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Abstract Meteorological (MET) data is a crucial
input for environmental exposure models. While mod-
eling exposure potential using geospatial technology is
a common practice, existing studies infrequently evalu-
ate the impact of input MET data on the level of uncer-
tainty on output results. The objective of this study is
to determine the effect of various MET data sources
on the potential exposure susceptibility predictions.
Three sources of wind data are compared: The North
American Regional Reanalysis (NARR) database, mete-
orological aerodrome reports (METARSs) from regional
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airports, and data from local MET weather stations.
These data sources are used as inputs into a machine
learning (ML) driven GIS Multi-Criteria Decision Anal-
ysis (GIS-MCDA) geospatial model to predict potential
exposure to abandoned uranium mine sites in the Navajo
Nation. Results indicate significant variations in results
derived from different wind data sources. After vali-
dating the results from each source using the National
Uranium Resource Evaluation (NURE) database in a
geographically weighted regression (GWR), METARs
data combined with the local MET weather station data
showed the highest accuracy, with an average R* of 0.74.
We conclude that local direct measurement-based data
(METARs and MET data) produce a more accurate
prediction than the other sources evaluated in the study.
This study has the potential to inform future data collec-
tion methods, leading to more accurate predictions and
better-informed policy decisions surrounding environ-
mental exposure susceptibility and risk assessment.

Keywords Meteorological - Navajo nation -
Particulate matter - Spatial analysis and modeling -
Abandoned uranium mines - GIS multi-criteria
decision analysis - Radom forest

Introduction
Exposure to pesticides, hazardous chemicals, and res-

pirable particulate matter (PM), 5 (Sharma et al., 2020)
has been associated with a host of negative human
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health outcomes (Fu & Xi, 2020). In particular, the
trace metal component of PM, 5 from abandoned ura-
nium mines (AUMs) has previously been linked to car-
diopulmonary toxicity (Zychowski et al., 2018). While
the majority of environmental justice (Northridge et al.,
2003) and health (Wellenius et al., 2006) exposure
research emphasizes populations in urban areas, there
remains a dearth of literature addressing exposure and
health relationships in rural communities (Hendryx
et al., 2010). There is also increasing recognition of the
extent of contaminant exposure and human health con-
sequences among Indigenous communities in the west-
ern USA (Hoover et al., 2019; Lewis et al., 2017).

Abandoned and inactive hard rock mines in or near
Indigenous and rural communities are a critical potential
source of exposure to environmental chemicals (Lewis
et al., 2017). More than 160,000 abandoned hard rock
mines, including over 4000 uranium mines, are located
in the Western USA, which is where the majority of the
Indigenous peoples in the USA reside (Hoover et al.,
2019; Lewis et al., 2017). Contaminants from the waste
piles and abandoned mines are dispersed through the air,
water, and soil, creating a legacy of chronic community
exposure. For example, the US Environmental Protection
Agency stated that contaminants found in abandoned
mine waste have contaminated headwaters areas in 40%
of the watersheds in the western USA (USEPA, 2000),
illustrating the geographic scope of this challenge.

Geospatial modeling approaches are used for envi-
ronmental exposure and risk assessment to identify
and quantify potential exposure and risk in a particular
geographic area, including but not limited to GIS-based
modeling (Malczewski, 2006; Nuckols et al., 2004),
spatial statistical modeling (e.g., spatial temporal mod-
eling) (Elliott & Wartenberg, 2004), air dispersion mod-
eling (e.g., AERMOD) (Calder, 2008; Hadlocon et al.,
2015; Holmes & Morawska, 2006; US EPA, 2016a),
and environmental fate modeling (Falakdin et al., 2022).
MET data (including but not limited to temperature,
dew point, wind direction, wind speed, humidity, cloud
cover, precipitation) are crucial inputs for geospatial
modeling efforts for two major reasons: (1) environmen-
tal contaminant transport and exposure processes are
highly dependent on meteorological conditions (e.g., the
impact of wind on air dispersion of contaminants) (Shi
et al.,, 2017; S. Hu et al., 2020); and (2) MET data are
inherently geospatial data (Wel and Frans. , 2005) con-
taining sophisticated spatial and temporal scales to sup-
port geospatial modeling (US EPA, 2016a).
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GIS-Multi Criteria Decision Analysis (GIS-
MCDA) is one geospatial modeling technique suited
for applications that include MET data. Besides
environmental exposure and risk assessment study,
application of this MCDA framework is wide rang-
ing (Malczewski, 2006) including remedial site eval-
uations (Chen et al., 2010; F. Li et al., 2018)), land
use suitability (Chen et al., 2010; Chang et al., 2008;
Charabi & Gastli, 2011), and public health studies
(Young et al., 2010). Many studies have integrated
GIS-MCDA models and fuzzy set theory to address
potential uncertainties in the MCDA approach (Kuo
et al., 2002), which allows for modeling generalized
environmental factors when highly detailed data is
lacking (Kozak et al., 2008).

Predominant sources of MET data relevant for
geospatial modeling include direct measurements
from meteorological stations, derived gridded data
products, and satellite observations. Wind speed
and direction are significant variables in our model
design. Therefore, the source, quality, and characteris-
tics of meteorological data and how it is produced are
critical and may influence the model output signifi-
cantly. Direct measurement at MET stations primarily
represents stationary locations with an array of sen-
sors designed to record meteorological phenomenon.
There is a wide range of applications of MET station
data in environmental exposure studies. MET stations
have been used to model environmental exposure
from pollutants such as sulfur dioxide (Rogers et al.,
1999), pesticides (Tao & Vidrio, 2019), and particu-
late matter such as PM,,, PM, 5, and NO, (Lei et al.,
2020). MET data are based on local meteorological
station or satellite observations to provide continuous
estimates in both space and time, usually at a daily or
weekly time scale. Other direct measurement-based
MET data, such as wind related measures derived
from Next-generation Weather Radar (NEXRAD),
has been used for various purposes, such as PM mod-
eling (Yu et al., 2022).

