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The recent development of biological sensors has extended marine plankton
studies from conducting laboratory bench work to in vivo and real-time
observations. Flow cytometry (FCM) has shed new light on marine
microorganisms since the 1980s through its single-cell approach and robust
detection of the smallest cells. FCM records valuable optical properties of light
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scattering and fluorescence from cells passing in a single file in front of a
narrow-collimated light source, recording tens of thousands of cells within a
few minutes. Depending on the instrument settings, the sampling strategy, and
the automation level, it resolves the spatial and temporal distribution of
microbial marine prokaryotes and eukaryotes. Cells are usually classified and
grouped on cytograms by experts and are still lacking standards, reducing data
sharing capacities. Therefore, the need to make FCM data sets FAIR (Findability,
Accessibility, Interoperability, and Reusability of digital assets) is becoming critical.
In this paper, we present a consensus vocabulary for the 13 most common marine
microbial groups observed with FCM using blue and red-light excitation. The
authors designed a common layout on two-dimensional log-transformed
cytograms reinforced by a decision tree that facilitates the characterization of
groups. The proposed vocabulary aims at standardising data analysis and
definitions, to promote harmonisation and comparison of data between users
and instruments. This represents a much-needed step towards FAIRification of

flow cytometric data collected in various marine environments.

KEYWORDS

flow cytometry, marine microorganisms, standardization, vocabulary, FAIR principle
interoperable vocabulary for marine flow cytometry

Introduction

The biological understanding of the marine environment
starts with the unicellular world of microorganisms. Unicellular
marine microorganisms, including autotrophic, heterotrophic,
and mixotrophic prokaryotes and eukaryotes, as well as viruses,
are the principal biogeochemical actors of the oceans (Pomeroy,
1974, Worden et al., 2012). They play a crucial role in the marine
environment, and by extension, the Earth climate, due to their
physiological capacity to oxidize and reduce elements
(essentially carbon) through photosynthesis, respiration and
exudation, setting the ecological and trophic status of marine
ecosystems. Unicellular autotrophic prokaryotes and eukaryotes,
hereafter called phytoplankton, produce up to half of the oxygen
and organic matter on Earth (Field et al.,, 1998), and form the
base of the marine food webs. Unicellular heterotrophic
prokaryotes are ubiquitous and play a key role in
biogeochemical cycles (Fenchel et al., 2012) including the
recycling of organic matter and nutrient regeneration.
Unicellular heterotrophic and mixotrophic eukaryotes
consume phytoplankton and heterotrophic prokaryotes and,
depending on their cell size, facilitate the transfer of the
produced organic matter to higher trophic levels (Azam et al.,
1983) or its recycling by marine heterotrophic prokaryotes
(Ducklow et al., 1986). Marine viruses as well are indirectly
responsible for facilitating nitrogen cycling and therefore
phytoplankton growth and for reducing carbon dioxide release
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into the atmosphere. They are also a major driver of evolution by
increasing genetic diversity (Suttle, 2005). In addition to this
high biological and functional diversity, their dynamics and
distribution are characterised by high spatio-temporal
heterogeneity, making studies of their activity challenging.
Observations and modelling of plankton dynamics and
functionality traits (Dubelaar et al., 1999; Quere et al., 2005;
Litchman et al., 2007; Fontana et al., 2018; Levy et al., 2018)
highlight the importance of fine spatio-temporal and functional
resolutions when assessing the role of microorganisms in marine
ecosystems. The most accurate way to study the distribution,
composition, dynamics, and functions of microorganisms is to
resolve them at their unit scale, ie., the single cell. This is
possible with FCM, widely used in oceanography since the
1980s (Yentsch & Yentsch, 1979; Trask et al., 1982; Yentsch
et al.,, 1983; Olson et al., 1985). FCM has revolutionised marine
microbiology by accessing the abundance distribution of
plankton size classes (PSCs) and several existing
phytoplankton functional types (PFTs) or functional groups
(PFGs) (Salmaso et al.,, 2015). FCM also helped in the
discovery of unexpectedly small organisms (< 1 um) playing
an important role in the trophic web and the marine carbon
cycle such as Prochlorococcus (Chisholm et al., 1988) and
Ostreococcus (Courties et al., 1994). The power of conventional
FCM relies on the hydrodynamic focusing of a laminar flow
where particles are lined up and separated. Their intersection
with a laser beam generates light scattering which can be used as
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a proxy of cell diameter or cell structure, and fluorescence from
pigments or user-applied dyes. The identification of
photosynthetic microorganisms does not require any staining
due to the auto-fluorescence of chlorophylls and accessory
pigments. Those auto-fluorescence properties, combined with
size and structure, make it possible to separate photosynthetic
cell populations from other marine particles. Heterotrophic
microorganisms and viruses require specific staining (usually
of Nucleic Acids) to distinguish them from the detrital organic
matter pool (Gregori et al., 2001; Zubkov et al., 2001; Christaki
et al., 2011). Automated staining systems dedicated to
heterotrophic micro-organisms high-frequency observation
were set up and deployed, either for drinking waters (Hammes
et al,, 2012), or marine environments (Brownlee et al., 2016;
Silovic et al., 2017) monitoring. Flow cytometers can be
equipped with lasers emitting light at different wavelengths to
measure signals from various chromophores.

