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Abstract Meteorological (MET) data is a crucial 
input for environmental exposure models. While mod-
eling exposure potential using geospatial technology is 
a common practice, existing studies infrequently evalu-
ate the impact of input MET data on the level of uncer-
tainty on output results. The objective of this study is 
to determine the effect of various MET data sources 
on the potential exposure susceptibility predictions. 
Three sources of wind data are compared: The North 
American Regional Reanalysis (NARR) database, mete-
orological aerodrome reports (METARs) from regional 

airports, and data from local MET weather stations. 
These data sources are used as inputs into a machine 
learning (ML) driven GIS Multi-Criteria Decision Anal-
ysis (GIS-MCDA) geospatial model to predict potential 
exposure to abandoned uranium mine sites in the Navajo 
Nation. Results indicate significant variations in results 
derived from different wind data sources. After vali-
dating the results from each source using the National 
Uranium Resource Evaluation (NURE) database in a 
geographically weighted regression (GWR), METARs 
data combined with the local MET weather station data 
showed the highest accuracy, with an average R2 of 0.74. 
We conclude that local direct measurement-based data 
(METARs and MET data) produce a more accurate 
prediction than the other sources evaluated in the study. 
This study has the potential to inform future data collec-
tion methods, leading to more accurate predictions and 
better-informed policy decisions surrounding environ-
mental exposure susceptibility and risk assessment.

Keywords Meteorological · Navajo nation · 
Particulate matter · Spatial analysis and modeling · 
Abandoned uranium mines · GIS multi-criteria 
decision analysis · Radom forest

Introduction 

Exposure to pesticides, hazardous chemicals, and res-
pirable particulate matter (PM)2.5 (Sharma et al., 2020) 
has been associated with a host of negative human 
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health outcomes (Fu & Xi, 2020). In particular, the 
trace metal component of  PM2.5 from abandoned ura-
nium mines (AUMs) has previously been linked to car-
diopulmonary toxicity (Zychowski et al., 2018). While 
the majority of environmental justice (Northridge et al., 
2003) and health (Wellenius et  al., 2006) exposure 
research emphasizes populations in urban areas, there 
remains a dearth of literature addressing exposure and 
health relationships in rural communities (Hendryx 
et al., 2010). There is also increasing recognition of the 
extent of contaminant exposure and human health con-
sequences among Indigenous communities in the west-
ern USA (Hoover et al., 2019; Lewis et al., 2017).

Abandoned and inactive hard rock mines in or near 
Indigenous and rural communities are a critical potential 
source of exposure to environmental chemicals (Lewis 
et  al., 2017). More than 160,000 abandoned hard rock 
mines, including over 4000 uranium mines, are located 
in the Western USA, which is where the majority of the 
Indigenous peoples in the USA reside (Hoover et  al., 
2019; Lewis et al., 2017). Contaminants from the waste 
piles and abandoned mines are dispersed through the air, 
water, and soil, creating a legacy of chronic community 
exposure. For example, the US Environmental Protection 
Agency stated that contaminants found in abandoned 
mine waste have contaminated headwaters areas in 40% 
of the watersheds in the western USA (USEPA, 2000), 
illustrating the geographic scope of this challenge.

Geospatial modeling approaches are used for envi-
ronmental exposure and risk assessment to identify 
and quantify potential exposure and risk in a particular 
geographic area, including but not limited to GIS-based 
modeling (Malczewski, 2006; Nuckols et  al., 2004), 
spatial statistical modeling (e.g., spatial temporal mod-
eling) (Elliott & Wartenberg, 2004), air dispersion mod-
eling (e.g., AERMOD) (Calder, 2008; Hadlocon et al., 
2015; Holmes & Morawska, 2006; US EPA, 2016a), 
and environmental fate modeling (Falakdin et al., 2022). 
MET data (including but not limited to temperature, 
dew point, wind direction, wind speed, humidity, cloud 
cover, precipitation) are crucial inputs for geospatial 
modeling efforts for two major reasons: (1) environmen-
tal contaminant transport and exposure processes are 
highly dependent on meteorological conditions (e.g., the 
impact of wind on air dispersion of contaminants) (Shi 
et al., 2017; S. Hu et al., 2020); and (2) MET data are 
inherently geospatial data (Wel and Frans. , 2005) con-
taining sophisticated spatial and temporal scales to sup-
port geospatial modeling (US EPA, 2016a).

GIS-Multi Criteria Decision Analysis (GIS-
MCDA) is one geospatial modeling technique suited 
for applications that include MET data. Besides 
environmental exposure and risk assessment study, 
application of this MCDA framework is wide rang-
ing (Malczewski, 2006) including remedial site eval-
uations (Chen et  al., 2010; F. Li et  al., 2018)), land 
use suitability (Chen et al., 2010; Chang et al., 2008; 
Charabi & Gastli, 2011), and public health studies 
(Young et  al., 2010). Many studies have integrated 
GIS-MCDA models and fuzzy set theory to address 
potential uncertainties in the MCDA approach (Kuo 
et al., 2002), which allows for modeling generalized 
environmental factors when highly detailed data is 
lacking (Kozak et al., 2008).

Predominant sources of MET data relevant for 
geospatial modeling include direct measurements 
from meteorological stations, derived gridded data 
products, and satellite observations. Wind speed 
and direction are significant variables in our model 
design. Therefore, the source, quality, and characteris-
tics of meteorological data and how it is produced are 
critical and may influence the model output signifi-
cantly. Direct measurement at MET stations primarily 
represents stationary locations with an array of sen-
sors designed to record meteorological phenomenon. 
There is a wide range of applications of MET station 
data in environmental exposure studies. MET stations 
have been used to model environmental exposure 
from pollutants such as sulfur dioxide (Rogers et al., 
1999), pesticides (Tao & Vidrio, 2019), and particu-
late matter such as  PM10,  PM2.5, and  NO2 (Lei et al., 
2020). MET data are based on local meteorological 
station or satellite observations to provide continuous 
estimates in both space and time, usually at a daily or 
weekly time scale. Other direct measurement-based 
MET data, such as wind related measures derived 
from Next-generation Weather Radar (NEXRAD), 
has been used for various purposes, such as PM mod-
eling (Yu et al., 2022).

