z^* \end{pmatrix} : z \in N_{\mathrm{GL}_l} \right\}.$$

Let $C = C_{U_l}$. The group M_l acts on the characters of C with $\lfloor l/2 \rfloor$ orbits. We choose representatives for these orbits: $\psi_0(c) = 1$ and

$$\psi_j(c) = \psi\left(\sum_{i=1}^j c_{l-2j+i,i}\right), \quad 0 < j \leq \lfloor l/2 \rfloor.$$

Here c is regarded as an $l \times l$ matrix. Denote the stabilizer of ψ_j in Q_l by St_j ,

$$\mathrm{St}_j = (\mathrm{GL}_{l-2j} \times \mathrm{Sp}_{2j} \times \mathrm{GSpin}_{2(m-l)+1}) \ltimes V_{(l-2j, 2j)} \ltimes U_l.$$

By virtue of the Geometric Lemma of Bernstein and Zelevinsky ([BZ77, Theorem 5.2] and [BZ76, 5.9–5.12]), as a representation of \tilde{Q}_l , Θ is glued from

$$\text{ind}_{\tilde{\text{St}}_j}^{\tilde{Q}_l}(J_{C,\psi_j}(\Theta)), \quad 0 \leq j \leq \lfloor l/2 \rfloor.$$

A similar result applies to Θ' , where we use ψ^{-1} for the representatives of the orbits. In turn $\Theta \otimes \Theta'$ is glued from tensor products of such representations, with indices j, j' . According to [Kap17a, Lemma 2.3], when we apply the Jacquet functor with respect to N_l and $\psi_{l,\alpha}$ only those with $j = j'$ remain. Since the tensor product of two genuine representations is a non-genuine representation, we need to show that for all j ,

$$(5.5) \quad J_{N_l,\psi_{l,\alpha}}(\text{ind}_{\text{St}_j}^{Q_l}(J_{C,\psi_j}(\Theta) \otimes J_{C,\psi_j^{-1}}(\Theta'))) = 0.$$

Since ψ_j is trivial on $U_{l-2j} \cap C$ (e.g., on C if $j = 0$), $J_{C,\psi_j}(\Theta)$ is a representation of $E = U_{l-2j}/(U_{l-2j} \cap C)$ and thereby of U_{l-2j} (which is the trivial group when $j = l/2$). We apply a filtration argument to $J_{C,\psi_j}(\Theta)$ as a U_{l-2j} -module. Since there are infinitely many orbits of characters of U_{l-2j} with respect to the action of St_j , we will carry out the argument in stages. Let $U_{l-2j}^1 = U_{l-2j} \cap U_1$ and define inductively $U_{l-2j}^i = (U_{l-2j} \cap U_i)/(\prod_{k=1}^{i-1} U_{l-2j}^k)$ for $1 < i \leq l-2j$ ($U_{l-2j}^i \ltimes \prod_{k=1}^{i-1} U_{l-2j}^k$). Set $E^i = U_{l-2j}^i/(C \cap U_{l-2j}^i)$, namely the i -th row of E .

Lemma 5.7. *The representation $J_{C,\psi_j}(\Theta)$ is glued from the representations*

$$J_{U_{l-2j}C,\lambda_k\psi_j}(\Theta), \quad 0 \leq k \leq \min(m-l, l-2j),$$

where λ_k is a character of U_{l-2j} , $\lambda_0 = 1$ and for $k > 0$, $\lambda_k(u) = \prod_{i=1}^k \psi(u_{l-2j-i+1,l-i+1})$.

The proof is given below, after the proof of the theorem.

The lemma holds trivially when $j = l/2$; when $l = m$, the lemma (whose proof is now shorter) shows that U_{l-2j} acts trivially on $J_{U_{l-2j}C,\lambda_k\psi_j}(\Theta)$, simplifying the following arguments; the case $l < m$ involves zero length characters defined on $U_i \cap U_{l-2j}$.

If $0 < k < l-2j$, $V_{(l-2j-k,k)}$ is nontrivial. The group $V_{(l-2j-k,k)}$ normalizes U_{l-2j} and stabilizes λ_k , we prove that its action on $J_{U_{l-2j}C,\lambda_k\psi_j}(\Theta)$ is trivial. The set of characters of $V_{(l-2j-k,k)}$ is partitioned into finitely many orbits, under the action of $M_{(l-2j-k,k)}$ embedded in the stabilizer of $\lambda_k\psi_j$ via $\text{diag}(x, y) \mapsto \iota(\text{diag}(x, y, I_{l-k}, y))$ ($x \in \text{GL}_{l-2j-k}$, $y \in \text{GL}_k$). Thus it suffices to show that for any nontrivial character μ of $V_{(l-2j-k,k)}$,

$$(5.6) \quad J_{V_{(l-2j-k,k)} \ltimes U_{l-2j}, \mu \lambda_k\psi_j}(\Theta) = 0.$$

Indeed, as in [Kap16b, Claim 3.3] applying [GRS99a, Lemma 2.2] and another conjugation we see that $J_{V_{(l-2j-k,k)} \ltimes U_{l-2j}, \mu \lambda_k\psi_j}(\Theta)$ is a quotient of $J_{U_{l-k}, \nu}(\Theta)$, where $\nu(u) = \psi(u_1)$, and the action of the $(l-2j-k+1)$ -th row of U_l given by the restriction of λ_k to this row transforms into a nontrivial action of U_2 . This contradicts Corollary 5.3 unless (5.6) holds.

Let $\text{St}_{j,k} = N_{M_{l-2j} \cap Q_l}(U_{l-2j}C, \lambda_k\psi_j)$. As a representation of $\tilde{\text{St}}_j$, $J_{C,\psi_j}(\Theta)$ is filtered by $\text{ind}_{\tilde{\text{St}}_{j,k}}^{\tilde{\text{St}}_j} J_{U_{l-2j}C,\lambda_k\psi_j}(\Theta)$ with k varying as in Lemma 5.7. Applying the same argument to $J_{C,\psi_j^{-1}}(\Theta')$, the l.h.s. of (5.5) is filtered by $J_{N_l,\psi_{l,\alpha}} \text{ind}_{\text{St}_j}^{Q_l}(\prod_{j,k,k'}^l \text{ind}_{\tilde{\text{St}}_{j,k}}^{\tilde{\text{St}}_j} J_{U_{l-2j}C,\lambda_k^{-1}\psi_j^{-1}}(\Theta'))$ where $0 \leq k, k' \leq \min(m-l, l-2j)$ and

$$\Pi_{j,k,k'} = \text{ind}_{\tilde{\text{St}}_{j,k}}^{\tilde{\text{St}}_j} J_{U_{l-2j}C,\lambda_k\psi_j}(\Theta) \otimes \text{ind}_{\tilde{\text{St}}_{j,k'}}^{\tilde{\text{St}}_j} J_{U_{l-2j}C,\lambda_{k'}^{-1}\psi_j^{-1}}(\Theta').$$

We prove $J_{N_l, \psi_{l,\alpha}} \text{ind}_{\text{St}_j}^{Q_l}(\Pi_{j,k,k'})$ vanishes by analyzing distributions on the orbits of the right action of N_l on the (infinite) homogenous space $\text{St}_j \backslash Q_l$. By the Frobenius reciprocity, the space of distributions on the orbit $\text{St}_j h N_l$ is isomorphic to

$$\mathcal{H}(h) = \text{Hom}_{S_h}({}^{h^{-1}}\Pi_{j,k,k'}, \psi_{l,\alpha}).$$

Here $S_h = {}^{h^{-1}}\text{St}_j \cap N_l$. We show $\mathcal{H}(h) = 0$ for all h , then $J_{N_l, \psi_{l,\alpha}} \text{ind}_{\text{St}_j}^{Q_l}(\Pi_{j,k,k'}) = 0$ by [BZ76, Theorem 6.9] concluding the proof of (5.5).

Let $Q = Q_l \cap Q_{l-2j}$. Since $\text{St}_j \backslash Q = \text{Sp}_{2j} \backslash \text{GL}_{2j}$, and $Q \backslash Q_l / N_l = P_{(l-2j,2j)} \backslash \text{GL}_l / N_{\text{GL}_l}$ can be parameterized using the Weyl group of GL_l , we can assume $h = tw$, where $t \in \text{GL}_{2j}$ is a representative of $\text{Sp}_{2j} \backslash \text{GL}_{2j}$ and w is a permutation matrix in GL_l .

We note that one can take $t \in \mathcal{P}_{2j}$. To see this consider $b = \begin{pmatrix} b_1 & b_2 \\ b_3 & b_4 \end{pmatrix} \in \text{GL}_{2j}$ where b_1 is a block of size $(2j-1) \times (2j-1)$. If $b_1 \in \text{GL}_{2j-1}$, we can find $x_1 \in \text{Sp}_{2j}$ such that $x_1 b \in P_{(2j-1,1)}$ (the last row of x_1 will be $(-b_3 b_1^{-1} 1)$), then take a torus element $x_2 \in \text{Sp}_{2j}$ for which $x_2 x_1 b \in \mathcal{P}_{2j}$. If $b_1 \notin \text{GL}_{2j-1}$, then because the first $2j-1$ columns of b contain a nonzero minor of order $2j-1$, we can find a permutation matrix $x_0 \in \text{Sp}_{2j}$ such that $x_0 b = \begin{pmatrix} b'_1 & b'_2 \\ b'_3 & b'_4 \end{pmatrix}$ and $b'_1 \in \text{GL}_{2j-1}$.

