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Abstract

Diatoms are a group of phytoplankton that contribute disproportionately to global primary
production. Traditional paradigms that suggest diatoms are consumed primarily by larger
zooplankton are challenged by sporadic parasitic “epidemics” within diatom populations, but our
understanding of diatom parasitism is limited by difficulties in quantifying these interactions. Here,
we observe the dynamics of Cryothecomonas aestivalis (a protist) infection of an important
diatom on the Northeast U.S. Shelf (NES), Guinardia delicatula, with a combination of automated
imaging-in-flow cytometry and a convolutional neural network image classifier. Application of the
classifier to >1 billion images from a nearshore time series and >20 survey cruises across the
broader NES reveals the spatiotemporal gradients and temperature dependence of G. delicatula
abundance and infection dynamics. Suppression of parasitoid infection at temperatures <4 °C
drives annual cycles in both G. delicatula infection and abundance, with an annual maximum in
infection observed in the fall-winter preceding an annual maximum in host abundance in the
winter-spring. This annual cycle likely varies spatially across the NES in response to variable
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annual cycles in water temperature. We show that infection remains suppressed for ~2 months
following cold periods, possibly due to temperature-induced local extinctions of the C. aestivalis
strain(s) that infect G. delicatula. These findings have implications for predicting impacts of a
warming NES surface ocean on G. delicatula abundance and infection dynamics and
demonstrate the potential of automated plankton imaging and classification to quantify
phytoplankton parasitism in nature across unprecedented spatiotemporal scales.

Significance Statement

Diatoms are unicellular algae whose “blooms” are associated with high primary productivity,
prolific fisheries, and carbon flux to the deep ocean. Despite its potential impact on marine food
webs, diatom parasitism is poorly understood due to challenges observing its prevalence and
environmental controls at appropriate spatiotemporal scales. Here we use automated plankton
imaging and machine learning classification to elucidate abundance and parasitic infection
dynamics of a biomass-dominant diatom on the Northeast U.S. Shelf. We suggest that
temperature indirectly regulates diatom abundance via direct suppression of parasitism. This
temperature dependence implies that ongoing warming may enable parasitic infection to occur
throughout the year, driving dramatic shifts in this diatom’s abundance dynamics with potential
cascading effects on the Northeast U.S. Shelf ecosystem.

Main Text
Introduction

Diatoms are a major source of oceanic primary production and play an outsized role in marine
ecosystems and global biogeochemistry (1, 2). Diatoms frequently accumulate in response to
nutrient enrichment of the surface ocean, and these “blooms” likely result in productive marine
food webs and fisheries (1, 3). Traditional oceanographic paradigms explain this association by
arguing that diatom production is predominantly consumed by large micro- and meso-
zooplankton which provide an efficient link to higher trophic levels (3-5). Diatoms can also be
infected by smaller eukaryotic parasites and parasitoids (parasites that kill their hosts) as
demonstrated by sporadic observations of “epidemics” within some diatom populations over the
past several decades (6—8). While amplicon sequencing surveys have revealed a high diversity of
putative eukaryotic parasites and many potential interactions with diverse diatoms (9, 10), the
time, cost, and technical expertise required to make direct observations of diatom parasitism have
thus far limited understanding of its prevalence, spatiotemporal dynamics, and oceanographic
forcings (8).



73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

One known example of diatom parasitism involves infection of the diatom, Guinardia delicatula,
by the Cercozoan nanoflagellate, Cryothecomonas aestivalis (11). In this system the parasitoid
penetrates the host’s cell wall and subsequently consumes the host protoplast from within,
resulting in host mortality. After consuming its host, the enlarged C. aestivalis cell divides several
(usually 3, occasionally more) times within the frustule to create swarmers that reenter the free-
living plankton community, often leaving fecal pellets behind in the host frustule (11). C. aestivalis
is known to infect G. delicatula in the North and Wadden Seas (7). More recently, a study at the
nearshore Martha’s Vineyard Coastal Observatory (MVCO) found recurrent, widespread infection
of G. delicatula by C. aestivalis in a 7-year time series of manually-annotated plankton images
collected by Imaging FlowCytobot (IFCB) (12). In that study, infection by C. aestivalis was often
found to regulate the magnitude of G. delicatula accumulation. When temperatures fell below 4
°C, however, infection was suppressed and accumulation of the host was frequently observed
(12). This study combined with recent advances in automated image classification (13—15)
demonstrate a path to develop automated, high-throughput approaches to quantify diatom
parasitism on unprecedented spatiotemporal scales, and in turn fill a major gap in our knowledge
of the prevalence, ecological significance, and oceanographic determinants of infection.