Gridded observations, also identified as reanalysis
data, are commonly generated using spatial interpola-
tion methods. Previous studies have shown although
these data provide greater spatial representation, any
uncertainty in the interpolation process may be prop-
agated in further modeling applications. Gridded data
products have been extensively applied in geospatial
modeling efforts. For example, gridded MET data
have been used in Bayesian models to determine the



Environ Monit Assess (2023) 195:834

Page 3 0of 23 834

extent of PM, s in urban areas (Nicolis et al., 2019),
in random-forest models to determine daily concen-
trations of PM,, and PM, 5 (Stafoggia et al., 2019),
including nationwide prediction of PM, s (Yu et al.,
2021), and in quantile regressions to determine the
spread of fungal spores (Grinn-Gofron et al., 2019).
While there have been cases where the uncertainty in
the interpolation process has proven negligible (Elaji
& Ji, 2020), this remains an underdeveloped area for
consideration in the model development and evalua-
tion process.

Satellite data are valuable for spatial analysis and
modeling because the data products are continuous
and provide a finer temporal data scale than many
gridded data products. MET data obtained from
a geostationary satellite is often used in real-time
weather forecasting. The temporal resolution for this
data source is excellent, with data at almost any point
in time. However, because of the altitude needed to
attain geostationary orbit, the spatial resolution for
this data source often suffers. In environmental expo-
sure modeling studies, this data source has been used
to predict the transport of PM,s (Chu et al., 2016)
and estimate the spatio-temporal air temperature
using machine learning (dos Santos and Schneider,
2020). Previous studies have integrated a wide vari-
ety of MET data sources in modeling efforts. As an
example, gridded data, reanalysis data, and geosta-
tionary satellite data were combined for PM, s mod-
eling (Yu et al., 2021).

The existence of various MET data products
enables widespread use of these data for modeling
purposes. Some studies used ground station data
to model the future climate (Belcher et al., 2010;
Moazami et al.,, 2019). Other recent studies have
compared values observed from MET stations and
predicted gridded data (Bandyopadhyay et al., 2018),
and tested the effects of different MET data sources
on community-scale epidemiology models (Colston
et al.,, 2018). However, evaluation of the effects
that different MET data sources have on the output
of large scale exposure prediction models remains
underdeveloped in the literature.

With limited knowledge about what effect
various MET data sources have on the predictive
power of geospatial models, adoption of specific
MET data source is often dependent on the avail-
ability of MET data type, use cases, or modeling
approaches. For example, while MET stations can

provide more accurate local observations they have
limited spatiotemporal coverage (Rogers et al.,
1999) and are especially sparse in rural areas. This
disparity exists in part due to the cost of building
and maintaining MET stations as well as infra-
structure needs in rural areas, such as limited sat-
ellite coverage, cell service, and a site manager
available to maintain the station (Lin et al., 2020).
Complex terrain can also affect the placement of
MET stations, as most stations require a relatively
flat location to get an accurate reading. While local
or ground-based measurement MET data are pre-
ferred over the other sources as they are usually
more accurate (Rzeszutek et al., 2017), there are
several scenarios where this is not viable especially
in rural areas where it can be difficult to imple-
ment weather stations due to lack of infrastructure,
security, or funds. In these cases, researchers often
turn to other MET data products to fill this gap in
weather station locations (Elaji & Ji, 2020; Trubilo-
wicz et al., 2016; Wilgan et al., 2015). However,
the effect that gridded and interpolated data have
on spatial models for exposure and human health
studies is unclear. To account for the shortcomings
of these data sources, attempts have been made to
combine the three to improve both the spatial reso-
lution and small-scale accuracy (Albers, 1995).
Using MET data sources that have either (1) inher-
ent errors introduced by the interpolation process or
(2) limitations in spatial or temporal coverage can
lead to uncertainty and error in environmental expo-
sure studies. In the scenario of adopting local obser-
vations, for rural communities, the nearest available
MET station could be in the nearest large city or
town. This difference in geographic location may be
small (1-5 miles) or large (100-200 miles). Using
MET data from large distances can have an oversized
effect on the model output. In contrast, employing
satellite-based or gridded reanalysis data might not
be appropriate for local-scale analysis due to accuracy
concerns (Rzeszutek et al., 2017). Therefore, a more
developed understanding of how MET data selec-
tion impacts modeled results is critical. The purpose
of this study is to implement an existing geospatial
model (Lin et al., 2020) using different MET data
inputs and then compare the model predictions to
refine the previous model results as these results will
be used in future studies in the Navajo Nation. This
paper reports two sets of activities: (1) comparison of
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model results using different MET data sources; and
(2) determination of the MET source that produces
the most accurate model result.

Data and methods
Study area

The study area of the present paper is the Navajo
Nation, a sovereign Indigenous nation in the Southwest
USA encompassing approximately 70,000 km? of New
Mexico, Arizona, and Utah (Fig. 1). With an estimated
population of 173,000 people living on the reservation,
or about 6 people per square mile, the Navajo Nation
is largely rural and sparsely populated (Navajo Nation
Division of Community Development, n.d.). Span-
ning a large swath of the Colorado Plateau, the Navajo
Nation is rich in mineral and other resources. As such,
there is a long history of resource extraction on Nav-
ajo lands that has left behind an intractable legacy of
environmental contamination and numerous associated
health risks. Waste from 523 AUMs and other mine
types dispersed across the Nation is mobilized through

multiple environmental pathways including surface
water, groundwater, and particulate matter transported
by aeolian processes. The combination of potential
sources of exposure with the limited MET data avail-
able for modeling purposes suggests that this study
area is a strong candidate to test the study hypothesis
that uncertainties in the data source of MET data sig-
nificantly influence uncertainty in model predictions
and must be explicitly evaluated for their influence on
results (Blake et al., 2017).

Overall modeling framework

Challenges of acquiring quality MET data directly
affect the types of modeling frameworks that can
be employed. Existing methods for modeling the
dispersal of particulate contaminants, such as the
American Meteorological Society/Environmental
Protection Agency Regulatory Model (US EPA,
2016b) are usually based on single pathways (aerial
dispersal). While such volumetric models have high
accuracy in predicting the dispersal of contami-
nants, they require input of detailed and localized
MET data and are limited to small-scale study. In
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contrast, GIS-based spatial models examine com-
bined pathways and can work with different types
of MET data at different scales, which makes them
suitable for the purpose of the present study (Lin
et al., 2020; Malczewski, 2006). Here we refined an
existing GIS-MCDA model developed previously to
estimate potential uranium exposure from AUMs in
the Navajo Nation previously (Lin et al., 2020). We
extend this model in the present work by evaluat-
ing how various MET data sources affect the model
output and cross-validated results. The full model
is presented in Lin et al. (2020) and is briefly sum-
marized here (Fig. 2). Subsequent sections describe
criteria layers sensitive to MET data selection,
which were evaluated in the present work.

