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ABSTRACT

Chunk-level speech emotion recognition (SER) is a common
modeling scheme to obtain better recognition performance than
sentence-level formulations. A key open question is the role of
lexical boundary information in the process of splitting a sentence
into small chunks. Is there any benefit in providing precise lexi-
cal boundary information to segment the speech into chunks (e.g.,
word-level alignments)? This study analyzes the role of lexical
boundary information by exploring alternative segmentation strate-
gies for chunk-level SER. We compare six chunk-level segmentation
strategies that either consider word-level alignments or traditional
time-based segmentation methods by varying the number of chunks
and the duration of the chunks. We conduct extensive experiments to
evaluate these chunk-level segmentation approaches using multiples
corpora, and multiple acoustic feature sets. The results show a minor
contribution of the word-level timing boundaries, where centering
the chunks around words does not lead to significant performance
gains. Instead, the critical factor to effectively segment a sentence
into data chunks is to define the number of chunks according to the
number of spoken words in the sentence.

Index Terms— lexical information, speech emotion recogni-
tion, chunk-level modeling, data segmentation approach

1. INTRODUCTION

Speech emotion recognition (SER) system aims to automatically
identify the emotional states of the input voice signals, which has
important applications for advanced human-computer interaction
(HCI). In general, SER recognizes either discrete emotional cat-
egories (e.g., happiness and sadness), or continuous emotional
attributes (e.g., arousal, dominance, and valence) from acoustic
features, forming a sequence-to-one recognition task [1,2]. One
of the core modeling problems in SER is how to extract reliable
sentence-level representations from frame-level acoustic features
of sentences with varied lengths (i.e., temporal modeling). Tra-
ditional methods rely on statistical descriptors over frame-level
acoustic features (e.g., the mean of the fundamental frequencies),
resulting in a high-dimensional vector to represent the audio sig-
nal [3]. Other approaches utilize deep learning models such as
convolutional and recurrent neural networks (CRNN) to capture the
temporal dynamics within the signal for better and robust sentence-
level representation [4,5]. However, the use of frame-level features
results in long input sequences, which increases the complexity of
the model [6], or leads to severe gradient vanishing issues [7]. To
solve these problems, chunk-level learning schemes are widely used
in SER [8-11], where the speaking turns are split into small chunks
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that are individually processed. The chunk-level representations are
later aggregated to obtain a sentence-level representation.
Conventionally, chunk-level SER splits each sentence into
smaller data chunks with a predefined segmentation approach to
train the emotional classifier. The duration of the chunks varies, but
even one second is able to carry enough information for determin-
ing emotions [12]. It is still an open question to find the optimal
choice for segmenting the sentence into chunks. In particular, it
is not clear if segmenting the sentence into chunks according to
the correct lexical boundary information (e.g., word boundaries)
leads to a better modeling strategy. The existing evidence is not
conclusive. Jeon et al. [13] found superior performances by using
pure time-based segmentation, ignoring any lexical knowledge over
an approach that relied on a segmentation into word-level units.
The results in Schuller and Rigoll [14] showed the highest SER
accuracy by using the fusion of diverse time-level segments (i.e.,
different lengths of the data chunks) without relying on the actual
timing provided by the lexical boundaries. Nonetheless, other stud-
ies also obtained improved recognition accuracy by introducing
phonetic segmentation via pitch detection [15] or lexical content
alignments [16, 17]. How critical is the role of the lexical boundary
content in the chunk segmentation process? What are the key factors
in the chunk segmentation that impact the model performance?
This study investigates the role of precise lexical boundaries in

the segmentation of sentences into chunks. In particular, we study
if centering the chunks around words leads to performance improve-
ments. The analysis compares different segmentation approaches
based on either word-level alignments or pure time-based methods.
We consider two important variables in the chunk segmentation pro-
cess: (a) the number of chunks in a sentence, C, and (b) the duration
of the chunk, W. These parameters are either fixed or varied depend-
ing on the number and duration of the words in the sentence, creat-
ing six alternative chunk segmentation strategies. These six chunk
segmentation methods have different levels of dependencies on the
lexical boundary information. We evaluate the chunk-based segmen-
tation strategies with the IEMOCAP [18] and MSP-Podcast [19] cor-
pora. We implement our SER system with traditional low-level de-
scriptors (LLDs) [20], and with the self-supervised speech represen-
tations Wav2Vec2 model [21]. We also compare these models with
the temporal advanced deep chunk-level modeling framework pro-
posed by Lin and Busso [9]. These experimental settings allow us to
analyze trends across approaches and conditions, obtaining reliable
insights to understand the role of lexical boundary information in the
segmentation of chunks. In summary, the main findings in the study
are:

* The use of the lexical boundary information for chunk-based

segmentation has a minor role in creating an effective chunk-based

segmentation strategy.

