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The recent development of biological sensors has extended marine plankton

studies from conducting laboratory bench work to in vivo and real-time

observations. Flow cytometry (FCM) has shed new light on marine

microorganisms since the 1980s through its single-cell approach and robust

detection of the smallest cells. FCM records valuable optical properties of light
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scattering and fluorescence from cells passing in a single file in front of a

narrow-collimated light source, recording tens of thousands of cells within a

few minutes. Depending on the instrument settings, the sampling strategy, and

the automation level, it resolves the spatial and temporal distribution of

microbial marine prokaryotes and eukaryotes. Cells are usually classified and

grouped on cytograms by experts and are still lacking standards, reducing data

sharing capacities. Therefore, the need to make FCM data sets FAIR (Findability,

Accessibility, Interoperability, andReusability of digital assets) is becoming critical.

In this paper, wepresent a consensus vocabulary for the 13most commonmarine

microbial groups observed with FCM using blue and red-light excitation. The

authors designed a common layout on two-dimensional log-transformed

cytograms reinforced by a decision tree that facilitates the characterization of

groups. The proposed vocabulary aims at standardising data analysis and

definitions, to promote harmonisation and comparison of data between users

and instruments. This represents a much-needed step towards FAIRification of

flow cytometric data collected in various marine environments.
KEYWORDS

flow cytometry, marine microorganisms, standardization, vocabulary, FAIR principle
interoperable vocabulary for marine flow cytometry
Introduction

The biological understanding of the marine environment

starts with the unicellular world of microorganisms. Unicellular

marine microorganisms, including autotrophic, heterotrophic,

and mixotrophic prokaryotes and eukaryotes, as well as viruses,

are the principal biogeochemical actors of the oceans (Pomeroy,

1974, Worden et al., 2012). They play a crucial role in the marine

environment, and by extension, the Earth climate, due to their

physiological capacity to oxidize and reduce elements

(essentially carbon) through photosynthesis, respiration and

exudation, setting the ecological and trophic status of marine

ecosystems. Unicellular autotrophic prokaryotes and eukaryotes,

hereafter called phytoplankton, produce up to half of the oxygen

and organic matter on Earth (Field et al., 1998), and form the

base of the marine food webs. Unicellular heterotrophic

prokaryotes are ubiquitous and play a key role in

biogeochemical cycles (Fenchel et al., 2012) including the

recycling of organic matter and nutrient regeneration.

Unicellular heterotrophic and mixotrophic eukaryotes

consume phytoplankton and heterotrophic prokaryotes and,

depending on their cell size, facilitate the transfer of the

produced organic matter to higher trophic levels (Azam et al.,

1983) or its recycling by marine heterotrophic prokaryotes

(Ducklow et al., 1986). Marine viruses as well are indirectly

responsible for facilitating nitrogen cycling and therefore

phytoplankton growth and for reducing carbon dioxide release
02
into the atmosphere. They are also a major driver of evolution by

increasing genetic diversity (Suttle, 2005). In addition to this

high biological and functional diversity, their dynamics and

distribution are characterised by high spatio-temporal

heterogeneity, making studies of their activity challenging.

Observations and modelling of plankton dynamics and

functionality traits (Dubelaar et al., 1999; Que re et al., 2005;
Litchman et al., 2007; Fontana et al., 2018; Le vy et al., 2018)

highlight the importance of fine spatio-temporal and functional

resolutions when assessing the role of microorganisms in marine

ecosystems. The most accurate way to study the distribution,

composition, dynamics, and functions of microorganisms is to

resolve them at their unit scale, i.e., the single cell. This is

possible with FCM, widely used in oceanography since the

1980s (Yentsch & Yentsch, 1979; Trask et al., 1982; Yentsch

et al., 1983; Olson et al., 1985). FCM has revolutionised marine

microbiology by accessing the abundance distribution of

plankton size c lasses (PSCs) and severa l exis t ing

phytoplankton functional types (PFTs) or functional groups

(PFGs) (Salmaso et al., 2015). FCM also helped in the

discovery of unexpectedly small organisms (< 1 mm) playing

an important role in the trophic web and the marine carbon

cycle such as Prochlorococcus (Chisholm et al., 1988) and

Ostreococcus (Courties et al., 1994). The power of conventional

FCM relies on the hydrodynamic focusing of a laminar flow

where particles are lined up and separated. Their intersection

with a laser beam generates light scattering which can be used as
frontiersin.org
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a proxy of cell diameter or cell structure, and fluorescence from

pigments or user-applied dyes. The identification of

photosynthetic microorganisms does not require any staining

due to the auto-fluorescence of chlorophylls and accessory

pigments. Those auto-fluorescence properties, combined with

size and structure, make it possible to separate photosynthetic

cell populations from other marine particles. Heterotrophic

microorganisms and viruses require specific staining (usually

of Nucleic Acids) to distinguish them from the detrital organic

matter pool (Gre gori et al., 2001; Zubkov et al., 2001; Christaki

et al., 2011). Automated staining systems dedicated to

heterotrophic micro-organisms high-frequency observation

were set up and deployed, either for drinking waters (Hammes

et al., 2012), or marine environments (Brownlee et al., 2016;

Silovic et al., 2017) monitoring. Flow cytometers can be

equipped with lasers emitting light at different wavelengths to

measure signals from various chromophores.