Over the last 20 years, automated systems (i.e. systems that
can be operated autonomously for months or years and remotely
controlled) such as CytoSense/Sub/Buoy (Dubelaar et al., 1999),
FlowCytobot and Imaging FlowCytobot (Olson et al., 2003;
Olson & Sosik, 2007), SeaFlow (Swalwell et al., 2011), have
produced highly resolved spatial and temporal datasets of
numerous phytoplankton groups, including relatively large and
rare groups thanks to increasing sample volume analysed. These
instruments can be deployed in situ and underwater (Sosik et al.,
2003; Thyssen et al., 2008b; Peacock et al., 2014; Hunter-Cevera
et al,, 2016), on a ship (Li et al, 1995; Thyssen et al., 2009;
Bonato et al,, 2015; Thyssen et al., 2015; Marrec et al., 2018;
Aardema et al., 2019; Ribalet et al., 2019; Fowler et al., 2020;
Louchart et al., 2020) or a buoy (Thyssen et al., 2014). Imaging in
flow systems can be combined with flow cytometry acquisition,
affording additional taxonomic identification for microplankton
size range. The investigation of machine learning approaches for
generating automatic recognition of microorganisms at
individual or cluster levels in marine samples has been
explored (Malkassian et al.,, 2011; Ribalet et al., 2011; Hyrkas
et al., 2016; Olusoji et al.,, 2021; Fuchs et al,, 2022), and will
benefit from medical field research for additional computational
processes and data analysis workflow (Aghaeepour et al., 2013),
promising to ensure near real-time data availability.

The worldwide increase in marine FCM datasets provides
evidence of the technique’s utility and reliability in marine
research. Indeed, FCM datasets are now widely accepted as a
core parameter and a common reference in oceanographic
cruises (Manti et al., 2012). Unfortunately, the datasets
collected are, in most cases, maintained in local data stores
and are not routinely set up for open access through
international data portals, despite the need for sharing and
disseminating valuable information on ocean plankton
functional-group distribution. Consequently, scientists are
facing the difficult challenge of handling a large amount of
data which needs to be processed rapidly and harmonised
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before being stored in databases to be accessible to scientific
and environmental management communities. Best practices in
data management (Boss et al., 2018) have received relatively little
attention despite the need for a data flow framework to follow
the Findability, Accessibility, Interoperability, and Reusability
(FAIR) principles (Wilkinson et al.,, 2016). In 2016, the
SeaDataCloud project (H2020 EU, ID: 730960) supported a
first initiative to harmonise FCM datasets via an interoperable
vocabulary for the most common phytoplankton and
heterotrophic prokaryotic groups. This first step was a valuable
attempt to gather input from a large and international panel of
FCM experts, but needed maturation as the names of groups first
suggested as standards referred to some vague taxonomic
descriptions. In addition, the definitions of those groups
lacked precision. This paper stems from this common
initiative, aiming to promote accessibility to the marine FCM
datasets, proposing a consensus vocabulary and its definition for
microbial groups discriminated by FCM in marine
environments. The virus and microzooplankton groups were
excluded from this exercise as they are not yet routinely analysed
by these instruments.

Standardized vocabulary and
definition

Authors of this manuscript provide a commonly agreed
standardized vocabulary with definitions of marine microbial
groups observed by FCM, resulting from the consultation
among FCM users and experts (co-authors of this manuscript)
and a literature review spanning the period 1983-2020 (Annex 1
in Supplementary material). Datasets in which FCM groups are
identified by the experts are highly informative and are compatible
with a consensus nomenclature, unlike raw data which are saved
in various binary formats (e.g. cyz for the CytoSense, adc for the
Imaging FlowCytobot, evt for the SeaFlow, fcs for more
conventional flow cytometers). The interoperable vocabulary
needs to apply to a variety of groups present in many marine
environments while being specific enough to reveal the functional
diversity observed with any flow cytometer.

