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ABSTRACT

This paper concerns a Bayesian ranking and selection (R&S) problem under input uncertainty when all

solutions are simulated with common input models estimated from data. We assume that there are multiple

independent input data sources from which additional data can be collected at a cost to reduce input

uncertainty. To optimize input data acquisition, we first show that the most probable best (MPB)Ðthe

solution with the largest posterior probability of being optimal (posterior preference)Ðis a strongly consistent

estimator for the real-world optimum. We investigate the optimal asymptotic static sampling ratios from

the input data sources that maximizes the exponential convergence rate of the MPB’s posterior preference.

We then create a sequential sampling rule that balances the simulation and input data collection effort. The

proposed algorithm stops with posterior confidence in the solution quality.

1 INTRODUCTION

In many applications, decision-makers build simulation models to optimize the designs of complex real-

world stochastic systems. The input models that generate random variates fed into these simulators are

typically estimated from data observed from the systems. When the data are finite, the estimated input

models do not match the real-world data-generating processes. Therefore, the stochastic variability in the

simulation output is inflated by the estimation error in the input models, which is referred to as input

uncertainty. Since the conclusions from the simulation experiment depend on the fidelity of the input

models, input uncertainty must be properly accounted for in the simulation analysis to draw statistically

correct conclusions.

This paper investigates a ranking and selection (R&S) problem under input uncertainty where all

competing solutions’ simulators share a collection of common estimated input models. In particular, we

consider the case when the real-world stochastic system has several independent input-generating processes

from which additional data can be acquired, albeit at a cost, to improve the input models. The objective of

the R&S problem is to find the solution that has the optimal performance in the real-world stochastic system.

However, due to input uncertainty, the conditional optimal solution given the estimated input models is not

the real-world optimum in general. Nevertheless, as more input data are collected, one might expect the

estimated input models become closer to the real-world distributions. In turn, the conditional optimum also

converges to the true optimum. Thus, the decision-maker would want to carefully allocate the input data

collection effort to most efficiently reduce input uncertainty. Meanwhile, the mapping between allocation

of estimated input models and its conditional optimum must be learned via simulation. We assume that

the simulation cost is non-negligible, yet significantly cheaper than the cost of input data. Thus, it is

important to design an experiment that judiciously spends sampling effort for both input and simulation
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data collection. We aim to propose a unified framework integrating optimal input data and simulation

sampling strategies to discover the true optimum efficiently.

Many studies concerning simulation optimization under input uncertainty assume that the input data

batch is fixed, and thus input uncertainty cannot be reduced further. In this case, one can adopt an appropriate

risk measure and focus on finding the ªoptimalº solution under the risk measure to hedge against input

uncertainty. For instance, Corlu and Biller (2015), Pearce and Branke (2017), and Ungredda et al. (2022)

take the mean function as a risk measure (risk-neutral), and Xie and Zhou (2015), Zhu et al. (2020) use a

conditional value at risk or value at risk. Gao et al. (2017) and Fan et al. (2020) find the solution that has

the best worst-case performance within finite ambiguity set of the true input distribution.

There are some recent work that incorporate streaming input data in simulation optimization (Song

and Shanbhag 2019; Liu et al. 2021; Wu and Zhou 2019), which are different from our problem setting.

We actively choose which input data to acquire instead of passively collecting the streaming data.

A similar setting to our problem is considered in Wu and Zhou (2019), where the authors propose

an optimal computing budget allocation (OCBA-IU) algorithm for fixed-budget setting. Xu et al. (2020)

investigate the case when two input distributions are correlated. Both approaches apply central-limit-

theorem and delta-method type results to decide the tradeoff between input data collection and simulation.

On the other hand, Ungredda et al. (2022) takes a Bayesian optimization approach to quantify the value

of information (VoI) of additional input data collection and simulation run, respectively, and propose a

sequential sampling rule based on the VoIs.

Our work differs from these in several ways. First, we adopt the most probable best (MPB) proposed

by Kim et al. (2021) as an estimator of the true optimum. The MPB is the solution with the largest posterior

probability of being optimal (posterior preference). We show i) the MPB is strongly consistent; and ii)

the posterior preference of the MPB converges to one almost surely as the input data size increases. The

latter gives us a basis for adopting the posterior preference of the MPB to measure the model risk in the

R&S problem caused by input uncertainty; the closer to one, the less the model risk there is. Motivated by

this observation, we analyze the exponential convergence rate of the posterior preference of the MPB as a

function of sampling ratios among the several input data sources, then devise sequential input data acquisition

rule to achieve the fastest convergence rate. Meanwhile, simulation sampling is carefully balanced with

the input data collection effort to learn solutions’ performances under different parameter values. Lastly,

we propose a Bayesian stopping criterion to terminate both input data and simulation sampling when there

is enough statistical confidence that the MPB indeed is the true optimal.

The rest of this paper is organized as follows. Section 2 presents some preliminaries on Bayesian

input modeling and introduces the MPB. In Section 3, we formulate the input data acquisition problem

based on the large-deviation analysis of the posterior preference of the MPB. In Section 4, an efficient

estimation scheme to learn the MPB’s posterior preference is introduced. The integrated sequential sampling

framework for input data acquisition and simulation is discussed in Section 5. Section 6 validates our

algorithm with numerical experiments. Proofs of all theorems are omitted due to the page limit.

