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A B S T R A C T   

Satellites have generated extensive data of remote sensing reflectance spectra (Rrs(λ)) covering diverse water 
classes or types across global waters. Spectral classification of satellite Rrs(λ) data allows for the distinguishing 
and grouping of waters with characteristic bio-optical/biogeochemical features that may influence the produc
tivity of a given water body. This study reports new satellite water class products (Level-2 and Level-3) from the 
Visible Infrared Imaging Radiometer Suite (VIIRS). We developed and implemented a hyperspectral scheme that 
accounts for the Rrs(λ) spectral shapes and globally resolves oceanic, coastal, and inland waters into 23 water 
classes. We characterized the light absorption and scattering coefficients, chlorophyll-a concentration, diffuse 
attenuation coefficient, and suspended particulate matter for individual water classes. It is shown that the water 
classes are separable by their distinct bio-optical and biogeochemical properties. Furthermore, validation result 
suggests that the VIIRS water class products are accurate globally. Finally, we examined the spatial and temporal 
variability of the water classes in case studies for a demonstration of applications. The water class data in open 
oceans reveal that the subtropical ocean gyres have experienced dramatic expansion over the last decade. In 
addition, the water class data appear to be a valuable (and qualitative) indicator for water quality in coastal and 
inland waters with compelling evidence. We stress that this new satellite product is an excellent addition to the 
aquatic science database, despite the need for continuous improvement toward perfection.   

1. Introduction 

Satellite ocean color measurements over open oceans and coastal and 
inland waters represent big data covering diverse water classes or types. 
Global partitioning of satellite ocean color data is needed to decipher the 
optical complexity and unravel the optical diversity of natural waters 
(IOCCG, 2009). The utility of water classification is manifested in the 
development of class-specific algorithms to improve the estimation of 
water’s bio-optical and biogeochemical properties (Cui et al., 2020; 
Jiang et al., 2020; Le et al., 2011; Moore et al., 2001; Uudeberg et al., 
2020). In addition, the classification of global waters provides a valuable 
framework for the understanding of satellite product uncertainties 

(Moore et al., 2009; Wei et al., 2016b) and mechanisms controlling 
ocean biology, chemistry, and physics (Longhurst, 1998; Longhurst 
et al., 1995; Martin Traykovski and Sosik, 2003; Oliver and Irwin, 2008). 
Therefore, generating well-defined water classes is a priority for ocean 
color satellite missions. 

Water classification entails the grouping of waters with similar bio- 
optical and biogeochemical signatures. In seminal work, Morel and 
Prieur (1977) proposed two abstract water classes (Case 1 and Case 2). 
Within Case 1 waters, phytoplankton and associated colored dissolved 
organic matter (CDOM) and detritus (collectively colored detrital matter 
(CDM)) dominate the optical properties. For Case 2, inorganic materials, 
such as mineral particles and CDM, significantly influence the optical 
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properties. Due to a lack of precise separation criteria, this binary 
scheme was not systematically implemented with satellite data (Lee and 
Hu, 2006; Mobley et al., 2004). Others based their work on in situ or 
satellite bio-optical/biogeochemical data, such as the diffuse attenua
tion coefficient (Kd(λ)) (Jerlov, 1976), water inherent optical properties 
(IOPs) (Mckee and Cunningham, 2006; Shi et al., 2014), and 
chlorophyll-a concentration (Chl-a) (Esaias et al., 2000; Hardman- 
Mountford et al., 2008). The majority of the recent efforts have specif
ically focused on using the ocean remote sensing reflectance (Rrs(λ)) (or 
normalized water-leaving radiance, nLw(λ)) to discriminate water clas
ses (Botha et al., 2020; Jackson et al., 2017; Martin Traykovski and 
Sosik, 2003; Mélin and Vantrepotte, 2015; Moore et al., 2009; Spyrakos 
et al., 2011). Adopting Rrs(λ) spectra for water classification has its ad
vantages, as reflectance is the primary ocean color retrieval from sat
ellites and contains critical information about water IOPs, i.e., the 
absorption and scattering properties. Two main lines of Rrs(λ) classifi
cations are practiced within the ocean color communities. The first line 
is to construct a set of reference classes from a training data set involving 
absolute Rrs(λ) measurements and then assign a class to each satellite 
Rrs(λ) based on its difference from the references. Various techniques 
were tested, such as the fuzzy logic and k-means approaches (Jackson 
et al., 2017; Moore et al., 2009; Spyrakos et al., 2018). Another main
stream classification is to achieve water classifications through the 
“spectral shape” of Rrs(λ), which does not rely on the absolute magni
tudes of Rrs(λ) spectra (Jia et al., 2021; Lubac and Loisel, 2007; Mélin 
and Vantrepotte, 2015; Vantrepotte et al., 2012; Wei et al., 2016b). As 
demonstrated in a few studies (Pitarch et al., 2019; Wernand and van der 
Woerd, 2010), the Forel-Ule (FU) color scale falls in the spectral shape 
category. In addition, Vandermeulen et al. (2020) proposed that an 
apparent visible wavelength (AVW) parameter can be used for water 
classification. 

Reflecting on these achievements, we acknowledge that some funda
mental tasks and challenges are yet to be overcome with the existing 
water classification schemes. First and foremost, despite the efforts and 
improvements, evidence is needed to demonstrate that the classification 
schemes can divide global waters into classes with distinct optical and 
biogeochemical properties. Second, very few classification schemes were 
implemented with global Level-2 ocean color data. Thus, appraisal of the 
classification schemes is thus often hindered by the lack of global water 
class data and corresponding water bio-optical and biogeochemical 
products (Sathyendranath et al., 2019). Third, most historical classifica
tion schemes were designed for specific instruments, limiting their gen
eral applicability across ocean color satellites. Though projects such as the 
Ocean-Colour Climate Change Initiative (OC-CCI) provide water classifi
cation products across a multi-sensor record, it is achieved by converting 
the whole record to a “reference-sensor” with an associated water class 
set. Ideally, we would like to have a single optical water class set that is 
applicable across multiple sensors at their native wavelengths. 

The objectives of this study are 1) to report the first satellite water 
class products generated from the Visible Infrared Imaging Radiometer 
Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP) 
mission (2011–present), 2) to characterize the water classes concerning 
their bio-optical and biogeochemical variability, and 3) to evaluate the 
uncertainties of the satellite water class products. The new satellite 
water classification has the following three major improvements. First, 
the scheme is composed of hyperspectral references and is generic, i.e., 
readily adaptable to other satellite Rrs(λ) data with different spectral 
band settings. Second, the new water classes are characteristic of distinct 
bio-optical and biogeochemical properties found globally. Third, the 
new water classes have provided by far the broadest coverage of global 
oceanic, coastal, and inland waters. In the following, Section 2 provides 
data and methods used in the study, and the main results of this research 
are given in Section 3. In Section 4, we demonstrate various applications 
of the water class data to aquatic ecology and water quality monitoring. 
We provide some detailed discussion in Section 5 and finally conclude in 
Section 6. 

2. Data and methods 

2.1. Hyperspectral reference data 

The training data are composed of a large set of hyperspectral Rrs(λ) 
spectra in the visible domain (400–700 nm). Some of them are in situ 
Rrs(λ) measurements (N = 953) recovered mainly from the open ocean 
and coastal environments. A description of the measurement procedures 
and data processing is available elsewhere (Wei et al., 2016b). Others 
were derived from radiative transfer simulations (N = 1000), which are 
further based on synthetic IOPs adapted from IOCCG (2006). The 
detailed model configuration was described by Wei et al. (2019). Note 
that, despite the relatively small training data size, the resulting refer
ence spectra are shown to competently represent the satellite Rrs(λ) data 
globally (to be discussed in Section 3.2). 

