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 23 
Abstract 24 

Diatoms are a group of phytoplankton that contribute disproportionately to global primary 25 
production. Traditional paradigms that suggest diatoms are consumed primarily by larger 26 
zooplankton are challenged by sporadic parasitic “epidemics” within diatom populations, but our 27 
understanding of diatom parasitism is limited by difficulties in quantifying these interactions. Here, 28 
we observe the dynamics of Cryothecomonas aestivalis (a protist) infection of an important 29 
diatom on the Northeast U.S. Shelf (NES), Guinardia delicatula, with a combination of automated 30 
imaging-in-flow cytometry and a convolutional neural network image classifier. Application of the 31 
classifier to >1 billion images from a nearshore time series and >20 survey cruises across the 32 
broader NES reveals the spatiotemporal gradients and temperature dependence of G. delicatula 33 
abundance and infection dynamics. Suppression of parasitoid infection at temperatures <4 °C 34 
drives annual cycles in both G. delicatula infection and abundance, with an annual maximum in 35 
infection observed in the fall-winter preceding an annual maximum in host abundance in the 36 
winter-spring. This annual cycle likely varies spatially across the NES in response to variable 37 
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annual cycles in water temperature. We show that infection remains suppressed for ~2 months 38 
following cold periods, possibly due to temperature-induced local extinctions of the C. aestivalis 39 
strain(s) that infect G. delicatula. These findings have implications for predicting impacts of a 40 
warming NES surface ocean on G. delicatula abundance and infection dynamics and 41 
demonstrate the potential of automated plankton imaging and classification to quantify 42 
phytoplankton parasitism in nature across unprecedented spatiotemporal scales. 43 

Significance Statement 44 
Diatoms are unicellular algae whose “blooms” are associated with high primary productivity, 45 
prolific fisheries, and carbon flux to the deep ocean. Despite its potential impact on marine food 46 
webs, diatom parasitism is poorly understood due to challenges observing its prevalence and 47 
environmental controls at appropriate spatiotemporal scales. Here we use automated plankton 48 
imaging and machine learning classification to elucidate abundance and parasitic infection 49 
dynamics of a biomass-dominant diatom on the Northeast U.S. Shelf. We suggest that 50 
temperature indirectly regulates diatom abundance via direct suppression of parasitism. This 51 
temperature dependence implies that ongoing warming may enable parasitic infection to occur 52 
throughout the year, driving dramatic shifts in this diatom’s abundance dynamics with potential 53 
cascading effects on the Northeast U.S. Shelf ecosystem. 54 
 55 
Main Text 56 
 57 
Introduction 58 
 59 
Diatoms are a major source of oceanic primary production and play an outsized role in marine 60 
ecosystems and global biogeochemistry (1, 2). Diatoms frequently accumulate in response to 61 
nutrient enrichment of the surface ocean, and these “blooms” likely result in productive marine 62 
food webs and fisheries (1, 3). Traditional oceanographic paradigms explain this association by 63 
arguing that diatom production is predominantly consumed by large micro- and meso-64 
zooplankton which provide an efficient link to higher trophic levels (3–5). Diatoms can also be 65 
infected by smaller eukaryotic parasites and parasitoids (parasites that kill their hosts) as 66 
demonstrated by sporadic observations of “epidemics” within some diatom populations over the 67 
past several decades (6–8). While amplicon sequencing surveys have revealed a high diversity of 68 
putative eukaryotic parasites and many potential interactions with diverse diatoms (9, 10), the 69 
time, cost, and technical expertise required to make direct observations of diatom parasitism have 70 
thus far limited understanding of its prevalence, spatiotemporal dynamics, and oceanographic 71 
forcings (8). 72 
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One known example of diatom parasitism involves infection of the diatom, Guinardia delicatula, 73 
by the Cercozoan nanoflagellate, Cryothecomonas aestivalis (11). In this system the parasitoid 74 
penetrates the host’s cell wall and subsequently consumes the host protoplast from within, 75 
resulting in host mortality. After consuming its host, the enlarged C. aestivalis cell divides several 76 
(usually 3, occasionally more) times within the frustule to create swarmers that reenter the free-77 
living plankton community, often leaving fecal pellets behind in the host frustule (11). C. aestivalis 78 
is known to infect G. delicatula in the North and Wadden Seas (7). More recently, a study at the 79 
nearshore Martha’s Vineyard Coastal Observatory (MVCO) found recurrent, widespread infection 80 
of G. delicatula by C. aestivalis in a 7-year time series of manually-annotated plankton images 81 
collected by Imaging FlowCytobot (IFCB) (12). In that study, infection by C. aestivalis was often 82 
found to regulate the magnitude of G. delicatula accumulation. When temperatures fell below 4 83 
°C, however, infection was suppressed and accumulation of the host was frequently observed 84 
(12). This study combined with recent advances in automated image classification (13–15) 85 
demonstrate a path to develop automated, high-throughput approaches to quantify diatom 86 
parasitism on unprecedented spatiotemporal scales, and in turn fill a major gap in our knowledge 87 
of the prevalence, ecological significance, and oceanographic determinants of infection. 88 
 89 
Here, we develop and apply an automated, machine learning-based classifier to >1 billion IFCB 90 
images gathered from >300,000 samples from the Northeast U.S. Shelf (NES) to quantify G. 91 