Here, we develop and apply an automated, machine learning-based classifier to >1 billion IFCB
images gathered from >300,000 samples from the Northeast U.S. Shelf (NES) to quantify G.
delicatula abundance and infection by C. aestivalis. The classifier is trained, optimized, and
validated with a large set of manually annotated G. delicatula images including uninfected and
infected chains. We apply the classifier to quantify G. delicatula abundance and infection
prevalence with daily resolution across an in situ, ~15-year time series at MVCO and with ~10 km
resolution across a spatial domain extending from the northern Gulf of Maine to the southern Mid-
Atlantic Bight sampled during 23 cruises conducted across 9 years. Our results support a
previous study’s findings of recurrent, significant levels of infection of G. delicatula and a
suppression of infection at temperatures <4 °C at the nearshore MVCO. Use of the automated
classifier enabled discovery of continued suppression of infection for at least 60 days following
these cold temperatures and observations of comparable infection dynamics across a spatial
domain spanning from Cape Hatteras to Nova Scotia. Integrating genetic observations with the
imaging results suggested high niche diversity within the C. aestivalis species complex and that
cold temperatures result in local extinction of the strain parasitizing G. delicatula. A long-term
reduction in the spatiotemporal extent of waters with temperature <4 °C indicates continued
warming on the NES may reshape G. delicatula abundance and infection dynamics. In addition to
elucidating the large-scale biogeography of C. aestivalis infection of G. delicatula on the NES, this
study demonstrates the potential for automated plankton imaging coupled with artificial
intelligence to advance knowledge of the understudied dynamics of phytoplankton-parasite
interactions.

Results
Spatiotemporal dynamics of G. delicatula abundance and infection on the Northeast U.S. Shelf

G. delicatula was observed at relatively high abundances (>5 chains ml”") throughout the NES
and was often found at extremely high abundance (>50 chains ml”") at the nearshore MVCO time
series site (Fig. 1). A cross-shore gradient in G. delicatula abundances was evident across most
of the NES, with high abundances close to shore declining to near-zero abundances beyond the
shelf break (Fig. 1A). Low abundances were also observed in deep waters of the Gulf of Maine.
G. delicatula abundances were highest in the northern Mid-Atlantic Bight and on Georges Bank,
with relatively high abundances also seen on the Scotian Shelf. G. delicatula infection prevalence
(Fig. 1B) was low (<5%) across most of the NES, but the spatial distribution showed a similar
pattern to that of total G. delicatula abundance on the northern Mid-Atlantic Bight and Georges
Bank. Areas associated with relatively high infection in these regions generally mirrored those
associated with high abundance. Notably, infection was limited in nearshore waters of the Scotian
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Shelf despite relatively high G. delicatula abundances. Low G. delicatula abundance in offshore
waters of the NES and in most of the Gulf of Maine drove high uncertainty in infection prevalence.
Mean sea surface temperatures (SST) (Fig. 1C) across the NES were typically >20 °C offshore of
the shelf break and in the southern portion of the Mid-Atlantic Bight, 15-20 °C in the northern Mid-
Atlantic Bight, and 10 °C or colder in the northern Gulf of Maine and Scotian Shelf. Infection
prevalence appeared to be lowest in the cooler northern Gulf of Maine and Scotian Shelf, while
high aggregate G. delicatula abundances were found across a broad range of mean
temperatures except >20 °C.

Daily IFCB time series of G. delicatula abundance and infection prevalence alongside daily mean
water temperature at MVCO provide a detailed view of temporal dynamics at a nearshore site on
the NES, with intermittent amplicon sequencing observations providing additional insight into the
dynamics of the parasitoid at this site (Fig. 1D-E). G. delicatula abundance and infection
prevalence were often higher at MVCO than across the broader NES, regularly reaching
abundances >50 chains ml™ and infection prevalence >20%. High abundances were most often
observed in the winter during or immediately following periods where water temperature was <4
°C and infection prevalence was negligible, in agreement with previous observations (12). G.
delicatula also accumulated at other times of year when temperatures were warmer, but during
these events abundances rarely exceeded 50 chains ml™". Parasitoid infection was most prevalent
in the fall, with infection prevalence values of 20% or higher regularly observed prior to the
seasonal onset of temperatures <4 °C. Infection prevalence was typically low during the spring
and early summer, even when G. delicatula reached moderately high abundances and
temperature exceeded 4 °C. Interestingly, at least some of the five C. aestivalis amplicon
sequence variants (ASVs, a genetic proxy for strains or species) were detected at MVCO
throughout the year, including during periods cooler than 4 °C and in the spring and summer
when G. delicatula infection prevalence was negligible.