We used the normalized Rrs(λ) spectra for subsequent analysis, which 
are expressed as: 

nRrs(λi) =
Rrs(λi)

[ ∑
Rrs(λi)

2 ]1/2, i = 1, 2…N. (1)  

The denominator in Eq. (1) is known as the root of the sum of squares 
(RSS). The nRrs(λ) spectra have a unique quality, with nRrs(λ1)2 +

nRrs(λ2)2 + … + nRrs(λN)2 = 1. An unsupervised k-means technique is 
then evoked, which clusters the nRrs(λ) spectra by taking into account 
the spectral similarity among them. Specifically, the cosine distance, d, 
is calculated and utilized during spectral clustering, with 

d = 1 −
A⋅B

‖A‖‖B‖
, (2)  

where A⋅B represents a dot product between two individual nRrs(λ) 
spectra denoted as A and B. ǁAǁ and ǁBǁ refer to the magnitudes of A and 
B, respectively, where ǁAǁ = 1 and ǁBǁ =1. Obviously, the normalization 
in Eq. (1) suppresses the spectral amplitudes of Rrs(λ) while retaining 
and highlighting the spectral shapes. Two additional aspects of water 
classification are particularly worth noting. First, determining the total 
number of classes is crucial for data clustering. We did not attempt to 
derive new class numbers. Instead, we adopted the class number k = 23 
from Wei et al. (2016b). This class number is greater than almost all 
other existing water classes, except for Longhurst’s ocean provinces 
(Longhurst, 1998). This number will most likely evolve with our un
derstanding of ocean optics in the future. Second, it is ideal for clustering 
analysis with hyperspectral data to best describe the variability of nat
ural waters. However, the present Rrs(λ) training data are representative 
of a wide range of conditions in natural waters. Therefore, as a practical 
alternative, we partitioned the nRrs(λ) data with an emphasis on five 
bands, with nominal wavelengths centered at 410, 443, 488, 551, and 
670 nm. These bands are “common” for operational ocean color sensors. 
Finally, we derived the median nRrs(λ) spectrum for each of the 23 
clusters as the corresponding reference. 

In Fig. 1, the median nRrs(λ) spectra are sorted in descending order of 
nRrs(443)/nRrs(551), representing 23 water classes from Class 1 to Class 
23. Each water class is clustered with nRrs(λ) spectra of similar spectral 
shape, evidenced by the small in-class variability of the nRrs(λ) spectra. 
From Class 1 to Class 17, the coefficient of variation (CV) (the ratio of 
the variance to the median of nRrs(λ)) is limited to ~15% at 400–600 nm 
(left panel, Fig. A1). The nRrs(λ) variance slightly increases in the blue 
bands for Class 18–23 primarily because the nRrs(λ) values in the blue 
are usually small, indicative of strong light absorption in these waters. In 
the red bands, the nRrs(λ) spectra tend to exhibit higher variance, 
especially for Class 1–15, in which the nRrs(λ) values are also usually 
small. Class 16–23 waters represent very turbid environments. The high 
nRrs(λ) values in the red bands over these turbid environments do not 
always imply that the corresponding nRrs(λ) variance is insignificant. As 
shown in earlier studies, particle backscattering, including scattering 
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due to abundant phytoplankton, can significantly alter the reflectance 
across long red and near-infrared (NIR) bands (Doxaran et al., 2002; 
Gower et al., 2005). In addition to the relatively high variance at the 
shortest blue and the longest red bands, the nRrs(λ) variance in Class 
16–23 remains small in green bands. The observation of the small 
overall variance of in-class nRrs(λ) spectra verifies the validity of the 
clustering procedure and the utility of the hyperspectral classes. 

2.2. Application of the water classification scheme to satellite Rrs(λ) data 

We applied the water classification scheme to the VIIRS-SNPP Level- 
2 ocean color data. VIIRS observes the Earth from daytime ascending 
polar orbits, with a spatial resolution of 750 m. The radiance 

measurements were processed with the Multi-Sensor Level-1 to Level-2 
(MSL12) ocean color data processing system (Wang et al., 2017; Wang 
et al., 2013), which involves the NIR-, shortwave infrared (SWIR)-, and 
NIR-SWIR algorithms for atmospheric correction (Gordon and Wang, 
1994; Wang, 2007; Wang and Shi, 2007), as well as the NIR ocean 
reflectance correction algorithm (Jiang and Wang, 2014). The resulting 
Rrs(λ) images have ocean color bands centered at 410, 443, 486, 551, 
and 671 nm. To assign a water class to a pixel, we calculated the cosine 
distance between the Rrs(λ) at that pixel and the reference nRrs(λ) 
spectrum of every water class at corresponding spectral bands as 

Fig. 1. Hyperspectral nRrs(λ) reference spectra for global water classes. The error bars refer to the standard deviation of nRrs(λ) within each cluster. The numbers 
given in each subplot are the number of the nRrs(λ) spectra assigned to every water class. 
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d = 1 −

∑5

i=1
[nRrs(λi)Rrs(λi) ]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑5

i=1
[nRrs(λi) ]

2 ∑5

i=1
[Rrs(λi) ]

2

√ , (3)  

where λ1, λ2, λ3, λ4, and λ5 correspond to the five VIIRS spectral bands, i. 
e., 410, 443, 486, 551, and 671 nm, respectively. The water class was 
determined as the one with the smallest distance, d, to the reference. 
Daily, 8-day, and monthly water class products were then generated as 
the rounded median values of daily products within the corresponding 
time and/or spatial intervals. The Level-2 and Level-3 water class 
products are accessible through the interactive online maps or the Ocean 
Color Viewer (OCView) (Mikelsons and Wang, 2018). 

We also applied the classification scheme to example images from 
the Ocean and Land Colour Instrument (OLCI) onboard the Sentinel-3A 
satellite and the Hyperspectral Imager for the Coastal Ocean (HICO). 
The OLCI image was processed with MSL12, which used two NIR bands 
(754 and 865 nm) to determine aerosol types and carry out atmospheric 
correction. The Rrs(λ) spectra at the ten visible OLCI bands (400, 413, 
443, 490, 510, 560, 620, 665, 674, and 681 nm) were considered for 
water classification. The HICO images were processed using L2GEN with 
full spectral coverage (380 to 960 nm sampled at 5.7 nm) (Ibrahim et al., 
2018). Only the visible bands of HICO were considered in our analyses. 
The water classes derived from OLCI and HICO will be discussed in 
Section 5.2. 

2.3. Global bio-optical and biogeochemical data 

We examined the associated bio-optical and biogeochemical product 
data to characterize the water classes derived from VIIRS-SNPP. The 
light absorption coefficient of phytoplankton (aph(443)), the absorption 
coefficient of CDM (adg(443)), and the backscattering coefficient of 
particles (bbp(443)) were derived from Rrs(λ) data using a combination of 
a NIR algorithm and the quasi-analytical algorithm (NIR-QAA) (Shi and 
Wang, 2019). The total (non-water) absorption coefficient at 443 nm 
was determined as the sum of phytoplankton and CDM contributions, 
with apg(443) = aph(443) + adg(443). The global Chl-a data were 
generated using the ocean color index (OCI) algorithm (Wang and Son, 
2016). With aph(443) and Chl-a data, we also derived the chlorophyll- 
specific absorption coefficient as aph*(443) = aph(443)/Chl-a. The 
diffuse attenuation coefficient at 490 nm (Kd(490)) was estimated from a 
combination of the open ocean algorithm (empirical) and turbid water 
algorithm (semi-analytical) (Wang et al., 2009). SPM products were 
recently created with an algorithm involving the NIR, red, green, and 

blue bands (known as the NIR-RGB algorithm) (Wei et al., 2021a; Yu 
et al., 2019). This SPM switching algorithm is based on Rrs(λ) at the red 
and NIR bands for SPM ≥ ~ 2 mg l−1 (where Rrs(671) ≥ 0.0012 sr−1) and 
SPM < ~2 mg l−1 (where Rrs(671) < 0.0012 sr−1). With the 9-km 
composite data (VIIRS monthly product from 2012 to 2020), we 
derived the class-specific means, medians, and quantiles (5%, 25%, 
75%, and 95%) for each quantity. The maximum and minimum values 
for each water property were determined as the 97.5% and 2.5% 
quantiles, respectively. 

2.4. Satellite and in situ matchup data 

VIIRS and in situ Rrs(λ) matchups were constructed to assess satellite- 
derived water class products (see Fig. 2). Most in situ Rrs(λ) spectra were 
obtained from the NASA SeaWiFS Bio-optical Archive and Storage 
(SeaBASS). The SeaBASS database includes measurements contributed 
by numerous principal investigators, including ones with the Aerosol 
Robotic Network-Ocean Color (AERONET-OC) (Zibordi et al., 2009b). 
We also incorporated field measurements from the NOAA dedicated 
ocean color calibration/validation campaigns (Ondrusek et al., 2015, 
2016; Ondrusek et al., 2017; Ondrusek et al., 2019). Specifically, the in 
situ hyperspectral Rrs(λ) data from the skylight-blocking approach (SBA) 
were used (Lee et al., 2013; Wei et al., 2021b). The coincident VIIRS 
Level-2 Rrs(λ) products were located in accordance with the in situ data 
and were subjected to data filtering (Bailey and Werdell, 2006). The 
satellite data within a 3 × 3 pixel box were checked for data quality 
flags. The pixels masked by land, cloud, stray light, high glint, low 
radiance at 551 nm, high top-of-atmosphere (TOA) radiance, and/or 
atmospheric correction failure were excluded from further analysis 
(Wang et al., 2017). The time difference between VIIRS overpass and in 
situ samplings was limited to within ±3 h. The maximum coefficient of 
variation of Rrs(λ) inside the pixel box was set to 15%. The maximum 
difference between the measured and modeled solar irradiance at the 
sea surface was set to 20% to ensure sky clearness. 