delicatula abundance and infection by C. aestivalis. The classifier is trained, optimized, and 92 
validated with a large set of manually annotated G. delicatula images including uninfected and 93 
infected chains. We apply the classifier to quantify G. delicatula abundance and infection 94 
prevalence with daily resolution across an in situ, ~15-year time series at MVCO and with ~10 km 95 
resolution across a spatial domain extending from the northern Gulf of Maine to the southern Mid-96 
Atlantic Bight sampled during 23 cruises conducted across 9 years. Our results support a 97 
previous study’s findings of recurrent, significant levels of infection of G. delicatula and a 98 
suppression of infection at temperatures <4 °C at the nearshore MVCO. Use of the automated 99 
classifier enabled discovery of continued suppression of infection for at least 60 days following 100 
these cold temperatures and observations of comparable infection dynamics across a spatial 101 
domain spanning from Cape Hatteras to Nova Scotia. Integrating genetic observations with the 102 
imaging results suggested high niche diversity within the C. aestivalis species complex and that 103 
cold temperatures result in local extinction of the strain parasitizing G. delicatula. A long-term 104 
reduction in the spatiotemporal extent of waters with temperature <4 °C indicates continued 105 
warming on the NES may reshape G. delicatula abundance and infection dynamics. In addition to 106 
elucidating the large-scale biogeography of C. aestivalis infection of G. delicatula on the NES, this 107 
study demonstrates the potential for automated plankton imaging coupled with artificial 108 
intelligence to advance knowledge of the understudied dynamics of phytoplankton-parasite 109 
interactions. 110 
 111 
Results 112 
 113 
Spatiotemporal dynamics of G. delicatula abundance and infection on the Northeast U.S. Shelf 114 
 115 
G. delicatula was observed at relatively high abundances (>5 chains ml-1) throughout the NES 116 
and was often found at extremely high abundance (>50 chains ml-1) at the nearshore MVCO time 117 
series site (Fig. 1). A cross-shore gradient in G. delicatula abundances was evident across most 118 
of the NES, with high abundances close to shore declining to near-zero abundances beyond the 119 
shelf break (Fig. 1A). Low abundances were also observed in deep waters of the Gulf of Maine. 120 
G. delicatula abundances were highest in the northern Mid-Atlantic Bight and on Georges Bank, 121 
with relatively high abundances also seen on the Scotian Shelf. G. delicatula infection prevalence 122 
(Fig. 1B) was low (<5%) across most of the NES, but the spatial distribution showed a similar 123 
pattern to that of total G. delicatula abundance on the northern Mid-Atlantic Bight and Georges 124 
Bank. Areas associated with relatively high infection in these regions generally mirrored those 125 
associated with high abundance. Notably, infection was limited in nearshore waters of the Scotian 126 
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Shelf despite relatively high G. delicatula abundances. Low G. delicatula abundance in offshore 127 
waters of the NES and in most of the Gulf of Maine drove high uncertainty in infection prevalence. 128 
Mean sea surface temperatures (SST) (Fig. 1C) across the NES were typically >20 °C offshore of 129 
the shelf break and in the southern portion of the Mid-Atlantic Bight, 15-20 °C in the northern Mid-130 
Atlantic Bight, and 10 °C or colder in the northern Gulf of Maine and Scotian Shelf. Infection 131 
prevalence appeared to be lowest in the cooler northern Gulf of Maine and Scotian Shelf, while 132 
high aggregate G. delicatula abundances were found across a broad range of mean 133 
temperatures except >20 °C.  134 
 135 
Daily IFCB time series of G. delicatula abundance and infection prevalence alongside daily mean 136 
water temperature at MVCO provide a detailed view of temporal dynamics at a nearshore site on 137 
the NES, with intermittent amplicon sequencing observations providing additional insight into the 138 
dynamics of the parasitoid at this site (Fig. 1D-E). G. delicatula abundance and infection 139 
prevalence were often higher at MVCO than across the broader NES, regularly reaching 140 
abundances >50 chains ml-1 and infection prevalence >20%. High abundances were most often 141 
observed in the winter during or immediately following periods where water temperature was <4 142 
°C and infection prevalence was negligible, in agreement with previous observations (12). G. 143 
delicatula also accumulated at other times of year when temperatures were warmer, but during 144 
these events abundances rarely exceeded 50 chains ml-1. Parasitoid infection was most prevalent 145 
in the fall, with infection prevalence values of 20% or higher regularly observed prior to the 146 
seasonal onset of temperatures <4 °C. Infection prevalence was typically low during the spring 147 
and early summer, even when G. delicatula reached moderately high abundances and 148 
temperature exceeded 4 °C. Interestingly, at least some of the five C. aestivalis amplicon 149 
sequence variants (ASVs, a genetic proxy for strains or species) were detected at MVCO 150 
throughout the year, including during periods cooler than 4 °C and in the spring and summer 151 
when G. delicatula infection prevalence was negligible.  152 
 153 
Observations show seasonal variations in the distributions of G. delicatula abundance and 154 
infection prevalence and in SST across the NES (Fig. 2). While only one cruise with limited 155 
coverage of the Gulf of Maine, Scotian Shelf, and southern Mid-Atlantic Bight was conducted 156 
during the winter, G. delicatula abundances were elevated (>20 chains ml-1) and infection 157 
prevalence was high compared to other seasons across much of the NES. Mean winter-time 158 