The action of U_{l-2j} on the space of $\Pi_{j,k,k'}$ is given by $\lambda_{j,k,k'} = \lambda_k \lambda_{k'}^{-1}$. Note that GL_{2j} stabilizes $\psi_{j,k,k'}$.

First we claim $\mathcal{H}(h) = 0$ unless $\text{St}_j h N_l = \text{St}_j tw N_l$ for $w = \begin{pmatrix} & I_{l-2j} \\ I_{2j} & \end{pmatrix}$. This is trivial when $j = 0$ or $l = 2j$, assume $0 < j < l/2$. If w is not of this form, then because $\psi_{l,\alpha}|_{N_{\text{GL}_l}} = \psi_{N_{\text{GL}_l}}$, $\psi_{l,\alpha}$ and ${}^h \lambda_{j,k,k'}$ do not coincide on $N_{\text{GL}_l} \cap {}^{h^{-1}}U_{l-2j}$ ($N_l = N_{\text{GL}_l} \ltimes U_l$).

Assume w takes this form and $0 \leq j < l/2$. Since $\psi_{l,\alpha}$ is trivial on the first $l-1$ rows of U_l / C and restricts to a character of nonzero length on the last row, now $\psi_{l,\alpha}$ and ${}^h \lambda_{j,k,k'}$ do not agree on $U_l \cap {}^{h^{-1}}U_{l-2j}$ unless $k = k' > 0$. Note that the case $k + k' = 1$ is ruled out because the lengths of both $\lambda_k|_{U_{l-2j}}$ and $\lambda_{k'}|_{U_{l-2j}}$ are zero.

We can thus assume $k = k' > 0$, in which case $\lambda_{j,k,k'} = \lambda_{j,k,k} = 1$. Consider $k < l-2j$. Because $V_{(l-2j-k,k)} < \text{St}_j$ and ${}^{h^{-1}}V_{(l-2j-k,k)} < N_l$, we have ${}^{h^{-1}}V_{(l-2j-k,k)} < S_h$ then by (5.6), ${}^{h^{-1}}\Pi_{j,k,k} = J_{h^{-1}V_{(l-2j-k,k)}}({}^{h^{-1}}\Pi_{j,k,k})$. Since $\psi_{l,\alpha}|_{h^{-1}V_{(l-2j-k,k)}} \neq 1$ (${}^{h^{-1}}V_{(l-2j-k,k)} = {}^{w^{-1}}V_{(l-2j-k,k)}$), again $\mathcal{H}(h) = 0$ unless $V_{(l-2j-k,k)}$ is trivial which is only possible if $k = l-2j$ (because $k > 0$). In particular if $j = 0$, our assumption $m/2 < l$ implies $m - l < l = l-2j$ whence $k < l-2j$, so that $\mathcal{H}(h) = 0$ for all k in this case.

It remains to consider $0 < j \leq \lfloor l/2 \rfloor$ and $k = l-2j$. Since U_{l-2j} is a normal subgroup of St_j which acts trivially on $\Pi_j = \Pi_{j,l-2j,l-2j}$, $\Pi_j = J_{U_{l-2j}}(\Pi_j)$ then by [Kap17a, Lemma 2.3],

$$\Pi_j = \text{ind}_{\text{St}_{j,l-2j}}^{\text{St}_j}(\Xi_j(\Theta, \Theta')), \quad \Xi_j(\Theta, \Theta') = J_{U_{l-2j}C, \lambda_{l-2j}\psi_j}(\Theta) \otimes J_{U_{l-2j}C, \lambda_{l-2j}^{-1}\psi_j^{-1}}(\Theta').$$

Note that ${}^{h^{-1}}\Pi_j = \text{ind}_{h^{-1}\text{St}_{j,l-2j}}^{{}^{h^{-1}}\text{St}_j}({}^{h^{-1}}\Xi_j(\Theta, \Theta')).$

To describe $\text{St}_{j,l-2j}$ we introduce the following notation. For $0 \leq a \leq m$, identify GSpin_{2a+1} with the natural direct factor of M_{m-a} , and for $a \geq l$ let $Q_l^a = M_l^a \ltimes U_l^a$ denote the standard maximal parabolic subgroup of GSpin_{2a+1} with $M_l^a = \text{GL}_l \times \text{GSpin}_{2(a-l)+1}$. Also let GL_{l-2j}^Δ denote the embedding of GL_{l-2j} in M_{2l-2j} given by $b \mapsto \iota(\text{diag}(b, I_{2j}, b))$. With this notation

$$\text{St}_{j,l-2j} = ((\text{GL}_{l-2j}^\Delta \times \text{Sp}_{2j} \times \text{GSpin}_{2(m-2l+2j)+1}) \ltimes U_l^{m-l+2j}) \ltimes U_{l-2j}.$$

In order to prove $\mathcal{H}(h) = 0$ we study distributions on the orbits of the right action of S_h on ${}^{h^{-1}}\text{St}_{j,l-2j} \backslash {}^{h^{-1}}\text{St}_j$. By the Frobenius reciprocity, the space of distributions on $({}^{h^{-1}}\text{St}_{j,l-2j})({}^{h^{-1}}g)S_h$, where $g \in \text{St}_j$, is isomorphic to

$$\mathcal{H}(h, g) = \text{Hom}_{S_{h,g}}({}^{(gh)^{-1}}\Xi_j(\Theta, \Theta'), \psi_{l,\alpha}).$$

Here $S_{h,g} = {}^{(gh)^{-1}}\text{St}_{j,l-2j} \cap S_h$.

To parameterize the representatives ${}^{h^{-1}}g$ ($g \in \text{St}_j$), note that ${}^{h^{-1}}\iota(\text{diag}(I_{l-2j}, V_{(2j,l-2j)}))$ is contained in S_h because $U_l < \text{St}_j \cap N_l$ is normalized by h . Thus we can assume $g = \iota(\text{diag}(I_l, d))g_0$ where $d \in \text{GL}_{l-2j}$ and g_0 is a representative of $Q_{l-2j}^{m-l} \backslash \text{GSpin}_{2(m-l)+1}$.

Let $\mathcal{H} = \iota(\text{diag}(I_{l-2j}, w^{-1}))(U_{2j}^{m-2l+4j})$ which is the generalized Heisenberg group of rank $r+1 = 2j(2(m-2l+2j)+1)+1$ (see § 5.3). Since $\mathcal{H} < \text{St}_j \cap \text{St}_{j,l-2j}$, $J_{U_{l-2j}C, \lambda_{l-2j}\psi_j}(\Theta)$ is a representation of \mathcal{H} . In addition $\text{Sp}_{2j} < \text{St}_j \cap \text{St}_{j,l-2j}$, thus $J_{U_{l-2j}C, \lambda_{l-2j}\psi_j}(\Theta)$ is a representation of $\widetilde{\text{Sp}}_{2j} \ltimes \mathcal{H}$.

Lemma 5.8. *As a representation of $\widetilde{\text{Sp}}_{2j} \ltimes \mathcal{H}$, $J_{U_{l-2j}C, \lambda_{l-2j}\psi_j}(\Theta)$ is isomorphic to a (possibly infinite) direct sum of copies of the representation ω_ψ .*

We proceed to prove $\mathcal{H}(h) = 0$. According to Lemma 5.8, as a representation of $\text{Sp}_{2j} \ltimes \mathcal{H}$ the representation $\Xi_j(\Theta, \Theta')$ is a direct sum of representations $\omega_\psi \otimes \omega_{\psi^{-1}}$.

Since g and h normalize U_l , and $\mathcal{H} < U_l < \text{St}_j$, ${}^{(gh)^{-1}}\mathcal{H} < {}^{h^{-1}}\text{St}_j \cap N_l = S_h$. Also ${}^{(gh)^{-1}}\mathcal{H} < {}^{(gh)^{-1}}\text{St}_{j,l-2j}$, because $\mathcal{H} < \text{St}_{j,l-2j}$. Therefore ${}^{(gh)^{-1}}\mathcal{H} < S_{h,g}$. Note that $\psi_{l,\alpha}|_{{}^{(gh)^{-1}}\mathcal{H}}$ is nontrivial if and only if $l = 2j$ (because of the conjugation by w^{-1} , note that $j > 0$ and that w is trivial when $l = 2j$). By the definitions, any morphism in $\mathcal{H}(h, g)$ factors through

$$J_{(gh)^{-1}\mathcal{H}, \psi_{l,\alpha}}({}^{(gh)^{-1}}\Xi_j(\Theta, \Theta')) \cong {}^{(gh)^{-1}}J_{\mathcal{H}, {}^{(gh)}\psi_{l,\alpha}}(\Xi_j(\Theta, \Theta')).$$

These are representations of ${}^{(gh)^{-1}}\mathcal{H}$ and of the stabilizer of $\psi_{l,\alpha}|_{{}^{(gh)^{-1}}\mathcal{H}}$ in ${}^{(gh)^{-1}}\text{Sp}_{2j}$. This stabilizer is ${}^{(gh)^{-1}}\text{Sp}_{2j}$ unless $l < 2j$, in which case it is ${}^{(gh)^{-1}}(\text{Sp}_l \cap \mathcal{P}_l)$ because $\psi_{l,\alpha}$ is nontrivial only on the last row of $C_{\mathcal{H}} \backslash \mathcal{H}$, and the action of g on the characters of each row of $C_{\mathcal{H}} \backslash \mathcal{H}$ carries nontrivial characters to nontrivial ones as well as preserves their length.

