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Abstract—Current scientific experiments frequently involve
control of specialized instruments (e.g., scanning electron mi-
croscopes), image data collection from those instruments, and
transfer of the data for processing at simulation centers. This
process requires a ‘“human-in-the-loop” to perform those tasks
manually, which besides requiring a lot of effort and time,
could lead to inconsistencies or errors. Thus, it is essential
to have an automated system capable of performing remote
instrumentation to intelligently control and collect data from
the scientific instruments. In this paper, we propose a Remote
Instrumentation Science Environment (RISE) for intelligent im-
age analytics that provides the infrastructure to securely capture
images, determine process parameters via machine learning, and
provide experimental control actions via automation, under the
premise of ‘human-on-the-loop”. The machine learning in RISE
aids an iterative discovery process to assist researchers to tune
instrument settings to improve the outcomes of experiments.
Driven by two scientific use cases of image analytics pipelines,
one in material science, and another in biomedical science, we
show how RISE automation leverages a cutting-edge integration
of cloud computing, on-premise HPC cluster, and a Python
programming interface available on a microscope. Using web
services, we implement RISE to perform automated image data
collection/analysis guided by an intelligent agent to provide
real-time feedback control of the microscope using the image
analytics outputs. Our evaluation results show the benefits of
RISE for researchers to obtain higher image analytics accuracy,
save precious time in manually controlling the microscopes, while
reducing errors in operating the instruments.

Index Terms—remote instrumentation, image analytics, intel-
ligent agents, control feedback, collaboration workspaces

[. INTRODUCTION

Many scientific workflows (e.g., development of new ma-
terials, biomedical research) involve the collection of large
amount of imaging data from specialized instruments (e.g.,
high resolution microscopes such as scanning electron mi-
croscopes (SEM)), and subsequent transfer of these data to
simulation centers for extensive analysis [1]-[4]. This process
requires appropriate settings of instruments, large storage
capabilities, high bandwidth network capability and security
measures to transfer the collected data, and perform data trans-
formations. Further, it involves setting-up of image analytics
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Fig. 1: Overview of scanning electron microscope experiment control process
for image analytics.

workspaces for multiple researchers to collaborate for sharing
the data and results [5].

The common setups of imaging instrument related work-
flows involve the execution of manual tasks across all points
of the data pipeline. For example, as shown in Figure 1, first
researchers need to prepare and setup experimental samples
to be imaged on microscopes. Then researchers use controller
interfaces to set up microscope imaging parameters, such as
field of view (FoV), resolution, contrast, depth, image format
(.TIF, .GIF, or JPEG) [1], [2], and volume information (if
3D reconstruction needed) [3], [4] to collect image/volume
data. For microscopes such as SEM, there are also microscope-
specific meta settings such as temperature, chamber pressure,
and accelerating voltage [6], [7]. The data collected from these
microscopes will include both the microscope setting data,
imaging parameters data, and the images/volumes themselves.
During this process, the researcher will need to continously
monitor the image/volume quality, and adjust the microscope
settings and imaging parameters. The high reliance of manual
intervention for image monitoring could introduce errors,
increase the workflows processing time, which in turn affects
the efficiency of valuable/expensive instrumentation resources
usage and the effectiveness on producing timely results.

This work is motivated by two scientific research work-
flows, i.e., material properties discovery of carbon nanotube
(CNT) growth process in SEM [1], [2], [8], and biological
properties discovery of mitochondrial segmentation process in
Electron Microscopy (EM) image volumes [9], [10]. These
two research workflows involve collection of large number of
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images/volumes using SEM, and subsequent machine learn-
ing/deep learning analysis of the collected images to guide
researchers to either adjust experimental parameters to opti-
mize CNT growth, or identify critical pathological indicators
for identification of potential diseases. In both cases, due to the
computing- and storage-intensive nature of the workflows, it is
nearly impossible for researchers to know if the image volumes
taken are satisfactory while they are in the imaging process.
Thus, it is critical that the imaging and analysis processes
are iteratively automated, so the researchers can get real-time
feedback from the analysis results and use the feedback to help
optimize experimental parameters. However, currently avail-
able cloud-based solutions typically solve a sub-problem in
instrument-based scientific workflows, e.g., providing remote
access to microscopes [5], or enhancing workflow analysis
by improving machine learning/deep learning frameworks/al-
gorithms [10], [11]. They are not capable of automating
the entire workflow using AI/ML to leverage the analytics
outputs and provide real-time guidance to the researchers to:
(a) help them adjust the settings on the microscopes, or (b)
optimize the parameters of image/volumes during microscope
imaging process, to save both researcher’s time and valuable
microscope resource usage.

In this paper, we propose a Remote Instrumentation Sci-
ence Environment (RISE) for intelligent image analytics that
addresses the aforementioned difficulties in real-time imaging
and data analytics workflows. RISE provides the infrastructure
to securely capture images, determine process parameters and
provides experimental control actions via automation, under
the premise of “human-on-the-loop”, where researchers can
monitor all steps of the process, and adjust the instrument
settings by following the recommendations of the analytic
models. RISE supports collection of data generated from imag-
ing instruments (e.g., SEM) and uploads it to a cloud-based
storage repository, where AI/ML models can analyze and
characterize the collected images. The characterization results
are stored in a knowledge base that can be used by another
intelligent agent to provide feedback on instrument settings to
refine the results in the next iteration. Thus, researchers can
use RISE to monitor the imaging process and tune instrument
settings as needed.