2 PROBLEM FORMULATION

Suppose there exist L > 1 independent input data sources. Let f ℓ
θ ℓ and θ ℓ represent the density function

and parameter vector of the ℓ-th input. We assume that the L parametric distribution families are known,

however, the true parameter vector, θθθ 0 = (θ 1
0 ,θ

2
0 , . . . ,θ

L
0 ), is unknown. All k solutions in comparison are

simulated using the same joint input distribution. For each Solution i (1 ≤ i ≤ k), we define yi(θθθ) as the

mean response of Solution i given θθθ , i.e., yi(θθθ) = E[Yi(θθθ)|θθθ ], where Yi(θθθ) is the simulation output of

Solution i when θθθ is the input model parameter. The true optimum is defined as

i0 := argmin1≤i≤k yi(θθθ 0). (1)

Both {yi(θθθ)}1≤i≤k and θθθ 0 are unknown and must be estimated. We first introduce a Bayesian machinery

to model uncertainty about θθθ 0. Let θθθ = (θ 1,θ 2, . . . ,θ L) be the Bayesian estimator for θθθ 0, where θ ℓ ∈ Θℓ
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for 1 ≤ ℓ ≤ L. Denote the data size from the ℓ-th data source by mℓ, and let m = ∑
L
ℓ=1 mℓ. Then,

the likelihood process for the m observed data is fθθθ (Zm) := ∏
L
ℓ=1 f ℓ

θ ℓ(Z
ℓ

mℓ
) where Zm := ∪L

ℓ=1Z
ℓ

mℓ
and

Z ℓ
mℓ

:= {Zℓ
1,Z

ℓ
2, . . . ,Z

ℓ
mℓ
} is the size-mℓ independent and identically distributed (i.i.d.) collection of the ℓ-th

input data. We denote the prior distribution of θ ℓ by πℓ
0(θ

ℓ). Then, for each 1 ≤ ℓ ≤ L, the posterior

distribution of θ ℓ can be written as

πℓ
mℓ
(θ ℓ) = πℓ

0(θ
ℓ) f ℓθ ℓ(Z

ℓ
mℓ
)/
∫

Θℓ
πℓ

0(θ
ℓ
1) f ℓ

θ ℓ
1
(Z ℓ

mℓ
)dθ1,

and the joint posterior density of θθθ is πm = ∏
L
ℓ=1 πℓ

mℓ
(θ ℓ).

When θθθ 0 is unknown, one may consider a plug-in version of (1) by replacing θθθ 0 with its point estimate

θ̂θθ ; here, we adopt the maximum a posteriori (MAP) estimator of πm. However, the optimal solution for

the plug-in version of (1) is suboptimal for (1) in general (Song and Nelson (2019)). Another source

of uncertainty is simulation error. Even if we have correct θθθ 0, false selection of i0 may occur since we

estimate i0 based on sample estimates of {yi(θθθ)}. Hence, it is essential to reduce both input uncertainty

and simulation error to find i0.

To analyze the effect of input uncertainty to the R&S problem, we introduce the concept of posterior

preference. First proposed by Kim et al. (2022), the posterior preference of Solution j is defined as

Pj(πm) := Pπm

{
y j(θθθ) = min1≤i≤k y j(θθθ)

}
.

Namely, Pj(πm) quantifies how likely Solution j is optimal under πm. Under the following assumption,

the posterior preferences of all solutions sum to one.

Assumption 1 The true optimum, i0, is unique. Moreover, argmin1≤i≤k yi(θθθ) is unique almost everywhere

under π0.

Because Pj(πm) depends on the m observed data, its value would change when additional input data

are collected. In the next section, we show that Pi0(πm) converges to one almost surely with an exponential

rate as m grows under some assumptions. This result combined with Assumption 1 implies that i0 has the

largest posterior preference for sufficiently large m. Therefore, it is sensible to adopt the solution with the

largest posterior preference as an estimator for i0; Kim et al. (2021) refer to this estimator as the most

probable best (MPB). Mathematically, the MPB given πm is defined as

i∗(πm) := argmax1≤ j≤k Pj(πm).

In the next section, we show that i∗(πm) is indeed a strongly consistent estimator for i0 under some

assumptions.

We further define the favorable set of Solution i as Θi =
{

θθθ : yi(θθθ)≤ min j ̸=i y j(θθθ)
}

, and refer to its

complement as the adversarial set of Solution i. Note that the favorable and adversarial sets are deterministic

regardless of πm. By definition, we have Pi(πm) = Pπm
(Θi).

Since collecting additional input data is feasible in our case, the key question is how much data to

observe from which sources to find i0 most efficiently? Ideally, we would like to design a sequential input

data sampling rule that makes Pi0(πm) converge to one as fast as possible so that the MPB quickly converges

to i0. Since i0 is unknown to us, instead, we focus on maximizing the exponential convergence rate of

Pi∗(πm)(πm). Moreover, we stop additional input data collection if Pi∗(πm)(πm) is above a target value as we

have enough statistical confidence that the MPB is indeed i0.

We assume collecting data from any of the L input processes is equally costly in this paper while

deferring a more general case for the future work.