2.5. Error metrics 

We quantified the difference between satellite- and in situ-derived 
water classes as 

Δi = Si − Ii, (4)  

where Si refers to the water class obtained from a satellite Rrs(λ) spec
trum and Ii is the concurrent in situ Rrs(λ) measurement. Thus, the ab
solute error for water class estimations was calculated as |Δi| = |Si – Ii|. 

Later in Section 4, we used two other metrics to estimate the dif

Fig. 2. Locations of the in situ Rrs(λ) measurements with concurrent VIIRS-SNPP overpass.  
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ference between the water bio-optical properties from VIIRS and their 
estimations from water classes. The median absolute percentage differ
ence (MAPD) was derived as 

MAPD = median
{⃒

⃒
⃒
⃒
Mi − Ti

Ti

⃒
⃒
⃒
⃒

}

× 100%, i = 1, 2, …N, (5)  

where M is compared against a reference value T, and it refers to any bio- 
optical/biogeochemical quantity under investigation, such as Chl-a or 
aph(443). Correspondingly, the median relative percentage difference 
(MRPD) or percentage bias between M and T was determined as 

MRPD = median
{

Mi − Ti

Ti

}

× 100%, i = 1, 2, …N. (6)  

3. Results 

3.1. An overview of the new water class product 

A global VIIRS climatology map (2012−2020) illustrates the spatial 
distribution of water classes (Fig. 3a). As indicated by the classifications, 
Class 1–6 waters dominate globally and occupy >90% of the surface 
waters (the frequency distribution of the global water classes can be 

found in Fig. A2). The remainder of the water classes (Class 7–23) often 
exist in coastal/inland water environments, which account for a rela
tively small fraction (~10%) of all waters globally. Examination of the 
global map reveals that our classifications have reproduced well-known 
water regimes. For instance, Class 1 prevails in the central basins of the 
North Atlantic, South Atlantic, North Pacific, South Pacific, and Indian 
Ocean, which coincides geographically with the subtropical ocean gyres 
(McClain et al., 2004). The Mediterranean Sea falls into two primary 
water classes (Class 2 and Class 3), concurring with the distinctive 
seasonal phytoplankton biomass patterns in its western and eastern 
basins (Barale et al., 2008; Bosc et al., 2004; Salgado-Hernanz et al., 
2019). The turbid Yangtze River plume stands out from surrounding 
waters on the northwest Pacific coasts, demarcated by Class ~10–20. 
Along the northwest Atlantic coasts, George’s Bank is separated from the 
Gulf of Maine and the Atlantic Ocean, and features distinct water classes 
(~8–11) evident on the map. The water classes depicted in the Greater 
North Sea are also highly comparable with other regional classifications 
(Van der Zande et al., 2019). As expected, waters with the highest class 
numbers (Class ~19–23) correspond to extremely turbid environments, 
such as the Yangtze River Estuary, Río de la Plata, and Amazon River 
Estuary. Fig. 3b further depicts the differences between maximum and 
minimum water classes observed in every pixel. Relatively larger dif
ferences often exist in coastal and inland water environments, 

Fig. 3. (a) Climatology of the global water classes derived from VIIRS-SNPP (2012–2020, 9 km) and (b) range of variability of the monthly water classes (quantified 
by the differences between maximum and minimum water classes). Black pixels indicate land and/or invalid ocean color data. 
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suggesting considerable variability of the water classes in these regions. 
The differences in open oceans are typically small in the analyzed time 
period. 

3.2. Representativeness of the water classes 

To shed light on the representativeness of the derived water classes, 
we compared the VIIRS reflectance spectra from global waters to the 
reference spectra. As shown in Fig. 4, the class-specific median VIIRS 
nRrs(λ) spectra are almost identical to the references. In the bands of 443 
nm, 486 nm, and 551 nm, two sets of spectra show minimal differences 
(within ~ ±10%) (Table 1). Larger differences are occasionally present 
at 410 nm for Class 9–23 and at 671 nm for Class 1–11. In particular, the 
comparison suggests that satellite nRrs(410) values are often biased low 

in Class 15, Class 18, Class 20, Class 22, and Class 23, where the relative 
differences are on average equal to −40%, −92%, −99%, −95%, and −
97%, respectively. Such biases will undoubtedly lead to incorrect sat
ellite Rrs(410)/Rrs(443) ratios. Underestimation of Rrs(410) values in 
nearshore waters is a common problem with satellite measurements due 
to inadequate atmospheric correction (Wang and Jiang, 2018; Wei et al., 
2020). Small Rrs(671) values in Class 1–11 render increased percentage 
biases between the references and satellite measurements. Furthermore, 
we note that the spectral variances of VIIRS nRrs(λ) data and the refer
ences in Fig. 4 are also comparable. The similarity in spectral variance is 
most conspicuous in Class 1–11, representing approximately 95% of the 
total global water surface area (Fig. A2). On one hand, the atmospheric 
correction problem is a plausible explanation for such an increase (Wang 
and Jiang, 2018). On the other hand, the increased variability in satellite 
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data can result from the optical complexity of natural waters. Overall, 
the reference spectra in Fig. 4 are a fair representation of global VIIRS 
Rrs(λ) spectra. 

We further compared our water classification with previous efforts to 
highlight how our new classification might describe global waters 
effectively. In Table 2, six historical classifications (Jackson et al., 2017; 
Jia et al., 2021; Lubac and Loisel, 2007; Mélin and Vantrepotte, 2015; 
Pitarch et al., 2019; Spyrakos et al., 2018) (abbreviated as J17, J21, L08, 
M15, P19, and S18, respectively) are aligned with Class 1–23 based on 

their spectral similarity to Class 1–23 (recall Eq. (3)). The present clas
sification has achieved a broad coverage of water types comparable to 
P19, J21, and S18. However, some water types associated with our 
classification are missing from P19, J21, and S18. For example, S18 
lacks Class 4–5, Class 7, Class 9, Class 13, Class 15, and Class 17–18. 
Nevertheless, multiple instances (indicated by “M” in Table 2) from P19, 
J21, and S18 match with one of our water classes, especially for Class 
14–23. For instance, S18 contains multiple water types that correspond 
to Class 23, suggesting a possibly finer resolution of this specific water 

Table 1 
Relative percentage difference between the median VIIRS nRrs(λ) spectra and the classification references. The values exceeding ±10% are denoted in bold.  

Water Class nRrs(410) nRrs(443) nRrs(486) nRrs(551) nRrs(670) 

1  0.5%  −0.9%  −2.1%  7.0%  103.0% 
2  0.7%  −1.5%  −0.9%  19.8%  121.4% 
3  4.2%  −3.0%  −4.8%  14.1%  99.8% 
4  4.0%  −1.6%  −4.8%  5.8%  68.2% 
5  −1.4%  3.2%  −1.0%  −4.9%  34.9% 
6  4.8%  −0.2%  −5.4%  2.1%  34.3% 
7  −3.7%  2.6%  1.7%  −5.6%  13.4% 
8  7.0%  0.8%  −3.8%  −3.6%  14.9% 
9  ¡12.5%  1.5%  5.0%  −3.1%  13.4% 
10  −2.6%  0.9%  0.1%  0.1%  15.5% 
11  9.0%  1.9%  −7.2%  −3.5%  ¡12.6% 
12  ¡17.2%  3.3%  8.6%  −5.6%  4.1% 
13  4.8%  0.3%  −4.5%  −0.3%  −2.7% 
14  −6.4%  3.6%  5.2%  −4.2%  −1.0% 
15  ¡39.6%  −1.6%  9.4%  −1.1%  ¡25.2% 
16  −4.8%  2.2%  −0.9%  −0.9%  1.9% 
17  ¡24.7%  4.2%  7.0%  −2.3%  1.5% 
18  ¡92.1%  ¡10.1%  5.4%  3.0%  ¡41.9% 
19  −9.6%  18.9%  9.3%  −3.6%  −3.7% 
20  ¡98.9%  1.0%  14.2%  −3.3%  −0.8% 
21  3.3%  3.2%  −2.9%  −1.3%  1.7% 
22  ¡95.2%  −13.0%  −0.7%  2.7%  −3.2% 
23  ¡97.2%  −5.3%  12.3%  0.0%  −2.9%  

Table 2 
Correspondence between the water classes developed in this study and historical classifications.a The letter “O” indicates that a water class type from a historical 
scheme matches with one of our new classes. The letter “M” refers to a situation when multiple classes from a historical scheme are found to be spectrally similar to one 
of the new water classes. The notation “–” indicates no corresponding water class found from other historical schemes.  

