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ABSTRACT

This paper concerns a Bayesian ranking and selection (R&S) problem under input uncertainty when all
solutions are simulated with common input models estimated from data. We assume that there are multiple
independent input data sources from which additional data can be collected at a cost to reduce input
uncertainty. To optimize input data acquisition, we first show that the most probable best (MPB)—the
solution with the largest posterior probability of being optimal (posterior preference)—is a strongly consistent
estimator for the real-world optimum. We investigate the optimal asymptotic static sampling ratios from
the input data sources that maximizes the exponential convergence rate of the MPB’s posterior preference.
We then create a sequential sampling rule that balances the simulation and input data collection effort. The
proposed algorithm stops with posterior confidence in the solution quality.

1 INTRODUCTION

In many applications, decision-makers build simulation models to optimize the designs of complex real-
world stochastic systems. The input models that generate random variates fed into these simulators are
typically estimated from data observed from the systems. When the data are finite, the estimated input
models do not match the real-world data-generating processes. Therefore, the stochastic variability in the
simulation output is inflated by the estimation error in the input models, which is referred to as input
uncertainty. Since the conclusions from the simulation experiment depend on the fidelity of the input
models, input uncertainty must be properly accounted for in the simulation analysis to draw statistically
correct conclusions.

This paper investigates a ranking and selection (R&S) problem under input uncertainty where all
competing solutions’ simulators share a collection of common estimated input models. In particular, we
consider the case when the real-world stochastic system has several independent input-generating processes
from which additional data can be acquired, albeit at a cost, to improve the input models. The objective of
the R&S problem is to find the solution that has the optimal performance in the real-world stochastic system.
However, due to input uncertainty, the conditional optimal solution given the estimated input models is not
the real-world optimum in general. Nevertheless, as more input data are collected, one might expect the
estimated input models become closer to the real-world distributions. In turn, the conditional optimum also
converges to the true optimum. Thus, the decision-maker would want to carefully allocate the input data
collection effort to most efficiently reduce input uncertainty. Meanwhile, the mapping between allocation
of estimated input models and its conditional optimum must be learned via simulation. We assume that
the simulation cost is non-negligible, yet significantly cheaper than the cost of input data. Thus, it is
important to design an experiment that judiciously spends sampling effort for both input and simulation
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data collection. We aim to propose a unified framework integrating optimal input data and simulation
sampling strategies to discover the true optimum efficiently.

Many studies concerning simulation optimization under input uncertainty assume that the input data
batch is fixed, and thus input uncertainty cannot be reduced further. In this case, one can adopt an appropriate
risk measure and focus on finding the “optimal” solution under the risk measure to hedge against input
uncertainty. For instance, Corlu and Biller (2015), Pearce and Branke (2017), and Ungredda et al. (2022)
take the mean function as a risk measure (risk-neutral), and Xie and Zhou (2015), Zhu et al. (2020) use a
conditional value at risk or value at risk. Gao et al. (2017) and Fan et al. (2020) find the solution that has
the best worst-case performance within finite ambiguity set of the true input distribution.

There are some recent work that incorporate streaming input data in simulation optimization (Song
and Shanbhag 2019; Liu et al. 2021; Wu and Zhou 2019), which are different from our problem setting.
We actively choose which input data to acquire instead of passively collecting the streaming data.

A similar setting to our problem is considered in Wu and Zhou (2019), where the authors propose
an optimal computing budget allocation (OCBA-IU) algorithm for fixed-budget setting. Xu et al. (2020)
investigate the case when two input distributions are correlated. Both approaches apply central-limit-
theorem and delta-method type results to decide the tradeoff between input data collection and simulation.
On the other hand, Ungredda et al. (2022) takes a Bayesian optimization approach to quantify the value
of information (Vol) of additional input data collection and simulation run, respectively, and propose a
sequential sampling rule based on the Vols.