3 ASYMPTOTIC PROPERTIES OF THE MOST PROBABLE BEST

This section is devoted to technical results associated with the MPB and its posterior preference. We begin

with Assumptions 2 and 3 below, which summarize the additional conditions we impose on f ℓ
θ ℓ and πℓ

0(θ
ℓ)

to study the asymptotic behavior of i∗(πm).
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Assumption 2 For each i, the mean function yi(θθθ) is continuous in θθθ .

The definition of the favorable set and Assumption 2 together imply that Θi is a closed set, whereas

Θc
i is open for all i.

Assumption 3 For each 1 ≤ ℓ≤ L, FΘℓ and Fℓ are σ -algebras of prior πℓ
0 and Z ∼ f ℓ

θ ℓ
0

, respectively, and

the following holds:

(a) Θℓ is compact;

(b) For all mℓ, the product likelihood, f ℓ
θ ℓ(Z

ℓ
mℓ
), is FΘℓ ×F

mℓ
ℓ -measurable, where F

mℓ
ℓ is a product

σ -algebra with respect to Z ℓ
mℓ

;

(c) The class, H :=
{

log
(

f ℓ
θ ℓ/ f ℓ

θ ℓ
0

)
: θ ℓ ∈ Θℓ

}
, is Pθ ℓ

0
-Glivenko-Cantelli;

(d) DKL(θ
ℓ
0 ||θ ℓ), is continuous in θ ℓ and 0< infθ ℓ∈Θℓ πℓ

0(θ
ℓ)≤ supθ ℓ∈Θℓ πℓ

0(θ)<∞, whereDKL(θ
ℓ
0 ||θ ℓ) :=

EZ∼ f
θℓ

0

[
log

(
f ℓ
θ ℓ

0

(Z)/ f ℓ
θ ℓ(Z)

)]
is the Kullback-Leibler (KL) divergence.

Given probability measure P, function class H is said to be a P-Glivenko-Cantelli (GC) class if

∥Pm −P∥
H

:= sup f∈H |Pm f −P f | → 0, P-a.s where Pm is an empirical measure consisting of m i.i.d

observations from P and P f =
∫

f dP. In other words, the strong law of large numbers holds uniformly

over the GC class. Assumption 4 is made to investigate consistency and asymptotic analysis of i∗(πm).

Assumption 4 For each ℓ, mℓ → ∞ as m → ∞, and limm→∞ mℓ/m = βℓ for some βℓ ≥ 0.

Under these assumptions, Theorem 1 below stipulates strong consistency of i∗(πm).

Theorem 1 Under Assumptions 1 to 4, i∗(πm) converges to i0, Pθθθ 0
-almost surely.

Recall that our goal is to increase Pi∗(πm)(πm) (or equivalently, decrease 1−Pi∗(πm)(πm)) at the optimal rate.

Analyzing Pi∗(πm)(πm) for finite m is difficult. Instead, Theorem 2 investigates the asymptotic convergence

rate of 1−Pi∗(πm)(πm) when input data are collected from L processes according to static sampling ratios

as stated in Assumption 4.

Theorem 2 Suppose Assumptions 1±4 hold. Then, we have

lim
m→∞

− 1

m
log(1−Pi∗(πm)(πm)) = inf

θθθ∈Θc
i0

∑
L

ℓ=1
βℓDKL(θ

ℓ
0 ||θ ℓ). (2)

Therefore, the MPB’s posterior preference converges to 1 at an exponential rate that depends on the

sampling ratios, βββ = (βℓ)1≤ℓ≤L. Thus, the optimal βββ that maximizes (2) is a solution to

maxβββ=(β1,...,βL) inf
θθθ∈Θc

i0

∑
L

ℓ=1
βℓDKL(θ

ℓ
0 ||θ ℓ) subject to βββ ≥ 0, 1⊤βββ = 1, (3)

where 0 and 1 are L-dimensional vectors of zeroes and ones, respectively. However, (3) depends on unknown

quantities such as i0, Θi0 , and θθθ 0. Instead, we consider the following plug-in version by replacing i0, Θi0 ,

and θθθ 0 with i∗(πm),Θi∗(πm), and θ̂θθ , respectively:

maxβββ=(β1,...,βL) inf
θθθ∈Θc

i∗(πm)

∑
L

ℓ=1
βℓDKL(θ̂

ℓ||θ ℓ) subject to βββ ≥ 0, 1⊤βββ = 1. (4)

Because i∗(πm) and Θc
i∗(πm)

are unknown in advance, we first need to estimate i∗(πm) and Θc
i∗(πm)

by

simulation before solving (4). In Section 4, we introduce an R&S framework proposed by Kim et al.

(2022) that efficiently learns i∗(πm) and Θc
i∗(πm)

by solving an optimal computing budget allocation (OCBA)

problem. Since this procedure is designed for the case when θθθ has a finite support, we assume the following

to hold in the remainder of the paper.
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Assumption 5 For each ℓ, the support of πℓ
0, Sℓ, is finite and θ ℓ

0 ∈ S ℓ.

In the appendix, we discuss how to construct an approximate finite support when θθθ is continuous.

