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ARTICLE INFO ABSTRACT

Editor by: Marie Weiss Satellites have generated extensive data of remote sensing reflectance spectra (R,(1)) covering diverse water
classes or types across global waters. Spectral classification of satellite R.(1) data allows for the distinguishing
and grouping of waters with characteristic bio-optical/biogeochemical features that may influence the produc-
tivity of a given water body. This study reports new satellite water class products (Level-2 and Level-3) from the
. Visible Infrared Imaging Radiometer Suite (VIIRS). We developed and implemented a hyperspectral scheme that
Remote sensing reflectance . . .
Spectral similarity accounts for the R,S(A? spectral.shapes and .globally resolv.es oceanic, coastal, and inland waters mt_o 23 Yvater
VIIRS classes. We characterized the light absorption and scattering coefficients, chlorophyll-a concentration, diffuse
attenuation coefficient, and suspended particulate matter for individual water classes. It is shown that the water
classes are separable by their distinct bio-optical and biogeochemical properties. Furthermore, validation result
suggests that the VIIRS water class products are accurate globally. Finally, we examined the spatial and temporal
variability of the water classes in case studies for a demonstration of applications. The water class data in open
oceans reveal that the subtropical ocean gyres have experienced dramatic expansion over the last decade. In
addition, the water class data appear to be a valuable (and qualitative) indicator for water quality in coastal and
inland waters with compelling evidence. We stress that this new satellite product is an excellent addition to the
aquatic science database, despite the need for continuous improvement toward perfection.
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1. Introduction (Moore et al., 2009; Wei et al., 2016b) and mechanisms controlling

ocean biology, chemistry, and physics (Longhurst, 1998; Longhurst

Satellite ocean color measurements over open oceans and coastal and
inland waters represent big data covering diverse water classes or types.
Global partitioning of satellite ocean color data is needed to decipher the
optical complexity and unravel the optical diversity of natural waters
(IOCCG, 2009). The utility of water classification is manifested in the
development of class-specific algorithms to improve the estimation of
water’s bio-optical and biogeochemical properties (Cui et al., 2020;
Jiang et al., 2020; Le et al., 2011; Moore et al., 2001; Uudeberg et al.,
2020). In addition, the classification of global waters provides a valuable
framework for the understanding of satellite product uncertainties

et al., 1995; Martin Traykovski and Sosik, 2003; Oliver and Irwin, 2008).
Therefore, generating well-defined water classes is a priority for ocean
color satellite missions.

Water classification entails the grouping of waters with similar bio-
optical and biogeochemical signatures. In seminal work, Morel and
Prieur (1977) proposed two abstract water classes (Case 1 and Case 2).
Within Case 1 waters, phytoplankton and associated colored dissolved
organic matter (CDOM) and detritus (collectively colored detrital matter
(CDM)) dominate the optical properties. For Case 2, inorganic materials,
such as mineral particles and CDM, significantly influence the optical

* Corresponding author at: NOAA/NESDIS Center for Satellite Applications and Research, College Park, MD 20740, USA.

E-mail address: jianwei.wei@noaa.gov (J. Wei).

https://doi.org/10.1016/j.rse.2022.113233

Received 27 December 2021; Received in revised form 15 August 2022; Accepted 22 August 2022

Available online 24 September 2022

0034-4257/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nec-nd/4.0/).


mailto:jianwei.wei@noaa.gov
www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2022.113233
https://doi.org/10.1016/j.rse.2022.113233
https://doi.org/10.1016/j.rse.2022.113233
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2022.113233&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

J. Wei et al.

properties. Due to a lack of precise separation criteria, this binary
scheme was not systematically implemented with satellite data (Lee and
Hu, 2006; Mobley et al., 2004). Others based their work on in situ or
satellite bio-optical/biogeochemical data, such as the diffuse attenua-
tion coefficient (K4(4)) (Jerlov, 1976), water inherent optical properties
(I0Ps) (Mckee and Cunningham, 2006; Shi et al., 2014), and
chlorophyll-a concentration (Chl-a) (Esaias et al., 2000; Hardman-
Mountford et al., 2008). The majority of the recent efforts have specif-
ically focused on using the ocean remote sensing reflectance (R5(1)) (or
normalized water-leaving radiance, nL,(4)) to discriminate water clas-
ses (Botha et al., 2020; Jackson et al., 2017; Martin Traykovski and
Sosik, 2003; Mélin and Vantrepotte, 2015; Moore et al., 2009; Spyrakos
et al., 2011). Adopting Rs(1) spectra for water classification has its ad-
vantages, as reflectance is the primary ocean color retrieval from sat-
ellites and contains critical information about water IOPs, i.e., the
absorption and scattering properties. Two main lines of R,s(1) classifi-
cations are practiced within the ocean color communities. The first line
is to construct a set of reference classes from a training data set involving
absolute R;(1) measurements and then assign a class to each satellite
R5(1) based on its difference from the references. Various techniques
were tested, such as the fuzzy logic and k-means approaches (Jackson
et al., 2017; Moore et al., 2009; Spyrakos et al., 2018). Another main-
stream classification is to achieve water classifications through the
“spectral shape” of Rys(1), which does not rely on the absolute magni-
tudes of R5(1) spectra (Jia et al., 2021; Lubac and Loisel, 2007; Mélin
and Vantrepotte, 2015; Vantrepotte et al., 2012; Wei et al., 2016b). As
demonstrated in a few studies (Pitarch et al., 2019; Wernand and van der
Woerd, 2010), the Forel-Ule (FU) color scale falls in the spectral shape
category. In addition, Vandermeulen et al. (2020) proposed that an
apparent visible wavelength (AVW) parameter can be used for water
classification.

Reflecting on these achievements, we acknowledge that some funda-
mental tasks and challenges are yet to be overcome with the existing
water classification schemes. First and foremost, despite the efforts and
improvements, evidence is needed to demonstrate that the classification
schemes can divide global waters into classes with distinct optical and
biogeochemical properties. Second, very few classification schemes were
implemented with global Level-2 ocean color data. Thus, appraisal of the
classification schemes is thus often hindered by the lack of global water
class data and corresponding water bio-optical and biogeochemical
products (Sathyendranath et al., 2019). Third, most historical classifica-
tion schemes were designed for specific instruments, limiting their gen-
eral applicability across ocean color satellites. Though projects such as the
Ocean-Colour Climate Change Initiative (OC-CCI) provide water classifi-
cation products across a multi-sensor record, it is achieved by converting
the whole record to a “reference-sensor” with an associated water class
set. Ideally, we would like to have a single optical water class set that is
applicable across multiple sensors at their native wavelengths.

The objectives of this study are 1) to report the first satellite water
class products generated from the Visible Infrared Imaging Radiometer
Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP)
mission (2011-present), 2) to characterize the water classes concerning
their bio-optical and biogeochemical variability, and 3) to evaluate the
uncertainties of the satellite water class products. The new satellite
water classification has the following three major improvements. First,
the scheme is composed of hyperspectral references and is generic, i.e.,
readily adaptable to other satellite R(1) data with different spectral
band settings. Second, the new water classes are characteristic of distinct
bio-optical and biogeochemical properties found globally. Third, the
new water classes have provided by far the broadest coverage of global
oceanic, coastal, and inland waters. In the following, Section 2 provides
data and methods used in the study, and the main results of this research
are given in Section 3. In Section 4, we demonstrate various applications
of the water class data to aquatic ecology and water quality monitoring.
We provide some detailed discussion in Section 5 and finally conclude in
Section 6.
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2. Data and methods
2.1. Hyperspectral reference data

The training data are composed of a large set of hyperspectral R,s(1)
spectra in the visible domain (400-700 nm). Some of them are in situ
R;5(1) measurements (N = 953) recovered mainly from the open ocean
and coastal environments. A description of the measurement procedures
and data processing is available elsewhere (Wei et al., 2016b). Others
were derived from radiative transfer simulations (N = 1000), which are
further based on synthetic IOPs adapted from IOCCG (2006). The
detailed model configuration was described by Wei et al. (2019). Note
that, despite the relatively small training data size, the resulting refer-
ence spectra are shown to competently represent the satellite R5(1) data
globally (to be discussed in Section 3.2).