To prove the effectiveness of this approach, we implement
and evaluate our RISE in the two aforementioned research
workflows by leveraging reinforcement learning (RL) based
CNT growth analytics, and deep neural network (DNN) based
mitochondria instance segmentation. Using RISE, we show
how intelligent agents can utilize the characterization gen-
erated by AI/ML models to recommend pertinent control
feedback to the microscope to improve the results in the next
iteration of the process.

The remainder of this paper is organized as follow: Sec-
tion II presents related work. Section III describes the RISE
requirements for each use case. Section IV details the RISE
implementation. Section V presents RISE performance evalu-
ation. Section VI concludes this paper.
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II. RELATED WORK
A. Cloud-based Remote Instrumentation

Increased access to high-speed networks and growing data
resolutions has made remote access of sophisticated scientific
instruments such as microscopes and spectrometers widely
feasible and essential for domain scientists in areas such
as biochemistry, and material science/engineering. Important
works have been proposed to automate RI-based processes.
An edge-cloud microservice infrastructure named BRACELET
was proposed in [12]. BRACELET focuses on edge-cloud
infrastructure, incorporating new and old devices to create the
BRACELET system to enable integration of cloudlets into an
existing two-tier cloud-based infrastructure. This edge-cloud
infrastructure helps to address the performance and security
challenges that old scientific instruments face when they are
connected to the cloud through a public network.

Multiple factors such as network bandwidth and remote op-
eration limitations could affect the users’ quality of experience
(QoE) when accessing scientific instrumentation remotely. A
prior work in [5] proposed a remote instrumentation and
collaboration environment (RICE), which addressed some of
the constraints by optimizing data transmission rates based on
available network bandwidth, blocking users actions during ex-
treme congestion situations to prevent system breakdown, and
allow experts to control scientific instruments remotely. From
a resource abstraction service perspective, authors in [13]
proposed an instrumentation and measurement cloud (IMC)
system, which focused on provisioning of traditional IM
systems delivered on-demand, and with scalability. IMC en-
ables remote sharing of IM resources, increased utilization of
various resources, and facilitates processing and analysis of
large volumes of data from instruments and sensors.

Increased remote usage of imaging instruments through
cloud and networks also put them under serious security risks
in e.g., data acquisition, data analytics and data collaboration
processes. In [14], the authors used the STRIDE model,
and analyzed the security threats to electron microscopy
workflows’ life cycle stages. The threat model addressed
data acquisition, analysis and collaboration life cycle stages
pertaining to e.g., materials modeling or biological specimen
analysis that generate large amounts of raw and processed data
sets and image files. To address these security issues, authors
then proposed resource formalization, alignment, and alloca-
tion methodologies for securing data-intensive applications on
multi-cloud infrastructure.

Although the above works provide important advances to
increase accessibility to instruments from remote sites and
enable sharing of data resources among collaborators, they
do not integrate AI/ML models on cloud-based workspaces
for instruments. Network-level security and related web ser-
vices also have been under-studied for such RI collaboration
environments. In contrast to prior work, our proposed RISE
provides researchers a secure and cloud-integrated access to
AI/ML models to obtain real-time feedback and increase
efficiency in sharing image analytics results. In addition, our
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intelligent agent-based feedback control mechanism allows
researchers to setup automated interactions with microscope
instruments on-the-fly. This enables researchers to adjust ex-
periment settings and achieve efficient workflows that are
automated to increase consistency and reduce errors.

B. Real-time Image Analysis and Instrument Control Feedback

Research in [15] proposed a data acquisition and analysis
framework named “4CeeD” for cyber-physical environments
in the material science domain. This framework focuses on
the potential of capturing, accurately curating, correlating, and
coordinating materials-to-devices digital data in a real-time
manner. It also ensures these steps happen in a trusted manner
before fully archiving and publishing them for wide access
and sharing.

In [16], authors present Smartscope, a semi-automation
framework to simplify and automate the screening process of
cryoEM grids. This framework abstracts the intermediate steps
of specimen navigation, then saves metadata into a database
and presents the results to the user through an interactive web
interface. Substrate from images are automatically detected
and labeled using neural network-based approaches. The anal-
ysis results are then used to guide microscopists/researchers
to visualize the specimen at increasing magnifications by
navigating to areas that are most likely to provide information
useful to guide the optimization.

Authors in [17] proposed an artificial intelligence atomic
force microscope (AI-AFM) that is capable of not only pattern
recognition and feature identification in ferroelectric materials
and electrochemical systems, but can also respond to classifi-
cation via adaptive experimentation with additional probing
at critical domain walls and grain boundaries. By using a
machine learning strategy, this framework makes real-time
classification and control possible during scanning of materials
under a microscope, and reduces the need of human insight
on execution and image analytics, which are often tedious.