SSTs on the NES were generally <10 °C and were <4 °C in many nearshore locations. G. 159 
delicatula abundance remained high across much of the Mid-Atlantic Bight and Georges Bank 160 
during the spring, with a notable nearshore band of elevated abundance also observed in the Gulf 161 
of Maine. Where infection prevalence was measurable during the spring, it was generally lower 162 
than in winter despite mean SSTs ≥~10 °C. G. delicatula abundances were low (<5 chains ml-1) 163 
across much of the NES during the summer and infection prevalence was generally not 164 
quantifiable when seasonal mean SST was highest across most of the domain. The exception 165 
was at the northern edge of the domain including the Scotian Shelf and a small portion of the 166 
northern Gulf of Maine where high G. delicatula abundances coincided with negligible infection 167 
and relatively cool SSTs. In the fall, G. delicatula was typically not detected throughout the Gulf of 168 
Maine and Scotian Shelf, while intermediate abundances (~5 chains ml-1) and SSTs associated 169 
with relatively high (>5%) infection prevalence were observed in several locations across the Mid-170 
Atlantic Bight and Georges Bank.  171 
 172 
Spatial and temporal gradients in G. delicatula abundance and infection 173 
 174 
Distinct annual cycles were observed in G. delicatula abundance and infection prevalence both at 175 
MVCO and across the broader NES (Fig. 3A-B). Monthly aggregate G. delicatula abundances 176 
were highest in the winter and spring while infection prevalence was highest during the fall. From 177 
October to December at MVCO, aggregate G. delicatula abundance was approximately 5 chains 178 
ml-1 or less coinciding with high aggregate infection prevalence of ~10-12%. Monthly aggregate 179 
abundances increased to ~10 chains ml-1 in January until reaching an annual maximum of >30 180 
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chains ml-1 in March. This increase in monthly aggregate abundance coincided with a decline in 181 
aggregate infection prevalence to ~4% in January and an annual minimum of <1% in March. 182 
Comparable patterns were observed across the broader NES, although monthly aggregate 183 
abundance and infection prevalence values were lower and more uncertain due to less intensive 184 
sampling and lower host abundances. 185 
 186 
A pronounced cross-shore decline in G. delicatula abundance was observed across the NES 187 
(Fig. 3C), with aggregate abundances of ~7 chains ml-1 within 50 km of the coastline declining to 188 
2.30 chains ml-1 between 50-100 km from the coast and <2 chains ml-1 beyond 100 km from the 189 
coast. Consistent cross-shore gradients in infection prevalence were not observed, although 190 
values were generally higher offshore. Across the four NES Ecological Production Units (16, 17), 191 
relatively high aggregate G. delicatula abundances (>2.5 chains ml-1) were observed in the Mid-192 
Atlantic Bight and on Georges Bank and the Scotian Shelf, with lower aggregate abundances 193 
(<1.5 chains ml-1) found in the Gulf of Maine. Aggregate infection prevalence ranged from 0.7-194 
1.3% in the Mid-Atlantic Bight, Georges Bank, and Gulf of Maine regions had similar but was 195 
reduced (<0.5%) on the Scotian Shelf.  196 
 197 
Role of temperature in governing G. delicatula infection  198 
 199 
Previous observations (12) and our results suggest that water temperatures <4 °C provide G. 200 
delicatula with a refuge from parasitoid infection. The more extensive results we report here 201 
confirm the critical role of temperature in governing parasitoid infection of G. delicatula at MVCO 202 
(Fig. 4A) and across the broader NES (Fig. 4B). At MVCO, high G. delicatula abundance 203 
coincident with low infection prevalence (typically <2%) was observed frequently at temperatures 204 
<4 °C as observed previously via manual image classification (12). High G. delicatula 205 
abundances were also regularly observed when temperatures exceeded 4 °C but were often 206 
associated with non-negligible (>5%), and at times high (>20%), infection prevalence. 207 
Observations across the broader NES made possible by the automated classifier supported this 208 
pattern, with negligible infection prevalence found in all samples collected in waters colder than 4 209 
°C except one (associated with high uncertainty). A small number (22 of 4219) of daily 210 
observations at MVCO had non-negligible infection prevalence (>5%) coincident with G. 211 
delicatula abundances >3 chains ml-1 at temperatures <4 °C. Most (18 of 22) of these daily 212 
observations were due to erroneous automated image classification, while the others were a 213 
result of high-resolution sampling and uncertainty in temperature observations (Supporting Text).  214 
 215 
A bootstrap-aggregated ensemble of 100 regression tree models fit to predict infection 216 
prevalence from temperature showed the largest change in infection prevalence partial 217 
dependence at temperature thresholds of 4.6 and 4.1 °C in the MVCO and shipboard data, 218 
respectively (Fig. 4C). In both data sets infection prevalence partial dependence increased 219 
substantially at these thresholds. At MVCO, the partial dependence of infection prevalence was 220 
elevated at temperature values ranging from 4.6-17.6 °C, and showed a sharp decline when 221 
temperatures were >17.6 °C. However, the number of daily observations of elevated G. delicatula 222 
abundance was also lower around this upper threshold relative to the 4.6 °C threshold. In 223 
shipboard observations, the partial dependence of infection declined and remained low at 224 
temperatures >7.5 °C.  225 
 226 
The high-resolution time series and well-resolved annual cycles in G. delicatula abundance and 227 
infection enabled by the automated classifier (Figs. 2-4) suggest that parasitoid infection of G. 228 