From this consultation, a total of 13 groups are identified and
defined in the look-up Table 1. The last column presents some
examples collected in the literature and extracted from Annex 1,
revealing the diversity of names given for a specific group. In the
literature, they are either named using the known and referenced, or
supposed, taxonomic nomenclature, such as bacteria,
Synechococcus, Prochlorococcus, prochlorophytes, cryptophytes,
Crocosphaera, coccolithophorids, or by using a classification based
on their size-class or cellular structure, such as picophytoplankton,
picoeukaryotes, picocyanobacteria, ultraphytoplankton,
nanophytoplankton, nanoeukaryotes, microphytoplankton, among
others. Several identified groups share the same descriptions as well
as similar optical properties or position on a cytogram, yet are
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TABLE 1 Look-up table between terms identifying the main FCM groups that appear in the literature (extracted from Annex 1), and the common
nomenclature findable in the https://vocab.nerc.ac.uk/collection/F02/current/.

Identifier

Common vocabulary
(Alternative label)

Short description (Preferred label)

SDN:F02:F0200002  RedPicoProk Red only fluorescing prokaryote picophytoplankton

SDN:F02:F0200013 RedRedPico Red and Red only fluorescing prokaryote
picophytoplankton, rich in the pigment phycocyanin (PC)

SDN:F02:F0200003  OraPicoProk Orange fluorescing prokaryote picophytoplankton, rich in
the pigment phycoerythrin (PE)

SDN:F02:F0200004 RedPico Red only fluorescing picophytoplankton

SDN:F02:F0200005 RedNano Red only fluorescing nanophytoplankton

SDN:F02:F0200014  OraPico Orange and red fluorescing picophytoplankton, rich in the
pigment phycoerythrin (PE)

SDN:F02:F0200006 OraNano Orange and red fluorescing nanophytoplankton, rich in the
pigment phycoerythrin (PE)

SDN:F02::F0200015 RedRedNano Red and red only fluorescing nanophytoplankton, rich in
the pigment phycocyanin (PC)

SDN:F02:F0200007 HsNano Red fluorescing nanophytoplankton with relatively high
sideward light scattering properties

SDN:F02:F0200008 RedMicro Red only fluorescing microphytoplankton

SDN:F02:F0200016 ~OraMicro Orange fluorescing microphytoplankton, rich in the
pigment phycoerythrin (PE)

SDN:F02:F0200010 HetHNA Heterotrophic prokaryotes with relatively high nucleic acid

SDN:F02::F0200011 HetLNA

Heterotrophic prokaryotes with relatively low nucleic acid

Example of terms that appear in the
literature (Annex 1 extract)

Prochlorophytes, Prochlorococcus, very small red
fluorescing bodies, PRO, Prochl

PC-rich Synechococcus, PC-CYAN, PC SYN

Syn, Synechococcus, cyanobacteria, PE-type
Synechococcus, Crocosphaera, PE-CYAN

Picoeuk, redpico, Peuk, picophytoplankton,
PicoEukl

Nanoeuk, rednano, Neuk, nanophytoplankton
Pico cryptophytes

Cryptomonas, Cryptophytes, HighOrgnano,

Nanocyanobacteria, CRYPTO

Nanocyanobacteria
Coccolithophorids, HighSWSnano, COCCO

Microphytoplankton
Microphytoplankton

HNA
LNA

Short description is identified as the preferred label and common vocabulary as the alternative label. Descriptions of the groups are detailed in the text.

assigned a different nomenclature (photosynthetic picoeukaryotes
or PPE, picoEuk, picophytoplankton) or can be spread into sub-
groups (like picocyanobacteria and picophytoplankton, that both
include Synechococcus and Prochlorococcus). Additionally, some
groups were identified by sorting (Ostreococcus sp., Courties et al,,
1994; Richiella sp., Zhao et al., 2012) or image acquisition
(Phaeocystis sp., Rutten et al., 2005) as their light scattering and
fluorescence signatures are not specific enough to be resolved at a
taxonomical level from cytograms only. As said before, these groups
are named on a basis of post-treatment procedures by expert’s, and
should appear in any interoperable database in line with a
consensual and interoperable vocabulary. As a best practice
recommendation, any manuscript dealing with marine FCM
results should use the standardised common vocabulary or
include a correspondence table that lists the groups or subgroups
identified by a flow cytometry user with the standards, as in Table 1,
and referenced to their sources (Uniform Resource Identifier
(URI)). The URIs (e.g. http://vocab.nerc.ac.uk/collection/F02/
current/F0200002/) are the only reliable, machine-readable and
persistent identifiers of the concepts defined in the FO2 vocabulary.