Gridded observations, also identified as reanalysis 
data, are commonly generated using spatial interpola-
tion methods. Previous studies have shown although 
these data provide greater spatial representation, any 
uncertainty in the interpolation process may be prop-
agated in further modeling applications. Gridded data 
products have been extensively applied in geospatial 
modeling efforts. For example, gridded MET data 
have been used in Bayesian models to determine the 
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extent of  PM2.5 in urban areas (Nicolis et al., 2019), 
in random-forest models to determine daily concen-
trations of  PM10 and  PM2.5 (Stafoggia et  al., 2019), 
including nationwide prediction of  PM2.5 (Yu et  al., 
2021), and in quantile regressions to determine the 
spread of fungal spores (Grinn-Gofroń et al., 2019). 
While there have been cases where the uncertainty in 
the interpolation process has proven negligible (Elaji 
& Ji, 2020), this remains an underdeveloped area for 
consideration in the model development and evalua-
tion process.

Satellite data are valuable for spatial analysis and 
modeling because the data products are continuous 
and provide a finer temporal data scale than many 
gridded data products. MET data obtained from 
a geostationary satellite is often used in real-time 
weather forecasting. The temporal resolution for this 
data source is excellent, with data at almost any point 
in time. However, because of the altitude needed to 
attain geostationary orbit, the spatial resolution for 
this data source often suffers. In environmental expo-
sure modeling studies, this data source has been used 
to predict the transport of  PM2.5 (Chu et  al., 2016) 
and estimate the spatio-temporal air temperature 
using machine learning (dos Santos and Schneider, 
2020). Previous studies have integrated a wide vari-
ety of MET data sources in modeling efforts. As an 
example, gridded data, reanalysis data, and geosta-
tionary satellite data were combined for  PM2.5 mod-
eling (Yu et al., 2021).

The existence of various MET data products 
enables widespread use of these data for modeling 
purposes. Some studies used ground station data 
to model the future climate (Belcher et  al., 2010; 
Moazami et  al., 2019). Other recent studies have 
compared values observed from MET stations and 
predicted gridded data (Bandyopadhyay et al., 2018), 
and tested the effects of different MET data sources 
on community-scale epidemiology models (Colston 
et  al., 2018). However, evaluation of the effects 
that different MET data sources have on the output 
of large scale exposure prediction models remains 
underdeveloped in the literature.

With limited knowledge about what effect 
various MET data sources have on the predictive 
power of geospatial models, adoption of specific 
MET data source is often dependent on the avail-
ability of MET data type, use cases, or modeling 
approaches. For example, while MET stations can 

provide more accurate local observations they have 
limited spatiotemporal coverage (Rogers et  al., 
1999) and are especially sparse in rural areas. This 
disparity exists in part due to the cost of building 
and maintaining MET stations as well as infra-
structure needs in rural areas, such as limited sat-
ellite coverage, cell service, and a site manager 
available to maintain the station (Lin et al., 2020). 
Complex terrain can also affect the placement of 
MET stations, as most stations require a relatively 
flat location to get an accurate reading. While local 
or ground-based measurement MET data are pre-
ferred over the other sources as they are usually 
more accurate (Rzeszutek et  al., 2017), there are 
several scenarios where this is not viable especially 
in rural areas where it can be difficult to imple-
ment weather stations due to lack of infrastructure, 
security, or funds. In these cases, researchers often 
turn to other MET data products to fill this gap in 
weather station locations (Elaji & Ji, 2020; Trubilo-
wicz et  al., 2016; Wilgan et  al., 2015). However, 
the effect that gridded and interpolated data have 
on spatial models for exposure and human health 
studies is unclear. To account for the shortcomings 
of these data sources, attempts have been made to 
combine the three to improve both the spatial reso-
lution and small-scale accuracy (Albers, 1995).

Using MET data sources that have either (1) inher-
ent errors introduced by the interpolation process or 
(2) limitations in spatial or temporal coverage can 
lead to uncertainty and error in environmental expo-
sure studies. In the scenario of adopting local obser-
vations, for rural communities, the nearest available 
MET station could be in the nearest large city or 
town. This difference in geographic location may be 
small (1–5 miles) or large (100–200 miles). Using 
MET data from large distances can have an oversized 
effect on the model output. In contrast, employing 
satellite-based or gridded reanalysis data might not 
be appropriate for local-scale analysis due to accuracy 
concerns (Rzeszutek et al., 2017). Therefore, a more 
developed understanding of how MET data selec-
tion impacts modeled results is critical. The purpose 
of this study is to implement an existing geospatial 
model (Lin et  al., 2020) using different MET data 
inputs and then compare the model predictions to 
refine the previous model results as these results will 
be used in future studies in the Navajo Nation. This 
paper reports two sets of activities: (1) comparison of 
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model results using different MET data sources; and 
(2) determination of the MET source that produces 
the most accurate model result.

Data and methods

Study area

The study area of the present paper is the Navajo 
Nation, a sovereign Indigenous nation in the Southwest 
USA encompassing approximately 70,000  km2 of New 
Mexico, Arizona, and Utah (Fig. 1). With an estimated 
population of 173,000 people living on the reservation, 
or about 6 people per square mile, the Navajo Nation 
is largely rural and sparsely populated (Navajo Nation 
Division of Community Development, n.d.). Span-
ning a large swath of the Colorado Plateau, the Navajo 
Nation is rich in mineral and other resources. As such, 
there is a long history of resource extraction on Nav-
ajo lands that has left behind an intractable legacy of 
environmental contamination and numerous associated 
health risks. Waste from 523 AUMs and other mine 
types dispersed across the Nation is mobilized through 

multiple environmental pathways including surface 
water, groundwater, and particulate matter transported 
by aeolian processes. The combination of potential 
sources of exposure with the limited MET data avail-
able for modeling purposes suggests that this study 
area is a strong candidate to test the study hypothesis 
that uncertainties in the data source of MET data sig-
nificantly influence uncertainty in model predictions 
and must be explicitly evaluated for their influence on 
results (Blake et al., 2017).

Overall modeling framework

Challenges of acquiring quality MET data directly 
affect the types of modeling frameworks that can 
be employed. Existing methods for modeling the 
dispersal of particulate contaminants, such as the 
American Meteorological Society/Environmental 
Protection Agency Regulatory Model (US EPA, 
2016b) are usually based on single pathways (aerial 
dispersal). While such volumetric models have high 
accuracy in predicting the dispersal of contami-
nants, they require input of detailed and localized 
MET data and are limited to small-scale study. In 

Fig. 1  Overview map of the Navajo Nation 
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contrast, GIS-based spatial models examine com-
bined pathways and can work with different types 
of MET data at different scales, which makes them 
suitable for the purpose of the present study (Lin 
et al., 2020; Malczewski, 2006). Here we refined an 
existing GIS-MCDA model developed previously to 
estimate potential uranium exposure from AUMs in 
the Navajo Nation previously (Lin et al., 2020). We 
extend this model in the present work by evaluat-
ing how various MET data sources affect the model 
output and cross-validated results. The full model 
is presented in Lin et al. (2020) and is briefly sum-
marized here (Fig. 2). Subsequent sections describe 
criteria layers sensitive to MET data selection, 
which were evaluated in the present work.