Our work differs from these in several ways. First, we adopt the most probable best (MPB) proposed
by Kim et al. (2021) as an estimator of the true optimum. The MPB is the solution with the largest posterior
probability of being optimal (posterior preference). We show i) the MPB is strongly consistent; and ii)
the posterior preference of the MPB converges to one almost surely as the input data size increases. The
latter gives us a basis for adopting the posterior preference of the MPB to measure the model risk in the
R&S problem caused by input uncertainty; the closer to one, the less the model risk there is. Motivated by
this observation, we analyze the exponential convergence rate of the posterior preference of the MPB as a
function of sampling ratios among the several input data sources, then devise sequential input data acquisition
rule to achieve the fastest convergence rate. Meanwhile, simulation sampling is carefully balanced with
the input data collection effort to learn solutions’ performances under different parameter values. Lastly,
we propose a Bayesian stopping criterion to terminate both input data and simulation sampling when there
is enough statistical confidence that the MPB indeed is the true optimal.

The rest of this paper is organized as follows. Section 2 presents some preliminaries on Bayesian
input modeling and introduces the MPB. In Section 3, we formulate the input data acquisition problem
based on the large-deviation analysis of the posterior preference of the MPB. In Section 4, an efficient
estimation scheme to learn the MPB’s posterior preference is introduced. The integrated sequential sampling
framework for input data acquisition and simulation is discussed in Section 5. Section 6 validates our
algorithm with numerical experiments. Proofs of all theorems are omitted due to the page limit.

2 PROBLEM FORMULATION

Suppose there exist L > 1 independent input data sources. Let fgf and 0 represent the density function
and parameter vector of the ¢-th input. We assume that the L parametric distribution families are known,
however, the true parameter vector, 6y = (9(} , 902, ey QOL), is unknown. All k solutions in comparison are
simulated using the same joint input distribution. For each Solution i (1 <i < k), we define y;(0) as the
mean response of Solution i given 0, i.e., y;(0) = E[Y;(0)|0], where ¥;(0) is the simulation output of
Solution i when 0 is the input model parameter. The true optimum is defined as

ig := argminlgigkyi(OO)- M

Both {y:(6)}, -, and 8¢ are unknown and must be estimated. We first introduce a Bayesian machinery
to model uncertainty about 8. Let @ = (8',62,...,0%) be the Bayesian estimator for 8, where 8¢ ¢ @
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for 1 < /¢ < L. Denote the data size from the ¢-th data source by my, and let m = Z%:ﬂ’”é- Then,
the likelihood process for the m observed data is fo(Z5,) :=[15, fg/;(,%f ,) Where 2, := Uﬁzlff,fl and
9;;,{ = {Zf,Zﬁ, . ,Z,fl é} is the size-my, independent and identically distributed (i.i.d.) collection of the ¢-th

input data. We denote the prior distribution of 8¢ by ng (96). Then, for each 1 < /¢ < L, the posterior
distribution of 8 can be written as

w0, (69) = m(0) (2, [ 75(6) 14y (210,

and the joint posterior density of 8 is 7, = [T5_, 7, /(96).

When 0 is unknown, one may consider a plug-in version of (1) by replacing 8¢ with its point estimate
5; here, we adopt the maximum a posteriori (MAP) estimator of m,,. However, the optimal solution for
the plug-in version of (1) is suboptimal for (1) in general (Song and Nelson (2019)). Another source
of uncertainty is simulation error. Even if we have correct 8¢, false selection of iy may occur since we
estimate iy based on sample estimates of {y;(0)}. Hence, it is essential to reduce both input uncertainty
and simulation error to find ij.

To analyze the effect of input uncertainty to the R&S problem, we introduce the concept of posterior
preference. First proposed by Kim et al. (2022), the posterior preference of Solution j is defined as

Pj(7y) =Py, {)’j(e) = minlgigkyj(e)}-

Namely, P;(m,) quantifies how likely Solution j is optimal under 7,,. Under the following assumption,
the posterior preferences of all solutions sum to one.

Assumption 1 The true optimum, i, is unique. Moreover, argmin; ;. y;(0) is unique almost everywhere
under .

Because P;(m,) depends on the m observed data, its value would change when additional input data
are collected. In the next section, we show that P, (7,,) converges to one almost surely with an exponential
rate as m grows under some assumptions. This result combined with Assumption 1 implies that iy has the
largest posterior preference for sufficiently large m. Therefore, it is sensible to adopt the solution with the
largest posterior preference as an estimator for ip; Kim et al. (2021) refer to this estimator as the most
probable best (MPB). Mathematically, the MPB given 7, is defined as

i*(7) = argmax; < ;< Pi(7n).

In the next section, we show that i*(m,) is indeed a strongly consistent estimator for iy under some
assumptions.