Since g commutes with $\iota(\text{GL}_l)$, ${}^{(gh)^{-1}}\text{Sp}_{2j} = {}^{h^{-1}}\text{Sp}_{2j} = \iota({}^{t^{-1}}\text{Sp}_{2j})$ (recall $h = tw$). Hence ${}^{(gh)^{-1}}\text{Sp}_{2j} < {}^{h^{-1}}\text{St}_j$, and clearly ${}^{(gh)^{-1}}\text{Sp}_{2j} < {}^{(gh)^{-1}}\text{St}_{j,l-2j}$. Identify $N_{\text{GL}_{2j}}$ with $\iota(\text{diag}(I_{l-2j}, N_{\text{GL}_{2j}}))$, ${}^{w^{-1}}N_{\text{GL}_{2j}} = \iota(N_{\text{GL}_{2j}})$. Put $\text{Sp}_{2j}^t = {}^{t^{-1}}\text{Sp}_{2j} \cap N_{\text{GL}_{2j}}$. Then ${}^{(gh)^{-1}}\text{Sp}_{2j} \cap {}^{w^{-1}}N_{\text{GL}_{2j}} = \iota(\text{Sp}_{2j}^t)$. Also $\iota(\text{Sp}_{2j}^t) < \iota(N_{\text{GL}_{2j}}) < N_l$. Thus $\iota(\text{Sp}_{2j}^t) < S_{h,g}$. Moreover $\iota(\text{Sp}_{2j}^t)$ belongs to the stabilizer of $\psi_{l,\alpha}|_{{}^{(gh)^{-1}}\mathcal{H}}$: This is clear for $l < 2j$, and holds when $l = 2j$ because as explained above we can take $t \in \mathcal{P}_l$, then $\iota(\text{Sp}_l^t) = {}^{t^{-1}}(\text{Sp}_l \cap {}^tN_{\text{GL}_l}) < {}^{(gh)^{-1}}(\text{Sp}_l \cap \mathcal{P}_l)$.

Therefore it suffices to show

$$(5.7) \quad \text{Hom}_{\iota(\text{Sp}_{2j}^t)}({}^{(gh)^{-1}}J_{\mathcal{H}, {}^{(gh)}\psi_{l,\alpha}}(\omega_\psi \otimes \omega_{\psi^{-1}}), \psi_{l,\alpha}) = 0.$$

On the one hand, by [Kap16b, Claim 2.5] if ν is any character of $C_{\mathcal{H}} \backslash \mathcal{H}$ (trivial or not), $J_{\mathcal{H}, \nu}(\omega_\psi \otimes \omega_{\psi^{-1}})$ is the trivial one-dimensional representation of the stabilizer of ν in Sp_r (note that Sp_r acts transitively on the nontrivial characters of $C_{\mathcal{H}} \backslash \mathcal{H}$). Thus ${}^{(gh)^{-1}}J_{\mathcal{H}, {}^{(gh)}\psi_{l,\alpha}}(\omega_\psi \otimes \omega_{\psi^{-1}})$ is trivial. On the other hand by Offen and Sayag [OS08, Proposition 2], for any generic character ψ of $N_{\text{GL}_{2j}}$, $\psi|_{\text{Sp}_{2j}^t} \neq 1$ for all $t \in \text{GL}_{2j}$ (use

$\mathcal{H}^{r,r'}$ with $r = 0$ and $r' = 2j$, in their notation). Since $\psi_{l,\alpha}|_{\iota(N_{\mathrm{GL}_{2j}})}$ is generic we conclude (5.7) whence $\mathcal{H}(h, g) = 0$ and thereby $\mathcal{H}(h) = 0$, in all cases. \square

Proof of Lemma 5.7. We apply a filtration argument to $J_{C,\psi_j}(\Theta)$ according to the orbits of characters of E^{l-2j} with respect to the action of St_j . If μ is such a character and is nontrivial, we can assume it takes the form

$$b \mapsto \psi(\epsilon b_1 + (1 - \epsilon)b_{2j+1} + (1 - \epsilon)\beta b_{2(m-l+j)+1}), \quad b \in F^{2(m-l+j)+1} \cong E^{l-2j},$$

$\epsilon \in \{0, 1\}$ and $\beta \in F$ is either 0 or a representative of a coset of $(F^*)^2 \backslash F^*$. In particular the number of orbits is finite. Here if $j = 0$, we can already take $\epsilon = 0$.

If $\epsilon = 0$ and $\beta \neq 0$, we can use a conjugation of E^{l-2j} such that $J_{E^{l-2j},\mu}(J_{C,\psi_j}(\Theta))$ becomes a quotient of $J_{V,\lambda}(\Theta)$, where λ is a character of $V < U_1$ and any extension of λ to a character of U_1 is of nonzero length. But by Corollary 5.2 (or directly Theorem 5.1 when $l - 2j = 1$) with $V \backslash U_1 = V_{(1,l-2j-1)}$ and the action of $\mathrm{GL}_{l-2j-1} < P_{(1,l-2j-1)}$ on the characters of $V_{(1,l-2j-1)}$, under which there are only 2 orbits, the Jacquet module vanishes. Hence $\beta = 0$ in all cases (for all ϵ).

If $\epsilon = 1$, we argue as in [Kap16b, pp. 924–925]: Consider another filtration, now of $J_{E^{l-2j},\mu}(J_{C,\psi_j}(\Theta))$ along $V_{(l-2j,1)} \cap U_{l-2j-1} \cong F^{l-2j-1}$. Using the action of the transpose of \mathcal{P}_{l-2j} we see there is only one orbit of characters to consider, the trivial (because μ is nontrivial on b_1). Applying [GRS99a, Lemma 2.2] we can replace $V_{(l-2j,1)} \cap U_{l-2j-1}$ with $V_{(l-2j-1,1)}^-$, and we also conjugate by o_1 where

$$o_i = \iota(\mathrm{diag}(1, \begin{pmatrix} & & 1 \\ & I_{l-2j-2} & \\ 1 & & \end{pmatrix}))\iota(\begin{pmatrix} & & 1 \\ & I_{l-2j-i} & \\ & & \end{pmatrix}), \quad 1 \leq i \leq l-2j.$$

Note that if $l - 2j = 1$, $V_{(l-2j-1,1)}^-$ is trivial and the conjugation is not needed. Then $J_{V_{(l-2j-1,1)}^-}(J_{E^{l-2j},\mu}(J_{C,\psi_j}(\Theta)))$ becomes a quotient of $J_{U_1,\lambda}(\Theta)$, where $\lambda(u) = \psi(u_1)$, and the action of the top left coordinate of C under ψ_j becomes a nontrivial action of U_2 , contradicting Corollary 5.3 unless $J_{E^{l-2j},\mu}(J_{C,\psi_j}(\Theta)) = 0$. Thus we can assume $\epsilon = 0$.

We deduce $J_{C,\psi_j}(\Theta)$ is filtered by $J_{E^{l-2j}}(J_{C,\psi_j}(\Theta))$ and $J_{E^{l-2j},\lambda}(J_{C,\psi_j}(\Theta))$, where $\lambda(b) = \psi(b_{2j+1})$. To unify the notation let λ_i denote the character of E which is trivial on $E^{i'}$ for $i' \neq i$, and is given by $b \mapsto \psi(b_{l-i+1})$ on E^i ($1 \leq i \leq l - 2j$). Then $J_{C,\psi_j}(\Theta)$ is filtered by $J_{E^{l-2j},\lambda_{l-2j}^{d_{l-2j}}}(J_{C,\psi_j}(\Theta))$ with $d_{l-2j} \in \{0, 1\}$.

We proceed with E^{l-2j-1} and consider $J_{E^{l-2j},\lambda_{l-2j}^{d_{l-2j}}}(J_{C,\psi_j}(\Theta))$. Assume $d_{l-2j} = 0$. The above parametrization of μ applies here to the nontrivial characters of E^{l-2j-1} . Then for $\epsilon = 0$ we argue exactly as before to deduce $\beta = 0$.

If $\epsilon = 1$, we argue as above with $V_{(l-2j,1)} \cap U_{l-2j-2} \cong F^{l-2j-2}$, and using [GRS99a, Lemma 2.2] we replace $V_{(l-2j,1)} \cap U_{l-2j-2}$ with $V_{(l-2j-2,1)}^-$. Since the action of the leftmost coordinate of E^{l-2j} on $J_{E^{l-2j}}(J_{C,\psi_j}(\Theta))$ is now trivial and $\epsilon = 1$, we apply [GRS99a, Lemma 2.2] once more to replace this coordinate with $\mathrm{diag}(I_{l-2j-2}, V_{(1,1)})$, then we conjugate by o_2 to deduce $J_{V_{(l-2j-1,1)}^-}(J_{E^{l-2j-1}E^{l-2j},\mu}(J_{C,\psi_j}(\Theta)))$ is a quotient of $J_{U_1,\lambda}(\Theta)$ on which U_2 acts nontrivially, because of the conjugation of the top left coordinate of C . Hence $J_{E^{l-2j-1}E^{l-2j},\mu}(J_{C,\psi_j}(\Theta)) = 0$ by Corollary 5.3. Thus $J_{E^{l-2j}}(J_{C,\psi_j}(\Theta))$ is filtered by $J_{E^{l-2j-1}E^{l-2j},\lambda_{l-2j-1}^{d_{l-2j-1}}}(J_{C,\psi_j}(\Theta))$ with $d_{l-2j-1} \in \{0, 1\}$.

