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Abstract—Large-scale structures have been observed in many shear flows which are the fluid generated between two surfaces
moving with different velocity. A better understanding of the physics of the structures (especially large-scale structures) in shear flows
will help explain a diverse range of physical phenomena and improve our capability of modeling more complex turbulence flows. Many
efforts have been made in order to capture such structures; however, conventional methods have their limitations, such as arbitrariness
in parameter choice or specificity to certain setups. To address this challenge, we propose to use Multi-Resolution Dynamic Mode
Decomposition (mrDMD), for large-scale structure extraction in shear flows. In particular, we show that the slow motion DMD modes
are able to reveal large-scale structures in shear flows that also have slow dynamics. In most cases, we find that the slowest DMD
mode and its reconstructed flow can sufficiently capture the large-scale dynamics in the shear flows, which leads to a parameter-free
strategy for large-scale structure extraction. Effective visualization of the large-scale structures can then be produced with the aid of the
slowest DMD mode. To speed up the computation of mrDMD, we provide a fast GPU-based implementation. We also apply our method
to some non-shear flows that need not behave quasi-linearly to demonstrate the limitation of our strategy of using the slowest DMD
mode. For non-shear flows, we show that multiple modes from different levels of mrDMD may be needed to sufficiently characterize the
flow behavior.

Index Terms—Flow visualization, Shear Flows, Dynamic Mode Decomposition
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1 INTRODUCTION

T URBULENT flows are often characterized by chaotic motion
and random mixing. Understanding turbulent flows is a

critical task for the success of many different fields in science
and industry such as automobile and aircraft engineering, climate
study, combustion dynamics, and medicine. A very relevant type
of turbulent flow is wall-bounded shear flows, which are generated
in a fluid between two surfaces with different velocities. These
have been extensively used to explore new concepts in fluid me-
chanics such as instabilities [50], non-linear hydrodynamics [49],
and pattern formation [4]. Two popular wall-bounded shear flows
are plane Couette flow [29] and Waleffe flow [9]. The former is
the flow between two infinite plates which move with different
velocities, while the latter is the flow bounded by two infinite
stress-free plates and forced using a body shear forcing force.

The nature of turbulence involves a process where energy
and other quantities are transferred across scales. The detailed
mechanics enabling this transfer are still not well-understood.
To understand that, coherent structures at different (time- and
length-) scales need to be identified. We can characterize the
difference between the small- and large- scale structures based
on their size and movement. As the names imply, small structures
have smaller sizes and faster time-scales. On the other hand, the
large-scale structures are bigger in term of size but have slow
dynamics. Large-scale coherent structures are often responsible
for the lion’s share of the transport of mass, heat and momentum in
flows, while small-scale structures are often responsible for energy
dissipation [42]. They are tightly coupled: large-scale structures
modulate the appearance of small-scale structures, and can act as
transport barriers, thus, identifying large-scale structures is often
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the first and an important step in turbulence study.
Large-scale structures have been observed in shear flows [9],

but extracting these structures is not trivial. Many approaches
[8], [26], [36], [44] have been developed by the fluid mechanics
and the visualization communities to assist experts understand
coherent structures and flow dynamics. In fluid mechanics, moving
ensemble averages [32], two-point correlations [48], and Fourier
analysis [31] have been used to detect and analyze coherent
structures. The main disadvantage of these methods is that they
often include the relatively arbitrary choice of a cut-off to isolate
the structures, be it in the shape of a cut-off frequency in Fourier
space [31], or in the shape of a threshold value for a certain
attribute [1]. As a result, conventional methods can completely
fail to track the structures across certain dimensions of parameter
space. Finding a method which requires minimum thresholding
remains a challenge.

Dynamic mode decomposition (DMD) is a data-driven and
parameter-free method, introduced by Schmidt [46]. It provides
a spatio-temporal decomposition of data into a set of relevant
dynamical modes called DMD modes from a sequence of snap-
shots of an evolving system. Each DMD mode is considered as
a spatial structure which is accompanied by time dynamics. The
corresponding time dynamics of DMD modes can be characterized
by their speeds (e.g., how fast or slow they move), making DMD a
promising candidate to extract coherent structures (evolving with
different speeds) in flow. Several works [58] have attempted to
apply DMD to different kinds of flows. For example, Gilka et al.
[13] performed a DMD analysis on the flow behind an actuated
bluff body, and Schmid [46] tried DMD with the Gurney flap
wake flow to capture the vortex shedding pattern. However, the
capabilities of DMD in analyzing shear flows have not been fully
investigated. In addition, DMD has not received much attention
from the visualization community for the task of spatial and
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temporal feature extraction.
To fill this gap, in this paper we propose to use Multi-

Resolution Dynamic Mode Decomposition (mrDMD) [25], which
is a variant of the standard DMD, for large-scale structure ex-
traction in shear flows. Our method is inspired by an intuition
about the large-scale structures of shear flows. Although these
large structures are hard to extract, it is believe that they behave
in a quasi -linear manner [27], [52], making them suitable for
DMD analysis. In brevity, the contributions of this work are two-
folded. First, we connect the slow motion DMD modes extracted
by mrDMD with the large-scale structures in shear flows. In
particular, we show that the slowest mode of the first level mrDMD
can already sufficiently capture the large-scale structures in the
shear flows, allowing us to develop a parameter-free large-scale
structure extraction technique based on DMD for shear flows.
Second, to speed up the computation of mrDMD and enable it
to be applicable to large-scale time-dependent 3D turbulent flow
data, we provide a fast GPU-based implementation. With this fast
mrDMD, large-scale structures of shear flows can be extracted and
visualized efficiently. We have applied our method to 2D and 3D
Plane Couette (PC) and Waleffe flows using both 2D cuts and full
3D flow fields to demonstrate its effectiveness. This is the first
time mrDMD is applied to 3D Plane Couette and Waleffe flow
snapshots for large-scale structure extraction.

We compare our DMD based method with other existing meth-
ods, such as convolution kernel based smoothing, time average,
and the proper orthogonal decomposition (POD) to demonstrate
its advantages. In addition, we perform experiments of DMD
on other types of flows than shear flows and found that the
slowest DMD mode may not always extract useful structures.
Instead, modes selected from different levels of mrDMD can better
capture the dynamics of those non-shear flows. We report these
experiments and attempt to provide some empirical guideline for
the visualization community on the proper use of DMD, especially
mrDMD, for turbulence flow analysis and visualization.