An additional benefit of Assumption 5 is that it reduces (4) to a linear program (LP). When θθθ is

continuous, (4) is difficult to solve in general since we do not impose any structural property (e.g., linearity

or convexity) of {Θi} in θθθ . With the discrete support, we can construct finite Θc
i∗(πm)

= {θθθ 1,θθθ 2, . . . ,θθθ J},

where J is the size of Θc
i∗(πm)

, and the infimum in (4) can be replaced with inequalities over the J elements

in Θc
i∗(πm)

. Consequently, (4) can be rewritten as the following LP:

max C subject to C ≤ d⊤
j βββ ,1 ≤ j ≤ J, 1⊤βββ = 1, βββ ≥ 0, (5)

where d j := (DKL(θ̂
ℓ||θ ℓ

j ))1≤ℓ≤L for each θθθ j in Θc
i∗(πm)

.

4 LEARNING THE MPB AND ITS ADVERSARIAL SET

Throughout this section, we assume πm is fixed and focus on learning i∗(πm) and Θc
i∗(πm)

for given πm.

Under Assumption 5, the support of θθθ is the Cartesian product of {Sℓ}1≤ℓ≤L,S := S1 ×·· ·×SL, and

the posterior preference for each solution simplifies to

Pj(πm) = ∑θθθ s∈S
πm(θθθ s)1{ j = is},

where is is a conditional optimum at θθθ s. Each is must be estimated via simulation. Denote the number of

replications allocated to (i,θθθ s) given simulation budget n as Nn
i (θθθ s) and the sample mean of the Nn

i (θθθ s)
replication outputs as µi,n(θθθ s). Define the sample version of is as isn := argmin1≤ j≤k µ j,n(θθθ s). The empirical

posterior preference Pj,n(πm) is defined as Pj,n(πm) = ∑θθθ s∈S πm(θθθ s)1{ j = isn}. From these quantities, we

estimate the MPB and its favorable set as i∗n(πm) := argmax1≤ j≤k Pj,n(πm) and Θ̂i∗n(πm) := {θθθ s ∈S |i∗n(πm) =
isn}, respectively. To solve (5) correctly, our goal is to maximize the probability of the following event

Fm,n := {i∗n(πm) = i∗(πm),Θ̂i∗n(πm) = Θi∗(πm)}. (6)

Equivalently, we aim to minimize P(Fc
m,n). However, computing P(Fc

m,n) is challenging for finite n.

Instead, we first consider an asymptotic budget allocation problem (n → ∞) to determine the static

sampling ratios for all (i,θθθ s) that maximize the exponential convergence rate of P(Fc
m,n) under Assumption 6

below.

Assumption 6 For each (i,θθθ), the simulation output is normally distributed with mean yi(θθθ) and known

variance λ 2
i (θθθ).

For a nonnormal case, Assumption 6 can be justified by batching (Kim and Nelson 2006). For an

unknown variance case, one can plug in a sample variance, and our theoretical results still hold. Let

ααα = {αi(θθθ s)}1≤i≤k,θθθ s∈S
, where αi(θθθ s) stands for the proportion of simulation budget allocated to (i,θθθ s).

Under Assumption 6, Kim et al. (2022) provide an easy-to-compute lower bound of the large deviation

rate (LDR) of P(Fc
m,n) as stated in the following theorem.

Theorem 3 (Kim et al. 2022) Suppose Assumption 6 holds. Then, for fixed πm, the LDR of Fc
m,n can be

bounded from below as

liminf
n→∞

−1

n
logP

(
Fc

m,n

)
≥ min(i,θθθ s):i̸=is Wi,m(θθθ s)Gi(θθθ s),

where Gi(θθθ s) is an LDR of the incorrect pairwise comparison between (i,θθθ s) and (is,θθθ s) defined as

Gi(θθθ s) :=
(yi(θθθ s)− yis(θθθ s))

2

2
(
λ 2

i (θθθ s)/αi(θθθ s)+λ 2
is (θθθ s)/αis(θθθ s)

) ,
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and the balance weight, Wi,m(θθθ s), is given as

Wi,m(θθθ s) =

{
1, if θθθ s ∈ Θi∗(πm) or i = i∗(πm),θθθ s ∈ Θc

i∗(πm)
,

max
(
{Pi∗(πm)(πm)−Pi(πm)}/πm(θθθ s),1

)
, otherwise.

(7)

Note that Wi,m(θθθ s) quantifies importance of learning yi(θθθ s) in reducing the chance of Fc
m,n. Define

LDRm = min(i,θθθ s):i ̸=is Wi,m(θθθ s)Gi(θθθ s). From Theorem 3, we can formulate the following OCBA:

maxααα LDRm subject to ∑(i,θθθ s)
αi(θθθ s) = 1,αi(θθθ s)≥ 0, ∀(i,θθθ s). (8)

The optimality condition for (8) can be derived from the Karush-Kuhn-Tucker (KKT) conditions; Theorem 4

below summarizes the result.

Theorem 4 (Kim et al. 2022) The allocation ααα∗ is an optimal solution of (8), if and only if, ααα∗ satisfies:

• (Global balance condition) For all θθθ s, we have α2
is(θθθ s)/λ 2

is (θθθ s) = ∑i ̸=is α2
i (θθθ s)/λ 2

i (θθθ s);
• (Pairwise balance condition) Wi,m(θθθ s)Gi(θθθ s) =Wj,m(θθθ s′)G j(θθθ s′),∀(i,θθθ s),( j,θθθ s′)∈ {(i,θθθ t) : i ̸= it}.