For the case $d_{l-2j} = 1$, the nontrivial characters μ of E^{l-2j-1} under the action of the stabilizer of λ_{l-2j} inside St_j take the form

$$b \mapsto \psi(\epsilon b_1 + (1 - \epsilon)b_{2j+2} + (1 - \epsilon)\beta b_{2(m-l+j)} + \epsilon_1 b_{2(m-l+j)+1}),$$

where ϵ and β are as above (if $j = 0$, $\epsilon = 0$) and $\epsilon_1 \in \{0, 1\}$.

If $\epsilon = 0$ and $\beta \neq 0$, again $J_{E^{l-2j-1}E^{l-2j}, \mu \lambda_{l-2j}}(J_{C, \psi_j}(\Theta)) = 0$ by Corollary 5.2: A conjugation of μ will take it to a character of a subgroup of U_1 whose extensions to U_1 all have nonzero lengths. Hence we can assume $\beta = 0$ (for all ϵ).

If $\epsilon_1 = 1$, we can conjugate by $\iota(\mathrm{diag}(I_{l-2j-2}, (\begin{smallmatrix} 1 & \\ & 1 \end{smallmatrix})))$ to assume μ is nontrivial on b_{2j+1} , and again apply Corollary 5.2 to deduce the Jacquet module vanishes. Thus $\epsilon_1 = 0$ in all cases.

Now for $\epsilon = 1$ we argue as in the case $d_{l-2j} = 0$ and $\epsilon = 1$, applying [GRS99a, Lemma 2.2] twice and deducing the vanishing by Corollary 5.3. Note that λ_{l-2j} does not interfere with the argument and we still use the top left coordinate of C .

We deduce $J_{E^{l-2j}, \lambda_{l-2j}^{d_{l-2j}}}(J_{C, \psi_j}(\Theta))$ is filtered by $J_{E^{l-2j-1}E^{l-2j}, \lambda_{l-2j-1}^{d_{l-2j-1}} \lambda_{l-2j}^{d_{l-2j}}}(J_{C, \psi_j}(\Theta))$, where $d_{l-2j-1} \in \{0, 1\}$.

For E_{l-2j-2} the reasoning is similar. Briefly, the nontrivial characters μ of E_{l-2j-2} take the form

$$b \mapsto \psi(\epsilon b_1 + (1 - \epsilon)b_{2j+3} + (1 - \epsilon)\beta b_{2(m-l+j)-1} + \epsilon_2 b_{2(m-l+j)} + \epsilon_1 b_{2(m-l+j)+1}).$$

Here when $d_{l-2j} = 0$, we can already take $\epsilon_1 = 0$ and if $d_{l-2j-1} = 0$, $\epsilon_2 = 0$. Corollary 5.2 implies that for $\epsilon = 0$, one must have $\beta = 0$. If $\epsilon_1 = 1$ or $\epsilon_2 = 1$, we use a conjugation by either $\iota(\mathrm{diag}(I_{l-2j-3}, (\begin{smallmatrix} 1 & \\ & 1 \end{smallmatrix})))$ or $\iota(\mathrm{diag}(I_{l-2j-3}, (\begin{smallmatrix} 1 & \\ & 1 \end{smallmatrix})))$, then apply Corollary 5.2 to deduce the vanishing. Thus $\epsilon_1 = \epsilon_2 = 0$. For the case $\epsilon = 1$ the auxiliary unipotent subgroups are $V_{(l-2j, 1)} \cap U_{l-2j-3} \cong F^{l-2j-3}$, $V_{(l-2j-3, 1)}^-$ and $\mathrm{diag}(I_{l-2j-3}, V_{(1, 2)})$, one conjugates by o_3 then applies Corollary 5.3.

Repeating these arguments for $i = l-2j-3, \dots, 1$ we obtain a filtration of $J_{C, \psi_j}(\Theta)$ as a representation of E by the modules $J_{E, \lambda_d}(J_{C, \psi_j}(\Theta)) = J_{U_{l-2j}C, \lambda_d \psi_j}(\Theta)$, where d varies over $\{0, 1\}^{l-2j}$ and $\lambda_d = \prod_{i=1}^{l-2j} \lambda_i^{d_i}$. Moreover $|\{i : d_i = 1\}| \leq m-l$, otherwise λ_d can be conjugated into a character whose restriction to some E^i is $b \mapsto \psi(b_{2j+m-l+1})$, then $J_{U_{l-2j}C, \lambda_d \psi_j}(\Theta) = 0$ by Corollary 5.2.

The statement of the lemma now follows using another conjugation, to arrange the characters λ_d in the requested form. \square

Proof of Lemma 5.8. The first step is to show $J_{U_{l-2j}C, \lambda_{l-2j} \psi_j}(\Theta)$ is isomorphic to a Jacquet module of Θ which factors through U_{2l-4j} . We can assume $j < l/2$, otherwise this is trivially true. Using conjugations by elements in $N_{Q_{l-2j}}(U_{l-2j}C, \psi_j)$, we can replace λ_{l-2j} with the character $u \mapsto \prod_{i=1}^{l-2j} \psi(u_{i, 2j+i})$ (of E) which we re-denote by λ_{l-2j} . Write a general element $u \in U_{l-2j}C$ in the form

$$\left(\begin{array}{cccccccccc} 1 & * & x_1 & * & * & * & * & * & * & * \\ & I_{l-2j-1} & * & y & x_2 & * & * & * & * & * \\ & & I_{2j} & & & & c^j & * & * \\ & & & 1 & & & & * & * \\ & & & & I_{l-2j-1} & & & * & * \\ & & & & & I_{2(m-2l+2j)+1} & & * & * \\ & & & & & & I_{l-2j-1} & x'_2 & * \\ & & & & & & & 1 & y' \\ & & & & & & & & x'_1 \\ & & & & & & & & * \\ & & & & & & & & I_{l-2j-1} \\ & & & & & & & & & 1 \end{array} \right).$$

Here the coordinates marked by asterisks are either arbitrary or already determined by the other coordinates and the quadratic form defining SO_{2m+1} , and similarly x'_i and y' are uniquely determined by x_i and y and the form. With this notation $\lambda_{l-2j}(u) = \psi(x_1 + \sum_{i=1}^{l-2j-1} (x_2)_{i,i})$ and $\psi_j(u) = \psi(\sum_{i=1}^j (c^j)_{i,i})$. Also note that if $l - 2j - 1 = 0$, the rows and columns in the matrix above corresponding to y and x_2 are omitted. Conjugating u by $o = \iota(\mathrm{diag}(1, (\mathbf{I}_{l-1}^{-1})))$, we obtain

Apply [GRS99a, Lemma 2.2] to exchange y with the missing roots of U_1 (to the right of x_1). Then ${}^o J_{U_{l-2j}C, \lambda_{l-2j}\psi_j}(\Theta) \cong J_{U, \lambda_{l-2j}\psi_j}(\Theta)$ where U is the subgroup of elements

$$\begin{pmatrix}
1 & x_1 & * & * & * & * & * & * & * & * \\
& 1 & & & & & & & & \\
& & I_{l-2j-1} & * & x_2 & * & * & * & * & * \\
& & & I_{2j} & & & & c^j & * & * \\
& & & & I_{l-2j-1} & & & & * & * \\
& & & & & I_{2(m-2l+2j)+1} & & & * & * \\
& & & & & & I_{l-2j-1} & & x'_2 & * \\
& & & & & & & I_{2j} & * & * \\
& & & & & & & & I_{l-2j-1} & * \\
& & & & & & & & & 1 & x'_1 \\
& & & & & & & & & & 1
\end{pmatrix}.$$

Note that λ_{l-2j} and ψ_j (defined as above) are also characters of U . Since $J_{U,\lambda_{l-2j}\psi_j}(\Theta)$ factors through $J_{U_1,\nu}(\Theta)$ where $\nu(u) = \psi(u_1)$, and UU_2 is a group, by Corollary 5.3 $J_{U,\lambda_{l-2j}\psi_j}(\Theta) = J_{UU_2,\lambda_{l-2j}\psi_j}(\Theta)$ with $\lambda_{l-2j}\psi_j$ extended to UU_2 trivially on U_2 .

Looking at the inner $(2(m-2)+1) \times (2(m-2)+1)$ block of UU_2 we see the subgroup $U_{l-1-2j}^{m-2} C_{U_{l-1}^{m-2}}$, $\lambda_{l-2j}|_{U_{l-1-2j}^{m-2}} = \lambda_{l-1-2j}$ (the character λ_{l-1-2j} of U_{l-1-2j}^{m-2}) and $\psi_j|_{C_{U_{l-1}^{m-2}}}$ which is given by the restriction of ψ_j to c^j is a generic character of $C_{U_{l-1}^{m-2}}$, in fact the generic character of the form chosen after (5.4). We are thus in a position to apply the above procedure again, to the inner $(2(m-2)+1) \times (2(m-2)+1)$ block, with (l, j, m) replaced by $(l-1, j, m-2)$.