Observations show seasonal variations in the distributions of G. delicatula abundance and
infection prevalence and in SST across the NES (Fig. 2). While only one cruise with limited
coverage of the Gulf of Maine, Scotian Shelf, and southern Mid-Atlantic Bight was conducted
during the winter, G. delicatula abundances were elevated (>20 chains ml™") and infection
prevalence was high compared to other seasons across much of the NES. Mean winter-time
SSTs on the NES were generally <10 °C and were <4 °C in many nearshore locations. G.
delicatula abundance remained high across much of the Mid-Atlantic Bight and Georges Bank
during the spring, with a notable nearshore band of elevated abundance also observed in the Gulf
of Maine. Where infection prevalence was measurable during the spring, it was generally lower
than in winter despite mean SSTs >~10 °C. G. delicatula abundances were low (<5 chains ml™")
across much of the NES during the summer and infection prevalence was generally not
quantifiable when seasonal mean SST was highest across most of the domain. The exception
was at the northern edge of the domain including the Scotian Shelf and a small portion of the
northern Gulf of Maine where high G. delicatula abundances coincided with negligible infection
and relatively cool SSTs. In the fall, G. delicatula was typically not detected throughout the Gulf of
Maine and Scotian Shelf, while intermediate abundances (~5 chains ml'1) and SSTs associated
with relatively high (>5%) infection prevalence were observed in several locations across the Mid-
Atlantic Bight and Georges Bank.

Spatial and temporal gradients in G. delicatula abundance and infection

Distinct annual cycles were observed in G. delicatula abundance and infection prevalence both at
MVCO and across the broader NES (Fig. 3A-B). Monthly aggregate G. delicatula abundances
were highest in the winter and spring while infection prevalence was highest during the fall. From
October to December at MVCO, aggregate G. delicatula abundance was approximately 5 chains
ml™ or less coinciding with high aggregate infection prevalence of ~10-12%. Monthly aggregate
abundances increased to ~10 chains ml™ in January until reaching an annual maximum of >30
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chains ml™ in March. This increase in monthly aggregate abundance coincided with a decline in
aggregate infection prevalence to ~4% in January and an annual minimum of <1% in March.
Comparable patterns were observed across the broader NES, although monthly aggregate
abundance and infection prevalence values were lower and more uncertain due to less intensive
sampling and lower host abundances.

A pronounced cross-shore decline in G. delicatula abundance was observed across the NES
(Fig. 3C), with aggregate abundances of ~7 chains mil™ within 50 km of the coastline declining to
2.30 chains ml” between 50-100 km from the coast and <2 chains ml” beyond 100 km from the
coast. Consistent cross-shore gradients in infection prevalence were not observed, although
values were generally higher offshore. Across the four NES Ecological Production Units (16, 17),
relatively high aggregate G. delicatula abundances (>2.5 chains ml'1) were observed in the Mid-
Atlantic Bight and on Georges Bank and the Scotian Shelf, with lower aggregate abundances
(<1.5 chains ml'1) found in the Gulf of Maine. Aggregate infection prevalence ranged from 0.7-
1.3% in the Mid-Atlantic Bight, Georges Bank, and Gulf of Maine regions had similar but was
reduced (<0.5%) on the Scotian Shelf.

Role of temperature in governing G. delicatula infection

Previous observations (12) and our results suggest that water temperatures <4 °C provide G.
delicatula with a refuge from parasitoid infection. The more extensive results we report here
confirm the critical role of temperature in governing parasitoid infection of G. delicatula at MVCO
(Fig. 4A) and across the broader NES (Fig. 4B). At MVCO, high G. delicatula abundance
coincident with low infection prevalence (typically <2%) was observed frequently at temperatures
<4 °C as observed previously via manual image classification (12). High G. delicatula
abundances were also regularly observed when temperatures exceeded 4 °C but were often
associated with non-negligible (>5%), and at times high (>20%), infection prevalence.
Observations across the broader NES made possible by the automated classifier supported this
pattern, with negligible infection prevalence found in all samples collected in waters colder than 4
°C except one (associated with high uncertainty). A small number (22 of 4219) of daily
observations at MVCO had non-negligible infection prevalence (>5%) coincident with G.
delicatula abundances >3 chains mI" at temperatures <4 °C. Most (18 of 22) of these daily
observations were due to erroneous automated image classification, while the others were a
result of high-resolution sampling and uncertainty in temperature observations (Supporting Text).

A bootstrap-aggregated ensemble of 100 regression tree models fit to predict infection
prevalence from temperature showed the largest change in infection prevalence partial
dependence at temperature thresholds of 4.6 and 4.1 °C in the MVCO and shipboard data,
respectively (Fig. 4C). In both data sets infection prevalence partial dependence increased
substantially at these thresholds. At MVCO, the partial dependence of infection prevalence was
elevated at temperature values ranging from 4.6-17.6 °C, and showed a sharp decline when
temperatures were >17.6 °C. However, the number of daily observations of elevated G. delicatula
abundance was also lower around this upper threshold relative to the 4.6 °C threshold. In
shipboard observations, the partial dependence of infection declined and remained low at
temperatures >7.5 °C.

