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Abstract—Current scientific experiments frequently involve
control of specialized instruments (e.g., scanning electron mi-
croscopes), image data collection from those instruments, and
transfer of the data for processing at simulation centers. This
process requires a “human-in-the-loop” to perform those tasks
manually, which besides requiring a lot of effort and time,
could lead to inconsistencies or errors. Thus, it is essential
to have an automated system capable of performing remote
instrumentation to intelligently control and collect data from
the scientific instruments. In this paper, we propose a Remote
Instrumentation Science Environment (RISE) for intelligent im-
age analytics that provides the infrastructure to securely capture
images, determine process parameters via machine learning, and
provide experimental control actions via automation, under the
premise of “human-on-the-loop”. The machine learning in RISE
aids an iterative discovery process to assist researchers to tune
instrument settings to improve the outcomes of experiments.
Driven by two scientific use cases of image analytics pipelines,
one in material science, and another in biomedical science, we
show how RISE automation leverages a cutting-edge integration
of cloud computing, on-premise HPC cluster, and a Python
programming interface available on a microscope. Using web
services, we implement RISE to perform automated image data
collection/analysis guided by an intelligent agent to provide
real-time feedback control of the microscope using the image
analytics outputs. Our evaluation results show the benefits of
RISE for researchers to obtain higher image analytics accuracy,
save precious time in manually controlling the microscopes, while
reducing errors in operating the instruments.

Index Terms—remote instrumentation, image analytics, intel-
ligent agents, control feedback, collaboration workspaces

I. INTRODUCTION

Many scientific workflows (e.g., development of new ma-

terials, biomedical research) involve the collection of large

amount of imaging data from specialized instruments (e.g.,

high resolution microscopes such as scanning electron mi-

croscopes (SEM)), and subsequent transfer of these data to

simulation centers for extensive analysis [1]–[4]. This process

requires appropriate settings of instruments, large storage

capabilities, high bandwidth network capability and security

measures to transfer the collected data, and perform data trans-

formations. Further, it involves setting-up of image analytics

This material is based upon work supported by the National Science
Foundation under Award Number: CMMI-2026847. Any opinions, findings,
and conclusions or recommendations expressed in this publication are those of
the author(s) and do not necessarily reflect the views of the National Science
Foundation.

Fig. 1: Overview of scanning electron microscope experiment control process
for image analytics.

workspaces for multiple researchers to collaborate for sharing

the data and results [5].

The common setups of imaging instrument related work-

flows involve the execution of manual tasks across all points

of the data pipeline. For example, as shown in Figure 1, first

researchers need to prepare and setup experimental samples

to be imaged on microscopes. Then researchers use controller

interfaces to set up microscope imaging parameters, such as

field of view (FoV), resolution, contrast, depth, image format

(.TIF, .GIF, or .JPEG) [1], [2], and volume information (if

3D reconstruction needed) [3], [4] to collect image/volume

data. For microscopes such as SEM, there are also microscope-

specific meta settings such as temperature, chamber pressure,

and accelerating voltage [6], [7]. The data collected from these

microscopes will include both the microscope setting data,

imaging parameters data, and the images/volumes themselves.

During this process, the researcher will need to continously

monitor the image/volume quality, and adjust the microscope

settings and imaging parameters. The high reliance of manual

intervention for image monitoring could introduce errors,

increase the workflows processing time, which in turn affects

the efficiency of valuable/expensive instrumentation resources

usage and the effectiveness on producing timely results.

This work is motivated by two scientific research work-

flows, i.e., material properties discovery of carbon nanotube

(CNT) growth process in SEM [1], [2], [8], and biological

properties discovery of mitochondrial segmentation process in

Electron Microscopy (EM) image volumes [9], [10]. These

two research workflows involve collection of large number of
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images/volumes using SEM, and subsequent machine learn-

ing/deep learning analysis of the collected images to guide

researchers to either adjust experimental parameters to opti-

mize CNT growth, or identify critical pathological indicators

for identification of potential diseases. In both cases, due to the

computing- and storage-intensive nature of the workflows, it is

nearly impossible for researchers to know if the image volumes

taken are satisfactory while they are in the imaging process.

Thus, it is critical that the imaging and analysis processes

are iteratively automated, so the researchers can get real-time

feedback from the analysis results and use the feedback to help

optimize experimental parameters. However, currently avail-

able cloud-based solutions typically solve a sub-problem in

instrument-based scientific workflows, e.g., providing remote

access to microscopes [5], or enhancing workflow analysis

by improving machine learning/deep learning frameworks/al-

gorithms [10], [11]. They are not capable of automating

the entire workflow using AI/ML to leverage the analytics

outputs and provide real-time guidance to the researchers to:

(a) help them adjust the settings on the microscopes, or (b)

optimize the parameters of image/volumes during microscope

imaging process, to save both researcher’s time and valuable

microscope resource usage.