Water class from this study Numbers of correspondences 

Jia et al. (2021) Pitarch et al. (2019) Jackson et al. (2017) Moore et al. (2009) Mélin and Vantrepotte (2015) Spyrakos et al. (2018) 

1 O O M  M O 
2 – O M O M M 
3 O – M O M O 
4 – O O O M – 
5 O – –  O – 
6 – O M O M O 
7 O – – – O – 
8 – O – – – O 
9 O – O – M – 
10 – O – O – O 
11 – – – – – O 
12 O O – – O O 
13 – – O M – – 
14 – M M O – M 
15 M – – – – – 
16 – – – – – O 
17 – M – – O – 
18 O – – – – – 
19 – M – – – M 
20 M O – – – M 
21 O M – – – O 
22 O – – – – O 
23 – – – – – M  

a The method described in Eq. (3) and Section 2.2 was used to establish the correspondence between these historical classes and our new water classes. 
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class. Unlike the present classification (and P19, J21, and S18), both 
M09 and J17 focus on open oceans and are primarily limited to Class 
1–14. The latest version of M15 produces a total of 17 water types for 
coastal oceans (< 200 km from coastlines), which has a much-reduced 
resolution for Class 10–23 but may be able to reveal finer details than 
Class 1–7 presented here. 

3.3. Bio-optical characterization 

This section presents each water class’s bio-optical and biogeo
chemical characteristics (Fig. 5 and Fig. 6). The associated statistical 
data for each quantity are tabulated to aid the analyses (see Table 3, 
Table 5, Table A1, and Table A2). 

3.3.1. Chl-a concentration 
The median Chl-a values, as estimated from VIIRS, increase from 

~0.05 mg m−3 in Class 1 to >10 mg m−3 in Class 23 (Fig. 5a and 
Table 3), with a pattern closely following a 4th-order polynomial model 
(R2 = 0.99) (Table 4). Such an observation is expected primarily because 
Chl-a concentration is significantly correlated with the ratio Rrs(443)/ 
Rrs(551) (O’Reilly et al., 2000), which is a partial descriptor of the Rrs(λ) 
spectral shapes. The Chl-a data are approximately log-normally 
distributed for most water classes, which is consistent with earlier re
ports (Campbell, 1995). Some deviations occasionally exist, conspicu
ously in Class 18–23. As one cannot rule out the role of Chl-a 
uncertainties, which are usually sizeable in nearshore environments 
(Gons et al., 2002; Lavigne et al., 2021), the observed skewness in such 
turbid environments is worth further investigation. The t-test results 
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Fig. 5. Variation of Chl-a, aph*(443), Kd(490), and SPM across the water classes. Note that the dot and horizontal bar within the boxes refer to the mean and median, 
respectively. The upper and lower edges of the box indicate 75% and 25% percentiles, respectively, while the whiskers correspond to 95% and 5% percentiles, 
respectively. Beyond the boxes, the lines (in magenta) refer to the maximum and minimum values (97.5% and 2.5% percentiles, respectively). The vertical dashed 
line approximately separating “Case 1” and “Case 2” waters is determined with the approach of Lee and Hu (2006) (assuming ±20% deviation of Rrs(410)/Rrs(443) 
and ±75% of Rrs(551)). Finally, a polynomial fit to the median values and the water classes is overlaid (see fitting results in Table 4). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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indicate that Chl-a data are statistically distinctive across the water 
classes, especially in neighboring classes (Fig. A3). In connection with 
Morel and Prieur (1977), we found that Class 1–10 and Class 11–23 may, 
respectively, correspond to Case 1 and Case 2 waters. Note that Class 1 
has the lowest Chl-a concentration among all world oceans, with 
~0.025 ≤ Chl-a ≤ 0.1 mg m−3 (Table A1), which is representative of the 
subtropical ocean gyre waters (McClain et al., 2004). 

3.3.2. Chlorophyll-specific absorption coefficient 
The aph*(443) data vary between ~0.01 m2 mg−1 and 0.2 m2 mg−1 or 

about one order of magnitude globally (Fig. 5b and Table 3). This range 
of variation is comparable with earlier results from in situ measurements 
(Bricaud et al., 1995). For each water class, aph*(443) approximately 
follows a normal distribution, but with dispersions. The median 
aph*(443) values descend gradually from Class 1 toward Class 23, which 

can be primarily explained by the pigment packaging effect. A poly
nomial function fits well with the aph*(443) medians and the water 
classes (R2 = 0.94, Table 4), especially for Class 1–10 or Case 1 waters. 
Analogous to Bricaud et al. (1995), we found that the median values of 
aph*(443) can relate to Chl-a concentration by a power function: 
aph*(443) = 0.0508 × Chl-a−0.295, with R2 = 0.81. Notably, the 
maximum and minimum aph*(443) values are remarkably different 
within each class. For instance, aph*(443) data can differ by two factors 
in Class 1 and up to seven in Class 23. Such significant variation can be 
partly ascribed to this quantity’s dependence on regions and seasons, as 
well as the inability of many processors to differentiate between Chl-a 
and CDM absorption in the blue. Nevertheless, the t-test results 
confirm that aph*(443) is largely distinct across neighboring classes 
(Fig. A3). 
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Fig. 6. Variation of light absorption and particle backscattering coefficients (all at 443 nm) with water classes (VIIRS-SNPP monthly products). Note that the dot and 
horizontal bar within the boxes refer to the mean and median, respectively. The upper and lower edges of the box indicate 75% and 25% percentiles, respectively, 
while the whiskers correspond to 95% and 5% percentiles, respectively. The lines (in magenta) beyond the boxes represent the range of variation of each quantity. 
The vertical dash line approximately separating “Case 1” and “Case 2” waters is determined with the approach of Lee and Hu (2006) (assuming ±20% deviation of 
Rrs(410)/Rrs(551) and ±75% of Rrs(551)). A polynomial fit to the median values and the water classes is overlaid, with fitting results detailed in Table 4. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Table 3 
Class-specific Chl-a concentration (mg m−3), aph*(443) (m−1), Kd(490) (m−1), and SPM (mg l−1) in global waters. The results are based on long-term VIIRS-SNPP ocean 
color retrievals.  

Water class Median Variance 

Chl-a aph*(443) Kd(490) SPM Chl-a aph*(443) Kd(490) SPM 

1  0.0547  0.1401  0.0248  0.0528  0.0193  0.02598  0.0031  0.0161 
2  0.1252  0.1074  0.0347  0.1098  0.0331  0.01412  0.0062  0.0273 
3  0.2020  0.0932  0.0463  0.1688  0.0428  0.01270  0.0079  0.0311 
4  0.3260  0.0772  0.0636  0.2466  0.0808  0.01159  0.0121  0.0403 
5  0.4215  0.0609  0.0722  0.2998  0.0993  0.0154  0.0142  0.0432 
6  0.5877  0.0636  0.0925  0.3543  0.151  0.0097  0.0186  0.0499 
7  0.6605  0.0457  0.0963  0.4082  0.173  0.0129  0.019  0.063 
8  0.9448  0.0516  0.1234  0.4598  0.232  0.0100  0.022  0.097 
9  0.9653  0.0360  0.1233  0.5172  0.276  0.0109  0.028  0.174 
10  1.4385  0.0420  0.1620  0.6191  0.367  0.010  0.056  0.436 
11  1.6170  0.0499  0.2272  0.5934  0.613  0.012  0.169  0.979 
12  1.7774  0.0320  0.1981  0.8035  0.663  0.010  0.141  0.730 
13  2.9497  0.0413  0.4987  1.5881  1.228  0.011  0.269  1.747 
14  2.8087  0.0353  0.6142  2.8692  1.158  0.010  0.396  1.937 
15  3.0296  0.0252  0.3010  1.0352  1.368  0.009  0.278  1.387 
16  4.2528  0.0433  1.4246  7.9519  1.803  0.015  0.653  5.572 
17  4.0711  0.0303  0.7734  3.4954  1.841  0.010  0.386  2.477 
18  6.5827  0.0193  0.5440  1.4592  4.843  0.009  0.331  2.919 
19  6.4768  0.0434  2.5078  20.906  3.851  0.017  1.003  24.601 
20  11.566  0.0337  3.7803  53.549  6.954  0.012  1.424  203.150 
21  9.3719  0.0304  1.3166  6.5699  7.223  0.011  0.593  7.502 
22  11.847  0.0220  1.3258  6.6311  9.406  0.009  0.483  9.398 
23  13.435  0.0273  2.1316  13.718  9.939  0.013  0.716  53.292  

Table 4 
Polynomial fitting results of the water classes and median water bio-optical properties. Note that a fourth-order polynomial, Y = a0 + a1X + a2X2 + a3X3 + a4X4, was 
applied to aph*(443); for the rest, we have assumed a polynomial function of log10Y = a0 + a1X + a2X2 

+ a3X3 
+ a4X4.  