The high-resolution time series and well-resolved annual cycles in G. delicatula abundance and
infection enabled by the automated classifier (Figs. 2-4) suggest that parasitoid infection of G.
delicatula continues to be suppressed for some time after temperatures have warmed above 4 °C
in spring. We investigated this further by computing the frequency of days at MVCO with G.
delicatula abundance >5 chains ml” coinciding with and without infection prevalence >5% as a
function of the number of days since the last observation of mean daily temperature <4 °C in
each year (which we refer to hereafter as the end of the “cold snap”; Fig. 5). Across 14 years at
MVCO with adequate data availability (see Fig. 1D-E), G. delicatula was found at high abundance
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frequently (>300 total days) within 60 days of the end of the cold snap, but <2% of these days
coincided with infection prevalence >5% (Fig. 5A). High G. delicatula abundances were found in
conjunction with high infection prevalence within 30 days of the cold snap only in 2012 when the
preceding cold snap lasted only 3 days. Observations of infection events were also rare within 60
days of the end of the cold snap, only occurring in 2012 and 2013 and accounting for a
cumulative total of 6 of the 88 days where high G. delicatula abundances were observed (Fig.
5B). Variable patterns of detection of the five C. aestivalis ASVs at MVCO, including frequent
detection of two ASVs during and following the cold snap, suggest that some strains of C.
aestivalis survive the cold snap (Fig. 5C). Interestingly, however, the most abundant C. aestivalis
ASV at MVCO was only detected from June-December (Fig. 5C) and was never detected during
or within 70 days of the termination of the cold snap.

Long-term trend in the duration and areal extent of cold snaps on the NES

A long-term warming trend of 0.37 °C decade™ was recently reported on the NES (18). Our
results suggest this warming trend could have significant impacts on the dynamics of G.
delicatula abundance and infection by C. aestivalis if it contributes to a decline in the duration and
areal extent of cold snaps. More detailed analysis of the satellite SST record from 1982-2022
showed that the areal extent of cold snaps on the NES follows a clear seasonal cycle with the
maximum areal extent observed during the winter as expected (Fig. 6A). However, over this time
period the spatiotemporal extent of cold snaps has declined at an average rate of -2.1 x 10* d km
yr, indicating a likely reduction in the extent of G. delicatula’s thermal refuge from parasitism in
this region (Fig. 6B). Extreme realizations of short-lived and spatially restricted cold snaps were
also more frequent in the final decade of the 40-year satellite record, with the 5 shortest and/or
spatially restricted cold snaps observed in 2012, 2016, 2020, 2021, and 2022 (Fig. 6B).

Discussion
Summary

We used automated, in situ imaging and a convolutional neural network image classifier to
quantify, characterize the spatiotemporal distributions and gradients in, and determine the role of
temperature in controlling G. delicatula abundance and parasitoid infection on the NES. We found
that G. delicatula reached high abundance (>20 chains ml™") throughout the NES. The highest G.
delicatula abundances were observed in the winter and spring in the nearshore Mid-Atlantic Bight
and on Georges Bank, with high abundances also found during the summer on the Scotian Shelf.
Parasitoid infection of G. delicatula was most prevalent in the fall in the Mid-Atlantic Bight and on
Georges Bank but became negligible when temperatures fell below 4 °C. Here we discuss the
physical and biological controls on G. delicatula abundance and infection dynamics and their
implications with respect to ongoing warming of the NES surface ocean. We conclude with a
discussion of the current limitations and future potential for automated imaging and machine
learning classification to advance understanding of phytoplankton-parasite interactions.

Gradients in and controls on G. delicatula abundance and infection dynamics on the NES

Since G. delicatula is one of the biomass-dominant diatoms on the NES (12), understanding its
abundance dynamics and the fates of its production under variable oceanographic conditions is
an important step in predicting the response of the NES ecosystem to anthropogenic climate
forcing. Our results revealed two prominent gradients in G. delicatula abundances. First, a
prominent cross-shore gradient was found, with the highest abundances consistently observed
close to shore (Figs. 1-3). This gradient in G. deliatula abundances follows the cross-shelf decline
in phytoplankton and diatom biomass previously observed across the NES (19-22). These
gradients are typically attributed to increased nutrient loading in the nearshore NES due to
terrestrial and estuarine inputs (21, 22), which likely contributes to the cross-shore gradient in G.
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delicatula abundances observed here. Conversely, cross-shore gradients in G. delicatula
infection prevalence were not resolved here due to high uncertainty in offshore estimates.
Nonetheless, persistently higher aggregate G. delicatula abundances and infection prevalence
found at the near-shore MVCO relative to the cruise observations (Figs. 1-3) suggests that
infection prevalence may be elevated very close to shore where G. delicatula abundances tend to
be especially high. Studies have shown that infection in some freshwater diatom-parasite
systems is host density dependent with “epidemics” only observed at relatively high host densities
(23), which may explain the differences in infection prevalence between the near-shore MVCO
and the broader NES.