The proposed interoperable vocabulary combines all the
existing FCM groups found in the literature so far into a unique
framework defined by arbitrary optical parameters and size classes.
Defining the FCM groups relies on their position on cytograms
using relative proxies. Indeed, optical signatures of the recorded
particles are modulated by the instrument settings, the instrument
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types, as well as the environmental conditions affecting cell
physiology. As an example, daily cell cycle and depth affect cell
size and fluorescence signals, by increasing cellular biovolume
before division (Jacquet et al., 1998; Sosik et al, 2003; Thyssen
et al., 2008b; Ribalet et al., 2015), by adaptation to light availability
with depth (Vaulot et al., 1995; Partensky et al., 1999), or by variable
incident irradiance favouring non-photochemical quenching
(Brunet et al., 2008). These effects might impact the group
position within cytograms over time. This is observed when
sampling at short time intervals (e.g. hourly) to cover diel cycles,
or when sampling in the water column, or in different ecosystems.
Furthermore, the inference of cell diameter from light scattering
measurements is challenging due to the difficulties in estimating the
refractive index of micro-organisms. For example, the standard
pico-nano size cut-off, originally defined using 2 um filters, is not
accurately estimated using calibrating standards (e.g. Polystyrene
(PS) beads, cultures of known sizes) light scattering, and may
separate otherwise well-defined pico-size clusters whose size
fluctuate around 2 um due to their cell cycle (Jacquet et al., 2001)
or specific composition. This issue is a source of ambiguity and may
lead to large uncertainties in the enumeration of both pico- and
nano planktonic groups, and their size (Green et al., 2003; Duforét-
Gaurier et al,, 2015; Ribalet et al., 2019), or even their carbon quota,
using known conversion factors (Buitenhuis et al., 2012). In our
document, we have used the forward scatter of 3 um silica beads to
separate pico from nano groups (Vaulot et al.,, 2008).
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We do not provide a standard vocabulary for the optical
parameters collected by flow cytometry, such as fluorescence or
scatter, as these values are arbitrary. The relative units and the
different configurations and settings of the instruments make the
recorded optical values per cell not comparable. The conversion
into quantitative values such as the conversion between FSC and
SSC and size, or the conversion of the FLR into chlorophyll a
concentration requires some comparison with in situ collected
data from conventional methods (Haraguchi et al., 2017) or
additional sorting (Bock et al., 2022).

Definition section = detailed
description of the groups

Red only fluorescing prokaryotic
picophytoplankton: RedPicoProk

The RedPicoProk are commonly identified as the unicellular
photosynthetic cyanobacteria Prochlorococcus spp., sized on
average 0.6 um (Partensky et al, 1999). Due to their auto-
fluorescence, staining is not required to detect them by FCM.
When excited by a blue laser, their forward scatter (FSC or FWS)
and red auto-fluorescence (FLR) emitted by chlorophylls
(divinyl chlorophyll a for the prochlorophytes) allow their
discrimination from the background noise. These are the
smallest known photosynthetic marine microorganisms
(Chisholm et al., 1988) and their detection requires sensitive
photodetectors or high-power lasers (optimally at 445 nm
wavelength). Due to their strong photo-acclimation properties,
their red autofluorescence is at times too dim to be detected by
FCM, especially on the surface in the summer, hence some cells
may be lost in the background noise depending on the
instrument’s sensitivity. At depth, RedPicoProk often shows a
bimodal distribution of the FLR, due to the co-occurrence of two
different ecotypes with different photo physiological properties
(Campbell and Vaulot, 1993; van den Engh et al., 2017).

In samples incubated with a DNA-staining fluorescent dye and
excited with a blue laser to enumerate heterotrophic prokaryote
analyses, Prochlorococcus group(s) can sometimes be distinguished
using sideward scattering (SSC or SWS) vs FLR or FLR vs green
fluorescence emitted by DNA-staining fluorescent dye.

Orange fluorescing prokaryote
picophytoplankton, rich in the pigment
phycoerythrin: OraPicoProk

The OraPicoProk, usually identified as Synechococcus spp.

cells are unicellular photosynthetic cyanobacteria with forward
scatter (FSC) and sideward scatter (SSC) signatures larger than
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those of most marine heterotrophic bacteria and of
RedPicoProk. Depending on the instrument settings, their
optical signatures can span nearly two decades of signal
sensitivity range (Vaulot et al., 1995). Staining is not required
to distinguish them by FCM due to the presence of
photosynthetic pigments. When excited by a blue laser, the
OraPicoProk cluster displays higher FSC and FLR signatures
than RedPicoProk at any given depth. They contain
phycoerythrin, and have a distinct FLO signature, which can
be excited by either 488 or 561 nm wavelength lasers. Depending
on the optical band pass filters for fluorescence detection, the
OraPicoProk cluster is well resolved in red vs green (FLR/FLG)
and/or in FLR/FLO cytograms.

Red and Red only fluorescing prokaryote
picophytoplankton, rich in the pigment
phycocyanin: RedRedPico

The RedRedPico is a group mainly identified as the
phycocyanin (PC)-containing picocyanobacteria (i.e.
Synechococcus or Crocosphaera). This group can only be resolved
using a red laser (615-640 nm). These PC-rich species are expected
to be more abundant in turbid estuaries, as PC is optimized for
orange-red light, whereas phycoerythrin (PE) pigments present in
some other Synechococcus are optimally tuned to the blue-green
light present in clear waters (Stomp et al., 2007). These RedRedPico
overlap with RedPicoProk or RedPico on a FLO vs FLR cytogram
when excited by a blue laser (Liu et al., 2014).

