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Advances in genomics and transcriptomics accompanying the rapid
accumulation of omics data have provided new tools that have transformed
and expanded the traditional concepts of model fungi. Evolutionary genomics
and transcriptomics have flourished with the use of classical and newer fungal
models that facilitate the study of diverse topics encompassing fungal biology
and development. Technological advances have also created the opportunity to
obtain and mine large datasets. One such continuously growing dataset is that of
the Sordariomycetes, which exhibit a richness of species, ecological diversity,
economic importance, and a profound research history on amenable models.
Currently, 3,574 species of this class have been sequenced, comprising nearly
one-third of the available ascomycete genomes. Among these genomes,
multiple representatives of the model genera Fusarium, Neurospora, and
Trichoderma are present. In this review, we examine recently published studies
and data on the Sordariomycetes that have contributed novel insights to the field
of fungal evolution via integrative analyses of the genetic, pathogenic, and other
biological characteristics of the fungi. Some of these studies applied ancestral
state analysis of gene expression among divergent lineages to infer regulatory
network models, identify key genetic elements in fungal sexual development,
and investigate the regulation of conidial germination and secondary
metabolism. Such multispecies investigations address challenges in the study
of fungal evolutionary genomics derived from studies that are often based on
limited model genomes and that primarily focus on the aspects of biology driven
by knowledge drawn from a few model species. Rapidly accumulating
information and expanding capabilities for systems biological analysis of
Big Data are setting the stage for the expansion of the concept of model
systems from unitary taxonomic species/genera to inclusive clusters of well-
studied models that can facilitate both the in-depth study of specific lineages and
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also investigation of trait diversity across lineages. The Sordariomycetes class, in
particular, offers abundant omics data and a large and active global research
community. As such, the Sordariomycetes can form a core omics clade,
providing a blueprint for the expansion of our knowledge of evolution at the
genomic scale in the exciting era of Big Data and artificial intelligence, and
serving as a reference for the future analysis of different taxonomic levels within

the fungal kingdom.

KEYWORDS

Sordariomycetes, evolution, genomics, transcriptomics, Big Data, Neurospora,
Fusarium, Trichoderma

Traditional models have
served as stepping stones in
evolutionary genomics

A model system—sometimes also referred to as a model species—
is an optimized living non-human platform that can be easily accessed
and manipulated (Davis, 2003b; Yarden et al, 2003; Ankeny and
Leonelli, 2020). The progress made in experimental and computational
biology, which has contributed to strengthening the links between
descriptive research and mechanistic understanding—especially by
utilizing molecular biology and genetics—has been largely based on
the employment of model systems. Traditional fungal models,
including unicellular fungi such as Saccharomyces cerevisiae
(Saccharomycetaceae, Saccharomycetales) and Schizosaccharomyces
pombe (Schizosaccharomycetaceae, Schizosaccharomycetales), as well
as filamentous fungi such as Neurospora (Sordariaceae, Sordariales)
and Aspergillus spp. (Trichocomaceae, Eurotiales), have well-
characterized morphology, have been intensively studied genetically,
and, in some cases, are also of economic importance (Yarden, 2007;
Yarden, 2016). One of the primary bases for the selection of some
of these organisms has been their amenability to developmental,
physiological, and genetic manipulations. Currently, technological
capabilities have progressed to the point where additional
species can be studied and manipulated with increasing
ease, providing the option to address specific questions and
problems in a growing number of organisms (Goldstein and
King, 2016).

Box 1: Glossary of technical terms

The classic model systems, including yeasts, Neurospora, and
Aspergillus, were among the first set of targets when genome
sequencing became technically and economically feasible two
decades ago, and omics data from these early models profoundly
reshaped modern fungus research (Feldmann, 1999; Galagan et al.,
2005; Sunnerhagen and Piskur, 2006; Dunlap et al., 2007; Jones,
2007; Nowrousian, 2014; Ellena and Steiger, 2022). Although the
roles of classic fungal models in general biology have become
increasingly confined (Davis, 2003a), new insights from the
genomics of fungal models continue to attract interest in basic
fungal biology, especially as they relate to evolutionary biology and
ecology, including issues of diversity, invasive species, the impact of
climate change, speciation and species concept, circadian clocks,
and pathogenicity (Dyer and O’Gorman, 2012; Stukenbrock, 2013;
Plissonneau et al., 2017; Stajich, 2017; Boekhout et al., 2021; North
et al,, 2021; Peris et al., 2022; Feurtey et al., 2023; Kelliher et al.,
2023). In addition, these well-studied models have served as
references for the annotation of less-studied and rarer systems,
including many non-model species (Russell et al., 2017; Tworzydlo
and Bilinski, 2019), which range from taxonomically related species
to ecologically and economically relevant species. However, the
rapid development of comparative genomics techniques (Box 1) has
facilitated the analysis of new fungal genomes as they have been
sequenced (Sivashankari and Shanmughavel, 2007) and has also
greatly impacted the analysis of genomes from under-represented
fungal classes, especially the basal lineages. These advances in
knowledge have improved our understanding of the origin and
diversity of the fungal kingdom (Stukenbrock and Croll, 2014;

Model organism: a species whose biology has been widely studied at many different levels and from different perspectives, serving as reference or basis of comparison

for many other species. A model species often has particular experimental advantages, is usually easy to maintain, has a short generation time, and can breed and be

manipulated in a laboratory setting.

Evolutionary genomics: the study of how features or components of a genome change both within and between species over evolutionary timescales, especially along

lineages showing the divergence or convergence of interesting phenomes.

Comparative genomics: the direct comparison of the complete genetic material of one organism with that of another, or those of many others, to gain a better

understanding of how genomes and species have evolved and to determine the functions of genes, transposable elements, and non-coding regions of genomes.

Omics: a set of methodologies targeting the collective qualification and quantification of pools of biological molecules, including genomic DNA (genomics), RNA

(transcriptomics), proteins (proteomics), and metabolites (metabolomics), which translate into the structure, function, and regulation of an organism at different levels of

dynamics.
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Wang et al.,, 2016d; Dornburg et al., 2017; Stajich, 2017; Chang et al.,
2021). Here, we review recent advances in comparative omics in the
class Sordariomycetes, focusing on how model species in this class
have contributed to evolutionary biology and ecology, and how this
class can be developed as a template for obtaining novel and
extended insights concerning the fungal kingdom.

