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Abstract
Purpose The majority of historical surgical skill research typically analyzes holistic summary task-level metrics to create
a skill classification for a performance. Recent advances in machine learning allow time series classification at the sub-task
level, allowing predictions on segments of tasks, which could improve task-level technical skill assessment.
Methods A bidirectional long short-term memory (LSTM) network was used with 8-s windows of multidimensional time-
series data from the Basic Laparoscopic Urologic Skills dataset. The network was trained on experts and novices from four
common surgical tasks. Stratified cross-validation with regularization was used to avoid overfitting. The misclassified cases
were re-submitted for surgical technical skill assessment to crowds using Amazon Mechanical Turk to re-evaluate and to
analyze the level of agreement with previous scores.
Results Performance was best for the suturing task, with 96.88% accuracy at predicting whether a performance was an
expert or novice, with 1 misclassification, when compared to previously obtained crowd evaluations. When compared with
expert surgeon ratings, the LSTM predictions resulted in a Spearman coefficient of 0.89 for suturing tasks. When crowds
re-evaluated misclassified performances, it was found that for all 5 misclassified cases from peg transfer and suturing tasks,
the crowds agreed more with our LSTM model than with the previously obtained crowd scores.
Conclusion The technique presented shows results not incomparable with labels which would be obtained from crowd-
sourced labels of surgical tasks. However, these results bring about questions of the reliability of crowd sourced labels in
videos of surgical tasks. We, as a research community, should take a closer look at crowd labeling with higher scrutiny,
systematically look at biases, and quantify label noise.
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Introduction

Computationally assessing the skill of a surgeon in an objec-
tivemanner using tool motion has proven a complex problem
with many challenges. Previous research has relied mostly
on summary performance metrics from kinematic data [1–
3].Unfortunately, thesemetrics typically failed to completely
discriminate novices from experts, that is to never misclas-

B Jason D. Kelly
kell1917@umn.edu

1 Department of Mechanical Engineering, University of
Minnesota, Minneapolis, MN, USA

2 Division of Biostatistics, University of Minnesota,
Minneapolis, MN, USA

3 Department of Urology, Seattle Children’s Hospital, Seattle,
WA, USA

sify “obvious” novices vs. “obvious” experts—the so-called
minimally acceptable classifier (MAC) criterion [4]. Recent
advances in machine learning techniques have expanded the
possibility of using time series datasets to evaluate surgeries
and surgical tasks [5]. These techniques may aid in success-
fully classifying obvious novices and experts, as this is the
next incremental step to take in correctly discriminating skill
groups.

The de facto gold standard for determining the level of
skill in a surgical performance is video-based evaluation by
an expert surgeon [6]. Skills assessment is normally eval-
uated with the use of one of several possible established
assessment schemes that utilize Likert-scale scoring of sub-
domains relevant to skill, such as bimanual dexterity, or tissue
handling. An example of one of these assessment methods
is the Global Operative Assessment of Laparoscopic Skills
(GOALS) evaluation scheme, which evaluates surgeons on a
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scale of 1–5 in four categories: depth perception, bimanual
dexterity, efficiency, and tissue handling [7]. This is both a
time-consuming and laborious process for experienced sur-
geons whose valuable time could rather be spent performing
life-saving surgeries. In recent years, it was found that crowd-
based evaluation of surgical performance is able to achieve
almost the same standard of accuracy in predicting technical
skill in surgery [8]. This may still be a subjective measure of
technical skill and prone to bias [9]. Crowd-sourced labels of
surgical task videos are comparable, but not equivalent to a
ground truth classification of surgical expertise. An objective
technique to computationally evaluate the technical skill of
a surgeon would be beneficial.

There have been multiple approaches to using kinematic
data in the past for surgical skill research. One such method
uses surgical procedures to both learn a vocabulary of com-
mon surgical activities and frequent patternswhichwere used
for hierarchical clustering based off the procedural mean-
ing to classify expertise [10]. Similar studies attempted to
extract and recognize surgical gestures or phases using a
variety of methods [11,12]. More machine learning oriented
approaches have also been used, by using deep convolution
neural networks aswell as video-based deep rankingmethods
[13–15]. Other methods have used the frames of video data
to obtain temporal information, through the use of machine
learning methods by performing clustering calculations on
frames as time progresses [16]. No previous work to the
authors knowledge has analyzed the temporal information
given from kinematic data alone, as opposed to using video
or using summary performance metrics.

