Reinforcement Learning-Based Network Slice
Resource Allocation for Federated Learning
Applications

Zhouxiang Wu'!, Genya Ishigaki?, Riti Gour®, Congzhou Li' and Jason P. Jue'
1. Department of Computer Science, The University of Texas at Dallas, Richardson, Texas 75080, USA
2. Department of Computer Science, San Jose State University, San Jose, CA 95192, USA
3. Department of Computer Electronics and Graphic Technology,
Central Connecticut State University, New Britain, Connecticut 06050, USA

Abstract—This paper addresses a resource allocation strategy
for network slices, where each network slice supports a different
federated learning task. A slice is established when a new
federated learning model needs to be trained and is released
once the training is complete. The goal is to minimize the average
network slice holding time while also providing fairness between
slice tenants and improving network efficiency. We propose a
reinforcement learning-based strategy to periodically reallocate
resources according to the current state of each federated
learning task. We offer two reinforcement learning models. The
first model achieves more stable performance and considers
correlations between tasks, while the second model utilizes fewer
parameters and is more robust to varying number of tasks.
Both approaches have better performance than baseline heuristic
methods. We also propose a method to alleviate the effect of
various resources scales to make the training stable.

Index Terms—network slice, reinforcement learning, federated
learning, resource allocation

I. INTRODUCTION

In the 5G era, with help of network virtualization, network
slicing technologies [1] can be employed to divide the network
resources among different users in order to meet each user’s
customized service requirements. In static network slicing,
the amount of resources allocated to each user remains fixed
during the service time of the slice. On the other hand, with
elastic network slicing, the amount of resources allocated
to each user may vary over time. In the elastic scenario,
customers may request elastic slices to reduce the cost while
still maintaining required service quality. In order to improve
resource utilization and to provide fairness across slices, the
network operator may dynamically reallocate the resources for
the slice based on the state of the tasks that are running over
the slice. In this paper, we assume that slice customers are
willing to share information regarding the status of tasks that
are running over the slice.

As customers emphasize privacy and governments tighten
regulations, users are reluctant to share their data. However,
data is the fuel to modern machine learning. In [2], the authors
propose federated learning (FL), which does not require up-
loading the data into the cloud. However, local data is usually
biased, and the amount of local data is small. Thus, the local

trained models are transferred to the cloud and aggregated in
some way to avoid over-fitting to the local data.

Federated learning training tasks involve more complicated
network resource requirements during their training time com-
pared with traditional machine learning. In traditional machine
learning, users upload their data to a corresponding cloud
server, where the model is trained on users’ data. After
training, users download the trained model to solve their local
tasks. Traditional training requires users’ data to be uploaded
and the trained model to be downloaded only once. However,
this process may lead to private data leakage since the users’
private data is transferred through the network and stored in
the cloud. In federated learning, users do not upload their data.
Instead, they upload the locally trained model, and the users’
models are aggregated in the cloud server. Users download the
updated model and train the model again. This process will
repeat hundreds or thousands of times until the global model’s
performance converged. Federated learning has more complex
network requirements compared to traditional learning because
it involves multiple iterations of downloading and uploading
machine learning models of non-negligible size. For example,
each federated learning task involves multiple entities, such as
participant devices, edge nodes, and the cloud server. The FL
task also requires computing and networking resources, such
as bandwidth between participants and edge nodes to transfer
locally trained models, bandwidth from edge nodes to the
cloud to transfer partially aggregated models, and computation
resources at edge nodes to partially aggregate locally trained
models.

A promising approach for satisfying the complex require-
ments of FL is to establish a dedicated elastic slice for each FL
training task. Once an elastic slice is established, its resources
can be dynamically adjusted based on the requirements of the
different phases of the FL task. Once the FL training task
is complete, the slice is released. Each FL task may be in
one of multiple possible states at any specific time, and this
state will affect the instantaneous resource requirements of the
FL task. For example, if a FL task is currently training local
models in participants, then the FL task does not require any
bandwidth. If a static network slice strategy is being used, then

Cloud Server

Edge Node

Participants ((D))

D

Fig. 1. Experiment Network

D

the bandwidth resources may be wasted during this time.