Over the last 20 years, automated systems (i.e. systems that

can be operated autonomously for months or years and remotely

controlled) such as CytoSense/Sub/Buoy (Dubelaar et al., 1999),

FlowCytobot and Imaging FlowCytobot (Olson et al., 2003;

Olson & Sosik, 2007), SeaFlow (Swalwell et al., 2011), have

produced highly resolved spatial and temporal datasets of

numerous phytoplankton groups, including relatively large and

rare groups thanks to increasing sample volume analysed. These

instruments can be deployed in situ and underwater (Sosik et al.,

2003; Thyssen et al., 2008b; Peacock et al., 2014; Hunter-Cevera

et al., 2016), on a ship (Li et al., 1995; Thyssen et al., 2009;

Bonato et al., 2015; Thyssen et al., 2015; Marrec et al., 2018;

Aardema et al., 2019; Ribalet et al., 2019; Fowler et al., 2020;

Louchart et al., 2020) or a buoy (Thyssen et al., 2014). Imaging in

flow systems can be combined with flow cytometry acquisition,

affording additional taxonomic identification for microplankton

size range. The investigation of machine learning approaches for

generating automatic recognition of microorganisms at

individual or cluster levels in marine samples has been

explored (Malkassian et al., 2011; Ribalet et al., 2011; Hyrkas

et al., 2016; Olusoji et al., 2021; Fuchs et al., 2022), and will

benefit from medical field research for additional computational

processes and data analysis workflow (Aghaeepour et al., 2013),

promising to ensure near real-time data availability.

The worldwide increase in marine FCM datasets provides

evidence of the technique’s utility and reliability in marine

research. Indeed, FCM datasets are now widely accepted as a

core parameter and a common reference in oceanographic

cruises (Manti et al., 2012). Unfortunately, the datasets

collected are, in most cases, maintained in local data stores

and are not routinely set up for open access through

international data portals, despite the need for sharing and

disseminating valuable information on ocean plankton

functional-group distribution. Consequently, scientists are

facing the difficult challenge of handling a large amount of

data which needs to be processed rapidly and harmonised
Frontiers in Marine Science 03
before being stored in databases to be accessible to scientific

and environmental management communities. Best practices in

data management (Boss et al., 2018) have received relatively little

attention despite the need for a data flow framework to follow

the Findability, Accessibility, Interoperability, and Reusability

(FAIR) principles (Wilkinson et al., 2016). In 2016, the

SeaDataCloud project (H2020 EU, ID: 730960) supported a

first initiative to harmonise FCM datasets via an interoperable

vocabulary for the most common phytoplankton and

heterotrophic prokaryotic groups. This first step was a valuable

attempt to gather input from a large and international panel of

FCM experts, but needed maturation as the names of groups first

suggested as standards referred to some vague taxonomic

descriptions. In addition, the definitions of those groups

lacked precision. This paper stems from this common

initiative, aiming to promote accessibility to the marine FCM

datasets, proposing a consensus vocabulary and its definition for

microbial groups discriminated by FCM in marine

environments. The virus and microzooplankton groups were

excluded from this exercise as they are not yet routinely analysed

by these instruments.
Standardized vocabulary and
definition

Authors of this manuscript provide a commonly agreed

standardized vocabulary with definitions of marine microbial

groups observed by FCM, resulting from the consultation

among FCM users and experts (co-authors of this manuscript)

and a literature review spanning the period 1983-2020 (Annex 1

in Supplementary material). Datasets in which FCM groups are

identified by the experts are highly informative and are compatible

with a consensus nomenclature, unlike raw data which are saved

in various binary formats (e.g. cyz for the CytoSense, adc for the

Imaging FlowCytobot, evt for the SeaFlow, fcs for more

conventional flow cytometers). The interoperable vocabulary

needs to apply to a variety of groups present in many marine

environments while being specific enough to reveal the functional

diversity observed with any flow cytometer.