The GIS-MCDA modeling procedures for the 
present research (Fig. 2) included:

1) Identify and compile relevant input criteria lay-
ers.

2) Standardize each criteria layer using the fuzzy 
logic approach to address uncertainties in envi-
ronmental risk assessment. Fuzzy membership 
functions applied for each criteria layer are pre-
sented in Table 1.

3) Determine criteria layer weight for weighted 
overlay to combine all criteria layers. Random 
Forest (RF) modeling approach was adopted for 

weight determination based on importance of 
each criteria layer.

4) Apply a weighted linear combination approach to 
combine fuzzy standardized criteria layers based 
on weights to produce a dimensionless exposure 
potential map where higher values representing 
a higher exposure potential to AUMs and lower 
value representing a lower exposure potential 
to AUMs. Applied a geographically weighted 
regression (GWR) validation method to estimate 
model accuracy using a separate environmen-
tal dataset—uranium concentrations in sediment 
and soil samples from the National Uranium 
Resource Evaluation (NURE) Hydrogeochemical 
and Stream Sediment Reconnaissance.

5) K-fold cross validation (k-fold CV) was applied. 
NURE data was broken into discrete training and 
testing subset pairs (folds). RF weight determi-
nation was performed on training sets and GWR 
validation on the test sets.

6) Sensitivity analysis emphasizing impact of scale 
of analysis. Random NURE subsets at vary-
ing scales were selected to validate the modeled 
results derived from each MET data input.

The criteria layers for the model included both 
non-meteorological and meteorological data sources 
(Table 1). Non-meteorological data sources included: 

Fig. 2  Flowchart of overall GIS-MCDA modeling approach including weight determination, and validation process with illustrating 
the k-fold cross validation method
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(1) AUM proximity derived using AUM locations; 
(2) AUM downstream drainage areas; (3) wind index; 
(4) topographic wind exposure; (5) local topographic 
aspect, slope, and landforms derived from a 30-m 
resolution digital elevation model (DEM); (6) a roads 
layer for the study area provided by USEPA (US 
EPA, 2016); (7) a hazard index score for trace metal 
concentrations for 467 groundwater sources through-
out the Navajo Nation (Hoover et al., 2018); and (8) a 
normalized vegetation index (NDVI) surface from the 
NASA Vegetation Index and Phenology (VIP) data-
set (Didan et al., 2016). Criteria layers 1 and 5–8 are 
described in detail elsewhere (Lin et  al., 2020) and 

were not altered for the present work. Criteria lay-
ers 2, 3, and 4 are described in detail in subsequent 
sections.

Fuzzy Large membership: monotonically increas-
ing sigmoidal function where larger values in the input 
dataset have a higher degree of membership and there-
fore present a higher potential for contamination; Fuzzy 
Small membership: monotonically decreasing sigmoidal 
function where larger values in the input dataset have 
a lower degree of membership and therefore present a 
lower potential for contamination; Fuzzy MS Large 
membership: increasing sigmoidal function (defined 
by mean and standard deviation of input dataset) where 

Fig. 3  MET station wind 
rose example for Mexican 
Hat, UT
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larger values in the input dataset have a higher degree of 
membership and therefore present a higher potential for 
contamination; Fuzzy MS Small membership: decreas-
ing sigmoidal function (defined by mean and standard 
deviation of input dataset) where larger values in the 
input dataset have a lower degree of membership and 
therefore present a lower potential for contamination.

MET data

MET data from three sources (summarized in 
Table  2) were used to create the Wind Index and 

Topographic Wind Exposure criteria layers (see 
Table  1 above). These data sources include local 
airport METARs, Uranium Mill Tailings Remedial 
Action (UMTRA) MET stations, and gridded reanal-
ysis data from the North American Regional Reanaly-
sis (NARR) database.

Local airport METARs

Wind direction and speed data were collected from 13 
airports in or near the Navajo Nation, among which 
there are only two on the reservation (Window Rock 

Table 1  Variables utilized in the GIS-MCDA model 
ID Criteria layer Description Fuzzy 

membership 
function

1 AUM proximity The sum of inverse distance from each cell to all AUMs within 50 km, 
weighted by the surface area of each AUM site (Harmon et al., 2017)

MS Large

2 AUM downslope drainage The inverse drainage path distance at each grid cell from each AUM 
site (illustrated in Sect. 2.4.1)

Small

3 Wind index A sum of the difference in the angle to AUMs source and prevailing 
wind direction on a scale of zero to one (illustrated in Sect. 2.4.2)

Large

4 Topographic wind exposure Angle between plane orthogonal to wind and local topography (illus-
trated in Sect. 2.4.3) weighted by wind speed

MS Large

5 Topographic landforms The surrounding landforms classified into one of the following using 
the topographic position index (TPI) (Grinn-Gofroń et al., 2019) 
ridges, upper slopes, mid-slopes, lower slopes, flat land, and valleys

Small

6 Proximity to roads The Euclidean Distance from each cell to the closest road segment MS Small
7 Groundwater contamination Hazard Index calculated for groundwater arsenic and uranium concen-

trations in more than 467 local wells; results were interpolated using 
inverse distance weighting interpolation

Large

8 Normalized difference vegetation index Monthly 30-year averages of NDVI calculated using Landsat 7 and 
Landsat 8 imagery to represent vegetative robustness

Small

Table 2  Meterological data sources employed in the present study

Sources: Source of MET data; Category: type of MET data (Direct measurement or reanalysis); Data type: Data structure (vector 
or raster); N: number of measurements; Spatial resolution: the smallest spatial area with the same value (Undefined means direct 
measurements are not equally spaced). Time period: the time period that data were measured/collected; *Dependent on when each 
individual airport started operations and data availability; Local Airport METARs: airports in or near the Navajo Nation; UMTRA: 
Uranium Mill Tailings Remedial Action (UMTRA) meteorological stations; UNM METALS: The University of New Mexico Met-
als Exposure and Toxicity Assessment on Tribal Lands in the Southwest (UNM METALS) Superfund Research Program Center; 
NARR : North American Regional Reanalysis (NARR) database

Sources Category Data type N Spatial resolution Time period

Local Airport METARs Direct measurements from meteorological stations Vector 3 Undefined 1990 – 2020*
UMTRA Direct measurements from meteorological stations Vector 4 Undefined 2004–2021
NARR Gridded reanalysis data based on interpolation Raster 92 32 × 32 km 1990 – 2020
UNM METALS Direct measurements from meteorological stations Vector 1 Undefined April 2021
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and Winslow Airport). The data was compiled and 
provided through the Iowa Environmental Mesonet 
(Herzmann, 2022). Wind direction and speed were 
collected on an hourly basis, and a 30-year summary 
of the data was used in the analysis.