The conditions in Theorem 4 depend on unknown means {yi(θθθ s)}. In Algorithm 2 in Section 5.3,

we present a sequential sampling rule based on the plug-in version of Theorem 4, where each yi(θθθ s) is

replaced with µi,n(θθθ s).
We close this section by introducing notation for our algorithm. The empirical allocation ratio αi,n(θθθ s)

is defined as αi,n(θθθ s) := Nn
i (θθθ s)/n. Similarly, Gi,n(θθθ s) and Wi,m,n(θθθ s) are plug-in versions of Gi(θθθ s) and

Wi,m(θθθ s), respectively.

5 OPTIMAL INPUT DATA ACQUISITION

In this section, we introduce our sequential sampling procedure that balances input data collection and

simulation sampling. Algorithm 0 summarizes the overall procedure with the following subroutines:

• Stopping Rule: a criterion that determines when to stop collecting more input data;

• Data Collection vs Simulation (DCvS): a criterion to determine whether to collect input data or to

simulate at some (i,θθθ). We collect input data if this condition is met;

• Input Data Collection Rule: a sequential sampling rule for input data acquisition;

• Simulation Sampling Rule: a sequential sampling rule for selecting the next (i,θθθ) to simulate.

Several sample statistics are updated throughout the algorithm; we categorize them into three groups:

S.1 Updated with new input data: data size vector (mℓ)1≤ℓ≤L, posterior {πm(θθθ s)}, and MAP θ̂θθ
S.2 Updated with new simulation sample: simulation sample sizes {Nn

i (θθθ s)}, allocation ratio {αi,n(θθθ s)},

and sample LDR {Gi,n(θθθ s)}
S.3 Updated in either case: empirical posterior preference {Pj,n(πm)}, MPB i∗n(πm), its estimated

adversarial set Θ̂c
i∗n(πm)

, and balance weights {Wi,m,n(θθθ s)}

5.1 Data Collection versus Simulation

Recall that in Section 3, we discuss finding optimal βββ that maximizes the convergence rate of Pi∗(πm)(πm) =
Pπm

(Θi∗(πm)). Because we estimate i∗(πm) by simulation, this objective is modified to incorporate simulation

error. The OCBA discussed in Section 4 aims to maximize the probability of event Fm,n defined in (6). If

P(Fm,n) is close to 1, then input data acquisition may be optimized conditional on Fm,n while ignoring its

complement, Fc
m,n. Then, the goal is to maximize Pπm

(Θi∗n(πm))1{Fm,n} instead of Pπm
(Θi∗(πm)). After taking
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Algorithm 0 Unified Framework

1: Warm start: Collect m0 observations from each of the L input data sources and run n0 replications

at each (i,θθθ s).
2: while Stopping Rule (14) is not met do

3: if DCvS (12) is met then

4: Allocate data collection budget based on Input Data Collection Rule (= Algorithm 1).

5: else

6: Find a pair (i,θθθ s) to be sampled based on Sequential Simulation Rule (= Algorithm 2).

7: end if

8: end while

the expectation over simulation error, we have

E
[
Pπm

(
Θi∗n(πm)

)
1{Fm,n}

]
= E

[
Pπm

(
Θi∗(πm)

)
1{Fm,n}

]
= Pπm

(
Θi∗(πm)

)
P(Fm,n), (9)

where E and P are taken with respect to simulation error. The first equation holds from the definition of

Fm,n, and the second is straightforward since Pπm

(
Θi∗(πm)

)
does not depend on n.

We take the view of increasing n just enough so that the overall convergence rate of (9) is not slowed

down by n. With this motivation, the following theorem derives the LDR of (9) when the ratio of m to n

is at least γ in the limit for some constant γ ≥ 0.

Theorem 5 Suppose Assumptions 1±6 hold and liminfm,n→∞ m/n = γ for some γ ≥ 0. Let LDR :=
limm→∞ LDRm. Then, for fixed ααα and βββ we have

liminf
m,n→∞,liminf m

n
=γ

−1

n
log

(
1−Pπm

(
Θi∗(πm)

)
P(Fm,n)

)
≥ min

{
γ inf

θθθ∈Θc
i0

∑
L

ℓ=1
βℓDKL(θ

ℓ
0 ||θ ℓ),LDR

}
. (10)

Recall that LDRm depends on the simulation allocation ratios, ααα , therefore, LDR in turn depends on

ααα . Also, observe that LDR depends on limm→∞Wi,m(θθθ s) by definition. We can further see that LDR does

not depend on βββ from Definition (7) because the limit of each Wi,m(θθθ s) is uniquely determined regardless

of βββ . By viewing ααα,βββ , and γ as decision variables, the lower bound in (10) can be maximized by solving:

maxααα,βββ ,γ min

{
γ inf

θθθ∈Θc
i0

∑
L

ℓ=1
βℓDKL(θ

ℓ
0 ||θ ℓ)

︸ ︷︷ ︸
=g1(βββ )

, LDR︸︷︷︸
=g2(ααα)