We used the normalized R;s(1) spectra for subsequent analysis, which
are expressed as:

nRys(A) :%J: 1,2..N. @
[ 3 Rs(4)*]

The denominator in Eq. (1) is known as the root of the sum of squares
(RSS). The nR,(4) spectra have a unique quality, with nRrs(}q)2 +
nR,S(/lz)2 + ..+ nR,S(/IN)2 = 1. An unsupervised k-means technique is
then evoked, which clusters the nR,(1) spectra by taking into account
the spectral similarity among them. Specifically, the cosine distance, d,
is calculated and utilized during spectral clustering, with

AB

d=1- e @
AllBll

where A-B represents a dot product between two individual nR(4)
spectra denoted as A and B. llAll and IIBIl refer to the magnitudes of A and
B, respectively, where lIAll = 1 and IIBI =1. Obviously, the normalization
in Eq. (1) suppresses the spectral amplitudes of R.(1) while retaining
and highlighting the spectral shapes. Two additional aspects of water
classification are particularly worth noting. First, determining the total
number of classes is crucial for data clustering. We did not attempt to
derive new class numbers. Instead, we adopted the class number k = 23
from Wei et al. (2016b). This class number is greater than almost all
other existing water classes, except for Longhurst’s ocean provinces
(Longhurst, 1998). This number will most likely evolve with our un-
derstanding of ocean optics in the future. Second, it is ideal for clustering
analysis with hyperspectral data to best describe the variability of nat-
ural waters. However, the present R,(1) training data are representative
of a wide range of conditions in natural waters. Therefore, as a practical
alternative, we partitioned the nR,(1) data with an emphasis on five
bands, with nominal wavelengths centered at 410, 443, 488, 551, and
670 nm. These bands are “common” for operational ocean color sensors.
Finally, we derived the median nR,(4) spectrum for each of the 23
clusters as the corresponding reference.

In Fig. 1, the median nR,s(4) spectra are sorted in descending order of
nR5(443)/nRs(551), representing 23 water classes from Class 1 to Class
23. Each water class is clustered with nR,(4) spectra of similar spectral
shape, evidenced by the small in-class variability of the nRs(1) spectra.
From Class 1 to Class 17, the coefficient of variation (CV) (the ratio of
the variance to the median of nR4(1)) is limited to ~15% at 400-600 nm
(left panel, Fig. A1). The nR,s(1) variance slightly increases in the blue
bands for Class 18-23 primarily because the nR,(1) values in the blue
are usually small, indicative of strong light absorption in these waters. In
the red bands, the nR,(1) spectra tend to exhibit higher variance,
especially for Class 1-15, in which the nR.(1) values are also usually
small. Class 16-23 waters represent very turbid environments. The high
nR,s(4) values in the red bands over these turbid environments do not
always imply that the corresponding nR,s(1) variance is insignificant. As
shown in earlier studies, particle backscattering, including scattering
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due to abundant phytoplankton, can significantly alter the reflectance
across long red and near-infrared (NIR) bands (Doxaran et al., 2002;
Gower et al., 2005). In addition to the relatively high variance at the
shortest blue and the longest red bands, the nRs(1) variance in Class
16-23 remains small in green bands. The observation of the small
overall variance of in-class nR,(1) spectra verifies the validity of the
clustering procedure and the utility of the hyperspectral classes.

2.2. Application of the water classification scheme to satellite R.s(1) data

We applied the water classification scheme to the VIIRS-SNPP Level-
2 ocean color data. VIIRS observes the Earth from daytime ascending
polar orbits, with a spatial resolution of 750 m. The radiance
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measurements were processed with the Multi-Sensor Level-1 to Level-2
(MSL12) ocean color data processing system (Wang et al., 2017; Wang
et al., 2013), which involves the NIR-, shortwave infrared (SWIR)-, and
NIR-SWIR algorithms for atmospheric correction (Gordon and Wang,
1994; Wang, 2007; Wang and Shi, 2007), as well as the NIR ocean
reflectance correction algorithm (Jiang and Wang, 2014). The resulting
R;5(1) images have ocean color bands centered at 410, 443, 486, 551,
and 671 nm. To assign a water class to a pixel, we calculated the cosine
distance between the R,(1) at that pixel and the reference nR,(1)
spectrum of every water class at corresponding spectral bands as
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Fig. 1. Hyperspectral nR,(1) reference spectra for global water classes. The error bars refer to the standard deviation of nR,(1) within each cluster. The numbers
given in each subplot are the number of the nR,(1) spectra assigned to every water class.
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Fig. 2. Locations of the in situ R,(1) measurements with concurrent VIIRS-SNPP overpass.
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where 11, 49, 13, 44, and A5 correspond to the five VIIRS spectral bands, i.
e., 410, 443, 486, 551, and 671 nm, respectively. The water class was
determined as the one with the smallest distance, d, to the reference.
Daily, 8-day, and monthly water class products were then generated as
the rounded median values of daily products within the corresponding
time and/or spatial intervals. The Level-2 and Level-3 water class
products are accessible through the interactive online maps or the Ocean
Color Viewer (OCView) (Mikelsons and Wang, 2018).

We also applied the classification scheme to example images from
the Ocean and Land Colour Instrument (OLCI) onboard the Sentinel-3A
satellite and the Hyperspectral Imager for the Coastal Ocean (HICO).
The OLCI image was processed with MSL12, which used two NIR bands
(754 and 865 nm) to determine aerosol types and carry out atmospheric
correction. The R,s(1) spectra at the ten visible OLCI bands (400, 413,
443, 490, 510, 560, 620, 665, 674, and 681 nm) were considered for
water classification. The HICO images were processed using L2GEN with
full spectral coverage (380 to 960 nm sampled at 5.7 nm) (Ibrahim et al.,
2018). Only the visible bands of HICO were considered in our analyses.
The water classes derived from OLCI and HICO will be discussed in
Section 5.2.

2.3. Global bio-optical and biogeochemical data

We examined the associated bio-optical and biogeochemical product
data to characterize the water classes derived from VIIRS-SNPP. The
light absorption coefficient of phytoplankton (ap,(443)), the absorption
coefficient of CDM (agg(443)), and the backscattering coefficient of
particles (by,(443)) were derived from R;s(4) data using a combination of
a NIR algorithm and the quasi-analytical algorithm (NIR-QAA) (Shi and
Wang, 2019). The total (non-water) absorption coefficient at 443 nm
was determined as the sum of phytoplankton and CDM contributions,
with @p(443) = app(443) + agy(443). The global Chl-a data were
generated using the ocean color index (OCI) algorithm (Wang and Son,
2016). With ay(443) and Chl-a data, we also derived the chlorophyll-
specific absorption coefficient as ay*(443) = a,n(443)/Chl-a. The
diffuse attenuation coefficient at 490 nm (K4(490)) was estimated from a
combination of the open ocean algorithm (empirical) and turbid water
algorithm (semi-analytical) (Wang et al., 2009). SPM products were
recently created with an algorithm involving the NIR, red, green, and

blue bands (known as the NIR-RGB algorithm) (Wei et al., 2021a; Yu
et al., 2019). This SPM switching algorithm is based on Rs(1) at the red
and NIR bands for SPM > ~ 2 mg 11 (where R,5(671) > 0.0012 sr’l) and
SPM < ~2 mg 17! (where R,(671) < 0.0012 sr1). With the 9-km
composite data (VIIRS monthly product from 2012 to 2020), we
derived the class-specific means, medians, and quantiles (5%, 25%,
75%, and 95%) for each quantity. The maximum and minimum values
for each water property were determined as the 97.5% and 2.5%
quantiles, respectively.