MET stations

This study used four MET weather stations oper-
ated by the UMTRA program, including sites in 
Tuba City, AZ; Mexican Hat, UT; Monument Val-
ley, AZ and Shiprock, NM (Office of Environmen-
tal Management, n.d.) (Fig.  1). The Monument 
Valley, Tuba City, and Mexican Hat stations col-
lected data from 2017 to 2021, while the Shiprock 
station operated from 2004 to 2011. In addition to 
these stations, a temporary mobile station was also 
located near Blue Gap/Tachee, AZ for 2  years by 
the UNM METALS Superfund Research Program. 
The Blue Gap/Tachee station recorded wind direc-
tion and speed values every 15  min (Begay et  al., 
2021). For these 5 MET stations, the average wind 
direction was plotted in a wind rose. An example 
for Mexican Hat, UT is provided in Fig.  3. After 
plotting, the data was visually assessed, and the 
prevailing direction (statistical mode) for each 
station was used in the analysis. Wind speed was 
determined using the average speed for each 
station.

North American Regional Reanalysis (NARR)

The third MET data source used in this analysis was 
derived from the North American Regional Reanal-
ysis (NARR) modeled dataset (NOAA, 2020). This 
dataset uses several input sources: radiosondes, air-
craft readings, geostationary satellite cloud drifts, 
surface stations, and satellite radiances to model 
wind direction and speed across North America. It 
is widely used as an input for hydrological models 
(Trubilowicz et al., 2016), soil moisture and evapo-
transpiration models (Keshta & Elshorbagy, 2011), 
and modeling  PM2.5 concentrations (X. Hu et  al., 
2013). It is because of NARR’s wide use as an 
input for a variety of models that it was chosen as 
a comparison to direct measurements. This dataset 
provides data hourly estimates, which was used to 
produce a 30-year average for equally spaced points 

in a 32 km × 32 km grid. For this study, the 30-year 
prevailing wind direction and average wind speed 
grid points across the Navajo Nation were used.

Criteria layer creation

As discussed in Sect.  2.2, criteria layers 1 and 5–8 
were unchanged for the present analysis. For this 
work the downstream drainage model (criteria layer 
2) was created using a different method than our 
team’s previous work, and the wind index (crite-
ria layer 3) and topographic wind exposure (criteria 
layer 4) were created and incrementally adjusted for 
the present work. The main variables in the model 
affected by MET data are the wind index and topo-
graphic wind exposure.

Downstream drainage

Pollutants from abandoned mines may be transported via 
surface water through ephemeral or perennial drainages. 
The heterogeneous spatial distribution of heavy metal 
concentrations in soil and sediment is influenced by 
surficial runoff (Hou et al., 2017; Herngren et al., 2005). 
Mineral ore extraction is an important anthropogenic 
source of elevated heavy metal concentrations in those 
media (Candeias et al., 2014; Z. Li et al., 2014). Previous 
research has demonstrated the potential of downstream 
drainage transport of AUMs contaminants (deLemos 
et al., 2009; Lameman & Terri, 2012).

Downslope drainage was characterized using a 
regional point-source apportionment model (Huang 
et al., 2015) relating downstream distance of hydro-
logic response units (HRUs) from mines. HRUs are 
unique combinations of soil type, land use and land 
cover, and slope that represent areal regions with 
similar hydrologic properties at the soil–vegeta-
tion–atmosphere interface. As a preprocessing for the 
downslope drainage layer, we computed a total of 
8168 HRUs in the study area extent using a 30-m 
DEM, the 2019 USDA National Land Cover Data-
base (NLCD), and the National Resources Conserva-
tion Service (NRCS) STATSGO2 soils database in 
the ArcGIS Soil–Water Assessment Tool (ArcSWAT) 
(Version 2012.10_4.21).

The downslope drainage criteria layer was created 
following the following steps:
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1) The downstream drainage path from each AUM 
source was computed using the trace downstream 
tool from ArcGIS Online Ready-to-Use services, 
which draws a polyline drainage path from any 
given AUM point on land to its terminus in the 
ocean;

2) Because the 8163 HRU features generated using 
ArcSWAT were in multi-part format, meaning 
that multiple smaller features were grouped into 
single polygons with common HRU definitions, 
multi-part polygons were converted into 1.3 mil-
lion single-part features and the centroid of each 
feature within 1364.39 m (the mean shape length 
of all single-part features) of the downstream 
route was snapped to the polyline;

3) The total distance along the polyline between each 
snapped HRU centroid and the respective polyline 
point source was computed using network analysis 
tools in ArcGIS Pro (version 2.9); and

4) The downslope drainage criteria layer was gener-
ated as the sum of all inverse distances to each 
AUM point source. HRU polygons which do 
not intersect a downstream drainage path were 
assigned a value of 0. Because multiple streams 
tend to converge into common drainages, nearly 
all HRU points have multiple AUMs sources and 
thus distance measurements.

All processes to manage HRU data and compute 
distance were automated with Python.

Wind index

The wind index was calculated using the formula we 
developed:

where ! is Euclidean direction of a receptor location 
from a pollutant source, ! is the prevailing wind direc-
tion of the receptor location in degrees, Svi is the scaled 
wind speed, and D is the distance between points. The 
wind index is a function of the relative location from 

Wi =

√

√

√

√

m
∑

j=1

(

(

1 − cos (180 + (!ij − "))

2 ∗ Dij

)

∗ Svi)

if
1 − cos 180 + (!if − "))

2 ∗ Dij
> 0.5

each pollution source and both wind direction and 
speed in the surrounding geographic area.

