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Populations often vary in their evolutionary responses to a shared environ-
mental perturbation. A key hurdle in building more predictive models of
rapid evolution is understanding this variation—why do some populations
and traits evolve while others do not? We combined long-term demographic
andenvironmental data, estimates of quantitative genetic variance components,
a resurrection experiment and individual-based evolutionary simulations to
gain mechanistic insights into contrasting evolutionary responses to a severe
multi-year drought. We examined five traits in two populations of a native
Californiaplant,Clarkia xantiana, at three timepoints over 7 years. Earlier flower-
ing phenology evolved in only one of the two populations, though both
populations experienced similar drought severity and demographic declines
andwere estimated to have considerable additive genetic variance for flowering
phenology. Pairing demographic and experimental data with evolutionary
simulations suggested that while seed banks in both populations likely
constrained evolutionary responses, a stronger seed bank in the non-evolving
population resulted in evolutionary stasis. Gene flow through time via germ
banks may be an important, underappreciated control on rapid evolution in
response to extreme environmental perturbations.
1. Introduction
Extreme environmental perturbations offer excellent opportunities to examine
evolution in natural populations on ecological time scales [1]. Rapid evolution
in response to strong episodes of environmental change has been documented
in many taxa, including lizards [2,3], finches [4] and plants [5]. Beyond offering
fundamental insights into the evolutionary process, this and related work speak
to the potential for natural populations to evolve in response to anthropogenic
forcings like climate change, and to the importance of adaptation for the persist-
ence of populations [6–8]. However, it remains poorly understood as to why
rapid evolution often fails to occur in some populations despite the same
environmental episode resulting in evolution in other nearby populations.

Resurrection experiments are increasingly used to directly examine evolution-
ary change resulting from an environmental event predicted to exert strong
selection on populations [5,9]. The power of resurrection experiments lies in
their ability to precisely quantify short-term evolutionary responses, rather
than only making predictions of the trajectory of evolution, while controlling
for confounding environmental effects on phenotypes. In short, the resurrection
approach entails rearing different generations of a population contempora-
neously in a common environment to directly quantify phenotypic evolution.
Though only a modest number of resurrection studies have been published to
date [10], such experiments with plants have sometimes demonstrated rapid
evolution in response to periods of drought [5,11,12].

Just as important as these positive results, however, are instances in which
resurrection experiments do not find evidence of rapid evolution. Populations of
a species can vary in their responses to the same climatic fluctuation [12–14],
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and even extreme climatic anomalies can result in no discern-
ible phenotypic evolution of putatively important traits [15].
What underlies this variation in populations’ evolutionary
responses to extreme events? While the resurrection approach
is a powerful method to determine if phenotypic evolution
has occurred, it does not typically provide insight into the
demographic and genetic controls on evolutionary change.

A more comprehensive understanding of the causes and
consequences of rapid evolution can be gained by coupling
evolutionary analyses with long-term demographic and quan-
titative genetic investigations. Sharp declines in population
size due to environmental perturbations will reduce the effi-
cacy of selection and increase the influence of stochastic
processes like genetic drift [16,17]. Such demographic,
environmental, or genetic stochasticity may stymie adaptation,
potentially causing population extinction before ‘evolutionary
rescue’ can occur [18–20]. Models and experiments have
further shown that evolutionary rescue is less probable when
the environment changes suddenly compared to when the
change is gradual [21]. As such, the rate and severity of demo-
graphic decline can provide insight into instances where some
populations fail to evolve in response to an extreme event that
drove rapid evolution in other conspecific populations.

For organisms with dormancy, outcomes of selection can
also be affected by the presence of a germ bank (seed or egg
bank). Populations that often experience significant environ-
mental fluctuations may evolve mechanisms that confer
dormancy as a bet-hedging strategy [22]. For annual plants,
seed banks thus result in overlapping, instead of discrete
generations. While germ banks may buffer populations
from extinction [23,24], they may also constrain evolutionary
responses to environmental change due to gene flow among
generations [25,26]. This ‘temporal migration’ can slow the
rate of adaptive evolution [27,28]. Alleles favoured prior to
a selective event will be ‘reintroduced’ to the population
from the germ bank during and after the event. If those
same alleles are selected against during the event, this gene
flow can retard adaptation (but see [29,30]). Moreover, the
environmental and demographic history of populations just
prior to an extreme event likely affects the magnitude of
gene flow from the past. For example, high fecundity of gen-
erations immediately prior to an extreme environmental
event would increase input to the seed bank. Therefore, his-
torical demographic data can also provide insight into the
influence of germ banks on population responses to selection.