Red-only fluorescing picophytoplankton:
RedPico

The RedPico is a polyphyletic group. Based on the literature,
this group is defined by chlorophyll-containing cells with a
diameter <3 um (Buitenhuis et al., 2012 and references
therein) with higher scatter than RedPicoProk and can include
RedRedPico when only a blue laser is used. Staining is not
required to distinguish them by FCM due to the presence of
chlorophyll. RedPico exhibit a well-defined FCM signature when
excited with a blue laser, with scatter signals (FSC or SSC) and
FLR signals larger than those of RedPicoProk, but smaller than
those of the RedNano (below). The FSC signal of either 2 or 3
pum fluorescent beads is widely used as an optical standard to
localize this group, even though polystyrene beads are not a
reliable indicator of cell size due to their refractive index higher
than the one of cells. When possible, size-fractionated by
sequential gravity filtration or cultures should be used to
define this group (Green et al, 2003; Mojica et al, 2016;
Ribalet et al., 2019).
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Red only fluorescing nanophytoplankton:
RedNano

The RedNano group is also a polyphyletic group, including
phytoplankton cells with a size between approximately 3 and 20
pm. They auto-fluoresce red when excited by a blue laser due to
the presence of chlorophyll. They differ from RedPico due to their
higher FLR, SSC, and FSC. RedNano cells are distinguished from
PE-containing cells as they lack orange fluorescence. This group
may include the RedRedNano if the instrument used does not
have a red laser to separate those phycocyanin-containing cells.

Orange and red fluorescing
picophytoplankton, rich in the pigment
phycoerythrin: OraPico

The OraPico group consists of ~3 pm auto-fluorescing
prokaryotes or eukaryotes that contain the pigment PE and
fluorescing in the orange and in the red. When excited by a blue
laser, their SSC and FSC signatures are larger than those of
OraPicoProk but with a FLR signature similar to the RedPico.
This group includes cyanobacteria such as Crocosphaera spp.
(Wilson et al.,, 2017) and cryptophytes.

Orange and red fluorescing
nanophytoplankton, rich in the pigment
phycoerythrin: OraNano

The OraNano group belongs to the size class of
nanoplankton (3-20 pum). They are auto-fluorescing in the FLR
due to the presence of chlorophyll. They contain PE and may
also contain PC that can be excited by a red laser beam (615-640
nm). When excited by a blue laser, they exhibit FSC signatures
similar to the RedNano but with a high FLO, often observed
above the OraPico group in FLO vs FLR cytograms. If the
OraNano cells contain both PE and PC and are excited by a
blue laser beam they will emit a higher FLR signal compared to
RedNano (due to the energy transfer to FLR, (Bazzani et al,
1992)). This group includes larger cyanobacteria (e.g. large-size
Crocosphaera, Richelia), red algae and cryptophytes.

Red and red only fluorescing
nanophytoplankton, rich in the pigment
phycocyanin: RedRedNano

The RedRedNano group belongs to the nanoplankton size
class (3-20 pm) and its cells emit red light when excited by a red
laser (615-640 nm), due to PC (Read et al., 2014), but no or little
in the orange when excited by a blue laser, due to lack of PE.
Their FSC and FLR signatures are similar to RedNano. They
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include cryptophytes and some cyanobacteria, especially when
they form small colonies (Wisniewska et al., 2021).

Red fluorescing nanophytoplankton with
relatively high sideward light scattering
properties: HsNnano

The HsNano group consists of photosynthetic, mostly
eukaryotic cells, that have a high SSC signal when excited by a
blue laser, compared to the RedNano and OraNano groups, but
similar FSC and FLR signatures. These cells also display a high
depolarization ratio (parallel and vertical polarized forward light
scatter). This optical property is very useful to identify
coccolithophores that are covered with coccoliths made of
CaCO3 (Green et al,, 1996; Von Dassow et al., 2012), as well
as some autotrophs and armoured dinoflagellates.

Red only fluorescing
microphytoplankton: RedMicro

The RedMicro group is a polyphyletic group defined by cells
or chains > 20 pm in size. When excited by a blue laser, this auto-
fluorescing group is discriminated by its FSC and FLR signals,
which are the largest observed by FCM. Due to the small sample
volumes usually analysed by traditional FCM (less than 1 cm’ in
most cases), counts for this group can have high uncertainties
(due to their typically low concentrations). When FSC is
calibrated with appropriate standards or phytoplankton
cultures, it enables microphytoplankton to be distinguished
from nanophytoplankton with a size of about 20 um. Chains
or colony-forming cells may be too large for FCM analysis
depending on instrument characteristics (tubing size, flow cell
dimension, pulse shape recording or not).