Repeating this $l - 2j$ times we deduce $J_{U_{l-2j}C, \lambda_{l-2j}\psi_j}(\Theta) \cong J_{N_{2l-4j} \rtimes C^j, \psi^\circ \psi_j}(\Theta)$, where $C^j = C_{U_{2j}^{m-2l+4j}}$, ψ_j is the generic character of C^j and ψ° is the character of $N_{\mathrm{GL}_{2l-4j}}$ defined by $\psi^\circ(z) = \psi(\sum_{i=1}^{l-2j} z_{2i-1, 2i})$, i.e., the character of the so called semi-Whittaker functional (see [BG92, Tak14]). This Jacquet module factors through $J_{U_{2l-4j}}$ as promised.

Next, by [Kap17b, Proposition 2.19] and [Kap17b, Lemma 2.13] and because $J_{U_{2l-4j}}(\Theta)$ is irreducible (see [Kap17b, p. 641]),

$$J_{U_{2l-4j}}(\Theta) = \text{Ind}_{\widetilde{\text{GL}}_{2l-4j}^{(2)} \times \widetilde{\text{GSpin}}_{2(m-2l+4j)+1}}^{\widetilde{M}_{2l-4j}}(\theta^{(2)} \otimes \Theta).$$

Here $\mathrm{GL}_{2l-4j}^{(2)} = \{g \in \mathrm{GL}_{2l-4j} : \det g \in (F^*)^2\}$; θ is an extended exceptional representation of $\widetilde{\mathrm{GL}}_{l-2j}$ and $\theta^{(2)}$ denotes its restriction to $\mathrm{GL}_{2l-4j}^{(2)}$; and Θ is an extended exceptional representation of $\widetilde{\mathrm{GSpin}}_{2(m-2l+4j)+1}$. Note that by [Kap16b, (2.1)], $\mathrm{GL}_{2l-4j}^{(2)}$

and $\mathrm{GSpin}_{2(m-2l+4j)+1}$ commute in \widetilde{M}_{2l-4j} whence the tensor product here is the standard one.

We compute $J_{N_{2l-4j}C^j, \psi \circ \psi_j}(\Theta)$ using [BZ77, Theorem 5.2]. Let $\mathrm{St}'_j = \mathrm{St}_j^{m-2l+4j}$ denote the stabilizer of ψ_j in $Q_{2j}^{m-2l+4j}$ ($\mathrm{St}'_j = \mathrm{Sp}_{2j} \ltimes U_{2j}^{m-2l+4j}$). Because the space

$$\mathrm{GL}_{2l-4j}^{(2)} \mathrm{GSpin}_{2(m-2l+4j)+1} \backslash M_{2l-4j} / \mathrm{GL}_{2l-4j} \mathrm{St}'_j$$

is trivial,

$$J_{U_{2l-4j}C^j, \psi_j}(\Theta) = J_{C^j, \psi_j}(J_{U_{2l-4j}}(\Theta)) = \mathrm{Ind}_{\widetilde{\mathrm{GL}}_{2l-4j}^{(2)} \times \widetilde{\mathrm{St}}_j}^{\widetilde{\mathrm{GL}}_{l-2j} \mathrm{St}'_j}(\theta^{(2)} \otimes J_{C^j, \psi_j}(\Theta)).$$

Since $\mathrm{GL}_{2l-4j}^{(2)} \backslash \mathrm{GL}_{2l-4j}$ is a finite abelian group, $J_{U_{2l-4j}C^j, \psi_j}(\Theta)|_{\widetilde{\mathrm{GL}}_{2l-4j}^{(2)} \times \widetilde{\mathrm{St}}_j}$ is isomorphic to $\bigoplus_a (\theta^{(2)} \otimes \varrho_a J_{C^j, \psi_j}(\Theta))$, where ϱ_a is the character of $\mathrm{GSpin}_{2(m-2l+2j)+1}$ given by $\varrho_a(g) = (\Upsilon(g), a)_2$, $(\cdot, \cdot)_2$ is the quadratic Hilbert symbol and a varies over $(F^*)^2 \backslash F^*$ (see [Kap16b, (2.1)] and [Kap17b, p. 634]).

Now $J_{N_{2l-4j}C^j, \psi \circ \psi_j}(\Theta) = J_{N_{\mathrm{GL}_{2l-4j}}, \psi \circ} J_{U_{2l-4j}C^j, \psi_j}(\Theta)$ and

$$\begin{aligned} J_{N_{\mathrm{GL}_{2l-4j}}, \psi \circ}(\theta^{(2)} \otimes \varrho_a J_{C^j, \psi_j}(\Theta)) &= J_{N_{\mathrm{GL}_{2l-4j}}, \psi \circ}(\theta^{(2)}) \otimes \varrho_a J_{C^j, \psi_j}(\Theta) \\ &= J_{N_{\mathrm{GL}_{2l-4j}}, \psi \circ}(\theta) \otimes \varrho_a J_{C^j, \psi_j}(\Theta). \end{aligned}$$

By [Tak14, Proposition 2.51], $\dim J_{N_{\mathrm{GL}_{2l-4j}}, \psi \circ}(\theta) = 1$. Finally, under the above conjugations $\mathrm{Sp}_{2j} \ltimes \mathcal{H}$ is bijected into St'_j , then the result follows from Theorem 5.4 applied to $\mathrm{GSpin}_{2(m-2l+4j)+1}$ and $J_{C^j, \psi_j}(\Theta)$. \square

6. THE NON-VANISHING RESULTS

We prove a non-vanishing result for the descent map (see Theorem 6.5 below).

6.1. Generalized and degenerate Whittaker models. We recall the generalized and degenerate Whittaker models attached to nilpotent orbits, following the formulation of [GGS17]. Let A be an algebraic reductive group (defined over F , $A = A(F)$, see § 2), \mathfrak{a} denote the Lie algebra of A and κ denote the Killing form on \mathfrak{a} . For $a \in A$, let A_a denote the centralizer of a in A , and similarly \mathfrak{a}_x denotes the centralizer of $x \in \mathfrak{a}$ in \mathfrak{a} .

Any nilpotent $u \in \mathfrak{a}$ defines a function $\psi_u : \mathfrak{a} \rightarrow \mathbb{C}^*$ by $\psi_u(x) = \psi(\kappa(u, x))$. In this sense we regard u as an element of \mathfrak{a}^* .

If $y \in \mathfrak{a}$ is semisimple, \mathfrak{a} decomposes (under the adjoint action) into a direct sum of eigenspaces $\mathfrak{a}_{\lambda_i}^y$ of y corresponding to eigenvalues λ_i . The element y is called rational semisimple if the eigenvalues of $\mathrm{ad}y$ are all rational. In this case define for $r \in \mathbb{Q}$, $\mathfrak{a}_{\geq r}^y = \bigoplus_{\lambda_i \geq r} \mathfrak{a}_{\lambda_i}^y$ and $\mathfrak{u}_y = \mathfrak{a}_{\geq 1}^y$.

A Whittaker pair is a pair (y, u) where y is a rational semisimple element and $u \in \mathfrak{a}_{-2}^y$. If (y, u) is a Whittaker pair, we say that y is a neutral element for u if there exists $v \in \mathfrak{a}_2^y$ such that (v, y, u) is an \mathfrak{sl}_2 -triple. In this case we also call (y, u) a neutral pair.

For a Whittaker pair (y, u) , $b_u(X, Y) = \kappa(u, [X, Y])$ is an anti-symmetric form on \mathfrak{a} . Let $\mathfrak{n}_{y,u}$ be the radical of the restriction of b_u to \mathfrak{u}_y . Then $[\mathfrak{u}_y, \mathfrak{u}_y] \subset \mathfrak{a}_{\geq 2}^y \subset \mathfrak{n}_{y,u}$. By [GGS17, Lemma 3.2.6], $\mathfrak{n}_{y,u} = \mathfrak{a}_{\geq 2}^y + \mathfrak{a}_1^y \cap \mathfrak{a}_u$. If (s, u) is a neutral pair, $\mathfrak{n}_{y,u} = \mathfrak{a}_{\geq 2}^y$. Let $U_y = \exp(\mathfrak{u}_y)$ and $N_{y,u} = \exp(\mathfrak{n}_{y,u})$ be the corresponding unipotent subgroups of H . Define a character of $N_{y,u}$ by $\psi_u(x) = \psi(\kappa(u, \log(x)))$. Let $N_{y,u}^\psi = N_{y,u} \cap \ker(\psi_u)$. If $U_y \neq N_{y,u}$, then the quotient $U_y/N_{y,u}^\psi$ is a Heisenberg group and its center is $N_{y,u}/N_{y,u}^\psi$.