2.4. Satellite and in situ matchup data

VIIRS and in situ R,5(4) matchups were constructed to assess satellite-
derived water class products (see Fig. 2). Most in situ R,5(1) spectra were
obtained from the NASA SeaWiFS Bio-optical Archive and Storage
(SeaBASS). The SeaBASS database includes measurements contributed
by numerous principal investigators, including ones with the Aerosol
Robotic Network-Ocean Color (AERONET-OC) (Zibordi et al., 2009b).
We also incorporated field measurements from the NOAA dedicated
ocean color calibration/validation campaigns (Ondrusek et al., 2015,
2016; Ondrusek et al., 2017; Ondrusek et al., 2019). Specifically, the in
situ hyperspectral R,s(1) data from the skylight-blocking approach (SBA)
were used (Lee et al., 2013; Wei et al., 2021b). The coincident VIIRS
Level-2 R,s(4) products were located in accordance with the in situ data
and were subjected to data filtering (Bailey and Werdell, 2006). The
satellite data within a 3 x 3 pixel box were checked for data quality
flags. The pixels masked by land, cloud, stray light, high glint, low
radiance at 551 nm, high top-of-atmosphere (TOA) radiance, and/or
atmospheric correction failure were excluded from further analysis
(Wang et al., 2017). The time difference between VIIRS overpass and in
situ samplings was limited to within +3 h. The maximum coefficient of
variation of R,(4) inside the pixel box was set to 15%. The maximum
difference between the measured and modeled solar irradiance at the
sea surface was set to 20% to ensure sky clearness.

2.5. Error metrics

We quantified the difference between satellite- and in situ-derived
water classes as
A=S—1, @
where S; refers to the water class obtained from a satellite R.5(1) spec-
trum and I; is the concurrent in situ R,(1) measurement. Thus, the ab-

solute error for water class estimations was calculated as |A;| = |S; - |-
Later in Section 4, we used two other metrics to estimate the dif-
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ference between the water bio-optical properties from VIIRS and their
estimations from water classes. The median absolute percentage differ-
ence (MAPD) was derived as

MAPD = median{

M; —T; .
- '}x100%,z:1,2,...1v7 5)

i
where M is compared against a reference value T, and it refers to any bio-
optical/biogeochemical quantity under investigation, such as Chl-a or

ap1(443). Correspondingly, the median relative percentage difference
(MRPD) or percentage bias between M and T was determined as

. M;—
MRPD = median T

i

T;
}XIOO%J:LZ,...N. (6)
3. Results
3.1. An overview of the new water class product
A global VIIRS climatology map (2012—2020) illustrates the spatial
distribution of water classes (Fig. 3a). As indicated by the classifications,

Class 1-6 waters dominate globally and occupy >90% of the surface
waters (the frequency distribution of the global water classes can be

180°  120°W  60°W 0

180° 120°W 60°W 0°
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found in Fig. A2). The remainder of the water classes (Class 7-23) often
exist in coastal/inland water environments, which account for a rela-
tively small fraction (~10%) of all waters globally. Examination of the
global map reveals that our classifications have reproduced well-known
water regimes. For instance, Class 1 prevails in the central basins of the
North Atlantic, South Atlantic, North Pacific, South Pacific, and Indian
Ocean, which coincides geographically with the subtropical ocean gyres
(McClain et al., 2004). The Mediterranean Sea falls into two primary
water classes (Class 2 and Class 3), concurring with the distinctive
seasonal phytoplankton biomass patterns in its western and eastern
basins (Barale et al., 2008; Bosc et al., 2004; Salgado-Hernanz et al.,
2019). The turbid Yangtze River plume stands out from surrounding
waters on the northwest Pacific coasts, demarcated by Class ~10-20.
Along the northwest Atlantic coasts, George’s Bank is separated from the
Gulf of Maine and the Atlantic Ocean, and features distinct water classes
(~8-11) evident on the map. The water classes depicted in the Greater
North Sea are also highly comparable with other regional classifications
(Van der Zande et al., 2019). As expected, waters with the highest class
numbers (Class ~19-23) correspond to extremely turbid environments,
such as the Yangtze River Estuary, Rio de la Plata, and Amazon River
Estuary. Fig. 3b further depicts the differences between maximum and
minimum water classes observed in every pixel. Relatively larger dif-
ferences often exist in coastal and inland water environments,

Water class

120°E 180°

Max - Min

60°E 120°E 180°

Fig. 3. (a) Climatology of the global water classes derived from VIIRS-SNPP (2012-2020, 9 km) and (b) range of variability of the monthly water classes (quantified
by the differences between maximum and minimum water classes). Black pixels indicate land and/or invalid ocean color data.
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Fig. 4. Comparison of VIIRS-SNPP median nR,(1) spectra (the variance is denoted in the shade) with the reference spectra (with the error bars indicating the
variance of the training data). VIIRS-SNPP R,(1) data (Level-3; 9-km; August 18, 2012) were normalized by their respective RSS values at 410, 443, 486, 551, and
670 nm. The reference spectra were extracted from the hyperspectral spectra of Fig. 1 and then rescaled by the RSS values of nR,,(1) at the five spectral bands.

suggesting considerable variability of the water classes in these regions.
The differences in open oceans are typically small in the analyzed time
period.

3.2. Representativeness of the water classes

To shed light on the representativeness of the derived water classes,
we compared the VIIRS reflectance spectra from global waters to the
reference spectra. As shown in Fig. 4, the class-specific median VIIRS
nR.s(4) spectra are almost identical to the references. In the bands of 443
nm, 486 nm, and 551 nm, two sets of spectra show minimal differences
(within ~ +10%) (Table 1). Larger differences are occasionally present
at 410 nm for Class 9-23 and at 671 nm for Class 1-11. In particular, the
comparison suggests that satellite nR,(410) values are often biased low

in Class 15, Class 18, Class 20, Class 22, and Class 23, where the relative
differences are on average equal to —40%, —92%, —99%, —95%, and —
97%, respectively. Such biases will undoubtedly lead to incorrect sat-
ellite R,5(410)/R,s(443) ratios. Underestimation of R,(410) values in
nearshore waters is a common problem with satellite measurements due
to inadequate atmospheric correction (Wang and Jiang, 2018; Wei et al.,
2020). Small R,5(671) values in Class 1-11 render increased percentage
biases between the references and satellite measurements. Furthermore,
we note that the spectral variances of VIIRS nR,(41) data and the refer-
ences in Fig. 4 are also comparable. The similarity in spectral variance is
most conspicuous in Class 1-11, representing approximately 95% of the
total global water surface area (Fig. A2). On one hand, the atmospheric
correction problem is a plausible explanation for such an increase (Wang
and Jiang, 2018). On the other hand, the increased variability in satellite



J. Wei et al. Remote Sensing of Environment 282 (2022) 113233

Table 1

Relative percentage difference between the median VIIRS nR,s(1) spectra and the classification references. The values exceeding +10% are denoted in bold.
Water Class nR,5(410) nR,(443) nR,(486) nR,(551) nR,(670)
1 0.5% —0.9% —2.1% 7.0% 103.0%
2 0.7% —1.5% —0.9% 19.8% 121.4%
3 4.2% —3.0% —4.8% 14.1% 99.8%
4 4.0% —1.6% —4.8% 5.8% 68.2%
5 —1.4% 3.2% —1.0% —4.9% 34.9%
6 4.8% —0.2% —5.4% 2.1% 34.3%
7 —-3.7% 2.6% 1.7% —5.6% 13.4%
8 7.0% 0.8% —3.8% —3.6% 14.9%
9 —12.5% 1.5% 5.0% -3.1% 13.4%
10 —2.6% 0.9% 0.1% 0.1% 15.5%
11 9.0% 1.9% —-7.2% —3.5% —12.6%
12 —17.2% 3.3% 8.6% —-5.6% 4.1%
13 4.8% 0.3% —4.5% —0.3% —2.7%
14 —6.4% 3.6% 5.2% —4.2% —1.0%
15 —39.6% —1.6% 9.4% —-1.1% —25.2%
16 —4.8% 2.2% —0.9% —0.9% 1.9%
17 —24.7% 4.2% 7.0% —2.3% 1.5%
18 —92.1% —10.1% 5.4% 3.0% —41.9%
19 —9.6% 18.9% 9.3% —3.6% —-3.7%
20 —98.9% 1.0% 14.2% —3.3% —0.8%
21 3.3% 3.2% —2.9% —1.3% 1.7%
22 —95.2% —13.0% —-0.7% 2.7% —-3.2%
23 —97.2% —5.3% 12.3% 0.0% —2.9%

data can result from the optical complexity of natural waters. Overall,
the reference spectra in Fig. 4 are a fair representation of global VIIRS
Rys(4) spectra.