Clusters of well-studied models with
Big Data to bridge large gaps in
evolutionary genomics

One of the main drivers of progress in large-scale comparative
genomics research on fungi has been the fungal research core at the
Joint Genome Institute, where the 1000 Fungal Genomes Project
has been pursued (Grigoriev et al., 2011; Grigoriev et al., 2014).
Investigation of genomics and available transcriptomic data for a
highly inclusive sample of fungal genomes has revealed that
evolutionary convergence may occur across large phylogenetic
distances (Merenyi et al., 2020). Comparative genomics in
mushroom-forming fungi has produced insights into the
evolution of mycorrhizal symbiosis, wood-decay mechanisms, and
morphological development (Riley et al., 2014; Nagy et al., 20165
Miyauchi et al., 2020; Sanchez-Garcia et al., 2020; Viragh et al.,
2022). For example/instance, using comparative genomics to
examine a more focused group within the Ustilaginaceae,
researchers have reported that the gain and loss of effector genes,
including orphan and lineage-specific selected genes, are probably
the most important determinants of the host specificity of smut
fungi (Benevenuto et al., 2018).

Widespread advances in omics technologies, such as genomics,
transcriptomics (whole-genome RNA expression profiling),
proteomics (genome-wide study of proteomes), and even
metabolomics, have further enabled the study of evolutionary
genomics at an extraordinarily detailed molecular level. A key
advantage of these technologies is their ability to provide a more
granular understanding of evolution within gene families and
functional groups, and to elucidate the roles that these families and
groups play in large molecular processes. An example of an omics-
based integrative approach is the demonstration of the presence of
highly conserved class-dependent sugar metabolism pathways (Li
et al, 2022). Such analyses, in addition to substantiating the
taxonomic placements of the species involved, can also assist in
providing guidelines concerning the challenges and limitations of
transferring metabolic pathways between species for industrial
applications. In the course of analysis of Bayesian networks derived
from transcriptomics data on Neurospora and Fusarium (Nectriaceae,
Hypocreales), dispensable chromosomes related to pathogen
specificity, very large effector classes, and the dynamic regulation of
meiotic silencing and transcription factor networks during sexual
reproduction were identified in these models (Wang et al., 2014; Trail
etal, 2017; Wang et al., 2018a). A proteogenomics study on the model
Sordaria macrospora (Sordariaceae, Sordariales) identified new genes
and previously unknown posttranscriptional modifications (Blank-
Landeshammer et al., 2019). As omics data from different species is
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increasingly accumulated, the evolutionary integration of multiple
models will be essential in analyzing genomic divergences between
distinct fungal clades. Computational approaches to the processing of
large-scale omics data and data integration methods that focus mainly
on a single model are continuously being developed (Winkler, 2020;
Duruflé and Déjean, 2023; Shave et al., 2023; Vasaikar et al., 2023). In
addition, systems biological approaches—especially those that refine
networks via statistical modeling for large datasets with a small cohort
size—have proved to be useful in the interpretation of omics data
(Culibrk et al,, 2016; Karahalil, 2016; Maghuly et al., 2022). These
techniques can improve and ease the analysis of “unmatched”
multimodal data and provide enhanced overall performance
compared with traditional methods that typically do not enable the
visual and quantitative or semiquantitative interpretation of gene-
gene interactions.

To the apt phrase “Nothing in biology makes sense except in the
light of evolution” (Dobzhansky, 1973) can be added “Nothing in
evolution makes sense except in the light of genomics” (Shapiro,
2016). Evolutionary biologists have benefited from advances in
diverse aspects of the sciences, and omics methods have become
the latest powerful toolbox that can be used to clarify the workings
of novel features that have hitherto been inexplicable until the last
few decades (Shapiro, 2016). Proceeding from genic phylogenies to
phylogenomics, the evolutionary histories of major known lineages
in fungi have been successfully and robustly resolved, enabling the
retrospective tracking of molecular events along the history of
fungal evolution (Nowrousian, 2014; Heitman et al., 2017;
Poggeler and James, 2023). In another example, the Neurospora
community has produced a systematic gene disruption strain
collection (“the Neurospora knockout collection”), targeting
nearly the entire genome, and made it available to the public.
There are now over 11,000 gene-disrupted strains available at the
Fungal Genetics Stock Center (Colot et al., 2006; Dunlap et al., 2007;
Collopy et al., 2010). Meanwhile, advances in gene-manipulation
techniques, especially the recently developed CRISPR-Cas9 gene
editing system, have dramatically improved our ability to identify
the causal mechanisms that link genes and phenotypes in diverse
species. Many functional gene groups and metabolic pathways have
also been subjected to systematic gene manipulations in various
fungal species, and conserved metabolic pathways and key elements
in development regulatory circuits have been identified in
individual fungal species, many of which are model species. Thus,
the progress made in the areas of fungal phylogeny, genomics, and
functional genetics has provided a strong foundation for the use of a
broader, multispecies model to address the mechanistic bases of
complex traits in a diverse range of organisms within particular
environmental, developmental, social, and/or genomic contexts.

Sordariomycetes is a large class
exhibiting broad diversity,
accumulated over time

Advances in genome sequencing and omics data analysis have
facilitated further comparative studies, which have offered new
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insights into fungal evolution (Nagy et al., 2016; Merenyi et al., 2020;
Miyauchi et al., 2020; Sagita et al., 2021; Sierra-Patev et al., 2023).
Examples covering a wide range of significant discoveries made
through comparative genomics include to resolve evolutionary
histories among early fungal lineages (James et al,, 2020), to
propose an important molecular mechanism associated with
flagellated zoospores in the chytrid fungus Blastocladiella emersonii
(Blastocladiaceae, Blastocladiales; Galindo et al., 2022), to identify
horizontal transfer of a large and toxic secondary metabolic gene
cluster between Podospora and Aspergillus (Slot and Rokas, 2011), to
reveal mobile pathogenicity chromosomes in Fusarium (Ma et al,
2010), and to discover a small genome of a species within the
mycoparasitic genus Escovopsis (Hypocreaceae, Hypocreales) that
rely on their hosts for some key cellular functions (de Man et al,
2016). This progress has prompted efforts to identify missing links,
e.g., non-model species, which can be sequenced and manipulated to
address specifically defined biological and evolutionary questions
(Russell et al,, 2017). In addition to providing annotation references
for non-model species, a set of model species forms the phylogenetic
backbone for a better understanding of the ways in which species
have evolved at the genomic level. Comparative genomic analysis,
aided by the inclusion of well-studied models, identifies divergence in
genome content and structure, gene copy number and sequence, gene
synteny, and evolutionary history, and also identifies mobile elements
and non-coding regions in non-model genomes (Sunnerhagen and
Piskur, 2006; Sivashankari and Shanmughavel, 2007).