Long short-termmemory networks (LSTMs) are an adap-
tation of recurrent neural networks which are capable of
analyzing past events in a time series to learn how they might
affect a present time index [17]. This is possible through
a series of gates in the architecture of the network which
hypothesize, learn, and forget predictions by deducing what
information to ignore and which to emphasize in the train-
ing process. These networks have been further improved
through the implementation of bidirectional networks [18].
These behave by training a network in the forward direction,
while also training a network in the reverse direction, thereby
connecting two hidden layers in different directions to create
one output from twice as much information, and allowing the
LSTM to use this increase in information to achieve better
results.

The objective of this investigation was to evaluate the
feasibility of temporal segmentation of surgical tasks for
quantifying the skill of a surgeon, and whether crowd-
sourced labels may be used to accurately train such a
technique. The hypothesis of this work is that experts do
not behave in an expert-like manner throughout the entirety
of a task, and likewise for novices, but instead that the main
factor in deciding upon a surgeon’s overall technical skill is

the number of expert-like to novice-like segments in footage
of a surgical task, and that bidirectional LSTMs have the
ability to learn this information from kinematic tool motion
data.

Methods

Dataset

This study used the Basic Laparoscopic Urologic Study
(BLUS) dataset, described in detail in [19], with a summary
re-iterated here for convenience. This dataset arose from a
gap in the field, in which no educational surgical certifi-
cation process existed for urologic surgery, as opposed to
how the Fundamentals of Laparoscopic Surgery (FLS) exists
for general surgical procedures [20–22]. The BLUS train-
ing curriculum aimed to address urology appropriate skills
improvement by recording video performances in an initial
validation project of over 450 videos [23].

This dataset contains 454 videos of surgical performances
consisting of four surgical tasks (110 peg transfer, 110 pattern
cutting, 115 suturing, 119 clipping), which are performed by
medical students, urology residents, fellows, and faculty sur-
geons from eight academic urology training centers in the
USA [24]. Each trial of a surgeon performing one of the four
tasks was recorded at 30 fps with a fixed camera-position of
the laparoscopic tools interactingwith the training field. Each
trial additionally has kinematic data, sampled at 30 Hz, log-
ging the tooltip positions, grasping force, and the jaw angles
during the performance, as well as demographic informa-
tion for each performer being obtained. A GOALS score was
obtained for each video via crowd evaluation, and an expert
evaluation was obtained for a subset of videos which were
randomly selected.

Previous research regarded suturing the most clinically
relevant of the four tasks, as these performances require the
mastering of needle and suture handling which are more sim-
ilar to what is encompassed in real surgery vs. transferring
synthetic blocks or gauze cutting. However, all four tasks
were used in this study in an attempt to provide a classifi-
cation scheme which can successfully separate experts from
novices. Here, a novice was defined solely as an “obvious
novice”, or someone who should never be allowed to oper-
ate and experts solely as “obvious experts”, or surgeons who
should never be disqualified from operating [4]. An obvious
expert was chosen such that the performer was in the top
15% of previously obtained GOALS scores for that partic-
ular BLUS task. The obvious novices were chosen in the
same fashion such that they were in the bottom 15% of
these domains. These sets of skill levels were chosen for
model training due to the large differences in skill, allowing a
machine learning model to learn characteristics which most
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Fig. 1 Example left-hand tool
acceleration time series with the
sliding time window extraction
method applied to both a novice
series and an expert series. A
novice performance is indexed
with a window overlap of 105
time indices, and an expert
performance is indexed with a
window overlap of 50 time
indices

differentiate the two labels. This method aimed to provide
two well-discriminated clusters of skill levels that should
demand no misclassifications.

Skill classification from temporal segmentation

Data partitioning

In the preliminary analysis, a sliding window data parti-
tioning technique was used in which windows of varying
sizes with varying overlapping lengths were tested to find
the optimal parameters. The network was trained by using
the novices and experts from the top and bottom 15% in each
of the four tasks such that the classifier couldmore easily find
separating features to define each class. Using intermediate
performers (performers who are neither obvious experts or
obvious novices) would not allow themodel to be able to dis-
criminate performances as easily, by not being able to focus
model parameters on learning characteristics of novices and
experts. These values are shown in Table 2, where the min-
imum possible GOALS score is 4, and the maximum is 20.
These labels are then converted into binary variables based
on whether they are considered an expert or novice. This
results in 16 expert videos and 16 novices videos for peg
transfer, suturing, and cutting tasks, and 16 expert videos
and 17 novice videos for the clipping task.