The GIS-MCDA modeling procedures for the
present research (Fig. 2) included:

1) Identify and compile relevant input criteria lay-
ers.

2) Standardize each criteria layer using the fuzzy
logic approach to address uncertainties in envi-
ronmental risk assessment. Fuzzy membership
functions applied for each criteria layer are pre-
sented in Table 1.

3) Determine criteria layer weight for weighted
overlay to combine all criteria layers. Random
Forest (RF) modeling approach was adopted for
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weight determination based on importance of
each criteria layer.

4) Apply a weighted linear combination approach to
combine fuzzy standardized criteria layers based
on weights to produce a dimensionless exposure
potential map where higher values representing
a higher exposure potential to AUMs and lower
value representing a lower exposure potential
to AUMs. Applied a geographically weighted
regression (GWR) validation method to estimate
model accuracy using a separate environmen-
tal dataset—uranium concentrations in sediment
and soil samples from the National Uranium
Resource Evaluation (NURE) Hydrogeochemical
and Stream Sediment Reconnaissance.

5) K-fold cross validation (k-fold CV) was applied.
NURE data was broken into discrete training and
testing subset pairs (folds). RF weight determi-
nation was performed on training sets and GWR
validation on the test sets.

6) Sensitivity analysis emphasizing impact of scale
of analysis. Random NURE subsets at vary-
ing scales were selected to validate the modeled
results derived from each MET data input.

The criteria layers for the model included both
non-meteorological and meteorological data sources
(Table 1). Non-meteorological data sources included:
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(1) AUM proximity derived using AUM locations;
(2) AUM downstream drainage areas; (3) wind index;
(4) topographic wind exposure; (5) local topographic
aspect, slope, and landforms derived from a 30-m
resolution digital elevation model (DEM); (6) a roads
layer for the study area provided by USEPA (US
EPA, 2016); (7) a hazard index score for trace metal
concentrations for 467 groundwater sources through-
out the Navajo Nation (Hoover et al., 2018); and (8) a
normalized vegetation index (NDVI) surface from the
NASA Vegetation Index and Phenology (VIP) data-
set (Didan et al., 2016). Criteria layers 1 and 5-8 are
described in detail elsewhere (Lin et al., 2020) and
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were not altered for the present work. Criteria lay-
ers 2, 3, and 4 are described in detail in subsequent
sections.

Fuzzy Large membership: monotonically increas-
ing sigmoidal function where larger values in the input
dataset have a higher degree of membership and there-
fore present a higher potential for contamination; Fuzzy
Small membership: monotonically decreasing sigmoidal
function where larger values in the input dataset have
a lower degree of membership and therefore present a
lower potential for contamination; Fuzzy MS Large
membership: increasing sigmoidal function (defined
by mean and standard deviation of input dataset) where
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Table 1 Variables utilized in the GIS-MCDA model

ID Criteria layer Description Fuzzy
membership

function

1 AUM proximity The sum of inverse distance from each cell to all AUMs within 50 km, MS Large

weighted by the surface area of each AUM site (Harmon et al., 2017)

2 AUM downslope drainage The inverse drainage path distance at each grid cell from each AUM Small
site (illustrated in Sect. 2.4.1)
3 Wind index A sum of the difference in the angle to AUMSs source and prevailing Large

wind direction on a scale of zero to one (illustrated in Sect. 2.4.2)
4 Topographic wind exposure Angle between plane orthogonal to wind and local topography (illus-

trated in Sect. 2.4.3) weighted by wind speed

MS Large

5  Topographic landforms The surrounding landforms classified into one of the following using Small
the topographic position index (TPI) (Grinn-Gofron et al., 2019)

ridges, upper slopes, mid-slopes, lower slopes, flat land, and valleys
MS Small
Hazard Index calculated for groundwater arsenic and uranium concen- Large

trations in more than 467 local wells; results were interpolated using
inverse distance weighting interpolation

6  Proximity to roads The Euclidean Distance from each cell to the closest road segment

7  Groundwater contamination

8 Normalized difference vegetation index Monthly 30-year averages of NDVI calculated using Landsat 7 and Small
Landsat 8 imagery to represent vegetative robustness

larger values in the input dataset have a higher degree of
membership and therefore present a higher potential for

Topographic Wind Exposure criteria layers (see
Table 1 above). These data sources include local

contamination; Fuzzy MS Small membership: decreas-
ing sigmoidal function (defined by mean and standard
deviation of input dataset) where larger values in the
input dataset have a lower degree of membership and

airport METARs, Uranium Mill Tailings Remedial
Action (UMTRA) MET stations, and gridded reanal-
ysis data from the North American Regional Reanaly-
sis (NARR) database.

therefore present a lower potential for contamination.

Local airport METARs
MET data
Wind direction and speed data were collected from 13
airports in or near the Navajo Nation, among which
there are only two on the reservation (Window Rock

MET data from three sources (summarized in
Table 2) were used to create the Wind Index and

Table 2 Meterological data sources employed in the present study

Sources Category Datatype N  Spatial resolution Time period
Local Airport METARs  Direct measurements from meteorological stations ~ Vector 3 Undefined 1990 - 2020*
UMTRA Direct measurements from meteorological stations ~ Vector 4 Undefined 2004-2021
NARR Gridded reanalysis data based on interpolation Raster 92  32x32km 1990 — 2020
UNM METALS Direct measurements from meteorological stations ~ Vector 1 Undefined April 2021

Sources: Source of MET data; Category: type of MET data (Direct measurement or reanalysis); Data type: Data structure (vector
or raster); N: number of measurements; Spatial resolution: the smallest spatial area with the same value (Undefined means direct
measurements are not equally spaced). Time period: the time period that data were measured/collected; *Dependent on when each
individual airport started operations and data availability; Local Airport METARS: airports in or near the Navajo Nation, UMTRA:
Uranium Mill Tailings Remedial Action (UMTRA) meteorological stations; UNM METALS: The University of New Mexico Met-
als Exposure and Toxicity Assessment on Tribal Lands in the Southwest (UNM METALS) Superfund Research Program Center;
NARR: North American Regional Reanalysis (NARR) database
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and Winslow Airport). The data was compiled and
provided through the Iowa Environmental Mesonet
(Herzmann, 2022). Wind direction and speed were
collected on an hourly basis, and a 30-year summary
of the data was used in the analysis.