We further compared our water classification with previous efforts to
highlight how our new classification might describe global waters
effectively. In Table 2, six historical classifications (Jackson et al., 2017;
Jia et al., 2021; Lubac and Loisel, 2007; Mélin and Vantrepotte, 2015;
Pitarch et al., 2019; Spyrakos et al., 2018) (abbreviated as J17, J21, L08,
M15, P19, and S18, respectively) are aligned with Class 1-23 based on

Table 2

their spectral similarity to Class 1-23 (recall Eq. (3)). The present clas-
sification has achieved a broad coverage of water types comparable to
P19, J21, and S18. However, some water types associated with our
classification are missing from P19, J21, and S18. For example, S18
lacks Class 4-5, Class 7, Class 9, Class 13, Class 15, and Class 17-18.
Nevertheless, multiple instances (indicated by “M” in Table 2) from P19,
J21, and S18 match with one of our water classes, especially for Class
14-23. For instance, S18 contains multiple water types that correspond
to Class 23, suggesting a possibly finer resolution of this specific water

Correspondence between the water classes developed in this study and historical classifications.” The letter “O” indicates that a water class type from a historical
scheme matches with one of our new classes. The letter “M” refers to a situation when multiple classes from a historical scheme are found to be spectrally similar to one
of the new water classes. The notation “~” indicates no corresponding water class found from other historical schemes.

Water class from this study =~ Numbers of correspondences

Jia et al. (2021) Pitarch et al. (2019)

Jackson et al. (2017)

Moore et al. (2009) Mélin and Vantrepotte (2015) Spyrakos et al. (2018)

1 (0] (0] M
2 - (0] M
3 (0] - M
4 - (0] o
5 (0] - -
6 - ) M
7 (0] - -
8 - (0] -
9 (0] - o
10 - (0] -
11 - - -
12 (0] -
13 - - (¢]
14 - M M
15 M - -
16 - - -
17 - M -
18 (@) - -
19 - M -
20 M (0] -
21 (0] M -
22 (0] - -
23 - - -

M o)
o) M M
o) M 0
o) M -

0 —
o) M 0
— 0] —
- - o)
— M -
o) - o)
- - o)
- o) o)
M — —
o) - M
_ o) _
- - M
- - M
- - o)
- - o)
- - M

# The method described in Eq. (3) and Section 2.2 was used to establish the correspondence between these historical classes and our new water classes.
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Fig. 5. Variation of Chl-a, a,;,*(443), K4(490), and SPM across the water classes. Note that the dot and horizontal bar within the boxes refer to the mean and median,
respectively. The upper and lower edges of the box indicate 75% and 25% percentiles, respectively, while the whiskers correspond to 95% and 5% percentiles,
respectively. Beyond the boxes, the lines (in magenta) refer to the maximum and minimum values (97.5% and 2.5% percentiles, respectively). The vertical dashed
line approximately separating “Case 1” and “Case 2" waters is determined with the approach of Lee and Hu (2006) (assuming +20% deviation of R,s(410)/R(443)
and +75% of R,(551)). Finally, a polynomial fit to the median values and the water classes is overlaid (see fitting results in Table 4). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

class. Unlike the present classification (and P19, J21, and S18), both
M09 and J17 focus on open oceans and are primarily limited to Class
1-14. The latest version of M15 produces a total of 17 water types for
coastal oceans (< 200 km from coastlines), which has a much-reduced
resolution for Class 10-23 but may be able to reveal finer details than
Class 1-7 presented here.

3.3. Bio-optical characterization

This section presents each water class’s bio-optical and biogeo-
chemical characteristics (Fig. 5 and Fig. 6). The associated statistical
data for each quantity are tabulated to aid the analyses (see Table 3,
Table 5, Table A1, and Table A2).

3.3.1. Chl-a concentration

The median Chl-a values, as estimated from VIIRS, increase from
~0.05 mg m~2 in Class 1 to >10 mg m~ in Class 23 (Fig. 5a and
Table 3), with a pattern closely following a 4™ order polynomial model
(R2 =0.99) (Table 4). Such an observation is expected primarily because
Chl-a concentration is significantly correlated with the ratio R.(443)/
R5(551) (O’Reilly et al., 2000), which is a partial descriptor of the R5(1)
spectral shapes. The Chl-a data are approximately log-normally
distributed for most water classes, which is consistent with earlier re-
ports (Campbell, 1995). Some deviations occasionally exist, conspicu-
ously in Class 18-23. As one cannot rule out the role of Chl-a
uncertainties, which are usually sizeable in nearshore environments
(Gons et al., 2002; Lavigne et al., 2021), the observed skewness in such
turbid environments is worth further investigation. The t-test results
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Fig. 6. Variation of light absorption and particle backscattering coefficients (all at 443 nm) with water classes (VIIRS-SNPP monthly products). Note that the dot and
horizontal bar within the boxes refer to the mean and median, respectively. The upper and lower edges of the box indicate 75% and 25% percentiles, respectively,
while the whiskers correspond to 95% and 5% percentiles, respectively. The lines (in magenta) beyond the boxes represent the range of variation of each quantity.
The vertical dash line approximately separating “Case 1" and “Case 2” waters is determined with the approach of Lee and Hu (2006) (assuming +20% deviation of
R(410)/R,s(551) and +75% of R,(551)). A polynomial fit to the median values and the water classes is overlaid, with fitting results detailed in Table 4. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

indicate that Chl-a data are statistically distinctive across the water
classes, especially in neighboring classes (Fig. A3). In connection with
Morel and Prieur (1977), we found that Class 1-10 and Class 11-23 may,
respectively, correspond to Case 1 and Case 2 waters. Note that Class 1
has the lowest Chl-a concentration among all world oceans, with
~0.025 < Chl-a < 0.1 mg m~3 (Table A1), which is representative of the
subtropical ocean gyre waters (McClain et al., 2004).

3.3.2. Chlorophyll-specific absorption coefficient

The a,,*(443) data vary between ~0.01 m?mg !and 0.2m?mg ! or
about one order of magnitude globally (Fig. 5b and Table 3). This range
of variation is comparable with earlier results from in situ measurements
(Bricaud et al., 1995). For each water class, ap,*(443) approximately
follows a normal distribution, but with dispersions. The median
apn*(443) values descend gradually from Class 1 toward Class 23, which

can be primarily explained by the pigment packaging effect. A poly-
nomial function fits well with the a,,*(443) medians and the water
classes (R? = 0.94, Table 4), especially for Class 1-10 or Case 1 waters.
Analogous to Bricaud et al. (1995), we found that the median values of
app*(443) can relate to Chl-a concentration by a power function:
an*(443) = 0.0508 x Chl-a=%?%, with R? = 0.81. Notably, the
maximum and minimum ap,*(443) values are remarkably different
within each class. For instance, a,,*(443) data can differ by two factors
in Class 1 and up to seven in Class 23. Such significant variation can be
partly ascribed to this quantity’s dependence on regions and seasons, as
well as the inability of many processors to differentiate between Chl-a
and CDM absorption in the blue. Nevertheless, the t-test results
confirm that a,,*(443) is largely distinct across neighboring classes
(Fig. A3).
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Table 3
Class-specific Chl-a concentration (mg m~3), apy*(443) (m™1), K4(490) (m 1), and SPM (mg 1" Hin global waters. The results are based on long-term VIIRS-SNPP ocean
color retrievals.