Window parameter selection

Due to the relatively small dataset resulting from sub-
selecting only obvious novices vs. obvious experts, a strat-
ified cross-validation scheme was computed on the experts

and novices, in which two performances were left out of
training. Each of these groups of two performances consisted
of an expert and a novice, in an effort to keep the training
response values at equal proportions and prevent overfitting
of the dataset. In addition, to avoid oversampling of novice
performances, as novices consisted of about 70% of the total
data, being that novices usually take longer to perform, the
expert-labeled performances were sampled with a step size
half as large as the novice step size, to simulate more training
data. This sliding window and the specified sampling control
technique are illustrated in Fig. 1.

LSTM parameters and architecture

The bidirectional LSTM network consisted of a one-layer
32-unit bidirectional cell, followed by a 50% dropout layer,
and a sigmoid activation function. L2 regularization was also
used to further prevent overfitting. Each network was trained
to 100 epochs using a binary cross-entropy loss function, and
the Adam optimizer. Each segment of a test performance was
fed to the network and evaluated. After all segments were
evaluated, the LSTM outputs a probability of how likely a
segment is to be expert-like versus novice-like. The task as
a whole was considered an expert-level performance if the
mean of the predictions resulted in a prediction of greater
than 0.50, and vice versa.

After the initial results were obtained from using experts
and novices as training and test data only, additional test-
ing was done using intermediates as test data on these
models. During this trial, the same training technique was
used as discussed previously, this time alternatively using
intermediate-level performers as the test data. This training
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(a) 10 Test Predictions for a
suturing performance.

(b) Final averaged prediction
with outliers removed.

Fig. 2 Process of computing final suturing performance prediction. All ten candidate predictions of a performance are averaged at each index to
compute the final prediction

was repeated ten times per validation set, with different ran-
dom number seeds being assigned at the initialization of each
trial. For each intermediate performance prediction, the ten
different predictions were averaged for each segment of the
performance. An example of this is shown in Fig. 2.

Using these intermediate performance prediction values,
it was now possible to get a rough approximation of the cor-
relation between the previously obtained GOALS scores and
the average of the performance’s LSTM predictions. These
values were obtained for the experts and novices, as well as
the intermediate performers.

Crowd reassessment

In order to delve further into the reliability of crowd-sourced
labels and test whether scores would be reliable, the authors
chose to reassess the surgical videos which were misclassi-
fied by the LSTM, to learn whether there was a disagreement
between newandprevious crowd scores, i.e., do crowds agree
morewith the current LSTM ranking, or with previous crowd
scores. As suturing and peg transfer tasks are agreed to be
the two most separable and clinically relevant tasks from the
BLUS dataset, these two were chosen to have their misclas-
sified obvious expert and novice videos reassessed by crowd
workers. In addition, 5 obvious experts and 5 obvious novices
from each task were randomly selected for reassessment, to
validate whether any possible discrepancy was only occur-
ring for misclassified videos, or for all videos.

Amazon Mechanical Turk was the crowd-sourcing plat-
form used for this study, in which each non-expert crowd
worker was paid an average of $0.50 to watch and evaluate
the short video of the surgical task. The goal was to com-

pensate the evaluators at a rate of approximately $10/h. A
user interface was created which asked crowds to rate the

Table 1 Main hyperparameters tested during model evaluation in the
“Skill classification from temporal segmentation” section, with most
optimal results in bold

Dropout Batch size L2 Regularization

0.1 120 0.1

0.2 240 0.2

0.4 360 0.3

0.5 720 0.4

Table 2 Accuracy results computed by the bidirectional LSTMfor each
BLUS task. Additionally, the threshold scores for obvious experts and
novices in each of the tasks are displayed

Task Accuracy Expert threshold Novice threshold

(a) Accuracy for each BLUS task’s experts and novices, from
the “Skill classification from temporal segmentation” section

Suturing 96.88% 15.40+ 9.47−
Peg Transfer 87.50% 15.89+ 10.69−
Cutting 87.50% 16.14+ 10.03−
Clipping 73.33% 16.86+ 12.28−
Task Novice-specific acc. Expert-specific acc.