Orange fluorescing microphytoplankton:
OraMicro

The OraMicro group consist of cells or chains > 20 pm. They
display higher FSC and FLO signals than OraNano and a high
FLO/FLR compared to the RedMicro group. Cells have a high PE
content and may also contain PC that can be excited by a red
laser. In this case, when a laser beam with a wavelength of
approximately 533 nm (green) excites cells, they will emit a
higher FLR signal compared to chlorophyll a only containing-
cells due to the energy transfer to the pigment PC that will also
emit fluorescence in the FLR channel. This group can include
cryptophytes of > 20 pm, colonial cyanobacterial filaments, but
also mixotrophic dinoflagellates and ciliates, according to their
pigmentation. Due to the small volumes usually analysed by
FCM (typically less than 1 cm?), counts for this group can have
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high uncertainties when cells are not abundant enough. When
FSC is calibrated with appropriate standards or phytoplankton
cell cultures, it is possible to distinguish microphytoplankton
from nanophytoplankton cells with a size close to 20 um. Chains
or colonies may be too large for FCM analysis, depending on
instrument characteristics (tubing inner diameter, flow cell
dimensions, pulse shape recording or not).

Heterotrophic prokaryotes
(Heterotrophic prokaryotes with
relatively high nucleic acid= HetHNA and
Heterotrophic prokaryotes with relatively
low nucleic acid= HetLNA)

Heterotrophic prokaryotes include both Bacteria and
Archaea. To be detected by FCM, staining is necessary. While
initial studies have used nucleic acid-stained dyes like DAPI and
Hoechst 33342 (Monger and Landry, 1993), nowadays a visible-
light green-emitting dye is the most common choice. Blue laser
excitation enables heterotrophic prokaryotes to be distinguished
due to their SSC (or FSC) and green fluorescence (FLG)
signatures. Cells with a lower FLG correspond to heterotrophic
prokaryotes with a relatively lower nucleic acid content
(HetLNA) and cells with a higher FLG correspond to
heterotrophic prokaryotes with a relatively high nucleic acid
content (HetHNA). Their scatter signals (FSC, SSC) are equal to
or lower than those of OraPicoProk and RedPico and may
overlap those of RedPicoProk. The LNA and HNA are
apparent nucleic acid contents. By creating a cytogram of FLO
vs FLG of the cells, it is possible to discriminate small size
autotrophs (such as RedPicoProk) from heterotrophic
prokaryotes in the same sample to be subtracted to get
accurate heterotrophic prokaryote abundances.

Discrimination on cytograms: A
conceptual view

The classification of phytoplankton and heterotrophic
prokaryotes from FCM raw data is based on several two-
parameter cytograms presenting scatter and fluorescence
intensities (arbitrary units) on a log scale. On such cytograms,
the selection of FCM groups relies on manually gating density
distribution following higher densities in the centre and well
separated from other groups on at least two optical parameters.
When a FCM group is not abundant enough to estimate its
distribution, or when a group has a multimodal distribution, the
manual separation into individual groups relies on a-priori
knowledge by experts. Output intercomparing between
instruments is complex but can be facilitated by standard
beads as a reference for approximating relative positions of
groups and signal intensities. Despite the differences between
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flow cytometers and the physiological influences affecting optical
properties, the relative positions of the 13 marine microbial
groups defined in this paper follow a common pattern, leading to
an agreement between FCM experts. Abundance comparison
between instruments is then possible with high accuracy
(Thyssen et al., 2014; Marrec et al, 2018). Conceptual
cytograms are proposed in Figure 1 to help discriminate the
most commonly observed plankton groups in seawater and a
decision tree (Figure 2) inspired by Olson et al. (1989) illustrates
the steps in identifying the red and orange fluorescing particles
when using a blue laser. The yellow/green fluorescence has not
been illustrated in the conceptual cytograms for the common
phytoplankton identification, as it is not used to identify them.