Fungi in the class Sordariomycetes exhibit high levels of
ecological diversity. They include saprotrophs on decaying
substrates as well as endophytes and parasites on plants, insects,
vertebrates, and even fungi. They are also capable of producing a
diverse array of secondary metabolites under different conditions
(Charria-Giron et al,, 2022). The profiles of the secondary metabolites
produced can be closely correlated with their phylogeny. However,
genomic and phylogenomic analyses strongly suggest that even
the genomes of well-studied species harbor secondary metabolite
biosynthesis gene clusters, the structures and functions of which have
yet to be determined (Atanasov et al., 2021). It has been suggested
that the ancestral status of the ecology for Sordariomycetes is
saprotrophic or parasitic (Zhang et al., 2006; Zhang and Wang,
2015). In fact, Sordariomycetes is one of the largest classes within the
Ascomycetes, and, along with progress in molecular phylogeny, the
systematics of this class has been revised multiple times, reflecting the
complexity of evolutionary histories within the class. In the most
recent comprehensive review of the class (Figure 1A), a total of seven
subclasses, 45 orders, 167 families, and 1,499 genera (with 308 genera
incertae sedis) are recognized within Sordariomycetes, representing
dramatic diversity in ecology and developmental biology
(Maharachchikumbura et al., 2015; Maharachchikumbura et al,,
2016; Hyde et al, 2020). Among the Sordariomycetes, there are
several species that serve as classic models of filamentous fungi in the
genera, such as Neurospora and Podospora (Podosporaceae,
Sordariales); Sordaria species for developmental genetics; Fusarium,
Magnaporthe (Magnaporthaceae, Magnaporthales), and the
Cordyceps (Cordycipitaceae, Hypocreales) species for pathogenesis;
and Chaetomium (Chaetomiaceae, Sordariales) and Trichoderma
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(Hypocreaceae, Hypocreales) species for metabolics
and fermentation.

The need for the evolutionary
integration of multiple models

Classic genetic models

Among the several Sordariomycetes fungi that have been
utilized as models, N. crassa is perhaps the most widely
examined, and was the first multicellular fungus to have its
genome sequenced and annotated (Borkovich et al.,, 2004; Dunlap
et al, 2007). It is a non-pathogenic saprotroph that grows
vegetatively and can be cultured in most defined and natural
media, and, as such, remains a widely used model that facilitates
research across a worldwide community, which has addressed a
broad range of questions in general and fungal biology (Perkins,
1992). The species has a distinguished history, including its role in
the formulation of the “one gene—one enzyme” hypothesis
proposed by Beadle and Tatum (1941).

Closely related to N. crassa, N. tetrasperma is pseudohomothallic
and employs a mating strategy that combines selfing with occasional
outbreeding (Merino et al.,, 1996; Sun et al,, 2017). N. tetrasperma
provides a model for study of both the genomic and the evolutionary
consequences of asexuality and inbreeding (Sun et al.,, 2012; Samils
et al, 2013; Idnurm et al, 2015). These consequences cannot be
studied in obligate outbreeders alone, such as N. crassa and other
popular genetic models. A pangenomic analysis of 92 genomes from
eight phylogenetically and reproductively isolated lineages of N.
tetrasperma has provided experimental evidence for the role of
introgression as a mechanism for the maintenance of mating-type-
determining chromosomal regions (Corcoran et al., 2016).

Interestingly, Neurospora species are also known as postfire fungi,
as they are often spotted in the forest after a fire, a unique environment
shared with certain other pyrophilous fungi (Hansen and Pfister, 20065
Wicklow, 2018), such as Geopyxis carbonaria (Pyronemataceae,
Pezizales) and some species of Pyronema and Peziza (Pezizales).
Another easily maintained and genetically manipulated species,
Podospora anserina, has long been used as a model to study aging,
meiosis, sexual reproduction, and heterokaryon formation in fungi
(Philipp et al., 2013; Silar et al., 2019; Hartmann et al., 2021a; Lelandais
et al, 2022). P. anserina and N. crassa genomes share over 60%-70%
similarity in orthologous proteins, making them a powerful pair of
models that can be used as references for comparative genomics
(Espagne et al., 2008; Paoletti and Saupe, 2008).

Yet another intensively studied developmental genetic model in
the Sordariomycetes is S. macrospora, with over 100 available
developmental mutants (Nowrousian et al., 2010; Nowrousian
et al.,, 2012; Blank-Landeshammer et al., 2019; Teichert et al.,
2020). Similar to species of Neurospora and Podospora, S.
macrospora grows quickly under laboratory conditions. The fact
that S. macrospora is homothallic can be advantageous for sexual
and developmental synchronization and for maintenance of a
homogeneous genetic background.
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Systematics, genome availability, and some model species for the Sordariomycetes. (A) Updated systematics of the class Sordariomycetes,
composed of seven subclasses (color-coded, alongside the current numbers of family, genus, and genome sequences available in the JGI fungal
genome database for each order). The ordinal phylogeny was adapted from a phyloT tree of NCBI taxonomy in the Sordariomycetes and modified in
accordance with the latest arrangement by Hyde et al. (2020). (B—G) Comparative morphology of fruiting bodies (perithecia) of model species in six
genera: (B) Magnaporthe, (C) Nectria, (D) Fusarium, (E) Neurospora, (F) Podospora, and (G) Chaetomium, including a longitudinal section through
the outer fruiting body, a single representative mature ascus with ascospores, and representative paraphyses (sterile hyphae associated with asci).
Each perithecium harbors tens or hundreds of asci. All genera, except Magnaporthe and Chaetomium, forcibly discharge their spores. P. anserina
produces only four spores per ascus; all others generally produce eight (Trail, 2013; after Trail and Seminara, 2014).

Models for fungal pathogenesis

A small number of Sordariomycetes fungi, including Fusarium
and Magnaporthe species, are models for fungal pathogenesis; over
the past decades, Fusarium research has advanced our
understanding of these fungi. Fusarium is a large genus, including
some anamorphic fungi, for which sexual development and
reproduction has never been observed (O’Donnell et al., 2015).
This genus harbors important plant pathogens, producers of a wide
range of fungal chemicals, and causal agents of opportunistic
mycoses in humans (Suga and Hyakumachi, 2004). F.
graminearum sensu lato is a species complex whose members
cause devastating diseases in small grains and mycotoxin
contamination worldwide (Wang et al., 2010; Wang et al., 2011;
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Garmendia et al., 2018; Chai et al., 2022; Del Ponte et al., 2022). F.
graminearum sensu stricto refers to the major disease-causing
species in the USA (and a few other places); as this was the
subject of one of the first genomics projects (Cuomo et al., 2007),
it has since been frequently used in many comparative studies
(Khan et al., 2020; Rampersad, 2020; Teli et al., 2020). This fungus
has been intensively studied as a cosmopolitan model for fungal
pathogenesis of crop plants. The largest source of inoculum for
disease outbreaks originates from the primary inoculum, airborne
sexual spores (forcibly discharged from fruiting bodies), with
aboveground asexual spores (mainly splash-dispersed) providing
a local secondary inoculum (Ingold and Dring, 1957). For this
reason, the species F. graminearum has become a model for the
study of perithecium development on host plants (Kim et al., 2022)
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and the mechanism of forcible ascospore discharge (Trail et al,
2005; Trail, 2007; Cavinder et al., 2012; Trail and Seminara, 2014;
David et al,, 2016). Recently, F. graminearum has become the first
plant-pathogenic fungus documented to produce biofilms in
association with plant colonization (Shay et al., 2022). Although
fungicide applications are the main source of control over the
disease, there are no strongly resistant varieties of wheat or barley
available. In addition to being infamous crop pathogens, Fusarium
spp. are also considered to be severe threats to human health and
are listed in the WHO fungal priority pathogens list to guide
research, development, and public health action (World Health
Organization, 2022; Rodrigues and Nosanchuk, 2023). As in the
case of Neurospora spp., comparative genomic analysis of Fusarium
spp. has also been instrumental to the field’s understanding of the
evolution of sexual development (Trail et al.,, 2017). One example is
the identification and analysis of horizontally transferred lineage-
specific genomic regions related to pathogenicity (Ma et al., 2010).