}
= maxγ≥0 min

{
γg1(βββ

∗),g2(ααα
∗)
}
,

(11)

where βββ
∗

and ααα∗ are maximizers of g1 and g2, respectively. Observe that (11) is maximized as long

as γ ≥ g2(ααα
∗)/g1(βββ

∗) while minimal m is spent when the equality holds. Therefore, our strategy is to

increase m if m/n falls below g2(ααα
∗)/g1(βββ

∗). Of course ααα∗ and βββ
∗

are unknown. However, we can use

the respective sample allocation ratios, {αi,n(θθθ s)} and {mℓ/m}, to construct the following criterion: gather

additional input data if

min
θθθ∈Θ̂c

i∗n(πm)

∑
L

ℓ=1
mℓDKL(θ̂

ℓ||θ ℓ)< nLDRm,n := nmini ̸=isn
Wi,m,n(θθθ s)Gi,n(θθθ s), (12)

and run simulation, otherwise. Observe that (12) seeks to keep the minimum input data requirements

by increasing m only when m ≤ g2(ααα
∗)/g1(βββ

∗)n in an asymptotic sense. Hence, one may expect that

γ ≈ m/n ≈ g2(ααα
∗)/g1(βββ

∗) would be achieved in the limit.
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Algorithm 1 Optimal Input Data Acquisition

1: Initialization: ∆ := batch input data size, S.1, and S.3.

2: Evaluate d̂ j = (DKL(θ̂
ℓ||θ ℓ

j ))1≤ℓ≤L for each θθθ j ∈ Θ̂c
i∗n(πm)

for all 1 ≤ j ≤ Jn (:= |Θ̂c
i∗n(πm)

|).
3: if θ̂θθ ∈ Θ̂c

i∗n(πm)
then

4: Return the uniform allocation rule ννν∗ = (∆/L, . . . ,∆/L).
5: else

6: Solve the following LP, and denote the optimizer as ννν∗:

maxννν=(ν1,...,νL) C subject to C ≤ d̂⊤
j (m+ννν), ∀1 ≤ j ≤ Jn, 1⊤ννν = ∆, ννν ≥ 0. (13)

7: end if

8: Collect additional input data according to ννν∗.

9: Update S.1 and S.3.

Algorithm 2 Simulation Sampling Rule

1: Initialization: All quantities in S.1± S.3.

2: while min
θθθ∈Θ̂c

i∗n(πm)
∑

L
ℓ=1 mℓDKL(θ̂

ℓ||θ ℓ)> nmini̸=isn
Wi,m,n(θθθ s)Gi,n(θθθ s) do

3: Find (i,θθθ s) := argmini̸=isn
Wi,m,n(θθθ s)Gi,n(θθθ s).

4: if (Nn
isn
(θθθ s)/λisn

(θθθ s))
2 > ∑i ̸=isn

(Nn
i (θθθ s)/λi(θθθ s))

2
then

5: Run a replication at (i,θθθ s).
6: else

7: Run a replication at (isn,θθθ s).
8: end if

9: Update S.2 and S.3.

10: end while

5.2 Input Data Collection Problem

Once (12) is satisfied, the algorithm proceeds to the input data collection problem. In this step, we solve

the empirical version of (5). Algorithm 1 formalizes this procedure when the input data are collected in

batch of size ∆.

Notice that, if θ̂θθ ∈ Θ̂c
i∗n(πm)

, then there exists j such that d̂ j = 0, and (13) cannot give us any allocation

rule ννν because the optimal value is always zero regardless of ννν . However, this event becomes rarer as m

increases since πm(θ̂θθ)→ 1 almost surely so that θ̂θθ ∈ Θ̂i∗n(πm) holds eventually. Meanwhile, when θ̂θθ ∈ Θ̂c
i∗n(πm)

,

Algorithm 1 allocates ∆ uniformly to all L input distributions.

5.3 Simulation Sampling Rule

If (12) is not satisfied, then we increase n by sequentially selecting the next (i,θθθ s) to simulate until it is

satisfied. Algorithm 2 presents the sequential sampling rule motivated by the pairwise and global balance

conditions in Theorem 3. We find (i,θθθ s) that deviates the most from the pairwise balance condition, and

then determine whether to sample the selected (i,θθθ s) or (isn,θθθ s) based on the global balance condition.

5.4 Stopping Criterion

When m and n are large enough to meet a precision requirement, we stop collecting input data and simulation

sampling. In particular, we adopt a variation of the posterior-based PCS (pPCS) stopping rule discussed

in Eckman and Henderson (2022).
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Figure 1: For Solutions 1±4, (a) shows the conditional mean surfaces and (b) shows the favorable sets;

observe that Solution 1 is the optimum under θθθ 0.

Consider a policy that terminates the procedure when the estimated MPB’s posterior preference is above

user-specified threshold 1−α (e.g., 1−α = 0.95); that is, Pi∗n(πm),n(πm)≥ 1−α . However, this policy does

not account for the simulation error in estimating i∗n(πm). If n is small, the procedure may stop when i∗n(πm)
is a poor estimate of i∗(πm). To circumvent this issue, we modify the stopping rule as follows:

Pi∗n(πm),n(πm)≥ 1−α and min
θθθ∈Θ̂c

i∗n(πm)

∑
L

ℓ=1
mℓDKL(θ̂

ℓ||θ ℓ)< nLDRm,n. (14)

Following the same logic in Section 5.1, the second condition of (14) guarantees that n is large enough

relative to m.