From this consultation, a total of 13 groups are identified and

defined in the look-up Table 1. The last column presents some

examples collected in the literature and extracted from Annex 1,

revealing the diversity of names given for a specific group. In the

literature, they are either named using the known and referenced, or

supposed, taxonomic nomenclature, such as bacteria,

Synechococcus, Prochlorococcus, prochlorophytes, cryptophytes,

Crocosphaera, coccolithophorids, or by using a classification based

on their size-class or cellular structure, such as picophytoplankton,

picoeukaryotes, picocyanobacteria, ultraphytoplankton,

nanophytoplankton, nanoeukaryotes, microphytoplankton, among

others. Several identified groups share the same descriptions as well

as similar optical properties or position on a cytogram, yet are
frontiersin.org
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assigned a different nomenclature (photosynthetic picoeukaryotes

or PPE, picoEuk, picophytoplankton) or can be spread into sub-

groups (like picocyanobacteria and picophytoplankton, that both

include Synechococcus and Prochlorococcus). Additionally, some

groups were identified by sorting (Ostreococcus sp., Courties et al.,

1994; Richiella sp., Zhao et al., 2012) or image acquisition

(Phaeocystis sp., Rutten et al., 2005) as their light scattering and

fluorescence signatures are not specific enough to be resolved at a

taxonomical level from cytograms only. As said before, these groups

are named on a basis of post-treatment procedures by expert’s, and

should appear in any interoperable database in line with a

consensual and interoperable vocabulary. As a best practice

recommendation, any manuscript dealing with marine FCM

results should use the standardised common vocabulary or

include a correspondence table that lists the groups or subgroups

identified by a flow cytometry user with the standards, as in Table 1,

and referenced to their sources (Uniform Resource Identifier

(URI)). The URIs (e.g. http://vocab.nerc.ac.uk/collection/F02/

current/F0200002/) are the only reliable, machine-readable and

persistent identifiers of the concepts defined in the F02 vocabulary.

The proposed interoperable vocabulary combines all the

existing FCM groups found in the literature so far into a unique

framework defined by arbitrary optical parameters and size classes.

Defining the FCM groups relies on their position on cytograms

using relative proxies. Indeed, optical signatures of the recorded

particles are modulated by the instrument settings, the instrument
Frontiers in Marine Science 04
types, as well as the environmental conditions affecting cell

physiology. As an example, daily cell cycle and depth affect cell

size and fluorescence signals, by increasing cellular biovolume

before division (Jacquet et al., 1998; Sosik et al., 2003; Thyssen

et al., 2008b; Ribalet et al., 2015), by adaptation to light availability

with depth (Vaulot et al., 1995; Partensky et al., 1999), or by variable

incident irradiance favouring non-photochemical quenching

(Brunet et al., 2008). These effects might impact the group

position within cytograms over time. This is observed when

sampling at short time intervals (e.g. hourly) to cover diel cycles,

or when sampling in the water column, or in different ecosystems.

Furthermore, the inference of cell diameter from light scattering

measurements is challenging due to the difficulties in estimating the

refractive index of micro-organisms. For example, the standard

pico-nano size cut-off, originally defined using 2 µm filters, is not

accurately estimated using calibrating standards (e.g. Polystyrene

(PS) beads, cultures of known sizes) light scattering, and may

separate otherwise well-defined pico-size clusters whose size

fluctuate around 2 µm due to their cell cycle (Jacquet et al., 2001)

or specific composition. This issue is a source of ambiguity and may

lead to large uncertainties in the enumeration of both pico- and

nano planktonic groups, and their size (Green et al., 2003; Duforêt-

Gaurier et al., 2015; Ribalet et al., 2019), or even their carbon quota,

using known conversion factors (Buitenhuis et al., 2012). In our

document, we have used the forward scatter of 3 µm silica beads to

separate pico from nano groups (Vaulot et al., 2008).
TABLE 1 Look-up table between terms identifying the main FCM groups that appear in the literature (extracted from Annex 1), and the common
nomenclature findable in the https://vocab.nerc.ac.uk/collection/F02/current/.

Identifier Common vocabulary
(Alternative label)

Short description (Preferred label) Example of terms that appear in the
literature (Annex 1 extract)

SDN:F02::F0200002 RedPicoProk Red only fluorescing prokaryote picophytoplankton Prochlorophytes, Prochlorococcus, very small red
fluorescing bodies, PRO, Prochl

SDN:F02::F0200013 RedRedPico Red and Red only fluorescing prokaryote
picophytoplankton, rich in the pigment phycocyanin (PC)

PC-rich Synechococcus, PC-CYAN, PC SYN

SDN:F02::F0200003 OraPicoProk Orange fluorescing prokaryote picophytoplankton, rich in
the pigment phycoerythrin (PE)

Syn, Synechococcus, cyanobacteria, PE-type
Synechococcus, Crocosphaera, PE-CYAN

SDN:F02::F0200004 RedPico Red only fluorescing picophytoplankton Picoeuk, redpico, Peuk, picophytoplankton,
PicoEuk1

SDN:F02::F0200005 RedNano Red only fluorescing nanophytoplankton Nanoeuk, rednano, Neuk, nanophytoplankton

