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Abstract: In human/machine interfaces (HMI), humans can interact with dynamic machines
through a variety of sensory and motor modalities. Redundant motor modalities are known
to have advantages in both human sensorimotor control and human-computer interaction:
motor redundancy in sensorimotor control provides abundant solutions to achieve tasks; and
incorporating diverse features from different modalities has improved the performance of
movement-, gesture-, and brain-controlled computer interfaces. Our objective is to investigate
whether redundant motor modalities enhance performance for a continuous trajectory-tracking
task. We designed a multimodal human /machine interface with combined manual (joystick) and
muscle (surface electromyography, SEMG) inputs and evaluated its closed-loop performance for
tracking trajectories through second-order machine dynamics. In a human subjects experiment
with 15 participants, we found that the multimodal interface outperformed the manual-only
interface while performing comparably to the muscle-only interface; and that the multimodal
interface enabled users to coordinate individual modalities to attenuate noise. Multimodal
human/machine interfaces could be beneficial in systems that require stability and robustness

against perturbations such as motor rehabilitation and robotic manipulation.
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1. INTRODUCTION

In human/machine interfaces (HMI), humans interact and
communicate with dynamic machines through one or more
sensory and motor modality. Sensory modalities enable
humans to perceive stimuli from machines (e.g., a com-
puter display that provides visual stimuli to human eyes),
while motor modalities enable humans to provide motor
inputs to machines (e.g., a joystick that measures hand
movement on one or more axes). We refer to traditional
hand-held devices such as joysticks, mice, and steering
wheels as manual modalities.

Recently, researchers have begun implementing biological
signals like muscle activity as an alternative motor in-
put. For instance, electromyographic (EMG) signals are
widely used in developing body-machine interfaces (Casa-
dio et al., 2012) and to control assistive robotic devices
(Kiguchi and Hayashi, 2012; Fall et al., 2017). We refer to
the recordings of muscle inputs in HMI as muscle modali-
ties in this paper. Both muscle and manual modalities have
unique advantages as human interfaces. For instance, mus-
cle interfaces provide high-density measurements (Drost
et al., 2006) and have large control bandwidth (Lobo-Prat
et al., 2014; Yamagami et al., 2020). However, there are
still many challenges in current upper-limb muscle inter-
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faces such as high signal variability between and within
individuals, and high sensitivity to perturbations (Farina
et al., 2014; Artemiadis, 2012). On the other hand, manual
interfaces have lower control bandwidth but provide less
variable signals and are currently much more familiar
to users. Fusing the inputs from both motor modalities
has the potential to combine benefits and compensate for
weaknesses from both sides (Pantic and Rothkrantz, 2003;
Rizzoglio et al., 2020).

To develop human /machine interfaces with redundant mo-
tor modalities, it is instructive to first understand how hu-
mans and other animals integrate motor pathways in their
sensorimotor systems. Previously, researchers have as-
sessed the integration of parallel sensory pathways (Roth
et al., 2016; Peterka, 2018) and motor pathways (Gelfand
and Latash, 1998; Scholz and Schoner, 1999; Latash et al.,
2002) to explain how redundant inputs collectively govern
a single behavior. Researchers have also investigated motor
redundancy using body-machine interfaces (Ranganathan
et al., 2014; De Santis and Mussa-Ivaldi, 2020), in which
body inputs were collected from multiple channels with the
same modality to control lower-dimensional systems. Stud-
ies have found that sensorimotor redundancy could pro-
vide abundant solutions to achieve tasks (Todorov, 2004),
provide stability (Latash et al., 2002), assure robustness
against uncertainties (Gelfand and Latash, 1998; Roth
et al., 2016), and enhance movement efficiency (De Santis
and Mussa-Ivaldi, 2020).
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The advantages of multimodal interfaces have been sug-
gested in previous studies in the fields of human- and
brain-computer interfaces. Multimodal interfaces can in-
corporate diverse features from different modalities, and
thus enable human-computer interfaces to better analyze
complex human behaviors (Pantic and Rothkrantz, 2003;
Jaimes and Sebe, 2007), recognize hand gestures (Wu
et al., 2016), and classify intent of movement (Zhang et al.,
2019). Similarly, fusing multiple data sources with differ-
ent frequency bands could enhance the accuracy of brain
decoders (Fazli et al., 2015) and improve usability of brain-
computer interfaces (Miiller-Putz et al., 2011). Most rele-
vant for the present study is the muscle-and-motion inter-
face studied in Rizzoglio et al. (2020), where it was found
that the multimodal (hybrid) interface performed similarly
to motion-only (implemented with inertial measurement
units, IMU) and outperformed muscle-only (implemented
with surface electromyography, sSEMG) in a reaching task.