Magnaporthe species cause devastating crop diseases. M. grisea,
the causal agent of rice, was sequenced in 2005 (Dean et al., 2005).
Rice blast causes significant economic loss: worldwide, enough rice
to feed tens of millions of people is destroyed by rice blast every year
(Kumar et al., 2020). Closely related to M. grisea, M. oryzae attacks
wheat, causing wheat blast, an emergent fungal disease that
probably evolved through a series of “host jumps” and that
possesses core chromosomes and mini-chromosomes with
distinct evolutionary histories (Hossain, 2022). A genomic
surveillance study of over 500 strains from diverse geographic
regions and host types has revealed the adaptation and
development of fungicide resistance in a pandemic clonal lineage
of M. oryzae (Latorre et al., 2023; Rhodes, 2023). Infections occur
when fungal spores land on and invade wheat leaves using an
appressorium—a specialized infection cell formed during spore
germination. The process of the development of appressoria has
recently been investigated intensively using genome-wide analysis
(Lv et al., 2022; Wang et al., 2022a; Fan et al., 2023; Miguel-Rojas
et al, 2023; Qian et al, 2023; Rogers and Egan, 2023). Diverse
ecologies have been reported for species of the Magnaporthales,
ranging from saprotrophs to cereal pathogens to likely root
endophytes (Luo et al., 2015). The Sordariomycetes also include
diverse entomopathogenic fungi, including the “zombie” fungus
genus Cordyceps and the species of Beauveria (Cordycipitaceae,
Hypocreales) and Metarhizium (Cordycipitaceae, Hypocreales),
commonly used as biopesticides of pathogenic insects and
arthropods. Omics-based investigation of these fungi is expanding
rapidly (Zheng et al., 2011; Xiao et al., 2012; Pattemore et al., 2014;
Valero-Jimenez et al., 2016; Wang et al., 2016a; Chen et al.,, 2019;
Kato et al., 2022; Thananusak et al., 2022; Liu and Dong, 2023).
Interestingly, some fungi, such as Metarhizium species, are capable
of attacking hosts in both the plant and the animal kingdoms.

In addition to plant, arthropod, and human hosts, the
Sordariomycetes also include a unique pathogenic group,
mycoparasites, capable of parasitizing other fungi, including both
pathogenic and economically beneficial species. These include
species such as Clonostachys rosea (Hypocreales; Bionectriaceae),
Calcarisporium cordycipiticola (Hypocreales; Calcarisporiaceae),
Lecanicillium fungicola (Hypocreales; Cordycipitaceae),
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Syspastospora parasitica (Hypocreales; Hypocreaceae), and
Escovopsis weberi (Hypocreales; Hypocreaceae) (Posada et al,
2004; Berendsen et al., 2010; de Man et al., 2016; Sun et al., 2020;
Liu et al,, 2021). Over the years, significant attention has been given
to the study of mycoparasites belonging to the genus Trichoderma,
which contains many species of significant value to agriculture and
industry, and the genomics of which have been comprehensively
examined (Schalamun and Schmoll, 2022). Trichoderma reesei is a
unique species among other industrial fungi (Seidl et al., 2009;
Druzhinina et al., 2011). T. reesei (teleomorphic; Hypocrea jecorina)
is a known industrial cellulolytic enzyme producer, making it a
model system for the study of the regulatory mechanisms of plant
cell wall-degrading enzymes; this work contributes to the biofuel
and agricultural waste industries. T. harzianum, T. asperellum, and
T. asperelloides are among the most thoroughly analyzed
Trichoderma spp. and have been incorporated in biocontrol
strategies (Druzhinina et al, 2011). These biocontrol species and
other Trichoderma strains have been demonstrated to successfully
control plant diseases by stimulating plant growth and
development, increasing plant resistance to biotic and abiotic
stresses, and directly parasitizing phytopathogenic fungi (Zeilinger
and Omann, 2007; Atanasova, 2014; Guzman-Guzman et al., 2019;
Poveda, 2021; Di Lelio et al., 2023; Woo et al., 2023). Moreover, T.
reesei and T. asperellum are considered to be models for the
industrial production of various secondary metabolites
(Mukherjee et al., 2013; Schalamun and Schmoll, 2022) and
biofungicides due to their mycoparasitic properties, which benefit
plants challenged by other fungal pathogens (Kubicek et al., 2011).

The first full Trichoderma genome analyzed was that of T. reesei
(Martinez et al., 2008). T. asperellum and T. asperelloides (along
with others) were analyzed later (Berka, 2017; Druzhinina et al,
2018; Gortikov et al., 2022a), well after the genomes of Neurospora
and Fusarium species (Druzhinina et al., 2018). The recently
sequenced genome of T. asperelloides contributed to the
determination of its correct taxonomic identity, in contrast to its
previous identification as the closely related T. asperellum, a model
for biological control (Podder and Ghosh, 2019; Gortikov et al.,
2022a). Currently, there are more than 90 Trichoderma genomes
that have been sequenced and released, making it among the most
sequenced genera in the class; this is an achievement that can be
attributed to a combination of industrial and academic efforts.
Comparative genomic insight into Trichoderma spp. is fairly
recent. However, insights into the core genome of this genus,
potential heterothallic reproduction, and the abundance of
species-specific orphan genes (Kubicek et al., 2019) have provided
a strong foundation for further class-based comparative genomics
with other Sordariomycetes. One species of Sordariomycetes,
Calcarisporium cordycipiticola (Calcarisporiaceae, Hypocreales), is
a mycoparasite of Cordyceps militaris; mycoparasitism causes
devastating diseases of fruiting cultivation. Phylogenomic analysis
has highlighted the fact that C. cordycipiticola was evolutionarily
close to its host C. militaris, and that they diverged after a split with
the Trichoderma genus. Comparative genomic and transcriptome
analyses have provided insights into the origin of the pathogen and
the mycoparasitic interactions of two species from sister families
(Liu et al.,, 2021; Liu and Dong, 2023).
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Promising new models for fungal biology

