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of reference and disturbance stimuli are removed in the
feedback system:

δ̂ = (1 + L̂)ûx (11)
where ûx is the user input at the non-stimulated frequen-

cies below 1 Hz. To find L̂ at non-stimulated frequencies,
we linearly interpolated the open-loop transfer function

values at stimulated frequencies, L̂(ω), since the transfer
function can only be computed at stimulated frequencies.

Statistical Tests
To verify the four hypotheses above, we considered the
average of the last four trials of each condition in the
2nd and the 3rd sessions to ensure adequate user learning
time. we compared each of the three multimodal conditions
(2nd session) with each single-mode condition (3rd session)
by applying Wilcoxon signed-rank test (non-parametric
paired t-test) with a confidence level of 5%.

3. RESULTS

3.1 Multimodal Interface Enhanced Tracking Performance

We found that the equal-weighted interface improved over-
all performance compared to the manual interface, but
not the muscle interface. Time-domain MSE of the equal-
weighted condition (α = 0.5) was significantly lower than
the manual-only condition (α = 0) (Wilcoxon signed-rank
test: p < 0.05) (Fig. 3a). Moreover, time-domain MSE of
the muscle-dominated condition (α = 0.75) had no differ-
ence with the manual-only condition but was significantly
higher than the muscle-only condition (α = 1) (Fig. 3a).
These findings partially supported our Hypothesis 1.

3.2 Multimodal Interface Did Not Improve Reference
Tracking or Disturbance Rejection

We then tested whether the improvement of the equal-
weighted interface was due to better tracking or rejecting
of stimuli. However, we did not observe significant differ-
ence between the equal-weighted condition and the single-

mode conditions in ||T̂yr − 1||2 (Fig. 3b) or ||T̂y(Md)||
2

(Fig. 3c). In addition, the manual-dominated condition
(α = 0.25) performed significantly worse in both reference
tracking and disturbance rejection than the muscle-only
condition (α = 1). These findings led us to reject our
Hypothesis 2 and 3.

3.3 Multimodal Interface Reduced Sensorimotor Noise

We then investigated whether the improvement in time-
domain performance was due to better noise suppression.
We found that the equal-weighted (α = 0.5) and the
manual-dominated condition (α = 0.25) had significantly
lower (p < 0.05) imputed disturbances δ than both the
single-modal conditions (Fig. 3d). We did not observe
a significant noise reduction in the muscle-dominated
(α = 0.75) interface (Fig. 3d). These findings partially
supported our Hypothesis 4.

3.4 Multi-Modal User Inputs Were Anti-Correlated at
Non-Stimulated Frequencies

We further investigated the user response at non-stimulated
frequencies, ux, to understand how humans suppressed

sensorimotor noise in multimodal conditions. We denoted
the inputs from each modality at the non-stimulated fre-
quencies as uµx

and uνx
. We found that humans combined

both modalities antagonistically at the non-stimulated fre-
quencies. For all multimodal conditions, the magnitudes
of overall ûx were the weighted combination of ûµx

and
ûνx

above crossover frequency 1 (Fig. 4). However, ûx had
lower magnitude than ûµx

and ûνx
below the crossover

frequency. The differences in phases, ∠ûµx
− ∠ûνx

, were
approximately π below crossover (Fig. 4).

4. DISCUSSION

We found that an equal-weighted multimodal interface
outperformed a manual-only interface due to reduced
sensorimotor noise, and had comparable performance to
a muscle-only interface. This observation is similar to the
finding of Rizzoglio et al. (2020), where a multimodal
interface outperformed one single-mode interface and had
comparable performance to another. However, our results
differ in that we found performance improvements for
a multimodal interface relative to a manual but not
muscle modality, whereas the previous study of Rizzoglio
et al. (2020) found benefits for multimodality relative to a
muscle but not motion (IMU) modality – which is related
to, but distinct from, our manual (slider) modality.

The improvement in the equal-weighted multimodal in-
terface did not extend to our unequal-weighted interfaces.
The muscle-dominated condition performed significantly
worse in time-domain tracking than the muscle-only con-
dition, while the manual-dominated condition had sig-
nificantly higher error in tracking/rejecting stimuli com-
pared to the muscle-only condition. We additionally found
that the equal-weighted and the manual-dominated inter-
faces enhanced sensorimotor noise suppression compared
to both single-mode interfaces. This observation in noise
suppression aligns with prior findings that sensorimotor
redundancy assures steady motions and robustness against
perturbations (Gelfand and Latash, 1998; Latash et al.,
2002; Roth et al., 2016).