The objective of this study is to evaluate a human/machine
interface that combines redundant muscle and manual
motor modalities to perform a second-order reference-
tracking and disturbance-rejection task. Our experimen-
tal results with 15 human subjects demonstrate that the
multimodal interface outperforms the traditional manual
interface and performs comparably to the muscle interface.
We also found that users can suppress the effect of senso-
rimotor noise in task-relevant dimensions by coordinating
noise between muscle and manual modalities. Our results
demonstrate potential advantages for human/machine in-
terfaces that incorporate motor redundancy.

2. MATERIALS AND METHODS

We developed a multimodal interface with manual and
muscle modalities. We then conducted human-subject ex-
periments and data analyses to empirically evaluate per-
formance of the multimodal interface.

In the following sections, we denote a signal and a transfer
function as ¢ and T in time-domain; and ¢ and T in
frequency-domain. The frequency-domain representations

of signals are calculated using the fast Fourier Transform
(FFT).

2.1 Human/Machine System Development

Task Development

We adopted a 1-degree-of-freedom (DOF) continuous hu-
man/machine task previously conducted by Yamagami
et al. (2021). Human users H are tasked with controlling a
second-order linear-time invariant (LTT) machine dynam-
ics M: 1

s24s°

M:j+y=u+d, M: (1)
The objective of human users is to control their cursor
output y to track a reference trajectory r on a computer
screen and reject the invisible input disturbance d. Users
control the system using both muscle and manual modali-
ties through a custom interface that records motor inputs.
We define the muscle and manual input signals as u, and
u,,, respectively. The two inputs were linearly combined
with a weight constant, a:

u=au,+(1—a)u, (2)

Fig. 1. Block diagram of human/machine interface. The
human user H transforms reference r and output y
to produce muscle u, and manual v, signals that are
scaled and summed to yield user input u. User input
u is added to disturbance d and transformed through
a second-order machine M to produce output y.

Electrodes
on triceps

Fig. 2. Multimodal human/machine interface: reference
trajectory r and cursor output y are displayed on
a computer screen; participants used their non-
dominant arm to control the muscle modality (left
arm in this image) and the dominant hand to control
the manual modality (right hand in this image). Elec-
trodes were placed on participants’ biceps and triceps.

To investigate the optimal weighting of the two modalities,
we selected « to be evenly spaced numbers in [0, 1], where
a € {0,0.25, 0.5, 0.75, 1}. We refer to the weighted sum
as the overall user input, and the transformation between
tracking error r — y and u as the feedback controller B. A
block diagram of the human/machine system is shown in
Figure 1.

Generating Stimuli

We constructed pseudorandom reference r and disturbance
d as sums of sinusoidal signals interleaved at the stimulated
frequencies (Yamagami et al., 2021; Yu et al., 2014).
Stimulated frequencies 2 were designed to be eight prime
multiples of the base frequency (0.05 Hz) below 1 Hz,
where 2 ={0.1, 0.15, 0.25, 0.35, 0.55, 0.65, 0.85, 0.95 Hz}.
The magnitude of each stimulus was scaled by the inverse
of its frequency, and the phase was randomized.