2 RELATED WORK

In this section, we review the most relevant works in both fluid
dynamics and visualization communities for coherent structure
extraction and vector field decomposition for turbulent flows.

Coherent structure extraction. Based on the extracted features
and attributes, existing approaches for coherent structure extrac-
tion can be broadly divided into four categories [14], namely
Line-based, Geometry-/Integration-based, Lagrangian-based and
Region-based. Line-based techniques [34] try to find the coreline
of vortices which are the most important coherent structures.
Geometric-based methods [40], [41] focus on constructing the
skeleton of a vortex tube. These methods are local. However, it was
shown that there are classes of vortices that cannot be extracted by
local methods, for instance attracting vortices that move on non-
linear paths. As a solution, integration-based methods measuring
particle density estimation [56] and analyzing of Jacobian [55]
were developed. These methods propose to inject a number of
particles and observe their attraction behavior over time.

Lagrangian Coherent structures (LCS) [19], [47], i.e., curves
(2D) or surfaces (3D) in the domain across which the flux is
negligible, were introduced to identify separation structures in
unsteady flow. The computation of LCS was first introduced by
Haller [17] by computing the Finite-Time Lyapunov Exponent

(FTLE), whose ridges indicate the LCS. FTLE measures the
separation of nearby particles given a time interval, and has been
compared with the separatrices in the steady case [43], and its
computational performance has been substantially improved [11].
There have been numerous studies in the visualization community
to investigate and propose visualization frameworks for LCS, such
as [10], [11], [15]. The main advantages of LCS include the nice
visualization of structure boundaries, revealing the formation of
transport barriers. However, the shape of the obtained structures
heavily depends on the time window parameter and seeding
resolution. LCS-based methods also do not provide a multi-scale
representation for coherent structures.

The last set of techniques, called Eulerian or region-based
methods, rely on some physical attributes, such as pressure [20],
vorticity, Helicity, Q-criterion, Okubo-Weiss criterion and λ2 crite-
rion [14] and other derived attributes from velocity field. Structure
identification is dependent on thresholding. For example, to detect
vortices fluid mechanic researchers can play with Q criterion [7]
or λ2 [18] to identify the volume of vortex-like behavior. Many
fluid mechanics focus on Eulerian-based approaches because they
provide more physical information. It is important to note that the
most commonly used physical attributes including Q, vorticity or
λ2 naturally focus on small-scale structures due to its definition,
i.e., it is based on vorticity and strain which are inherently small-
scale quantities. One way to characterize large (or coarse) -scale
structures is to use a convolution kernel - usually an averaging box
filter as proposed by Treib et al. [53]. Besides Eulerian methods,
moving ensemble averages [32], two-point correlations [48] or
Fourier analysis [31] have also been widely used in fluid dynamics.
However, they suffer the same issue. Choosing a proper threshold
requires a substantial amount of time on trial-and-error experi-
ments which might lead to undesired structures. In this work, we
present a parameter-free method to separate large-scale structures.

Vector field decomposition. DMD belongs to the velocity field
decomposition methods. In these techniques, the vector field
is decomposed into different components as the pre-processing
step with hope that the components would help to reveal some
desired features. The most well-known method - Helmholtz-
Hodge-decomposition (HHD) [3] - decomposes the flow into
curl-free and divergence-free vector fields. However, HHD is not
applicable for multi-scale coherent structure analysis. Another
decomposition method which is considered the most related to
DMD is proper orthogonal decomposition (POD) [22] or principal
component analysis in statistics. In POD, the data is decomposed
into an orthogonal basis of spatial correlated modes, called POD-
modes. POD has been commonly applied in fluid mechanics
to determine coherent structures from multiple flow snapshots
as well as to extract high energy flow features [37], [38], [54]
and to improve the vortex detection result [6]. In this work, we
propose to use mrDMD to extract large-scale coherent structures
from shear turbulent flows. This is the first time the large-scale
coherent structures in shear flows are associated with the slowest
DMD mode. Also, as shown in Section 6, our mrDMD results
characterize physically correct temporal behavior of large-scale
coherent structures in shear flows, while the POD results cannot.

3 BACKGROUND

In this section, we provide the background about shear flows and
DMD that our paper is focused on.
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3.1 Shear Flows

Shear flows are fluid flows which are driven by a velocity differ-
ence. In this work, we are interested in two types of wall-bounded
shear flows, i.e., plane Couette flows (PCF) and Waleffe flows. In
the following, we provide a brief introduction of these flows and
their large-scale structures that domain experts are interested in.

Plane Couette flows (PCF). In simple setting, plane Couette can
be described as the flow between two parallel plates separated by
a distance d, moving with equal, but opposite velocities ±U/2. A
solid body rotation Ω can be added in the spanwise direction that is
either anti-cyclonic or cyclonic, i.e., opposite to or in the direction
of the shear. The two non-dimensional parameters that define the
flow are the (shear) Reynolds number Re =Ud/ν , where ν is the
kinematic viscosity of the fluid, and the rotation number RΩ =
2dΩ/U . A schematic of the flow is shown in Figure 1.

U/2

U/2

x
y

dRΩ

Fig. 1: Schematic of the simulation domain of Couette flow.
The streamwise is the x component, while the wall-normal is
the y component of the 3D velocity vector. The third (spanwise)
dimension z is omitted for clarity.

Depending on the solid-body spanwise rotation, large-scale
structures can appear in PC flow. For some values of RΩ, statistical
approaches [39] indicate that they can be pinned in space and
regularized in the streamwise direction. As the flow becomes
turbulent, structures of increasingly smaller of length- and time-
scales appear, even while the large-scale vortices are relatively
stationary in time. Detecting the large-scale structures in various
parameter settings still remains an open problem that we try to
address with our DMD framework.