MET stations

This study used four MET weather stations oper-
ated by the UMTRA program, including sites in
Tuba City, AZ; Mexican Hat, UT; Monument Val-
ley, AZ and Shiprock, NM (Office of Environmen-
tal Management, n.d.) (Fig. 1). The Monument
Valley, Tuba City, and Mexican Hat stations col-
lected data from 2017 to 2021, while the Shiprock
station operated from 2004 to 2011. In addition to
these stations, a temporary mobile station was also
located near Blue Gap/Tachee, AZ for 2 years by
the UNM METALS Superfund Research Program.
The Blue Gap/Tachee station recorded wind direc-
tion and speed values every 15 min (Begay et al.,
2021). For these 5 MET stations, the average wind
direction was plotted in a wind rose. An example
for Mexican Hat, UT is provided in Fig. 3. After
plotting, the data was visually assessed, and the
prevailing direction (statistical mode) for each
station was used in the analysis. Wind speed was
determined using the average speed for each
station.

North American Regional Reanalysis (NARR)

The third MET data source used in this analysis was
derived from the North American Regional Reanal-
ysis (NARR) modeled dataset (NOAA, 2020). This
dataset uses several input sources: radiosondes, air-
craft readings, geostationary satellite cloud drifts,
surface stations, and satellite radiances to model
wind direction and speed across North America. It
is widely used as an input for hydrological models
(Trubilowicz et al., 2016), soil moisture and evapo-
transpiration models (Keshta & Elshorbagy, 2011),
and modeling PM, 5 concentrations (X. Hu et al.,
2013). It is because of NARR’s wide use as an
input for a variety of models that it was chosen as
a comparison to direct measurements. This dataset
provides data hourly estimates, which was used to
produce a 30-year average for equally spaced points

@ Springer

in a 32 km X 32 km grid. For this study, the 30-year
prevailing wind direction and average wind speed
grid points across the Navajo Nation were used.

Criteria layer creation

As discussed in Sect. 2.2, criteria layers 1 and 5-8
were unchanged for the present analysis. For this
work the downstream drainage model (criteria layer
2) was created using a different method than our
team’s previous work, and the wind index (crite-
ria layer 3) and topographic wind exposure (criteria
layer 4) were created and incrementally adjusted for
the present work. The main variables in the model
affected by MET data are the wind index and topo-
graphic wind exposure.

Downstream drainage

Pollutants from abandoned mines may be transported via
surface water through ephemeral or perennial drainages.
The heterogeneous spatial distribution of heavy metal
concentrations in soil and sediment is influenced by
surficial runoff (Hou et al., 2017; Herngren et al., 2005).
Mineral ore extraction is an important anthropogenic
source of elevated heavy metal concentrations in those
media (Candeias et al., 2014; Z. Li et al., 2014). Previous
research has demonstrated the potential of downstream
drainage transport of AUMSs contaminants (deLemos
et al., 2009; Lameman & Terri, 2012).

Downslope drainage was characterized using a
regional point-source apportionment model (Huang
et al., 2015) relating downstream distance of hydro-
logic response units (HRUs) from mines. HRUs are
unique combinations of soil type, land use and land
cover, and slope that represent areal regions with
similar hydrologic properties at the soil-vegeta-
tion—atmosphere interface. As a preprocessing for the
downslope drainage layer, we computed a total of
8168 HRUs in the study area extent using a 30-m
DEM, the 2019 USDA National Land Cover Data-
base (NLCD), and the National Resources Conserva-
tion Service (NRCS) STATSGO?2 soils database in
the ArcGIS Soil-Water Assessment Tool (ArcSWAT)
(Version 2012.10_4.21).

The downslope drainage criteria layer was created
following the following steps:
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1) The downstream drainage path from each AUM
source was computed using the trace downstream
tool from ArcGIS Online Ready-to-Use services,
which draws a polyline drainage path from any
given AUM point on land to its terminus in the
ocean;

2) Because the 8163 HRU features generated using
ArcSWAT were in multi-part format, meaning
that multiple smaller features were grouped into
single polygons with common HRU definitions,
multi-part polygons were converted into 1.3 mil-
lion single-part features and the centroid of each
feature within 1364.39 m (the mean shape length
of all single-part features) of the downstream
route was snapped to the polyline;

3) The total distance along the polyline between each
snapped HRU centroid and the respective polyline
point source was computed using network analysis
tools in ArcGIS Pro (version 2.9); and

4) The downslope drainage criteria layer was gener-
ated as the sum of all inverse distances to each
AUM point source. HRU polygons which do
not intersect a downstream drainage path were
assigned a value of 0. Because multiple streams
tend to converge into common drainages, nearly
all HRU points have multiple AUMs sources and
thus distance measurements.

All processes to manage HRU data and compute
distance were automated with Python.

Wind index

The wind index was calculated using the formula we
developed:

. |~o, [ 1=cos (180 + (0ij — B))
Wi = Z(< 2+ Djj >*Svi)

=

5

ifl — cos 18()+.(.0if—ﬂ)) 0.
2 * Dij

where 0 is Euclidean direction of a receptor location
from a pollutant source, f is the prevailing wind direc-
tion of the receptor location in degrees, Sv; is the scaled
wind speed, and D is the distance between points. The
wind index is a function of the relative location from

each pollution source and both wind direction and
speed in the surrounding geographic area.

Topographic wind exposure

The topographic wind exposure surface is a combi-
nation of the local terrain derived from a DEM and
the wind direction. It is a combination of two planes,
the orthogonal wind direction and a plane represent-
ing the local topography. The topographic wind index
used in this model is based on the equation:

cos a = cos (pu)(sin (#)) + sin (u) cos (f)cos (6 —y)

where cosa is the angle of topographic wind expo-
sure, p is the terrain slope calculated from a DEM,
p is the horizontal angle of wind, 6 is the wind direc-
tion, and y is the terrain aspect also calculated from a
DEM (Lin et al., 2020).