In this paper, we propose a Remote Instrumentation Sci-

ence Environment (RISE) for intelligent image analytics that

addresses the aforementioned difficulties in real-time imaging

and data analytics workflows. RISE provides the infrastructure

to securely capture images, determine process parameters and

provides experimental control actions via automation, under

the premise of “human-on-the-loop”, where researchers can

monitor all steps of the process, and adjust the instrument

settings by following the recommendations of the analytic

models. RISE supports collection of data generated from imag-

ing instruments (e.g., SEM) and uploads it to a cloud-based

storage repository, where AI/ML models can analyze and

characterize the collected images. The characterization results

are stored in a knowledge base that can be used by another

intelligent agent to provide feedback on instrument settings to

refine the results in the next iteration. Thus, researchers can

use RISE to monitor the imaging process and tune instrument

settings as needed.

To prove the effectiveness of this approach, we implement

and evaluate our RISE in the two aforementioned research

workflows by leveraging reinforcement learning (RL) based

CNT growth analytics, and deep neural network (DNN) based

mitochondria instance segmentation. Using RISE, we show

how intelligent agents can utilize the characterization gen-

erated by AI/ML models to recommend pertinent control

feedback to the microscope to improve the results in the next

iteration of the process.

The remainder of this paper is organized as follow: Sec-

tion II presents related work. Section III describes the RISE

requirements for each use case. Section IV details the RISE

implementation. Section V presents RISE performance evalu-

ation. Section VI concludes this paper.

II. RELATED WORK

A. Cloud-based Remote Instrumentation

Increased access to high-speed networks and growing data

resolutions has made remote access of sophisticated scientific

instruments such as microscopes and spectrometers widely

feasible and essential for domain scientists in areas such

as biochemistry, and material science/engineering. Important

works have been proposed to automate RI-based processes.

An edge-cloud microservice infrastructure named BRACELET

was proposed in [12]. BRACELET focuses on edge-cloud

infrastructure, incorporating new and old devices to create the

BRACELET system to enable integration of cloudlets into an

existing two-tier cloud-based infrastructure. This edge-cloud

infrastructure helps to address the performance and security

challenges that old scientific instruments face when they are

connected to the cloud through a public network.

Multiple factors such as network bandwidth and remote op-

eration limitations could affect the users’ quality of experience

(QoE) when accessing scientific instrumentation remotely. A

prior work in [5] proposed a remote instrumentation and

collaboration environment (RICE), which addressed some of

the constraints by optimizing data transmission rates based on

available network bandwidth, blocking users actions during ex-

treme congestion situations to prevent system breakdown, and

allow experts to control scientific instruments remotely. From

a resource abstraction service perspective, authors in [13]

proposed an instrumentation and measurement cloud (IMC)

system, which focused on provisioning of traditional IM

systems delivered on-demand, and with scalability. IMC en-

ables remote sharing of IM resources, increased utilization of

various resources, and facilitates processing and analysis of

large volumes of data from instruments and sensors.

Increased remote usage of imaging instruments through

cloud and networks also put them under serious security risks

in e.g., data acquisition, data analytics and data collaboration

processes. In [14], the authors used the STRIDE model,

and analyzed the security threats to electron microscopy

workflows’ life cycle stages. The threat model addressed

data acquisition, analysis and collaboration life cycle stages

pertaining to e.g., materials modeling or biological specimen

analysis that generate large amounts of raw and processed data

sets and image files. To address these security issues, authors

then proposed resource formalization, alignment, and alloca-

tion methodologies for securing data-intensive applications on

multi-cloud infrastructure.

Although the above works provide important advances to

increase accessibility to instruments from remote sites and

enable sharing of data resources among collaborators, they

do not integrate AI/ML models on cloud-based workspaces

for instruments. Network-level security and related web ser-

vices also have been under-studied for such RI collaboration

environments. In contrast to prior work, our proposed RISE

provides researchers a secure and cloud-integrated access to

AI/ML models to obtain real-time feedback and increase

efficiency in sharing image analytics results. In addition, our
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intelligent agent-based feedback control mechanism allows

researchers to setup automated interactions with microscope

instruments on-the-fly. This enables researchers to adjust ex-

periment settings and achieve efficient workflows that are

automated to increase consistency and reduce errors.

B. Real-time Image Analysis and Instrument Control Feedback

Research in [15] proposed a data acquisition and analysis

framework named “4CeeD” for cyber-physical environments

in the material science domain. This framework focuses on

the potential of capturing, accurately curating, correlating, and

coordinating materials-to-devices digital data in a real-time

manner. It also ensures these steps happen in a trusted manner

before fully archiving and publishing them for wide access

and sharing.

In [16], authors present Smartscope, a semi-automation

framework to simplify and automate the screening process of

cryoEM grids. This framework abstracts the intermediate steps

of specimen navigation, then saves metadata into a database

and presents the results to the user through an interactive web

interface. Substrate from images are automatically detected

and labeled using neural network-based approaches. The anal-

ysis results are then used to guide microscopists/researchers

to visualize the specimen at increasing magnifications by

navigating to areas that are most likely to provide information

useful to guide the optimization.

Authors in [17] proposed an artificial intelligence atomic

force microscope (AI-AFM) that is capable of not only pattern

recognition and feature identification in ferroelectric materials

and electrochemical systems, but can also respond to classifi-

cation via adaptive experimentation with additional probing

at critical domain walls and grain boundaries. By using a

machine learning strategy, this framework makes real-time

classification and control possible during scanning of materials

under a microscope, and reduces the need of human insight

on execution and image analytics, which are often tedious.