We further define the favorable set of Solution i as ®; = {0 :y;(6) < min;,;y;(6)}, and refer to its
complement as the adversarial set of Solution i. Note that the favorable and adversarial sets are deterministic
regardless of m,. By definition, we have P,(7,,) = Pz, (©;).

Since collecting additional input data is feasible in our case, the key question is how much data to
observe from which sources to find iy most efficiently? Ideally, we would like to design a sequential input
data sampling rule that makes P, (,,) converge to one as fast as possible so that the MPB quickly converges
to ip. Since iy is unknown to us, instead, we focus on maximizing the exponential convergence rate of
P,-*(,Tm)(nm). Moreover, we stop additional input data collection if Pi*(nm)(nm) is above a target value as we
have enough statistical confidence that the MPB is indeed iy.

We assume collecting data from any of the L input processes is equally costly in this paper while
deferring a more general case for the future work.

3 ASYMPTOTIC PROPERTIES OF THE MOST PROBABLE BEST

This section is devoted to technical results associated with the MPB and its posterior preference. We begin
with Assumptions 2 and 3 below, which summarize the additional conditions we impose on fg,; and né(@g )
to study the asymptotic behavior of i*(7,,).
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Assumption 2 For each i, the mean function y;(0) is continuous in 6.

The definition of the favorable set and Assumption 2 together imply that ®; is a closed set, whereas
©f is open for all i.
Assumption 3 For each 1 </ <L, F¢ and .%; are c-algebras of prior 71:5 and Z ~ fgé, respectively, and
the following holds:

(a) Q' is compact;
(b)  For all my, the product likelihood, fZ, , is P x F," -measurable, where .%," is a product
p 0 o) ) ) p
c-algebra with respect to 2 ; "

(¢)  The class, 77 := {log( Z//fgf) AR ®[} is Pef—Glivenko—Cantelli'
(d)  Dkw(8f]|6%),iscontinuousin 8 and 0 < infyr g 75 (0°) < supgicey () < oo, where Dky (65]]8") :=
Ez s, [log ( fgé( )/ fgé( ))} is the Kullback-Leibler (KL) divergence.
Fo4 !

Given probability measure P, function class 7 is said to be a P-Glivenko-Cantelli (GC) class if
[P =Pl s := supse 5 [Pmf —Pf| — 0, P-as where P, is an empirical measure consisting of m i.i.d
observations from P and Pf = [ fdP. In other words, the strong law of large numbers holds uniformly
over the GC class. Assumption 4 is made to investigate consistency and asymptotic analysis of i*(7,,).

Assumption 4 For each ¢, my — oo as m — oo, and lim,—,.my/m = B, for some f; > 0.
Under these assumptions, Theorem 1 below stipulates strong consistency of i*(7,,).
Theorem 1 Under Assumptions 1 to 4, i*(7,,) converges to iy, Pg,-almost surely.

Recall that our goal is to increase Py (1, y (7, ) (or equivalently, decrease 1 — Py y (7)) at the optimal rate.
Analyzing Py (z,)(7,) for finite m is difficult. Instead, Theorem 2 1nvest1gates the asymptotic convergence
rate of 1 — Pz )(7,) when input data are collected from L processes according to static sampling ratios
as stated in Assumption 4.

Theorem 2 Suppose Assumptions 1-4 hold. Then, we have

1
lim ——log(1— Py (5, (m,)) = inf ¥/ BiDxu(65]|6"). )

m—eo 96@}6

Therefore, the MPB’s posterior preference converges to 1 at an exponential rate that depends on the
sampling ratios, B = (B)1<¢<r. Thus, the optimal B that maximizes (2) is a solution to

maxg_(g, . elen@ff Ze L BeDx( 65)/6") subjectto B>0,1"B =1, 3)

where 0 and 1 are L-dimensional vectors of zeroes and ones, respectively. However, (3) depends on unknown
quantities such as iy, ®;,, and 0. Instead, we consider the following plug-in version by replacing iy, ®;,,

and 8¢ with i*(7,,),0;«(z,), and 0, respectively:

maxg_g,. .g) 1nf ZE 1ﬁpDKL(9€H9£) subjectto B>0,1"B =1. 4)

Because i*(m,) and ©;.(,) are unknown in advance, we first need to estimate i*(7,) and OF () DY
simulation before solving (4). In Section 4, we introduce an R&S framework proposed by K1m et al.
(2022) that efficiently learns i*(7,,) and O, (%) by solving an optimal computing budget allocation (OCBA)
problem. Since this procedure is designed for the case when 0 has a finite support, we assume the following
to hold in the remainder of the paper.