Waleffe flows. Waleffe flow [9] can be thought of as a variation
on plane Couette flow which substitutes the no-slip condition at
both walls by a free-slip condition. The system then consists of
two parallel plates d apart. The flow is forced by a sinusoidal
body shear F = cos(πy/d), which gives a characteristic velocity
U =

√
F/d. Waleffe flow has been used to study the effect of

the near-wall cycle on the formation and pinning of large-scale
structures in shear flow in the absence of a no-slip boundary
condition. Pinned and streamwise invariant large-scale vortices
were found in the anti-cyclonic regime at high Reynolds numbers
[9]. These structures had a different vorticity distribution from
those found for the analogous parameters in plane Couette flow,
but showed similar temporal behavior when analyzing the separate
energy components.

3.2 Dynamic Mode Decomposition

Dynamic mode decomposition (DMD) is a method that provides
a spatio-temporal decomposition of data into a set of relevant
dynamical modes from a sequence of snapshots of an evolving
system [46]. It is capable of extracting flow structures which evolve

linearly. This characteristic makes it a promising candidate to
extract the large-scale structures in wall-bounded turbulent flow,
as it is known that these structures behave in a quasi-inviscid,
quasi-linear manner [27], [52]. In this section, we first introduce
the general idea of the standard (or exact) DMD method, then
describe the improved variant – multiresolution DMD (mrDMD).
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Fig. 2: A sample DMD decomposition process. Given the 2D
input function Fc which is the summation of two artificial time-
dependent functions Fa and Fb. The DMD extracts the singular
values, eigenvalues and a set of modes. The singular values reveal
two high-energy modes. Each mode is a complex number and has
a time dynamic behavior which is characterized by the position of
eigenvalues with respect to a unit circle. In this example, DMD can
decompose Fc back to Fa and Fb with the original time dynamics.
The red and orange plots in the last row present the real values,
while the blue plots demonstrate the imagine parts of the two
modes. The X-dimension in the plots presents the time, while the
Y-dimension shows the frequency values of the mode over time.

Given an unsteady vector field with M time steps x1...xM
where xi ∈ CN is a vector including the velocity field sampled
at equal time intervals ∆t. In other words, we can generate xi by
transforming the 2D or 3D flow domain into 1D vector structure
in which N is the multiplication between the number of velocity
components (i.e., 2 for 2D, 3 for 3D flows) and the domain
resolution. Typically, the size of flow domain is substantially
greater than the number of time steps, N >> M. We can arrange
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the data into two column-wise matrices X1 and X2 as follows:

X1 =

 | | |
x1 x2 ... xM−1
| | |

 ,X2 =

 | | |
x2 x3 ... xM
| | |

 (1)

DMD tries to find the dominant eigenvalues and eigenvectors of
a best linear approximation that sends the data from its current
state to the next state. The best-fit approximation can be simply
expressed as:

xi+1 = Axi (2)
or can be written in the matrix form and decomposed by using
Singular Value Decomposition (SVD) as follows:

X2 = AX1 or A = X2X†
1 = X2V Σ

−1U∗ (3)
where A is a N ×N matrix and † denotes the Moore-Penrose
pseudo inverse. In practice, N is typically too large; hence, it
is nearly impossible to store and compute matrix A directly.
Fortunately, DMD circumvents this challenge by analyzing a
smaller matrix Ã obtained via projection onto the left singular
vectors in U :

Ã =U∗AU =U∗X2V Σ
−1 (4)

The matrix Ã is of the size N× (M−1) which is substantially
smaller than the original matrix A, but they have the same
eigenvalues as proven by Tu et al. [16]. After applying the
eigen-decomposition to Ã, we can arrange the eigenvalues λi and
eigenvectors wi in the matrices Λ and W such that:

ÃW =WΛ (5)

The eigen-decomposition of A can be defined as:
AΦ = ΦΛ, where Φ = X2V Σ

−1W (6)

The columns of Φ are called DMD modes. They have the same
size and spatial configuration as xi, except that each mode has
a specific temporal behavior characterized by the corresponding
eigenvalue λ in Λ. We can derive the DMD representation of a
data snapshot based on the columns of matrices A and Φ:

xDMD(t) =
K

∑
k=1

φke(δk+iwk)tak (7)

where δk + iwk = log(λk)
∆t . δk is the growth rates, and wk is the

frequency of the DMD modes φk which behave similarly as
Fourier. The amplitudes ak can be derived from the least squares
fitting of the snapshots during the expansion. K ≤ M is the
number of modes. xDMD is real if K = M; otherwise (i.e., K < M),
it can be complex. To obtain a reconstructed field with real
values, the linear combination of the real and imaginary parts
of xDMD can be used, as they are both solutions to Eq.(2) [24].
The entire process of DMD computation reveals several important
components and characteristics of the method. Given a 2D random
time-dependent sample data as illustrated in Figure 2, we can
visualize the singular values of X1 which show the low and high-
energy modes. The number of high-energy modes can be used to
reduce the dimensionality of the system and be utilized for the
data compression task. Instead of storing the full spatial-temporal
flow field, we just need to retain the prominent modes and their
corresponding eigenvalues for data reconstruction. Readers who
are interested in how to choose the suitable number of modes are
referred to the work by Jovanović et al. [21]. The visualization
of DMD modes and their eigenvalues are shown in Figure 2.
The dynamic behavior of a DMD mode depends on the values
of its corresponding eigenvalue with respect to a unit circle. The

mode either grows, decays, or neither if the eigenvalue is outside,
inside or seats exactly on the unit circle. There is an oscillation if
the eigenvalue has a non-zero imaginary part. The time dynamic
evolution of the sample DMD modes are computed and visualized
in the last row of Figure 2. DMD modes also can be characterized
by the speed of the time evolution. For instance, the second mode
has a higher frequency (as indicated by their quick changes) which
makes it the fast modes, while the first mode is a slow mode as it
moves/changes relatively slower.

Many methods have been proposed to address the question
about the best mode selection. For example, Gavish et al. [12] have
found out the optimal cutoff value for truncating singular values so
that only important modes with less noise data remain. Sparsity-
promoting DMD [28] is another approach which tries to find the
minimum number of modes to reconstruct data. Our goal is to find
the modes that can capture both spatial and temporal behavior of
the large-scale coherent structures. The large structures tend to
stay longer than the small-scale ones; hence, longevity is one of
the main selection criteria.