Our investigation in user inputs at non-stimulated fre-
quencies show that humans had control over both mag-
nitudes and phases of their inputs for frequencies below
crossover. Humans increased the magnitude of their inputs
if there was a “shortage” in a modality. For instance,
in the manual-dominated condition, users increased |ûµx

|
below crossover to compensate the lower weighting in
muscle input (Fig. 4). In addition, users coordinate the
non-stimulated signals of the two modalities in opposite
phases below crossover. If the noise signals on different
modalities are independent, the signals would not combine
constructively. This suggests that the integration of motor
pathways attenuates sensorimotor noise. We think our
finding in opposite phases of the redundant modalities is
similar to the Uncontrolled Manifold concept (Scholz and
Schöner, 1999; Todorov, 2004). Future work may investi-
gate how noise varies over longer periods of time (Huber
et al., 2016) and, more broadly, the role of noise in skill
acquisition (Sternad, 2018).

1 frequency at which the open-loop transfer function magnitude is

below 1, |L̂| = |M̂(ω)B̂(ω)| < 1 (McRuer and Jex, 1967). For our
dataset, the crossover frequency was computed to be around 0.25 Hz.





130 Amber H.Y. Chou  et al. / IFAC PapersOnLine 55-41 (2022) 125–130

ACKNOWLEDGEMENTS

We thank the participants in this study, and our colleague
Joshua Vasquez for manufacturing assistance.

REFERENCES

Artemiadis, P. (2012). EMG-based robot control inter-
faces: Past, present and future. Advances in Robotics &
Automation, 01(02).

Casadio, M., Ranganathan, R., and Mussa-Ivaldi, F.A.
(2012). The body-machine interface: a new perspective
on an old theme. Journal of Motor behavior, 44(6), 419–
433.

De Santis, D. and Mussa-Ivaldi, F.A. (2020). Guiding
functional reorganization of motor redundancy using a
body-machine interface. Journal of neuroengineering
and rehabilitation, 17(1), 61.

Drost, G., Stegeman, D.F., van Engelen, B.G.M., and
Zwarts, M.J. (2006). Clinical applications of high-
density surface EMG: a systematic review. Journal of
Electromyography and Kinesiology, 16(6), 586–602.

Fall, C.L., Gagnon-Turcotte, G., Dube, J.F., Gagne, J.S.,
Delisle, Y., Campeau-Lecours, A., Gosselin, C., and
Gosselin, B. (2017). Wireless sEMG-Based Body-
Machine interface for assistive technology devices. IEEE
journal of biomedical and health informatics, 21(4), 967–
977.

Farina, D., Jiang, N., Rehbaum, H., Holobar, A.,
Graimann, B., Dietl, H., and Aszmann, O.C. (2014).
The extraction of neural information from the surface
EMG for the control of upper-limb prostheses: emerging
avenues and challenges. IEEE Transactions on Neural
Systems and Rehabilitation Engineering, 22(4), 797–809.

Fazli, S., Dähne, S., Samek, W., Bießmann, F., and Müller,
K.R. (2015). Learning from more than one data source:
Data fusion techniques for sensorimotor Rhythm-Based
Brain–Computer interfaces. Proceedings of the IEEE,
103(6), 891–906.

Gelfand, I.M. and Latash, M.L. (1998). On the problem
of adequate language in motor control. Motor Control,
2(4), 306–313.

Hermens, H.J., Freriks, B., Disselhorst-Klug, C., and Rau,
G. (2000). Development of recommendations for SEMG
sensors and sensor placement procedures. Journal of
electromyography and Kinesiology, 10(5), 361–374.

Huber, M.E., Kuznetsov, N., and Sternad, D. (2016).
Persistence of reduced neuromotor noise in long-term
motor skill learning. J. Neurophysiol., 116(6), 2922–
2935.

Jaimes, A. and Sebe, N. (2007). Multimodal human–
computer interaction: A survey. Computer vision and
image understanding, 108(1), 116–134.

Kiguchi, K. and Hayashi, Y. (2012). An EMG-Based con-
trol for an Upper-Limb Power-Assist exoskeleton robot.
IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 42(4), 1064–1071.

Latash, M.L., Scholz, J.P., and Schöner, G. (2002). Motor
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