(b) Novice- and expert-specific accuracy for each BLUS task, also
known as sensitivity and specificity

Suturing 100% 93.75%

Peg Transfer 93.75% 81.25%

Cutting 87.50% 87.50%

Clipping 68.75% 87.50%
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Fig. 3 The LSTM’s prediction for all performances from each of the tasks in the BLUS dataset. The LSTMwas only trained on experts and novices
(summary score labels with cross-validation), from the “Skill classification from temporal segmentation” section

skill level of the performance using the GOALS assessment
method, as obtained previously. These videos were given to
crowds one at a time, using 40 crowd workers per video. The
mean of the ratings for each video was then taken and com-
pared to the previously obtained ratings for the misclassified
videos, to find the level of agreement.

Results

Skill classification from temporal segmentation

After performing a grid searchwith different hyperparameter
values, the network was found to perform optimally with a
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Table 3 Correlation coefficients for the relationship between GOALS
scores and predicted scores from the LSTM for every performance from
each of the four BLUS tasks, including intermediate-level performers,
from the “Skill classification from temporal segmentation” section

Task Spearman Pearson

Suturing 0.76 0.86

Peg Transfer 0.72 0.76

Cutting 0.61 0.69

Clipping 0.60 0.63

windowsample size of 240 time indices, approximately equal
to 8 s, with a 3.5 s overlap at each window for novices and
approximately a 1-second overlap for expert performances,
which results in the number of samples from experts and
novices to be roughly equal. Most of the values tested are
shown in Table 1.

Table 2 illustrates the accuracy of these networks in clas-
sifying overall skill in surgical task settings, achieving over
96.88% accuracy for the suturing task, which is usually seen
as the most clinically relevant task. Table 2 also reports the
expert- and novice-specific accuracies, showing that all of
the novices for suturing were correctly classified. Of the 32
suturing videos labeled as experts or novices, only one was
mislabeled. By getting the average of all predicted segments
in a specific performance, the algorithm results in a num-
ber between 0 and 1, codifying the LSTM’s prediction of
skill for the performance. These predictions can then be used
to arrive at a correlation coefficient signifying the degree
of correctness in the neural network at evaluating interme-
diate performers in addition to experts and novices, when
compared to crowds. The expert and novice classifications
are combined with intermediate performer classifications in
Fig. 3 for brevity. Correlation values for each task are in
Table 3. Suturing had the highest Pearson correlation coeffi-
cient with a value of 0.86.

Given the high accuracy of classification using this
method, it appears the hypothesis that performance metrics
may not be consistent throughout entire procedures may be
true. Specifically, Fig. 2b illustrates an example time series
prediction which appears to exhibit periods of both novice-
like and expert-like performance. This informationwould not
be available from summary performance metrics.

The suturing task was the most accurate of the four tasks
in the BLUS dataset. These were twelve randomly selected
suturing performances which were rated by faculty surgeons.
As faculty surgeon review is the gold standard for the field,
comparing theLSTM’s predictions to the gold standard could
provide more information for the accuracy of the method.
Figure 4 shows the faculty scores plotted against the skill
predictions obtained from the bidirectional LSTM. As can

Fig. 4 The LSTM predictions trained on crowd scores, for perfor-
mances of suturing tasks as rated by faculty surgeons, which has a
Spearman correlation of 0.89, from the “Skill classification from tem-
poral segmentation” section

be seen, there is a strong positive correlation, which has a
Spearman coefficient of 0.89 and 91.67% accuracy.

Crowd reassessment

The suturing and peg transfer tasks were the two tasks with
both high levels of classification accuracy and having a
stronger correlation between scores and prediction levels,
with a total of five misclassifications among the two tasks.
Theperformanceswhichweremisclassifiedby the algorithm,
whichwas trained on previously obtained crowd scores, were
re-assessed by crowds. In addition to those performances, 5
randomly selected obvious novices and 5 randomly selected
obvious experts were additionally chosen for reassessment.

Surprisingly, the range in the reassessed scores was quite
lower than in the original assessments. This could have been
caused from a variety of reasons, such as the newer user
interface used as well as having had each video individu-
ally evaluated separately compared to the previous method
in which videos were evaluated in batches. However, the
reassessed ratings do still have a general agreement in rank-
ing of performances as the original scores. Interestingly, if
the new evaluations are normalized to be in the range of
the old scores (5.96–16.61 for suturing and 8.31–17.5 for
peg transfer, compared to the new scores having 12.07–
16.09 for suturing and 13.99–16.48 for peg transfer), 3 of
the 5 performances which were misclassified by the LSTM
were reassessed to no longer be classified as having the skill
level initially given to that performance, as shown in Figs. 5
and 6. Figure 6 illustrates the propensity of the reassessed
crowd scores to agree with previously obtained scores or
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Fig. 5 Reassessment of
misclassified suturing and peg
transfer performances suggest
crowds agree more with LSTM
than previous crowd ratings,
from the “Crowd reassessment”
section

(a) GOALS scores of misclassified peg transfer tasks before and after reassessment,
as well as 5 obvious experts and 5 obvious novices, chosen randomly. Two of the 4
misclassified performances were reassessed to be more in line with what the LSTM
predicted, indicated by the arrows.