Kim and Song

Assumption 5 For each /, the support of 71'5, 7, is finite and Gg e s

In the appendix, we discuss how to construct an approximate finite support when 6 is continuous.
An additional benefit of Assumption 5 is that it reduces (4) to a linear program (LP). When 0 is
continuous, (4) is difficult to solve in general since we do not impose any structural property (e.g., linearity

or convexity) of {®;} in 8. With the discrete support, we can construct finite 0% ={61,0,,...,0,},
where J is the size of O, () and the infimum in (4) can be replaced with 1nequal1t1es over the J elements
in OF, ()" Consequently, (4) can be rewritten as the following LP:

max C subject to ng;ﬁ,lgng, 1'"B=1, B>0, (5)

where d; := (DKL(WHGJQ)]S@L for each @ in O .

4 LEARNING THE MPB AND ITS ADVERSARIAL SET

Throughout this section, we assume 7, is fixed and focus on learning i*(7,) and ©OF. - (n ) for given m,,.

Under Assumption 5, the support of 0 is the Cartesian product of {7} 1<¢<p,. = Yl - X ¥, and
the posterior preference for each solution simplifies to

ZOGE’ m 1{]_1}

where ¥ is a conditional optimum at @;. Each i must be estimated via simulation. Denote the number of
replications allocated to (i, 0;) given simulation budget n as N'(0;) and the sample mean of the N/'(6)
replication outputs as [4; ,(0;). Define the sample version of #* as 7, := argmin; ;4 it »(05). The empirical
posterior preference P;,(7,,) is defined as Pj,(mn) = Yo,c.r Tm(05)1{j = in} From these quantities, we
estimate the MPB and its favorable set as i, (7,,) := argmax - j<k b, n(7y) and ® ={0,c ii(my) =
iy }, respectively. To solve (5) correctly, our goal is to maximize the probabrlrty of the following event

Fop = {1, (7tn) = i*(”m)a@i;;(nm) =0ji(x,) }- (6)

Equivalently, we aim to minimize P(F,ﬁ; ). However, computing P(F, m, ¢ ) is challenging for finite n.

Instead, we first consider an asymptotic budget allocation problem (n — o0) to determine the static
sampling ratios for all (i, ;) that maximize the exponential convergence rate of P(F};, ,,) under Assumption 6
below. '

Assumption 6 For each (i, 0), the simulation output is normally distributed with mean y;(6) and known
variance 17(0).

For a nonnormal case, Assumption 6 can be justified by batching (Kim and Nelson 2006). For an
unknown variance case, one can plug in a sample variance, and our theoretical results still hold. Let
a={0(05)} ;<1 .9,co> Where 0;(0;) stands for the proportion of simulation budget allocated to (i, 0;).
Under Assumption 6, Kim et al. (2022) provide an easy-to-compute lower bound of the large deviation
rate (LDR) of P(F; ) as stated in the following theorem.

Theorem 3 (Kim et al. 2022) Suppose Assumption 6 holds. Then, for fixed 7,,, the LDR of F}, , can be
bounded from below as

1
lrmrnf—flogP( Fo ) >ming g ). 2 Wim(05)Gi(85),

where G;(0;) is an LDR of the incorrect pairwise comparison between (i, 0;) and (i, 0;) defined as

(yi(es) _yil'(es))z

GO = 5 07(6,)/u(8,)+ 27(8,)x(8,))




Kim and Song
and the balance weight, W; ,,(0;), is given as

1, if @5 € Oy, Or i =i*( m)»9s6®f*(nm>’

(7
max ({Py(z,)(n) — P(Tn)}/7n(0y), 1), otherwise.

‘/Vim(es) - {

Note that W;,,(0;) quantifies importance of learning y;(6;) in reducing the chance of F,. Define
LDR,, = min; g.).;-+js Wi m(05)Gi(05). From Theorem 3, we can formulate the following OCBA:

maxq LDR,, subject to Z(i,ex) a;(0,) =1,0;(05) >0, V(i, 05). ®)

The optimality condition for (8) can be derived from the Karush-Kuhn-Tucker (KKT) conditions; Theorem 4
below summarizes the result.