Iterations of criteria layers pertaining to MET data

Individual MET data sources were evaluated (along
and in combination) to assess the effect of each
input on the model output. The Wind Index and
Topographic Wind Exposure criteria layers were
created using the following MET data combina-
tions (Table 3): METARSs alone; MET weather sta-
tions alone; NARR data alone; METARs and MET
weather stations; NARR data and MET weather sta-
tions; NARR data and METARs; NARR data, MET
weather stations, and METARs (Table 3).

Data integration and preprocessing

Data integrations and preprocessing including data for-
mat and resolution can be found in Fig. 4. Data input
includes AUM point feature, MET data (wind direction
and speed) from different sources, DEM, DEM derived
Slope and Aspect, Drainage line feature, road line fea-
ture, groundwater well point feature, and NDVI. Except
for Topographic wind exposure, landforms, and NDVI
directly derived from raster layers (e.g., DEM, Slope,
and Aspect), other criteria layers were created from vec-
tor data input and rasterized at the same resolution for
the modeling process. Detailed descriptions of how each
criteria layer was generated from the data input can be
found in Table 1 and Sect. 2.2 and 2.4.

@ Springer



834 Page 10 of 23

Environ Monit Assess (2023) 195:834

Table 3 Meteorological

o Com- Combination name Data type N
data combinations bi
ina-

tion

ID
MET weather stations Direct measurement 5
METARs Direct measurement 13
NARR Reanalysis data 192
METARs, MET weather stations Direct measurement 18

NARR, MET weather stations

NARR, METARs
N—number of
measurements

Reanalysis data and direct measurement 179
Reanalysis data and direct measurement 155

NARR, MET weather stations, METARs Reanalysis data and direct measurement 143

II ~N O RN =
-

l Roads®? }

Surface Water l Downstream
Drainage®? drainage modeP
e | -
[ AuM Datas | | Spatial
~ Interpolationtd
Meteorological data
Spatial
(Local Airport METARS, 8
[ UMTRA, and NARR)" Mo
5y
e st
& Aspect’ | Calcuation® |

Raster
Classification®

Groundwater
Wells®.! Euclidean
Distance®
[}

l NDVI = al
Interpolation®!

Raster

Legend Calculation®

Input Processing
Data Slep

Fig. 4 Illustration of data inputs, main processing steps, and
output criteria layers (30x30 m resolution) employed in the
present analysis. Notes.'point; “line; “vector spatial data for-
mat; Praster spatial data format, 3030 m resolution; ‘input
meteorological data including local airport METARs, Uranium
Mill Tailings Remedial Action (UMTRA) MET stations, and
gridded reanalysis data from the North American Regional
Reanalysis (NARR); Ysum of inverse distance from each cell to

As shown in Table 2, the spatial resolution of each
MET data source differs. Various methods for com-
bining and integrating data sources with varying spa-
tial resolution can impact the results of geospatial
modeling (Cotter et al., 2003). To create the above
MET data combinations (Table 3), the following

@ Springer

€@
-

all AUMs within 50 km, weighted by the surface area of each
AUM site; *sum of the difference in the angle to AUM source
and prevailing wind direction on a scale of zero to one; ‘cal-
culated for groundwater arsenic and uranium concentrations
(MCL) in more than 467 local wells; results were interpolated
using inverse distance weighting interpolation; Abbreviations.
AUM abandoned uranium mine, DEM digital elevation model,
NDVI Normalized Difference Vegetation Index

methodology was utilized. First, MET data lay-
ers were overlaid based on each combination. When
NARR data was present in the combination (Table 3),
the 4 nearest NARR points were replaced by the near-
est direct measurement source. For each version, the
continuous area encompassed by the Navajo Nation
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was classified using the nearest data points mode
wind direction and mean speed value. The above
process uses the closest data source in each combina-
tion for every location, assuming that the nearest data
source will be appropriate in each case. A distinct
Wind index and Topographic Wind Index layer was
generated for each combination of MET data.

Criteria weight determination and weighted linear
combination

A criteria weight determination process can be highly
subjective (Omair et al., 2021), due to a reliance on the
opinions of domain experts in weight determination
(Eldrandaly, 2013). In an effort to address subjectivity
introduced in this process, this research applied a statis-
tical, regression-based approach for weight determina-
tion. There are many standard regression methods for
determining coefficient weights, such as multiple and
multivariate linear regressions (MLR). While simpler to
interpret and well-tested, linear regressions have the limi-
tations of assuming linear relationships between inde-
pendent, continuous (or coded categorical) predictor var-
iables, and show poor performance with highly skewed
data (Freedman, 2009; Schervish, 1987). Our model is
highly complex, dealing with non-linear interactions
between the different environmental variables that are not
completely independent of each other. For example, cri-
teria such as wind index and topographic wind exposure
that both incorporate meteorological information display
collinearity. The predicted exposure distributions from
each criterion are highly skewed toward low predicted
exposure values. While our model criteria layers are
fuzzified, the landforms layer is technically categorical,
in which predicted exposure values are distributed in dis-
crete groups, as based off the original input categorical
landform data.

Given the limitations of above traditional
approaches, we looked into using well documented
supervised ML methods, such as decision tree (DT)
learning (e.g., Classification and Regression Tree
(CART)) and multi decision-tree algorithms (“forests”
of decision-trees, i.e., decision forests), including algo-
rithms such as RF, to determine criterion weights for
our models. RF, as developed and termed by Leo Brei-
man, is a multi decision-tree algorithm that utilizes a
randomized “forest” of CARTSs, in which each CART
generates its own prediction and is input into a vot-
ing scheme to calculate final predictions. This helps

to limit problems of overfitting in addition to provid-
ing better predictive power and accuracy. RF does not
assume linearity, can handle continuous and categori-
cal variables simultaneously, and is stable with com-
plex, skewed datasets. (Breiman, 2001). Among oth-
ers, RF models are now one of the most popular and
commonly used algorithms by data scientists (Wu
et al. 2008). As part of the regression, RF evaluates
the importance of each model variable (such as criteria
layers in an MCDA) through the Gini Impurity statistic
(Nembrini et al., 2018).