* The key benefit provided by the lexical information in the seg-

mentation process is the number of words, which we used to deter-



mine the number of chunks used to segment the sentence.

2. BACKGROUND
2.1. Chunk-Level SER in Deep Learning Framework

Studies have used chunk-based segmentation for SER tasks [8-11,
22,23]. This section describes some of these methods which have
relied on deep learning formulations. The majority of the studies us-
ing chunk-based segmentation for SER have used pure time-based
segmentation criteria [8, 10,22, 23]. More specifically, the studies
have defined a predefined fixed chunk window size with a shifting
step (e.g., 1-sec chunks with 0.5 secs hop size) to split a sentence
into multiple small data chunks. These data chunks are assigned the
same sentence-level emotional label to train a chunk-level recogni-
tion model. The common approach to combine the results across
chunks is to use a simple majority vote rule [10,24]. Alternatively,
the chunks can be combined by using a statistical (e.g., mean) pool-
ing operation to create a sentence-level representation [8,22]. How-
ever, these sentence-level aggregation approaches are not necessar-
ily optimal given that a varied number of data chunks are produced
depending on the sentence duration (i.e., a longer sentence is seg-
mented into more chunks). Lin and Busso [9] proposed a dynamic
chunk segmentation process to split a sentence with varied length
into a fixed number of data chunks with fixed duration by dynami-
cally adjusting the chunk step size according to the sentence dura-
tion.

2.2. Lexical Information for Data Segmentation

While lexical information has been commonly used to recognize
emotions [25], our interest is to explore if lexical boundary infor-
mation should be considered in the chunk-based segmentation pro-
cess. One straightforward approach to incorporate lexical-based seg-
mentations is to rely on a fundamental frequency detection approach
to identify voiced regions in a sentence [26]. The detected pitch
contour directly indicates the phonetic boundaries of voiced seg-
ments, which can be used as the speech unit to train an SER model
[15]. Similarly, a syllable can be used as a chunk-based unit [27]
by estimating the vowel onset points (VOPs) on spectrum and en-
ergy features. The speech segment between two successive VOPs
can be considered as the syllable boundaries. Another conventional
method is to perform forced alignment to generate word-level tem-
poral boundaries based on the given transcription and trained acous-
tic model. The segmenting unit can also be extended to phrase-level
boundaries (e.g., noun phrases) by detecting the syntax structure of
the sentence [13]. In this study, we use word-level alignments as
the cue to segment data chunks in the lexical-dependent approaches
included in our analyses.

3. CHUNK-BASED SEGMENTATION

We explore alternative chunk-based segmentation strategies to study
the role of lexical boundary information in finding an optimal seg-
mentation. These methods have different levels of dependencies on
the word boundaries, and the number of words in the speaking turn.

We define C' as the number of chunks and W' as the size of the
chunk. These two parameters are important for splitting a sentence
of varied duration into chunks. We evaluate six alternative segmen-
tation strategies to investigate the role of lexical boundary informa-
tion in the chunk-based segmentation process. The core concept is
to determine how many and where to put the data chunks in a sen-
tence. Some methods incorporate additional word-level alignment
information to determine the placement of the chunks. Other meth-
ods rely exclusively on time-based strategies that place the chunks

regardless of the lexical boundary information. The segmentation
can have fixed or varied values for C' and W. FixedW (FW) uses a
predefined fixed chunk size W during the segmentation process. In
contrast, VariedW (VW) uses a varied length for W, which depends
on the target word durations. Similarly, FixedC (FC) assigns a fixed
number of data chunks C' to split a sentence. In contrast, VariedC
(VC) assigns a varied number of data chunks C' based on how many
words are spoken in the sentence. These combinations result in the
following different segmentation approaches, which are visualized
in Figure 1.

o Time-based FixedW-FixedC (tFW-FC): This strategy splits the
sentences using FW and FC, regardless of the duration of the sen-
tence. This approach corresponds to the dynamic chunk segmenta-
tion strategy presented by Lin and Busso [9, 11]. It is a time-based
segmentation approach, which aims to split the sentence into a fixed
number of chunks C with a fixed duration W. Equation 1 shows the
key formula to achieve this goal, where it dynamically adjusts the
step size Ac; between the data chunks according to the duration of
the ith sentence 7;. In this approach, the overlap between chunks
decreases for longer sentences. This data segmentation approach
does not rely on any lexical information (Fig. 1(a)).
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* Lexical FixedW-FixedC (FW-FC): This approach splits the sen-
tence using FW and FC with the word boundaries from the forced
alignment results. This approach is achieved by centering the data
chunks obtained in tFW-FC (i.e., the red arrows in Fig. 1(a)) around
the center of their nearest word. For instance in Figure 1(b), the first
data chunk from Figure 1(a) (see the first red arrow) is closer to the
word “swear” than “1.” Therefore, we place the first chunk centered
around the word “swear” (Fig. 1(b)).