Theorem 4 (Kim et al. 2022) The allocation @* is an optimal solution of (8), if and only if, &* satisfies:
* (Global balance condition) For all 8, we have 03(8)/A%(6,) = Y. 02 (8,)/A*(0 )
»  (Pairwise balance condition) W; ,,,(0,)G;(0;) = W]m( #)Gj(04),Y(i,0y), ( o) €{(1,0,) i F£T}
The conditions in Theorem 4 depend on unknown means {y;(6)}. In Algorithm 2 in Section 5.3,
we present a sequential sampling rule based on the plug-in version of Theorem 4, where each y;(0y) is
replaced with p; ,(6y).
We close this section by introducing notation for our algorithm. The empirical allocation ratio @;,(05)
is defined as ¢ ,(0;) := N'(0y)/n. Similarly, G;,(0,) and W, ,, ,(0;) are plug-in versions of G;(0;) and
Wim(0y), respectively.

5  OPTIMAL INPUT DATA ACQUISITION

In this section, we introduce our sequential sampling procedure that balances input data collection and
simulation sampling. Algorithm O summarizes the overall procedure with the following subroutines:

* Stopping Rule: a criterion that determines when to stop collecting more input data;

» Data Collection vs Simulation (DCvS): a criterion to determine whether to collect input data or to
simulate at some (i,0). We collect input data if this condition is met;

* Input Data Collection Rule: a sequential sampling rule for input data acquisition;

» Simulation Sampling Rule: a sequential sampling rule for selecting the next (i, 0) to simulate.

Several sample statistics are updated throughout the algorithm; we categorize them into three groups:

S.1  Updated with new input data: data size vector (my);<¢<r, posterior {7,,(6;)}, and MAP 0

S.2  Updated with new simulation sample: simulation sample sizes {N/'(6y)}, allocation ratio {; ,(0;)},
and sample LDR {G;,(6y)}

S.3  Updated in either case: empirical posterior preference {P;,(m,)}, MPB i}(m,), its estimated
adversarial set @, . . and balance weights {Wimn(05)}

5.1 Data Collection versus Simulation

Recall that in Section 3, we discuss finding optimal B that maximizes the convergence rate of Py (%) =
Pz, (0j(z,)). Because we estimate i*(7,,) by simulation, this objective is modified to incorporate simulation
error. The OCBA discussed in Section 4 aims to maximize the probability of event F,, , defined in (6). If
P(F,.) is close to 1, then input data acquisition may be optimized conditional on F, , while ignoring its
complement, F,; ,. Then, the goal is to maximize Py, (®;:(z,)) 1{Finx} instead of Pz, (5 ). After taking

> mnt
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Algorithm 0 Unified Framework

1: Warm start: Collect m( observations from each of the L input data sources and run ng replications
at each (i, 0y).

2: while Stopping Rule (14) is not met do

3 if DCvS (12) is met then

4 Allocate data collection budget based on Input Data Collection Rule (= Algorithm 1).

5:  else

6

7

8:

Find a pair (i, 0;) to be sampled based on Sequential Simulation Rule (= Algorithm 2).
end if
end while

the expectation over simulation error, we have

E[Px, (®(z,)) L{Fnn}] = E [Pr, (Oi(s,)) L {Fnan}] =Pr, (Oi(z,)) P(Fun), ©

n

where E and P are taken with respect to simulation error. The first equation holds from the definition of
F,», and the second is straightforward since Py, (@i*(nm)) does not depend on n.

We take the view of increasing n just enough so that the overall convergence rate of (9) is not slowed
down by n. With this motivation, the following theorem derives the LDR of (9) when the ratio of m to n
is at least y in the limit for some constant y > 0.