Because of the above documented strengths and
widespread use of RF, we applied RF as a regressor
for weight determination of our environmental criteria.
To determine an appropriate subset size for training,
several subsets of the data were tested incrementally.
The RF regressor model was executed using subsets
of the NURE data ranging from 500 to the maximum
number of points (~7000) at intervals of 500. The
NURE HSSR program was initiated by the Depart-
ment of Energy in 1973 and picked up by the USGS
in 1995 to measure uranium concentration in stream
sediment across the USA (USGS, 1980). The NURE
database has detailed records of uranium concen-
trations along with several other heavy metals. The
importance scores for each criterion were then plot-
ted at each subset level. After comparing the plots, the
importance scores started to become unstable at~750
points, which was the subset size used for subsequent
training of the RF regressor. We aimed to use the
smallest-possible training set size to minimize data-
overlap. Each criterion was fit to the NURE subset
(n=750) in the RF-regressor weight determination
model. RF was implemented using Scikit Learn in a
Python 3 environment.

With criteria layer weights determined, weighted
linear combination was applied to all criteria layers
to produce the final results of exposure potential.
Because each MET data version (Sect. 2.3.2) gen-
erated a distinct wind index and topographic wind
exposure layer, each produced a distinct final result
layer of exposure potential to AUMs.

Validation
Geographically weighted regression (GWR)

To validate the modeling results, the NURE data
was regressed against the potential exposure surfaces
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generated using each wind version (see Table 3 for
tested combinations). The validation process was
conducted through fitting a geographically weighted
regression (GWR) model between the modeled
results and the NURE data. GWR was adopted
because it is a widely employed statistical test of fit
used to model spatially varying relationships (Fother-
ingham et al., 1998) which is appropriate given the
spatial dependence of data in this study. This study
quantified the match between modeled results and
NURE uranium concentrations using the generated
R? values produced using the GWR method which is
a measure of the regression between the explanatory
(in this case the modeled potential exposure) and the
dependent (NURE uranium samples) variables. The
results range from O to 1, with 1 implying that the
modeled results accounts for all the variation present
in the NURE uranium concentrations, and O signify-
ing the opposite. R* was used to determine the perfor-
mance of wind data in the modeling and the version
of wind data input producing the highest R in the
validation was the most accurate out of all versions
of wind data.

To determine an appropriate subset size for vali-
dation, several subsets of the data were tested incre-
mentally. A GWR model was executed using subsets
of the remaining NURE data (not used for weight
determination training in Sect. 2.6) ranging from
500 to the maximum number of points at intervals
of 500. The R results were then aggregated at each
subset level and plotted. After comparing the plots,
the aggregated R* results level off at~3500 points,
which was the subset size used for subsequent valida-
tion and testing. We randomly selected 3500 NURE
points and did the above validation. This process was
repeated 999 times, to ensure that the results were not
a product of chance due to the random NURE points
selected.

K-fold cross validation

One area of validation often over-looked is over-fitting,
which is a frequent issue in ML driven and/or regres-
sion based models, in which model fit can be over
optimized simply by increasing sample size (Gavrilov
et al., 2018). We adopted a commonly used approach
to deal with potential overfitting issue due to large N in
our study—k-fold cross validation—a method of split-
ting training and validation datasets into randomized
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(and in the case of spatial science) geographically dis-
tinct subset pairs (folds). The model is then run across
the list of subsets, and outputs are assessed for stabil-
ity at a given sample size (Wong & Yeh, 2020). This
helps with confidence in model results, and addition-
ally reduces the potential for training set bias caused by
data leakage (Shim et al., 2021). To complete a robust
k-fold validation, 10 folds (splits) were used. For each
fold, RF was run on the training subset (n=3500) to
generate layer weights, with these weights input into
the MCDA workflow. This produced a predicted expo-
sure surface for each fold. Values from this surface
were used to create a testing subset (n=750) on each
fold. GWR was ran on the test subsets for final valida-
tion. K-fold CV was performed using Python.

Statistical analysis

Analysis of variance (ANOVA) was used to compare
model prediction surfaces and test the null hypothesis
that the mean prediction value for each prediction sur-
face was not different. A random set of 500 values was
selected because of the large number of values in the pre-
dicted exposure potential surface. The data was log-trans-
formed (base 2) for comparison to account for significant
right-skewness. Under these conditions, the distribution
of the data looks relatively normal, with an average Pear-
son mode skewness of 0.59.

Scale variability analysis

This study also investigated how the model results
varied at different scales. To do this, 99 random
points within the study area were selected as test sites.
From each test site, the GWR process was performed
at distances of 25, 50, 75, 100, 125, 150, and 175 km
from each test site for each result. The R? results from
this process were aggregated into an average R* value
for each result at the different buffer sizes.

Results
Map of wind data sources

Figure 5 shows all three wind sources and wind
directions based on each source as well their spatial
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coverage in the Navajo Nation. The NARR data cov-
ers the entire Navajo Nation, and the prevailing wind
direction is Southwest. There are some discrepancies
among the three sources. The METARs data agree
with NARR data in all areas except the Northeastern
area. The MET data are consistent with the METARs
except in the Tuba city area, large disagreement is
observed when compared against NARR.

Modeling results

Figure 6 shows the potential AUM exposure in the
Navajo Nation for each wind data source. Because of
the clustered mine sites, the general areas with higher
exposure potential remain the same throughout each
version, but there are subtle differences. In versions
of the model where NARR data are incorporated, it
should be noted that the Southeastern and Northern
clusters show higher potential exposure at a farther
distance than other versions of the model. While the
presence of high exposure potential proximal to the
mine clusters is a consistent result of models with all
met sources, the impact of data source can be seen to
substantially influence less expected predictions in

regions distal to the mines where variability can read-
ily be seen.

Statistical test results

Figure 7 shows the distribution of 500 random points
from each result version transformed with log2, along
with the mean of each dataset. This study used an
ANOVA test to compare between the different result
versions for each study area. The ANOVA yielded a
p value < 2¢~'° which is below the normal « level of
0.05, suggesting the means among the groups are not
the same. This does suggest that there is a clear dif-
ference in the results depending on whether the model
is inputting either local station data, modeled data, or
some combination of the two.