Dramatic divergences in the development and biology of
Sordariomycetes can be observed even among closely related
species; thus, the class offers excellent systems for assessment of the
molecular genetic basis of the evolution of these species. Among these
promising systems, Chaetomium spp. fungi exhibit a frequently
homothallic lifestyle, a general lack of asexual reproduction of
conidia, enriched secondary metabolism synthesis, and an ability to
thrive in highly humid environments (Wang et al., 2016b; Zamocky
etal, 2016; Wang et al,, 2019a). All of these traits are highly divergent
in the genus, rendering these species especially informative regarding
rapid evolution in a comparative evolution context. The Chaetomium
spp. are cosmopolitan saprotrophs and endophytes that are capable
of dominating diverse ecological niches, including some extreme
environments, evoking interest in their genomic adaptation for
survival and dispersal. Species of Chaetomium are common
contaminants in indoor environments and are considered to be
health hazards (Andersen et al., 2011; Miller and McMullin, 2014),
causing symptoms of rhinitis and asthma when they infect humans
(Mackenzie, 1979; Vesper et al., 2007; Hassett et al., 2009; Green et al.,
2014). C. globosum is a model for the industrial production of
secondary metabolites, and is also generally considered to be a
species complex (Asgari and Zare, 2011; Wang et al., 2016b).
Chaetomium species probably shared thermophilic ancestors,
consistent with the thermophilic basal nature of its most diverged
lineage (Zamocky et al., 2016). The genome sequence of C. globosum
was made publicly available in 2015 (Cuomo et al,, 2015). Since then,
the taxonomy and phylogenetics of the genus have been undergoing
reassessment and revision (Wang et al.,, 2022c¢).

These models represent some of the diverse genera within the
Sordariomycetes that have been studied intensively. The availability
of many genome sequences that are closely related to established
and emerging model species represents a substantial contribution to
analyses of the ecological traits of these organisms and their close
relatives, which can in turn provide substantial insight. Currently,
there are 570 Sordariomycetes genomes (covering 136 genera or
high ranks, with more than 330 identified species and 75
unidentified species) in the JGI fungal genome database
(mycocosm.jgi.doe.gov/), in addition to the comparative tools
available via that portal (Figure 1A). Among these genomes, 189
cover more than 60 species in four genera, including 81 Fusarium
and 94 Trichoderma species. Many additional Sordariomycetes
genomes are available via the NCBI (National Center for
Biotechnology Information), with 3,574 genomes (nearly one-
third of the total of 11,083) being published and drafted
ascomycetes genomes; these include 1,359 Fusarium, 117
Neurospora, 110 Trichoderma, and 14 Chaetomium genomes.
Many of these genomes are for species that are culturable,
produce simple morphologies, and are often either pathogenic or
economically important. The ecological and industrial relevance of
pathogenic members of Sordariomycetes and those producing
valuable fungal products has been a major driver of the extensive
sequencing of many non-model genomes in this fungal class. Some
of these non-model species are emerging as “new” models and,
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unlike the classic models that have undergone intensive
investigation in biology and genetics, established during the pre-
genomics era, these species are often studied under a reverse
approach, with investigation originating in genomics and then
extending to genetics and the analysis of biological traits. For
example, the genomes of a large number of species of Xylariale
have recently been sequenced, and comparative genomics has
revealed genetic changes that are probably associated with
bioactivities, diverse lifestyles, environmental adaptations, and
selective pressure in these “mystical’-looking fungi (Robinson
et al., 2020; Wibberg et al., 2020; Franco et al., 2022; Fricke et al.,
2023). At the same time, the annotation of classic model genomes,
such as those of Neurospora, Podospora, and Sordaria genomes, has
undergone continuous improvement, in part on the basis of
information obtained from newly sequenced genomes of the same
or closely related species (Teichert et al., 2014; Gladieux et al.,, 2015;
Blank-Landeshammer et al., 2019; Teichert et al., 2020; Lelandais
et al, 2022; Rodriguez et al., 2022; Vittorelli et al.,, 2023). These
accumulating data continue to contribute to a new era of
evolutionary genomics and transcriptomics at further taxonomic
levels within the Sordariomycetes class.

New details and new omics data on
the Sordariomycetes continue to
accumulate in an accelerating manner

Representatives of the major fungal lineages on the tree of life have
now had their genomes sequenced, and the better-annotated genomes
of model species have been used as references. Thus, model species can
function as genomic information hubs to bridge the gaps between these
well-studied organisms and the relatively novel characteristics of non-
model species (Wang et al.,, 2018a; Teichert et al., 2020). Associations
between the various different ecological and developmental models are
of special interest, and within Sordariomycetes, it has been suggested
that there is a strong correlation between the evolution of senescence
and ephemeral substrate usage (Geydan et al, 2012). Sexual
reproduction in the Sordariomycetes involves the formation of
perithecium, a round-to-flask-shaped structure with a pore through
which meiotic spores are discharged. The morphological details of the
perithecium can differ dramatically among species within the class
(Figures 1B-G). Sexual development has been examined in
Neurospora, Podospora, and Sordaria via genomics- and
transcriptomics-based analyses for over a decade (Bidard et al., 2011;
Ellison, 2011; Dirschnabel et al., 2014; Teichert et al., 2014; Idnurm
et al., 2015; Corcoran et al., 2016; Xie et al., 2017; Grognet et al., 2019;
Shen et al, 2019; Hartmann et al, 2021b), with emphasis on the
functions and evolution of mating loci, secondary metabolism, and
stress responses associated with sexual reproduction.

Evolutionary developmental biology

Divergence in gene expression has long been considered to play
a critical role in developmental adaptations during organismal
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evolution (King and Wilson, 1975; Carroll, 2005; Hodgins-Davis
et al, 2015; Diaz et al., 2023). The incorporation of divergence in
sexual morphology within comparatively closely related taxa could
improve the precision and accuracy of reconstructions of ancestral
gene expression, yielding expansions to the number of associations
between shared morphologies and shared transcriptional profiles.
Comparative genomics and evolutionary transcriptomics focusing
on Sordariomycetes models has revealed the genes and regulatory
networks that are critical for sexual development in these fungi,
including non-coding sequences and genes that were previously
uncharacterized (Trail et al., 2017; Kim et al., 2018; Kim et al., 2019;
Litkenhaus et al, 2019). In addition, novel genes that affect
perithecial development have been identified in M. oryzae and N.
crassa, which have diverged functionally and transcriptionally from
their orthologous counterparts in F. graminearum (Kim et al,

<.

2022). These novel genes are predicted to be “young” (i.e., present
only in a recently diverged clade of species) and tend to be involved
in lineage- or species-specific functions. Phenotypic study guided by
comparative genomics among three distantly related filamentous
fungi has identified two genes (predicted to be chromatin modifiers)
that play roles in the sexual development of S. macrospora

(Liitkenhaus et al., 2019).