In [18], authors showed the importance of having real-

time control feedback for microscopes. A desktop-computer

based application was developed to fulfill those needs. Using

real-time feedback control, they significantly simplified access

to hardware, coding for remote control, and minimized the

resources and manual efforts. Similarly, work in [19] presented

a crystallization monitoring unit consisting of an in-situ dig-

ital microscope and real-time image analytics for monitoring

and control of a micron-sized, liquid-liquid crystallization of

calcium carbonate.

The authors in [20] designed an image analytics based direct

nucleation control (IA-DNC) process, which is a model free

feedback control strategy for batch and continuous crystalliza-

tion processes. In this method, microscopy images are captured

and processed by means of image analytics in real time and

then feedback is provided to the microscope to further analyze

and monitor the crystallization processes to ultimately achieve

a stable and converged control of crystal shape.

While above works tried to address remote instrumentation

needs and issues in the contexts of image analytics and data

collaboration, none of these works utilized intelligent agent

based approaches to offer recommendations to help researchers

to make the right instrument parameter settings during their

experiments. In our approach, intelligent agents are used to

orchestrate main aspects of the remote instrumentation process

elements such as remote operation, AI/ML model based feed-

back control to imaging instruments, data security concerns,

and automation of the entire pipeline with minimized human-

in-the-loop considerations. More importantly, our proposed

intelligent agent approach fully integrates both the web portal

and back-end machine learning/deep learning models for data

analysis. It leverages a knowledge base to provide interactive

recommendations in real-time to help researchers control the

instruments to obtain the desired experiment settings, thus sav-

ing precious time of researchers/instruments, and maximizing

workflow outputs.

III. RESEARCH USE CASE REQUIREMENTS

In this section, we present the two research uses cases

whose workflow process automation delineate the architectural

requirements of the RISE design and implementation.

A. Carbon Nanotube Growth Automation Use Case

1) Research Background
Carbon nanotubes (CNTs) are widely studied for their

promising mechanical, electrical, and thermal properties that

make them suitable for diverse applications [1]. When CNTs

are synthesized in dense populations known as CNT forests,

a significant performance gap between individual CNTs and

CNT forests is observed, as shown in Figure 2. To date,

overcoming the performance gaps has not been achieved due to

a lack of understanding about how the processing mechanisms

of CNT synthesis control the CNT self-assembly process [11].

It is extremely difficult to obtain a desired property set from

a CNT growth in forests. CNT growth involves a large set of

parameters, making experimental and/or numerical exploration

of the synthesis prohibitive. The CNT synthesis parameters

include e.g., catalyst composition, thickness, CNT synthesis

temperature, gas composition, pressure, synthesis time, and

more. In real experiments, researchers often utilize CNT forest

simulation to guide CNT forest synthesis experiments. For

example, a time-resolved finite element method (FEM) CNT

forest simulation tool [1], [21] is used as a high-throughput

virtual laboratory to examine the synthesis–structure–property

design loop of CNT forests. Images of each CNT forest mor-

phology are obtained at the end of their simulated synthesis,

and a mechanical compression simulation is performed to

obtain mechanical properties [21]–[23]. Numerical simulation

of CNT forests synthesis and self-assembly is an alternative

approach that may increase the speed and diversity of synthesis

parameters examined. Such simulations can predict both the

CNT forest structural morphology and the resulting CNT

forest properties. By systematically varying CNT synthesis pa-

rameters, one may arrive at a set of conditions that produce the

desired CNT forest performance metrics such as mechanical

stiffness and thermal conductivity.
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In CNT research efforts, experimental results are hard

to obtain, and they are usually noisy, expensive and time

consuming. The CNT forest attributes (CNT diameter, areal

density, growth rate) are poorly characterized and time variant.

Therefore, the physics-based simulation of CNT forests may

present a reliable and powerful tool for training ML models in

the absence of suitable experimental data, and can be used with

experimental data collaboratively to provide more accurate

control of CNT growth experiments.

Fig. 2: SEM images of CNT forest with three different morphology each
potentially having different mechanical properties: (left) tortuous morphol-
ogy, (middle) well-aligned morphology, and (right) patterned growth using
photolithography.

2) CNT Growth Experiment Workflow
Multiple factors that contribute to the growth and final result

of carbon nanotube (CNT) forest, and in-situ CNT growth

experiments require long preparation time and active human

intervention to regulate the synthesis parameters in search

of specific material characteristics. Implementing the CNT

growth process in a system able to regulate the parameters,

without human intervention in real-time based on in-situ

imagery, would facilitate the study of CNT forest synthesis and

self assembly to deterministically achieve prescribed material

properties.

To elucidate the process-structure-property relationships of

carbon nanotube (CNT) forests, our approach will use AI/ML

models to conduct iterative physical and numerical synthesis

experiments, characterize the results, learn from the results,

and then alter the experimental conditions to converge upon a

user-defined CNT forest property set. The ultimate goal is to

perform the process without human interaction, so the process

control will shift from a human user to an autonomous system.

Fig. 3: CNT Growth Automation Process including the AI-based model that
determines and sets the synthesis process control parameters, the SEM where
the CNT process takes place, and the images collection and analysis to
determine the CNT properties.