delicatula continues to be suppressed for some time after temperatures have warmed above 4 °C 229 
in spring. We investigated this further by computing the frequency of days at MVCO with G. 230 
delicatula abundance >5 chains ml-1 coinciding with and without infection prevalence >5% as a 231 
function of the number of days since the last observation of mean daily temperature <4 °C in 232 
each year (which we refer to hereafter as the end of the “cold snap”; Fig. 5). Across 14 years at 233 
MVCO with adequate data availability (see Fig. 1D-E), G. delicatula was found at high abundance 234 
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frequently (>300 total days) within 60 days of the end of the cold snap, but <2% of these days 235 
coincided with infection prevalence >5% (Fig. 5A). High G. delicatula abundances were found in 236 
conjunction with high infection prevalence within 30 days of the cold snap only in 2012 when the 237 
preceding cold snap lasted only 3 days. Observations of infection events were also rare within 60 238 
days of the end of the cold snap, only occurring in 2012 and 2013 and accounting for a 239 
cumulative total of 6 of the 88 days where high G. delicatula abundances were observed (Fig. 240 
5B). Variable patterns of detection of the five C. aestivalis ASVs at MVCO, including frequent 241 
detection of two ASVs during and following the cold snap, suggest that some strains of C. 242 
aestivalis survive the cold snap (Fig. 5C). Interestingly, however, the most abundant C. aestivalis 243 
ASV at MVCO was only detected from June-December (Fig. 5C) and was never detected during 244 
or within 70 days of the termination of the cold snap. 245 
 246 
Long-term trend in the duration and areal extent of cold snaps on the NES 247 
 248 
A long-term warming trend of 0.37 °C decade-1 was recently reported on the NES (18). Our 249 
results suggest this warming trend could have significant impacts on the dynamics of G. 250 
delicatula abundance and infection by C. aestivalis if it contributes to a decline in the duration and 251 
areal extent of cold snaps. More detailed analysis of the satellite SST record from 1982-2022 252 
showed that the areal extent of cold snaps on the NES follows a clear seasonal cycle with the 253 
maximum areal extent observed during the winter as expected (Fig. 6A). However, over this time 254 
period the spatiotemporal extent of cold snaps has declined at an average rate of -2.1 x 104 d km 255 
yr-1, indicating a likely reduction in the extent of G. delicatula’s thermal refuge from parasitism in 256 
this region (Fig. 6B). Extreme realizations of short-lived and spatially restricted cold snaps were 257 
also more frequent in the final decade of the 40-year satellite record, with the 5 shortest and/or 258 
spatially restricted cold snaps observed in 2012, 2016, 2020, 2021, and 2022 (Fig. 6B). 259 
 260 
Discussion  261 
 262 
Summary 263 
 264 
We used automated, in situ imaging and a convolutional neural network image classifier to 265 
quantify, characterize the spatiotemporal distributions and gradients in, and determine the role of 266 
temperature in controlling G. delicatula abundance and parasitoid infection on the NES. We found 267 
that G. delicatula reached high abundance (>20 chains ml-1) throughout the NES. The highest G. 268 
delicatula abundances were observed in the winter and spring in the nearshore Mid-Atlantic Bight 269 
and on Georges Bank, with high abundances also found during the summer on the Scotian Shelf. 270 
Parasitoid infection of G. delicatula was most prevalent in the fall in the Mid-Atlantic Bight and on 271 
Georges Bank but became negligible when temperatures fell below 4 °C. Here we discuss the 272 
physical and biological controls on G. delicatula abundance and infection dynamics and their 273 
implications with respect to ongoing warming of the NES surface ocean. We conclude with a 274 
discussion of the current limitations and future potential for automated imaging and machine 275 
learning classification to advance understanding of phytoplankton-parasite interactions.  276 
 277 
Gradients in and controls on G. delicatula abundance and infection dynamics on the NES 278 
 279 
Since G. delicatula is one of the biomass-dominant diatoms on the NES (12), understanding its 280 
abundance dynamics and the fates of its production under variable oceanographic conditions is 281 
an important step in predicting the response of the NES ecosystem to anthropogenic climate 282 
forcing. Our results revealed two prominent gradients in G. delicatula abundances. First, a 283 
prominent cross-shore gradient was found, with the highest abundances consistently observed 284 
close to shore (Figs. 1-3). This gradient in G. deliatula abundances follows the cross-shelf decline 285 
in phytoplankton and diatom biomass previously observed across the NES (19–22). These 286 
gradients are typically attributed to increased nutrient loading in the nearshore NES due to 287 
terrestrial and estuarine inputs (21, 22), which likely contributes to the cross-shore gradient in G. 288 
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delicatula abundances observed here. Conversely, cross-shore gradients in G. delicatula 289 
infection prevalence were not resolved here due to high uncertainty in offshore estimates. 290 
Nonetheless, persistently higher aggregate G. delicatula abundances and infection prevalence 291 
found at the near-shore MVCO relative to the cruise observations (Figs. 1-3) suggests that 292 
infection prevalence may be elevated very close to shore where G. delicatula abundances tend to 293 
be especially high. Studies have shown that infection in some freshwater diatom-parasite 294 
systems is host density dependent with “epidemics” only observed at relatively high host densities 295 
(23), which may explain the differences in infection prevalence between the near-shore MVCO 296 