Theorem 5 Suppose Assumptions 1-6 hold and liminf,, , ,.m/n =y for some y > 0. Let LDR :=
lim,,_,..LDR,,. Then, for fixed & and B we have

.. 1 . . L ‘iinl
liminf ~ ——log (1 —Pyg, (@i*(nm))P(Fmﬂ))Zmm{yolergfozf_lﬁgDKL(@OHG),LDR}. (10)

myn—eoliminf =y N

Recall that LDR,, depends on the simulation allocation ratios, ¢, therefore, LDR in turn depends on
. Also, observe that LDR depends on lim,,;—,. W; ,,(0y) by definition. We can further see that LDR does
not depend on B from Definition (7) because the limit of each W; ,,(0;) is uniquely determined regardless
of B. By viewing @, B, and ¥ as decision variables, the lower bound in (10) can be maximized by solving:

maxaﬁ,ymin{yeie‘g( Z?:lﬁzDKL(Q(fH@g)’ LDR } = maxy>omin {yg1(B"),g2(e")},
i v

=g(a)

(1)

=g1(B)

where B* and @* are maximizers of g; and g», respectively. Observe that (11) is maximized as long
as v > g2(a*)/g1(B"*) while minimal m is spent when the equality holds. Therefore, our strategy is to
increase m if m/n falls below g>(@*)/g1(B"). Of course &* and B are unknown. However, we can use
the respective sample allocation ratios, {0 ,(0;)} and {m,/m}, to construct the following criterion: gather
additional input data if

. L -~ .
i Y mDkL(6']|0°) <nLDR,, , := nminjjs Wi mn(85)Gin(6y), (12)
€0
i (tm)

and run simulation, otherwise. Observe that (12) seeks to keep the minimum input data requirements
by increasing m only when m < g>(@*)/g1(B")n in an asymptotic sense. Hence, one may expect that
y~m/n~ g (a*)/g1(B") would be achieved in the limit.
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Algorithm 1 Optimal Input Data Acquisition

Initialization: A := batch input data size, S.1, and S.3.

1:

2 Evaluate d; = (Di.(6']|6f))1<¢<. for cach 8; € @, . forall 1 < j<J, (=05 |).
3: 1f9€®‘( )then

4:  Return the uniform allocation rule v, = (A/L,...,A/L).

5: else

6:  Solve the following LP, and denote the optimizer as V.:

Maxy_(y, .y, C subjectto C <d] (m+Vv), V1< j<J,, 1'v=Av>0. (13)

7: end if
8: Collect additional input data according to V..
9: Update S.1 and S.3.

Algorithm 2 Simulation Sampling Rule

1: Initialization: All quantities in S.1- S.3.

2: while minee@*( )Z%:lngKL(&HGf) > nmingzis Wimn(05)Gin(65) do

3: Find (7,0y) := argmin, ;s W; . n(05)Gin(65).

4 i (NJ(65)/2;(6,))* > Lisy (N7(85)/2(6,))* then
5: Run a replication at (i, 0y).

6: else

7: Run a replication at (i}, 6y).

8: end if

9:  Update S.2 and S.3.
10: end while

5.2 Input Data Collection Problem

Once (12) is satisfied, the algorithm proceeds to the input data collection problem. In this step, we solve
the empirical version of (5). Algorithm 1 formalizes this procedure when the input data are collected in
batch of size A. N

Notice that, if 8 € O, () then there exists j such that d; = 0, and (13) cannot give us any allocation

rule v because the optlmal value is always zero regardless of v. However, this event becomes rarer as m
increases since nm(O) — 1 almost surely so that 6c0; «(z,) holds eventually. Meanwhile, when 0c @‘ < (
Algorithm 1 allocates A uniformly to all L input distributions.

Ton)’

5.3 Simulation Sampling Rule

If (12) is not satisfied, then we increase n by sequentially selecting the next (i, 0y) to simulate until it is
satisfied. Algorithm 2 presents the sequential sampling rule motivated by the pairwise and global balance
conditions in Theorem 3. We find (i, 0) that deviates the most from the pairwise balance condition, and
then determine whether to sample the selected (i, 8;) or (i, 0,) based on the global balance condition.

5.4 Stopping Criterion

When m and n are large enough to meet a precision requirement, we stop collecting input data and simulation
sampling. In particular, we adopt a variation of the posterior-based PCS (pPCS) stopping rule discussed
in Eckman and Henderson (2022).
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Figure 1: For Solutions 1-4, (a) shows the conditional mean surfaces and (b) shows the favorable sets;
observe that Solution 1 is the optimum under 6.