As illustrated in Figure 3, the CNT growth automation

process involves the following steps: 1) in-situ scanning

electron microscope (SEM) synthesis techniques to acquire

imagery of CNT forest growth and self-assembly, 2) computer

vision to quantify and isolate the kinetics and assembly

mechanisms of CNTs, 3) a complimentary finite element CNT

forest synthesis and testing simulation, 4) a convolutional

neural network (CNN) to predict CNT forest properties from

experimental and simulated images, and 5)a distributed control

algorithm that will transition experimental manual control

from human researchers to a “human-on-the-loop” control

assisted by autonomous decision algorithms. As the CNT

growth kinetics and self-assembly process are understood for

diverse synthesis conditions, the CNN will predict the process-

structure-property relationships for CNT forests.

3) Workflow Automation Requirement
Human action and observation are often biased and tend to-

wards guesswork when determining simulation or experimen-

tal synthesis parameters, especially when iteratively navigating

multi-dimensional parameter spaces. This can result in user

actions and materials discovery progressing in either stable

(i.e., processing steps produce predicted material responses),

unstable (i.e., processing steps produce undesired responses)

or breakdown (i.e., processing steps provide no material re-

sponse) states. To understand and map the process-structure-

property relationships for CNT forests, there is a need for

remote control and an iterative experimentation approach with

integrated analysis, simulation, and feedback mechanisms to

gradually remove humans, with their inherent error and bias,

from the CNT property discovery loop. This will include

obtaining the CNT growth experimental settings, the parame-

ters for image taking, real-time analytics of image data, and

using the analytics output as guidance to control experimental

settings on-the-fly to improve CNT growth quality. To this end,

our proposed control feedback mechanisms help characterize

and guide physical processes through on-the-fly deep learning

algorithms and an intelligent chatbot agent that provides semi-

and fully-automated guidance in CNT synthesis.

B. Mitochondria Segmentation Automation Use Case

1) Research Background
Mitochondria are membrane bound organelles that play

key roles in cellular energy production, calcium homeostasis

regulation, free radical production, steroid synthesis, and cell

death [24]. Evidence suggests that mitochondria can be asso-

ciated with mechanisms involved in aging, neurodegenerative

diseases, cancer, and metabolic disorders [24]–[27]. Scientists

rely on EM to study morphology of subcellular structures

like mitochondria. The first step towards characterization of

mitochondria morphology is image segmentation that aims to

identify mitochondrial regions from the rest of the input image.

Given density and complexity of mitochondrial structures in

the imaged biological samples, and the size of the image

data (hundreds of slices per sample), manual segmentation of

mitochondria is a labor-intensive and subjective task.

Automated image processing techniques are needed to

segment, quantify, and analyze the large volumes of EM

image data. Various methods and pipelines have been proposed

for mitochondria segmentation [28], particularly owing to
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the recent advances in deep learning [29], [30]. Our related

advances are in EM image analytics in general [3], [31] and

mitochondria segmentation in particular [9], [10]. An example

diagram showing the mitochondria segmentation validation

analysis in a human tissue sample is shown in Figure 4.

Fig. 4: Instance segmentation results in an image slice of a human validation
dataset. Sample result is illustrated on a single slice (middle). Colored overlays
correspond to mitochondrial regions (left), and the label ground truth (right).

2) Mitochondria Segmentation Experiment Workflow
The mitochondria image segmentation process aims to iden-

tify mitochondrial regions in EM images. The process also

involves detection of mitochondrial boundaries in order to help

separate neighboring mitochondria to allow individualized

characterization. Due to imaging and sample complexities,

microscope parameters need to be adjusted to improve image

characteristics and outcomes during the data analysis process.

Current workflow processes rely on in-situ researchers for in-

strument setting adjustments, data collection and transmission

to simulation centers. Once data is analyzed, a request for new

data is submitted indicating the adjustments needed to improve

the characteristics of the images. Given the involvement of the

human effort on the process, it requires a long time to complete

the process with the expected outcomes. Implementing a mito-

chondria segmentation process in a system allows adjustment

of the microscope parameters, without human intervention in

real-time based on in-situ imagery, which expedites the process

and provides successful results faster.

Our mitochondria segmentation process uses a deep learning

based pipeline which takes input image patches generated by

electron microscopy. The processing pipeline consists of a 3D

convolutional long short term memory U-Net (3D CLSTM U-

Net) segmentation network followed by a marker-controlled

watershed segmentation step for instance segmentation [10]

as shown in Figure 5. We compute a number of mitochondria

count, size, shape characterization and segmentation evaluation

measures [32] to localize regions of interest and to assess

segmentation quality. These parameters can be used by another

AI-based model to generate a feedback command looking to

improve the quality of the image and facilitate the analysis in

order to foster better outcomes. In this way, the full process can

be conducted with limited human interaction, where images

are collected by a remotely operated SEM with commands

generated as a feedback from the results of the mitochondria

segmentation process.