Topographic wind exposure

The topographic wind exposure surface is a combi-
nation of the local terrain derived from a DEM and 
the wind direction. It is a combination of two planes, 
the orthogonal wind direction and a plane represent-
ing the local topography. The topographic wind index 
used in this model is based on the equation:

where cosα is the angle of topographic wind expo-
sure, μ is the terrain slope calculated from a DEM, 
β is the horizontal angle of wind, δ is the wind direc-
tion, and γ is the terrain aspect also calculated from a 
DEM (Lin et al., 2020).

Iterations of criteria layers pertaining to MET data

Individual MET data sources were evaluated (along 
and in combination) to assess the effect of each 
input on the model output. The Wind Index and 
Topographic Wind Exposure criteria layers were 
created using the following MET data combina-
tions (Table  3): METARs alone; MET weather sta-
tions alone; NARR data alone; METARs and MET 
weather stations; NARR data and MET weather sta-
tions; NARR data and METARs; NARR data, MET 
weather stations, and METARs (Table 3). 

Data integration and preprocessing

Data integrations and preprocessing including data for-
mat and resolution can be found in Fig. 4. Data input 
includes AUM point feature, MET data (wind direction 
and speed) from different sources, DEM, DEM derived 
Slope and Aspect, Drainage line feature, road line fea-
ture, groundwater well point feature, and NDVI. Except 
for Topographic wind exposure, landforms, and NDVI 
directly derived from raster layers (e.g., DEM, Slope, 
and Aspect), other criteria layers were created from vec-
tor data input and rasterized at the same resolution for 
the modeling process. Detailed descriptions of how each 
criteria layer was generated from the data input can be 
found in Table 1 and Sect. 2.2 and 2.4.

cos ! = cos (")(sin (#)) + sin (") cos (#) cos ($ − y)
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As shown in Table 2, the spatial resolution of each 
MET data source differs. Various methods for com-
bining and integrating data sources with varying spa-
tial resolution can impact the results of geospatial 
modeling (Cotter et  al., 2003). To create the above 
MET data combinations (Table  3), the following 

methodology was utilized. First, MET data lay-
ers were overlaid based on each combination. When 
NARR data was present in the combination (Table 3), 
the 4 nearest NARR points were replaced by the near-
est direct measurement source. For each version, the 
continuous area encompassed by the Navajo Nation 

Table 3  Meteorological 
data combinations

N—number of 
measurements

Com-
bina-
tion
ID

Combination name Data type N

1 MET weather stations Direct measurement 5
2 METARs Direct measurement 13
3 NARR Reanalysis data 192
4 METARs, MET weather stations Direct measurement 18
5 NARR, MET weather stations Reanalysis data and direct measurement 179
6 NARR, METARs Reanalysis data and direct measurement 155
7 NARR, MET weather stations, METARs Reanalysis data and direct measurement 143

Fig. 4  Illustration of data inputs, main processing steps, and 
output criteria layers (30 × 30  m resolution) employed in the 
present analysis. Notes.1point; 2line; avector spatial data for-
mat; braster spatial data format, 30 × 30  m resolution; cinput 
meteorological data including local airport METARs, Uranium 
Mill Tailings Remedial Action (UMTRA) MET stations, and 
gridded reanalysis data from the North American Regional 
Reanalysis (NARR); dsum of inverse distance from each cell to 

all AUMs within 50 km, weighted by the surface area of each 
AUM site; esum of the difference in the angle to AUM source 
and prevailing wind direction on a scale of zero to one; fcal-
culated for groundwater arsenic and uranium concentrations 
(MCL) in more than 467 local wells; results were interpolated 
using inverse distance weighting interpolation; Abbreviations. 
AUM abandoned uranium mine, DEM digital elevation model, 
NDVI Normalized Difference Vegetation Index
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was classified using the nearest data points mode 
wind direction and mean speed value. The above 
process uses the closest data source in each combina-
tion for every location, assuming that the nearest data 
source will be appropriate in each case. A distinct 
Wind index and Topographic Wind Index layer was 
generated for each combination of MET data.

Criteria weight determination and weighted linear 
combination

A criteria weight determination process can be highly 
subjective (Omair et al., 2021), due to a reliance on the 
opinions of domain experts in weight determination 
(Eldrandaly, 2013). In an effort to address subjectivity 
introduced in this process, this research applied a statis-
tical, regression-based approach for weight determina-
tion. There are many standard regression methods for 
determining coefficient weights, such as multiple and 
multivariate linear regressions (MLR). While simpler to 
interpret and well-tested, linear regressions have the limi-
tations of assuming linear relationships between inde-
pendent, continuous (or coded categorical) predictor var-
iables, and show poor performance with highly skewed 
data (Freedman, 2009; Schervish, 1987). Our model is 
highly complex, dealing with non-linear interactions 
between the different environmental variables that are not 
completely independent of each other. For example, cri-
teria such as wind index and topographic wind exposure 
that both incorporate meteorological information display 
collinearity. The predicted exposure distributions from 
each criterion are highly skewed toward low predicted 
exposure values. While our model criteria layers are 
fuzzified, the landforms layer is technically categorical, 
in which predicted exposure values are distributed in dis-
crete groups, as based off the original input categorical 
landform data.

Given the limitations of above traditional 
approaches, we looked into using well documented 
supervised ML methods, such as decision tree (DT) 
learning (e.g., Classification and Regression Tree 
(CART)) and multi decision-tree algorithms (“forests” 
of decision-trees, i.e., decision forests), including algo-
rithms such as RF, to determine criterion weights for 
our models. RF, as developed and termed by Leo Brei-
man, is a multi decision-tree algorithm that utilizes a 
randomized “forest” of CARTs, in which each CART 
generates its own prediction and is input into a vot-
ing scheme to calculate final predictions. This helps 

to limit problems of overfitting in addition to provid-
ing better predictive power and accuracy. RF does not 
assume linearity, can handle continuous and categori-
cal variables simultaneously, and is stable with com-
plex, skewed datasets. (Breiman, 2001). Among oth-
ers, RF models are now one of the most popular and 
commonly used algorithms by data scientists (Wu 
et  al. 2008). As part of the regression, RF evaluates 
the importance of each model variable (such as criteria 
layers in an MCDA) through the Gini Impurity statistic 
(Nembrini et al., 2018).