SDN:F02::F0200014 OraPico Orange and red fluorescing picophytoplankton, rich in the
pigment phycoerythrin (PE)

Pico cryptophytes

SDN:F02::F0200006 OraNano Orange and red fluorescing nanophytoplankton, rich in the
pigment phycoerythrin (PE)

Cryptomonas, Cryptophytes, HighOrgnano,
Nanocyanobacteria, CRYPTO

SDN:F02::F0200015 RedRedNano Red and red only fluorescing nanophytoplankton, rich in
the pigment phycocyanin (PC)

Nanocyanobacteria

SDN:F02::F0200007 HsNano Red fluorescing nanophytoplankton with relatively high
sideward light scattering properties

Coccolithophorids, HighSWSnano, COCCO

SDN:F02::F0200008 RedMicro Red only fluorescing microphytoplankton Microphytoplankton

SDN:F02::F0200016 OraMicro Orange fluorescing microphytoplankton, rich in the
pigment phycoerythrin (PE)

Microphytoplankton

SDN:F02::F0200010 HetHNA Heterotrophic prokaryotes with relatively high nucleic acid HNA

SDN:F02::F0200011 HetLNA Heterotrophic prokaryotes with relatively low nucleic acid LNA
Short description is identified as the preferred label and common vocabulary as the alternative label. Descriptions of the groups are detailed in the text.
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We do not provide a standard vocabulary for the optical

parameters collected by flow cytometry, such as fluorescence or

scatter, as these values are arbitrary. The relative units and the

different configurations and settings of the instruments make the

recorded optical values per cell not comparable. The conversion

into quantitative values such as the conversion between FSC and

SSC and size, or the conversion of the FLR into chlorophyll a

concentration requires some comparison with in situ collected

data from conventional methods (Haraguchi et al., 2017) or

additional sorting (Bock et al., 2022).
Definition section = detailed
description of the groups

Red only fluorescing prokaryotic
picophytoplankton: RedPicoProk

The RedPicoProk are commonly identified as the unicellular

photosynthetic cyanobacteria Prochlorococcus spp., sized on

average 0.6 mm (Partensky et al., 1999). Due to their auto-

fluorescence, staining is not required to detect them by FCM.

When excited by a blue laser, their forward scatter (FSC or FWS)

and red auto-fluorescence (FLR) emitted by chlorophylls

(divinyl chlorophyll a for the prochlorophytes) allow their

discrimination from the background noise. These are the

smallest known photosynthetic marine microorganisms

(Chisholm et al., 1988) and their detection requires sensitive

photodetectors or high-power lasers (optimally at 445 nm

wavelength). Due to their strong photo-acclimation properties,

their red autofluorescence is at times too dim to be detected by

FCM, especially on the surface in the summer, hence some cells

may be lost in the background noise depending on the

instrument’s sensitivity. At depth, RedPicoProk often shows a

bimodal distribution of the FLR, due to the co-occurrence of two

different ecotypes with different photo physiological properties

(Campbell and Vaulot, 1993; van den Engh et al., 2017).

In samples incubated with a DNA-staining fluorescent dye and

excited with a blue laser to enumerate heterotrophic prokaryote

analyses, Prochlorococcus group(s) can sometimes be distinguished

using sideward scattering (SSC or SWS) vs FLR or FLR vs green

fluorescence emitted by DNA-staining fluorescent dye.
Orange fluorescing prokaryote
picophytoplankton, rich in the pigment
phycoerythrin: OraPicoProk

The OraPicoProk, usually identified as Synechococcus spp.

cells are unicellular photosynthetic cyanobacteria with forward

scatter (FSC) and sideward scatter (SSC) signatures larger than
Frontiers in Marine Science 05
those of most marine heterotrophic bacteria and of

RedPicoProk. Depending on the instrument settings, their

optical signatures can span nearly two decades of signal

sensitivity range (Vaulot et al., 1995). Staining is not required

to distinguish them by FCM due to the presence of

photosynthetic pigments. When excited by a blue laser, the

OraPicoProk cluster displays higher FSC and FLR signatures

than RedPicoProk at any given depth. They contain

phycoerythrin, and have a distinct FLO signature, which can

be excited by either 488 or 561 nm wavelength lasers. Depending

on the optical band pass filters for fluorescence detection, the

OraPicoProk cluster is well resolved in red vs green (FLR/FLG)

and/or in FLR/FLO cytograms.
Red and Red only fluorescing prokaryote
picophytoplankton, rich in the pigment
phycocyanin: RedRedPico

The RedRedPico is a group mainly identified as the

phycocyanin (PC)-containing picocyanobacteria (i.e.