X Y a0 a1 a2 a3 a4 R2 

Water Class apg(443)  −2.1979  0.3186  −0.03476  2.00 × 10−3  −3.90 × 10−5  0.98 
bbp(443)  −2.8536  0.1351  −0.0206  1.77 × 10−3  −4.30 × 10−5  0.89 
aph(443)  −2.3254  0.2701  −0.0308  1.77 × 10−3  −3.40 × 10−5  0.94 
adg(443)  −2.7129  0.3772  −0.0400  2.25 × 10−3  −4.30 × 10−5  0.98 
Chl-a  −1.5602  0.3723  −0.0345  1.72 × 10−3  −3.10 × 10−5  0.99 
aph*(443)  0.1660  −0.0328  0.0032  −1.36 × 10−3  2.12 × 10−6  0.94 
Kd(490)  −1.8003  0.2199  −0.0257  1.81 × 10−3  −4.10 × 10−5  0.93 
SPM  −1.6665  0.4583  −0.0644  4.18 × 10−3  −8.80 × 10−5  0.88  

Table 5 
Class-specific light absorption and particle backscattering coefficients (all at 443 nm) in global waters. The results are based on long-term VIIRS-SNPP ocean color 
retrievals.  

Water class Median (unit of m−1 for parameters) Variance (unit of m−1 for parameters) 

apg(443) bbp(443) aph(443) adg(443) apg(443) bbp(443) aph(443) adg(443) 

1 0.0121 0.0019 0.0077 0.0044 0.0027 0.00023 0.0023 0.0010 
2 0.0212 0.0022 0.0135 0.0078 0.0043 0.00041 0.0039 0.0013 
3 0.0309 0.0025 0.0189 0.0121 0.0052 0.00054 0.0047 0.0022 
4 0.0449 0.0029 0.0258 0.0193 0.0078 0.00073 0.0064 0.0044 
5 0.0559 0.0030 0.0254 0.0290 0.0094 0.0012 0.0091 0.0091 
6 0.0687 0.0036 0.0375 0.0307 0.013 0.0011 0.0088 0.0082 
7 0.0822 0.0038 0.0296 0.0504 0.016 0.0031 0.012 0.015 
8 0.0994 0.0043 0.0487 0.0492 0.018 0.0024 0.012 0.015 
9 0.1141 0.0054 0.0334 0.0780 0.025 0.0073 0.013 0.024 
10 0.1401 0.0070 0.0591 0.0782 0.031 0.011 0.016 0.026 
11 0.1499 0.0060 0.0789 0.0678 0.046 0.005 0.027 0.028 
12 0.1841 0.0100 0.0530 0.1242 0.051 0.015 0.028 0.041 
13 0.2632 0.0105 0.1228 0.1366 0.086 0.017 0.053 0.051 
14 0.3054 0.0228 0.0921 0.2032 0.107 0.033 0.050 0.080 
15 0.2943 0.0129 0.0716 0.2122 0.112 0.020 0.043 0.090 
16 0.5585 0.0716 0.1883 0.3505 0.268 0.063 0.089 0.219 
17 0.4767 0.0217 0.1125 0.3431 0.188 0.034 0.067 0.159 
18 0.5747 0.0168 0.1228 0.4399 0.351 0.022 0.077 0.301 
19 1.1800 0.1492 0.3055 0.8409 0.644 0.105 0.126 0.578 
20 2.4363 0.1879 0.4112 2.0425 0.929 0.115 0.127 0.832 
21 0.9131 0.0600 0.3045 0.5643 0.533 0.064 0.146 0.471 
22 1.3354 0.0506 0.2620 1.0603 0.744 0.047 0.132 0.653 
23 2.1111 0.0918 0.3760 1.7439 1.037 0.080 0.154 0.918  
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3.3.3. Water turbidity 
We characterize the water turbidity based on two commonly used 

parameters: Kd(490) and SPM. Globally, Kd(490) varies within three 
orders of magnitude (Fig. 5c and Table 3). The lowest Kd(490) values are 
affiliated with Class 1, where 0.02 ≤ Kd(490) ≤ 0.037 m−1, while the 
highest is present in Class 20, where 0.6 ≤ Kd(490) ≤ 6.6 m−1 

(Table A1). A similar dependency is also observable in the SPM con
centration, which spans a broader dynamic range (Fig. 5d and Table 3). 
Class 20 thus appears to be an optically dynamic environment, with the 
intra-class SPM varying over three orders of magnitude. Both Kd(490) 
and SPM demonstrate an increasing trend from Class 1 to Class 20 and a 
slightly decreasing trend from Class 20 toward Class 23. A polynomial 
model is fitted to the class median Kd(490) or SPM values, resulting in a 
high coefficient of determination (Table 4). In comparison, the fits are 
more accurate for Class 1–10 than Class 11–23. Both Kd(490) and SPM 
data are roughly log-normally distributed for Class 1–9 but are more 
skewed for Class 10–23. The t-test estimation suggests that the Kd(490) 
or SPM data are separable for almost every pair of neighboring classes 
(see Fig. A3). 

3.3.4. Light absorption and backscattering coefficients 
Fig. 6 shows the variation of light absorption and backscattering 

coefficients with water classes. Every quantity varies over about three 
orders of magnitude globally. The medians for each bio-optical property 
(apg(443), bbp(443), aph(443), and adg(443)) follow an ascending pattern 
with water classes. The median aph(443) increases from 0.004 m−1 in 
Class 1 to 0.77 m−1 in Class 23, corresponding to a 200-fold difference 
(Table 5). The adg(443) data vary between 0.003 m−1 and 3.9 m−1 

(median), a prominent 1300-fold difference. A 4th-order polynomial 
function can fit the class-averaged bio-optical property and the water 
classes well (Table 4). The best fit is determined for apg(443). This is 
mainly because our classification used normalized reflectance spectra 
and worked better in grouping waters of comparable absorption co
efficients. Further, log-normal distributions can describe the absorption 
coefficients within most water classes. The bbp(443) data are severely 
skewed toward positive directions; only the Class 1–6 waters are closer 
to log-normal distributions. Nonetheless, log-normal distributions may 
approximate the global absorption and backscattering data, recalling the 
predominance of clear ocean waters around the globe (Fig. A2). Lastly, 
based on the t-test results, the absorption coefficients are generally 
distinctive between neighboring classes (p < 0.05, Fig. A3). For bbp(443), 
we cannot reach a consensus on data distinction, considering the rela
tively large deviations from an ideal probability distribution. 

3.4. Validation 

Fig. 7a gives the validation results from the VIIRS and in situ 
matchup data. The data represent the majority of the water classes quite 
well, except for Class 1, Class 19, Class 20, and Class 23. Among the rest, 
Class 2, Class 11, and Class 16 only have a small number of matchups (N 
< 20). 

According to our analyses, the water classes were accurately gener
ated from VIIRS. From Class 2 to Class 4, the median absolute difference, 
|Δ|, is equal to zero. The |Δ| value increases to 1 or 2 through Class 
5–15. From Class 17, the differences between VIIRS and in situ deriva
tions may increase up to |Δ| = 4–6. Fig. 7b–d further shows the 

Fig. 7. Comparison of the water classes derived from concurrent VIIRS and in situ Rrs(λ) measurements: (a) class-specific results, (b) frequency distribution on global 
scales, (c) frequency distribution for Class 1–15, and (d) frequency distribution for Class 16–23. 
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frequency distributions of Δ values for the entire matchup data and two 
subsets of matchup data. A global median |Δ| of 1 is recorded for VIIRS 
retrievals, and the same result is also observed for Class 1–15. In 
contrast, the satellite water class products are found with markedly 

increased differences for Class 16–23 (with median |Δ| equal to 4). We 
stress that the Class 16–23 waters are usually representative of turbid 
nearshore environments (recall Fig. 3). Accurate satellite retrieval of 
Rrs(λ) in such waters remains a challenge (Wang and Jiang, 2018; Wei 

Fig. 8. Time series of the monthly mean surface area (S, unit: km2) of Class 1 waters in the major ocean basins for the (a) North Atlantic Ocean, (b) South Atlantic 
Ocean, (c) North Pacific Ocean, (d) South Pacific Ocean, and (e) Indian Ocean. The straight lines are the linear fits, with statistics given in Table 6. 