Multimodal Interface Development

We developed a combined muscle and manual multimodal
interface for this study (Fig. 2). The manual signals were
measured using a 1-DOF 10 k€ slide potentiometer. The
slider’s handle has a travel distance of 11.4 cm. The
muscle signals were obtained via surface EMG electrodes
(Muscle SpikerShields, Backyard Brains, Inc.). The EMG
electrodes were placed on participants’ biceps and triceps
according to the guidelines of Surface Electromyography
for the Non-Invasive Assessment of Muscle (SENIAM)
(Hermens et al., 2000).
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The potentiometer values and the EMG data were
recorded with an Arduino Uno (Arduino.cc) at 1000 Hz.
We converted the raw EMG data to the Average Rectified
Value (ARV) by taking the absolute value of raw EMG
signals and applying a moving average filter with a 200 ms
window. We then normalized the ARV with the maximum
voluntary contraction (MVC) of each participant. To pre-
vent muscle fatigue, only a maximum of 33% of the MVC
was required to track the largest stimuli of the task. We
then collected the time-domain reference r, disturbance d,
cursor output y and user inputs (u, u,, and u,) of every
trial at 60 Hz sampling rate for later analysis.

2.2 FExperimental Design

Participants

We recruited 15 participants (6 female, 9 male; 14 right-
handed, 1 left-handed; aged between 22 to 31 years; height:
177+15.25 cm; weight: 71.5+19 kg). All participants use
computers and smartphones daily. Six participants have
seen or used EMG devices, and two participants work with
EMG regularly.

FExperimental Setup and Protocol

Participants were asked to perform the task with both
of their upper limbs: manipulating the slider with their
dominant hand and activating the biceps or triceps of
their non-dominant arm. Each participant performed three
sessions in the following order:

(15! session) 10 trials for each single-mode condition
(manual-only « = 0, followed by muscle-only a = 1);

(274 session) 14 trials for each multimodal condition (a =
0.25, 0.5, 0.75 in random order);

(37 session) 4 trials for each single-mode condition (o =
0, 1 in random order) as the control groups.

We started each experiment with the manual interface
(a = 0) to allow participants to familiarize the task since
most computer users are more familiar with a manual
device. Each trial was 45 seconds starting with a 5 seconds
ramp-up period (ramp-up was not included in the data
analysis), thus the total time period T = 40 s. Partic-
ipants were asked to take mandatory breaks in-between
conditions to avoid muscle and eye fatigue.

2.8 Hypotheses and Data Analysis

We hypothesized that multimodal interfaces would per-
form better than single-mode interfaces. We assessed per-
formance of interfaces using (1) overall tracking perfor-
mance, (2) reference-tracking performance at stimulus fre-
quencies, (3) disturbance-rejection performance at stimu-
lus frequencies, and (4) user response at non-stimulated
frequencies, which we regard as sensorimotor noise.

Hypothesis 1: Tracking performance is higher in multi-
modal conditions than single-mode conditions.

We quantified the overall task performance using the time-
domain mean-square error (MSE) between reference (r)
and cursor output (y):

lr=yll> = Y Ir(®) —y®F; ®3)
te[0,T
lower error corresponds to better performance.

Hypothesis 2: Reference-tracking performance at stim-
ulus frequencies is higher in multimodal conditions than
single-mode conditions.

Given a LTI machine M and stimuli at specific frequencies,
we can assume that humans H behave approximately like
an LTI transformation (Yamagami et al., 2021). Hence the
output 7 can be written as linear combination in response

to reference 7 and disturbance in the output space Md:

The user response to reference stimuli can be in\ﬁastigated
by calculating the system-level transformation 7y,. Since
reference and disturbance stimuli are interleaved at the
stimulated frequencies, when d(w) = 0,

~ y(w
Tplw) = 2@ L eq. (5)
(w)
In a perfect reference tracking scenario, fyr = 1 with

gain 1 and phase 0. We quantified the reference tracking
performance as error between the transformation and 1:

1 Tyr = 1P = Y [ Tyrlw) — 1P, (6)
weN
We scaled |fyr (w)—1| by the magnitudes of output stimuli

in order to emphasize the effect of tracking errors in the
lower frequencies.