A second prominent gradient in G. delicatula abundances and infection revealed here is the
annual cycle (Figs. 1-3). The largest bloom events typically occurred during or immediately
following periods with water temperatures colder than 4 °C while parasitoid infection was
negligible (Figs. 1, 4-5), suggesting that temperature may indirectly control G. delicatula
abundance through its impacts on infection (12). Observations at MVCO further suggest that G.
delicatula infection remains rare for 60+ days following the cessation of cold temperatures (Figs.
1, 3, 5). Elevated G. delicatula infection prevalence during the fall and winter followed by minimal
infection in the spring across much of the Mid-Atlantic Bight and Georges Bank (Fig. 2) suggests
this pattern holds across much of the NES. Further, from July to September G. delicatula was
highly abundant while infection was negligible in the northern-most portion of the domain (Fig. 2)
where climatological mean SST remains below 4 °C until May (24). Interestingly, the few
published observations of G. delicatula infection by C. aestivalis in other systems (the North and
Wadden Seas) were also made during the late summer and fall (7, 11). Together these
observations suggest that the annual cycle in G. delicatula abundance and infection prevalence
may vary spatially across the NES, with northern, colder areas providing longer G. delicatula
“accumulation windows” by suppressing parasitoid infection. Regression tree analysis suggested
that infection in this system may also be suppressed at temperatures >18 °C, but the relatively
few observations of elevated G. delicatula abundance at these temperatures limits interpretation
of this upper bound in the thermal range of infection.

Elucidating the biological mechanisms driving the response of G. delicatula infection to
temperature will require experimental verification, but our results aid in the development of
hypotheses to explain this phenomenon. Some of the five C. aestivalis ASVs detected in
amplicon sequencing observations at MVCO were present throughout the year, including when
temperatures were <4 °C and in the spring and summer following these periods (Figs. 1D, 5C).
The presence of some C. aestivalis strains during prolonged periods of negligible G. delicatula
infection shows that some representatives of the C. aestivalis species complex likely survive at
temperatures <4 °C. Interestingly, the most abundant C. aestivalis ASV was not detected during
or within 70 days following cold periods, suggesting that microdiversity within the C. aestivalis
species complex may drive extreme host specificity where only some strains (apparently one at
MVCO) infect G. delicatula. Differences in host and parasite thermal tolerances have been shown
to drive similar responses of diatom abundance and infection to temperature in freshwater
diatom-parasite systems (23, 25). We thus hypothesize that temperature-driven local extinction
events of a single strain of C. aestivalis explains the suppression of G. delicatula infection during
cold snaps, and that infection is only restored after physical processes “re-seed” this strain of C.
aestivalis. Unfortunately, the limited accuracy of DADA2 in inferring ASVs from non-overlapping
paired reads (26) prohibits definitive statements regarding the importance of C. aestivalis
microdiversity relative to other potential explanations, such as life cycle transitions or
physiological adjustments of C. aestivalis to cold temperatures, in explaining the G. delicatula
infection dynamics observed here.

Our results have important implications for understanding future variability in the NES ecosystem
as it is one of the fastest-warming marine ecosystems on Earth (18, 27, 28). The long-term
decline in the duration and areal extent of waters with temperatures <4 °C and our observations
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of G. delicatula abundance and infection (Figs. 4-6) suggest that dramatic changes in the
magnitude and phenology of G. delicatula accumulation may already be underway on the NES. If
these long-term trends continue, impacts might include reduced or a varied composition of
phytoplankton biomass available for consumption by larger micro- and mesozooplankton (which
may have cascading impacts on the NES food web; (29)) and/or decreased export of diatom
biomass and aggregates from the surface ocean to depth (30, 31). These implications point
toward an urgent need to develop a predictive understanding of the forcings and impacts of
diatom parasitism in economically important coastal ocean ecosystems subject to increasing
anthropogenic influence like the NES.