Table 6 
Long-term trends of the surface areas of Class 1 waters in the ocean basins (2012–2020). Bold numbers indicate significant results (p < 0.05).   

Mean area in 2012, km2 Increase in km2/yr (%/yr) p-value 

North Atlantic Ocean 6.4 × 106 5.8 × 105 (11) 2.3 £ 10−6 

South Atlantic Ocean 4.8 × 106 9.2 × 104 (2.1) 9.0 × 10−2 

North Pacific Ocean 3.1 × 107 1.9 × 106 (6.5) 4.3 £ 10−10 

South Pacific Ocean 3.0 × 107 9.0 × 105 (3.0) 4.5 £ 10−4 

Indian Ocean 1.2 × 107 5.2 × 105 (5.0) 4.1£ 10−2  
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et al., 2020; Zibordi et al., 2009a). Uncertainties in satellite Rrs(λ) data 
will be primarily responsible for the increased uncertainties in water 
class products (see further discussion in Section 5.3). 

4. Case analyses of the satellite water class retrievals 

4.1. Long-term trends in ocean subtropical gyres 

A promising application in satellite water classification is the po
tential of geographical zonation of oceans for global ecological research. 
Especially, the similarity with Longhurst’s ocean provinces (recall 
Fig. 3) gives credit to our new classifications. Here, we examine the time 
series of the surface areas occupied by Class 1 to understand its spatial 
and temporal variability. Note that Class 1 waters are typical of the 
lowest bio-optical/biogeochemical properties, where Chl-a ≤ 0.1 mg 
m−3, SPM ≤ 0.1 mg l−1, Kd(490) ≤ 0.035 m−1, aph(443) ≤ 0.015 m−1, 
adg(443) ≤ 0.007 m−1, and bbp(443) ≤ 0.0025 m−1. These features 
clearly suggest that Class 1 can represent the subtropical ocean gyres. 
Indeed, earlier exercises often identified the subtropical gyres for Chl-a 
≤ 0.07 mg m−3 (McClain et al., 2004; Polovina et al., 2008). In Fig. 8, we 
give the time series of the surface areas of the Class 1 waters based on the 
VIIRS monthly products. Five ocean gyres unanimously experienced 
seasonal oscillations. In the northern hemisphere, they shrink during 
springtime and expand in the fall. In the southern hemisphere, their sizes 
increase in the spring and decrease in the fall. Also, all five subtropical 
gyres increased in size from 2012 to 2020 (see statistics in Table 6). The 
most dramatic change occurred in the North Atlantic Gyre, which 
expanded by ~5.8 × 105 km2/yr or ~ 11%/yr. The North Pacific Gyre, 
South Pacific Gyre, and Indian Ocean Gyre also grew in surface size, 
albeit slower (3%/yr–6.5%/yr). The rate of change for the South 

Atlantic Gyre was the smallest and statistically insignificant. These 
annual trends are comparable to earlier chlorophyll-based analyses 
(McClain et al., 2004; Polovina et al., 2008; Signorini et al., 2015). 

4.2. Covariation of the water classes and water bio-optical/ 
biogeochemical properties 

Benefiting from the bio-optical/biogeochemical characteristics, the 
water classes may serve as an indicator of water quality in coastal oceans 
and inland waters. With examples, we demonstrate below that the water 
bio-optical/biogeochemical properties covary with the water classes. In 
Fig. 9, the coastal ocean in the northwest Pacific is an optically dynamic 
environment. River discharge and sediment resuspension due to tides 
(Shi and Wang, 2012; Shi and Wang, 2014) lead to turbid waters near 
the Chinese and the Korean coasts (Class ~15–23). Moderately turbid 
waters (Class ~8–14) dominate the Yellow Sea and East China Sea, 
while clear waters (approximately Class 1–7) are not unusual in the 
northeast (Sea of Japan/East Sea) and the south. Fig. 10 illustrates the 
spatial variation of the water classes along a set of pre-defined locations 
starting from A and ending at F (indicated in Fig. 9) for this particular 
day. The VIIRS water classes exhibit a spatial pattern highly comparable 
to Chl-a, SPM, Kd(490), adg(443), and bbp(443). Further in Fig. 11, we 
compare the time series data for the water classes and bio-optical/ 
biogeochemical properties within the Yellow Sea (the region of inter
est is highlighted in Fig. 9). These time series data exhibit nearly syn
chronous variability, with seasonal maxima occurring around early 
spring and minima around early fall. Furthermore, we compared the bio- 
optical and biogeochemical properties (from both the spatial transect 
and the time series station) with the corresponding global class-specific 
median values. These median values nicely replicated the spatial and 

Fig. 9. Satellite-derived water classes in the northwest Pacific region (VIIRS-SNPP snapshot; February 9, 2016; 750 m resolution). We extracted the water classes and 
bio-optical data along the transect indicated by solid pink circles. The square area delimited by the white dashed box is the region for extracting monthly time series 
data. Black pixels represent invalid ocean color measurements. 

J. Wei et al.                                                                                                                                                                                                                                      



Remote Sensing of Environment 282 (2022) 113233

14

5

10

15

20
W

at
er

cl
as

s
VIIRS

0.1

1

10

C
hl

-a

VIIRS Class median

0.1

1

10

100

SP
M

VIIRS Class median

0.01

0.1

1

K
d(4

90
) VIIRS Class median

0.001

0.01

0.1

1

a p
h(4

43
) VIIRS Class median

0.01

0.1

1

a d
g(4

43
) VIIRS Class median

Sequence of stations

0.001

0.01

0.1

b b
p(4

43
) VIIRS Class median

A B C D E F

Fig. 10. Spatial variation of the water classes and related bio-optical and biogeochemical properties in the northwest Pacific region. The class-specific median values 
for each bio-optical or biogeochemical property are overlaid for comparison. Letters A, B, C, D, E, and F indicate the sampling locations (shown in Fig. 9). Note that 
units for Chl-a, SPM, Kd(490), aph(443), adg(443), and bbp(443) are mg m−3, mg l−1, m−1, m−1, m−1, and m−1, respectively. 
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Table 7 
Comparison results of estimated bio-optical quantities with satellite-measured quantities in the northwest Pacific region and Lake Erie. The error statistics were 
calculated for the transect data and time-series data, respectively.   

Coastal ocean (Northwest Pacific region) Inland water (Lake Erie) 

Parameter Transect Time series Transect Time Series  

MAPD MRPD MAPD MRPD MAPD MRPD MAPD MRPD 

Chl-a 18% 18% 33% 31% 20% −20% 30% 18% 
SPM 19% −2% 18% 10% 33% 13% 47% −12% 
Kd(490) 20% 13% 29% 19% 20% 18% 42% −4% 
aph(443) 33% 13% 41% 22% 45% −44% 30% −15% 
adg(443) 25% −18% 33% 29% 215% 215% 50% 48% 
apg(443) 18% −18% 25% 18% 21% 14% 33% 17% 
bbp(443) 67% 10% 32% 9% 40% −40% 47% −21%  
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temporal variability for most bio-optical/biogeochemical properties 
(see quantitative statistics in Table 7). 

Fig. 12 gives another snapshot of the water class distribution in Lake 
Erie. The western basin of Lake Erie is predominantly Class 11–23, 
reflecting a relatively turbid water environment. The rest of the lake is 
much clearer and more homogeneous, with water classes dominantly 
varying between 10 and 13. We demonstrate the spatial and temporal 
variation of the water classes in Fig. 13 and Fig. 14, respectively. 
Noticeably, the water classes mirror the spatial and temporal variation 
of the water bio-optical/biogeochemical properties to varying degrees. 
Together with Fig. 10 and Fig. 11, these observations suggest that the 
water class product itself may be adopted as a proxy for water quality, at 
least qualitatively. We further compared the global class-specific median 
values with the long-term or long-range bio-optical/biogeochemical 
properties. Despite occasional large deviations (e.g., adg(443) in Fig. 13), 
the global median values appear to well describe the periodical ups and 
downs of almost every bio-optical/biogeochemical property from sat
ellites, where MAPD <50% (see statistics in Table 7). 