and the broader NES. 297 
 298 
A second prominent gradient in G. delicatula abundances and infection revealed here is the 299 
annual cycle (Figs. 1-3). The largest bloom events typically occurred during or immediately 300 
following periods with water temperatures colder than 4 °C while parasitoid infection was 301 
negligible (Figs. 1, 4-5), suggesting that temperature may indirectly control G. delicatula 302 
abundance through its impacts on infection (12). Observations at MVCO further suggest that G. 303 
delicatula infection remains rare for 60+ days following the cessation of cold temperatures (Figs. 304 
1, 3, 5). Elevated G. delicatula infection prevalence during the fall and winter followed by minimal 305 
infection in the spring across much of the Mid-Atlantic Bight and Georges Bank (Fig. 2) suggests 306 
this pattern holds across much of the NES. Further, from July to September G. delicatula was 307 
highly abundant while infection was negligible in the northern-most portion of the domain (Fig. 2) 308 
where climatological mean SST remains below 4 °C until May (24). Interestingly, the few 309 
published observations of G. delicatula infection by C. aestivalis in other systems (the North and 310 
Wadden Seas) were also made during the late summer and fall (7, 11). Together these 311 
observations suggest that the annual cycle in G. delicatula abundance and infection prevalence 312 
may vary spatially across the NES, with northern, colder areas providing longer G. delicatula 313 
“accumulation windows” by suppressing parasitoid infection. Regression tree analysis suggested 314 
that infection in this system may also be suppressed at temperatures >18 °C, but the relatively 315 
few observations of elevated G. delicatula abundance at these temperatures limits interpretation 316 
of this upper bound in the thermal range of infection.  317 
 318 
Elucidating the biological mechanisms driving the response of G. delicatula infection to 319 
temperature will require experimental verification, but our results aid in the development of 320 
hypotheses to explain this phenomenon. Some of the five C. aestivalis ASVs detected in 321 
amplicon sequencing observations at MVCO were present throughout the year, including when 322 
temperatures were <4 °C and in the spring and summer following these periods (Figs. 1D, 5C). 323 
The presence of some C. aestivalis strains during prolonged periods of negligible G. delicatula 324 
infection shows that some representatives of the C. aestivalis species complex likely survive at 325 
temperatures <4 °C. Interestingly, the most abundant C. aestivalis ASV was not detected during 326 
or within 70 days following cold periods, suggesting that microdiversity within the C. aestivalis 327 
species complex may drive extreme host specificity where only some strains (apparently one at 328 
MVCO) infect G. delicatula. Differences in host and parasite thermal tolerances have been shown 329 
to drive similar responses of diatom abundance and infection to temperature in freshwater 330 
diatom-parasite systems (23, 25). We thus hypothesize that temperature-driven local extinction 331 
events of a single strain of C. aestivalis explains the suppression of G. delicatula infection during 332 
cold snaps, and that infection is only restored after physical processes “re-seed” this strain of C. 333 
aestivalis. Unfortunately, the limited accuracy of DADA2 in inferring ASVs from non-overlapping 334 
paired reads (26) prohibits definitive statements regarding the importance of C. aestivalis 335 
microdiversity relative to other potential explanations, such as life cycle transitions or 336 
physiological adjustments of C. aestivalis to cold temperatures, in explaining the G. delicatula 337 
infection dynamics observed here.  338 
 339 
Our results have important implications for understanding future variability in the NES ecosystem 340 
as it is one of the fastest-warming marine ecosystems on Earth (18, 27, 28). The long-term 341 
decline in the duration and areal extent of waters with temperatures <4 °C and our observations 342 
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of G. delicatula abundance and infection (Figs. 4-6) suggest that dramatic changes in the 343 
magnitude and phenology of G. delicatula accumulation may already be underway on the NES. If 344 
these long-term trends continue, impacts might include reduced or a varied composition of 345 
phytoplankton biomass available for consumption by larger micro- and mesozooplankton (which 346 
may have cascading impacts on the NES food web; (29)) and/or decreased export of diatom 347 
biomass and aggregates from the surface ocean to depth (30, 31). These implications point 348 
toward an urgent need to develop a predictive understanding of the forcings and impacts of 349 
diatom parasitism in economically important coastal ocean ecosystems subject to increasing 350 
anthropogenic influence like the NES.  351 
 352 
Potential and limitations of automated imaging and classification to quantify phytoplankton 353 
parasitism  354 
 355 
Microbial interactions shape planktonic food webs and elemental cycles throughout the worlds’ 356 
oceans (32, 33), but to date these interactions have been difficult to quantify across large 357 
spatiotemporal scales due to technical limitations. Parasitism is an understudied planktonic 358 
interaction given the proliferation of evidence suggesting that parasites are highly abundant 359 
members of marine plankton communities (9, 10). Since diatoms exert disproportionate influence 360 
on marine ecosystems, foundational knowledge of the spatiotemporal dynamics and ecology of 361 
diatom-parasite interactions is needed to better understand and predict the flow(s) of organic 362 
matter through marine food webs (8). This study demonstrates how high-throughput, automated 363 