Because of the above documented strengths and 
widespread use of RF, we applied RF as a regressor 
for weight determination of our environmental criteria. 
To determine an appropriate subset size for training, 
several subsets of the data were tested incrementally. 
The RF regressor model was executed using subsets 
of the NURE data ranging from 500 to the maximum 
number of points (~ 7000) at intervals of 500. The 
NURE HSSR program was initiated by the Depart-
ment of Energy in 1973 and picked up by the USGS 
in 1995 to measure uranium concentration in stream 
sediment across the USA (USGS, 1980). The NURE 
database has detailed records of uranium concen-
trations along with several other heavy metals. The 
importance scores for each criterion were then plot-
ted at each subset level. After comparing the plots, the 
importance scores started to become unstable at ~ 750 
points, which was the subset size used for subsequent 
training of the RF regressor. We aimed to use the 
smallest-possible training set size to minimize data-
overlap. Each criterion was fit to the NURE subset 
(n = 750) in the RF-regressor weight determination 
model. RF was implemented using Scikit Learn in a 
Python 3 environment.

With criteria layer weights determined, weighted 
linear combination was applied to all criteria layers 
to produce the final results of exposure potential. 
Because each MET data version (Sect.  2.3.2) gen-
erated a distinct wind index and topographic wind 
exposure layer, each produced a distinct final result 
layer of exposure potential to AUMs.

Validation

Geographically weighted regression (GWR)

To validate the modeling results, the NURE data 
was regressed against the potential exposure surfaces 
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generated using each wind version (see Table  3 for 
tested combinations). The validation process was 
conducted through fitting a geographically weighted 
regression (GWR) model between the modeled 
results and the NURE data. GWR was adopted 
because it is a widely employed statistical test of fit 
used to model spatially varying relationships (Fother-
ingham et  al., 1998) which is appropriate given the 
spatial dependence of data in this study. This study 
quantified the match between modeled results and 
NURE uranium concentrations using the generated 
R2 values produced using the GWR method which is 
a measure of the regression between the explanatory 
(in this case the modeled potential exposure) and the 
dependent (NURE uranium samples) variables. The 
results range from 0 to 1, with 1 implying that the 
modeled results accounts for all the variation present 
in the NURE uranium concentrations, and 0 signify-
ing the opposite. R2 was used to determine the perfor-
mance of wind data in the modeling and the version 
of wind data input producing the highest R2 in the 
validation was the most accurate out of all versions 
of wind data. 

To determine an appropriate subset size for vali-
dation, several subsets of the data were tested incre-
mentally. A GWR model was executed using subsets 
of the remaining NURE data (not used for weight 
determination training in Sect.  2.6) ranging from 
500 to the maximum number of points at intervals 
of 500. The R2 results were then aggregated at each 
subset level and plotted. After comparing the plots, 
the aggregated R2 results level off at ~ 3500 points, 
which was the subset size used for subsequent valida-
tion and testing. We randomly selected 3500 NURE 
points and did the above validation. This process was 
repeated 999 times, to ensure that the results were not 
a product of chance due to the random NURE points 
selected.

K-fold cross validation

One area of validation often over-looked is over-fitting, 
which is a frequent issue in ML driven and/or regres-
sion based models, in which model fit can be over 
optimized simply by increasing sample size (Gavrilov 
et al., 2018). We adopted a commonly used approach 
to deal with potential overfitting issue due to large N in 
our study—k-fold cross validation—a method of split-
ting training and validation datasets into randomized 

(and in the case of spatial science) geographically dis-
tinct subset pairs (folds). The model is then run across 
the list of subsets, and outputs are assessed for stabil-
ity at a given sample size (Wong & Yeh, 2020). This 
helps with confidence in model results, and addition-
ally reduces the potential for training set bias caused by 
data leakage (Shim et al., 2021). To complete a robust 
k-fold validation, 10 folds (splits) were used. For each 
fold, RF was run on the training subset (n = 3500) to 
generate layer weights, with these weights input into 
the MCDA workflow. This produced a predicted expo-
sure surface for each fold. Values from this surface 
were used to create a testing subset (n = 750) on each 
fold. GWR was ran on the test subsets for final valida-
tion. K-fold CV was performed using Python.

Statistical analysis

Analysis of variance (ANOVA) was used to compare 
model prediction surfaces and test the null hypothesis 
that the mean prediction value for each prediction sur-
face was not different. A random set of 500 values was 
selected because of the large number of values in the pre-
dicted exposure potential surface. The data was log-trans-
formed (base 2) for comparison to account for significant 
right-skewness. Under these conditions, the distribution 
of the data looks relatively normal, with an average Pear-
son mode skewness of 0.59.

Scale variability analysis

This study also investigated how the model results 
varied at different scales. To do this, 99 random 
points within the study area were selected as test sites. 
From each test site, the GWR process was performed 
at distances of 25, 50, 75, 100, 125, 150, and 175 km 
from each test site for each result. The R2 results from 
this process were aggregated into an average R2 value 
for each result at the different buffer sizes.

Results

Map of wind data sources

Figure  5 shows all three wind sources and wind 
directions based on each source as well their spatial 
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coverage in the Navajo Nation. The NARR data cov-
ers the entire Navajo Nation, and the prevailing wind 
direction is Southwest. There are some discrepancies 
among the three sources. The METARs data agree 
with NARR data in all areas except the Northeastern 
area. The MET data are consistent with the METARs 
except in the Tuba city area, large disagreement is 
observed when compared against NARR.

Modeling results

Figure  6 shows the potential AUM exposure in the 
Navajo Nation for each wind data source. Because of 
the clustered mine sites, the general areas with higher 
exposure potential remain the same throughout each 
version, but there are subtle differences. In versions 
of the model where NARR data are incorporated, it 
should be noted that the Southeastern and Northern 
clusters show higher potential exposure at a farther 
distance than other versions of the model. While the 
presence of high exposure potential proximal to the 
mine clusters is a consistent result of models with all 
met sources, the impact of data source can be seen to 
substantially influence less expected predictions in 

regions distal to the mines where variability can read-
ily be seen.

Statistical test results

Figure 7 shows the distribution of 500 random points 
from each result version transformed with log2, along 
with the mean of each dataset. This study used an 
ANOVA test to compare between the different result 
versions for each study area. The ANOVA yielded a 
p value < 2e−16 , which is below the normal ! level of 
0.05, suggesting the means among the groups are not 
the same. This does suggest that there is a clear dif-
ference in the results depending on whether the model 
is inputting either local station data, modeled data, or 
some combination of the two.