Synechococcus or Crocosphaera). This group can only be resolved

using a red laser (615-640 nm). These PC-rich species are expected

to be more abundant in turbid estuaries, as PC is optimized for

orange-red light, whereas phycoerythrin (PE) pigments present in

some other Synechococcus are optimally tuned to the blue-green

light present in clear waters (Stomp et al., 2007). These RedRedPico

overlap with RedPicoProk or RedPico on a FLO vs FLR cytogram

when excited by a blue laser (Liu et al., 2014).
Red-only fluorescing picophytoplankton:
RedPico

The RedPico is a polyphyletic group. Based on the literature,

this group is defined by chlorophyll-containing cells with a

diameter <3 mm (Buitenhuis et al., 2012 and references

therein) with higher scatter than RedPicoProk and can include

RedRedPico when only a blue laser is used. Staining is not

required to distinguish them by FCM due to the presence of

chlorophyll. RedPico exhibit a well-defined FCM signature when

excited with a blue laser, with scatter signals (FSC or SSC) and

FLR signals larger than those of RedPicoProk, but smaller than

those of the RedNano (below). The FSC signal of either 2 or 3

µm fluorescent beads is widely used as an optical standard to

localize this group, even though polystyrene beads are not a

reliable indicator of cell size due to their refractive index higher

than the one of cells. When possible, size-fractionated by

sequential gravity filtration or cultures should be used to

define this group (Green et al., 2003; Mojica et al., 2016;

Ribalet et al., 2019).
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Red only fluorescing nanophytoplankton:
RedNano

The RedNano group is also a polyphyletic group, including

phytoplankton cells with a size between approximately 3 and 20

µm. They auto-fluoresce red when excited by a blue laser due to

the presence of chlorophyll. They differ from RedPico due to their

higher FLR, SSC, and FSC. RedNano cells are distinguished from

PE-containing cells as they lack orange fluorescence. This group

may include the RedRedNano if the instrument used does not

have a red laser to separate those phycocyanin-containing cells.
Orange and red fluorescing
picophytoplankton, rich in the pigment
phycoerythrin: OraPico

The OraPico group consists of ~3 µm auto-fluorescing

prokaryotes or eukaryotes that contain the pigment PE and

fluorescing in the orange and in the red. When excited by a blue

laser, their SSC and FSC signatures are larger than those of

OraPicoProk but with a FLR signature similar to the RedPico.

This group includes cyanobacteria such as Crocosphaera spp.

(Wilson et al., 2017) and cryptophytes.
Orange and red fluorescing
nanophytoplankton, rich in the pigment
phycoerythrin: OraNano

The OraNano group belongs to the size class of

nanoplankton (3-20 µm). They are auto-fluorescing in the FLR

due to the presence of chlorophyll. They contain PE and may

also contain PC that can be excited by a red laser beam (615-640

nm). When excited by a blue laser, they exhibit FSC signatures

similar to the RedNano but with a high FLO, often observed

above the OraPico group in FLO vs FLR cytograms. If the

OraNano cells contain both PE and PC and are excited by a

blue laser beam they will emit a higher FLR signal compared to

RedNano (due to the energy transfer to FLR, (Bazzani et al.,

1992)). This group includes larger cyanobacteria (e.g. large-size

Crocosphaera, Richelia), red algae and cryptophytes.
Red and red only fluorescing
nanophytoplankton, rich in the pigment
phycocyanin: RedRedNano

The RedRedNano group belongs to the nanoplankton size

class (3-20 µm) and its cells emit red light when excited by a red

laser (615-640 nm), due to PC (Read et al., 2014), but no or little

in the orange when excited by a blue laser, due to lack of PE.

Their FSC and FLR signatures are similar to RedNano. They
Frontiers in Marine Science 06
include cryptophytes and some cyanobacteria, especially when

they form small colonies (Wis niewska et al., 2021).
Red fluorescing nanophytoplankton with
relatively high sideward light scattering
properties: HsNnano

The HsNano group consists of photosynthetic, mostly

eukaryotic cells, that have a high SSC signal when excited by a

blue laser, compared to the RedNano and OraNano groups, but

similar FSC and FLR signatures. These cells also display a high

depolarization ratio (parallel and vertical polarized forward light

scatter). This optical property is very useful to identify

coccolithophores that are covered with coccoliths made of

CaCO3 (Green et al., 1996; Von Dassow et al., 2012), as well

as some autotrophs and armoured dinoflagellates.
Red only fluorescing
microphytoplankton: RedMicro

The RedMicro group is a polyphyletic group defined by cells

or chains > 20 µm in size. When excited by a blue laser, this auto-

fluorescing group is discriminated by its FSC and FLR signals,

which are the largest observed by FCM. Due to the small sample

volumes usually analysed by traditional FCM (less than 1 cm3 in

most cases), counts for this group can have high uncertainties

(due to their typically low concentrations). When FSC is

calibrated with appropriate standards or phytoplankton

cultures, it enables microphytoplankton to be distinguished

from nanophytoplankton with a size of about 20 µm. Chains

or colony-forming cells may be too large for FCM analysis

depending on instrument characteristics (tubing size, flow cell

dimension, pulse shape recording or not).
Orange fluorescing microphytoplankton:
OraMicro