Potential and limitations of automated imaging and classification to quantify phytoplankton
parasitism

Microbial interactions shape planktonic food webs and elemental cycles throughout the worlds’
oceans (32, 33), but to date these interactions have been difficult to quantify across large
spatiotemporal scales due to technical limitations. Parasitism is an understudied planktonic
interaction given the proliferation of evidence suggesting that parasites are highly abundant
members of marine plankton communities (9, 10). Since diatoms exert disproportionate influence
on marine ecosystems, foundational knowledge of the spatiotemporal dynamics and ecology of
diatom-parasite interactions is needed to better understand and predict the flow(s) of organic
matter through marine food webs (8). This study demonstrates how high-throughput, automated
image analysis can be used to quantify diatom parasitism. Here, we discuss the potential and
limitations of this approach to advance our understanding of diatom-parasite interactions in the
marine environment, and of phytoplankton-parasite interactions in aquatic systems more broadly.

Currently, plankton imaging provides sufficient resolution to identify many microplankton genera
and some species. Limited image resolution in combination with low morphological diversity in
smaller sized plankton largely precludes taxonomic identification and will likely prevent image-
based observation of both free-living parasites and smaller hosts for some time. Our identification
of the parasitoid of G. delicatula as C. aestivalis, and of infected G. delicatula images, relied on
close agreement of the imaged infection cycle stages with previous, detailed observations of the
C. aestivalis infection cycle in culture (11, 12). Some uncertainty remains as to whether all
infection events identified here were carried out by C. aestivalis or another parasitoid with
morphologically similar infection dynamics. These caveats demonstrate important considerations
for identifying and quantifying parasitic infection in other diatoms and microplankton with
automated imaging. Morphological features of infection must be known and resolvable in plankton
images to identify infected hosts. These morphological characteristics can be leveraged in cases
where the parasitoid is not directly observed, as in morphological responses of Alexandrium
fundyense to Ameobophyra sp. infections (34). In cases where infection cycles or host
morphological responses to infection are unknown, recent work (32) suggests that supplementing
images with meta-genetic, genomic, or transcriptomic observations to support identification of
likely interactions of known or suspected parasites with new hosts may allow for application of
these approaches to currently undocumented microplankton-parasite interactions.

Our results highlight several areas where technical advances in plankton imaging and image
analysis will facilitate efforts to improve quantitation of diatom and microplankton parasitism. First,
reducing uncertainties in estimates of host abundance and infection is possible through continued
development of both the instrumentation and machine learning approaches employed here.
Higher throughput plankton imaging (35) will reduce sampling uncertainty. Similarly,
improvements in automated image classifiers will reduce classification uncertainty. Both
improvements will reduce the degree of sample aggregation needed to resolve spatiotemporal
gradients and increase resolution of small-scale infection dynamics. Further, improved image
classifiers may allow for resolution of additional stages of infection: preliminary classifiers tested
in the present study were unable to consistently distinguish G. delicatula chains with attached
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external nanoflagellates (potentially parasitoids) from other G. delicatula morphologies. The
automated classifier employed here also required an extensive collection of human-annotated
images to ensure consistency and accuracy in both infected and non-infected G. delicatula
classifications across the billions of images analyzed here. Improvements in machine learning
classification may also reduce the required number of human annotations to carry out large-scale
investigations of population dynamics. While our optimized “classify and count” approach was
highly effective for the applications used here, other studies suggest automated quantifiers may
improve estimates of plankton abundance from image data (36, 37). These methods should be
more rigorously evaluated for quantification of diatom-parasite interactions. Finally, well-validated
segmentation algorithms to quantify both infected and non-infected diatom cell abundances from
IFCB or other image data (38) are not currently available, and our study thus focuses on the
combined chain and cell abundance and infection prevalence of G. delicatula. These and other
technical developments will improve resolution of the dynamics and unlock powerful studies of
the ecology of microplankton- and diatom-parasite interactions.

Materials and Methods
Imaging-in-flow cytometry

IFCB has been deployed in situ at ~4 m depth at the MVCO offshore tower located in ~15 m
water depth off the southern coast of Martha’s Vineyard, MA, USA since 2006 (12, 39). IFCB
collects discrete seawater samples every ~25 minutes and images particles larger than ~6 ym.
Manually classified IFCB images are available from regular biweekly monitoring of IFCB data as
well as a previous study that identified G. delicatula parasitism in IFCB images from MVCO (12).
IFCB has also sampled quasi-continuously from the underway flow-through system on 24 (23 of
which are considered here; see Supporting Text), approximately quarterly cruises (conducted by
the NOAA EcoMon program, e.g. (40)) that surveyed the NES since 2013. Winter is under-
sampled with only one cruise available, but all other seasons included seven or more cruises.
Additional details are provided in Supporting Text.