There are challenges in dynamic resource allocation. We
cannot allocate resources solely based on the status of tasks
since this strategy can lead to tasks stalling. For example, if
one task is downloading in the backbone when the allocation
decision is made, then the only resource allocated to the slice
is the backbone bandwidth. However, the task may finish the
downloading in the backbone very soon after the allocation,
in which case the task will be stalled until the next allocation
since no wireless bandwidth is allocated to the task. Involving
predictions on future states may help. However, we need to
decide the prediction format and how the allocation strategy
involves the prediction feature. On the other hand, reinforce-
ment learning automatically learns an intelligent strategy from
history, bypassing handcrafted prediction feature selection.
Thus, we propose a reinforcement learning-based network
slicing strategy to dynamically allocate resources to the FL
tasks in order to utilize the system resources more efficiently.

There are several papers that employ reinforcement learning
(RL) to optimize the training process of FL tasks. In [3], the
authors design an RL agent that intelligently chooses client
devices to participate in each round of federated learning. In
[4], the authors minimize the total system cost that is defined
as a weighted sum of training time and energy consumption.
However, these papers do not consider resource orchestration
among different FL tasks. Our algorithm focuses on allocating
resources when multiple FL tasks exist in the system.

In this paper, we design a novel model to dynamically
allocate slice resources to FL tasks in order to reduce FL
training time. However, since our emphasis is on network
resource utilization, we focus on the objective of minimizing
the average slice holding time. We employ the Deep Deter-
ministic Policy Gradient (DDPG) [5] algorithm to train the
agent. The RL agent achieves shorter holding time of the slices
and results a more fair resource allocation compared to other
heuristic methods. To the best of our knowledge, this paper is
the first to apply a reinforcement learning-based elastic slice
control strategy to optimize the slices’ average holding time.
The remainder of this paper is organized as follows. Section
II introduces background on reinforcement learning and deep
neural networks. We formulate the problem in Section III
and illustrate the feature selection, agent design, and the RL
algorithm in Section IV. In Section V, we design experiments
to prove the effectiveness of the proposed algorithm. Finally,

action A,

Agent

YYy

state

S

reward

Ry

Environment [«

Fig. 2. Reinforcement Learning Procedure

we conclude the paper in Section VI.

II. BACKGROUND ON MACHINE LEARNING CONCEPTS

In Reinforcement learning (RL) [6], there are two entities:
the environment and the agent. We show the procedure of RL
in Fig. 2. In each step ¢, the agent takes in state .Sy, which rep-
resents the current environment. The agent generates an output
action A; for the environment, and the environment returns
an instant reward R;. The environment produces a new state
according to the specified action. The objective of the agent is
to maximize total rewards. There is a gap between traditional
supervised machine learning and reinforcement learning since
RL has no ground truth. RL’s objective is to train an intelligent
agent that can wisely make decisions to achieve long-term
profitability. However, the environment is stochastic, and each
action’s actual reward is untraceable. Thus, we can only train
the agent based on its interaction history with the environment.
In this paper, the agent corresponds to the network operator,
and the environment corresponds to the network condition and
state of existing reinforcement learning tasks.

We employ deep neural networks (DNN) as the value func-
tion and the actor. A DNN contains multiple fully-connected
layers with an activation function between layers. The input
of a DNN is a fixed size vector, and the output is a scalar or
fixed size vector depending on the design. The DNN for the
value function takes in the state of the environment and the
action, and outputs a value that represents the expected total
reward after this step. The DNN for the actor takes in the state
of the environment and outputs an action, which is a vector.

III. PROBLEM FORMULATION
A. Physical Network Infrastructure

The physical network involves federated learning partici-
pants, edge computation nodes, and cloud servers. We assume
that participants and edge nodes are connected by a wireless
network. Edge nodes and cloud servers, are connected by a
wired backbone network.

B. Network Slice

A network slice contains virtual networking resources and
computing resources nodes. We consider end-to-end network
slices in this paper. The network operator assigns one slice to
each FL task, and the slice contains all the resources required
for the FL task. We assume that slices are elastic slices, in

which the resources occupied by the slice for the task may
vary every pre-defined period of time.