Relation between slow DMD modes and large-scale coher-
ent structures. As shown in previous works [33], [57], DMD
modes can be used to extract spatial configuration and temporal
information of certain coherent structures. Some works [58] argue
that the DMD modes and their corresponding temporal evolution
plots can separate coherent structures in spatial and spectral
sense (according to their temporal behavior – grows, decays, or
oscillates). Although this is not rigorously justified and not all
flows have the exact same number of structures as the number
of DMD modes, there is an important observation that motivates
us to use certain DMD mode(s) to identify large-scale structures
in the shear flow. That is, both the slow mode and the large-
scale structures change/move slowly over time. For large-scale
structures, this is because they have a larger inertia due to their
higher kinetic energy. This observation leads us to develop an
effective framework to separate large-scale structures from small
ones in shear flows using DMD (Section 5). Note that, this relation
between slow DMD modes and large-scale structures need not be
true for other flows than shear flows (e.g., translational flows),
which we will discuss in Section 7.

It has been shown that the standard/exact DMD cannot suffi-
ciently handle the transient time phenomena (e.g., features exist
for a short period of time) that often occur in the beginning of
many turbulence flows (including shear flows) before a stable
state is reached [24]. To address this issue and develop a robust
and generalized DMD-based analysis and visualization framework
for different flows, we resort to a variant of DMD, called multi-
resolution DMD (mrDMD).

3.2.1 Multi-Resolution DMD

Motivated by foreground/background subtraction in video process-
ing, mrDMD tries to separate the slow and fast modes. As we
mentioned in the previous section, the slow mode has a relatively
low frequency or slow growth/decay rate. They can be defined by
small values of both the growth rates δk and frequency wk. To
obtain the slow modes, we can plot them in a complex unit circle
(Re(log(λk)), Im(log(λk))). The nearer to the origin, the slower
the corresponding DMD modes are.

mrDMD is a recursive process in which the slow modes
are removed iteratively, and the remaining data is filtered for
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analysis of its higher frequency content. The entire process can
be described below:

1) Compute DMD for the existing data.
2) Determine fast and slow modes relatively based on the

values of wk and δk.
3) Reconstruct data with only slow modes
4) Subtract the reconstructed data by the slow modes from

the available data
5) Split the remainder data in half in time
6) Repeat the procedure for the first and second half of the

remainder data separately (including this step)

Note that standard DMD can be considered as a special case
of mrDMD when only one level mrDMD is performed with the
additional benefit of the identification of the slow modes, which is
needed for our problem.

4 PARALLEL IMPLEMENTATION FOR MRDMD
Due to the high memory consumption of the DMD computation,
previous works on DMD focus on 2D or small 3D flow data.
Recently, many efforts [35], [45] have been made to improve the
computation of DMD. Pendergrass et al. [35] proposed a par-
allelized algorithm to compute the dynamic mode decomposition
(DMD) on a graphics processing unit using the streaming method
of snapshots singular value decomposition. Sayadi et al. [45]
employed the parallel Tall-Skinny QR(TSQR ) algorithm to the
DMD, allowing the decomposition of very large datasets. To our
best knowledge, there is no existing parallelized implementation
for mrDMD, which we address next.

Fig. 3: The pipeline of the direct TSQR algorithm in which the
tall-and-skinny input matrix A is decomposed into smaller pieces
so that they can fit into the GPU memory. QR decomposition is
performed on each subset of the matrix A, then the outputs are
combined in order.

The fundamental computation of DMD is based on SVD. We
can compute SVD of a matrix A through the QR decomposition
as follows:

A =UΣV ∗ = QR = QURΣRV ∗R ,where [UR,ΣR,V ∗R ] = svd(R) (8)
The left singular vectors Ui of A are computed by using

Ui = QiUR. The singular values and the right singular vectors are
already stored in ΣR and V ∗R , respectively. The parallel pipeline
of QR is illustrated in 3. The input matrix A is decomposed into
sub-sets which have the same number of columns, but smaller
number of rows. Traditional QR decomposition is performed on
each subset in a single processor core.

Once we construct the DMD computation based on the par-
allelized SVD, mrDMD is implemented based on the algorithm
described in Section 3.2.1 1. We utilize the open-source cu-
SOLVER [30] to perform the Eigenvalue and QR decomposition,

1. The source code of a reference implementation of mrDMD will be made
available upon the acceptance of this work.

Mode 1 Mode 3 Mode 1+3

(c) Singular values (d) DMD Eigenvalues(b) Time evolution

Vortex position at T=5

(a) Reconstructed field at T=5

Fig. 4: Sample reconstructed field using DMD modes and their
time evolution from the Tube simulation. (a) The two DMD
reconstructed fields shows different intensity of the main vortex
at time T = 5. Combining two modes reveals a correct position of
the main vortex at the selected time. The last row presents the plots
of (b) the time evolution, (c) singular values, (d) DMD eigenvalues
and of DMD modes.

original field slow DMD field
(a.k.a large-scale CS)

fast field
(a.k.a small-scale CS)

- =
Fig. 5: The relation between the original and reconstructed DMD
fields in the plane Couette flow with RΩ = 0.1. The 2D Taylor
vortices depicted by black circles are the target large-scale CS
in the simulation. The large structures can be observed clearly in
the DMD reconstructed field. Small-scale features near the wall
are highlighted in the red circles in the original field. The small
features are revealed in the subtracted field.

as well as cuBLAS for the large matrix multiplication. The
performance evaluation of our GPU implementation of mrDMD
can be found in the supplemental document.

5 LARGE-SCALE STRUCTURE SEPARATION USING
MRDMD
In this section, we discuss the properties of DMD modes and their
eigenvalues which make them suitable for the large-scale coherent
structure extraction problem. A coherent structure is characterized
by temporal and spatial information. We can use DMD eigenvalues
to characterize the temporal persistence of structures. Basically,
DMD is a Fourier-based decomposition process. Each DMD mode
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has time dynamics defined by a single complex eigenvalue. We can
reconstruct the original field by taking the summation of all mode
values. However, the contribution of each mode at any given time
is different, as controlled by the frequency of the eigenmodes.
The frequency also indicates the movement speed of the mode:
at larger frequencies the DMD mode changes faster. Similar to
matrix eigenvectors, each mode is normally normalized to have a
unit norm/magnitude.