Water class Median Variance
Chl-a a,n*(443) K4(490) SPM Chl-a a,*(443) K4(490) SPM
1 0.0547 0.1401 0.0248 0.0528 0.0193 0.02598 0.0031 0.0161
2 0.1252 0.1074 0.0347 0.1098 0.0331 0.01412 0.0062 0.0273
3 0.2020 0.0932 0.0463 0.1688 0.0428 0.01270 0.0079 0.0311
4 0.3260 0.0772 0.0636 0.2466 0.0808 0.01159 0.0121 0.0403
5 0.4215 0.0609 0.0722 0.2998 0.0993 0.0154 0.0142 0.0432
6 0.5877 0.0636 0.0925 0.3543 0.151 0.0097 0.0186 0.0499
7 0.6605 0.0457 0.0963 0.4082 0.173 0.0129 0.019 0.063
8 0.9448 0.0516 0.1234 0.4598 0.232 0.0100 0.022 0.097
9 0.9653 0.0360 0.1233 0.5172 0.276 0.0109 0.028 0.174
10 1.4385 0.0420 0.1620 0.6191 0.367 0.010 0.056 0.436
11 1.6170 0.0499 0.2272 0.5934 0.613 0.012 0.169 0.979
12 1.7774 0.0320 0.1981 0.8035 0.663 0.010 0.141 0.730
13 2.9497 0.0413 0.4987 1.5881 1.228 0.011 0.269 1.747
14 2.8087 0.0353 0.6142 2.8692 1.158 0.010 0.396 1.937
15 3.0296 0.0252 0.3010 1.0352 1.368 0.009 0.278 1.387
16 4.2528 0.0433 1.4246 7.9519 1.803 0.015 0.653 5.572
17 4.0711 0.0303 0.7734 3.4954 1.841 0.010 0.386 2.477
18 6.5827 0.0193 0.5440 1.4592 4.843 0.009 0.331 2.919
19 6.4768 0.0434 2.5078 20.906 3.851 0.017 1.003 24.601
20 11.566 0.0337 3.7803 53.549 6.954 0.012 1.424 203.150
21 9.3719 0.0304 1.3166 6.5699 7.223 0.011 0.593 7.502
22 11.847 0.0220 1.3258 6.6311 9.406 0.009 0.483 9.398
23 13.435 0.0273 2.1316 13.718 9.939 0.013 0.716 53.292
Table 4

Polynomial fitting results of the water classes and median water bio-optical properties. Note that a fourth-order polynomial, Y = ap + a;X + azX2 + asX°> + a.X*, was
applied to a,,*(443); for the rest, we have assumed a polynomial function of log10Y = ap + a;X + X2 + asX° + a X’

X Y ap a; az as ay R?

Water Class pe(443) -2.1979 0.3186 —0.03476 2.00 x 1072 —3.90 x 107° 0.98
byp(443) -2.8536 0.1351 —0.0206 1.77 x 1073 —4.30 x 107° 0.89
a,(443) —2.3254 0.2701 —0.0308 1.77 x 1072 —3.40 x 107° 0.94
aq(443) -2.7129 0.3772 —0.0400 2.25 x 1072 —4.30 x 107° 0.98
Chl-a ~1.5602 0.3723 —0.0345 1.72 x 1073 —3.10 x 10°° 0.99
apy*(443) 0.1660 —0.0328 0.0032 ~1.36 x 1072 212 x 107° 0.94
K4(490) -1.8003 0.2199 —0.0257 1.81 x 1073 —4.10 x 107° 0.93
SPM ~1.6665 0.4583 —0.0644 418 x 1072 -8.80 x 1075 0.88

Table 5

Class-specific light absorption and particle backscattering coefficients (all at 443 nm) in global waters. The results are based on long-term VIIRS-SNPP ocean color
retrievals.

Water class Median (unit of m~! for parameters) Variance (unit of m~! for parameters)
a,4(443) bpp(443) a,n(443) a44(443) a,4(443) byp(443) a,n(443) a44(443)

1 0.0121 0.0019 0.0077 0.0044 0.0027 0.00023 0.0023 0.0010
2 0.0212 0.0022 0.0135 0.0078 0.0043 0.00041 0.0039 0.0013
3 0.0309 0.0025 0.0189 0.0121 0.0052 0.00054 0.0047 0.0022
4 0.0449 0.0029 0.0258 0.0193 0.0078 0.00073 0.0064 0.0044
5 0.0559 0.0030 0.0254 0.0290 0.0094 0.0012 0.0091 0.0091
6 0.0687 0.0036 0.0375 0.0307 0.013 0.0011 0.0088 0.0082
7 0.0822 0.0038 0.0296 0.0504 0.016 0.0031 0.012 0.015
8 0.0994 0.0043 0.0487 0.0492 0.018 0.0024 0.012 0.015
9 0.1141 0.0054 0.0334 0.0780 0.025 0.0073 0.013 0.024
10 0.1401 0.0070 0.0591 0.0782 0.031 0.011 0.016 0.026
11 0.1499 0.0060 0.0789 0.0678 0.046 0.005 0.027 0.028
12 0.1841 0.0100 0.0530 0.1242 0.051 0.015 0.028 0.041
13 0.2632 0.0105 0.1228 0.1366 0.086 0.017 0.053 0.051
14 0.3054 0.0228 0.0921 0.2032 0.107 0.033 0.050 0.080
15 0.2943 0.0129 0.0716 0.2122 0.112 0.020 0.043 0.090
16 0.5585 0.0716 0.1883 0.3505 0.268 0.063 0.089 0.219
17 0.4767 0.0217 0.1125 0.3431 0.188 0.034 0.067 0.159
18 0.5747 0.0168 0.1228 0.4399 0.351 0.022 0.077 0.301
19 1.1800 0.1492 0.3055 0.8409 0.644 0.105 0.126 0.578
20 2.4363 0.1879 0.4112 2.0425 0.929 0.115 0.127 0.832
21 0.9131 0.0600 0.3045 0.5643 0.533 0.064 0.146 0.471
22 1.3354 0.0506 0.2620 1.0603 0.744 0.047 0.132 0.653
23 2.1111 0.0918 0.3760 1.7439 1.037 0.080 0.154 0.918

10
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3.3.3. Water turbidity

We characterize the water turbidity based on two commonly used
parameters: K;j(490) and SPM. Globally, K4(490) varies within three
orders of magnitude (Fig. 5¢ and Table 3). The lowest K4(490) values are
affiliated with Class 1, where 0.02 < K4(490) < 0.037 m_l, while the
highest is present in Class 20, where 0.6 < K4(490) < 6.6 m!
(Table Al). A similar dependency is also observable in the SPM con-
centration, which spans a broader dynamic range (Fig. 5d and Table 3).
Class 20 thus appears to be an optically dynamic environment, with the
intra-class SPM varying over three orders of magnitude. Both K3(490)
and SPM demonstrate an increasing trend from Class 1 to Class 20 and a
slightly decreasing trend from Class 20 toward Class 23. A polynomial
model is fitted to the class median K3(490) or SPM values, resulting in a
high coefficient of determination (Table 4). In comparison, the fits are
more accurate for Class 1-10 than Class 11-23. Both K4(490) and SPM
data are roughly log-normally distributed for Class 1-9 but are more
skewed for Class 10-23. The t-test estimation suggests that the K3(490)
or SPM data are separable for almost every pair of neighboring classes
(see Fig. A3).

3.3.4. Light absorption and backscattering coefficients

Fig. 6 shows the variation of light absorption and backscattering
coefficients with water classes. Every quantity varies over about three
orders of magnitude globally. The medians for each bio-optical property
(apg(443), bpp(443), app(443), and agg(443)) follow an ascending pattern
with water classes. The median ay,(443) increases from 0.004 m~!in
Class 1 to 0.77 m ™! in Class 23, corresponding to a 200-fold difference
(Table 5). The agy(443) data vary between 0.003 m~! and 3.9 m!
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(median), a prominent 1300-fold difference. A 4th-order polynomial
function can fit the class-averaged bio-optical property and the water
classes well (Table 4). The best fit is determined for apg(443). This is
mainly because our classification used normalized reflectance spectra
and worked better in grouping waters of comparable absorption co-
efficients. Further, log-normal distributions can describe the absorption
coefficients within most water classes. The by,(443) data are severely
skewed toward positive directions; only the Class 1-6 waters are closer
to log-normal distributions. Nonetheless, log-normal distributions may
approximate the global absorption and backscattering data, recalling the
predominance of clear ocean waters around the globe (Fig. A2). Lastly,
based on the t-test results, the absorption coefficients are generally
distinctive between neighboring classes (p < 0.05, Fig. A3). For bp,(443),
we cannot reach a consensus on data distinction, considering the rela-
tively large deviations from an ideal probability distribution.

3.4. Validation

Fig. 7a gives the validation results from the VIIRS and in situ
matchup data. The data represent the majority of the water classes quite
well, except for Class 1, Class 19, Class 20, and Class 23. Among the rest,
Class 2, Class 11, and Class 16 only have a small number of matchups (N
< 20).