In [18], authors showed the importance of having real-
time control feedback for microscopes. A desktop-computer
based application was developed to fulfill those needs. Using
real-time feedback control, they significantly simplified access
to hardware, coding for remote control, and minimized the
resources and manual efforts. Similarly, work in [19] presented
a crystallization monitoring unit consisting of an in-situ dig-
ital microscope and real-time image analytics for monitoring
and control of a micron-sized, liquid-liquid crystallization of
calcium carbonate.

The authors in [20] designed an image analytics based direct
nucleation control (IA-DNC) process, which is a model free
feedback control strategy for batch and continuous crystalliza-
tion processes. In this method, microscopy images are captured
and processed by means of image analytics in real time and
then feedback is provided to the microscope to further analyze
and monitor the crystallization processes to ultimately achieve
a stable and converged control of crystal shape.

While above works tried to address remote instrumentation
needs and issues in the contexts of image analytics and data

collaboration, none of these works utilized intelligent agent
based approaches to offer recommendations to help researchers
to make the right instrument parameter settings during their
experiments. In our approach, intelligent agents are used to
orchestrate main aspects of the remote instrumentation process
elements such as remote operation, AI/ML model based feed-
back control to imaging instruments, data security concerns,
and automation of the entire pipeline with minimized human-
in-the-loop considerations. More importantly, our proposed
intelligent agent approach fully integrates both the web portal
and back-end machine learning/deep learning models for data
analysis. It leverages a knowledge base to provide interactive
recommendations in real-time to help researchers control the
instruments to obtain the desired experiment settings, thus sav-
ing precious time of researchers/instruments, and maximizing
workflow outputs.

1II. RESEARCH USE CASE REQUIREMENTS

In this section, we present the two research uses cases
whose workflow process automation delineate the architectural
requirements of the RISE design and implementation.

A. Carbon Nanotube Growth Automation Use Case

1) Research Background

Carbon nanotubes (CNTs) are widely studied for their
promising mechanical, electrical, and thermal properties that
make them suitable for diverse applications [1]. When CNTs
are synthesized in dense populations known as CNT forests,
a significant performance gap between individual CNTs and
CNT forests is observed, as shown in Figure 2. To date,
overcoming the performance gaps has not been achieved due to
a lack of understanding about how the processing mechanisms
of CNT synthesis control the CNT self-assembly process [11].

It is extremely difficult to obtain a desired property set from
a CNT growth in forests. CNT growth involves a large set of
parameters, making experimental and/or numerical exploration
of the synthesis prohibitive. The CNT synthesis parameters
include e.g., catalyst composition, thickness, CNT synthesis
temperature, gas composition, pressure, synthesis time, and
more. In real experiments, researchers often utilize CNT forest
simulation to guide CNT forest synthesis experiments. For
example, a time-resolved finite element method (FEM) CNT
forest simulation tool [1], [21] is used as a high-throughput
virtual laboratory to examine the synthesis—structure—property
design loop of CNT forests. Images of each CNT forest mor-
phology are obtained at the end of their simulated synthesis,
and a mechanical compression simulation is performed to
obtain mechanical properties [21]-[23]. Numerical simulation
of CNT forests synthesis and self-assembly is an alternative
approach that may increase the speed and diversity of synthesis
parameters examined. Such simulations can predict both the
CNT forest structural morphology and the resulting CNT
forest properties. By systematically varying CNT synthesis pa-
rameters, one may arrive at a set of conditions that produce the
desired CNT forest performance metrics such as mechanical
stiffness and thermal conductivity.
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In CNT research efforts, experimental results are hard
to obtain, and they are usually noisy, expensive and time
consuming. The CNT forest attributes (CNT diameter, areal
density, growth rate) are poorly characterized and time variant.
Therefore, the physics-based simulation of CNT forests may
present a reliable and powerful tool for training ML models in
the absence of suitable experimental data, and can be used with
experimental data collaboratively to provide more accurate
control of CNT growth experiments.

Fig. 2: SEM images of CNT forest with three different morphology each
potentially having different mechanical properties: (left) tortuous morphol-
ogy, (middle) well-aligned morphology, and (right) patterned growth using
photolithography.

2) CNT Growth Experiment Workflow

Multiple factors that contribute to the growth and final result
of carbon nanotube (CNT) forest, and in-situ CNT growth
experiments require long preparation time and active human
intervention to regulate the synthesis parameters in search
of specific material characteristics. Implementing the CNT
growth process in a system able to regulate the parameters,
without human intervention in real-time based on in-situ
imagery, would facilitate the study of CNT forest synthesis and
self assembly to deterministically achieve prescribed material
properties.

To elucidate the process-structure-property relationships of
carbon nanotube (CNT) forests, our approach will use AI/ML
models to conduct iterative physical and numerical synthesis
experiments, characterize the results, learn from the results,
and then alter the experimental conditions to converge upon a
user-defined CNT forest property set. The ultimate goal is to
perform the process without human interaction, so the process
control will shift from a human user to an autonomous system.

Researchers
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Fig. 3: CNT Growth Automation Process including the Al-based model that
determines and sets the synthesis process control parameters, the SEM where
the CNT process takes place, and the images collection and analysis to

determine the CNT properties.