image analysis can be used to quantify diatom parasitism. Here, we discuss the potential and 364 
limitations of this approach to advance our understanding of diatom-parasite interactions in the 365 
marine environment, and of phytoplankton-parasite interactions in aquatic systems more broadly. 366 
 367 
Currently, plankton imaging provides sufficient resolution to identify many microplankton genera 368 
and some species. Limited image resolution in combination with low morphological diversity in 369 
smaller sized plankton largely precludes taxonomic identification and will likely prevent image-370 
based observation of both free-living parasites and smaller hosts for some time. Our identification 371 
of the parasitoid of G. delicatula as C. aestivalis, and of infected G. delicatula images, relied on 372 
close agreement of the imaged infection cycle stages with previous, detailed observations of the 373 
C. aestivalis infection cycle in culture (11, 12). Some uncertainty remains as to whether all 374 
infection events identified here were carried out by C. aestivalis or another parasitoid with 375 
morphologically similar infection dynamics. These caveats demonstrate important considerations 376 
for identifying and quantifying parasitic infection in other diatoms and microplankton with 377 
automated imaging. Morphological features of infection must be known and resolvable in plankton 378 
images to identify infected hosts. These morphological characteristics can be leveraged in cases 379 
where the parasitoid is not directly observed, as in morphological responses of Alexandrium 380 
fundyense to Ameobophyra sp. infections (34). In cases where infection cycles or host 381 
morphological responses to infection are unknown, recent work (32) suggests that supplementing 382 
images with meta-genetic, genomic, or transcriptomic observations to support identification of 383 
likely interactions of known or suspected parasites with new hosts may allow for application of 384 
these approaches to currently undocumented microplankton-parasite interactions.  385 
 386 
Our results highlight several areas where technical advances in plankton imaging and image 387 
analysis will facilitate efforts to improve quantitation of diatom and microplankton parasitism. First, 388 
reducing uncertainties in estimates of host abundance and infection is possible through continued 389 
development of both the instrumentation and machine learning approaches employed here. 390 
Higher throughput plankton imaging (35) will reduce sampling uncertainty. Similarly, 391 
improvements in automated image classifiers will reduce classification uncertainty. Both 392 
improvements will reduce the degree of sample aggregation needed to resolve spatiotemporal 393 
gradients and increase resolution of small-scale infection dynamics. Further, improved image 394 
classifiers may allow for resolution of additional stages of infection: preliminary classifiers tested 395 
in the present study were unable to consistently distinguish G. delicatula chains with attached 396 
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external nanoflagellates (potentially parasitoids) from other G. delicatula morphologies. The 397 
automated classifier employed here also required an extensive collection of human-annotated 398 
images to ensure consistency and accuracy in both infected and non-infected G. delicatula 399 
classifications across the billions of images analyzed here. Improvements in machine learning 400 
classification may also reduce the required number of human annotations to carry out large-scale 401 
investigations of population dynamics. While our optimized “classify and count” approach was 402 
highly effective for the applications used here, other studies suggest automated quantifiers may 403 
improve estimates of plankton abundance from image data (36, 37). These methods should be 404 
more rigorously evaluated for quantification of diatom-parasite interactions. Finally, well-validated 405 
segmentation algorithms to quantify both infected and non-infected diatom cell abundances from 406 
IFCB or other image data (38) are not currently available, and our study thus focuses on the 407 
combined chain and cell abundance and infection prevalence of G. delicatula. These and other 408 
technical developments will improve resolution of the dynamics and unlock powerful studies of 409 
the ecology of microplankton- and diatom-parasite interactions. 410 
 411 
Materials and Methods 412 
 413 
Imaging-in-flow cytometry 414 
 415 
IFCB has been deployed in situ at ~4 m depth at the MVCO offshore tower located in ~15 m 416 
water depth off the southern coast of Martha’s Vineyard, MA, USA since 2006 (12, 39). IFCB 417 
collects discrete seawater samples every ~25 minutes and images particles larger than ~6 μm. 418 
Manually classified IFCB images are available from regular biweekly monitoring of IFCB data as 419 
well as a previous study that identified G. delicatula parasitism in IFCB images from MVCO (12). 420 
IFCB has also sampled quasi-continuously from the underway flow-through system on 24 (23 of 421 
which are considered here; see Supporting Text), approximately quarterly cruises (conducted by 422 
the NOAA EcoMon program, e.g. (40)) that surveyed the NES since 2013. Winter is under-423 
sampled with only one cruise available, but all other seasons included seven or more cruises. 424 
Additional details are provided in Supporting Text. 425 
 426 
Amplicon sequencing 427 
 428 
Amplicon sequencing observations from MVCO are considered to determine the presence or 429 
absence of C. aestivalis in the water column independently from observations of G. delicatula 430 
infection (free-living C. aestivalis cannot be unambiguously identified in IFCB images). A total of 431 
135 samples were collected for amplicon sequencing of the V4 hypervariable region of the 18S 432 