This process will require the following steps: 1) in-situ

scanning electron microscope (SEM) image collection from

tissue sample, 2) data transmission to a cloud-based simulation

Fig. 5: Mitochondria segmentation pipeline. Experimental images of biomed-
ical samples are taken and collected from multi-beam SEM. The images
are then passed through instance segmentation pipeline, where machine
learning algorithms are utilized to recognize and isolate mitochondria from
the images/volumes. A set of unsupervised evaluation metrics are computed.
The segmentation results in the form of mitochondria region and boundary
maps are remapped back to the images, and matched to ground truth labels to
generate the accuracy output, represented by dice score and average precision
(AP) results. An AI-based model uses these results to set the SEM image
scanning parameters.

center, 3) patch-level segmentation using a 3D convolutional

network, 4) a full volume instance segmentation, 5) compu-

tation of various outcome measures including but not limited

to mitochondria size, shape, density in a region, segmentation

confidence values, unsupervised segmentation quality evalu-

ation measures, 6) use a second AI-based model to process

these outcome measures to generate a feedback command, 7)

use the feedback command to adjust the microscope parame-

ters.

3) Workflow Automation Requirement
Similar to the CNT growth use case, the mitochondria

segmentation workflow is also time consuming, involving

human-in-the-loop during image data collection, analysis and

changing parameters on the microscope during sample imag-

ing processes. In addition, biomedical samples are difficult to

prepare if the current experiment fails and researchers have

to spend a long time and a lot of efforts to repeat the same

experiment. In this case, an automated workflow that involves

image data import, data collection and accurate analysis, and

a real-time feedback guidance with the analysis output results.

These steps will benefit the researchers in their experiments

by automatically assessing image data quality and adjusting

microscope settings as well as imaging parameters.

IV. RISE SYSTEM IMPLEMENTATION

In this section, we describe the architecture of the RISE

system and its components. We also provide the description

of the modules, the interfaces and their interactions.

A. System Architecture Overview

Based on the requirements described in the previous section,

we defined the system architecture as depicted in Figure 6. It

includes various modules, including the SEM controller agent,

the Analytic Services Broker integrated by AI/ML models

provided to analyze the images from the SEM, and to generate

the feedback commands intended to adjust the SEM settings.

A data repository and knowledge base component is intended

to store the images collected from the SEM, and the results
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generated from the AI/ML model and associated meta data

for each image. A web portal provides the user interface

for researchers and system administrators to interact with

the system. Detailed descriptions about the specifications and

implementation details of this RISE architecture are provided

below.

Fig. 6: RISE architecture featuring various modules, including an Analytic
Services Broker, the SEM Controller Agent, the Web-based User Interface,
User Access Control, Data Repository and Knowledge Base.

B. Web-based User Interface

The Web-based User Interface module includes a web

portal, User Access Control functions and chatbot services

that allow researchers and system administrators to interact

with the RISE system. Through the web portal service, users

can monitor the status of experiments, determine if images

have been generated by the SEM, preview available images,

submit images for analysis and get the related results from the

analytic services, and share the images and results with other

researchers as shown in Figure 7. The web-portal relies on the

User Access Control module to allow users access to specific

resources and functionality, and to limit, permit, or deny access

from users, resources or locations. Using the chatbot service,

researchers can get a set of recommendations about the update

on parameters (i.e., image resolution, image size, move to

specific scanning area) that can be applied on the SEM,

based on the last experiment iteration results, and that are

expected improve the outcome of the next experiment iteration.

Researchers can select one option for each parameter and

upon confirming the selection. The chatbot communicates the

decision to the web portal engine, which translates it into the

proper API command to be sent to the SEM Controller agent

looking to set the SEM instrument parameters accordingly.

Fig. 7: RISE web portal interface displaying the information of the experi-
ments from a user’s account.

Our approach includes a chatbot intelligent agent that inter-

acts with the researchers within the RISE system web portal as

illustrated in Figure 8, and provides critical recommendations

during feedback control of researcher’s experiment. The chat-

bot agent is implemented using the Dialogflow API maintained

by Google to promote human–computer interaction based on

natural language conversations. The chatbot agent takes the

results from the CNT growth model and the mitochondria seg-

mentation model generated by the Analytic Services Broker,

which helps to determine recommendations for researchers to

make necessary adjustments on SEM settings to improve the

outcome of the experiment.

Fig. 8: RI Web Portal User Interface featuring the chatbot dialog showing the
options researchers can select to refine the SEM settings.

C. SEM Controller Agent

The SEM Controller Agent is a module hosted at the

location of the SEM. It works as the interface exposing the

SEM resources to the Internet, and allowing the SEM to

communicate with the other modules by receiving settings

updates commands and providing scanned images and status

information. This module is enabled to manage two API

command sets. One API set handles the direct control of the

SEM instrument by generating the commands to control its

parameters, read the results of command actions, and monitor

its status. The other API set handles the communication

between the SEM controller agent and the web-based user

portal interface, and works as a translator between the high-

level commands sent by the web-portal and the SEM API

commands. The SEM controller agent isolates the SEM instru-

ment from any external environment, protecting it from any

unauthorized access and related security risks. It encapsulates

its proprietary API and wraps it into a high level API between

the web-based user interface and the SEM controller agent.

It also provides an open API that can be adapted to multiple

SEM models, brands, technologies, and security requirements.