For the spatial extraction of coherent structures, we can rely
on DMD modes as they capture all of the spatial features existing
in the flow domain. If structures evolve linearly, then they will
coincide with the DMD modes. For example, Figure 4 shows two
DMD modes generated with a simple Tube simulation. In this
simulation, a vortex tube starts from the left side of the domain
and moves to the right side, then breaks down. We take a cross
section of the original 3D simulation [2] in this example. It can be
seen from the two DMD modes that both of them can capture some
positions of the main vortex over time. However, the magnitudes
of the vortex in each mode are varied. Indeed, a DMD mode works
as a projection plane where we can take all the spatial features
and project them on the plane, but with different intensity. To
reconstruct the features in the original data, we simply add the
weighted modes with the weights determined by their temporal
magnitude as shown in the bottom plots of Figure 4 and Eq.(7).
Note that this reconstruction takes into account both the real
and the imaginary parts of the modes and their time evolution
characteristics, while in all visualizations of modes only real parts
of the modes are shown.

The next step is to determine the modes that have our desired
features. As the large-scale structures move slowly as discussed in
Section 3.2.1, the corresponding indicators - slow DMD modes
(especially the slowest mode) - become an ideal candidate to
characterize these large-scale structures. With our fast mrDMD,
we can identify the slowest mode from each iteration (or level) of
DMD, and use it and its time evolution to reconstruct a flow as the
input for large-scale structure visualization. In our experiments,
we found the slowest mode from the first level of mrDMD
most effectively captures the large-scale structures in shear flows
(Section 6). Once the large-scale structures are separated in the
flow reconstructed from the slowest DMD mode, the small-scale
structures can be studied in the flow by subtracting the DMD
reconstructed flow from the original flow, as shown in Figure 5.
The study of the small-scale structures in shear flow is beyond the
scope of this work, which we will leave for the future work.

We wish to point out that when utilizing DMD for flow
analysis and interpretation, visualizing the reconstructed flow from
the selected modes often provides more intuition of the spatio-
temporal behaviors of the flow than only visualizing modes and
their time evolution that may miss some information (i.e., the
imaginary part of the modes and time evolution).

6 APPLICATIONS

We have applied our mrDMD based large-scale structure sepa-
ration framework to the two main types of shear flows, namely
the Couette and Waleffe flows. Their configuration is described
in Section 3. We look at several 3D Plane Couette simulations
that are generated with different anti-cyclonic solid-body rotation
ratios RΩ ranging from 0 to 0.1. Waleffe flow is simulated
with a Reynolds number Re = 3.16× 103 and an anti-cyclonic
rotation ratio RΩ =0.63. For these control parameters, Farooq et

TABLE 1: Performance of DMD on three datasets

Dataset Spatial Resolution Time Steps Running Time
(minutes)

2D plane Couette 1024×512 100 6.45
3D plane Couette 512×384×256 40 32.6

3D Waleffe 512×384×256 80 124.38

-10

(a) FTLE values from the original vector field

(b) FTLE values from the DMD reconstructed vector field

Fig. 6: The FTLE values computed from (a) the original vector
field and (b) the reconstructed field with the slowest DMD mode
on a Plane Couette flow with RΩ = 0.1. The cut is at the
centerline of the wall-normal. The first time step is shown. The
LCS structures in (a) do not reveal any meaningful patterns, while
in (b), the structures clearly show horizontal ridges which are the
boundaries between two counter-rotating Taylor vortices.

al. [9] recently used the autocorrelation and other statistic-based
methods to prove that large structures exist in the Waleffe flow.
We demonstrate that the slow DMD modes can reveal similar
well-known large-scale features in both Plane Couette and Waleffe
flows. By using the obtained slow DMD modes, we can isolate the
large structures without threshold selection.

For each Couette and Waleffe flow, we generate a set of 2D
and 3D snapshots. We use 2D datasets to verify and compare
our results to the existing works of Taylor Couette and Waleffe
flows that are mainly focused on their 2D counterparts. One of the
main reasons that looking at 2D cross section of these flows may
be sufficient is that the large structures exist along the streamwise
direction; thus, fluid mechanic researchers can perform analysis on
2D streamwise-spanwise planes. We also use 2D data to evaluate
the effect of time windows on the final DMD modes.

The fast GPU implementation can enable us to process the
3D snapshots of Taylor Couette and Waleffe flows for the first
time. However, a large time window is still a challenge for the
3D analysis because the memory required to store the 3D data is
beyond the physical memory of our workstation. An out-of-core,
streaming implementation of mrDMD is needed, which is beyond
the scope of this work. The timing information of our mrDMD
when applied to the shear flows used here is provided in Table 1.

2D-slices of a plane Couette flow- RΩ=0.1. In the first experi-
ment, we apply mrDMD to 2D slices of a Plane Couette simulation
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Slowest Mode

(a) Turbulent Shear Flow (b) Multi-resolution Dynamic Mode Decomposition (c) Large-scale Coherent Structures 

3rd Slowest Mode2nd
Slowest Mode1st

Fig. 7: We apply the multi-resolution Dynamic Mode Decomposition (mrDMD) to extract large-scale coherent structure for turbulent
shear flows. (a) shows a closeup view of the input Waleffe flow. The colors are mapped to the streamwise velocity, i.e., the x component
of the velocity vector with red means positive blue for negative. (b) demonstrates a few DMD modes that correspond to coherent
structures of different scales for this flow. Each mode is sufficiently characterized by their eigenvalues shown in the unit circle plot and
their respective time evolution plots. (c) the slowest DMD mode characterized by the slowest change in its time evolution plot is used
to represent the large-scale structure of this flow that also has a slow dynamic. The three modes of the entire flow domain can be found
in the supplemental document.