5. Discussion 

5.1. Comparison with Longhurst’s biogeographic provinces 

There are many points of agreement between what is developed here 
and the biogeographical provinces of Longhurst (1998). In Fig. 15, we 
compared the climatological distribution of water classes with Long
hurst’s provinces. It is prominent that the new water classes reflect many 
significant spatial structures described by Longhurst but are somewhat 
more naturally delineated based on the optical properties and spectral 
shapes. For instance, the ocean subtropical gyre provinces are primarily 
associated with Class 1. The North Atlantic Drift Province (NADR; 
located west of Ireland) is dominated by Class 4 and stands out from the 
surrounding oceans. The Indian Monsoon Gyres Province (MONS; 
located to the north of the subtropical gyre) and the Indian South Sub
tropical Gyre Province (ISSG) are distinguished by Class 2 in the north 
and Class 1 in the south, respectively. According to the comparison, 
Longhurst’s scheme does not give sufficient details about the optical 
diversity of coastal oceans and excludes inland waters. Each Longhurst 

ocean province can encompass a handful of optical water classes. For 
example, the Northwest Atlantic Shelves Province (NWCS) comprises at 
least ten water classes (~2–12). Such differences are mainly related to 
the objectives of individual classifications: the new classification in this 
study is targeted at all global water types, whereas Longhurst focuses on 
open oceans. In addition, our classification is entirely dependent on the 
ocean’s optical features, while Longhurst considers geography. Lastly, 
both our classification and Longhurst’s scheme separate water types 
with a dynamic boundary (Devred et al., 2007; Fay and McKinley, 2014; 
Reygondeau et al., 2020; Reygondeau et al., 2013). 

5.2. Extension to other satellites 

As manifested by in situ and satellite Rrs(λ) matchup analyses (Cui 
et al., 2010; Wei et al., 2020; Zibordi et al., 2009a), satellite Rrs(λ) band 
ratios are often subject to relatively minor errors. Thus, the satellite 
calibration and atmospheric correction will have less impact on the 
water classes generated with a spectral shape-based approach. A recent 
study has shown that spectral shape-based classification is relatively 
insensitive to the spectral bands used for classification (Jia et al., 2021). 
This feature makes it possible to generate highly comparable water 
classes across different satellite sensors. In Fig. 16, we give example 
water classes in the northeast U.S. coastal waters (with OLCI and VIIRS 
data) and Lake Erie (with HICO and VIIRS data). Overall, the derived 
OLCI water classes are highly comparable with the VIIRS product 
(Fig. 16a and b). The differences in the Gulf of St. Lawrence can be 
related to the bio-optical changes in water masses between the OLCI and 
the VIIRS overpass (> 3 h). With about the same overpass time, the HICO 
and VIIRS water classes are expectedly similar as well (Fig. 16c and d), 
and the difference, |Δ|, between the two water class data is within 1. The 
satellite Rrs(λ) uncertainties and different spatial resolutions (300 m for 
OLCI, 90 m for HICO, and 750 m for VIIRS) may have contributed to the 
observed differences, which will be investigated in future efforts. 
Because our classification scheme is relatively insensitive to sensor 
characteristics (such as calibration uncertainty, atmospheric correction 
errors, and spectral bands), it is promising to build decades-long time 
series products by merging the data across different satellite missions. 
Creating merged water class products among peer missions should also 
be feasible to mitigate spatial gaps inherent with satellite data (Liu and 
Wang, 2019). 

5.3. Product uncertainties associated with atmospheric correction 

Atmospheric correction is key to retrieving satellite Rrs(λ) data. The 
uncertainties associated with the modeling of atmospheric and surface 
properties will translate to Rrs(λ) (IOCCG, 2019) and eventually to the 
water class products. To help understand the water class uncertainty, we 
performed a sensitivity analysis with the nRrs(λ) spectra described in 
Section 2.1. In our evaluations, an error (ε) was added to nRrs(λ) at one 
wavelength only for each simulation. As shown in Fig. 17, minor errors 
in nRrs(λ) (i.e., ±10% in this study) exert minimal influence on the 
resulting water classes. When nRrs(λ) errors reach high levels, for 
example, ε = ±30% and ± 50%, the uncertainties in the water class 
products can increase substantially. Among all wavelengths, the blue 
and green bands exhibit dominant roles for Class 1–10, while the blue, 
green, and red bands are more critical for Class 11–23. In extremely 
clear waters, such as Class 1–3, the blue bands play a major role in the 
water class uncertainties. In contrast, the green and red bands are 
relatively more important in the opposite end of the water classes, such 
as Class 19–23. Fig. 17g refers to the water class uncertainties resulting 
from excessive negative biases in nRrs(λ). Although the uncertainty may 

Fig. 12. Satellite-derived water classes in Lake Erie (VIIRS-SNPP snapshot; 
September 24, 2017; 750 m resolution). The blue solid circles indicate the 
stations for extraction of the water classes and other bio-optical and biogeo
chemical properties. The square area delimited by the white dashed box shows 
where the monthly time series data were extracted. Black pixels represent 
invalid measurements. 

J. Wei et al.                                                                                                                                                                                                                                      



Remote Sensing of Environment 282 (2022) 113233

17

10

10

15

20
W

at
er

cl
as

s
VIIRS

1

10

100

C
hl

-a

VIIRS Class median

0.1

1

10

SP
M

VIIRS Class median

0.1

1

K
d(4

90
) VIIRS Class median

0.01

0.1

1

a p
h(4

43
) VIIRS Class median

0.01

0.1

1

a d
g(4

43
) VIIRS Class median

Sequence of stations

0.001

0.01

0.1

b b
p(4

43
) VIIRS Class median

A B/C D E F G
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increase markedly with an input error of −100%, we emphasize that 
such large-scale negative biases in nRrs(λ) are most likely limited to 
certain water classes. Recall that in Fig. 4, we reported an average bias of 
about −100% in VIIRS nRrs(410) data for Class 18, Class 20, and Class 
22–23. According to Fig. 17g, however, the significant negative biases in 
nRrs(410) do not significantly increase the water class uncertainty. One 
explanation is that the nRrs(410) values are small in these waters due to 
strong light absorption of CDM, and an error-disturbed nRrs(410) does 
not substantially alter the overall spectral shape of nRrs(λ) (also see Wei 
et al., 2020). 

5.4. Future directions 

It is important to note that the present classification is built on the 
reflectance spectra in visible bands. Under certain circumstances, Rrs(λ) 

spectra can be more sensitive to the variation of specific water constit
uents outside the visible domain, such as CDM in the ultraviolet (Wei 
et al., 2016a) and algal blooms in the NIR bands (Gower et al., 2005; Qi 
et al., 2020). Thus, expanding the spectral coverage in the reference 
database is warranted. In addition, the hyperspectral reference data in 
Fig. 1 are unlikely to encompass every situation in nature. Particularly, 
the bio-optical variability in inland water environments can be more 
complex and distinct from the open ocean and coastal waters. With few 
reference spectra and validation data in our analyses, further efforts are 
recommended for inland water applications. The presence of floating 
matters, such as floating algae (Hu, 2022), may introduce uncertainties 
to the satellite water class products. Therefore, it is imperative to 
accumulate in situ hyperspectral Rrs(λ) measurements over optically 
distinct targets to enrich the reference database. 

The bio-optical characterizations provide a valuable perspective of 
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the water classes (Fig. 5 and Fig. 6). Other descriptors are also useful to 
define the water classes, such as the ratios among various bio-optical 
and biogeochemical variables of interest, including adg(443)/apg(443), 
bbp(443)/Chl-a (Siegel et al., 2005), and particulate backscattering ratio 
(Lubac and Loisel, 2007). In addition, the seasonal and geographic de
pendency of each quantity mentioned above has been neglected in the 

present study. Thus, our characterizations are representative of a global 
mean situation. Recent studies have suggested that the temporal varia
tions of the chlorophyll-specific absorption coefficient can be significant 
in clear oceanic waters and remains a critical determinator for the Chl-a 
retrieval from satellites (e.g., Lee et al., 2020). All the factors omitted in 
the present study should be considered in the future for a complete 

Fig. 15. Climatologic distribution of the water classes in open oceans, coastal, and inland waters (2012–2020). The biogeographical provinces of Longhurst (1998) 
(delineated in white lines) are overlaid on the top of the water classes. 

Fig. 16. Satellite-derived water classes over the northeast U.S. coasts (in top panel) and over the western basin of Lake Erie (in bottom panel). All images are given in 
the native resolutions of the satellite measurements. 
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picture of the water classes. 

6. Conclusions 

This study reports new global satellite water class products that can 
be routinely generated with an Rrs(λ) spectral shape similarity algo
rithm. The global water classes presented herein represent the first of 
their kind for mission-long satellite observations (Level-2 and Level-3). 
The water classification scheme has resolved global waters into 23 
water classes, with a reasonable representation of oceanic waters and 
complex coastal and inland waters. The classification is successful pri
marily due to the Rrs(λ) spectral shape-preserving classification scheme. 
As discussed in this study, the reflectance shape conveys rich informa
tion on water IOPs, especially regarding the light absorption co
efficients. Therefore, our classification is optimal for separating water 
bio-optical properties across water classes. Among many quantities, 
apg(443), aph(443), adg(443), and Chl-a increase progressively with water 
classes, while aph*(443) exhibits a decreasing trend with water classes. 