Additional instruments can be added to the system just by

including the agents with the proper API to control those

instruments. Thus, a variety of instruments in the system can

be made available for the researchers.
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For implementation and testing purposes, we used a Ther-

moFisher Phenom desktop microscope. Consequently, our

SEM Controller Agent was implemented using the Phenom

Programming Interface (PPI) with the PyPhenom Library. The

PPI methods implement the Phenom commands to get the

instrument mode and operational mode, load/unload sample,

perform sample navigation to specific area, update beam

parameters; change the magnification, and adjust focus, bright-

ness and contrast, and perform image acquisition.

D. Analytic Services Broker

The Analytic Services Broker includes the pre-trained

AI/ML based models to discover the CNT growth properties

and the mitochondria segmentation properties. This module in-

teracts with the other modules to process the images collected

from the SEM resources and provides the required feedback

relating to adjustments that need to be applied on the SEM in

preparation for the next experiment iteration.

For CNT use case, we used an AI-based model to charac-

terize the images related to a CNT growth process. The model

uses reinforcement learning (RL) [11] approach to learn from

simulation-based images and characteristics of temporal CNT

growth, and considering various growth parameters such as

density, growth rate, tube radius, tube stiffness, and Van der

Waals forces. The images generated by CNT growth process

are analyzed by the RL agent to determine the waviness, i.e.,

deviation of the growing tubes from straight axial growth, and

the average growth rate of the tubes. These results are then

used to determine the proper settings that need to be sent to the

SEM to adjust for getting the expected results in the upcoming

iterations of the experiment.

The AI-based model associated with the mitochondria seg-

mentation process uses a 3D deep convolutional network [10],

which extends the classical U-Net semantic segmentation

network with a convolutional long-short term memory (3D

CLSTM U-NET). The images from SEM are analyzed by

this model which generates two outputs, one corresponding

to mitochondrial regions, and the other corresponds to mi-

tochondrial boundaries. These region and boundary results

are used by a watershed segmentation step for identification

of individual mitochondria. The image analytics process also

computes various outcome measures to quantify mitochondria

density in a region, segmentation confidence values, and

segmentation quality. These measures are used to determine

the SEM parameters that need to be set to improve the

outcome of the next image to be scanned by the SEM and

to determine regions of interest to be imaged and analyzed in

higher resolutions.

E. Data and Knowledge Base Repository

The collected images from the SEM resources, the metadata

related to these images, the image processing results generated

by the Analytic Services Broker, and the feedback commands

compiled by the SEM Feedback Analyzer need to be stored.

Our approach relies on a stable, secure, and open-standard

SQL access repository to store, and manage all of this data.

Besides applying the SQL standard approach, we define a

centralized data repository featuring a Common Data Model
repository (CDM) to store the raw images data, images related

metadata, images related analytic results, and images related

actions taken to influence subsequent experiment steps. Corre-

spondingly, the CDM will contain the experiment ID, the raw

image data, the related metadata, the image analytics results,

action options advised, actions executed by the researcher, and

obtained results. The richness of the information stored in the

CDM could be leveraged by future works oriented to improve

the results of the current experiments.

F. Risk Management in Scientific Workflow Control

Workflows setup is configured within an experiment defi-

nition via the web portal. The experiment definition contains

the initial instrument setup, and the history of each iteration

including instrument adjustments, results, and comments from

the researcher. The information about the options provided by

the Feedback Analyzer are also stored, as well as the option

the researcher selected to generate the feedback command and

adjust the instrument settings. Once an experiment iteration

starts, the status of the instrument is continuously monitored

by the SEM controller agent, and the latest status is reported to

the web portal so that the researcher can follow the progress of

the task. On the event of network failure or faulty component

failure in the system, researchers can use the the historical

information of the experiment to reestablish the the conditions

of the last iteration and continue with the experiment, or

completely recreate the process by using the instrument setup

sequence applied on the iterations already completed. The AI

recommendations on how to adjust the instrument for the next

iteration can be verified by the researcher in the context of

the “human-on-the-loop” approach. In this way, the researcher

will have the opportunity to supersede the adjustments options

provided by the feedback analyzer and adjust the instrument

settings to progress the experiment in the desired direction.

V. PERFORMANCE EVALUATION

In this section, we describe our deployment of RISE system

on a testbed, and evaluation of the system in both CNT and

biomedical image analytics use cases.

A. RISE System Testbed Implementation

To evaluate the overall effectiveness and efficiency of our

proposed RISE system, we implemented a testbed as shown

in Figure 9 to deploy all the system components.

We used the University of Missouri (MU) Lewis HPC

cluster to host the developed AI/ML models to analyze the

images from the SEM. For both CNT growth process and

mitochondria segmentation process, we deployed the AI/ML

models as microservices that will constantly check for im-

age/volume data inputs and will start to analyze the data once

the inputs are received through API calls from the Web Portal,

where data is sent from microscopes. Both models will store

analysis outputs into the data repository and knowledge base,

which is also deployed on the Lewis platform in the form
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Fig. 9: RISE System testbed infrastructure showing workspace components including: the remote lab location of the SEM and the related controller agent
with Internet access; the science gateway Analytic Services Broker with the images repository, image processing AI models and knowledge base, and web
portal with the chatbot service.

of MySQL databases. The data repository is accessed by the

SEM Controller Agent to store the scanned images from the

SEM. It is also accessed by the cloud-based Intelligent Agent

Service to retrieve images and metadata to define the SEM

parameters to be set for the next iteration of the experiment.