C. Federated Learning States

Federated Learning tasks have four states: local training,
uploading model, downloading model, and global aggregation.
When the FL task is in the local training state, the task
requires no network resources. In contrast, the task requires
corresponding network resources during the uploading model
or downloading model phases. When the task is in the
global aggregation phase, the task requires cloud computing
resources. The four states appear in turn repeatedly until the
global model’s performance converges. In this paper, we divide
the downloading phase into two stages: downloading in the
wireless network and downloading in the backbone wired
network. The uploading phase is also divided in a similar way.
We also add a state for the edge aggregation in edge nodes.

D. Problem Formulation

We state the control problem of network slice resource
allocation as follows. Given (1) a network G = (V, E), with
computation capacity cmp, for v € V' and bandwidth bw, for
e € E, (2) a set of FL tasks, and (3) a decision frequency f,
the problem is to design an agent that reallocates an elastic
slice’s resources to each task following f. During the period
between two decisions, the slice resources remain the same,
and the corresponding task proceeds according to the given
resources. This problem aims to design an agent that makes
a series of decisions to minimize the average network slice
holding time.

IV. ALGORITHM AND TRAINING
A. Feature Selection

We need to select features that represent the environment
and are fed into the RL agent. For each FL task, we use a vec-
tor to represent its state. The first element indicates the degree
of completion of the task. In our experiments, we select the FL
model’s test accuracy to represent the degree of completion.
The second element indicates the degree of completion of the
current stage. For example, if the current state is downloading
model from the server, and the downloading process is 80%
complete, then the second element is 0.8. For the third element,
we choose the current FL task’s model size ratio to the sum
of all model sizes. We choose the ratio instead of the actual
model size to prevent the gap between features from being too
large.

We use one-hot encoding to represent the FL task’s current
state. For example, we consider six states: downloading in the
backbone, downloading in wireless, local training, uploading
in wireless, uploading in the backbone, and global aggregation.
The sequence of stages is shown in Fig. 3. Thus, we need a
1% 6 vector to represent the states of the FL task. The element
corresponding to the current FL task’s stage is set to 1, and
all other elements are set to 0. For example, if we follow
the previously defined sequence, and the current stage is local
training, then the one-hot encoding vector is (0,0, 1,0,0,0).

[

1. Downloading in A
‘ e e ‘ ——‘ 4, Uploading in wireless ‘

l J

‘ 2. Downloading in wireless ‘ 5. Aggregation in Edge ‘

| J

‘ 3. Local Training ‘ ‘
‘ 7. Global Aggregation ‘

[

6. Uploading in backbone

Fig. 3. Federated Learning Stages

Finally, we concatenate the three features and the one-hot
encoding vector as a new vector to describe the task. In our
case, the new feature of each task should be a 1 x 9 vector.
If there are three tasks, then the feature should be a matrix
whose size is 3 x 9.

B. Agent Design

The agent corresponds to the previously mentioned ac-
tor, which takes in the environment states and outputs an
action. The input is a matrix, and each row represents a
task. However, the input for the typical DNN model is a
vector. We propose two types of models to process the
input matrix. In the first model, we first flatten the input
matrix into a vector and then we feed the vector into the
classic DNN model. The output is a vector whose size is
{1 x (number of tasks X number of resources)}. Then, we
reshape the vector into a matrix of the required size. The
procedure of this model is shown in Fig. 4(a). The DNN
model includes multiple fully connected layers with tanh
as the activation function between these layers. The model’s
output should be the resources allocated to the corresponding
task. Instead of directly outputting the numerical value of
the allocated resources, our model outputs the ratio of the
resources allocated to the task to the total resources. This
approach alleviates the variance of output value and makes
the model more stable during training, allowing the model to
transfer its knowledge to different resources scales. Because
multiple resources need to be allocated, the model’s output is
a matrix whose size is the number of tasks multiplied by the
number of resources. Because each column of the output sums
to 1, we implement the Softmax function on each column,
which is defined as follows:

e
g (Z)i = K

D1 €% (1)
fori=1,...,K and z = (z1,...,2x) € RE.