(a) Original field (b) DMD Mode (c) Time-Average 

Streamwise

Streamwise
Streamwise

Fig. 8: Results of a 3D Waleffe flow with RΩ = 0.63. The first time step is shown. Three slice cuts along the streamwise direction at
x = 1, 3.14, and 5 are shown, respectively. (a) The original field is very turbulent. It is impossible to visually distinguish the large-scale
feature. (b) The large-scale coherent vortices appear clearly in the DMD mode. The extracted vortices behave similarly to Taylor
vortices. This observation is verified by the result of the recent work [9]. (c) Time average velocity field also reveals similar structures,
but their temporal information is discarded.

with RΩ = 0.1. The 2D data is obtained by taking the slice planes
parallel to the walls (i.e., along the streamwise direction) at the
mid-gap. It is important to mention that the Taylor vortices - the
prominent large-scale structures - are fully formed with RΩ = 0.1.
Thus, this simulation is an ideal candidate to verify the correctness
of the selected DMD modes. Three hundred time steps are col-
lected and input to our mrDMD program. It is known that Taylor
vortices of this flow are counter rotating. Instead of extracting
the individual vortices, we extract the transportation barriers that
separate them by computing the FTLE fields. Figure 6 shows
the comparison between the FTLE values computed from the
original vector field and those from the reconstructed vector field
using the slowest DMD mode, respectively. The LCS structures in
Figure 6(a) do not reveal any meaningful patterns, while in (b), the
structures clearly show horizontal ridges which are the boundaries
between two counter-rotating Taylor vortices. This example shows
that our DMD-based method can help better capture the large-
scale structures that separate the Taylor vortices.

3D Plane-Couette - RΩ=0.1. We apply our mrDMD based
method to full 3D snapshots of a Plane-Couette simulation with
a smaller boundary size than the 2D version. Again, the Taylor
vortices are the large-scale structures in this simulation setting.
The resolution for the 3D spatial domain NX ×NY ×NZ×NT
is 512× 384× 256× 40. The total data size is 36GB. It took
our framework 32.6 minutes to process this data. As shown in
Figures 5, the large-scale structures - Taylor vortices (indicated
by black circles) - are hardly observed in the original field, while
they can be revealed clearly in the extracted slow DMD mode.
Small-scale features near the wall are highlighted in the red
circles in the original field. These small features are considered
as noise, and they make the separation of the large structure
challenging. Our DMD-based method can filter out these small-
scale structures. As shown in Figure 12(a), the slowest DMD mode
of this field more effectively reveals the large-scale separation
structure that separates the individual Taylor rolls/vortices. Note
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(a) Streamlines

(b) Pathlines in the original field (c) Pathlines in the DMD reconstructed field

Fig. 9: Results on the 3D Waleffe flow with RΩ = 0.63. (a) The
iso-surfaces of the velocity streamwise component in the slowest
DMD mode. The roll-like structures separate two neighboring
large-scale structures. The streamlines depict the shapes of the
large structures along the streamwise direction. (b)(c) Pathlines in
the original and the DMD reconstructed field are generated with
the same seeding curve (the red line). The pathlines in DMD reveal
a vortex-alike structure similar to (a) due to the almost stationary
characteristic of the structure.

that the separation layers or the iso-surfaces in 3D correspond to
the iso-contours in the 2D results (please refer to the supplemental
document for more details).

3D Waleffe - RΩ=0.63. The Waleffe flow is simulated with
the Reynolds number Re = 3.16× 103 and the rotation ration
RΩ = 0.63. A recent work [9] has demonstrated that the large-scale
structure emerges with this optimum rotation ratio. We collect 80
continuous snapshots with a spatial resolution of 512×384×256.
The three slowest DMD modes are shown in Figure 7 and the
supplemental document. Again, we select the slowest mode which
is nearest to the origin of the unit circle. The second, third, fourth
and fifth modes are provided as the references to compare with the
slowest mode. The faster the modes, the more small-scale features
they can reveal. It is interesting to point out that their eigenvalues
have the identical real parts, but they have different imaginary
parts. As the result, their corresponding time evolution plots are
similar. Figure 8 shows the difference between the original field
and the extracted slow mode. The original field is turbulent,
including many small-scale features. It is difficult to observe any
prominent large-scale features. In contrast, the extracted slow
DMD mode helps to reveal the structures similar to the Taylor
vortices seen in the above 3D Taylor Couette flow. In the most
recent work [9], these structures are reported as the large-scale
coherent structures for the Waleffe flow. We use the 2D slice cuts
at different positions along the streamwise direction to highlight
the shape of the prominent structures.

Time Evolution
t=0.15

t=0.3

Fig. 10: The volume rendering of the streamwise velocity of the
reconstructed field using the slowest DMD mode at a number of
sampled times. Although the time evolution is increasing, their
values are negative; thus, the structures become weaker.

After the filtering process, we can extract iso-surfaces based
on the streamwise velocity component of the DMD mode as
shown in Figure 9. These iso-surfaces form a layer to separate
two neighboring large-scale structures, which is similar to 3D
Taylor Couette flow, as indicated by the seeding streamlines
that are circulating around some common curves. However, the
large-scale structures revealed in the Waleffe flow are not always
invariant along the streamwise direction in contrast to the Taylor
rolls seen in the Taylor-Couette flow. This result solidifies the
intuition already hinted by the data and visualizations in [9]: the
Waleffe flow large-scale structures are not exactly analogous to
those of Plane Couette flow but present some oscillations in the
spanwise direction. This state-of-the-art fully three-dimensional
visualization will be useful to precisely characterize the difference
between the large-scale structures in Waleffe and plane Couette
flow in the future.

6.1 Comparison with other approaches

Comparison with POD. We apply POD to the Waleffe flow and
extract the first ranked mode or the most energetic mode. The
results are shown in Figure 11. In terms of the geometric or spatial
representation, POD can capture the similar patterns as DMD.
However, from the physical point of view, the coherent structures
are not defined just by shape and position, but also by the temporal
behavior like how fast or slow they are moving overtime. It is
also worth highlighting that the POD modes do not change with
the input snapshots that are reordered, which means the modes
do not depend on the time evolution or dynamics existed in the
data [16]. As demonstrated in Figure 11(a), the reconstructed flow
field from POD is not temporally coherent (i.e., its kinetic energy
changes arbitrarily over time), which is not physically plausible.
In contrast, the flow reconstructed from the slowest DMD mode
and its corresponding time evolution has smooth transition of its
pattern and kinetic energy, which is more physically meaningful
and accurate. POD and DMD use different criteria to compute
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the modes. The POD seeks for the optimal approximation via
a principal component analysis (PCA), while the DMD tries to
obtain the best linear dynamical system describing the input data.
POD is a statistical decomposition technique that does not tell us
much more about the modes that it finds, and further processing
must be done on them. This is unlike the information which can
be obtained from a DMD decomposition: time evolution of the
spatial features, where we know the modes evolve linearly and
with a certain dynamics given by the characteristic frequencies.
The fact that the structures revealed from the slowest DMD mode
match the expected large-scale structures in shear flows (Figure
13) in part supports a recent intuition in the fluid mechanism, that
is, the large-scale structures in shear flows behave in a quasi-
linear manner [27], [52]. The advantages of DMD over POD
have also been reported in many other published works in fluid
dynamics. [16], [24], [25].