Evolutionary ecology

Comparative genomics approaches using these model species
have also been pursued in order to understand the evolution of
diverse ecologies among the Sordariomycetes, especially those that
are related to pathogenesis (Figure 2). Among the pathogenic
Sordariomycetes, species of Fusarium have been intensively
studied for their diverse genome structures (Brown and Proctor,
2013; Ma et al., 2013; Zhang, 2019; Mir et al., 2023). Research on
entomopathogenic Sordariomycetes, represented by Cordyceps,
Beauveria, and Metarhizium species, has been greatly enhanced
by the availability of genomes of these species (Gao et al., 2011;
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Pattemore et al., 2014; Valero-Jimeénez et al., 2016; Kato et al., 2022;
Liu and Dong, 2023; Sant Anna Iwanicki et al., 2023). Neurospora
species have been examined as metabolic models of the
biodegradation of cellulose and other plant organics (Feldman
et al.,, 2019; Liu et al., 2020; Wu et al., 2020; Huberman et al.,
2021), as well as providing some of the most tractable models for the
circadian clock and fungal responses to environmental factors, such
as light and temperature (Wang et al., 2016¢; Dekhang et al., 2017;
Wang et al., 2018b; Kelliher et al., 2020; Kelliher et al., 2023). Based
on transcriptomics data from N. crassa grown on five different crop
residues, researchers have discovered roles for a sporulation
regulator rca-1 in lignocellulose production (Wang et al., 2015).
Additional roles in allorecognition have also been identified for cwr-
1, a putative chitin polysaccharide monooxygenase, in N. crassa
(Detomasi et al., 2022). Three studies have investigated the
associations between secondary metabolite clusters (SMCs) and
reproduction in two fungal models, N. crassa and C. globosum, and
reported on the activities of 20 and 24 SMCs in these models,
respectively—a manageable set for separate investigation of the
roles of SMCs across the life cycle of these two models (Wang et al.,
2019a; Wang et al., 2019b; Wang et al., 2022d). Bayesian regulatory
networks have been reconstructed using transcriptomic data for N.
crassa and C. globosum. These networks exhibit divergences in
associations among genes associated with conidiation and
heterokaryon incompatibility between N. crassa and C. globosum,
supporting the theory that there is an evolutionary history of
loss of conidiation in the latter, putatively due to unfavorable
combinations of heterokaryon incompatibility in homothallic
species. A recent study focused specifically on conidial
germination in two model pathogens, F. graminearum and
M. oryzae, on artificial medium and on hosts, as conidial
germination represents the key stage in the initiation of fungal
attack (Miguel-Rojas et al., 2023). The authors’ analyses revealed
new and important aspects of early fungal ingress in F.
graminearum that can form the basis for improvement of
antifungal strategies, including a comparative gene expression
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finding that toxisomes are not fully functional until after
penetration of the host cells. Based on a study using near-
synchronous germinating cultures of T. asperelloides (a strain
used in biocontrol that was formerly identified as T. asperellum),
it has been reported that the transcript abundance of half of the
annotated genome is reduced during early conidial germination
(Grotikov et al., 2022b). In this study, it was also discovered that the
expression of the chitin synthase and glucan elongase families is
significantly increased during germination in the presence of a
basidiomycete host, Rhizoctonia solani (Ceratobasidiaceae,
Cantharellales), indicating that host recognition can occur during
the early stages of mycoparasite development (Grotikov
et al.,, 2022b).

Genome evolution

Advances in fungal genomics have produced new insights
regarding genome evolution in the kingdom. Mycovirus research
has greatly benefited from the availability of a large number of
fungal genomes and the development of comparative genomics
(Kotta-Loizou, 2019; Myers et al., 2020). Mycoviruses have been the
focus of biocontrol against fungal pathogens (Yu and Kim, 2020;
Schalamun and Schmoll, 2022). More than 10 different families of
viruses have been isolated from fungal hosts, including double-
stranded RNA (dsRNA), positive-sense and negative-sense single-
stranded RNA, and circular single-stranded DNA (ssDNA) viruses
(Applen Clancey et al., 2020). The presence of viruses in Fusarium
and Trichoderma spp. has been particularly well documented (Yun
et al., 2016; Li et al., 2019a; You et al., 2019; Yu and Kim, 2020;
Wang et al., 2022b). A recent study investigated the presence of
viruses in multiple Neurospora species and identified various RNA
viruses from N. crassa and other Neurospora spp. using
transcriptomics data. The study further established N. crassa as a
virus host model for use in the study of virus-host interactions and
virology in fungi (Honda et al., 2020). The authors also
demonstrated that N. crassa relies on transcriptional and
posttranscriptional regulation to restrict virus replication for at
least some of its genes.

Posttranscriptional regulation is another intriguing genome-
wide editing mechanism, but how has such a widely distributed
mechanism evolved and been maintained across the diverse fungal
genome? One example of posttranscriptional regulation is A-to-I
editing, which has recently been discovered to be associated with
sexual development in filamentous fungi (Bian et al., 2019). Some of
these A-to-I-editing filamentous fungi are Sordariomycetes,
including N. crassa (Liu et al, 2017), S. macrospora (Teichert
et al, 2017), and F. graminearum (Liu et al., 2016). In M. oryzae,
N°-Methyladenosine (m°A) RNA methylation, the most common
modification of RNA at the post-transcriptional level in eukaryotes,
has been found to be important for various aspects of fungal
biology, such as vegetative growth, conidiation, and pathogenicity
(Shi et al., 2019). Although disruption of m°A factors does not affect
sexual development in M. oryzae and F. graminearum,
overexpression of the m°A writer (the ortholog of the gene coding
for IME4 in yeasts) causes delayed sexual development in F.
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graminearum, suggesting that m°A modification may alter
developmental processes in filamentous fungi (W. Kim,
unpublished). RNA modification, such as m°®A, can be detected
using direct RNA sequencing, whereby the modification sites can be
profiled at nucleotide resolution (Leger et al., 2021). All these new
discoveries using the Sordariomycetes models can be expected to
evoke interest in exploring model fungal clades that can
comprehensively illuminate these fundamental features.

Climate change

The application of evolutionary approaches to genomic data
from fungi may also help us to understand some impacts of climate
change. Fungi are widely distributed and abundant in almost all
ecosystems—even in extreme environments—and have been
referred to as “climate warriors” in recognition of the important
ecological roles that they play in the recycling of carbon, nitrogen,
and other nutrients (Stajich, 2017; Averill et al., 2018; Tiquia-
Arashiro and Grube, 2019; Poggeler and James, 2023). Their
presence and activity are considered to be useful indicators in
relation to long-term climate change due to their sensitivity to
surrounding conditions, such as changes in light, temperature,
humidity, ROS elements, host type, and organic and inorganic
pollution (Gadd et al., 2007; Frankland et al., 2009; Rodriguez-
Romero et al,, 2010). Several studies have reported on the impacts of
climate change on fungus-host interactions, fungal distribution,
fungal disease prevalence, and the production of fungal products
(Frankland et al., 2009; Merrild, 2013; Botana and Sainz, 2015;
Tiquia-Arashiro and Grube, 2019; Charters, 2020; Meyer et al.,
2020; Frias-De-Leon et al., 2022; Miranda-Apodaca et al., 2023).
The wide distribution and ecological diversity of Sordariomycetes
fungi contributes to their frequent appearances in reports on the
impact of climate change on fungal diversity, which occur especially
frequently in climate-sensitive regions or populations of organisms
that are closely associated with fungi.