The OraMicro group consist of cells or chains > 20 µm. They

display higher FSC and FLO signals than OraNano and a high

FLO/FLR compared to the RedMicro group. Cells have a high PE

content and may also contain PC that can be excited by a red

laser. In this case, when a laser beam with a wavelength of

approximately 533 nm (green) excites cells, they will emit a

higher FLR signal compared to chlorophyll a only containing-

cells due to the energy transfer to the pigment PC that will also

emit fluorescence in the FLR channel. This group can include

cryptophytes of > 20 µm, colonial cyanobacterial filaments, but

also mixotrophic dinoflagellates and ciliates, according to their

pigmentation. Due to the small volumes usually analysed by

FCM (typically less than 1 cm3), counts for this group can have
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high uncertainties when cells are not abundant enough. When

FSC is calibrated with appropriate standards or phytoplankton

cell cultures, it is possible to distinguish microphytoplankton

from nanophytoplankton cells with a size close to 20 µm. Chains

or colonies may be too large for FCM analysis, depending on

instrument characteristics (tubing inner diameter, flow cell

dimensions, pulse shape recording or not).
Heterotrophic prokaryotes
(Heterotrophic prokaryotes with
relatively high nucleic acid= HetHNA and
Heterotrophic prokaryotes with relatively
low nucleic acid= HetLNA)

Heterotrophic prokaryotes include both Bacteria and

Archaea. To be detected by FCM, staining is necessary. While

initial studies have used nucleic acid-stained dyes like DAPI and

Hoechst 33342 (Monger and Landry, 1993), nowadays a visible-

light green-emitting dye is the most common choice. Blue laser

excitation enables heterotrophic prokaryotes to be distinguished

due to their SSC (or FSC) and green fluorescence (FLG)

signatures. Cells with a lower FLG correspond to heterotrophic

prokaryotes with a relatively lower nucleic acid content

(HetLNA) and cells with a higher FLG correspond to

heterotrophic prokaryotes with a relatively high nucleic acid

content (HetHNA). Their scatter signals (FSC, SSC) are equal to

or lower than those of OraPicoProk and RedPico and may

overlap those of RedPicoProk. The LNA and HNA are

apparent nucleic acid contents. By creating a cytogram of FLO

vs FLG of the cells, it is possible to discriminate small size

autotrophs (such as RedPicoProk) from heterotrophic

prokaryotes in the same sample to be subtracted to get

accurate heterotrophic prokaryote abundances.
Discrimination on cytograms: A
conceptual view

The classification of phytoplankton and heterotrophic

prokaryotes from FCM raw data is based on several two-

parameter cytograms presenting scatter and fluorescence

intensities (arbitrary units) on a log scale. On such cytograms,

the selection of FCM groups relies on manually gating density

distribution following higher densities in the centre and well

separated from other groups on at least two optical parameters.

When a FCM group is not abundant enough to estimate its

distribution, or when a group has a multimodal distribution, the

manual separation into individual groups relies on a-priori

knowledge by experts. Output intercomparing between

instruments is complex but can be facilitated by standard

beads as a reference for approximating relative positions of

groups and signal intensities. Despite the differences between
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flow cytometers and the physiological influences affecting optical

properties, the relative positions of the 13 marine microbial

groups defined in this paper follow a common pattern, leading to

an agreement between FCM experts. Abundance comparison

between instruments is then possible with high accuracy

(Thyssen et al., 2014; Marrec et al., 2018). Conceptual

cytograms are proposed in Figure 1 to help discriminate the

most commonly observed plankton groups in seawater and a

decision tree (Figure 2) inspired by Olson et al. (1989) illustrates

the steps in identifying the red and orange fluorescing particles

when using a blue laser. The yellow/green fluorescence has not

been illustrated in the conceptual cytograms for the common

phytoplankton identification, as it is not used to identify them.

In summary, RedPicoProk (Figures 1, 2) which includes

Prochlorococcus spp. (Table 1) is usually very close to the

instrument noise and the non-fluorescing particles when they

come from well-lit waters (Ge rikas Ribeiro et al., 2016).