In summary, RedPicoProk (Figures 1, 2) which includes
Prochlorococcus spp. (Table 1) is usually very close to the
instrument noise and the non-fluorescing particles when they
come from well-lit waters (Geérikas Ribeiro et al., 2016).
RedPico and RedNano (Figures 1, 2) belong to pico and
nanophytoplankton size classes, 3 um sized beads used as an
internal standard may help in separating one from the other
(Figure 2). OraPicoProk has a specific signature in the FLO
(Figure 1B) due to phycoerythrin. The group typically presents
an elongated ellipse signature in the red vs orange fluorescence,
belonging in most cases to the Synechococcus genus (Olson et al.,
1985, Figure 2). The OraPico (Figures 1A, B) has been found to
belong to picoplanktonic cryptophytes (Metfies et al., 2010;
Hamilton et al., 2017), but can also include, depending on the
size and the environment, cyanobacteria such as Crocosphaera
spp. They can share similar or higher orange fluorescence
intensity as OraPicoProk, but with higher scatter signatures,
similar to the RedPico group (Figure 1A). HsNano cells
(Figure 1C) have a FSC signal similar to RedNano cells but are
separated by their SSC signals. These are identified as
coccolithophorids with coccoliths that generate high SSC
signatures by light scatter (Green et al., 1996; Jacquet et al.,
2002). RedMicro and OraMicro are only adequately counted
when sample volume is high enough (several cm®) or by
integrating several samples when collected within an
appropriate time interval (Thyssen et al., 2008a) or if there is a
high concentration of algal cells such as during bloom events.
Their size class can be estimated from collected images when
available, or after light scattering calibration using algal cultures
or size fractionated filtration. RedRedPico and RedRedNano
cells are only distinguished using a red laser with emission
collected > 650 nm. The RedRedNano group is barely found in
marine samples although it could include nanocyanobacteria or
chain-forming cyanobacteria most often found in brackish and
freshwaters (Read et al., 2014). The distribution of heterotrophic
prokaryotes (HetLNA and HetHNA) is based on the
fluorescence of the nucleic acid-stained intensity, with
generally two groups observed, one over the other, in terms of
intensity. HetHNA can also have a higher SSC signature (Gasol
et al., 1999).
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FIGURE 1

Conceptual cytograms depicting the relative position of the most commonly observed groups in marine waters. Axes are in log vs. log scale

(A) Relationship between forward light scatter (FSC), a proxy for cell size, and chlorophyll a FLR from a blue laser. (B) Phytoplankton group
separation based on phycoerythrin orange fluorescence and chlorophyll a fluorescence. (C) Relationship between sideward angle light scatter
(SSC), a proxy for cell surface roughness, and chlorophyll a FLR from a blue laser. (D) Relationship between chlorophyll a and phycocyanin FLR
from a red laser, and chlorophyll a FLR from a blue laser. (E) HetHNA and HetLNA are evidenced after DNA staining with a green emission dye
such as SybrGreen I® and are separated on a green fluorescence vs (SSC) with a blue laser. Group denomination and fluorescence terminology
are further defined in the main text.
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FIGURE 2

Decision tree for helping in the group’s discrimination on cytograms for unstained natural red fluorescing particles excited with a blue laser. Red
fluorescing particles corresponding to the phytoplankton groups are selected above a threshold that corresponds to the lowest limit of
detection of the FCM. The lowest limit of detection is defined when the optical noise and the signature of the detritus in the sheath signal are
well identified and do not affect the smallest resolved phytoplankton group the FCM can count (at best, the RedPicoProk). FSC= Forward
scatter, FLR= Red fluorescence, FLO= Orange fluorescence, SSC= Sideward scatter. The groups RedRedPico and RedRedNano (discriminated
with a red laser), as well as the HetHNA and HetLNA, are not presented here.
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Vocabulary setup and governance

The FCM vocabulary is hosted on the NERC (Natural
Environment Research Council) Vocabulary Server (NVS,
https://vocab.nerc.ac.uk). The NVS is a dedicated semantic
repository for terminologies used in the marine and related
domains. It is managed by the British Oceanographic Data
Centre (BODC) at the National Oceanography Centre in the
United Kingdom. The NVS publishes terminologies like the
FCM vocabulary, in standardized formats using the World Wide
Web Consortium’s (W3C) Simple Knowledge Organization
System (SKOS, https://www.w3.0rg/2004/02/skos/) to represent
knowledge in a format that is understandable by both computers
and humans. As part of the SeaDataCloud project, the terms and
definitions needed to represent the commonly agreed FCM
groups were converted into SKOS concepts and added to a
SKOS collection. For the FCM concepts, a new collection had to
be created. It was given its collection identifier (F02) to form its
unique Uniform Resource Identifier (URI) https://vocab.nerc.ac.
ul/collection/F02/. Within the collection, the SKOS concepts are
made of an identifier, a mandatory preferred label, an optional
alternative label, and an optional description field. The SKOS
identifier enables each concept to be individually and uniquely
accessible through its URL

The technical governance of the FCM vocabulary is entirely
managed by the NVS team at BODC while the content
governance is currently coordinated by the authors of this
paper. A GitHub repository (https://github.com/nvs-vocabs/
F02) was set up to enable any interested person to propose
changes, or additions or ask questions about the new vocabulary
in a publicly open forum. The management of a vocabulary
within a formal semantic repository infrastructure such as the
NVS means that several guarantees are given to the users. One of
these guarantees is that a term will never be deleted or modified
in such a way that its meaning changes. Instead, terms that are
no longer considered valid are deprecated meaning that their
unique URI will remain valid but the concept will be marked as
“deprecated” and, unless requested specifically, they will be, by
default, filtered out of the BODC NVS search tool (https://
vocab.nerc.ac.uk/search_nvs/F02/).