Fungal pathogens that infect economically important crops,
such as species of Fusarium (Vaughan et al., 2016) and
Magnaporthe (Qiu et al., 2022), are of special concern. Epidemics
of fungal pathogens can be enhanced by particularly wet and warm
environments occurring during the flowering seasons of some
crops. Remote sensing/geographic information system (GIS)
technology has the potential to monitor snowline elevation,
average temperature, precipitation, and sunshine hours in terms
of their relationship with the product of Cordyceps sinensis (syn.
Ophiocordyceps sinensis), which is also known as “yartsa gunbu” or
“Dong Chong Xia Cao” (“winter worm summer grass”) in
traditional Tibetan and Chinese medicine (Zhu et al.,, 2017). A
comprehensive collection dataset and an ensemble species
distribution modeling method have recently been used to
investigate whether and how climate change affects the
distribution of C. sinensis, and to predict potential shifts in the
range of the fungus in the medium term of approximately 50-70
years in response to climate change (Yan et al, 2017; Li et al,
2019b). It has also been proposed that Trichoderma spp. could be
utilized as “plant savers” in the face of climate change, on the basis
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of their several traits and genes that confer beneficial effects on crop
plants (Kashyap et al., 2017). A limitation of these studies—with
regard to their potential as a basis for omics-based analyses—is that
they have thus far mainly addressed the ecological and diversity
aspects of the global ecosystem. Hence, substantial fungal genomic
resources that may illuminate potential responses to climate change
have yet to be identified.

This would be a timely moment to revisit the possibility of
developing N. discreta, along with other Sordariomycetes, as a
model species to test the idea that adaptation to warm
temperatures could lead to more efficient carbon metabolism
(Romero-Olivares et al., 2015). To best adapt to their
environments (often microenvironments), fungi have evolved
elegant mechanisms for sensing and quickly responding to
changes, and some of their genetic elements may be capable of
high rates of evolution (e.g., Wang et al., 2016¢; Chandra Nayaka
etal., 2021; Kusch et al., 2023). Given the ecological and phenotypic
diversity among closely related lineages within Sordariomycetes,
further study and comparison of their potential for rapid genomic
evolution would clarify their potential roles as models to enhance
our understanding of long- and short-term climate and
environmental impacts on fungi, and associated plant and animal
health. As a motivating example, the relative abundance of
Fusarium spp. has risen almost fivefold alongside the course of
global warming (Delgado-Baquerizo et al., 2020).

We have only reviewed a very small portion of the recent
comparative genomics and transcriptomics literature focusing on
members of the class of Sordariomycetes, but these clearly illustrate
the potential scientific rewards of comparing multiple genomes in
different experimental settings to understand the evolution of the
relevant organisms or traits and the genetics of select biological or
ecological phenomena. However, the insights obtained on the basis
of genomics/transcriptomics into trait evolution and into the
associations with the genetics of various traits are still far from
complete. Two possible factors that may significantly contribute to
this gap are our underdeveloped understanding of the evolution of
gene expression, and our lack of a system for integrating data from
trait evolution and genetics that have already been (and can now be)
intensively studied. Therefore, a large system encompassing well-
studied model species, such as the Sordariomycetes, is a promising
platform for the development of tools and the implementation of
strategies to develop a systematic genetic understanding of
trait evolution.

Challenges and prospects for
Sordariomycetes model systems
in the omics era

Members of Sordariomycetes are model species and serve as key
references for the annotation of newly sequenced non-model
genomes. Nevertheless, investigation into the genomics and
transcriptomics of the Sordariomycetes continues to reveal deeper
layers of mysteries, including yet-to-be-resolved complexity,
variation, and surprises. These efforts often encounter difficulties
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owing to the inherent limitations of currently available genomics/
transcriptomics and bioinformatics technologies. Such limitations
can be overcome, in part, by community efforts to invest in
improving the annotation of the model genomes.
Phylostratigraphy is a methodology that provides statistical
descriptions of the origins of genes in a genome through
homology-based searching across the species phylogeny
(Domazet-Loso et al., 2007) with much more inclusive
phylogenetic representation of genomes; the use of this approach
has significantly reduced the number of N. crassa lineage-specific
genes identified, and has demonstrated that they are clustered and
aggregated toward the telomeres of each chromosome (Wang et al.,
2022e; Wang et al., 2023). A recent examination of transcription
factors in fungal genomes using homology searches identified a
large number of mis-annotations as a result of sequencing errors
and the mis-assembly of reference genomes (Mayer et al., 2023).
However, historical genomic mis-annotations have been resolved
only in the case of a few genomes, mainly because of the transient
nature of the financial support for scientific advancements and
accompanying technical difficulties. Usually, comparative genomic
analyses focus on annotated gene families, functional groups, and
specific questions about those genomes; thus, large amounts of the
available data have been overlooked and are not likely to be revisited
if this type of approach to the research persists. Although we
anticipate the continued provision of resources for the analysis of
larger numbers of new genomes, there is a greater need for support
for the generation and comparative analysis of genomes of closely
related organisms, so as to empower the development of model
clades in terms of both a higher density of sampling and the
generation of higher-quality comparisons and annotations.
Clusters of classic models with a set of high-quality “core
genomes” will be critical for a broader and more profound
understanding of evolution of fungal and organismal diversity.

In addition to high-quality genomics data, there is a need for a
solid basis for the design and development of methods for the
analysis of high-quality transcriptomics, proteomics, and
metabolics data from an evolutionary perspective (Jaffe et al,
2004; Nesvizhskii, 2014; Naranjo-Ortiz and Gabaldon, 2020;
Sarsaiya et al, 2021). For example, proteogenomics—which
combines proteomics, genomics, and transcriptomics—has
considerably improved the annotation of S. macrospora through
the identification of over 104 “hidden” proteins and the correction
of annotations for over 500 genes (Blank-Landeshammer et al.,
2019). A proteogenomic approach was also used to identify the
function of transporter protein in N. crassa (Rupa et al., 2018).In a
recent study focusing on eukaryotic chromatin evolution, N. crassa
was sampled, along with two yeast models and other eukaryotes, for
phylogenetic and proteomic reconstruction (Grau-Bove et al,
2022). In addition to being a model of clock- and/or light-
responsive metabolic regulation, N. crassa has also served as a
platform for the development of genome-scale metabolic models
(Chen and Loros, 2009; Dreyfuss et al., 2013; Hurley et al., 2014;
Bayram et al, 2019). The Sordariomycetes genomes represent
excellent resources for investigation of the dramatic diversity of
ecology and biology within the class. Recently, many studies have
generated pangenomics and pantranscriptomics data, including on
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multiple strains within species, and developed core elements of
fungal genomes and transcriptomes (Plissonneau et al., 2018; Badet
et al,, 2020; Bao et al., 2022; Hyun et al., 2022; Vaughn et al., 2022).
However, the power of omics approaches is limited by a lack of
knowledge of baseline gene activities and their functional dynamics
in natural settings—even in the case of intensively studied biological
processes of well-annotated model species. Therefore, one challenge
that requires future effort is the integration of data and knowledge
among “closely related” species—noting that fungi referred to as
closely related are often divergent from a most recent common
ancestor dating back to nearly the same period as the most recent
common ancestor of mammals (Figure 2).