The drawback of this design is obvious: the model is tied
to the number of tasks. When the number of tasks changes,
the state matrix dimension changes accordingly. However,
the parameter matrix’s size is fixed, so we have to train a
new model for each possible number of tasks. Furthermore,
flattening the input matrix breaks the information within the

Resource Allocation
X1 Yr zr

X3 Y3 z3

1 Flatten Reshape [/ x2| Y2, 72 |

~{ DNN

Each row is a distribution,
summation is one

Task Features

o ——{ow | —{xilve.z]

Task Features

Resource Allocation

X1 Y1 pAN

DNN [xelv2,22]| X |\v2 |z

X3 Y3 z3

(b) Second Type Model

Fig. 4. Two Types of Models

task encoding vector. To avoid this problem, we propose a
second type of model, which takes in the row of input and
outputs a vector whose size corresponds to the number of
resources. Then, we stack all the output vectors as a matrix
and implement Softmax on each column. The procedure of the
second model is shown in Fig. 4(b). In the second model, every
task shares the parameters; thus, the number of parameters
does not linearly increase with the number of tasks, and the
model is less likely to overfit. Furthermore, the second model
can handle any number of tasks, while the first model can only
handle a predefined number of tasks. The advantage of the first
model is that it can find relationships between tasks, while the
second model can only encode the information within the task.

C. Environment Design

The network operator agent reallocates the resources every
fixed period of time. When the environment takes in the action,
which is the resource allocation, all of the FL tasks proceed
with their assigned resources in the next iteration. After a pe-
riod of time, the environment outputs the current tasks’ states.
Since we assume that the network resources do not change
during the experiment, we solely utilize tasks conditions to
describe the environment state. The task encoding is described
in Section IV-A.

D. Training Algorithm

In our problem, we cannot employ common RL algorithms,
e.g. Deep Q Network [7] and Policy Gradient [8], because
the action space is continuous. Instead, we select Deep
Deterministic Policy Gradient (DDPG) [5], which employs
the Deep Q Network algorithm framework and which has
the ability to handle a continuous action space. In DDPG,
there are two types of models. One model is the previously
mentioned agent, which is named as the actor and the other
model is another deep neural network named as the critic.
The critic’s input is a combination of environment state

and action, and its output is a number that indicates the
expectation of total reward for the resulting state and action,
which is named the Q value. Before training the actor and
the critic, we need to collect the current actor’s trajectories
{(s50,a0,70,51), (51,01,71,52), -+, (Sp—1,@n—1,Tn—1,5n)}.
Suppose the critic gives an accurate Q value ¢ for each state
and action pair. The actor tries to maximize the Q value by
tuning the actor’s parameters through gradient ascent and
outputting a more promising action in the next episode. We
show this step in Line 13 in Algorithm 1.

However, the Q value is inaccurate because the critic model
is initialized randomly. We calculate a more accurate Q value
¢', which is equal to the summation of the immediate reward r,
and a predicted Q value for the next state and action obtained
from the actor given the next state multiply by a discount
factor :

q/(staat) =ri+yX q(3t+1,at+1).

Then, we calculate the difference between ¢ and ¢’ and take
the derivative of parameters in the critic model to minimize
the difference. This step is shown in Algorithm 1 Line 12.
To make the training more stable, instead of using the current
updated critic model, we use the target critic and the target
actor to predict ¢’ and set the target critic equal to the critic
and the target actor equal to the actor after several iterations,
which is shown in Algorithm 1 Line 19.

The exploration and exploitation tradeoff is an important
issue in RL. If we always choose the best action according to
the actor, then some better options may not be visited. Thus,
during trajectory collection, noise can be added to the actor’s
model to output a non-greedy action, which is a exploration
strategy. This step is shown in Algorithm 1 Line 6. Usually,
we fix the noise during one episode to make the training more
stable, otherwise the trajectory is not consistent. When testing
the model’s performance, we use the actor’s output action
directly, which is a exploitation strategy.

V. EXPERIMENT AND EVALUATION

In the experiments, we consider the network topology,
shown in Fig. 1. Participants connect to an edge node through
a wireless network, and the edge nodes connect to the cloud
through a backbone network. Each edge node contains com-
putational resources and can aggregate models locally before
uploading to the cloud. Thus, in this experiment, there are three
types of resources: backbone bandwidth, wireless bandwidth,
and edge node computation resources. A slice contains a
subset of these resources and is assigned to the corresponding
FL task.