Let ρ be an irreducible representation of A (ρ is then admissible because F is p -adic) and (y, u) be a Whittaker pair. The Jacquet module $J_{N_{y,u},\psi_u}(\rho)$ is called a degenerate Whittaker model of ρ . If (y, u) is neutral, $J_{N_{y,u},\psi_u}(\rho)$ is also called a generalized Whittaker model of ρ . The wave-front set $\mathfrak{n}(\rho)$ of ρ is defined to be the set of nilpotent orbits \mathcal{O} for which $J_{N_{y,u},\psi_u}(\rho) \neq 0$, for some neutral pair (y, u) with $u \in \mathcal{O}$. (This is well defined, i.e., independent of the choice of a neutral pair). Let $\mathfrak{n}^{\max}(\rho)$ be the set of maximal elements in $\mathfrak{n}(\rho)$ under the natural order of nilpotent orbits. We will use the following theorem, which follows immediately from [GGS17, Theorem A]:

Theorem 6.1. *Let (y, u) be a neutral pair and (y', u') be a Whittaker pair. If u belongs to the closure $\overline{A_{y'}u'}$ of the orbit of u' in \mathfrak{a}^* under the coadjoint action of $A_{y'}$, $J_{N_{y',u'},\psi_{u'}}(\rho) \neq 0$ implies $J_{N_{y,u},\psi_u}(\rho) \neq 0$.*

Let A be either G or H . In this case, since the projection $\mathrm{GSpin}_{2k} \rightarrow \mathrm{SO}_{2k}$ splits over unipotent subgroups, as in the corresponding orthogonal cases (SO_{2n} and SO_{2m+1}), the nilpotent orbits of A are parameterized by pairs (α, Φ) , where α is an orthogonal partition (even parts occur with even multiplicities) and Φ is a set of non-degenerate quadratic forms (see e.g., [Wp01, § I.6]). With ρ as above, we say that ρ admits an α generalized model if there is u in the nilpotent orbit attached to (α, Φ) for some Φ and a semisimple $y \in \mathfrak{a}$ such that (y, u) is a neutral pair and $J_{N_{y,u},\psi_u}(\rho) \neq 0$. When the pair (y, u) is not important we simply denote this Jacquet module by ρ_α . In addition let $\mathfrak{p}^{\max}(\rho)$ be the set of partitions corresponding to the nilpotent orbits in $\mathfrak{n}^{\max}(\rho)$.

An orthogonal partition α is called special if the number of odd parts smaller than every even number occurring in the partition is even ([JLS16, Definition 10.1], see also [CM93, § 6.3]). For example, if m is even, then $(m, m, 1)$ is not special. In this case, $(m+1, m-1, 1)$ is special, called the special expansion of $(m, m, 1)$, i.e., the smallest orthogonal special partition of $2m+1$ which is greater than $(m, m, 1)$. By the main results of [JLS16] (generalizing [Møeg96]), any $\alpha \in \mathfrak{p}^{\max}(\rho)$ is special.

6.2. Non-vanishing results. Assume m is even. Let τ and ω be as in § 3.2 and put $\rho = \mathrm{LQ}(1, \tau \otimes \omega)$.

Proposition 6.2. ρ admits an $(m, m, 1)$ generalized model.

Proof. By [Wp01, § I.6], there is only one nilpotent orbit \mathcal{O} corresponding to the partition $(m, m, 1)$. By Theorem 6.1, it suffices to show that the Jacquet module $J_{N,\psi}(\rho)$ is nonzero, where ψ restricts to a nontrivial character on each of the long simple roots of H and is trivial on the unique short simple root. Thus $J_{N,\psi}(\rho) = J_{N_{\mathrm{GL}_m},\psi_{N_{\mathrm{GL}_m}}}(\rho)$. Since ρ is a quotient of $V(1, \tau \otimes \omega)$ and τ is supercuspidal, $J_{U_m}(\rho)$ is nonzero and its irreducible constituents are isomorphic to unramified twists of $\tau \otimes \omega$ ([BZ77, Corollary 2.13]), each of which is automatically generic (in fact $J_{U_m}(\rho)$ is of length 1), whence $J_{N,\psi}(\rho) \neq 0$. \square

Remark 6.3. See [LM15, Appendix 3] for the similar assertion for symplectic groups but when τ is tempered; see also [GRS02, § 5.7].

Proposition 6.4. ρ admits an $(m+1, m-1, 1)$ generalized model.

Proof. By Proposition 6.2 and [JLS16, Theorem 11.1], $\mathfrak{p}^{\max}(\rho)$ contains the special expansion of $(m, m, 1)$, i.e., the smallest orthogonal special partition of $2m+1$ which is greater than $(m, m, 1)$. This partition is $(m+1, m-1, 1)$. Note that m is even. \square

Theorem 6.5. *Let $m = 2n$. There exists $\alpha \in F^*$ such that $\sigma_{\psi_\alpha}(n, \tau, \omega) \neq 0$.*

Proof. According to [Wp01, § I.6], the nilpotent orbits corresponding to $(m+1, m-1, 1)$ are parameterized by certain one-dimensional quadratic forms, i.e., square-classes $\{\alpha_{m+1}, \alpha_{m-1}, \alpha_1\}$, corresponding to the parts $(m+1), (m-1)$ and 1 . In fact by [JLS16, Proposition 8.1] we can take the square-classes to be $\alpha_{m+1} = \alpha$, $\alpha_{m-1} = -\alpha$ and $\alpha_1 = 1$ for some $\alpha \in F^*$.

By Proposition 6.4, there is a neutral pair (y, u) such that $J_{N_{y,u}, \psi_u}(\rho) \neq 0$, where u belongs to an orbit corresponding to $(m+1, m-1, 1)$ and $\{\alpha, -\alpha, 1\}$. One can assume $u = u_1 + u_2$ where $u_1 = \sum_{i=1}^{n-1} x_{-e_i+e_{i+1}}(1) + x_{-e_n+e_{2n}}(1) + x_{-e_n-e_{2n}}(\alpha/2)$, u_2 is any representative of the nilpotent orbit in the Levi part of the stabilizer of u_1 which is $\mathrm{GSpin}_m(\phi)$ for a certain quadratic form ϕ , corresponding to the partition $((m-1), 1)$ and square-classes $\{-\alpha, 1\}$. Let y_1 be such that (y_1, u_1) is a neutral pair.

Now, by letting certain torus element in the Levi part of the stabilizer of u_1 go to zero, it is easy to see $u_1 \in \overline{H_y u}$. Then by Theorem 6.1, $J_{N_{y_1, u_1}, \psi_{u_1}}(\rho) \neq 0$ and the result follows because $J_{N_{y_1, u_1}, \psi_{u_1}}(\rho) \cong \sigma_{\psi_\alpha}(n, \tau, \omega)$. \square

7. THE LOCAL DESCENT

Theorem 7.1. *Let τ be an irreducible unitary supercuspidal representation of GL_{2n} ($n > 1$) and ω be a unitary character of F^* such that $L(s, \tau, \mathrm{Sym}^2 \otimes \omega)$ has a pole at $s = 0$. Let $m = 2n$ and denote $\sigma_{\psi_\alpha}(\tau, \omega) = \sigma_{\psi_\alpha}(n, \tau, \omega)$.*

- (1) *There exists some $\alpha \in F^*$ such that $\sigma_{\psi_\alpha}(\tau, \omega) \neq 0$.*
- (2) *The representation $\sigma_{\psi_\alpha}(\tau, \omega)$ is a supercuspidal, multiplicity free and admissible representation of G . Its irreducible constituents are all unitary and generic (for some generic characters of N_G).*
- (3) *Let σ be an irreducible supercuspidal $\psi_{N_G, \alpha}$ -generic representation of G . The Rankin-Selberg γ -factor $\gamma(s, \sigma \times (\tau \otimes \omega), \psi)$ has a pole at $s = 1$ if and only if σ^\vee is a quotient of $\sigma_{\psi_\alpha}(\tau, \omega)$.*

Proof. Part (1) follows immediately from Theorem 6.5. Then Theorems 4.2 and 5.5 imply $\sigma_{\psi_\alpha}(\tau, \omega)$ is supercuspidal.

We show that $\sigma_{\psi_\alpha}(\tau, \omega)$ is semi-simple. Because $C_G^\circ \cong C_H$ under the embedding $G < H$, C_G° acts on the space of $\sigma_{\psi_\alpha}(\tau, \omega)$ by a fixed character. This character is unitary because $\mathrm{LQ}(1, \tau \otimes \omega)$ is unitary, by [Sha90, Theorem 8.1b]. Thus by Remark 2.1, any irreducible subrepresentation σ of $\sigma_{\psi_\alpha}(\tau, \omega)$ (which is necessarily supercuspidal) is a direct summand of $\sigma_{\psi_\alpha}(\tau, \omega)$. Therefore $\sigma_{\psi_\alpha}(\tau, \omega)$ is semi-simple.

The representation $\sigma_{\psi_\alpha}(\tau, \omega)$ is now multiplicity free by Theorem 3.3 (for $s = 1$), since it is semi-simple and its quotients are supercuspidal. The semi-simplicity of $\sigma_{\psi_\alpha}(\tau, \omega)$ and Theorem 3.3 also imply that the irreducible constituents of $\sigma_{\psi_\alpha}(\tau, \omega)$ are generic. Furthermore, because $C_G^\circ \backslash C_G$ is finite and as mentioned above, C_G° acts on $\sigma_{\psi_\alpha}(\tau, \omega)$ by a unitary character, the irreducible constituents are unitary (an irreducible supercuspidal representation with a unitary central character is unitary).