These SEM parameters will be used by the chatbot service to

advise the researcher, and they are accessed by the Web Portal

service to retrieve and display images and related metadata as

requested by the researcher.

AWS was used to host the AI-based model and local

images repository is used to determine the SEM settings

to be applied based on the results generated by the SEM

image analytics models. The public cloud deployment provides

flexibility, scalability, and security standards. The Intelligent

Agent Service accesses the SEM Images Repository in the

HPC cluster and loads the required images into a local S3

Bucket repository for an immediate access to image data and

metadata. The results of the analysis by this agent updates a

local knowledge base that will be available for the chatbot

service to advise the researcher on selecting the parameters

to be set on the SEM to improve the outcomes of the next

iteration of the experiment.

The Phenom SEM instrument is located in a MU research

laboratory, managed by the Electron Microscope Core Facility,

and allows access to the other modules of the system via

the SEM Controller Agent implemented with the PPI inter-

face. The agent isolates the instruments and translates the

commands coming from the Web Portal into the proprietary

instrument’s API to setup the instruments and collect the

scanned images. The scanned images are stored in the SEM

Images Repository by the agent via a REST API.

B. CNT Use Case Experiments Results

The CNT growth experiment setup allowed researchers to

evaluate the performance of the Q-learning based RL-models

in their ability to regulate growth parameters to improve

maximum compression load capacity of the CNTs. Given the

long time taken by CNT growth processes and complexity

of the experiment setup, we used simulated images [11] to

expedite the images characterization, so CNT growth param-

eters (i.e., angular deviation, growth rate) can be used by the

SEM feedback analyzer to generate the feedback commands

intended to be used by an actual SEM.

1) Evaluation of model based on angular deviation
The Q-learning based RL agent was able to learn growth

parameter temporally to create CNTs with ability to withstand

more compressive forces. For this part of evaluation, we

leverage the Q-learning framework previously developed by

our team [11] using the “Wave” parameter. The “Wave”

parameter controls rate of change of standard deviation of

angle of growth for CNTs. The parameter ranges from 1 to

10, where 1 represents the smallest value and causes straight

growth while 10 represents orthogonal growth. A larger value

of the parameter signifies more waviness in tube growth at

that growth step.

As shown in Table I, maximum compression load is ob-

served at 90% of the maximum height of the CNT forest as

densification occurs. Regardless, the maximum compression

load of the system is improved at all the heights when the RL

agent is used. We notice that the best configuration of growth

is achieved for the [3,4,5] configuration of “wave” parameter.

At all other growth parameters configurations, the maximum

achieved compression load is less than the compression load

achieved at [3,4,5] configuration.

TABLE I: Comparison of maximum load capacity of CNTs based on angular
deviations at different heights, ‘without’ or ‘with’ our RL model; H represents
the initial height of tubes before compression.

Height after
Compression

Max. Load
without model

Max. Load
with RL model

Optimal “wave”
Configuration

95% of H 01.43e-05 3.59e-05 [3,4,5]
90% of H 4.61e-05 6.43e-05 [4,4,5]
80% of H 2.1e-05 4.2e-05 [3,4,5]

2) Evaluation of model based on rate of growth
The RL model was able to learn the optimal growth rate

variability to create CNT forests with increased yield forces.

As shown in Table II, the average improvement in the load

capacity increased by 183% at different heights of compres-
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sion. The maximum improvement in compression load was

194%, which was noticed at 90% of compression at an average

growth of 65 nm per step.

TABLE II: Comparison of maximum load capacity of CNTs at different
heights, ‘with’ or ‘without’ our RL model. H represents the initial height of
tubes before compression.

Height after
Compression

Max. Load
without model

Max. Load
with RL model

Optimal Average
Growth Rate

95% of H 2.56e-05 4.71e-05 65 e-9 m/sec
90% of H 3.58e-05 6.98e-05 65 e-9 m/sec
80% of H 2.81e-05 4.86e-05 60 e-9 m/sec

On comparing the results for maximum compression load

within the two RL models as shown in Tables I and II,

it can be noticed that the maximum load capacity in the

model based on average rate of growth was better than the

model based on change in standard angular deviation at all

heights of compression. This could be because the standard

deviation of angular deviation was fixed at 3 when model was

trained with rate of growth parameter, which is very near to

optimal configuration of [3,4,5] observed in model based on

angular deviation. Regardless, the compression load capacity

still improves when the model is trained with rate of growth

or change in standard angular deviation as the base feature for

model training.

The angular deviation, growth rate, and their correlation

with the compression load capacity of the tubes as found by the

validation of the RL-based agent are valuable parameters that

the AI-based analyzer model in RISE can use to determine the

proper feedback for the SEM. The feedback options provided

can be used by the researcher on setting the SEM to control

the CNT growth process.

C. Mitochondria Segmentation Experiment Results

The mitochondria segmentation experiment setup allowed

researchers to evaluate the performance of the AI-based model

in its ability to effectively identify and quantify mitochondrial

structures in SEM imagery. Mitochondria density in a region,

segmentation confidence values, and segmentation quality

evaluation measures provided by this process are used as

control parameters by the AI-based analytic model to generate

the feedback commands intended to be used on the SEM.