According to our analyses, the water classes were accurately gener-
ated from VIIRS. From Class 2 to Class 4, the median absolute difference,
|A], is equal to zero. The |A| value increases to 1 or 2 through Class
5-15. From Class 17, the differences between VIIRS and in situ deriva-
tions may increase up to |A| = 4-6. Fig. 7b-d further shows the

700 T T T T T T T
|A| = |satellite - in situ|

8_600_(8) 012345867 -5
2 500 o
o <
m —
€ 400 -
G S
» 300 8
] =
€ 200
=}
< 100

0

Water class
800 : - 800 . . 150 , ,
(b) all (c) Class 1-15 (d) Class 16-23

< g I g
S 600 | S 600 =]
5 5 S 100 1
[] ] (]
1S IS IS
S 400 , ‘5 400 S
» median ® median 12 median
é |A[=1 3 |AJ=1 2 50 |A|=4
€ 200 € 200 E
i |- |-

0 0 0 —IFH_‘

-10 0 10 -10 0 10 -10 0 10

A = satellite - in situ

A = satellite - in situ

A = satellite - in situ

Fig. 7. Comparison of the water classes derived from concurrent VIIRS and in situ R,5(1) measurements: (a) class-specific results, (b) frequency distribution on global
scales, (c) frequency distribution for Class 1-15, and (d) frequency distribution for Class 16-23.
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Fig. 8. Time series of the monthly mean surface area (S, unit: km?) of Class 1 waters in the major ocean basins for the (a) North Atlantic Ocean, (b) South Atlantic
Ocean, (c) North Pacific Ocean, (d) South Pacific Ocean, and (e) Indian Ocean. The straight lines are the linear fits, with statistics given in Table 6.

frequency distributions of A values for the entire matchup data and two
subsets of matchup data. A global median |A| of 1 is recorded for VIIRS
retrievals, and the same result is also observed for Class 1-15. In
contrast, the satellite water class products are found with markedly

Table 6

increased differences for Class 16-23 (with median |A| equal to 4). We
stress that the Class 16-23 waters are usually representative of turbid
nearshore environments (recall Fig. 3). Accurate satellite retrieval of
Ry5(2) in such waters remains a challenge (Wang and Jiang, 2018; Wei

Long-term trends of the surface areas of Class 1 waters in the ocean basins (2012-2020). Bold numbers indicate significant results (p < 0.05).

Mean area in 2012, km? Increase in km?/yr (%/yr) p-value
North Atlantic Ocean 6.4 x 10° 5.8 x 10° (11) 2.3 x10°°
South Atlantic Ocean 4.8 x 10° 9.2 x 10* (2.1) 9.0 x 1072
North Pacific Ocean 3.1 x 107 1.9 x 10° (6.5) 4.3 x 1071
South Pacific Ocean 3.0 x 107 9.0 x 10° (3.0) 45 x 1074
Indian Ocean 1.2 x 107 5.2 x 10° (5.0) 4.1x 1072
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Fig. 9. Satellite-derived water classes in the northwest Pacific region (VIIRS-SNPP snapshot; February 9, 2016; 750 m resolution). We extracted the water classes and
bio-optical data along the transect indicated by solid pink circles. The square area delimited by the white dashed box is the region for extracting monthly time series

data. Black pixels represent invalid ocean color measurements.

et al., 2020; Zibordi et al., 2009a). Uncertainties in satellite R,5(1) data
will be primarily responsible for the increased uncertainties in water
class products (see further discussion in Section 5.3).

4. Case analyses of the satellite water class retrievals
4.1. Long-term trends in ocean subtropical gyres

A promising application in satellite water classification is the po-
tential of geographical zonation of oceans for global ecological research.
Especially, the similarity with Longhurst’s ocean provinces (recall
Fig. 3) gives credit to our new classifications. Here, we examine the time
series of the surface areas occupied by Class 1 to understand its spatial
and temporal variability. Note that Class 1 waters are typical of the
lowest bio-optical/biogeochemical properties, where Chl-a < 0.1 mg
m~3, SPM < 0.1 mg 17!, K4(490) < 0.035 m™, a,4(443) < 0.015m ™},
age(443) < 0.007 m~', and by,(443) < 0.0025 m~'. These features
clearly suggest that Class 1 can represent the subtropical ocean gyres.
Indeed, earlier exercises often identified the subtropical gyres for Chl-a
<0.07 mg m~3 (McClain et al., 2004; Polovina et al., 2008). In Fig. 8, we
give the time series of the surface areas of the Class 1 waters based on the
VIIRS monthly products. Five ocean gyres unanimously experienced
seasonal oscillations. In the northern hemisphere, they shrink during
springtime and expand in the fall. In the southern hemisphere, their sizes
increase in the spring and decrease in the fall. Also, all five subtropical
gyres increased in size from 2012 to 2020 (see statistics in Table 6). The
most dramatic change occurred in the North Atlantic Gyre, which
expanded by ~5.8 x 10° km?/yr or ~ 11%/yr. The North Pacific Gyre,
South Pacific Gyre, and Indian Ocean Gyre also grew in surface size,
albeit slower (3%/yr—6.5%/yr). The rate of change for the South

13

Atlantic Gyre was the smallest and statistically insignificant. These
annual trends are comparable to earlier chlorophyll-based analyses
(McClain et al., 2004; Polovina et al., 2008; Signorini et al., 2015).

4.2. Covariation of the water classes and water bio-optical/
biogeochemical properties

Benefiting from the bio-optical/biogeochemical characteristics, the
water classes may serve as an indicator of water quality in coastal oceans
and inland waters. With examples, we demonstrate below that the water
bio-optical/biogeochemical properties covary with the water classes. In
Fig. 9, the coastal ocean in the northwest Pacific is an optically dynamic
environment. River discharge and sediment resuspension due to tides
(Shi and Wang, 2012; Shi and Wang, 2014) lead to turbid waters near
the Chinese and the Korean coasts (Class ~15-23). Moderately turbid
waters (Class ~8-14) dominate the Yellow Sea and East China Sea,
while clear waters (approximately Class 1-7) are not unusual in the
northeast (Sea of Japan/East Sea) and the south. Fig. 10 illustrates the
spatial variation of the water classes along a set of pre-defined locations
starting from A and ending at F (indicated in Fig. 9) for this particular
day. The VIIRS water classes exhibit a spatial pattern highly comparable
to Chl-a, SPM, K4(490), ag,(443), and by,(443). Further in Fig. 11, we
compare the time series data for the water classes and bio-optical/
biogeochemical properties within the Yellow Sea (the region of inter-
est is highlighted in Fig. 9). These time series data exhibit nearly syn-
chronous variability, with seasonal maxima occurring around early
spring and minima around early fall. Furthermore, we compared the bio-
optical and biogeochemical properties (from both the spatial transect
and the time series station) with the corresponding global class-specific
median values. These median values nicely replicated the spatial and
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Table 7
Comparison results of estimated bio-optical quantities with satellite-measured quantities in the northwest Pacific region and Lake Erie. The error statistics were

calculated for the transect data and time-series data, respectively.

Coastal ocean (Northwest Pacific region) Inland water (Lake Erie)

Parameter Transect Time series Transect Time Series

MAPD MRPD MAPD MRPD MAPD MRPD MAPD MRPD
Chl-a 18% 18% 33% 31% 20% —20% 30% 18%
SPM 19% —2% 18% 10% 33% 13% 47% —12%
K4(490) 20% 13% 29% 19% 20% 18% 42% —4%
apn(443) 33% 13% 41% 22% 45% —44% 30% —15%
a4g(443) 25% —18% 33% 29% 215% 215% 50% 48%
a,4(443) 18% —18% 25% 18% 21% 14% 33% 17%
bpp(443) 67% 10% 32% 9% 40% —40% 47% —21%
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Fig. 12. Satellite-derived water classes in Lake Erie (VIIRS-SNPP snapshot;
September 24, 2017; 750 m resolution). The blue solid circles indicate the
stations for extraction of the water classes and other bio-optical and biogeo-
chemical properties. The square area delimited by the white dashed box shows
where the monthly time series data were extracted. Black pixels represent
invalid measurements.

temporal variability for most bio-optical/biogeochemical properties
(see quantitative statistics in Table 7).