Validation results

Table 4 shows the descriptive statistics R” results
from the validation for each version of MET data. The
validation shows that the METARs and MET weather
stations results consistently yielded the highest corre-
lation with NURE data for the Navajo Nation when

Fig. 5 Wind direction data
from different meterological
data sources in the Navajo
Nation

¥ METARS (30 year average)*
¥ MET Weather Stations
¥ NARR (30 year average)
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Fig. 6 Potential envi-
ronmental exposure to
AUM predicted by the
GIS-MCDA model with dif-
ferent version of meteoro-
logical data: METARs (a);
MET stations (b); NARR
(c); METARs and MET
stations (d); NARR and
METARs (e); NARR and
MET stations (f); NARR,

METARSs, and MET sta-

tions (g); Overview of the
Navajo Nation—with the
area represented in the other
figures outlined in red (h)

NARR, METARs, and MET Weather Stations (g

compared with other versions of MET data (Fig. 8).
The R? for NARR is the next highest according to the
validation results. Local airport and the 5 MET sta-
tions alone produced lower R’ when compared with
results generated from their combination or NARR.

K-fold CV results

Plotting GWR R? over the range of 10 test folds (with
sample size n=3500) indicates a highly stable model,
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Combined Exposure Potential
o6

-

W

Overview map (h)

with R? values ranging from 0.79 to 0.81. The out-
put exposure maps show slight variance but are overall
highly consistent (Fig. 9).

Scale variability analysis

Table 5 shows the average R® results and the stand-
ard deviations of those results from the spatial scale
test described in Sect. 2.9. The METARs and MET
weather station version of the model had the highest
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Distribution of Exposure Potential Values Navajo Nation
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Fig. 7 Frequency distribution of 500 random NURE samples
from the modeling results derived from different meterologi-
cal data sources (Note: the X axis represents the log (base2)

Table 4 Descriptive statistics of R? from the 999 validation tests

uranium exposure potential value; the Y axis represent the fre-
quency of each value; the red line represents the mean value
for each result version

Statistic METARs NARR MET stations METARSs and NARR and NARR and NARR, METARsS,
MET stations METARSs MET stations and MET stations

Mean 0.47 0.6 0.58 0.74 0.47 0.52 0.55

Standard deviation ~ 0.008 0.007 0.007 0.005 0.008 0.007 0.007

Minimum 0.448 0.586 0.558 0.727 0.450 0.492 0.524

25% quartile 0.467 0.602 0.578 0.739 0.468 0.511 0.548

Median 0.472 0.606 0.585 0.742 0.473 0.516 0.553

75% quartile 0.478 0.610 0.590 0.745 0.479 0.521 0.558

Maximum 0.497 0.627 0.610 0.758 0.498 0.537 0.576

average R* value over all scales from 25 to 175 km. Discussion

The standard deviations were between 0.1 and 0.14
for most of the result versions across various scales.
The METARs and MET stations had higher standard
deviations overall, with a range of 0.14-0.22. Fig-
ure 10 shows the R? results from each sample point at
the various buffer levels. These figures also showcase
that in most of the iterations, the local airport and
MET weather station version of the data shows much
higher results than the other versions.

Previous work in MET data quality investigations in
environmental exposure modeling is limited. There
have been contradictory findings in the impact of MET
data quality on modeling. For example, previous work
focused on MET data other than wind found little to
no significant differences between direct measurement
and non-direct measurement-based MET data in the
overall predictions of spatial models (Elaji & Ji, 2020;
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Fig. 8 GWR validation results for each model version X-axis: sample number (0-999) Y-axis: GWR global R? value
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Fig. 9 Predicted exposure surfaces across fold runs. Note high consistency in predicted surfaces
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Table 5 Mean + standard deviation of R? value from scale test

Model 25 km 50 km 75 km 100 km 125 km 150 km 175 km

METARs 03+0.12 027+0.1 025+0.1 0.28+0.12 0.31+0.13 0.36+0.1 0.39+0,1
MET weather stations 0.33+£0.15 0.31+0.12 033+0.13 0.37+0.1 042+0.1 047+0.1 0.51+0.1
NARR 035+£0.14 028+0.12 028+0.1 0.33+0.14 0.39+0.15 046+0.13 0.5+0.13
METARs and MET weather stations 036+0.14 0.34+0.13 036+0.16 042+0.22 049+0.22 0.55+0.19 0.6+0.17
NARR and MET weather stations 031+£0.14 026+0.1 025+0.1 0.29+0.12 0.34+0.13 0.39+0.1 043+0.1
NARR and METARs 03+0.12 027+0.1 025+0.1 0.28+0.12 0.32+0.13 0.36+0.1 0.39+0.1
NARR, METARs, and MET weather 0.33+0.15 0.31+0.12 0.32+0.12 036+0.1 04=+0.1 044+0.1 0.47+0.1

stations

25 Kilometers

50 Kilometers

R2 Result

R2 Result

[
Sample Iteration

100
Sample Iteration

R2 Result

R2 Result

100
Sample Iteration

R2 Result

R2 Result

[
Sample Iteration

100
Sample Iteration

—— METARS
METARs and MET Stations
—— MET Stations
—— NARR, METARs, and MET Stations
—— NARR and METARs
—— NARR and MET Stations
NARR

Fig. 10 R? value from the spatial scale tests using independent subset samples based on 99 iterations

Klouce et al., 2015) although other research has con-
cluded that non-direct measurement-based data were
not accurate for short time scales (Futter, 2000). Other
related research includes comparisons of the quality of
MET data (Wilgan et al., 2015) and has shown signifi-
cant differences in predicted weather scenarios derived
from different input data. This is one of the first studies
to examine the impact of various wind data sources as
opposed to other MET variables such as rainfall (Elaji
& Ji, 2020) and air quality (Futter, 2000). Several pre-
vious studies indicated that data from direct measure-
ments with better spatial coverage were significantly

more accurate than the interpolation based gridded
data (Wilgan et al., 2015; Futter, 2000), which is cor-
roborated by the present study. Most importantly, the
present study adds to the literature through examining
different wind data sources in a geospatial model for
environmental exposure modeling.