1) Validation dataset and training model
The preliminary mitochondria instance segmentation exper-

iments were conducted on the MitoEM dataset [4] collected

by a multi-beam scanning electron microscope [33]. This

dataset includes two stacked volumes. The first volume (Mito-

H) contains 1000 2D image slices of size 4096×4096 acquired

from an adult human cortex. The second volume (Mito-R) also

contains 1000 2D slice images of size 4096× 4096 captured

from an adult rat cortex. Both of them have the same resolution

of 8 × 8 × 30 nm3. The dataset was annotated by first using

a 3D U-Net, and then corrected manually by experts [4]. In

the experiment, each volume was split into training set (400

slices), validation set (100 slices), and test set (500 slices).

The 3D CLSTM U-Net was trained with random initial-

ization. It used the Adam optimizer [34] with a learning rate

TABLE III: Semantic segmentation performance of the proposed 3D CLSTM
U-Net network.

Dataset Region Dice Boundary Dice

Mito-R 0.94 0.74
Mito-H 0.91 0.70

of 0.0001 to minimize the binary cross-entropy loss function

and dice loss function. For data augmentation, we applied a

random xy axis flip with a probability of 0.5 and a random

zoom with a scale from 0.8 to 1.25 and probability of 0.2.

We perturbed the image intensity with random contrast with

a probability of 0.2, Gaussian noise with a probability of 0.2,

and Gaussian smoothing with a probability of 0.2.

2) Experiment results

Our mitochondria segmentation performance is summarized

in Table III in terms of dice score for semantic segmentation

and in Table IV in terms of average precision (AP) scores

with an intersection over union (IoU) threshold at 75% for

instance segmentation. The high region dice scores of 0.94 and

0.91 in Table III for Mito-R and Mito-H respectively indicate

that the proposed network is highly successful in segmenting

mitochondrial structures from the rest of the image volume

including other subcellular structures.

In Table IV the instance segmentation results are grouped

based on the mitochondria size (small ≤ 5,000 voxels, medium

5,000 to 15,000 voxels, large ≥ 15,000 voxels). On average,

the proposed 3D CLSTM U-Net network improves instance

segmentation performance compared to regular 3D U-Net

network [35] by 0.21 and 0.03 points for rat (Mito-R) and

human (Mito-H) datasets respectively. These improvements

are mostly due to improvements on large mitochondria. The

lower performance on instance segmentation is mostly due to

failure to separate touching mitochondria instances. Instance

segmentation performance on the rat dataset is better compared

to the human dataset because the rat dataset has a less denser

distribution of mitochondria.

The proposed mitochondria segmentation network will be

used by the RISE system for two primary purposes: (1) to per-

form a fast scan of the specimen in low resolutions in order to

locate regions of interest containing mitochondrial structures

to be further imaged and analyzed in higher resolutions; (2) to

fine-tune imaging parameters such as focus to improve image

quality and consequently analysis outcomes. The automated

localization and region selection step will considerably reduce

processing time associated with both imaging and image

analysis. This will also help in reducing specimen degradation

due to interactions with accelerated electrons during imaging.

The parameter fine-tuning step will use the confidence scores

obtained from the last layers of the segmentation network as

an indicator for out-of-focus imaging or other non-optimal

imaging parameters and guide selection of imaging parameters

for improved outcomes.
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TABLE IV: Instance segmentation performance in terms of average precision
(AP) scores with an intersection over union (IoU) threshold at 75%.

Dataset Method Average Large Medium Small

Mito-R 3D U-Net [35] 0.52 0.49 0.75 0.29
Mito-R 3D CLSTM U-Net 0.73 0.77 0.62 0.14
Mito-H 3D U-Net [35] 0.62 0.62 0.77 0.56
Mito-H 3D CLSTM U-Net 0.65 0.71 0.66 0.13

VI. CONCLUSION

In this paper, we introduced the architecture and imple-

mented a RISE system that allows researchers to automate

execution of workflows involving the collection of images

from a scanning electronic microscope, and AI/ML model

based image analysis to generate feedback for process control.

The feedback is used to determine the parameters that can

be used to control the next experiment iteration to avoid

errors and improve efficiency of valuable/expensive scientific

instrument resources. Motivated by a CNT growth workflow

and a mitochondria segmentation workflow, we implemented

RISE with intelligent agents to provide real-time feedback to

intelligently update the instrument settings. From the CNT

growth process we used the angular deviation of the tubes and

its growth rate to determine a set of options that can be updated

on the remote instrument to improve the compression load

capacity of the tubes. From the mitochondria segmentation

process, we used the dice score and average precision metrics

as the parameters to generated the feedback control for the

instrument to improve the quality of the scanned images. Thus,

we showed that RISE system achieves an effective ”human-

on-the-loop” approach to automate scientific workflows, while

improving consistency on images collection and increasing the

results accuracy.

As part of our future work, we plan to expand the architec-

ture to cover additional image analytics uses cases, increasing

the parameters used by the intelligent agent to generate the

feedback control of the instrument, refining the AI-based

model and expanding the the feedback control options for the

researchers to auto-control microscope settings.
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