Discussion

Large and curated datasets of fundamental ecological traits
and abundances of marine pelagic microorganisms should be
made available worldwide, given their relevance in balancing
Earth’s climate, controlling food webs, and affecting the
ecological status of the oceans. FCM is a powerful tool to
provide such datasets as it allows fast and reliable access to
phytoplankton and heterotrophic prokaryotes abundance with a
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relatively good separation into important ecological traits such as
size and pigment classes. Consequently, a wider scientific
community and managers became interested in implementing
FCM data more routinely in monitoring programmes (e.g.,
Benedetti-Cecchi et al., 2018; Delpy et al., 2018; Eriksen et al.,
2019) increasing the FCM datasets in different pelagic habitats.
However, homogenisation of datasets is as far as we know, not
existing, preventing integration of knowledge at large scales. These
datasets are undervalued and seldom integrated into global
studies, due to a lack of sharing facilities and interoperability
solutions. Without establishing a standardization framework also
referred to as Ocean Best Practices (Pearlman et al., 2019), the
FCM datasets cannot be shared worldwide, preventing their
fundamental contribution to Essential Ocean Variables (EOVY)
and Essential Biodiversity Variables (EBVs) for calculating
indicators of biodiversity and ecosystems status and trends.
During the last 10 years, steps towards best practices and
quality control procedures for sample collection, calibration,
standardization procedures and data management (including
international ISO standards) have been started and discussed in
national and international programs such as SOMLIT (https://
www.somlit.fr/en/), Dymaphy (http://www.dymaphy.eu/),
SeaDataCloud (H2020 EU project, ID: 730960; https://www.
seadatanet.org/About-us/SeaDataCloud), JERICO-NEXT and
JERICO-S3 (H2020 EU projects, ID: 654410/871153; https://
www.jerico-ri.eu/) by a network of experts. Besides building best
practices to make the handling of the flow cytometers similar
between users, historically widely discussed and treated in the
frame of immunology and medical use (Pachon et al., 2012), one
of the first outcomes of these collaborative efforts is the
establishment of the 13 groups of autotrophic (including
mixotrophic) and heterotrophic microorganisms categorized
and quantified based on a common non-taxonomic vocabulary.
A second reason for building such a vocabulary is the continued
development of machine learning and other techniques for
interpreting the ever-growing number of studies involving
multiparametric FCM analysis of marine samples, especially
with the increasing use and diversity of autonomous high
frequency sensors. Indeed, inter-laboratory data analysis based
on manual classification of the FCM groups can be affected by
strong variability, especially for the dimmest and the least
concentrated groups such as the RedPicoProk, the HsNano or
the RedMicro and OraMicro groups (Fuchs et al., 2022), and for
data generated by different instruments (Peperzak et al., 2020).
Annotation of groups based on a consensus definition will
facilitate the process of building the workflow from the original
dataset to the interoperable database. It will also strengthen and
guide the users, by inferring and assessing the expected outcomes
from marine water analyses. This step is one of several to proceed
toward FAIR data, and it also paves the way for European
(EMODnet; https://www.emodnet-biology.eu/) and global
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(OBIS; https://obis.org/) databases to consider trait-based
biological information from FCM with high spatial and
temporal resolution as valuable as and complementary to
taxonomical data for developing EBVs for future policy
requirements. However, by applying standards and trained
neural networks dedicated to the recognition of the described
groups presented in this manuscript, we advise it could hide some
interesting groups not specifically recognised by the training set.
Indeed, rare events or sub-groups should find their place in one of
the 13 groups described here, still, it will belong to the scientist
dealing with his instrument to make the choice on which level of
complexity its study should focus on.

A similar effort on inter-laboratory validations and
guidelines to ensure optimization of the settings for an
instrument in observing marine microorganisms is urgently
required. This can be supported by training, using similar
standards such as reference beads and fixed samples. The need
for large volume analyses to count rare groups is an unresolved
problem, and limitations are strongly instrument-dependent.
Harmonizing sample and data acquisition procedures should be
assessed at the international level by sharing knowledge between
experts. Open forums for discussions are a powerful source of
success, enhancing collaborations (https://marinecytometry.
slack.com). In addition, great efforts are done to sample and
analyse viruses, heterotrophic flagellates, microzooplankton
and/or microphytoplankton, via automatic staining or large
volumes combined with cameras that allow some taxonomic
identification for particles > 10 pum (Sosik and Olson, 2007;
Lombard et al., 2019; Fragoso et al., 2019).
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