Because $\sigma_{\psi_\alpha}(\tau, \omega)$ is semi-simple and multiplicity free, and the action of C_G° on its space is given by a fixed character, we deduce that $\sigma_{\psi_\alpha}(\tau, \omega)$ is admissible (for any compact open $K < G$, there are only finitely many irreducible supercuspidal representations of G with a nonzero K -fixed vector and a fixed C_G° -action).

Finally assume $L(s, \tau, \mathrm{Sym}^2 \otimes \omega)$ has a pole at $s = 0$. Using the identity

$$L(s, \tau \times \omega \tau) = L(s, \tau, \mathrm{Sym}^2 \otimes \omega) L(s, \tau, \wedge^2 \otimes \omega)$$

(see [Sha92, Lemma 3.6], [Yam17, Theorem 3.19] and [Hen10]) and by [JPSS83, § 8], we deduce $\tau \cong \omega^{-1} \otimes \tau^\vee$. Hence $L(s, \tau, \text{Sym}^2 \otimes \omega) = L(s, \tau^\vee, \text{Sym}^2 \otimes \omega^{-1})$ (by the results of [Hen10]). Then the last assertion follows from Theorem 3.7. \square

REFERENCES

- [ACS17] M. Asgari, J. W. Cogdell and F. Shahidi, Rankin-Selberg L-functions for $\text{GSpin} \times \text{GL}$ Groups. Preprint. 2017. [2](#), [3](#), [6](#)
- [AS06] M. Asgari and F. Shahidi, Generic Transfer for General Spin Groups. *Duke Math. J.*, 132 (2006), no. 1, 137–190. [1](#)
- [BJ13] D. Ban and C. Jantzen. The Langlands quotient theorem for finite central extensions of p -adic groups. *Glas. Mat. Ser. III*, 48(2):313–334, 2013. [14](#), [15](#)
- [Ban94] W. D. Banks. Exceptional representations on the metaplectic group. page 126, 1994. Thesis (Ph.D.)–Stanford University. [14](#)
- [Ban98] W. D. Banks. A corollary to Bernstein’s theorem and Whittaker functionals on the metaplectic group. *Math. Res. Lett.*, 5(6):781–790, 1998. [8](#)
- [BLS99] W. D. Banks, J. Levy, and M. R. Sepanski. Block-compatible metaplectic cocycles. *J. Reine Angew. Math.*, 1999(507):131–163, 1999. [12](#), [16](#)
- [BFG03] D. Bump, S. Friedberg, and D. Ginzburg. Small representations for odd orthogonal groups. *Int. Math. Res. Not. IMRN*, 2003(25):1363–1393, 2003. [3](#), [13](#)
- [BFG06] D. Bump, S. Friedberg, and D. Ginzburg. Lifting automorphic representations on the double covers of orthogonal groups. *Duke Math. J.*, 131(2):363–396, 2006. [13](#)
- [BG92] D. Bump and D. Ginzburg. Symmetric square L-functions on $\text{GL}(r)$. *Ann. of Math.* (2), 136(1):137–205, 1992. [3](#), [14](#), [23](#)
- [BZ76] J. Bernstein and A. Zelevinsky, Representations of the group $\text{GL}(n, F)$, where F is a local non-Archimedean field. (Russian) *Uspehi Mat. Nauk* 31 (1976), no. 3(189), 5–70. [8](#), [11](#), [13](#), [17](#), [18](#), [19](#)
- [BZ77] J. Bernstein and A. Zelevinsky, Induced representations of reductive p -adic groups. I *Annales Scientifiques de l’École Normale Supérieure. Quatrième Série* 10 (1977), 441–472. [5](#), [7](#), [8](#), [11](#), [15](#), [18](#), [24](#), [25](#)
- [CM93] D. Collingwood and W. McGovern, Nilpotent orbits in semisimple Lie algebras. Van Nostrand Reinhold Mathematics Series. Van Nostrand Reinhold Co., New York, 1993. xiv+186 pp. [3](#), [25](#)
- [CKPSS01] J. W. Cogdell, H. H. Kim, I. I. Piatetski-Shapiro, and F. Shahidi. On lifting from classical groups to GL_N . *Publ. Math. Inst. Hautes Études Sci.*, 93(1):5–30, 2001. [1](#)
- [CKPSS04] J. W. Cogdell, H. H. Kim, I. I. Piatetski-Shapiro, and F. Shahidi. Functoriality for the classical groups. *Publ. Math. Inst. Hautes Études Sci.*, 99(1):163–233, 2004. [1](#), [2](#)
- [CPSS11] J. W. Cogdell, I. I. Piatetski-Shapiro, and F. Shahidi. Functoriality for the quasisplit classical groups. In *On certain L-functions*, volume 13 of *Clay Math. Proc.*, pages 117–140. Amer. Math. Soc., Providence, RI, 2011. [1](#)
- [Gao17] F. Gao. Distinguished theta representations for certain covering groups. *Pacific J. Math.*, 290(2):333–379, 2017. [3](#)
- [Gel76] S. D. Gelbart. *Weil’s representation and the spectrum of the metaplectic group*. Lecture Notes in Mathematics, Vol. 530. Springer-Verlag, Berlin, 1976. [14](#)
- [GJ78] S. Gelbart and H. Jacquet. A relation between automorphic representations of $\text{GL}(2)$ and $\text{GL}(3)$. *Ann. Sci. École Norm. Sup. (4)*, 11(4):471–542, 1978. [3](#)
- [GGS17] R. Gomez, D. Gourevitch and S. Sahi, Generalized and degenerate Whittaker models. To appear in *Compositio Mathematica*. 2017. [3](#), [4](#), [24](#), [25](#)
- [GPSR87] S. Gelbart, I. Piatetski-Shapiro, and S. Rallis. *L-Functions for $G \times \text{GL}(n)$* , volume 1254 of *Lecture Notes in Math.* Springer-Verlag, New York, 1987. [7](#), [8](#)
- [GPS80] S. Gelbart and I. I. Piatetski-Shapiro. Distinguished representations and modular forms of half-integral weight. *Invent. Math.*, 59(2):145–188, 1980. [14](#)
- [GRS02] D. Ginzburg, S. Rallis, and D. Soudry. Endoscopic representations of $\widetilde{\text{Sp}}_{2n}$. *J. Inst. Math. Jussieu*, 1(1):77–123, 2002. [25](#)