Hypothesis 3: Disturbance-rejection performance at stim-
ulus frequencies is higher in multimodal conditions than
single-mode conditions.

Given (4), when 7(w) = 0, the user response to disturbance
stimuli can be investigated by calculating the system-level

transformation Ty (aq):

~

Ty onray (@) = %“(’i), we (7)

If the user can perfectly reject disturbance in the output
space, fy( may = 0 with gain 0. Therefore, we quantified
the disturbance rejecting performance as error between the
transformation and 0:

1Ty nall? =Y 1 Tyaa (8)

weN

Similarly to (6), the transformation was scaled by the
magnitudes of output stimuli.

Hypothesis 4: Sensorimotor noise is lower in multimodal
conditions than single-mode conditions.

In addition to the analyses on performance in track-
ing/rejecting the stimuli, we analyzed the human sensori-
motor noise. To compute the human sensorimotor noise as
the imputed disturbance 6A, we first estimated the feedback
controller B (Yamagami et al., 2021):

~

Blw) = —M*(w)lf“;—%, Tha() = % (9)

We then defined the open loop transfer function L(w):
L(w) = B(w)M(w). (10)

We defined the human sensorimotor noise as the imputed
disturbance 0, which is the input disturbance if the effect
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of reference and disturbance stimuli are removed in the
feedback system:

6= (1+ L)ay (11)
where 7y is the user input at the non-stimulated frequen-
cies below 1 Hz. To find L at non-stimulated frequencies,
we linearly interpolated the open-loop transfer function
values at stimulated frequencies, E(w), since the transfer
function can only be computed at stimulated frequencies.

Statistical Tests

To verify the four hypotheses above, we considered the
average of the last four trials of each condition in the
274 and the 3"% sessions to ensure adequate user learning
time. we compared each of the three multimodal conditions
(274 session) with each single-mode condition (3"¢ session)
by applying Wilcoxon signed-rank test (non-parametric
paired t-test) with a confidence level of 5%.

3. RESULTS
3.1 Multimodal Interface Enhanced Tracking Performance

We found that the equal-weighted interface improved over-
all performance compared to the manual interface, but
not the muscle interface. Time-domain MSE of the equal-
weighted condition (o = 0.5) was significantly lower than
the manual-only condition (o« = 0) (Wilcoxon signed-rank
test: p < 0.05) (Fig. 3a). Moreover, time-domain MSE of
the muscle-dominated condition (a = 0.75) had no differ-
ence with the manual-only condition but was significantly
higher than the muscle-only condition (o = 1) (Fig. 3a).
These findings partially supported our Hypothesis 1.

3.2 Multimodal Interface Did Not Improve Reference
Tracking or Disturbance Rejection

We then tested whether the improvement of the equal-
weighted interface was due to better tracking or rejecting
of stimuli. However, we did not observe significant differ-
ence between the equal;weighted condition and thAe single-
mode conditions in |[T,, — 1|[* (Fig. 3b) or ||Tyma)l?
(Fig. 3c¢). In addition, the manual-dominated condition
(a = 0.25) performed significantly worse in both reference
tracking and disturbance rejection than the muscle-only
condition (a« = 1). These findings led us to reject our
Hypothesis 2 and 3.

3.8 Multimodal Interface Reduced Sensorimotor Noise

We then investigated whether the improvement in time-
domain performance was due to better noise suppression.
We found that the equal-weighted (o = 0.5) and the
manual-dominated condition (o = 0.25) had significantly
lower (p < 0.05) imputed disturbances ¢ than both the
single-modal conditions (Fig. 3d). We did not observe
a significant noise reduction in the muscle-dominated
(a = 0.75) interface (Fig. 3d). These findings partially
supported our Hypothesis 4.