RedPico and RedNano (Figures 1, 2) belong to pico and

nanophytoplankton size classes, 3 µm sized beads used as an

internal standard may help in separating one from the other

(Figure 2). OraPicoProk has a specific signature in the FLO

(Figure 1B) due to phycoerythrin. The group typically presents

an elongated ellipse signature in the red vs orange fluorescence,

belonging in most cases to the Synechococcus genus (Olson et al.,

1985, Figure 2). The OraPico (Figures 1A, B) has been found to

belong to picoplanktonic cryptophytes (Metfies et al., 2010;

Hamilton et al., 2017), but can also include, depending on the

size and the environment, cyanobacteria such as Crocosphaera

spp. They can share similar or higher orange fluorescence

intensity as OraPicoProk, but with higher scatter signatures,

similar to the RedPico group (Figure 1A). HsNano cells

(Figure 1C) have a FSC signal similar to RedNano cells but are

separated by their SSC signals. These are identified as

coccolithophorids with coccoliths that generate high SSC

signatures by light scatter (Green et al., 1996; Jacquet et al.,

2002). RedMicro and OraMicro are only adequately counted

when sample volume is high enough (several cm3) or by

integrating several samples when collected within an

appropriate time interval (Thyssen et al., 2008a) or if there is a

high concentration of algal cells such as during bloom events.

Their size class can be estimated from collected images when

available, or after light scattering calibration using algal cultures

or size fractionated filtration. RedRedPico and RedRedNano

cells are only distinguished using a red laser with emission

collected > 650 nm. The RedRedNano group is barely found in

marine samples although it could include nanocyanobacteria or

chain-forming cyanobacteria most often found in brackish and

freshwaters (Read et al., 2014). The distribution of heterotrophic

prokaryotes (HetLNA and HetHNA) is based on the

fluorescence of the nucleic acid-stained intensity, with

generally two groups observed, one over the other, in terms of

intensity. HetHNA can also have a higher SSC signature (Gasol

et al., 1999).
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FIGURE 2

Decision tree for helping in the group’s discrimination on cytograms for unstained natural red fluorescing particles excited with a blue laser. Red
fluorescing particles corresponding to the phytoplankton groups are selected above a threshold that corresponds to the lowest limit of
detection of the FCM. The lowest limit of detection is defined when the optical noise and the signature of the detritus in the sheath signal are
well identified and do not affect the smallest resolved phytoplankton group the FCM can count (at best, the RedPicoProk). FSC= Forward
scatter, FLR= Red fluorescence, FLO= Orange fluorescence, SSC= Sideward scatter. The groups RedRedPico and RedRedNano (discriminated
with a red laser), as well as the HetHNA and HetLNA, are not presented here.
A B

D E

C

FIGURE 1

Conceptual cytograms depicting the relative position of the most commonly observed groups in marine waters. Axes are in log vs. log scale.
(A) Relationship between forward light scatter (FSC), a proxy for cell size, and chlorophyll a FLR from a blue laser. (B) Phytoplankton group
separation based on phycoerythrin orange fluorescence and chlorophyll a fluorescence. (C) Relationship between sideward angle light scatter
(SSC), a proxy for cell surface roughness, and chlorophyll a FLR from a blue laser. (D) Relationship between chlorophyll a and phycocyanin FLR
from a red laser, and chlorophyll a FLR from a blue laser. (E) HetHNA and HetLNA are evidenced after DNA staining with a green emission dye
such as SybrGreen I® and are separated on a green fluorescence vs (SSC) with a blue laser. Group denomination and fluorescence terminology
are further defined in the main text.
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Vocabulary setup and governance

The FCM vocabulary is hosted on the NERC (Natural

Environment Research Council) Vocabulary Server (NVS,

https://vocab.nerc.ac.uk). The NVS is a dedicated semantic

repository for terminologies used in the marine and related

domains. It is managed by the British Oceanographic Data

Centre (BODC) at the National Oceanography Centre in the

United Kingdom. The NVS publishes terminologies like the

FCM vocabulary, in standardized formats using the World Wide

Web Consortium’s (W3C) Simple Knowledge Organization

System (SKOS, https://www.w3.org/2004/02/skos/) to represent

knowledge in a format that is understandable by both computers

and humans. As part of the SeaDataCloud project, the terms and

definitions needed to represent the commonly agreed FCM

groups were converted into SKOS concepts and added to a

SKOS collection. For the FCM concepts, a new collection had to

be created. It was given its collection identifier (F02) to form its

unique Uniform Resource Identifier (URI) https://vocab.nerc.ac.

uk/collection/F02/. Within the collection, the SKOS concepts are

made of an identifier, a mandatory preferred label, an optional

alternative label, and an optional description field. The SKOS

identifier enables each concept to be individually and uniquely

accessible through its URI.