rRNA gene from February 2013 to December 2021. 18S rRNA gene amplicons were generated 433 
with the 574*f and 1132r primers from (41) (CGGTAAYTCCAGCTCYV; 434 
CCGTCAATTHCTTYAART) and sequenced on an Illumina MiSeq (see Supporting Text for 435 
complete methods). Demultiplexed sequence data were processed using the DADA2 method (26) 436 
with some modifications to accommodate non-overlapping paired reads (Supporting Text). 437 
BLAST analysis (42) showed that 5 ASVs were perfect matches to at least one C. aestivalis 438 
reference sequence included in the Protistan Ribosomal Reference database v4.14.0 (43); these 439 
ASVs are considered here.  440 
 441 
In situ and remotely sensed temperature observations 442 
 443 
Water temperature observations at MVCO are derived from a SeaBird Electronics MicroCAT CTD 444 
deployed alongside the IFCB at the offshore tower. Where water temperature observations are 445 
not available, observations from another MicroCAT CTD deployed at ~12 m depth at an undersea 446 
node ~1.5 km from the IFCB deployment site are used to fill gaps in the offshore tower’s 447 
temperature time series. Across the broader NES, a combination of underway water temperature 448 
and satellite-measured sea surface temperature (SST) observations are considered. Underway 449 
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observations are considered for estimates of water temperature concurrent with IFCB 450 
observations (Fig. 4), while satellite SST is used in composite maps (Figs. 1-2) and long-term 451 
trend analyses (Fig. 6). Supporting Text provides detailed analysis methods for these data. 452 
 453 
Automated image classification  454 
 455 
A convolutional neural network (CNN) image classifier with Inception v3 architecture (13) was 456 
used for automated classification of IFCB images. A training set of at least 20 and at most 2000 457 
manually annotated images from each of 155 classes was used for training and initial validation 458 
of the classifier. The classifier was initialized with pre-trained weights from ImageNet (44) and 459 
fine-tuned with the NES IFCB training set (97026 images, 155 classes, 80-20 split for training and 460 
validation). The classifier performed well in initial validations based on the 20% hold-out set with 461 
an F1 statistic (harmonic mean of precision and recall) across all classes of 0.91.  462 
 463 
Two classes of G. delicatula were separated by the CNN classifier: G. delicatula and infected G. 464 
delicatula (Fig. S1). The “G. delicatula” class includes images of G. delicatula cells and chains 465 
exhibiting a range of morphological features, as well as some images depicting G. delicatula cells 466 
or chains with small flagellates (potentially parasitoids) apparently attached to the exterior of the 467 
frustule (Fig. S1). G. delicatula images with externally-attached nanoflagellates were included in 468 
the non-infected G. delicatula class rather than the infected G. delicatula class for two reasons: 469 
host responses to external parasitoid attachment are unknown and could include successful 470 
defense against infection, and other nanoflagellates may interact with G. delicatula. The class 471 
“infected G. delicatula” includes images of G. delicatula cells or frustules that exhibit signs of 472 
current or recent parasitoid presence within the host frustule (Fig. S1). The class-specific F1 473 
statistics for automated classifications of G. delicatula and infected G. delicatula images using the 474 
“hold-out” subset of the classifier training set were 0.92 and 0.91, respectively. 475 
 476 
Manually annotated images from MVCO independent from those considered in classifier training 477 
were used to optimize and evaluate classifier performance when applied to novel IFCB 478 
observations. Classifier optimization is described in Supporting Text and sought to equate 479 
precision and recall statistics (and thus, false positive and negative classification errors) for G. 480 
delicatula and infected G. delicatula classifications. The F1 statistics obtained for G. delicatula 481 
and infected G. delicatula in the MVCO validation set after optimization were 0.92 and 0.78, 482 
respectively. Estimates of G. delicatula and infected G. delicatula abundances and G. delicatula 483 
infection prevalence based on human and automated classifiers were in close agreement with 484 
one another (Supporting Text; Fig. S2-S3).  485 
 486 
The same optimized classifier was applied and additional classifier validation was performed for 487 
shipboard IFCB observations (Supporting Text). In these data, automated G. delicatula 488 
classifications achieved an F1 value of 0.91 with precision and recall values of 0.92 and 0.90, 489 
while infected G. delicatula classifications had an F1 value of 0.50 and precision and recall values 490 
of 0.52 and 0.48. Following image classification, counts of G. delicatula and infected G. delicatula 491 
chains (it is currently not possible to enumerate individual cells in IFCB images of diatoms) were 492 
determined for discrete IFCB samples.  493 
 494 
Spatiotemporal distributions and gradients 495 
 496 
Maps were created with the m_map MATLAB toolbox (45). We used a spatial sample 497 
aggregation procedure to reduce uncertainty in G. delicatula abundance and infection estimates 498 
and smooth the data for inspection of large-scale spatial distributions (Supporting Text, Fig. S4-499 
S5). Monthly aggregate abundances and infection prevalence were used to quantify seasonal 500 
gradients. To characterize cross-shore gradients the Climate Data Toolbox (46) was used to 501 
compute great circle distances from each IFCB sample to the nearest coastline. We characterize 502 
gradients across the four major “Ecological Production Units” on the NES (16, 17) after slightly 503 