As illustrated in Figure 3, the CNT growth automation
process involves the following steps: 1) in-situ scanning
electron microscope (SEM) synthesis techniques to acquire

imagery of CNT forest growth and self-assembly, 2) computer
vision to quantify and isolate the kinetics and assembly
mechanisms of CNTs, 3) a complimentary finite element CNT
forest synthesis and testing simulation, 4) a convolutional
neural network (CNN) to predict CNT forest properties from
experimental and simulated images, and 5)a distributed control
algorithm that will transition experimental manual control
from human researchers to a ‘“human-on-the-loop” control
assisted by autonomous decision algorithms. As the CNT
growth kinetics and self-assembly process are understood for
diverse synthesis conditions, the CNN will predict the process-
structure-property relationships for CNT forests.

3) Workflow Automation Requirement

Human action and observation are often biased and tend to-
wards guesswork when determining simulation or experimen-
tal synthesis parameters, especially when iteratively navigating
multi-dimensional parameter spaces. This can result in user
actions and materials discovery progressing in either stable
(i.e., processing steps produce predicted material responses),
unstable (i.e., processing steps produce undesired responses)
or breakdown (i.e., processing steps provide no material re-
sponse) states. To understand and map the process-structure-
property relationships for CNT forests, there is a need for
remote control and an iterative experimentation approach with
integrated analysis, simulation, and feedback mechanisms to
gradually remove humans, with their inherent error and bias,
from the CNT property discovery loop. This will include
obtaining the CNT growth experimental settings, the parame-
ters for image taking, real-time analytics of image data, and
using the analytics output as guidance to control experimental
settings on-the-fly to improve CNT growth quality. To this end,
our proposed control feedback mechanisms help characterize
and guide physical processes through on-the-fly deep learning
algorithms and an intelligent chatbot agent that provides semi-
and fully-automated guidance in CNT synthesis.

B. Mitochondria Segmentation Automation Use Case

1) Research Background

Mitochondria are membrane bound organelles that play
key roles in cellular energy production, calcium homeostasis
regulation, free radical production, steroid synthesis, and cell
death [24]. Evidence suggests that mitochondria can be asso-
ciated with mechanisms involved in aging, neurodegenerative
diseases, cancer, and metabolic disorders [24]-[27]. Scientists
rely on EM to study morphology of subcellular structures
like mitochondria. The first step towards characterization of
mitochondria morphology is image segmentation that aims to
identify mitochondrial regions from the rest of the input image.
Given density and complexity of mitochondrial structures in
the imaged biological samples, and the size of the image
data (hundreds of slices per sample), manual segmentation of
mitochondria is a labor-intensive and subjective task.

Automated image processing techniques are needed to
segment, quantify, and analyze the large volumes of EM
image data. Various methods and pipelines have been proposed
for mitochondria segmentation [28], particularly owing to
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the recent advances in deep learning [29], [30]. Our related
advances are in EM image analytics in general [3], [31] and
mitochondria segmentation in particular [9], [10]. An example
diagram showing the mitochondria segmentation validation
analysis in a human tissue sample is shown in Figure 4.

Fig. 4: Instance segmentation results in an image slice of a human validation
dataset. Sample result is illustrated on a single slice (middle). Colored overlays
correspond to mitochondrial regions (left), and the label ground truth (right).

2) Mitochondria Segmentation Experiment Workflow

The mitochondria image segmentation process aims to iden-
tify mitochondrial regions in EM images. The process also
involves detection of mitochondrial boundaries in order to help
separate neighboring mitochondria to allow individualized
characterization. Due to imaging and sample complexities,
microscope parameters need to be adjusted to improve image
characteristics and outcomes during the data analysis process.
Current workflow processes rely on in-situ researchers for in-
strument setting adjustments, data collection and transmission
to simulation centers. Once data is analyzed, a request for new
data is submitted indicating the adjustments needed to improve
the characteristics of the images. Given the involvement of the
human effort on the process, it requires a long time to complete
the process with the expected outcomes. Implementing a mito-
chondria segmentation process in a system allows adjustment
of the microscope parameters, without human intervention in
real-time based on in-situ imagery, which expedites the process
and provides successful results faster.

Our mitochondria segmentation process uses a deep learning
based pipeline which takes input image patches generated by
electron microscopy. The processing pipeline consists of a 3D
convolutional long short term memory U-Net (3D CLSTM U-
Net) segmentation network followed by a marker-controlled
watershed segmentation step for instance segmentation [10]
as shown in Figure 5. We compute a number of mitochondria
count, size, shape characterization and segmentation evaluation
measures [32] to localize regions of interest and to assess
segmentation quality. These parameters can be used by another
Al-based model to generate a feedback command looking to
improve the quality of the image and facilitate the analysis in
order to foster better outcomes. In this way, the full process can
be conducted with limited human interaction, where images
are collected by a remotely operated SEM with commands
generated as a feedback from the results of the mitochondria
segmentation process.