Fig. 12 gives another snapshot of the water class distribution in Lake
Erie. The western basin of Lake Erie is predominantly Class 11-23,
reflecting a relatively turbid water environment. The rest of the lake is
much clearer and more homogeneous, with water classes dominantly
varying between 10 and 13. We demonstrate the spatial and temporal
variation of the water classes in Fig. 13 and Fig. 14, respectively.
Noticeably, the water classes mirror the spatial and temporal variation
of the water bio-optical/biogeochemical properties to varying degrees.
Together with Fig. 10 and Fig. 11, these observations suggest that the
water class product itself may be adopted as a proxy for water quality, at
least qualitatively. We further compared the global class-specific median
values with the long-term or long-range bio-optical/biogeochemical
properties. Despite occasional large deviations (e.g., ag(443) in Fig. 13),
the global median values appear to well describe the periodical ups and
downs of almost every bio-optical/biogeochemical property from sat-
ellites, where MAPD <50% (see statistics in Table 7).

5. Discussion
5.1. Comparison with Longhurst’s biogeographic provinces

There are many points of agreement between what is developed here
and the biogeographical provinces of Longhurst (1998). In Fig. 15, we
compared the climatological distribution of water classes with Long-
hurst’s provinces. It is prominent that the new water classes reflect many
significant spatial structures described by Longhurst but are somewhat
more naturally delineated based on the optical properties and spectral
shapes. For instance, the ocean subtropical gyre provinces are primarily
associated with Class 1. The North Atlantic Drift Province (NADR;
located west of Ireland) is dominated by Class 4 and stands out from the
surrounding oceans. The Indian Monsoon Gyres Province (MONS;
located to the north of the subtropical gyre) and the Indian South Sub-
tropical Gyre Province (ISSG) are distinguished by Class 2 in the north
and Class 1 in the south, respectively. According to the comparison,
Longhurst’s scheme does not give sufficient details about the optical
diversity of coastal oceans and excludes inland waters. Each Longhurst
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ocean province can encompass a handful of optical water classes. For
example, the Northwest Atlantic Shelves Province (NWCS) comprises at
least ten water classes (~2-12). Such differences are mainly related to
the objectives of individual classifications: the new classification in this
study is targeted at all global water types, whereas Longhurst focuses on
open oceans. In addition, our classification is entirely dependent on the
ocean’s optical features, while Longhurst considers geography. Lastly,
both our classification and Longhurst’s scheme separate water types
with a dynamic boundary (Devred et al., 2007; Fay and McKinley, 2014;
Reygondeau et al., 2020; Reygondeau et al., 2013).

5.2. Extension to other satellites

As manifested by in situ and satellite R,s(41) matchup analyses (Cui
et al., 2010; Wei et al., 2020; Zibordi et al., 2009a), satellite R,s(1) band
ratios are often subject to relatively minor errors. Thus, the satellite
calibration and atmospheric correction will have less impact on the
water classes generated with a spectral shape-based approach. A recent
study has shown that spectral shape-based classification is relatively
insensitive to the spectral bands used for classification (Jia et al., 2021).
This feature makes it possible to generate highly comparable water
classes across different satellite sensors. In Fig. 16, we give example
water classes in the northeast U.S. coastal waters (with OLCI and VIIRS
data) and Lake Erie (with HICO and VIIRS data). Overall, the derived
OLCI water classes are highly comparable with the VIIRS product
(Fig. 16a and b). The differences in the Gulf of St. Lawrence can be
related to the bio-optical changes in water masses between the OLCI and
the VIIRS overpass (> 3 h). With about the same overpass time, the HICO
and VIIRS water classes are expectedly similar as well (Fig. 16¢ and d),
and the difference, |A|, between the two water class data is within 1. The
satellite R,5(1) uncertainties and different spatial resolutions (300 m for
OLCI, 90 m for HICO, and 750 m for VIIRS) may have contributed to the
observed differences, which will be investigated in future efforts.
Because our classification scheme is relatively insensitive to sensor
characteristics (such as calibration uncertainty, atmospheric correction
errors, and spectral bands), it is promising to build decades-long time
series products by merging the data across different satellite missions.
Creating merged water class products among peer missions should also
be feasible to mitigate spatial gaps inherent with satellite data (Liu and
Wang, 2019).

5.3. Product uncertainties associated with atmospheric correction

Atmospheric correction is key to retrieving satellite R(4) data. The
uncertainties associated with the modeling of atmospheric and surface
properties will translate to Ry(4) (IOCCG, 2019) and eventually to the
water class products. To help understand the water class uncertainty, we
performed a sensitivity analysis with the nR,(1) spectra described in
Section 2.1. In our evaluations, an error (¢) was added to nR,s(1) at one
wavelength only for each simulation. As shown in Fig. 17, minor errors
in nRy(1) (i.e., £10% in this study) exert minimal influence on the
resulting water classes. When nR,(1) errors reach high levels, for
example, ¢ = +£30% and + 50%, the uncertainties in the water class
products can increase substantially. Among all wavelengths, the blue
and green bands exhibit dominant roles for Class 1-10, while the blue,
green, and red bands are more critical for Class 11-23. In extremely
clear waters, such as Class 1-3, the blue bands play a major role in the
water class uncertainties. In contrast, the green and red bands are
relatively more important in the opposite end of the water classes, such
as Class 19-23. Fig. 17g refers to the water class uncertainties resulting
from excessive negative biases in nR,s(4). Although the uncertainty may
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increase markedly with an input error of —100%, we emphasize that
such large-scale negative biases in nR(1) are most likely limited to
certain water classes. Recall that in Fig. 4, we reported an average bias of
about —100% in VIIRS nR,(410) data for Class 18, Class 20, and Class
22-23. According to Fig. 17g, however, the significant negative biases in
nR;5(410) do not significantly increase the water class uncertainty. One
explanation is that the nR,5(410) values are small in these waters due to
strong light absorption of CDM, and an error-disturbed nR,,(410) does
not substantially alter the overall spectral shape of nR,s(1) (also see Wei
et al., 2020).

5.4. Future directions

It is important to note that the present classification is built on the
reflectance spectra in visible bands. Under certain circumstances, Rys(1)

, respectively.
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spectra can be more sensitive to the variation of specific water constit-
uents outside the visible domain, such as CDM in the ultraviolet (Wei
et al., 2016a) and algal blooms in the NIR bands (Gower et al., 2005; Qi
et al., 2020). Thus, expanding the spectral coverage in the reference
database is warranted. In addition, the hyperspectral reference data in
Fig. 1 are unlikely to encompass every situation in nature. Particularly,
the bio-optical variability in inland water environments can be more
complex and distinct from the open ocean and coastal waters. With few
reference spectra and validation data in our analyses, further efforts are
recommended for inland water applications. The presence of floating
matters, such as floating algae (Hu, 2022), may introduce uncertainties
to the satellite water class products. Therefore, it is imperative to
accumulate in situ hyperspectral R,(1) measurements over optically
distinct targets to enrich the reference database.

The bio-optical characterizations provide a valuable perspective of
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the water classes (Fig. 5 and Fig. 6). Other descriptors are also useful to
define the water classes, such as the ratios among various bio-optical
and biogeochemical variables of interest, including a4,(443)/a,,(443),
bpp(443)/Chl-a (Siegel et al., 2005), and particulate backscattering ratio
(Lubac and Loisel, 2007). In addition, the seasonal and geographic de-
pendency of each quantity mentioned above has been neglected in the
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present study. Thus, our characterizations are representative of a global
mean situation. Recent studies have suggested that the temporal varia-
tions of the chlorophyll-specific absorption coefficient can be significant
in clear oceanic waters and remains a critical determinator for the Chl-a
retrieval from satellites (e.g., Lee et al., 2020). All the factors omitted in
the present study should be considered in the future for a complete
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picture of the water classes.
6. Conclusions

This study reports new global satellite water class products that can
be routinely generated with an R,5(1) spectral shape similarity algo-
rithm. The global water classes presented herein represent the first of
their kind for mission-long satellite observations (Level-2 and Level-3).
The water classification scheme has resolved global waters into 23
water classes, with a reasonable representation of oceanic waters and
complex coastal and inland waters. The classification is successful pri-
marily due to the R,5(1) spectral shape-preserving classification scheme.
As discussed in this study, the reflectance shape conveys rich informa-
tion on water IOPs, especially regarding the light absorption co-
efficients. Therefore, our classification is optimal for separating water
bio-optical properties across water classes. Among many quantities,
ape(443), ayn(443), aqe(443), and Chl-a increase progressively with water
classes, while ay,*(443) exhibits a decreasing trend with water classes.