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modifying the boundaries used by (17) to incorporate more of the available IFCB data (Fig. S6). 504 
Spatiotemporal gradients across each of these dimensions are characterized by aggregating 505 
discrete IFCB samples and estimating uncertainty as described in Supporting Text.  506 
 507 
Regression tree analysis 508 
 509 
A bootstrap-aggregated ensemble of 100 regression trees was fit to both the shipboard and daily-510 
aggregated MVCO data sets of concurrent G. delicatula infection prevalence and temperature 511 
observations. Our goal in this analysis was to objectively determine critical temperature 512 
thresholds that may result in dramatic changes in G. delicatula's susceptibility to infection. For 513 
this reason, each regression tree was constrained to include only 2 splits. Concurrent 514 
temperature and infection prevalence values were only included in this analysis where G. 515 
delicatula abundances were >5 chains ml-1 to prevent biasing results toward highly uncertain 516 
infection prevalence estimates. The partial dependences of infection prevalence on temperature 517 
in each data set illustrate predicted values of infection prevalence from a given temperature value 518 
from the ensemble tree.  519 
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Figures Captions 649 
   650 
Figure 1. Spatiotemporal dynamics of G. delicatula abundance and parasitoid infection. Maps 651 
show composites of (A) total G. delicatula abundance and (B) infection prevalence and (C) mean 652 
satellite sea surface temperature during the period over which these cruises took place. The color 653 
bar in (A) is truncated at 20 chains ml-1. Black lines in (C) show the boundaries of “Ecological 654 
Production Units” previously defined for the Northeast U.S. Shelf (17). Infection prevalence is not 655 
shown where host abundance is <1 chain ml-1 due to high uncertainty. Time series observations 656 
are daily (D) aggregate G. delicatula abundance (dots) and infection prevalence (dot color) and 657 
(E) mean in-situ water temperature at MVCO. The y-axis and colorbar in (D) are truncated at 200 658 
chains ml-1 and 20%, respectively. Pink triangles in (D) from 2013-2021 indicate where at least 659 
one C. aestivalis ASV was (filled) or was not (open) detected in amplicon sequencing 660 
observations. Gray shading indicates periods where water temperature was <4 °C.  661 
 662 
  663 
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Figure 2. Composite maps of (A, D, G, J) total G. delicatula abundance and (B, E, H, K) infection 664 
prevalence and (C, F, I, L) mean satellite sea surface temperature during each season from 665 
2013-2021. Infection prevalence is not shown where host abundance is <1 chain ml-1 due to high 666 
uncertainty. Abundance colorbars are truncated at 20 chains ml-1, infection prevalence colorbars 667 
are truncated at 10%, and temperature colorbars are truncated at 4 °C. 668 
 669 
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Figure 3. Spatiotemporal gradients in G. delicatula abundance (navy) and infection prevalence 671 
(pink). Shown are (A, B) monthly aggregate abundance and infection prevalence (A) at the 672 
nearshore Martha’s Vineyard Coastal Observatory (MVCO) time series and (B) across the 673 
broader Northeast U.S. Shelf, and (C) cross-shore and (D) inter-region gradients. (B-D) do not 674 
consider observations at MVCO. Error bars show 95% confidence intervals for aggregate 675 
concentrations assuming counts are drawn from a Poisson distribution. Note that scales vary 676 
across different panels. 677 
 678 
  679 
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Figure 4. Role of temperature in governing G. delicatula parasitoid infection dynamics (A) at 680 
MVCO and (B) across the broader NES. (C) shows the partial dependence of infection 681 
prevalence on temperature determined from regression tree analysis (left axis) and the number of 682 
observations in each temperature bin (right axis) at MVCO (black) and across the broader NES 683 
(red). In all panels, vertical dashed lines indicate 4 °C and observations are only considered 684 
where G. delicatula abundance is >5 chains ml-1. Observations at MVCO are daily aggregate 685 
quantities. The colorbar is truncated at 50 chains ml-1 to facilitate visualization of abundances.  686 
 687 
  688 
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Figure 5. Continued suppression of infection following cold periods. (A) shows the number of 689 
days with aggregate G. delicatula abundance >5 chains ml-1 (navy) coincident with infection 690 
prevalence >5% (pink) relative to the number of days since daily average temperatures were <4 691 
°C across all years at Martha’s Vineyard Coastal Observatory (MVCO). (B) shows these data for 692 
individual years with black numbers showing the number of days with aggregate G. delicatula 693 
abundance >5 chains ml-1 and tile color indicating the fraction of those days with infection 694 
prevalence >5%. (C) shows relative frequencies of detection of the five C. aestivalis ASVs 695 
detected in amplicon sequencing observations relative to the number of days to detection of each 696 
ASV following an observation of water temperature <4 °C across all years at MVCO. C. aestivalis 697 
ASVs are numbered according to their rank order cumulative relative abundance across all 698 
available samples, with ASV1 the most abundant. 699 

  700 
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Figure 6. Long-term trend in the spatiotemporal extent of cold periods on the Northeast U.S. 701 
Shelf (NES). Shown are (A) a daily time series of the areal extent of waters with sea surface 702 
temperature (SST) <4 °C on the NES and (B) its annual integral. The red line in (B) indicates the 703 
long-term linear trend determined by linear regression.  704 
 705 

 706 
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