* Lexical VariedW-FixedC (VW-FC): This segmentation strategy is
similar to the FW-FC approach, but it varies the chunk window size
to strictly match the exact word spoken duration (VW) rather than a
predefined fixed window length (Fig. 1(c)).

e Lexical FixedW-VariedC (FW-VC): This segmentation strategy
places a data chunk centered at every uttered word in the sentence.
The duration of the chunk is fixed with a predefined window length
(FW). The number of data chunks depends on the number of spoken
words (Fig. 1(d)).

 Lexical VariedW-VariedC (VW-VC): This strategy corresponds to
the most intuitive way to apply word-level chunk segmentation based
on the alignment information. We add one chunk per word in the
sentence, with the duration of the chunks matching the duration of
the corresponding words (Fig. 1(e)).

* Combine FixedW-VariedC (cFW-VC): This strategy is similar to
the FW-VC approach. The key difference is that the data chunks
are equally distributed instead of being placed around the words’
centers. The number of chunks is equal to the number of words.
Therefore, this approach uses a time-based segmentation, where the
number of words is the only cue used by the strategy (Fig. 1(f)).

(€3]

Once the data is segmented, we process each chunk with long
short-term memory (LSTM) layers, creating a chunk-based repre-
sentation. We aggregate the representations across chunks using
the multi-head self-attention (MH). The combination of LSTM for
chunk encoder and MH for temporal aggregation is one of the best
combinations reported in Lin and Busso [9]. For approaches using
FC, the number of chunks is fixed so it is easy to implement the MH
approach as an end-to-end framework. For approaches using VC,
the number of chunks depends on the number of words in the sen-
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Fig. 1. Visualization of different segmentation approaches explored
in this study for one sentence. The red arrows show the center of the
chunks if a time-based segmentation strategy would have been used.

tence creating a varied number of data chunks. Therefore, the entire
model is implemented with a two-stage training strategy, where the
LSTM encoder and MH attention model are separately trained. We
apply zero-padding to match the same size across samples, using
the maximum number of chunks in the sentences as the target size
(i.e., the number of spoken words). Notice that the different training
schemes do not impact the model architecture. It still has exactly the
same model complexity for a fair comparison between segmentation
approaches.

4. RESOURCES AND EXPERIMENTAL SETTINGS
4.1. Datasets and Acoustic Features

We perform the experimental analysis on two emotional databases.
The first corpus is the MSP-Podcast database [19], which is the
largest spontaneous speech emotion corpus. We use the release ver-

sion 1.10 to conduct our experiments, which provides predefined
train/development/test partitions with a total of 104,267 audio clips
(~166 hrs). These audios are processed from real-world audio con-
versations that are segmented into speaking turns with a duration
ranging from 2.75 to 11 secs. The IEMOCAP database [18] is cur-
rently the most popular benchmark dataset in SER. The corpus con-
sists of dyadic interactions collected from ten actors to elicit natural
emotional expressions. The corpus has a total of 10,039 audio clips
(~12 hrs). We exclude files that are shorter than 1 sec and longer
than 17 secs, retaining 98.7% of the data. Both datasets provide hu-
man transcriptions for each speaking turn. As a reference, the MSP-
Podcast corpus has a higher average number of words per sentence
(16.1) than the IEMOCAP corpus (11.5). For the recognition task,
we train the SER model to predict the values for valence (negative
versus positive), arousal (calm versus active), and dominance (weak
versus strong). We formulate the SER task as a regression problem,
since these emotion attributes are represented by continuous scores.