Others, including bbp(443), Kd(490), and SPM, also increase with water 
classes but are less structured. The characteristic variation of bio-optical 
and biogeochemical properties with water classes is significant, espe
cially when they are generally separable across various water classes. 

We demonstrate that these water class products are a new source of 
information and foresee ample opportunities for exploration and 
extensive applications. Our case studies provide compelling examples of 
the applicability of optical water classes to aquatic ecology, e.g., sig
nificant expansions of subtropical gyres. Analyses also suggest that the 
water class products can be used as indicators for water quality in 
coastal and inland water environments. The spectral shape-based clas
sification generates reliable products because they are less affected by 
Rrs(λ) spectral amplitudes, which are sensitive to satellite calibration and 
atmospheric correction. Moreover, the algorithm is generic and enables 
the generation of highly comparable water classes among satellites of 
different spectral band settings. Therefore, it is feasible to create merged 
products from multiple satellites and long-term time series by applying 
the algorithm to peer satellite missions. 
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It is also recognized that VIIRS water class products are limited to the 
five spectral bands, which lack the capability to resolve certain yet 
important water bio-optical features, including the phycocyanin ab
sorption band at 625 nm. Future directions include extending the clas
sification scheme to other sensors such as OLCI with more spectral 
bands. Finally, we acknowledge that the problems arising from the VIIRS 
water classification may be solved with emerging hyperspectral ocean 
color sensors, including the Plankton, Aerosol, Cloud, ocean Ecosystem 
(PACE) mission and the Geosynchronous Littoral Imaging and Moni
toring Radiometer (GLIMR). 
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Appendix 1. Variance of Rrs(λ) spectra 

The spectral variance of the in situ hyperspectral references is presented as the ratio of the variance to the median, which is represented as the 
coefficient of variation (CV). The VIIRS-SNPP statistics were based on a global image on the daily 9 km image on August 18, 2012.

Fig. A1. Spectral variance (normalized by the median values, i.e., the coefficient of variation) of the hyperspectral reference spectra and VIIRS-SNPP satellite spectra 
(August 18, 2012). The white blanks in VIIRS-SNPP data indicate the CV values of the nRrs(λ) spectra have exceeded 100%. 
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Appendix 2. Distribution of the water classes in global surface waters

Fig. A2. Frequency distribution of the surface areas of the global water classes. The error bars indicate the standard deviation of the surface areas.  

Appendix 3. Distinction of bio-optical and biogeochemical properties between water classes

Fig. A3. Level of significance of two-tailed t-tests for (log-transformed) bio-optical and biogeochemical properties. The x-axis indicates the neighboring pairs of water 
classes from Class 1 to Class 23. 

Appendix 4. Range of variation of biogeochemical and bio-optical properties in global surface waters  

Table A1 
Range of chlorophyll-a (Chl-a) concentration, chlorophyll-specific absorption coefficient at 443 nm (aph*(443)), diffuse attenuation co
efficient at 490 nm (Kd(490)), and suspended particulate matter (SPM) in global waters. The results were obtained from mission-long 
VIIRS-SNPP monthly products (9 km).  

Class Chl-a aph*(443) Kd(490) SPM 

1 0.0233–0.1122 0.0966–0.2124 0.0198–0.0366 0.0278–0.1069 
2 0.0667–0.2208 0.0724–0.1395 0.0256–0.0567 0.0611–0.1860 
3 0.1201–0.3312 0.0555–0.1170 0.0328–0.0706 0.1073–0.2505 

(continued on next page) 
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Table A1 (continued ) 

Class Chl-a aph*(443) Kd(490) SPM 

4 0.2008–0.5906 0.0446–0.1011 0.0429–0.1040 0.1645–0.3526 
5 0.2424–0.7456 0.0278–0.0900 0.0463–0.1203 0.1934–0.4113 
6 0.3194–1.0861 0.0379–0.0886 0.0640–0.1735 0.2356–0.5151 
7 0.3188–1.1922 0.0226–0.0785 0.0585–0.1633 0.2363–0.6322 
8 0.4089–1.6088 0.0275–0.0786 0.0746–0.2151 0.2810–1.0315 
9 0.3697–1.7692 0.0188–0.0707 0.0660–0.2450 0.2514–1.3551 
10 0.5668–2.6150 0.0220–0.0713 0.0956–0.4818 0.3358–2.5567 
11 0.5286–3.7867 0.0265–0.0902 0.1061–0.9908 0.3200–6.6985 
12 0.5217–3.9059 0.0163–0.0674 0.0869–0.8601 0.3254–4.0952 
13 0.8167–7.4743 0.0206–0.0760 0.1382–1.4769 0.4198–9.0257 
14 0.5200–6.0213 0.0180–0.0723 0.0946–1.9462 0.3329–9.1442 
15 0.8947–8.3119 0.0135–0.0587 0.1234–1.5707 0.4270–8.3679 
16 1.0148–11.525 0.0189–0.0882 0.2241–3.1639 0.5497–31.104 
17 0.9386–10.286 0.0156–0.0651 0.1508–2.1665 0.4415–14.533 
18 1.4034–26.387 0.0086–0.0563 0.1722–2.0161 0.4893–27.188 
19 1.3308–23.512 0.0190–0.1047 0.5529–4.9987 1.7672–154.48 
20 2.4621–37.111 0.0133–0.0843 0.5259–6.6335 1.2741–1222.4 
21 2.5248–38.924 0.0134–0.0632 0.4267–3.3610 0.8317–56.458 
22 2.0333–44.753 0.0095–0.0582 0.2997–2.7765 0.6508–92.902 
23 1.7769–46.055 0.0121–0.0809 0.3969–4.1711 0.7747–461.71   

Table A2 
Range of the absorption and particle backscattering coefficients (all at 443 nm) in global waters. The results were obtained from mission- 
long VIIRS-SNPP monthly products (9 km).  

Class apg(443) bbp(443) aph(443) adg(443) 

1 0.0071–0.0203 0.0015–0.0026 0.0036–0.0151 0.0026–0.0065 
2 0.0137–0.0335 0.0015–0.0035 0.0061–0.0233 0.0055–0.0116 
3 0.0210–0.0452 0.0016–0.0040 0.0087–0.0293 0.0083–0.0190 
4 0.0306–0.0681 0.0017–0.0051 0.0118–0.0418 0.0114–0.0326 
5 0.0358–0.0842 0.0015–0.0084 0.0096–0.0476 0.0147–0.0559 
6 0.0439–0.1074 0.0020–0.0078 0.0190–0.0627 0.0160–0.0569 
7 0.0460–0.1264 0.0017–0.0207 0.0121–0.0614 0.0199–0.0915 
8 0.0539–0.1510 0.0022–0.0178 0.0188–0.0764 0.0210–0.0981 
9 0.0527–0.1868 0.0020–0.0414 0.0152–0.0708 0.0250–0.1438 
10 0.0667–0.2379 0.0027–0.0569 0.0277–0.1025 0.0281–0.1648 
11 0.0635–0.3158 0.0029–0.0388 0.0342–0.1720 0.0230–0.1679 
12 0.0691–0.3469 0.0025–0.0742 0.0211–0.1528 0.0341–0.2505 
13 0.0960–0.5703 0.0034–0.0936 0.0349–0.2858 0.0404–0.3348 
14 0.0719–0.6413 0.0029–0.1629 0.0253–0.2368 0.0350–0.4763 
15 0.0936–0.7047 0.0028–0.1079 0.0299–0.2340 0.0472–0.5365 
16 0.1165–1.5153 0.0044–0.2765 0.0444–0.4576 0.0528–1.1975 
17 0.1080–1.1302 0.0038–0.1759 0.0382–0.3342 0.0524–0.9082 
18 0.1291–2.0633 0.0033–0.1343 0.0433–0.4237 0.0668–1.7134 
19 0.1464–3.0771 0.0064–0.4215 0.0629–0.6710 0.0673–2.5834 
20 0.2748–4.1827 0.0079–0.4645 0.0814–0.6909 0.1578–3.5472 
21 0.2217–2.9785 0.0080–0.3079 0.0797–0.7644 0.1087–2.4821 
22 0.1933–3.6118 0.0060–0.2310 0.0611–0.6921 0.1067–3.0480 
23 0.1916–4.6077 0.0071–0.4012 0.0653–0.7744 0.1046–3.9048  
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