Validation results

Table  4 shows the descriptive statistics R2 results 
from the validation for each version of MET data. The 
validation shows that the METARs and MET weather 
stations results consistently yielded the highest corre-
lation with NURE data for the Navajo Nation when 

Fig. 5  Wind direction data 
from different meterological 
data sources in the Navajo 
Nation
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compared with other versions of MET data (Fig. 8). 
The R2 for NARR is the next highest according to the 
validation results. Local airport and the 5 MET sta-
tions alone produced lower R2 when compared with 
results generated from their combination or NARR.

K-fold CV results

Plotting GWR R2 over the range of 10 test folds (with 
sample size n = 3500) indicates a highly stable model, 

with R2 values ranging from 0.79 to 0.81. The out-
put exposure maps show slight variance but are overall 
highly consistent (Fig. 9).

Scale variability analysis

Table  5 shows the average R2 results and the stand-
ard deviations of those results from the spatial scale 
test described in Sect.  2.9. The METARs and MET 
weather station version of the model had the highest 

Fig. 6  Potential envi-
ronmental exposure to 
AUM predicted by the 
GIS-MCDA model with dif-
ferent version of meteoro-
logical data: METARs (a); 
MET stations (b); NARR 
(c); METARs and MET 
stations (d); NARR and 
METARs (e); NARR and 
MET stations (f); NARR, 
METARs, and MET sta-
tions (g); Overview of the 
Navajo Nation—with the 
area represented in the other 
figures outlined in red (h)
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average R2 value over all scales from 25 to 175 km. 
The standard deviations were between 0.1 and 0.14 
for most of the result versions across various scales. 
The METARs and MET stations had higher standard 
deviations overall, with a range of 0.14–0.22. Fig-
ure 10 shows the R2 results from each sample point at 
the various buffer levels. These figures also showcase 
that in most of the iterations, the local airport and 
MET weather station version of the data shows much 
higher results than the other versions.

Discussion

Previous work in MET data quality investigations in 
environmental exposure modeling is limited. There 
have been contradictory findings in the impact of MET 
data quality on modeling. For example, previous work 
focused on MET data other than wind found little to 
no significant differences between direct measurement 
and non-direct measurement-based MET data in the 
overall predictions of spatial models (Elaji & Ji, 2020; 

Fig. 7  Frequency distribution of 500 random NURE samples 
from the modeling results derived from different meterologi-
cal data sources (Note: the X axis represents the log (base2) 

uranium exposure potential value; the Y axis represent the fre-
quency of each value; the red line represents the mean value 
for each result version

Table 4  Descriptive statistics of R2 from the 999 validation tests
Statistic METARs NARR MET stations METARs and 

MET stations
NARR and 
METARs

NARR and 
MET stations

NARR, METARs, 
and MET stations

Mean 0.47 0.6 0.58 0.74 0.47 0.52 0.55
Standard deviation 0.008 0.007 0.007 0.005 0.008 0.007 0.007
Minimum 0.448 0.586 0.558 0.727 0.450 0.492 0.524
25% quartile 0.467 0.602 0.578 0.739 0.468 0.511 0.548
Median 0.472 0.606 0.585 0.742 0.473 0.516 0.553
75% quartile 0.478 0.610 0.590 0.745 0.479 0.521 0.558
Maximum 0.497 0.627 0.610 0.758 0.498 0.537 0.576
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Fig. 8  GWR validation results for each model version X-axis: sample number (0–999) Y-axis: GWR global R2 value

Fig. 9  Predicted exposure surfaces across fold runs. Note high consistency in predicted surfaces
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Klouče et al., 2015) although other research has con-
cluded that non-direct measurement-based data were 
not accurate for short time scales (Futter, 2000). Other 
related research includes comparisons of the quality of 
MET data (Wilgan et al., 2015) and has shown signifi-
cant differences in predicted weather scenarios derived 
from different input data. This is one of the first studies 
to examine the impact of various wind data sources as 
opposed to other MET variables such as rainfall (Elaji 
& Ji, 2020) and air quality (Futter, 2000). Several pre-
vious studies indicated that data from direct measure-
ments with better spatial coverage were significantly 

more accurate than the interpolation based gridded 
data (Wilgan et al., 2015; Futter, 2000), which is cor-
roborated by the present study. Most importantly, the 
present study adds to the literature through examining 
different wind data sources in a geospatial model for 
environmental exposure modeling.

The results presented here suggest that future stud-
ies should consider evaluating the impact of various 
MET data sources on the model results and con-
sider limitations of available data in study design 
and interpretation. Researchers attempting to choose 
between MET sources should combine all available 

Table 5  Mean ± standard deviation of R2 value from scale test
Model 25 km 50 km 75 km 100 km 125 km 150 km 175 km

METARs 0.3 ± 0.12 0.27 ± 0.1 0.25 ± 0.1 0.28 ± 0.12 0.31 ± 0.13 0.36 ± 0.1 0.39 ± 0,1
MET weather stations 0.33 ± 0.15 0.31 ± 0.12 0.33 ± 0.13 0.37 ± 0.1 0.42 ± 0.1 0.47 ± 0.1 0.51 ± 0.1
NARR 0.35 ± 0.14 0.28 ± 0.12 0.28 ± 0.1 0.33 ± 0.14 0.39 ± 0.15 0.46 ± 0.13 0.5 ± 0.13
METARs and MET weather stations 0.36 ± 0.14 0.34 ± 0.13 0.36 ± 0.16 0.42 ± 0.22 0.49 ± 0.22 0.55 ± 0.19 0.6 ± 0.17
NARR and MET weather stations 0.31 ± 0.14 0.26 ± 0.1 0.25 ± 0.1 0.29 ± 0.12 0.34 ± 0.13 0.39 ± 0.1 0.43 ± 0.1
NARR and METARs 0.3 ± 0.12 0.27 ± 0.1 0.25 ± 0.1 0.28 ± 0.12 0.32 ± 0.13 0.36 ± 0.1 0.39 ± 0.1
NARR, METARs, and MET weather 

stations
0.33 ± 0.15 0.31 ± 0.12 0.32 ± 0.12 0.36 ± 0.1 0.4 ± 0.1 0.44 ± 0.1 0.47 ± 0.1

Fig. 10  R2 value from the spatial scale tests using independent subset samples based on 99 iterations
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direct measurement sources and directly compare this 
source to either satellite or reanalysis data, leveraging 
processes/approaches (e.g., cross validation, 999 per-
mutation test) to avoid model overfitting and to give 
a higher confidence or justification on findings about 
the most accurate data source. Future work could 
expand the assessment to other geographic areas 
(e.g., urban areas where MET data are ample) or 
other modeling efforts/contexts to see if similar find-
ings can be produced. Although the current study is 
focused on wind data only, future studies that exam-
ine more than one type of MET data (e.g., wind and 
precipitation) are encouraged.