A. Federated Learning Tasks

Since the object of this paper is not to design a state
of the art FL algorithm, we chose three well-studied image
classification tasks and implemented them in a federated
learning scenario. The three tasks are MNIST [9], which
classifies images of handwriting digits, Fashion MNIST [10],
which classifies images of clothes, and CIFAR-10 [11], which

Algorithm 1 Slice Allocation Agent Training Algorithm

Input:

number of training epoch 7, number of training sample L; critic learning rate [r., actor learning rate Ir,;
discount factor «y , soft update factor 7; replay buffer B, mini-batch size N; actor model A and critic model)

Output: Trained Actor Model A

1: Inmitialize: Empty replay buffer, randomly initialized actor model A and critic model @
2 A+ AQ «Q
3: for each epoch ¢t =0,1,2....,T do
4 Initialize tasks state s;
5 while episode is not finished do
6: a; < A.sample(s;)
7 Si+1, 74, [i < env.step(a;) {Si+1,7i, fi indicate the next state, immediate reward, finish flag, respectively.}
8 save (57;, @i, i, 87;_;'_1) in B
9: if B size > N then
10: Si, @i, T4, Si+1fi < Sample mini-batch whose size is N from B Vi € {0,1,2,...,N}
11 Yi < 1i + Q' (si41, A'(5i41))
12: Update @ by minimizing the Loss: L(Q) = % >_,(Q(si, a;),y;)?
13: Update A by maximizing the Q value: L(A4) = & >°,(Q(si, A(s;)))
14: end if
15: end while
16: A+ A Q +Q
17: end for
18: return A
MF{)?)IZILJE IIZE 2300 | total training time (unit of time)
2200

Task Name | Model Name | Model Size 2100

MNIST VGG 11 2475.99 MB 2000

FMNIST VGG 13 3628.70 MB 1500

CIFARI0 | VGG 19 429321 MB 1800

classifies images of ordinary objects. The size of each task’s
training data is different. The size of MNIST is the smallest,
and the size of CIFAR-10 is the largest. The models we choose
for FL tasks are from the VGG [12] family. We summarize
the model sizes and names in Table I.

B. Network Structure

In this experiment, we set up 20 participants, three compu-
tational edge nodes, and one cloud server. The slice for each
task involves backbone bandwidth from cloud to edge, wire-
less bandwidth from edge to participants, and computational
resources on edge nodes.

C. Reward Function Design and Termination Condition

Because the objective is to minimize the average training
time for multiple FL tasks, we simply set the immediate reward
for each step to —1, which means that the more extended
the training phase is, the less reward the agent obtains. When
the performance of the FL model converges, the task should
terminate. The whole process terminates when every model’s
performance converges.

D. Machine Learning Configuration

We implement six fully-connected layers for the actor and
the critic, and each layer contains 64 hidden neurons. The

1700
1600
1500

1400 number of training epoches

0 100 200 300 400 500 600 700 800 900 1000

Fig. 5. Agent Training Process

activation function is tanh. The initial learning rates for the
actor and the critic are both 0.001. The discount factor +y is
0.99. Instead of updating model parameters every step, we
update parameters every 200 steps. To avoid the lack of data
at the beginning of training, we collect 5000 pieces of data
before learning.

E. Training and Result

During the process, the RL agent samples an action which
is a resource allocation strategy for each task, and we save the
information in the buffer used to train the RL agent. We show
the reward obtained by the RL agent during training in Fig. 5.
At the beginning of training, the agent tries to sample a larger
action space. Thus, the performance of the agent is not stable.
After a hundred training iterations, the agent converges to a
stable state.