Consider a policy that terminates the procedure when the estimated MPB’s posterior preference is above
user-specified threshold 1 — o (e.g., 1 — o = 0.95); that is, B;(nm),n(irm) > 1 — a. However, this policy does
not account for the simulation error in estimating i (7,,). If n is small, the procedure may stop when i’'(7,,)
is a poor estimate of i*(m,,). To circumvent this issue, we modify the stopping rule as follows:

Pimyn(Mm)>1—0 and min Y5 mDgr(67|6°) < aLDR,,,,. (14)
0cO°, ’

Following the same logic in Section 5.1, the second condition of (14) guarantees that n is large enough
relative to m.

6 NUMERICAL EXPERIMENTS

In this section, we present numerical results with a synthetic example. We assume that there are £k = 10
solutions and two exponential input distributions with respective mean parameters 6' and 62, where 9(} =1.6
and 63 = 1.4. The priors, 7} (0!) and 73 (6?), follow U[1,3] and U|[1,2], respectively. Since these choices
make 6 continuous, we apply the grid approximation in the appendix to discretize its support. We adopt
uniform grids {1+42j/(S1 —1)}o< <, and {14j/(S2—1)}o< <5, for 6' and 62, respectively, and
set S =8; =S, for simplicity. Further, for each (i, ), mean surface y;(0) is given as

yi(0) = (a0 —10Vi)?, (15)

where a =[5 5/2]7, and its simulation error is normally distributed with variance A?(0).

We observe the performance of our algorithm varying three factors: grid size S, data batch size
A, and simulation variances {A?(0)}. The baseline case has S = 11,A = 50, and A;,(0) ~ U[1,3] for
all 1 <i<k,0¢c.”. We observe six additional scenarios by varying S € {31,51}, A € {20,100}, and
{U[0.5,1.5],U][2,6]} for the sampling distribution of A;(0) while fixing all other factors to be the same as the
baseline. For all scenarios, we examine two confidence levels for stopping criterion: 1 — o € {0.95,0.99}.

Given (15), only Solutions 1—4 can be a conditional optimum in ® = [1,3] x [1,2]. Figure la shows
mean surfaces {y;(0)}i<i<4. Figure 1b divides [1,3] x [1,2] into the favorable sets of Solutions 1-4,
{®;}1<i<a. Notice that 8y belongs to ®;, which implies ip = 1. By design, Assumption 5 is satisfied for
all S € {11,31,51}. For all scenarios, we set (mg,ng) = (20,5) for initial sampling.
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Table 1: Numerical performances under the baseline scenario (S = 11,A =50,U[1,3]) and the additional
six scenarios that differs from the baseline by each factor presented in the first column. All statistics are
averaged from 1,000 macroruns with relative errors less than 8%.

. 1—a=0.95 1—a=0.99
Scenarios
(my,m3) n PCS | freq{0 € G)f;(ﬂm)} (my,my) n PCS | freq{0 € @f;mm)}
Baseline | (437,221) | 1.21E+4 | 0.964 0.072 (756,341) | 1.45E+4 | 0.993 0.046
S=31 (755,459) | 8.89E+4 | 0.984 0.063 (1524,911) | 1.41E+5 | 0.999 0.039
§S=51 (725,411) | 1.67E+5 | 0.978 0.065 (1502,742) | 2.10E+5 | 1.000 0.037
A=20 (400,205) | 1.28E+4 | 0.959 0.069 (727,324) | 1.62E+4 | 0.997 0.045
A=100 | (485,257) | 1.17E+4 | 0.972 0.075 (800,369) | 1.38E+4 | 0.997 0.051
U[0.5,1.5] | (447,222) | 7.73E+3 | 0.963 0.065 (774,343) | 8.38E+3 | 0.992 0.044
UJ2,6] (455,245) | 3.32E+4 | 0.967 0.082 (773,356) | 4.25E+4 | 0.992 0.055

For performance measures, we recorded the input data size collected from each data source, (m;,m;),
and the total simulation effort, n, spent until Algorithm O terminates. Once the procedure stops, we estimated
the empirical (frequentist’s) PCS, P{ip = i}(m,,) }. Recall that for small m, 0 may lie outside of the MPB’s
favorable set in which case Algorithm 1 evenly dlstrlbutes input data sampling effort to all L input sources.
We report the frequency of such an event, freq{O € @C i) } Table 1 reports the performance measures
averaged from 1,000 macroruns of each scenario.