6 NUMERICAL EXPERIMENTS

In this section, we present numerical results with a synthetic example. We assume that there are k = 10

solutions and two exponential input distributions with respective mean parameters θ 1 and θ 2, where θ 1
0 = 1.6

and θ 2
0 = 1.4. The priors, π1

0 (θ
1) and π2

0 (θ
2), follow U [1,3] and U [1,2], respectively. Since these choices

make θθθ continuous, we apply the grid approximation in the appendix to discretize its support. We adopt

uniform grids {1+2 j/(S1 −1)}0≤ j≤S1−1 and {1+ j/(S2 −1)}0≤ j≤S2−1 for θ 1 and θ 2, respectively, and

set S = S1 = S2 for simplicity. Further, for each (i,θθθ), mean surface yi(θθθ) is given as

yi(θθθ) = (a⊤θθθ −10
√

i)2, (15)

where a = [5 5/2]⊤, and its simulation error is normally distributed with variance λ 2
i (θθθ).

We observe the performance of our algorithm varying three factors: grid size S, data batch size

∆, and simulation variances {λ 2
i (θθθ)}. The baseline case has S = 11,∆ = 50, and λi(θθθ) ∼ U [1,3] for

all 1 ≤ i ≤ k,θθθ ∈ S . We observe six additional scenarios by varying S ∈ {31,51}, ∆ ∈ {20,100}, and

{U [0.5,1.5],U [2,6]} for the sampling distribution of λi(θθθ) while fixing all other factors to be the same as the

baseline. For all scenarios, we examine two confidence levels for stopping criterion: 1−α ∈ {0.95,0.99}.

Given (15), only Solutions 1±4 can be a conditional optimum in Θ = [1,3]× [1,2]. Figure 1a shows

mean surfaces {yi(θθθ)}1≤i≤4. Figure 1b divides [1,3]× [1,2] into the favorable sets of Solutions 1±4,

{Θi}1≤i≤4. Notice that θθθ 0 belongs to Θ1, which implies i0 = 1. By design, Assumption 5 is satisfied for

all S ∈ {11,31,51}. For all scenarios, we set (m0,n0) = (20,5) for initial sampling.
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Table 1: Numerical performances under the baseline scenario (S = 11,∆ = 50,U [1,3]) and the additional

six scenarios that differs from the baseline by each factor presented in the first column. All statistics are

averaged from 1,000 macroruns with relative errors less than 8%.

Scenarios
1−α = 0.95 1−α = 0.99

(m1,m2) n PCS freq{θ̂θθ ∈ Θ̂c
i∗n(πm)

} (m1,m2) n PCS freq{θ̂θθ ∈ Θ̂c
i∗n(πm)

}
Baseline (437,221) 1.21E+4 0.964 0.072 (756,341) 1.45E+4 0.993 0.046

S = 31 (755,459) 8.89E+4 0.984 0.063 (1524,911) 1.41E+5 0.999 0.039

S = 51 (725,411) 1.67E+5 0.978 0.065 (1502,742) 2.10E+5 1.000 0.037

∆ = 20 (400,205) 1.28E+4 0.959 0.069 (727,324) 1.62E+4 0.997 0.045

∆ = 100 (485,257) 1.17E+4 0.972 0.075 (800,369) 1.38E+4 0.997 0.051

U [0.5,1.5] (447,222) 7.73E+3 0.963 0.065 (774,343) 8.38E+3 0.992 0.044

U [2,6] (455,245) 3.32E+4 0.967 0.082 (773,356) 4.25E+4 0.992 0.055

For performance measures, we recorded the input data size collected from each data source, (m1,m2),
and the total simulation effort, n, spent until Algorithm 0 terminates. Once the procedure stops, we estimated

the empirical (frequentist’s) PCS, P{i0 = i∗n(πm)}. Recall that for small m, θ̂θθ may lie outside of the MPB’s

favorable set in which case Algorithm 1 evenly distributes input data sampling effort to all L input sources.

We report the frequency of such an event, freq{θ̂θθ ∈ Θ̂c
i∗n(πm)

}. Table 1 reports the performance measures

averaged from 1,000 macroruns of each scenario.

For all scenarios, higher m and n are required to stop as 1−α increases, which is intuitive. Notice that

the estimated frequentist’s PCS matches the Bayesian target, 1−α quite well in all cases. The frequency

of uniform allocation (i.e., freq{θ̂θθ ∈ Θ̂c
i∗n(πm)

}) decreases as 1−α increases, indicating that θ̂θθ is more likely

to belong to the MPB’s favorable set as m grows. Hence, we can confirm that the uniform allocation has

little impact on the large-sample behavior of the algorithm.