3.4 Multi-Modal User Inputs Were Anti-Correlated at
Non-Stimulated Frequencies

We further investigated the user response at non-stimulated
frequencies, uy, to understand how humans suppressed

sensorimotor noise in multimodal conditions. We denoted
the inputs from each modality at the non-stimulated fre-
quencies as u,,_ and u,_. We found that humans combined
both modalities antagonistically at the non-stimulated fre-
quencies. For all multimodal conditions, the magnitudes
of overall iy were the weighted combination of 4, and
i, above crossover frequency ! (Fig. 4). However, i, had
lower magnitude than 4, and 4,  below the crossover
frequency. The differences in phases, £, — Zu, , were
approximately 7 below crossover (Fig. 4).

4. DISCUSSION

We found that an equal-weighted multimodal interface
outperformed a manual-only interface due to reduced
sensorimotor noise, and had comparable performance to
a muscle-only interface. This observation is similar to the
finding of Rizzoglio et al. (2020), where a multimodal
interface outperformed one single-mode interface and had
comparable performance to another. However, our results
differ in that we found performance improvements for
a multimodal interface relative to a manual but not
muscle modality, whereas the previous study of Rizzoglio
et al. (2020) found benefits for multimodality relative to a
muscle but not motion (IMU) modality — which is related
to, but distinct from, our manual (slider) modality.

The improvement in the equal-weighted multimodal in-
terface did not extend to our unequal-weighted interfaces.
The muscle-dominated condition performed significantly
worse in time-domain tracking than the muscle-only con-
dition, while the manual-dominated condition had sig-
nificantly higher error in tracking/rejecting stimuli com-
pared to the muscle-only condition. We additionally found
that the equal-weighted and the manual-dominated inter-
faces enhanced sensorimotor noise suppression compared
to both single-mode interfaces. This observation in noise
suppression aligns with prior findings that sensorimotor
redundancy assures steady motions and robustness against
perturbations (Gelfand and Latash, 1998; Latash et al.,
2002; Roth et al., 2016).

Our investigation in user inputs at non-stimulated fre-
quencies show that humans had control over both mag-
nitudes and phases of their inputs for frequencies below
crossover. Humans increased the magnitude of their inputs
if there was a “shortage” in a modality. For instance,
in the manual-dominated condition, users increased |u,,, |
below crossover to compensate the lower weighting in
muscle input (Fig. 4). In addition, users coordinate the
non-stimulated signals of the two modalities in opposite
phases below crossover. If the noise signals on different
modalities are independent, the signals would not combine
constructively. This suggests that the integration of motor
pathways attenuates sensorimotor noise. We think our
finding in opposite phases of the redundant modalities is
similar to the Uncontrolled Manifold concept (Scholz and
Schoéner, 1999; Todorov, 2004). Future work may investi-
gate how noise varies over longer periods of time (Huber
et al., 2016) and, more broadly, the role of noise in skill
acquisition (Sternad, 2018).

1 frequency at which the open-loop transfer function magnitude is
below 1, |L| = |M(w)B(w)] < 1 (McRuer and Jex, 1967). For our
dataset, the crossover frequency was computed to be around 0.25 Hz.
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5. CONCLUSION

In this study, we suggested an experimental method
to evaluate multimodal human/machine interfaces for a
second-order continuous trajectory-tracking and distur-
bance rejection task. Experimental results demonstrated
that the equal-weighted interface enhanced the time-
domain performance compared to the manual interface;
in addition, the equal-weighted interface had comparable
performance to the muscle interface but had a significantly
lower sensorimotor noise. We also investigated the user re-
sponses at non-stimuli and found that humans had control

over both the magnitudes and phases of each modality at
low frequencies. Moreover, the antagonistic phases of the
two modalities led to lower sensorimotor noise of the multi-
modal interfaces. These observations provide evidence that
multimodal interfaces can better suppress sensorimotor
noise through redundant motor modalities. Our results
suggest that future human/machine systems that require
minimum sensorimotor noise may benefit from redundant
motor modalities, especially combined manual and muscle
modalities.
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