For all scenarios, higher m and n are required to stop as 1 — & increases, which is intuitive. Notice that
the estimated frequentist’s PCS matches the Bayesian target, 1 — o quite well in all cases. The frequency
of uniform allocation (i.e., freq{O € G) (1) }) decreases as 1 — « increases, indicating that 6 is more likely
to belong to the MPB’s favorable set as m grows. Hence, we can confirm that the uniform allocation has
little impact on the large-sample behavior of the algorithm.

Next, we compare the performance of Algorithm O under the baseline scenario vs. the others. As the
number of @° on the grid increases, the number of constraints in (5) increases. As a result, optimal C of (5)
becomes smaller, which results in (seemingly) slower convergence rate for 1 — Py (7). This explains
why required m; and m; until termination increases as S increases. Moreover, for larger S, there are more
“opportunities” for Fy,, to occur and thus required n increases. When A increases, the ratios between m;
and my as well as n remain similar to the baseline case, which shows that the algorithm is pretty robust to the
choice of A. Lastly, as the average simulation variance increases, higher » is required for the algorithm to
terminate, however, acquired input data sizes are similar to the baseline. This makes sense as the input data
acquisition strategy should not be affected by the simulation error variance if the MPB and its adversarial
set are learned correctly. This implies that our Simulation Sampling Rule in Algorithm 2 is effective.
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A APPENDIX: DISCRETE APPROXIMATION FOR A CONTINUOUS INPUT PARAMETER

In this section, we discuss discretizing the support of 7, using a grid approximation when 0 is continuous.
For the /-th input model, we denote the discretized support by ., = {Gf, 95,...,95}. Recall that we
assume compactness of support in Assumption 3. In this case, one can generate a random sample of size
|-#;| by sampling from prior ng as J'Eg is always proper. One can also generate a Quasi Monte Carlo (QMC)
sample or a uniform grid on the support can be adopted.

Once .} is constructed, we assign a normalized weight to each Gf € ., proportional to the posterior

probability distribution function evaluated at Gf. The resulting approximate probability mass function
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Figure 2: For varying input data sizes, approximate pmfs of 8! and 6 respectively with eleven grid
points are shown. The input-data-generating distributions are exponential with mean parameters 601 and
05, respectively.

(pmf), pl,, satisfies
Pon, (6) < 73, (65) o< fe (2, )75(65).- (16)

From (16), we can compute pfn[(e_f) without the normalizing constant of ﬂ,{u Moreover, updating (16)
when there are new input data is simple; we only need to multiply the likelihood function of the new
data. The joint posterior pmf of L input parameters is denoted by p,,, which assigns probability mass
pm(0) =TT, pfn,(ef) to each @ on the grid.

Proposition 1 below stipulates a limiting behavior of weights {p?, . (6 )}ote.s, as my increases. Although
we omit its proof, we provide an intuitive explanation here. As my; — oo, one can show that 71:,{,[(65) ~
exp (—myDxk1.(6§/6%)) under Assumption 3. Therefore, p,, tends to assign the largest probability mass to
the point in .%, minimizing the KL divergence from Og , and the probability converges to one while those
of other points converge to zero in the limit.

Proposition 1 For cach £, let 6/ := argming: ,, Dki(6§]|6°). Under Assumption 3, limy, . pl, (6) =
1{6" = 6/} almost surely.

When the true parameter is included in the grid, i.e., Qg € .7, for all ¢, the probability mass on the grid
concentrates on Gg as data size grows and ig is invariant with the grid approximation. However, we cannot
guarantee Og € .%; in practice since all {Gé} are unknown in advance. In this case, the approximation
scheme will assign probability one on some 0, := (ef)lggSL in the limit. Hence, 0, can be viewed as a
stand-in for 8 in the approximation scheme. Even if 0, # 0, observe that the MPB converges to the same
ip as long as 6, € ©;,. For ease of discussion, we assume that .} contains 6y in this paper (Assumption 5);
a more general case will be investigated in the journal version of the paper.

Recall that (4) replaces unknown @ with its point estimator 8. Depending on the prior and the density
function, computing MAP may be expensive for continuous 6. With Approximation (16), we can replace
the MAP with the approximate MAP, 0, = (9{;) 1<p<p» Where s¢ 1= argmax, <, pfn[(af).

Figure 2 shows examples of the grid approximation of exponential distributions with mean parameters
6! and 62 discussed in Section 6 for S = 11. Observe that both pmfs concentrate on 9(} and Gg, respectively,
as the sample sizes increase as expected from Proposition 1.
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