The technical governance of the FCM vocabulary is entirely

managed by the NVS team at BODC while the content

governance is currently coordinated by the authors of this

paper. A GitHub repository (https://github.com/nvs-vocabs/

F02) was set up to enable any interested person to propose

changes, or additions or ask questions about the new vocabulary

in a publicly open forum. The management of a vocabulary

within a formal semantic repository infrastructure such as the

NVS means that several guarantees are given to the users. One of

these guarantees is that a term will never be deleted or modified

in such a way that its meaning changes. Instead, terms that are

no longer considered valid are deprecated meaning that their

unique URI will remain valid but the concept will be marked as

“deprecated” and, unless requested specifically, they will be, by

default, filtered out of the BODC’ NVS search tool (https://

vocab.nerc.ac.uk/search_nvs/F02/).
Discussion

Large and curated datasets of fundamental ecological traits

and abundances of marine pelagic microorganisms should be

made available worldwide, given their relevance in balancing

Earth’s climate, controlling food webs, and affecting the

ecological status of the oceans. FCM is a powerful tool to

provide such datasets as it allows fast and reliable access to

phytoplankton and heterotrophic prokaryotes abundance with a
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relatively good separation into important ecological traits such as

size and pigment classes. Consequently, a wider scientific

community and managers became interested in implementing

FCM data more routinely in monitoring programmes (e.g.,

Benedetti-Cecchi et al., 2018; Delpy et al., 2018; Eriksen et al.,

2019) increasing the FCM datasets in different pelagic habitats.

However, homogenisation of datasets is as far as we know, not

existing, preventing integration of knowledge at large scales. These

datasets are undervalued and seldom integrated into global

studies, due to a lack of sharing facilities and interoperability

solutions. Without establishing a standardization framework also

referred to as Ocean Best Practices (Pearlman et al., 2019), the

FCM datasets cannot be shared worldwide, preventing their

fundamental contribution to Essential Ocean Variables (EOVs)

and Essential Biodiversity Variables (EBVs) for calculating

indicators of biodiversity and ecosystems status and trends.

During the last 10 years, steps towards best practices and

quality control procedures for sample collection, calibration,

standardization procedures and data management (including

international ISO standards) have been started and discussed in

national and international programs such as SOMLIT (https://

www.somlit.fr/en/), Dymaphy (http://www.dymaphy.eu/),

SeaDataCloud (H2020 EU project, ID: 730960; https://www.

seadatanet.org/About-us/SeaDataCloud), JERICO-NEXT and

JERICO-S3 (H2020 EU projects, ID: 654410/871153; https://

www.jerico-ri.eu/) by a network of experts. Besides building best

practices to make the handling of the flow cytometers similar

between users, historically widely discussed and treated in the

frame of immunology and medical use (Pacho n et al., 2012), one

of the first outcomes of these collaborative efforts is the

establishment of the 13 groups of autotrophic (including

mixotrophic) and heterotrophic microorganisms categorized

and quantified based on a common non-taxonomic vocabulary.

A second reason for building such a vocabulary is the continued

development of machine learning and other techniques for

interpreting the ever-growing number of studies involving

multiparametric FCM analysis of marine samples, especially

with the increasing use and diversity of autonomous high

frequency sensors. Indeed, inter-laboratory data analysis based

on manual classification of the FCM groups can be affected by

strong variability, especially for the dimmest and the least

concentrated groups such as the RedPicoProk, the HsNano or

the RedMicro and OraMicro groups (Fuchs et al., 2022), and for

data generated by different instruments (Peperzak et al., 2020).

Annotation of groups based on a consensus definition will

facilitate the process of building the workflow from the original

dataset to the interoperable database. It will also strengthen and

guide the users, by inferring and assessing the expected outcomes

from marine water analyses. This step is one of several to proceed

toward FAIR data, and it also paves the way for European

(EMODnet; https://www.emodnet-biology.eu/) and global
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(OBIS; https://obis.org/) databases to consider trait-based

biological information from FCM with high spatial and

temporal resolution as valuable as and complementary to

taxonomical data for developing EBVs for future policy

requirements. However, by applying standards and trained

neural networks dedicated to the recognition of the described

groups presented in this manuscript, we advise it could hide some

interesting groups not specifically recognised by the training set.

Indeed, rare events or sub-groups should find their place in one of

the 13 groups described here, still, it will belong to the scientist

dealing with his instrument to make the choice on which level of

complexity its study should focus on.

A similar effort on inter-laboratory validations and

guidelines to ensure optimization of the settings for an

instrument in observing marine microorganisms is urgently

required. This can be supported by training, using similar

standards such as reference beads and fixed samples. The need

for large volume analyses to count rare groups is an unresolved

problem, and limitations are strongly instrument-dependent.

Harmonizing sample and data acquisition procedures should be

assessed at the international level by sharing knowledge between

experts. Open forums for discussions are a powerful source of

success, enhancing collaborations (https://marinecytometry.

slack.com). In addition, great efforts are done to sample and

analyse viruses, heterotrophic flagellates, microzooplankton

and/or microphytoplankton, via automatic staining or large

volumes combined with cameras that allow some taxonomic

identification for particles > 10 µm (Sosik and Olson, 2007;

Lombard et al., 2019; Fragoso et al., 2019).
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