Amplicon sequencing

Amplicon sequencing observations from MVCO are considered to determine the presence or
absence of C. aestivalis in the water column independently from observations of G. delicatula
infection (free-living C. aestivalis cannot be unambiguously identified in IFCB images). A total of
135 samples were collected for amplicon sequencing of the V4 hypervariable region of the 18S
rRNA gene from February 2013 to December 2021. 18S rRNA gene amplicons were generated
with the 574*f and 1132r primers from (41) (CGGTAAYTCCAGCTCYV;
CCGTCAATTHCTTYAART) and sequenced on an lllumina MiSeq (see Supporting Text for
complete methods). Demultiplexed sequence data were processed using the DADA2 method (26)
with some modifications to accommodate non-overlapping paired reads (Supporting Text).
BLAST analysis (42) showed that 5 ASVs were perfect matches to at least one C. aestivalis
reference sequence included in the Protistan Ribosomal Reference database v4.14.0 (43); these
ASVs are considered here.

In situ and remotely sensed temperature observations

Water temperature observations at MVCO are derived from a SeaBird Electronics MicroCAT CTD
deployed alongside the IFCB at the offshore tower. Where water temperature observations are
not available, observations from another MicroCAT CTD deployed at ~12 m depth at an undersea
node ~1.5 km from the IFCB deployment site are used to fill gaps in the offshore tower’s
temperature time series. Across the broader NES, a combination of underway water temperature
and satellite-measured sea surface temperature (SST) observations are considered. Underway
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observations are considered for estimates of water temperature concurrent with IFCB
observations (Fig. 4), while satellite SST is used in composite maps (Figs. 1-2) and long-term
trend analyses (Fig. 6). Supporting Text provides detailed analysis methods for these data.

Automated image classification

A convolutional neural network (CNN) image classifier with Inception v3 architecture (13) was
used for automated classification of IFCB images. A training set of at least 20 and at most 2000
manually annotated images from each of 155 classes was used for training and initial validation
of the classifier. The classifier was initialized with pre-trained weights from ImageNet (44) and
fine-tuned with the NES IFCB training set (97026 images, 155 classes, 80-20 split for training and
validation). The classifier performed well in initial validations based on the 20% hold-out set with
an F1 statistic (harmonic mean of precision and recall) across all classes of 0.91.

Two classes of G. delicatula were separated by the CNN classifier: G. delicatula and infected G.
delicatula (Fig. S1). The “G. delicatula” class includes images of G. delicatula cells and chains
exhibiting a range of morphological features, as well as some images depicting G. delicatula cells
or chains with small flagellates (potentially parasitoids) apparently attached to the exterior of the
frustule (Fig. S1). G. delicatula images with externally-attached nanoflagellates were included in
the non-infected G. delicatula class rather than the infected G. delicatula class for two reasons:
host responses to external parasitoid attachment are unknown and could include successful
defense against infection, and other nanoflagellates may interact with G. delicatula. The class
“‘infected G. delicatula” includes images of G. delicatula cells or frustules that exhibit signs of
current or recent parasitoid presence within the host frustule (Fig. S1). The class-specific F1
statistics for automated classifications of G. delicatula and infected G. delicatula images using the
“hold-out” subset of the classifier training set were 0.92 and 0.91, respectively.

Manually annotated images from MVCO independent from those considered in classifier training
were used to optimize and evaluate classifier performance when applied to novel IFCB
observations. Classifier optimization is described in Supporting Text and sought to equate
precision and recall statistics (and thus, false positive and negative classification errors) for G.
delicatula and infected G. delicatula classifications. The F1 statistics obtained for G. delicatula
and infected G. delicatula in the MVCO validation set after optimization were 0.92 and 0.78,
respectively. Estimates of G. delicatula and infected G. delicatula abundances and G. delicatula
infection prevalence based on human and automated classifiers were in close agreement with
one another (Supporting Text; Fig. S2-S3).

The same optimized classifier was applied and additional classifier validation was performed for
shipboard IFCB observations (Supporting Text). In these data, automated G. delicatula
classifications achieved an F1 value of 0.91 with precision and recall values of 0.92 and 0.90,
while infected G. delicatula classifications had an F1 value of 0.50 and precision and recall values
of 0.52 and 0.48. Following image classification, counts of G. delicatula and infected G. delicatula
chains (it is currently not possible to enumerate individual cells in IFCB images of diatoms) were
determined for discrete IFCB samples.

Spatiotemporal distributions and gradients

Maps were created with the m_map MATLAB toolbox (45). We used a spatial sample
aggregation procedure to reduce uncertainty in G. delicatula abundance and infection estimates
and smooth the data for inspection of large-scale spatial distributions (Supporting Text, Fig. S4-
S5). Monthly aggregate abundances and infection prevalence were used to quantify seasonal
gradients. To characterize cross-shore gradients the Climate Data Toolbox (46) was used to
compute great circle distances from each IFCB sample to the nearest coastline. We characterize
gradients across the four major “Ecological Production Units” on the NES (16, 17) after slightly

10
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modifying the boundaries used by (17) to incorporate more of the available IFCB data (Fig. S6).
Spatiotemporal gradients across each of these dimensions are characterized by aggregating
discrete IFCB samples and estimating uncertainty as described in Supporting Text.