(b) GOALS scores of misclassified suturing tasks before and after reassessment, as well
as 5 obvious experts and 5 obvious novices, chosen randomly. The only misclassified
performance was reassessed to be more in line with what the LSTM predicted.
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Fig. 6 A bar plot of the
magnitude of attenuation of the
crowds to agree more with the
LSTM on score reassessment,
than with the original scores
obtained

to agree with the LSTM, based on the skill level predicted
by the algorithm, and whether there was a misclassification.
These figures suggest that the LSTM’s classifications for
those 3 performances could have been more accurate than
the original ratings given to those performers. From this, it
appears that current crowds agree more with the LSTM score
than their own previous score. However, because there is no
definitive ground truth, it is unclear which approach is more
accurate. Regardless, this result does raise questions about
the reliability of crowd-sourced labels as giving a reasonable
quantitative measure of a surgeon’s expertise.

Conclusion

The proposed method of evaluating technical skill using a
bidirectional LSTM displayed an ability to correctly classify
expert and novice surgical performances in a discriminative
manner. This shows that possible future iterations ofmachine
learningmethodswhich track and predict temporal kinematic
datamay be able to improve and inform surgeons to their skill
at different time points of a surgical task.

The results from the bidirectional LSTM(“Skill classifica-
tion from temporal segmentation” section) provide evidence
in support of our hypothesis that novice and expert surgeons
do not exhibit expert performance metrics continuously
throughout a task (and similarly for obvious novices), as
evidenced in Fig. 2b. This suggests that temporal segmen-
tation of kinematic tool motion analysis could provide more
informative feedback of the skill of a surgeon, as compared to
static summary performance metrics. The results, which also
show good correlations between predicted score and actual
score for several intermediate level performers, provide some

additional evidence against overfitting, since these taskswere
held out during the training phase. It is likely that the lower
accuracy for cutting and clipping tasks (and to a lesser degree,
peg transfer) was due to those movements being less repeti-
tive and therefore harder for a model to generalize. However,
these are also the two tasks which are considered less clini-
cally relevant of the four BLUS tasks.

Other popular methods of evaluating surgical skill such
as computer vision algorithms which train on the frames of
video, or popular automated performance metrics [2] could
possibly be combined with this technique to create an even
better classification model. This would further alleviate con-
cerns about tool motion alone lacking important context that
is still present in the video. Future iterations could enable
giving correct predicted ratings of a performance, even dur-
ing the surgical task performance, leading to near real-time
skill feedback, by accurately assessing small sub-task-level
segments of operations.

This study included some limitations. First and fore-
most, these tasks are simulated procedures, and the proposed
algorithms and techniques may perform differently on real
surgeries. We intend to test these hypotheses in the future
on robot-assisted surgical data obtained from practicing sur-
geons. The proposed method only analyzes tool motion data,
which may not contain sufficient data required for complete
skill classification [25]. The scores of the model testing on
intermediate performances were included to illustrate the
need for future iterations to improve upon the method, so
that intermediate performers may be successfully classified.
The need for the reassessed scores to be normalized in order
to have a comparison of crowd scores could be due to the
techniques used in obtaining crowd evaluations which were
different than the original evaluation methods. The authors

123



International Journal of Computer Assisted Radiology and Surgery (2020) 15:2079–2088 2087

acknowledge the results from the crowd reassessment could
be in part due to differences in the user interface of the eval-
uation web pages used for the two different occurrences of
testing, although this serves as a further argument for not
equating crowd-sourced labels as a label-noise-free objec-
tive ground truth for surgeon skill. Future work should take
a closer look at crowd labeling with higher scrutiny and sys-
tematically look at biases and quantifying label noise.

Future work includes A/B testing and statistical analysis
on the different user interfaces used during the reliability of
crowd ratings due to different user interfaces, and the original
crowd ratings received. Future work will further investigate
what may bias crowds to rate surgical skill more highly in
certain layouts, combinations of assessed videos, or evalua-
tion tools.
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