Comparison with the simple time average of the original
flow. It is shown that a simple time average (e.g., average all
velocity values at the individual spatial locations over time) may
reveal the existence of certain structure with slow change over
time in the flow. In particular, large-scale structures that move
slowly would be emphasized in the average flow due to their
continuous contribution to the average computation, as shown in
Figure 8 (c). Nonetheless, the average flow loses the temporal
information of the flow features. In contrast, even though the
slow DMD mode is similar to a single snapshot of the flow, it is
accompanied by the information of its contribution to the flow over
time (characterized by the time evolution plot); thus, it naturally
encodes more temporal information of the flow than a simple
time average. In the example shown in Figure 8, both the time
average (c) and the slowest DMD mode (d) reveal similar large-
scale structure of the 3D Waleffe flow. However, by multiplying
the time evolution plot, the DMD mode reveals certain temporal
behavior of the extracted structure, while the time average cannot.

Comparison with convolution kernel based method [53]. An-
other popular approach for revealing large-scale structure is to
perform a convolution kernel based filtering. We compare our
DMD-based method with the convolution kernel based filtering
in Figure 12. In particular, the extracted large-scale structure
using our method is shown in Figure 12 (a), while the result
of the convolution kernel based is in (b). From the comparison,
we see that the convolution kernel-based method can also reveal
the positions of the large structures, but it is threshold dependent
and may significantly alter the velocity field as shown in (b). In
contrast, the slow DMD mode gives the most meaningful result
which retains the main features from the original field, while the
small vortices near the walls are removed. More importantly, our
DMD-based method does not require any thresholding trials.

To further verify which field better captures the large-scale
structure in the 3D Plane Couette flow, we compare them with
the approximate boundary surfaces of the large-scale structures
extracted using Nguyen et al.’s approach [29] (Figure 12(c)). From
this comparison, we see the streamlines obtained in the DMD
reconstructed field better assemble the structures as indicated by
the boundary surfaces than those obtained in the smoothed field
using the convolution kernel smoothing. In the future, it will be
important to develop a robust technique to extract the large-scale
structure from the DMD reconstructed field.

Fig. 11: Comparison between POD and DMD on the Waleffe
flow. The cuts are at the center of the streamwise direction for
the Waleffe flow. Although the spatial representation of large-
scale structures are observable in both the slowest DMD mode
and the first POD mode, POD cannot characterize the temporal
characteristic of the structures. In the three consecutive time
steps selected (red dots), the kinetic energy varies significantly
in POD contradicting to the slow change expected for the large-
scale structures. In contrast, the slow motion of the structure is
captured accurately by the DMD method as shown by its smooth
time evolution plot.
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(a) DMD Mode (b) Convolution kernel 
Stre

am
wise

(c) Nguyen et al. [27] 

Fig. 12: Comparison between DMD, the convolution kernel and
Nguyen et al. [29] approaches on the 3D Plane Couette flow with
RΩ = 0.1. Volume rendering show the prominent structures in the
DMD mode (a), and the smoothed field using a convolution kernel
(b). Streamlines in (a) capture the expected Taylor roll structures
better than the ones in (b) as the top structure is distorted due to
the over smoothing. (c) The approximated surfaces by Nguyen et
al.’s method reveal the similar large-scale structures as shown by
streamlines in (a)

6.2 Other Modes Returned by mrDMD on Shear flows

Slow modes in higher-level mrDMD. mrDMD is an iterative
algorithm that can provide multiple levels of slow modes and
their corresponding temporal evolution. After the first level, the
lowest-frequency or slowest modes are removed from the data.
The remaining data having more dynamic behavior is used for
the next level. It means that the slow modes in the second level
are faster than the ones in the first level. Since the large-scale
structures of interest are mostly stationary or move very slowly in
shear flows, the slowest mode in the first level is sufficient. This
observation is demonstrated in Figure 13(a) which shows three
slow modes in the first levels, and the slowest modes in the other
levels. The large-scale structures are only observable in the first
level. The higher level modes are useful for capturing transient
phenomena, handling the translational and rotational invariant in
the data [24]. These properties do not exist in the large-scale
coherent structures of shear flows. In the next section, we discuss
the application of mrDMD for non-shear flows in which the higher
level modes can be used to extract coherent structures that have
translational property. Note that selecting the single slowest mode
in the first level is parameter-free. However, choosing the number
of levels and a sufficient number of slow modes in each levels
is a parameter dependent process. It is still an open problem and
beyond the scope of our work.

Other slow modes in the first level mrDMD. Figure 13 (b)
shows the other slow modes in the first level mrDMD. Compared
to the slowest mode, these slow modes do not encode the expected
large-scale structures of this flow.

Complex conjugate DMD modes As described earlier, DMD
modes can be complex. If a mode and its corresponding eigenvalue
are complex, there must be another complex mode conjugate to
it given a real-valued linear system expressed by Eq.(2) [5]. If
there are two conjugate slowest DMD modes in a general flow,
we use both of these modes and their corresponding eigenvalues

1st level

2nd slow mode 3nd slow mode

(b) (right) The illustration of Taylor vortices [51] and 

2nd level 3rd level
(a) The slowest modes in the different MrDMD levels

Taylor vortices

(left) two modes in the first mrDMD level 

Fig. 13: Slow modes in different levels of mrDMD. The large-scale
coherent structures are only able to be observed in the slowest
mode of the first level. These structures are called Taylor vortices
which was first introduced and illustrated by G. I. Taylor [51].

to reconstruct the field, which will lead to a real xDMD. See
the supplemental document for a proof. Nonetheless, the slowest
DMD modes in the shear flows that we experiment with are
purely real, because large-scale structures in shear flows are stable
and do not oscillate, leading to vanishing imaginary part of the
corresponding eigenvalue [16].