Based on the results of this study, future research in 
large-scale environmental modeling that rely on MET 
data should look to invest in MET stations to supple-
ment the already available local data to enhance the 
spatial coverage. While the spatial distribution of 
these data will likely be uneven, which can introduce 
uncertainty into the modeling process, when used 
with an existing network of direct measurement sites 
it has proven to yield more accurate results than the 
gridded reanalysis NARR data. For future study of 
AUMs exposure potential in the Navajo Nation, this 
methodology might inform the decision-making pro-
cess for the placement of future MET stations.

At all scales (25 – 175  km), the METARs together 
with MET weather station version returned the highest 
average R2 value. These findings from the scale tests fur-
ther support the claim that utilizing local weather stations 
in places of interest with a better spatial coverage will 
yield more accurate results than using interpolated rea-
nalysis wind data. However, we also observed that below 
75 km, the R2 for the METARs and MET weather station 
model only slightly outperforms the others. This might 
indicate that the geospatial model in this case study is 
more suitable for larger scale studies (e.g., areas greater 
than 75 km). Another explanation could be related to the 
irregular spatial distribution of NURE data. Neverthe-
less, the randomized 999 permutation test mitigate the 
effect of irregular distribution of sample points. Future 
studies should test other models or use more evenly dis-
tributed validation data set if available.

Strengths

This is the first study to investigate the impact of 
various wind data sources on geospatial modeling 
for environmental exposure purposes. This research 

clearly demonstrates that the type of input data used 
for modeling is critical to examine to understand and 
expose the impact of data quality on modeling. The 
results of this study show that using a well-distributed 
network of MET stations yield improved results over 
reanalysis-based MET data in a geospatial model. By 
utilizing a rigorous design of validation process, this 
study demonstrates the generalizability of the input 
data comparison using a geospatial model. 

Practically, this study directly informs further 
environmental health research in the Navajo Nation, 
including MET station placement, AUMs exposure 
modeling, and other environmental exposure mod-
eling. For example, this study will identify candidate 
locations for new MET weather stations where no 
nearby stations exist, and locations where the model 
prediction was poorer across all wind data versions 
such as those without AUMs in the central Navajo 
Nation as shown in the present study. These candidate 
locations will be further reviewed and refined based 
on community input and local decision-making. With 
more data from these new MET station sites, future 
work will be able to utilize this more accurate data 
source to generate more accurate modeling predic-
tion. Furthermore, this study suggests a broad context 
applicable to other Indigenous communities and other 
rural lands with limited MET data.

Limitations

This study focused on the MET data quality in a 
geospatial model in a rural area with limited data 
sources. The generalizability to other settings can-
not be determined without comparable work in other 
settings. Because of its rurality, the Navajo Nation 
has relatively fewer MET weather stations than an 
urban area would, limiting the spatial and temporal 
distributions of the sample network. Future stud-
ies should apply this process to an urban setting to 
determine if similar conclusions could be derived. 
The NURE dataset used to validate the data does 
not cover the entirety of the Navajo Nation, with 
a large portion of the Southwest study area having 
no NURE coverage. Another issue with this dataset 
is the date of collection, as the data was collected 
from 1975 to 1984, almost 40 years ago. Although 
there are more recent environmental data (e.g., soil 
data) collected by research teams working with the 
Navajo Nation, those data are only limited to small 
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community level which could not be used together 
with NURE for the Navajo Nation wide validation 
for the geospatial model. The spatial distribution of 
the NURE data may have influenced the results of 
the permutation tests at smaller scales, leading to 
the METARs and MET station result only slightly 
outperforming the other versions. This may also 
have been a factor of the geospatial model, which 
was not originally intended for use at community-
level scales (Lin et  al., 2020). Future studies may 
need to focus on a smaller area where collecting a 
representative soil sample is feasible within the 
studies time frame and budget.

Regarding weight determination, there exist 
uncertainties inherent to ML. Importance scores 
given by RF are based on interpretations of the 
ML process and may not reflect an actual relation-
ship (Breiman, 2001, 2017; Esri n.d.). Furthermore, 
RF has been shown to inflate relative importance 
for spatially autocorrelated variables (Strobl et  al., 
2008).A future study should test criteria layers for 
spatial autocorrelation and use transforms such as 
principal component analysis if significant spatial 
autocorrelation is detected (Maitra & Yan, 2008; 
Woldeyohannes, 2020). Additionally, this study 
used standardized settings for RF parameters, such 
as the number of decision trees, tree depth, leaf 
size, etc., when applying the RF algorithm. Future 
studies should conduct a sensitivity analysis to 
test RF weight determinations across different val-
ues/settings for algorithm parameters. Overfitting 
(Gavrilov et al., 2018) and ML bias caused by data 
leakage (Shim et  al., 2021) can also be potential 
issues related to ML. Given the nature of this study, 
which required a large testing size for input into the 
GWR (n = 3500), meant that every test fold of the 
k-fold CV could not be completely independent of 
each other. Further tests are needed, using lower 
testing sizes, to see if the model is still stable at 
lower correlation values.

Conclusion

This study set out to achieve 2 objectives: (1) Iden-
tify whether different meteorological data sources 
produce significantly different model results; and 
(2) determine the meteorological source that pro-
duces the most accurate result. The validation test, 

scale test, and the ANOVA results indicate that 
there is a significant difference in model perfor-
mance when utilizing various forms of wind data. 
The R2 results from the validation tests indicate 
that direct measurement-based wind data with bet-
ter spatial coverage or more meteorological stations 
yielded the most accurate exposure potential pre-
diction, which is supported by the result presented 
here that METARs together with MET stations 
(both are direct measurement) with more stations 
outperform METARs or MET stations only predic-
tions. The model results also suggest that the geo-
spatial modeling in the present study using MET 
stations and METARs accurately represented small 
to medium scale spatial variations when compared 
with other meteorological data/data combinations, 
as evidenced by higher accuracy for scales greater 
than 75  km. When the reanalysis data was com-
bined with direct measurements (i.e., NARR and 
MET stations; NARR and METARS; and NARR, 
METARs, and MET stations), the varying meteoro-
logical data sources conflicted with each other and 
produced lower R2 values.
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