Next, we compare the performance of Algorithm 0 under the baseline scenario vs. the others. As the

number of θθθ s on the grid increases, the number of constraints in (5) increases. As a result, optimal C of (5)

becomes smaller, which results in (seemingly) slower convergence rate for 1−Pi(πm)(πm). This explains

why required m1 and m2 until termination increases as S increases. Moreover, for larger S, there are more

ªopportunitiesº for Fc
n,m to occur and thus required n increases. When ∆ increases, the ratios between m1

and m2 as well as n remain similar to the baseline case, which shows that the algorithm is pretty robust to the

choice of ∆. Lastly, as the average simulation variance increases, higher n is required for the algorithm to

terminate, however, acquired input data sizes are similar to the baseline. This makes sense as the input data

acquisition strategy should not be affected by the simulation error variance if the MPB and its adversarial

set are learned correctly. This implies that our Simulation Sampling Rule in Algorithm 2 is effective.
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A APPENDIX: DISCRETE APPROXIMATION FOR A CONTINUOUS INPUT PARAMETER

In this section, we discuss discretizing the support of πm using a grid approximation when θθθ is continuous.

For the ℓ-th input model, we denote the discretized support by Sℓ = {θ ℓ
1 ,θ

ℓ
2 , . . . ,θ

ℓ
Sℓ
}. Recall that we

assume compactness of support in Assumption 3. In this case, one can generate a random sample of size

|Sℓ| by sampling from prior πℓ
0 as πℓ

0 is always proper. One can also generate a Quasi Monte Carlo (QMC)

sample or a uniform grid on the support can be adopted.

Once Sℓ is constructed, we assign a normalized weight to each θ ℓ
s ∈ Sℓ proportional to the posterior

probability distribution function evaluated at θ ℓ
s . The resulting approximate probability mass function



Kim and Song

True 
0

1
  = 1.6

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Support of 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
M

F

m
1

 = 20 
m

1
 = 100 

m
1

 = 2000

True 
0

2
  = 1.4

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Support of 
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
M

F

m2 = 20 
m2 = 100 
m2 = 2000

Figure 2: For varying input data sizes, approximate pmfs of θ 1 and θ 2 respectively with eleven grid

points are shown. The input-data-generating distributions are exponential with mean parameters θ 1
0 and

θ 2
0 , respectively.

(pmf), pℓmℓ
, satisfies

pℓmℓ
(θ ℓ

s ) ∝ πℓ
mℓ
(θ ℓ

s ) ∝ f ℓθ ℓ(Z
ℓ

mℓ
)πℓ

0(θ
ℓ
s ). (16)

From (16), we can compute pℓmℓ
(θ ℓ

s ) without the normalizing constant of πℓ
mℓ

. Moreover, updating (16)

when there are new input data is simple; we only need to multiply the likelihood function of the new

data. The joint posterior pmf of L input parameters is denoted by pm, which assigns probability mass

pm(θθθ) = ∏
L
ℓ=1 pℓmℓ

(θ ℓ) to each θθθ on the grid.

Proposition 1 below stipulates a limiting behavior of weights {pℓmℓ
(θ ℓ)}θ ℓ∈Sℓ

as mℓ increases. Although

we omit its proof, we provide an intuitive explanation here. As mℓ → ∞, one can show that πℓ
mℓ
(θ ℓ) ≈

exp
(
−mℓDKL(θ

ℓ
0 ||θ ℓ)

)
under Assumption 3. Therefore, pm tends to assign the largest probability mass to

the point in Sℓ minimizing the KL divergence from θ ℓ
0 , and the probability converges to one while those

of other points converge to zero in the limit.

Proposition 1 For each ℓ, let θ ℓ
∗ := argminθ ℓ∈Sℓ

DKL(θ
ℓ
0 ||θ ℓ). Under Assumption 3, limmℓ→∞ pℓmℓ

(θ ℓ) =

1{θ ℓ = θ ℓ
∗} almost surely.

When the true parameter is included in the grid, i.e., θ ℓ
0 ∈Sℓ, for all ℓ, the probability mass on the grid

concentrates on θ ℓ
0 as data size grows and i0 is invariant with the grid approximation. However, we cannot

guarantee θ ℓ
0 ∈ Sℓ in practice since all {θ ℓ

0} are unknown in advance. In this case, the approximation

scheme will assign probability one on some θθθ ∗ := (θ ℓ
∗)1≤ℓ≤L in the limit. Hence, θθθ ∗ can be viewed as a

stand-in for θθθ 0 in the approximation scheme. Even if θθθ ∗ ̸= θθθ 0, observe that the MPB converges to the same

i0 as long as θθθ ∗ ∈ Θi0 . For ease of discussion, we assume that Sℓ contains θθθ 0 in this paper (Assumption 5);

a more general case will be investigated in the journal version of the paper.

Recall that (4) replaces unknown θθθ 0 with its point estimator θ̂θθ . Depending on the prior and the density

function, computing MAP may be expensive for continuous θθθ . With Approximation (16), we can replace

the MAP with the approximate MAP, θ̂θθ ∗ =
(
θ ℓ

sℓ

)
1≤ℓ≤L

, where sℓ := argmax1≤s≤Sℓ
pℓmℓ

(θ ℓ
s ).

Figure 2 shows examples of the grid approximation of exponential distributions with mean parameters

θ 1 and θ 2 discussed in Section 6 for S = 11. Observe that both pmfs concentrate on θ 1
0 and θ 2

0 , respectively,

as the sample sizes increase as expected from Proposition 1.
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