20

Others, including byp(443), K4(490), and SPM, also increase with water
classes but are less structured. The characteristic variation of bio-optical
and biogeochemical properties with water classes is significant, espe-
cially when they are generally separable across various water classes.

We demonstrate that these water class products are a new source of
information and foresee ample opportunities for exploration and
extensive applications. Our case studies provide compelling examples of
the applicability of optical water classes to aquatic ecology, e.g., sig-
nificant expansions of subtropical gyres. Analyses also suggest that the
water class products can be used as indicators for water quality in
coastal and inland water environments. The spectral shape-based clas-
sification generates reliable products because they are less affected by
Ry5(2) spectral amplitudes, which are sensitive to satellite calibration and
atmospheric correction. Moreover, the algorithm is generic and enables
the generation of highly comparable water classes among satellites of
different spectral band settings. Therefore, it is feasible to create merged
products from multiple satellites and long-term time series by applying
the algorithm to peer satellite missions.
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It is also recognized that VIIRS water class products are limited to the
five spectral bands, which lack the capability to resolve certain yet
important water bio-optical features, including the phycocyanin ab-
sorption band at 625 nm. Future directions include extending the clas-
sification scheme to other sensors such as OLCI with more spectral
bands. Finally, we acknowledge that the problems arising from the VIIRS
water classification may be solved with emerging hyperspectral ocean
color sensors, including the Plankton, Aerosol, Cloud, ocean Ecosystem
(PACE) mission and the Geosynchronous Littoral Imaging and Moni-
toring Radiometer (GLIMR).
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Appendix 2. Distribution of the water classes in global surface waters
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Fig. A2. Frequency distribution of the surface areas of the global water classes. The error bars indicate the standard deviation of the surface areas.

Appendix 3. Distinction of bio-optical and biogeochemical properties between water classes
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Fig. A3. Level of significance of two-tailed t-tests for (log-transformed) bio-optical and biogeochemical properties. The x-axis indicates the neighboring pairs of water
classes from Class 1 to Class 23.

Appendix 4. Range of variation of biogeochemical and bio-optical properties in global surface waters

Table Al

Range of chlorophyll-a (Chl-a) concentration, chlorophyll-specific absorption coefficient at 443 nm (ap,*(443)), diffuse attenuation co-
efficient at 490 nm (K4(490)), and suspended particulate matter (SPM) in global waters. The results were obtained from mission-long
VIIRS-SNPP monthly products (9 km).

Class Chl-a apy*(443) K4(490) SPM

1 0.0233-0.1122 0.0966-0.2124 0.0198-0.0366 0.0278-0.1069
2 0.0667-0.2208 0.0724-0.1395 0.0256-0.0567 0.0611-0.1860
3 0.1201-0.3312 0.0555-0.1170 0.0328-0.0706 0.1073-0.2505

(continued on next page)
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Table A1 (continued)
Class Chl-a apy*(443) K4(490) SPM
4 0.2008-0.5906 0.0446-0.1011 0.0429-0.1040 0.1645-0.3526
5 0.2424-0.7456 0.0278-0.0900 0.0463-0.1203 0.1934-0.4113
6 0.3194-1.0861 0.0379-0.0886 0.0640-0.1735 0.2356-0.5151
7 0.3188-1.1922 0.0226-0.0785 0.0585-0.1633 0.2363-0.6322
8 0.4089-1.6088 0.0275-0.0786 0.0746-0.2151 0.2810-1.0315
9 0.3697-1.7692 0.0188-0.0707 0.0660-0.2450 0.2514-1.3551
10 0.5668-2.6150 0.0220-0.0713 0.0956-0.4818 0.3358-2.5567
11 0.5286-3.7867 0.0265-0.0902 0.1061-0.9908 0.3200-6.6985
12 0.5217-3.9059 0.0163-0.0674 0.0869-0.8601 0.3254-4.0952
13 0.8167-7.4743 0.0206-0.0760 0.1382-1.4769 0.4198-9.0257
14 0.5200-6.0213 0.0180-0.0723 0.0946-1.9462 0.3329-9.1442
15 0.8947-8.3119 0.0135-0.0587 0.1234-1.5707 0.4270-8.3679
16 1.0148-11.525 0.0189-0.0882 0.2241-3.1639 0.5497-31.104
17 0.9386-10.286 0.0156-0.0651 0.1508-2.1665 0.4415-14.533
18 1.4034-26.387 0.0086-0.0563 0.1722-2.0161 0.4893-27.188
19 1.3308-23.512 0.0190-0.1047 0.5529-4.9987 1.7672-154.48
20 2.4621-37.111 0.0133-0.0843 0.5259-6.6335 1.2741-1222.4
21 2.5248-38.924 0.0134-0.0632 0.4267-3.3610 0.8317-56.458
22 2.0333-44.753 0.0095-0.0582 0.2997-2.7765 0.6508-92.902
23 1.7769-46.055 0.0121-0.0809 0.3969-4.1711 0.7747-461.71

Table A2

Range of the absorption and particle backscattering coefficients (all at 443 nm) in global waters. The results were obtained from mission-

long VIIRS-SNPP monthly products (9 km).
Class pg(443) byp(443) aph(443) agg(443)
1 0.0071-0.0203 0.0015-0.0026 0.0036-0.0151 0.0026-0.0065
2 0.0137-0.0335 0.0015-0.0035 0.0061-0.0233 0.0055-0.0116
3 0.0210-0.0452 0.0016-0.0040 0.0087-0.0293 0.0083-0.0190
4 0.0306-0.0681 0.0017-0.0051 0.0118-0.0418 0.0114-0.0326
5 0.0358-0.0842 0.0015-0.0084 0.0096-0.0476 0.0147-0.0559
6 0.0439-0.1074 0.0020-0.0078 0.0190-0.0627 0.0160-0.0569
7 0.0460-0.1264 0.0017-0.0207 0.0121-0.0614 0.0199-0.0915
8 0.0539-0.1510 0.0022-0.0178 0.0188-0.0764 0.0210-0.0981
9 0.0527-0.1868 0.0020-0.0414 0.0152-0.0708 0.0250-0.1438
10 0.0667-0.2379 0.0027-0.0569 0.0277-0.1025 0.0281-0.1648
11 0.0635-0.3158 0.0029-0.0388 0.0342-0.1720 0.0230-0.1679
12 0.0691-0.3469 0.0025-0.0742 0.0211-0.1528 0.0341-0.2505
13 0.0960-0.5703 0.0034-0.0936 0.0349-0.2858 0.0404-0.3348
14 0.0719-0.6413 0.0029-0.1629 0.0253-0.2368 0.0350-0.4763
15 0.0936-0.7047 0.0028-0.1079 0.0299-0.2340 0.0472-0.5365
16 0.1165-1.5153 0.0044-0.2765 0.0444-0.4576 0.0528-1.1975
17 0.1080-1.1302 0.0038-0.1759 0.0382-0.3342 0.0524-0.9082
18 0.1291-2.0633 0.0033-0.1343 0.0433-0.4237 0.0668-1.7134
19 0.1464-3.0771 0.0064-0.4215 0.0629-0.6710 0.0673-2.5834
20 0.2748-4.1827 0.0079-0.4645 0.0814-0.6909 0.1578-3.5472
21 0.2217-2.9785 0.0080-0.3079 0.0797-0.7644 0.1087-2.4821
22 0.1933-3.6118 0.0060-0.2310 0.0611-0.6921 0.1067-3.0480
23 0.1916-4.6077 0.0071-0.4012 0.0653-0.7744 0.1046-3.9048
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