The results presented here suggest that future stud-
ies should consider evaluating the impact of various
MET data sources on the model results and con-
sider limitations of available data in study design
and interpretation. Researchers attempting to choose
between MET sources should combine all available
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direct measurement sources and directly compare this
source to either satellite or reanalysis data, leveraging
processes/approaches (e.g., cross validation, 999 per-
mutation test) to avoid model overfitting and to give
a higher confidence or justification on findings about
the most accurate data source. Future work could
expand the assessment to other geographic areas
(e.g., urban areas where MET data are ample) or
other modeling efforts/contexts to see if similar find-
ings can be produced. Although the current study is
focused on wind data only, future studies that exam-
ine more than one type of MET data (e.g., wind and
precipitation) are encouraged.

Based on the results of this study, future research in
large-scale environmental modeling that rely on MET
data should look to invest in MET stations to supple-
ment the already available local data to enhance the
spatial coverage. While the spatial distribution of
these data will likely be uneven, which can introduce
uncertainty into the modeling process, when used
with an existing network of direct measurement sites
it has proven to yield more accurate results than the
gridded reanalysis NARR data. For future study of
AUMs exposure potential in the Navajo Nation, this
methodology might inform the decision-making pro-
cess for the placement of future MET stations.

At all scales (25 — 175 km), the METARs together
with MET weather station version returned the highest
average R’ value. These findings from the scale tests fur-
ther support the claim that utilizing local weather stations
in places of interest with a better spatial coverage will
yield more accurate results than using interpolated rea-
nalysis wind data. However, we also observed that below
75 km, the R? for the METARs and MET weather station
model only slightly outperforms the others. This might
indicate that the geospatial model in this case study is
more suitable for larger scale studies (e.g., areas greater
than 75 km). Another explanation could be related to the
irregular spatial distribution of NURE data. Neverthe-
less, the randomized 999 permutation test mitigate the
effect of irregular distribution of sample points. Future
studies should test other models or use more evenly dis-
tributed validation data set if available.

Strengths
This is the first study to investigate the impact of

various wind data sources on geospatial modeling
for environmental exposure purposes. This research
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clearly demonstrates that the type of input data used
for modeling is critical to examine to understand and
expose the impact of data quality on modeling. The
results of this study show that using a well-distributed
network of MET stations yield improved results over
reanalysis-based MET data in a geospatial model. By
utilizing a rigorous design of validation process, this
study demonstrates the generalizability of the input
data comparison using a geospatial model.

Practically, this study directly informs further
environmental health research in the Navajo Nation,
including MET station placement, AUMs exposure
modeling, and other environmental exposure mod-
eling. For example, this study will identify candidate
locations for new MET weather stations where no
nearby stations exist, and locations where the model
prediction was poorer across all wind data versions
such as those without AUMs in the central Navajo
Nation as shown in the present study. These candidate
locations will be further reviewed and refined based
on community input and local decision-making. With
more data from these new MET station sites, future
work will be able to utilize this more accurate data
source to generate more accurate modeling predic-
tion. Furthermore, this study suggests a broad context
applicable to other Indigenous communities and other
rural lands with limited MET data.

Limitations

This study focused on the MET data quality in a
geospatial model in a rural area with limited data
sources. The generalizability to other settings can-
not be determined without comparable work in other
settings. Because of its rurality, the Navajo Nation
has relatively fewer MET weather stations than an
urban area would, limiting the spatial and temporal
distributions of the sample network. Future stud-
ies should apply this process to an urban setting to
determine if similar conclusions could be derived.
The NURE dataset used to validate the data does
not cover the entirety of the Navajo Nation, with
a large portion of the Southwest study area having
no NURE coverage. Another issue with this dataset
is the date of collection, as the data was collected
from 1975 to 1984, almost 40 years ago. Although
there are more recent environmental data (e.g., soil
data) collected by research teams working with the
Navajo Nation, those data are only limited to small
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community level which could not be used together
with NURE for the Navajo Nation wide validation
for the geospatial model. The spatial distribution of
the NURE data may have influenced the results of
the permutation tests at smaller scales, leading to
the METARs and MET station result only slightly
outperforming the other versions. This may also
have been a factor of the geospatial model, which
was not originally intended for use at community-
level scales (Lin et al., 2020). Future studies may
need to focus on a smaller area where collecting a
representative soil sample is feasible within the
studies time frame and budget.

Regarding weight determination, there exist
uncertainties inherent to ML. Importance scores
given by RF are based on interpretations of the
ML process and may not reflect an actual relation-
ship (Breiman, 2001, 2017; Esri n.d.). Furthermore,
RF has been shown to inflate relative importance
for spatially autocorrelated variables (Strobl et al.,
2008).A future study should test criteria layers for
spatial autocorrelation and use transforms such as
principal component analysis if significant spatial
autocorrelation is detected (Maitra & Yan, 2008;
Woldeyohannes, 2020). Additionally, this study
used standardized settings for RF parameters, such
as the number of decision trees, tree depth, leaf
size, etc., when applying the RF algorithm. Future
studies should conduct a sensitivity analysis to
test RF weight determinations across different val-
ues/settings for algorithm parameters. Overfitting
(Gavrilov et al., 2018) and ML bias caused by data
leakage (Shim et al., 2021) can also be potential
issues related to ML. Given the nature of this study,
which required a large testing size for input into the
GWR (n=3500), meant that every test fold of the
k-fold CV could not be completely independent of
each other. Further tests are needed, using lower
testing sizes, to see if the model is still stable at
lower correlation values.

Conclusion

This study set out to achieve 2 objectives: (1) Iden-
tify whether different meteorological data sources
produce significantly different model results; and
(2) determine the meteorological source that pro-
duces the most accurate result. The validation test,

scale test, and the ANOVA results indicate that
there is a significant difference in model perfor-
mance when utilizing various forms of wind data.
The R? results from the validation tests indicate
that direct measurement-based wind data with bet-
ter spatial coverage or more meteorological stations
yielded the most accurate exposure potential pre-
diction, which is supported by the result presented
here that METARs together with MET stations
(both are direct measurement) with more stations
outperform METARs or MET stations only predic-
tions. The model results also suggest that the geo-
spatial modeling in the present study using MET
stations and METARs accurately represented small
to medium scale spatial variations when compared
with other meteorological data/data combinations,
as evidenced by higher accuracy for scales greater
than 75 km. When the reanalysis data was com-
bined with direct measurements (i.e., NARR and
MET stations; NARR and METARS; and NARR,
METARs, and MET stations), the varying meteoro-
logical data sources conflicted with each other and
produced lower R? values.
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