7 MRDMD ON NON-SHEAR FLOWS

To evaluate the effectiveness of the proposed method for the
coherent structure extraction task in non-shear flows, we perform
an experiment with a vortex ring simulation which simulates a
vortex ring hitting a wall with a Reynolds number of 2000. We
take the 2D cross section of this simulation as input [2]. The
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(a) Q-criterion (b) DMD Eigenvalues (c) The slowest modes at different times (d1) The slowest mode

(d2) The second slowest mode

T
im

e

Time evolution

(e) 3 levels (f) 1st level (g) 2nd level (h) 3rd level

Fig. 14: The mrDMD results of the 2D vortex ring simulation. (a) The volume rendering of the Q-criterion field illustrates the behavior
of the original flow where a primary vortex starts near the center of the domain and gradually moves toward and eventually hits the wall,
which induces a shear layer at the wall that lifts a secondary vortex. (b) The plot of the singular (top) and DMD eigenvalues(bottom).
Note that the ranks of the singular values do not correspond to the position of the DMD eigenvalues in a unit circle. (c) Volume
rendering of the Q-criterion derived from the reconstructed field by using the slowest modes. The two time slice cuts show the evolution
of the slow mode over time. The slowest mode only captures the behavior of the flow after the primary vortex hits the wall. Two slow
modes are shown in (d1)(d2). The volume rendering of Q-criterion derived from the reconstructed field by using (e) slow modes in
three levels, (f) three slow modes in the first level, (g) two slow modes in the second level, and (g) one mode in the third level. We need
to combine multiple levels to capture the behavior of the main vortex structure.

flow motion is illustrated in Figure 14(a). During the interaction
with the wall, the primary vortex (i.e., the cross section of the
vortex ring) approaches the wall and induces a boundary shear
layer. As the vortex slides against the wall, the boundary layer
becomes unstable and is lifted up as a secondary vortex, which
in turn lifts up the primary vortex. This data set helps us analyze
the role of coherent structures interacting with boundaries, and
the generation of turbulence in wall-bounded flows. The flow is a
transient flow, and contains several phenomena within, rather than
being a purely shear flow. Because of the high-Reynolds number,
we do not expect that at any level this flow has structures that
behave quasi-linearly. Our mrDMD result is shown in Figure 14
(b–d). There are two pairs of symmetric eigenvalues (b). The two
slow modes shown in Figure 14(c1)(c2) are selected from one
eigenvalue of each of the two pairs. The reconstructed field using
these two modes according to their time evolution plots is shown
in (d). As can be seen, the primary vortex before impacting the
wall is completely lost in the reconstructed flow. This indicates
that while the slow DMD modes provide a mathematically correct
decomposition, they do not capture any relevant physical modes in
this case. Specifically, they fail to capture the complete behavior
of the primary vortex which is the dominant feature in the flow.

This simple example shows that DMD (a linear approximation of
unsteady flows) may not work well with flows that are not quasi-
linear. However, how to determine whether an unsteady flow is
quasi-linear or not is not a trivial task, which is beyond the scope
of this work yet is important to achieve in order to provide a more
accurate guideline for the application of DMD framework.

8 CONCLUSION

In this paper, we introduced to the visualization community a
large-scale coherent structure identification framework for shear
flows based on the recently popular dynamic mode decomposition
(DMD). Our method is based on an observation between the
slowest DMD mode and the large-scale structures seen in the shear
flows. In particular, we show that the slow DMD mode character-
izes the coherent structure that has a slow temporal evolution,
which shares some similarity to the large-scale structures in the
shear flows that also change slowly. Based on this observation,
we propose to use the slowest DMD mode to help identify the
large-scale structures in the shear flows. To address the issue of
the standard DMD in handling transient time events, we resort
to multi-resolution DMD (mrDMD) to identify the slow mode.
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To address the slow computation of mrDMD, we provide a new
CUDA implementation. We demonstrated that our DMD based
strategy can help better reveal the large-scale structures from a
number of 2D and 3D unsteady shear flows than existing methods.
Finally, we apply our method to some non-shear flows that do not
behave quasi-linearly. Our results show that DMD fails to capture
the essential behavior in those flows, which further suggests that
DMD should be applied primarily to quasi-linear flows in order
to reveal physically meaningful structures.

Limitation and future work Although our work shows the
promising use of DMD in identifying large-scale structures from
shear flows, there are a few limitations that we aim to improve.
First, the structure revealed by the DMD modes need not be the
structure of interest to the experts. In particular, DMD can be
biased to structures that are better characterized by the attributes
used for DMD computation (i.e., velocity field in our work). For
example, in the 3D Plane Couette flow, while the large-scale struc-
tures of interest are the Taylor rolls, our DMD method reveals the
separations structures between the individual rolls. This is because
the flow inside the Taylor roll has small velocity in comparison
with that at the boundary of two rolls. Second, the information
encoded by the slowest DMD mode along with its time evolution
plot need not fully represent the large-scale structures. This is
apparent because the patterns in the reconstructed field using a
DMD mode are fixed with only varying amplitude over time. A
possible way to address this is to choose a number of slow modes
that complement each other over time to represent the large-scale
structures. mrDMD also provides a hierarchical mechanism with
multiple levels of modes. In this version, we only utilize the
slowest mode in the first level which is suitable for the large-
scale coherent extraction task. Investigating the sub-modes are
also promising to characterize the hierarchical behavior of flow
features. To select the adequate modes from different levels, we
can adapt recent works (c.f. [23]) on the visualization and analysis
of DMD results. Third, even though we implement a fast mrDMD
using CUDA, it does not address the memory constraint for large-
scale data. In the future, an out-of-core implementation will be
needed for it to process the large-scale 3D turbulence flows.
Finally, DMD computation is not objective. While this is not an
issue for the large-scale structure extraction for shear flows due
to their dominance and slow motion, it may still be important
to achieve objectivity for other type of flows, which should be
investigated in a future work.
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