This process will require the following steps: 1) in-situ
scanning electron microscope (SEM) image collection from
tissue sample, 2) data transmission to a cloud-based simulation
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Fig. 5: Mitochondria segmentation pipeline. Experimental images of biomed-
ical samples are taken and collected from multi-beam SEM. The images
are then passed through instance segmentation pipeline, where machine
learning algorithms are utilized to recognize and isolate mitochondria from
the images/volumes. A set of unsupervised evaluation metrics are computed.
The segmentation results in the form of mitochondria region and boundary
maps are remapped back to the images, and matched to ground truth labels to
generate the accuracy output, represented by dice score and average precision
(AP) results. An Al-based model uses these results to set the SEM image
scanning parameters.

center, 3) patch-level segmentation using a 3D convolutional
network, 4) a full volume instance segmentation, 5) compu-
tation of various outcome measures including but not limited
to mitochondria size, shape, density in a region, segmentation
confidence values, unsupervised segmentation quality evalu-
ation measures, 6) use a second Al-based model to process
these outcome measures to generate a feedback command, 7)
use the feedback command to adjust the microscope parame-
ters.

3) Workflow Automation Requirement

Similar to the CNT growth use case, the mitochondria
segmentation workflow is also time consuming, involving
human-in-the-loop during image data collection, analysis and
changing parameters on the microscope during sample imag-
ing processes. In addition, biomedical samples are difficult to
prepare if the current experiment fails and researchers have
to spend a long time and a lot of efforts to repeat the same
experiment. In this case, an automated workflow that involves
image data import, data collection and accurate analysis, and
a real-time feedback guidance with the analysis output results.
These steps will benefit the researchers in their experiments
by automatically assessing image data quality and adjusting
microscope settings as well as imaging parameters.

IV. RISE SYSTEM IMPLEMENTATION

In this section, we describe the architecture of the RISE
system and its components. We also provide the description
of the modules, the interfaces and their interactions.

A. System Architecture Overview

Based on the requirements described in the previous section,
we defined the system architecture as depicted in Figure 6. It
includes various modules, including the SEM controller agent,
the Analytic Services Broker integrated by AI/ML models
provided to analyze the images from the SEM, and to generate
the feedback commands intended to adjust the SEM settings.
A data repository and knowledge base component is intended
to store the images collected from the SEM, and the results
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generated from the AI/ML model and associated meta data
for each image. A web portal provides the user interface
for researchers and system administrators to interact with
the system. Detailed descriptions about the specifications and
implementation details of this RISE architecture are provided
below.
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Fig. 6: RISE architecture featuring various modules, including an Analytic
Services Broker, the SEM Controller Agent, the Web-based User Interface,
User Access Control, Data Repository and Knowledge Base.

B. Web-based User Interface

The Web-based User Interface module includes a web
portal, User Access Control functions and chatbot services
that allow researchers and system administrators to interact
with the RISE system. Through the web portal service, users
can monitor the status of experiments, determine if images
have been generated by the SEM, preview available images,
submit images for analysis and get the related results from the
analytic services, and share the images and results with other
researchers as shown in Figure 7. The web-portal relies on the
User Access Control module to allow users access to specific
resources and functionality, and to limit, permit, or deny access
from users, resources or locations. Using the chatbot service,
researchers can get a set of recommendations about the update
on parameters (i.e., image resolution, image size, move to
specific scanning area) that can be applied on the SEM,
based on the last experiment iteration results, and that are
expected improve the outcome of the next experiment iteration.
Researchers can select one option for each parameter and
upon confirming the selection. The chatbot communicates the
decision to the web portal engine, which translates it into the
proper API command to be sent to the SEM Controller agent
looking to set the SEM instrument parameters accordingly.
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Fig. 7: RISE web portal interface displaying the information of the experi-
ments from a user’s account.
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Our approach includes a chatbot intelligent agent that inter-
acts with the researchers within the RISE system web portal as
illustrated in Figure 8, and provides critical recommendations
during feedback control of researcher’s experiment. The chat-
bot agent is implemented using the Dialogflow API maintained
by Google to promote human—computer interaction based on
natural language conversations. The chatbot agent takes the
results from the CNT growth model and the mitochondria seg-
mentation model generated by the Analytic Services Broker,
which helps to determine recommendations for researchers to
make necessary adjustments on SEM settings to improve the
outcome of the experiment.

|

Fig. 8: RI Web Portal User Interface featuring the chatbot dialog showing the
options researchers can select to refine the SEM settings.

C. SEM Controller Agent

The SEM Controller Agent is a module hosted at the
location of the SEM. It works as the interface exposing the
SEM resources to the Internet, and allowing the SEM to
communicate with the other modules by receiving settings
updates commands and providing scanned images and status
information. This module is enabled to manage two API
command sets. One API set handles the direct control of the
SEM instrument by generating the commands to control its
parameters, read the results of command actions, and monitor
its status. The other API set handles the communication
between the SEM controller agent and the web-based user
portal interface, and works as a translator between the high-
level commands sent by the web-portal and the SEM API
commands. The SEM controller agent isolates the SEM instru-
ment from any external environment, protecting it from any
unauthorized access and related security risks. It encapsulates
its proprietary API and wraps it into a high level API between
the web-based user interface and the SEM controller agent.
It also provides an open API that can be adapted to multiple
SEM models, brands, technologies, and security requirements.
Additional instruments can be added to the system just by
including the agents with the proper API to control those
instruments. Thus, a variety of instruments in the system can
be made available for the researchers.
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For implementation and testing purposes, we used a Ther-
moFisher Phenom desktop microscope. Consequently, our
SEM Controller Agent was implemented using the Phenom
Programming Interface (PPI) with the PyPhenom Library. The
PPI methods implement the Phenom commands to get the
instrument mode and operational mode, load/unload sample,
perform sample navigation to specific area, update beam
parameters; change the magnification, and adjust focus, bright-
ness and contrast, and perform image acquisition.