We implement our evaluation with traditional features and a self-
supervised speech representation model. For the traditional acoustic
features, we use the OpenSmile [28] toolkit to extract frame-level
LLDs. We use the configuration for the computational paralinguis-
tics challenge (ComParE) set presented at Interspeech 2013 [20].
This set consists of common acoustic features such as fundamen-
tal frequency and Mel-frequency cepstral coefficients (MFCCs). The
total feature dimension is 130. For the self-supervised speech repre-
sentation, we use the pretrained wav2vec2-large-robust model [21]
from the Huggingface library [29]. This model is based on the trans-
former, and extracts frame-level representations. We use the last
hidden state output of the model, which has a 1,024 dimension. No-
tice that we only treat the pretrained Wav2Vec2 model as a feature
extractor, which is not finetuned or incorporated in the model archi-
tecture mentioned in Section 3.

4.2. Experimental Setups

The model is trained with either LLDs (130D) or Wav2Vec2
(1,024D) features. There is a small model architecture difference
when we train with the Wav2Vec2 features. To reduce the model
complexity, we add an additional fully connected layer to map the
Wav2Vec2 feature representation into a 128D space. This vector
corresponds to the input of the LSTM block. The implementation
of the LSTM and MH models follows the architecture described by
Lin and Busso [9]. We use two LSTM layers implemented with 128
nodes to process the chunk-level representation. We implement the
MH model with 1,024 hidden dimensions, using two heads to ag-
gregate the sentence-level representation. We train this model with
batches of size 128, using the Adam optimizer (Ir=0.0001). The
loss function is based on the concordance correlation coefficient
(CCC) since we are predicting emotional attributes. We use an early
stopping criterion to check the performance of the development set.
We also use dropout with a rate set to p = 0.5 for the LSTM and
p = 0.1 for the MH model. The models are coded in PyTorch.

We utilize the Montreal Forced Aligner (MFA) [30] to obtain our
word-level alignment results from the transcriptions. For methods
implemented with FW, we set the chunk duration to W = 1 sec.
Notice that over 98.5% of the words for both corpora have durations
under 1 sec. Therefore, 1-sec chunks are long enough to cover most
words. For the FC methods, we set the number of chunks according
to the maximum sentence duration in the corpora, using C' = 11 for
the MSP-Podcast corpus and C'= 17 for the IEMOCAP corpus.

We evaluate the SER models using CCC as the performance
metric. All the CCC values are reported by considering multiple
running trials with random network initializations. For the MSP-



Table 1. Summary of CCC performance for different segmenta-
tion approaches on the MSP-Podcast and IEMOCAP corpora, using
LLDs and Wav2Vec2 features. The best result per column is high-
lighted in bold. Results tagged with x show statistically significant
better performance over other approaches without a marker. Results
tagged with } indicate that the results are statistically significantly
better than all other approaches.

MSP-Podcast v1.10

Method || CovrR/OvrR LLDs (CCC) Wav2Vec2 (CCC)

[%] Aro. Val. Dom. Aro. Val. Dom.
tFW-FC 99/50 0.528 0.216* 0.430 | 0.604 0.352 0.478
FW-FC 90/ 56 0.529 0.191 0.423 | 0.598 0.344 0.475
VW-FC 57735 0.534 0.170 0.427 | 0.595 0.352 0.460
FW-vC 94/ 68 0.544* 0.141 0.455*| 0.620* 0.349 0.497*
VW-vC 82/0 0.546* 0.118 0.459*| 0.613* 0.336 0.492*
cFW-VC 99 /65 0.5627 0.207* 0.468"| 0.616* 0.343 0.499*

IEMOCAP

Method || CovrR/OvrR LLDs (CCC) Wav2Vec2 (CCC)

[%] Aro. Val. Dom. Aro. Val. Dom.
tFW-FC 99/79 0.614 0.353 0.406 | 0.709* 0.554 0.531
FW-FC 82/83 0.593 0.257 0.411| 0.700 0.537 0.539
VW-FC 471771 0.595 0.279 0.409 | 0.688 0.532 0.526
FW-vC 81/67 0.633* 0.378 0.451*| 0.713* 0.582* 0.538
VW-vC 61/0 0.626* 0.395* 0.433 | 0.719* 0.577* 0.558*
cFW-VC 99 /60 0.636* 0.4047 0.463"| 0.718* 0.584* 0.549*

Podcast, we run three model trials. We randomly split the original
test set into ten subsets. This approach results in 3 x 10 = 30 eval-
uation data points to conduct statistical analysis between methods.
Since the IEMOCAP corpus does not have predefined partitions,
we implement a leave-one-session-out cross-validation (LOSO CV)
strategy to perform speaker-independent evaluations. There are five
dyadic sessions in the IEMOCAP corpus. We use three sessions for
the train set, one session for the development set, and one session for
the test set. The test set is randomly split into six subsets, producing
5 x 6 = 30 evaluation data points. We use a two-tailed t-test for the
statistical analysis, defining significance with p-value < 0.05.