Regression tree analysis

A bootstrap-aggregated ensemble of 100 regression trees was fit to both the shipboard and daily-
aggregated MVCO data sets of concurrent G. delicatula infection prevalence and temperature
observations. Our goal in this analysis was to objectively determine critical temperature
thresholds that may result in dramatic changes in G. delicatula's susceptibility to infection. For
this reason, each regression tree was constrained to include only 2 splits. Concurrent
temperature and infection prevalence values were only included in this analysis where G.
delicatula abundances were >5 chains ml” to prevent biasing results toward highly uncertain
infection prevalence estimates. The partial dependences of infection prevalence on temperature
in each data set illustrate predicted values of infection prevalence from a given temperature value
from the ensemble tree.
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Figures Captions

Figure 1. Spatiotemporal dynamics of G. delicatula abundance and parasitoid infection. Maps
show composites of (A) total G. delicatula abundance and (B) infection prevalence and (C) mean
satellite sea surface temperature during the period over which these cruises took place. The color
bar in (A) is truncated at 20 chains ml”. Black lines in (C) show the boundaries of “Ecological
Production Units” previously defined for the Northeast U.S. Shelf (17). Infection prevalence is not
shown where host abundance is <1 chain ml” due to high uncertainty. Time series observations
are daily (D) aggregate G. delicatula abundance (dots) and infection prevalence (dot color) and
(E) mean in-situ water temperature at MVCO. The y-axis and colorbar in (D) are truncated at 200
chains mI™" and 20%, respectively. Pink triangles in (D) from 2013-2021 indicate where at least
one C. aestivalis ASV was (filled) or was not (open) detected in amplicon sequencing
observations. Gray shading indicates periods where water temperature was <4 °C.
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Figure 2. Composite maps of (A, D, G, J) total G. delicatula abundance and (B, E, H, K) infection
prevalence and (C, F, I, L) mean satellite sea surface temperature during each season from
2013-2021. Infection prevalence is not shown where host abundance is <1 chain ml™" due to high
uncertainty. Abundance colorbars are truncated at 20 chains ml™, infection prevalence colorbars
are truncated at 10%, and temperature colorbars are truncated at 4 °C.
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Figure 3. Spatiotemporal gradients in G. delicatula abundance (navy) and infection prevalence
(pink). Shown are (A, B) monthly aggregate abundance and infection prevalence (A) at the
nearshore Martha’s Vineyard Coastal Observatory (MVCO) time series and (B) across the
broader Northeast U.S. Shelf, and (C) cross-shore and (D) inter-region gradients. (B-D) do not
consider observations at MVCO. Error bars show 95% confidence intervals for aggregate
concentrations assuming counts are drawn from a Poisson distribution. Note that scales vary
across different panels.
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Figure 4. Role of temperature in governing G. delicatula parasitoid infection dynamics (A) at
MVCO and (B) across the broader NES. (C) shows the partial dependence of infection
prevalence on temperature determined from regression tree analysis (left axis) and the number of
observations in each temperature bin (right axis) at MVCO (black) and across the broader NES
(red). In all panels, vertical dashed lines indicate 4 °C and observations are only considered
where G. delicatula abundance is >5 chains ml"". Observations at MVCO are daily aggregate
quantities. The colorbar is truncated at 50 chains ml™" to facilitate visualization of abundances.
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Figure 5. Continued suppression of infection following cold periods. (A) shows the number of
days with aggregate G. delicatula abundance >5 chains ml”’ (navy) coincident with infection
prevalence >5% (pink) relative to the number of days since daily average temperatures were <4
°C across all years at Martha’s Vineyard Coastal Observatory (MVCO). (B) shows these data for
individual years with black numbers showing the number of days with aggregate G. delicatula
abundance >5 chains ml™ and tile color indicating the fraction of those days with infection
prevalence >5%. (C) shows relative frequencies of detection of the five C. aestivalis ASVs
detected in amplicon sequencing observations relative to the number of days to detection of each
ASYV following an observation of water temperature <4 °C across all years at MVCO. C. aestivalis
ASVs are numbered according to their rank order cumulative relative abundance across all
available samples, with ASV1 the most abundant.
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Figure 6. Long-term trend in the spatiotemporal extent of cold periods on the Northeast U.S.
Shelf (NES). Shown are (A) a daily time series of the areal extent of waters with sea surface
temperature (SST) <4 °C on the NES and (B) its annual integral. The red line in (B) indicates the

long-term linear trend determined by linear regression.
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