D. Analytic Services Broker

The Analytic Services Broker includes the pre-trained
AI/ML based models to discover the CNT growth properties
and the mitochondria segmentation properties. This module in-
teracts with the other modules to process the images collected
from the SEM resources and provides the required feedback
relating to adjustments that need to be applied on the SEM in
preparation for the next experiment iteration.

For CNT use case, we used an Al-based model to charac-
terize the images related to a CNT growth process. The model
uses reinforcement learning (RL) [11] approach to learn from
simulation-based images and characteristics of temporal CNT
growth, and considering various growth parameters such as
density, growth rate, tube radius, tube stiffness, and Van der
Waals forces. The images generated by CNT growth process
are analyzed by the RL agent to determine the waviness, i.e.,
deviation of the growing tubes from straight axial growth, and
the average growth rate of the tubes. These results are then
used to determine the proper settings that need to be sent to the
SEM to adjust for getting the expected results in the upcoming
iterations of the experiment.

The Al-based model associated with the mitochondria seg-
mentation process uses a 3D deep convolutional network [10],
which extends the classical U-Net semantic segmentation
network with a convolutional long-short term memory (3D
CLSTM U-NET). The images from SEM are analyzed by
this model which generates two outputs, one corresponding
to mitochondrial regions, and the other corresponds to mi-
tochondrial boundaries. These region and boundary results
are used by a watershed segmentation step for identification
of individual mitochondria. The image analytics process also
computes various outcome measures to quantify mitochondria
density in a region, segmentation confidence values, and
segmentation quality. These measures are used to determine
the SEM parameters that need to be set to improve the
outcome of the next image to be scanned by the SEM and
to determine regions of interest to be imaged and analyzed in
higher resolutions.

E. Data and Knowledge Base Repository

The collected images from the SEM resources, the metadata
related to these images, the image processing results generated
by the Analytic Services Broker, and the feedback commands
compiled by the SEM Feedback Analyzer need to be stored.
Our approach relies on a stable, secure, and open-standard
SQL access repository to store, and manage all of this data.

Besides applying the SQL standard approach, we define a
centralized data repository featuring a Common Data Model
repository (CDM) to store the raw images data, images related
metadata, images related analytic results, and images related
actions taken to influence subsequent experiment steps. Corre-
spondingly, the CDM will contain the experiment ID, the raw
image data, the related metadata, the image analytics results,
action options advised, actions executed by the researcher, and
obtained results. The richness of the information stored in the
CDM could be leveraged by future works oriented to improve
the results of the current experiments.

F. Risk Management in Scientific Workflow Control

Workflows setup is configured within an experiment defi-
nition via the web portal. The experiment definition contains
the initial instrument setup, and the history of each iteration
including instrument adjustments, results, and comments from
the researcher. The information about the options provided by
the Feedback Analyzer are also stored, as well as the option
the researcher selected to generate the feedback command and
adjust the instrument settings. Once an experiment iteration
starts, the status of the instrument is continuously monitored
by the SEM controller agent, and the latest status is reported to
the web portal so that the researcher can follow the progress of
the task. On the event of network failure or faulty component
failure in the system, researchers can use the the historical
information of the experiment to reestablish the the conditions
of the last iteration and continue with the experiment, or
completely recreate the process by using the instrument setup
sequence applied on the iterations already completed. The Al
recommendations on how to adjust the instrument for the next
iteration can be verified by the researcher in the context of
the “human-on-the-loop” approach. In this way, the researcher
will have the opportunity to supersede the adjustments options
provided by the feedback analyzer and adjust the instrument
settings to progress the experiment in the desired direction.

V. PERFORMANCE EVALUATION

In this section, we describe our deployment of RISE system
on a testbed, and evaluation of the system in both CNT and
biomedical image analytics use cases.

A. RISE System Testbed Implementation

To evaluate the overall effectiveness and efficiency of our
proposed RISE system, we implemented a testbed as shown
in Figure 9 to deploy all the system components.

We used the University of Missouri (MU) Lewis HPC
cluster to host the developed AI/ML models to analyze the
images from the SEM. For both CNT growth process and
mitochondria segmentation process, we deployed the AI/ML
models as microservices that will constantly check for im-
age/volume data inputs and will start to analyze the data once
the inputs are received through API calls from the Web Portal,
where data is sent from microscopes. Both models will store
analysis outputs into the data repository and knowledge base,
which is also deployed on the Lewis platform in the form
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Fig. 9: RISE System testbed infrastructure showing workspace components including: the remote lab location of the SEM and the related controller agent
with Internet access; the science gateway Analytic Services Broker with the images repository, image processing Al models and knowledge base, and web

portal with the chatbot service.

of MySQL databases. The data repository is accessed by the
SEM Controller Agent to store the scanned images from the
SEM. It is also accessed by the cloud-based Intelligent Agent
Service to retrieve images and metadata to define the SEM
parameters to be set for the next iteration of the experiment.
These SEM parameters will be used by the chatbot service to
advise the researcher, and they are accessed by the Web Portal
service to retrieve and display images and related metadata as
requested by the researcher.