Even under standard laboratory conditions, genome-level
comparisons across closely related species face the need to deal
with many unexpected results—even setting aside data
heterogeneity resulting from the use of different experimental
platforms by different research groups. In studies revisiting the
transcriptomics data collected from three Neurospora and two
Fusarium species over the morphologically conserved sexual
reproduction process, large portions of the genomes have been
found to exhibit divergent dynamics in terms of gene expression
profiles (Figure 3). Such divergent activities have also been observed
among different age groups of genes, suggesting that much more
evolution of gene roles occurs than the conservation of functional
groups implied by the current use of tools for functional annotation
based on gene families and orthologous groups. One may argue that
mRNA abundance may not directly reflect the functional status of
the coding gene, meaning that additional well-sampled proteomics
data are required to piece the puzzle together. This additional
research is surely warranted: there is a lack of models with well-
sampled transcriptomics and proteomics data covering key growth
and developmental stages under standard laboratory conditions as
well as more realistic conditions that better match natural
environments. The establishment of a diverse range of
comparative omics studies of the Sordariomycetes could enable
intriguing and novel cross-class comparisons to be made. In
addition, insights obtained from such analyses could well serve as
starting points for novel hypothesis-driven experiments that can be
carried out with relative ease in historically and newly amenable
model species.

A central problem in genetics research is that of deciphering
how genomic variation affects the function of genes and results in
altered phenotypes. Results from genome-wide association studies
(GWASs) with fungal genome data offer insights into the genetic
basis of phenotypes or traits of interest. However, increasingly
innovative methods will need to be developed to effectively
integrate diverse data types and/or sources of information in
order to identify functional genes and variants and understand
how they shape the relevant phenotypes. These methods will
probably include approaches that enable a move from detection
of a genetic association signal in a chromosomal region to the
identification of trait-associated genes and causal variants, as a step
toward understanding the underlying morphological, ecological, or
metabolic processes in fungi. Fine mapping, sequencing, functional
studies, and other approaches have also been used to find the causal
variants involved in complex traits, facilitated by statistical
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approaches to the integration of diverse data sources, including
transcriptomics data from different cohorts, to interrogate causal
relationships between genetic variation and the associated
mechanism in fungal biology. The use of systems and synthetic
biology approaches would also be a useful and creative way to
investigate large-scale genetic and environmental interactions
(GXE) within the genomes, especially among different genera that
flourish in different environmental conditions. Additional obstacles
to modeling in the class include: (1) the imbalanced sampling of
genomes within this large and diverse fungal class, given that most
of the available genomes are drawn from only four out of 45 orders,
namely, Xylariale, Hypocreales, Sordariales, and Glomerellales; (2)
the fact that many Sordariomycetes species are symbiotic and have
not yet been successfully cultured under laboratory conditions; and
(3) alack of understanding of the ecology and biology of the model
species in their natural settings. These challenges may partly be
addressed by promoting collaboration among the relevant experts
within and beyond our immediate scientific community and by
incorporating developments in artificial intelligence (AI) that
promise to accelerate genomics research.

On the latter point, the first critical step is the systematic feeding
of diverse and high-quality data into Al tools, enabling computational
facilitation based on reference data and data mining for applications
ranging from genome annotation to systems biology analysis.
Researchers have developed many widely used high-throughput
computational methods of data analysis, including single-cell
sequencing, to provide start-to-finish analytical ecosystems for
large-scale omics datasets. These data are generated from
experiments involving a wide range of systems that are considered
to be of great interest for society (Hotaling et al., 2023). Models using
methods such as manifold learning and deep learning have been
developed, employing supervised and unsupervised learning
approaches to the processing and visualization of data, the
development of the field’s understanding of biological processes,
and the characterization of phenotypic diversity and its underlying
causal mechanisms. With their high-quality model genomes
accompanied by high-quality omics data, the Sordariomycetes can
be established at the core of omics databases, serving as a powerful set
of model species for Al training for the analysis of evolutionary
genomics, as has been pioneered in certain other disciplines (Guhlin
et al., 2017; Misra et al., 2019; Biswas and Chakrabarti, 2020; Ko et al.,
2020; Reel et al,, 2021). Nevertheless, it is important to note that just
as some erroneous gene annotations have been made and perpetuated
over time, the quality of AT output, especially the outputs of new Al
tools, which will be trained for new data types, will have to be
critically monitored to minimize the embedding of historical
misinterpretations and misconceptions that could substantially
impede downstream science.

Big Data provides us with the opportunity to address existing
and new challenges in evolutionary genomics research. As omics
data accumulate, the systematic investigation of genome-phenome
relationships has expanded from model-driven gene-by-gene
studies to data-driven studies of multiple species and multiple
functional groups. This review has provided only a smattering of
examples that touch on the substantial successes to be achieved by
revealing the rules that underlie the relationships between genomes
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FIGURE 3

Comparative gene expression, illustrated in the form of (A) a heatmap and (B) a Transcriptome Age Index (TAl) plot (which combines gene
phylogenetic age with expression changes to describe possible evo-developmental transcriptomics within a single genotype) for single-copy
orthologous genes among five species during 144 h of sexual development. Gene expression data from our previous publications (Sikhakolli et al.,
2012; Lehr et al., 2014; Trail et al., 2017) were revisited. TAl (the weighted mean of phylostrata using gene expression intensities of a given gene) was
computed for each developmental (ontogenetic) stage following the methods described in previous studies on plant and animal models (Domazet-

Loso and Tautz, 2010; Drost et al,, 2015).

and phenomes. We advocate for the adoption of the class
Sordariomycetes as a cluster of high-quality and diverse models
that will enable extensive scientific advances capitalizing on Big
Data in evolutionary genomics and that can be used as a high-level
reference and blueprint for the analysis of other classes in the fungal
kingdom and beyond. The richness and diversity of its members;
their ecological capabilities, lifestyles, and economic importance;
the accumulated research history with amenable model species; the
abundance of sequenced genomes; the rapidly accumulating
diversity of other omics data; and, last but not least, the immense
global research community in this domain promise a synergy that
will yield extraordinary and exciting scientific outcomes.
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