TABLE II
RESULTS FOR DIFFERENT DECISION PERIOD

Decision | Even | Split on | Split on
Period Split | Size State RL T | RL2
1 7306 | 6850 22450 6058 | 5847
5 1462 | 1370 2561 1205 | 1314
10 731 685 1091 663 608
20 366 343 356 309 349
TABLE III
FIXED MODEL ON DIFFERENT SCENARIOS
Decision | Even | Split Split RL 1 | RLI
Period Split | on Size | on State | Fixed | Dedicated
1 7306 | 6850 22450 6024 | 6058
5 1462 | 1370 2561 1205 1205
10 731 685 1091 603 663
20 366 343 356 302 309

F. Performance

We compare our algorithm to three standard heuristic meth-
ods of allocating resources. The first method is to segment
the resources evenly among every existing task. The second
method is to split the resources proportional to the FL. model
size. This approach assumes that larger FL. model sizes require
more resources for training. The third method is to allocate
resources based on the state of tasks. For example, when only
two tasks use the backbone link, the backbone bandwidth
would be divided evenly between these tasks during the next
slot. The first and second methods are static slice control
strategies. The units of data appearing in Table II, Table III,
and Table IV are unit time. We test different decision periods
and summarize the results in Table II. The average training
time for the RL agents decreases as the decision frequency
increases. However, increasing the frequency adds a burden
on network resource management. Thus, there is a trade-off
between the frequency and the performance of the model.
From the experiments, we cannot conclude which RL agent
performs better; however, both RL agents tend to perform
better than pre-defined methods. Because the type 1 RL agent
has more stable performance compared to the type 2 RL agent,
we test its robustness over different decision frequencies and
summarize its results in Table III. We employ the trained
model under a decision period of ten and apply the model
to other decision frequency scenarios. The model is stable
in every scenario and has even better performance than the
dedicated model trained to the specific model.

Another interesting observation is that the RL agents
achieve more fair resource allocation. We show the training
times and the standard deviation of training times for different
tasks under different strategies in Table IV. The results show
a trade-off between efficiency and fairness. We suppose that
the system should allocate resources evenly to homogeneous
tasks. In our experiments, the three tasks have the same level
of priority. Thus, the standard deviation of their training time
should be as low as possible. As Table IV shows, the RL agents
have a minor standard deviation without loss of performance.

TABLE IV
STANDARD DEVIATION AMONG DIFFERENT TASKS’ TRAINING TIME
UNDER DIFFERENT STRATEGY CONTROL

Task 1 | Task 2 | Task 3 | Total | Std Deviation
Even Split 269 857 1462 1462 | 596.52019
Split on Size 306 843 1370 1370 | 532.00783
Split on State | 250 1998 2561 2561 | 1205.0722
RL 1 463 1186 1205 1205 | 423.01576
RL 2 391 1063 1314 1314 | 477.23404

VI. CONCLUSION

We apply a reinforcement learning-based elastic network
slice strategy to federated learning tasks and design two RL
agents. Both RL agents achieve better performance in the
simulation experiments than heuristic methods in general. We
revised the DDPG algorithm to fit our problem setup and
uniform the input and output to same scale in order to have a
numerical stable performance.

The FL tasks are not constrained to the image classification.
We can implement the similar framework to network prob-
lems such as federated multi-domain anomaly detection. For
example, if each domain does not wish to upload its data but
wants to train a anomaly detection model together, then these
domains can employ this framework to fulfill the requirement.

VII. ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under Grant No. CNS-2008856.

REFERENCES

[1] 1. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, ‘“Network
slicing and softwarization: A survey on principles, enabling technolo-
gies, and solutions,” IEEE Communications Surveys & Tutorials, vol. 20,
no. 3, pp. 2429-2453, 2018.

[2] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50-60, 2020.

[3] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning
on non-iid data with reinforcement learning,” in /JEEE INFOCOM 2020-
IEEE Conference on Computer Communications, pp. 1698-1707, IEEE,
2020.

[4] Y. Zhan, P. Li, and S. Guo, “Experience-driven computational resource
allocation of federated learning by deep reinforcement learning,” in 2020
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pp. 234-243, 1IEEE, 2020.

[5] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[6] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[71 H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double g-learning,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 30, 2016.

[8] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradi-
ent methods for reinforcement learning with function approximation,”
Advances in neural information processing systems, vol. 12, 1999.

[9] “The mnist database of handwritten digits.” http://yann.lecun.com/exdb/

mnist/. Accessed: 2020-03-19.

“Fashion mnist dataset, an alternative to mnist.” https://keras.io/api/

datasets/fashion_mnist/. Accessed: 2020-03-19.

“The cifar-10 dataset.” https://www.cs.toronto.edu/~kriz/cifar.html. Ac-

cessed: 2020-03-19.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[10]
(11]

(12]