AWS was used to host the Al-based model and local
images repository is used to determine the SEM settings
to be applied based on the results generated by the SEM
image analytics models. The public cloud deployment provides
flexibility, scalability, and security standards. The Intelligent
Agent Service accesses the SEM Images Repository in the
HPC cluster and loads the required images into a local S3
Bucket repository for an immediate access to image data and
metadata. The results of the analysis by this agent updates a
local knowledge base that will be available for the chatbot
service to advise the researcher on selecting the parameters
to be set on the SEM to improve the outcomes of the next
iteration of the experiment.

The Phenom SEM instrument is located in a MU research
laboratory, managed by the Electron Microscope Core Facility,
and allows access to the other modules of the system via
the SEM Controller Agent implemented with the PPI inter-
face. The agent isolates the instruments and translates the
commands coming from the Web Portal into the proprietary
instrument’s API to setup the instruments and collect the
scanned images. The scanned images are stored in the SEM
Images Repository by the agent via a REST APL

B. CNT Use Case Experiments Results

The CNT growth experiment setup allowed researchers to
evaluate the performance of the Q-learning based RL-models
in their ability to regulate growth parameters to improve
maximum compression load capacity of the CNTs. Given the
long time taken by CNT growth processes and complexity
of the experiment setup, we used simulated images [11] to

expedite the images characterization, so CNT growth param-
eters (i.e., angular deviation, growth rate) can be used by the
SEM feedback analyzer to generate the feedback commands
intended to be used by an actual SEM.

1) Evaluation of model based on angular deviation

The Q-learning based RL agent was able to learn growth
parameter temporally to create CNTs with ability to withstand
more compressive forces. For this part of evaluation, we
leverage the Q-learning framework previously developed by
our team [11] using the “Wave” parameter. The “Wave”
parameter controls rate of change of standard deviation of
angle of growth for CNTs. The parameter ranges from 1 to
10, where 1 represents the smallest value and causes straight
growth while 10 represents orthogonal growth. A larger value
of the parameter signifies more waviness in tube growth at
that growth step.

As shown in Table I, maximum compression load is ob-
served at 90% of the maximum height of the CNT forest as
densification occurs. Regardless, the maximum compression
load of the system is improved at all the heights when the RL
agent is used. We notice that the best configuration of growth
is achieved for the [3,4,5] configuration of “wave” parameter.
At all other growth parameters configurations, the maximum
achieved compression load is less than the compression load
achieved at [3,4,5] configuration.

TABLE I: Comparison of maximum load capacity of CNTs based on angular
deviations at different heights, ‘without’ or ‘with” our RL model; H represents
the initial height of tubes before compression.

Height after Max. Load Max. Load Optimal “wave”
Compression | without model | with RL model | Configuration

95% of H 01.43e-05 3.59¢-05 [3.4.5]
90% of H 4.61e-05 6.43e-05 [4,4,5]
80% of H 2.1e-05 4.2e-05 [3,4,5]

2) Evaluation of model based on rate of growth

The RL model was able to learn the optimal growth rate
variability to create CNT forests with increased yield forces.
As shown in Table II, the average improvement in the load
capacity increased by 183% at different heights of compres-
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sion. The maximum improvement in compression load was
194%, which was noticed at 90% of compression at an average

growth of 65 nm per step.

TABLE II: Comparison of maximum load capacity of CNTs at different
heights, ‘with’ or ‘without’ our RL model. H represents the initial height of

tubes before compression.

Height after | Max. Load Max. Load Optimal Average
Compression | without model | with RL model | Growth Rate

95% of H 2.56e-05 4.71e-05 65 e-9 m/sec
90% of H 3.58e-05 6.98e-05 65 e-9 m/sec
80% of H 2.81e-05 4.86e-05 60 e-9 m/sec

On comparing the results for maximum compression load
within the two RL models as shown in Tables I and II,
it can be noticed that the maximum load capacity in the
model based on average rate of growth was better than the
model based on change in standard angular deviation at all
heights of compression. This could be because the standard
deviation of angular deviation was fixed at 3 when model was
trained with rate of growth parameter, which is very near to
optimal configuration of [3,4,5] observed in model based on
angular deviation. Regardless, the compression load capacity
still improves when the model is trained with rate of growth
or change in standard angular deviation as the base feature for
model training.

The angular deviation, growth rate, and their correlation
with the compression load capacity of the tubes as found by the
validation of the RL-based agent are valuable parameters that
the Al-based analyzer model in RISE can use to determine the
proper feedback for the SEM. The feedback options provided
can be used by the researcher on setting the SEM to control
the CNT growth process.

C. Mitochondria Segmentation Experiment Results

The mitochondria segmentation experiment setup allowed
researchers to evaluate the performance of the Al-based model
in its ability to effectively identify and quantify mitochondrial
structures in SEM imagery. Mitochondria density in a region,
segmentation confidence values, and segmentation quality
evaluation measures provided by this process are used as
control parameters by the Al-based analytic model to generate
the feedback commands intended to be used on the SEM.