5. RESULTS AND ANALYSES

Table 1 reports the results for our evaluation, including the CCC val-
ues for arousal, dominance, and valence obtained with the six-chunk
segmentation strategies. The table also provides the average cover-
age ratio (CovrR) of the sentences obtained with the chunks, and the
chunk overlap ratio (OvrR) for all the six segmentation methods.
These metrics are used to quantify the difference between the seg-
mentation approaches. The CovrR metric calculates the ratio (in per-
centage) of the actual feature frames that are covered within the data
chunks of the full sentence. For example, the FW-FC strategy using
the MSP-Podcast corpus has a CovrR equal to 90%, which indicates
that 90% of the feature frames of the sentences are included in the
chunks. The OvrR metric computes the percentage of overlapped
frames between chunks. For instance, the VW-VC strategy has 0%
overlaps between data chunks for both corpora, since it strictly fol-
lows the word boundaries obtained from the forced alignment re-
sults, without any overlap. Furthermore, the lower CovrR value in
the IEMOCAP corpus (61%) indicates a more sparse distribution of
the spoken content than in the MSP-Podcast corpus (82%).

Table 1 reveals some major points to understand the role of lexi-
cal boundary information. First, the VW-FC approach usually leads
to lower performance compared to other segmentation strategies.

One reason that explains this result is the low CovrR value for this
method, indicating a lack of sentence coverage with the chunks. It is
important to have enough coverage of the sentence with the chunks
when considering the segmentation approach.

Second, we consistently find significantly better predictions
when using the VC segmentation scheme (i.e., FW-VC, VW-VC
and cFW-VC). Knowing the exact number of data chunks (i.e.,
the number of spoken words) to split a sentence brings benefits
for chunk-level SER modeling. However, the knowledge of the
word boundaries used to set the window size W does not lead to
significant improvements. This result can be observed by directly
comparing the FW-VC and VW-VC methods, or the FW-FC and
VW-FC methods. In both comparisons, splitting the sentence into
chunks using the strict word duration does not provide significant
advantages over using a predefined fixed window size. For methods
using the FW strategy, we generally observe high values for CovrR
and OvrR. Therefore, using a window size of 1 sec for the chunks
may be sufficient not only to cover the entire words, but also to
produce high overlap between data chunks to better preserve the
temporal continuity in the sentence.

Third, in general, we obtain the best performance with the
cFW-VC segmentation approach, which only requires the number
of words in the sentence. This method combines a time-based
segmentation with partial lexical boundary information. The com-
parison between the FW-VC and cFW-VC approaches indicates that
the placement of the chunks does not have to be aligned with the
words. The cFW-VC strategy obtains better results without requir-
ing any prior knowledge about the word locations. From a practical
perspective, this is good news, since a simple time-based chunk
segmentation method is enough to achieve the best performance,
as long as we have an equivalent number of chunks as the number
of words. In summary, the key contributing factor from the lexical
information is to know how many data chunks the sentence needs to
be split. In contrast, having a precise word alignment for segmenting
the sentence into chunks plays a minor role in achieving the best
SER performance. As an aside, Wav2Vec?2 features consistently out-
performs traditional acoustic LLDs, suggesting that self-supervised
speech representation models are attractive options for SER tasks.

6. CONCLUSIONS

This study investigated different chunk-level SER segmentation ap-
proaches leveraging word-level alignments to explore the role of lex-
ical boundary information in the chunk segmentation process. Our
experimental results demonstrated that setting the number of chunks
to match the number of spoken words in the sentence (VC scheme)
is consistently better than having a fixed number of chunks per sen-
tence (FC scheme). The key cue from lexical boundary informa-
tion that benefits the most the chunk-based segmentation process
was knowing how many spoken words are included in the sentence,
which can be used to determine the number of chunks. In contrast,
centering the chunks around the words did not lead to significant im-
provements, showing a minor role in the performance. We observe
similar results by placing the chunks based on time-based strategies
that do not rely on lexical boundary information.

Our analysis has important implications for SER tasks. It is
enough to segment the sentence into chunks by setting the number
of chunks to be similar to the number of words in the sentence. This
strategy simplifies SER formulations. While these results are true for
SER, we are interested in exploring if this result also holds in mul-
timodal emotion recognition. We hypothesize the benefits of having
chunk-based segmentations using lexical boundary information by
improving the alignment between lexical and acoustic modalities.
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