- [GRS97a] D. Ginzburg, S. Rallis, and D. Soudry. A new construction of the inverse Shimura correspondence. *Int. Math. Res. Not. IMRN*, 1997(7):349–357, 1997. [1](#)
- [GRS97b] D. Ginzburg, S. Rallis, and D. Soudry. Self-dual automorphic GL_n modules and construction of a backward lifting from GL_n to classical groups. *Int. Math. Res. Not. IMRN*, 1997(14):687–701, 1997. [1](#)
- [GRS99a] D. Ginzburg, S. Rallis, and D. Soudry. On a correspondence between cuspidal representations of GL_{2n} and \widetilde{Sp}_{2n} . *J. Amer. Math. Soc.*, 12(3):849–907, 1999. [1](#), [2](#), [3](#), [7](#), [10](#), [11](#), [12](#), [18](#), [21](#), [22](#), [23](#)
- [GRS99b] D. Ginzburg, S. Rallis, and D. Soudry. On explicit lifts of cusp forms from GL_m to classical groups. *Ann. of Math. (2)*, 150(3):807–866, 1999. [1](#), [3](#), [12](#)
- [GRS11] D. Ginzburg, S. Rallis, and D. Soudry. *The descent map from automorphic representations of $GL(n)$ to classical groups*. World Scientific Publishing, Singapore, 2011. [1](#), [4](#), [7](#), [10](#)
- [Hen10] G. Henniart. Correspondance de Langlands et fonctions L des carrés extérieur et symétrique. *Int. Math. Res. Not. IMRN*, 2010(4):633–673, 2010. [27](#)
- [HS16] J. Hundley and E. Sayag, Descent construction for GSpin groups. *Mem. Amer. Math. Soc.* 243 (2016), no. 1148, v+124 pp. ISBN: 978-1-4704-1667-6; 978-1-4704-3444-1. [1](#), [4](#)
- [HL19] J. Hundley and B. Liu, On automorphic descent from GL_7 to G_2 . Preprint. 2019. [1](#)
- [Ike94] T. Ikeda., On the theory of Jacobi forms and Fourier–Jacobi coefficients of Eisenstein series. *J. Math. Kyoto Univ.*, 34(3):615–636, 1994. [16](#)
- [JL14] C. Jantzen and B. Liu. The generic dual of p -adic split SO_{2n} and local Langlands parameters. *Israel J. Math.*, 204(1):199–260, 2014. [2](#)
- [JLS16] D. Jiang, B. Liu, and G. Savin, Raising nilpotent orbits in wave-front sets. *Representation Theory*. 20 (2016), 419–450. [3](#), [4](#), [25](#), [26](#)
- [JNQ10] D. Jiang, C. Nien and Y. Qin, Symplectic supercuspidal representations of $GL(2n)$ over p -adic fields. *Pacific J. Math.*, 245 (2010), no. 2, 273–313. [2](#)
- [JPSS83] H. Jacquet, I. I. Piatetski-Shapiro, and J. A. Shalika. Rankin–Selberg convolutions. *Amer. J. Math.*, 105(2):367–464, 1983. [8](#), [27](#)
- [JQ07] D. Jiang and Y. Qin, Residues of Eisenstein series and generalized Shalika models for SO_{4n} . *J. Ramanujan Math. Soc.* (2007), no. 2, 1–33.
- [JS03] D. Jiang and D. Soudry. The local converse theorem for $SO(2n+1)$ and applications. *Ann. of Math. (2)*, 157(3):743–806, 2003. [1](#), [2](#)
- [JS04] D. Jiang and D. Soudry. Generic representations and local Langlands reciprocity law for p -adic $SO(2n+1)$. In H. Hida, D. Ramakrishnan, and F. Shahidi, editors, *Contributions to automorphic forms, geometry, and number theory: a volume in honor of Joseph Shalika*, pages 457–519, Baltimore, MD, 2004. Johns Hopkins Univ. Press. [2](#)
- [Kab01] A. C. Kable. The tensor product of exceptional representations on the general linear group. *Ann. Sci. École Norm. Sup. (4)*, 34(5):741–769, 2001. [3](#), [14](#)
- [Kap12] E. Kaplan. The unramified computation of Rankin–Selberg integrals for $SO_{2l} \times GL_n$. *Israel J. Math.*, 191(1):137–184, 2012. [7](#), [8](#)
- [Kap13a] E. Kaplan. Multiplicativity of the gamma factors of Rankin–Selberg integrals for $SO_{2l} \times GL_n$. *Manuscripta Math.*, 142(3–4):307–346, 2013. [8](#)
- [Kap13b] E. Kaplan. On the gcd of local Rankin–Selberg integrals for even orthogonal groups. *Compositio Math.*, 149:587–636, 2013. [9](#)
- [Kap13c] E. Kaplan, On the local theory of Rankin–Selberg convolutions for $SO_{2l} \times GL_n$. Thesis, Tel Aviv University. 2013. [6](#), [7](#), [12](#)
- [Kap16a] E. Kaplan. Representations distinguished by pairs of exceptional representations and a conjecture of Savin. *Int. Math. Res. Not. IMRN*, 2016(2):604–643, 2016. [3](#)
- [Kap16b] E. Kaplan. Theta distinguished representations, inflation and the symmetric square L -function. *Math. Z.*, 283(3):909–936, 2016. [3](#), [12](#), [13](#), [14](#), [15](#), [16](#), [17](#), [18](#), [20](#), [21](#), [23](#), [24](#)
- [Kap17a] E. Kaplan. The characterization of theta-distinguished representations of $GL(n)$. *Israel J. Math.*, 222:551–598, 2017. [3](#), [13](#), [14](#), [18](#), [19](#)
- [Kap17b] E. Kaplan. The double cover of odd general spin groups, small representations and applications. *J. Inst. Math. Jussieu*, 16(3):609–671, 2017. [3](#), [12](#), [13](#), [14](#), [15](#), [23](#), [24](#)
- [KP84] D. A. Kazhdan and S. J. Patterson. Metaplectic forms. *Inst. Hautes Études Sci. Publ. Math.*, 59(1):35–142, 1984. [3](#), [12](#), [13](#), [14](#), [15](#)

- [LM15] E. Lapid and Z. Mao. Model transition for representations of metaplectic type. *Int. Math. Res. Not. IMRN*, 2015(19):9486–9568, 2015. [25](#)
- [LM17] E. Lapid and Z. Mao. Whittaker-Fourier coefficients of cusp forms on $\widetilde{\mathrm{Sp}}_n$: reduction to a local statement. *Amer. J. Math.*, 139(1):1–55, 2017. [2](#)
- [LS10] H. Y. Loke and G. Savin. Modular forms on non-linear double covers of algebraic groups. *Trans. Amer. Math. Soc.*, 362(9):4901–4920, 2010. [3](#)
- [Lom15] L. A. Lomelí. The \mathcal{LS} method for the classical groups in positive characteristic and the Riemann hypothesis. *Amer. J. Math.*, 137(2):473–496, 2015. [4](#)
- [Lom] L. A. Lomelí. The Langlands-Shahidi method over function fields: Ramanujan Conjecture and Riemann Hypothesis for the unitary groups. Preprint 2015, available at <https://arxiv.org/abs/1507.03625>. [4](#)
- [Lom19] L. A. Lomelí. Rationality and holomorphy of Langlands-Shahidi L -functions over function fields. *Math. Z.*, 291(1-2):711–739, 2019. [4](#)
- [Mat69] H. Matsumoto. Sur les sous-groupes arithmétiques des groupes semi-simples déployés. *Ann. Sci. École Norm. Sup. (4)*, 2(1):1–62, 1969. [12](#)
- [McN12] P. J. McNamara. Principal series representations of metaplectic groups over local fields. In *Multiple Dirichlet series, L-functions and automorphic forms*, volume 300 of *Progr. Math.*, pages 299–327. Birkhäuser/Springer, New York, 2012. [13](#)
- [Mez04] P. Mezo. Metaplectic tensor products for irreducible representations. *Pacific J. Math.*, 215(1):85–96, 2004. [14](#)
- [Mœg96] C. Mœglin. Front d’onde des représentations des groupes classiques p -adiques. *Amer. J. Math.*, 118(6):1313–1346, 1996. [25](#)
- [Mœg14] C. Mœglin. Paquets stables des séries discrètes accessibles par endoscopie tordue; leur paramètre de Langlands. In *Automorphic forms and related geometry: assessing the legacy of I. I. Piatetski-Shapiro*, volume 614 of *Contemp. Math.*, pages 295–336. Amer. Math. Soc., Providence, RI, 2014. [2](#)
- [OS08] O. Offen and E. Sayag. Uniqueness and disjointness of Klyachko models. *J. Funct. Anal.*, 254(11):2846–2865, 2008. [20](#)
- [PPS89] S. J. Patterson and I. I. Piatetski-Shapiro. The symmetric-square L -function attached to a cuspidal automorphic representation of GL_3 . *Math. Ann.*, 283(4):551–572, 1989. [3](#)
- [PR12] D. Prasad and D. Ramakrishnan. Self-dual representations of division algebras and Weil groups: a contrast. *Amer. J. Math.*, 134(3):749–767, 2012. [2](#)
- [Sha81] F. Shahidi. On certain L -functions. *Amer. J. Math.*, 103(2):297–355, 1981. [8](#)
- [Sha90] F. Shahidi. A proof of Langlands’ conjecture on Plancherel measures; complementary series of \mathfrak{p} -adic groups. *Ann. of Math.*, 132(2):273–330, 1990. [2](#), [5](#), [8](#), [9](#), [26](#)
- [Sha92] F. Shahidi. Twisted endoscopy and reducibility of induced representations for p -adic groups. *Duke Math. J.*, 66(1):1–41, 1992. [27](#)
- [Sil79] A. J. Silberger. *Introduction to harmonic analysis on reductive p -adic groups*. Princeton University Press and University of Tokyo Press, Princeton, New Jersey, 1979. [7](#)
- [Sou93] D. Soudry, Rankin-Selberg convolutions for $\mathrm{SO}_{2l+1} \times \mathrm{GL}_n$: local theory, Memoirs of the American Mathematical Society, no. 500, American Mathematical Society, 1993. 100 pp. [7](#)
- [Sou06] D. Soudry. Rankin-Selberg integrals, the descent method, and Langlands functoriality. In *ICM*, pages 1311–1325, Madrid, 2006. EMS (Zürich, Switzerland). [1](#), [2](#)
- [ST15] D. Soudry and Y. Tanay, On local descent for unitary groups. *J. of Number Theory*, 146 (2015), 557-626. [1](#), [2](#)
- [Tak14] S. Takeda. The twisted symmetric square L -function of $\mathrm{GL}(r)$. *Duke Math. J.*, 163(1):175–266, 2014. [3](#), [12](#), [13](#), [14](#), [23](#), [24](#)
- [Tak16] S. Takeda. Metaplectic tensor products for automorphic representations of $\widetilde{\mathrm{GL}}(r)$. *Canad. J. Math.*, 68:179–240, 2016. [14](#)
- [Wp01] J.-L. Waldspurger, Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés. Astérisque 269, 2001. [25](#), [26](#)
- [Wal03] J.-L. Waldspurger. La formule de Plancherel pour les groupes p -adiques, d’après Harish-Chandra. *J. Inst. Math. Jussieu*, 2(2):235–333, 2003. [4](#)
- [Yam17] S. Yamana. Local symmetric square L -factors of representations of general linear groups. *Pacific J. Math.*, 286(1):215–256, 2017. [3](#), [4](#), [12](#), [13](#), [15](#), [17](#), [27](#)

EYAL KAPLAN, DEPARTMENT OF MATHEMATICS, BAR ILAN UNIVERSITY, RAMAT GAN 5290002,
ISRAEL, KAPLANEY@GMAIL.COM

JING FENG LAU, SINGAPORE UNIVERSITY OF SOCIAL SCIENCES, 463 CLEMENTI ROAD, SINGA-
PORE 599494, SINGAPORE, JFLAU@SUSS.EDU.SG

BAIYING LIU, DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, 150 N. UNIVERSITY
STREET, WEST LAFAYETTE, IN 47907-2067, U.S.A., LIU2053@PURDUE.EDU