1) Validation dataset and training model

The preliminary mitochondria instance segmentation exper-
iments were conducted on the MitoEM dataset [4] collected
by a multi-beam scanning electron microscope [33]. This
dataset includes two stacked volumes. The first volume (Mito-
H) contains 1000 2D image slices of size 4096 x 4096 acquired
from an adult human cortex. The second volume (Mito-R) also
contains 1000 2D slice images of size 4096 x 4096 captured
from an adult rat cortex. Both of them have the same resolution
of 8 x 8 x 30 nm>. The dataset was annotated by first using
a 3D U-Net, and then corrected manually by experts [4]. In
the experiment, each volume was split into training set (400
slices), validation set (100 slices), and test set (500 slices).

The 3D CLSTM U-Net was trained with random initial-
ization. It used the Adam optimizer [34] with a learning rate

TABLE III: Semantic segmentation performance of the proposed 3D CLSTM
U-Net network.

[ Dataset [ Region Dice [ Boundary Dice |
[ MioR [ 094 | 0.74 |
[MioH | 091 | 070 |

of 0.0001 to minimize the binary cross-entropy loss function
and dice loss function. For data augmentation, we applied a
random xy axis flip with a probability of 0.5 and a random
zoom with a scale from 0.8 to 1.25 and probability of 0.2.
We perturbed the image intensity with random contrast with
a probability of 0.2, Gaussian noise with a probability of 0.2,
and Gaussian smoothing with a probability of 0.2.

2) Experiment results

Our mitochondria segmentation performance is summarized
in Table III in terms of dice score for semantic segmentation
and in Table IV in terms of average precision (AP) scores
with an intersection over union (IoU) threshold at 75% for
instance segmentation. The high region dice scores of 0.94 and
0.91 in Table III for Mito-R and Mito-H respectively indicate
that the proposed network is highly successful in segmenting
mitochondrial structures from the rest of the image volume
including other subcellular structures.

In Table IV the instance segmentation results are grouped
based on the mitochondria size (small < 5,000 voxels, medium
5,000 to 15,000 voxels, large > 15,000 voxels). On average,
the proposed 3D CLSTM U-Net network improves instance
segmentation performance compared to regular 3D U-Net
network [35] by 0.21 and 0.03 points for rat (Mito-R) and
human (Mito-H) datasets respectively. These improvements
are mostly due to improvements on large mitochondria. The
lower performance on instance segmentation is mostly due to
failure to separate touching mitochondria instances. Instance
segmentation performance on the rat dataset is better compared
to the human dataset because the rat dataset has a less denser
distribution of mitochondria.

The proposed mitochondria segmentation network will be
used by the RISE system for two primary purposes: (1) to per-
form a fast scan of the specimen in low resolutions in order to
locate regions of interest containing mitochondrial structures
to be further imaged and analyzed in higher resolutions; (2) to
fine-tune imaging parameters such as focus to improve image
quality and consequently analysis outcomes. The automated
localization and region selection step will considerably reduce
processing time associated with both imaging and image
analysis. This will also help in reducing specimen degradation
due to interactions with accelerated electrons during imaging.
The parameter fine-tuning step will use the confidence scores
obtained from the last layers of the segmentation network as
an indicator for out-of-focus imaging or other non-optimal
imaging parameters and guide selection of imaging parameters
for improved outcomes.
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TABLE IV: Instance segmentation performance in terms of average precision
(AP) scores with an intersection over union (IoU) threshold at 75%.

[ Dataset | Method [ Average [ Large [ Medium [ Small |
Mito-R 3D U-Net [35] 0.52 0.49 0.75 0.29
Mito-R | 3D CLSTM U-Net 0.73 0.77 0.62 0.14
Mito-H 3D U-Net [35] 0.62 0.62 0.77 0.56
Mito-H | 3D CLSTM U-Net 0.65 0.71 0.66 0.13

VI. CONCLUSION

In this paper, we introduced the architecture and imple-
mented a RISE system that allows researchers to automate
execution of workflows involving the collection of images
from a scanning electronic microscope, and AI/ML model
based image analysis to generate feedback for process control.
The feedback is used to determine the parameters that can
be used to control the next experiment iteration to avoid
errors and improve efficiency of valuable/expensive scientific
instrument resources. Motivated by a CNT growth workflow
and a mitochondria segmentation workflow, we implemented
RISE with intelligent agents to provide real-time feedback to
intelligently update the instrument settings. From the CNT
growth process we used the angular deviation of the tubes and
its growth rate to determine a set of options that can be updated
on the remote instrument to improve the compression load
capacity of the tubes. From the mitochondria segmentation
process, we used the dice score and average precision metrics
as the parameters to generated the feedback control for the
instrument to improve the quality of the scanned images. Thus,
we showed that RISE system achieves an effective “human-
on-the-loop” approach to automate scientific workflows, while
improving consistency on images collection and increasing the
results accuracy.

As part of our future work, we plan to expand the architec-
ture to cover additional image analytics uses cases, increasing
the parameters used by the intelligent agent to generate the
feedback control of the instrument, refining the Al-based
model and expanding the the feedback control options for the
researchers to auto-control microscope settings.
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