Strong environmental perturbations typically exert selec-
tion on traits, but the same perturbation may still result in
selection regimes that vary among sites [5]. The response to
any selection pressure will depend upon the presence of suf-
ficient additive genetic variance for traits underlying fitness
variation [31,32]. A population’s response to selection will
be directly proportional to a given trait’s narrow-sense herit-
ability, h2 =VA/Vp [33]. In the context of resurrection
experiments, measuring the additive genetic variance of eco-
logically important traits may help us understand why traits
do or do not evolve in different populations exposed to
similar selective regimes. While tests of rapid evolution are
increasingly common, few studies have simultaneously
examined quantitative genetic variation and its potential
role in facilitating or hindering adaptation (but see [5]).

Furthermore, resurrection experiments usually examine
cohorts from before and at the end of an extreme event
(but see [34]). A key question is how long evolutionary
changes that occur in response to these events persist
beyond them. Including later cohorts in a resurrection
experiment allows us to assess the temporal stability of evol-
utionary responses and the extent to which dormancy might
delay responses to selection. When paired with associated
demographic data from natural populations, such a design
gives inference to how rapid evolution (or its absence)
influences a populations’ longer term phenotypic and
demographic trajectory.

The Southwest of the United States is in the midst of the
most severe multi-decadal drought (i.e. megadrought) in
recorded history (at least since 800 CE) [35,36]. Recent analyses
have shown that anthropogenic climate change has been a key
driver of this drought and accounts for an estimated 42% of the
soil moisture anomaly [36,37]. We examined evolutionary
responses to the most severe episode of this climate anomaly,
which began in the latter half of 2011 and ended in late 2015
in our study area. Our work focused on a well-studied
annual plant, Clarkia xantiana ssp. xantiana, which is endemic
to Southern California, USA. We used a resurrection exper-
iment to test whether traits likely to mediate drought
adaptation exhibited rapid evolution and whether genetic or
demographic constraints modulated responses.

We monitored environmental and demographic variation
over 12 years (2006–2017), spanning a period from 6 years
prior to drought until 2 years after the drought ended.
Those data provided insight into the severity and rate of
environmental and demographic change, as well as the mag-
nitude of input to the seed bank in years just prior to the
drought episode. To test for rapid evolution in response to
drought, we used a resurrection experiment with pedigreed
individuals from three time points: prior to the prolonged
drought (2011), at the end of the drought (2015) and
2 years later, after more average precipitation resumed
(2017). This latter sample allowed us to examine whether
any evolutionary responses persisted, increased or evolved
back toward the original population mean. We measured a
suite of traits that prior studies have shown to confer drought
escape and/or avoidance, and estimated additive genetic var-
iance for each of these traits in each population. Lastly, we
leveraged these demographic and experimental data in the
construction and analysis of an individual-based evolution-
ary simulation model to test the hypothesis that a seed
bank influenced the evolutionary responses of these
populations to extreme drought.
2. Material and methods
(a) Study system
Clarkia xantiana ssp. xantiana A. Gray (Onagraceae) is a predomi-
nantly outcrossing winter annual native to the southern Sierra
Nevada foothills and Transverse Ranges of California, USA
[38]. In this Mediterranean climate, the bulk of precipitation
occurs during winter and early spring [39]. Plants germinate
November–March during the rainy season, begin flowering in
May, and set seed in late June. In this study, we focus on two
populations, KYE and S22. KYE occupies oak woodland habitat
on granite-derived soils characteristic of the more mesic,
western portion of C. x. xantiana’s distribution (35.6240674°,
−118.5156798°). S22 is located near the subspecies’s eastern
geographical range limit and occupies a more xeric, higher
elevation site in pine woodland on metasedimentary-derived
soils (35.83996°, −118.450386°). These metasedimentary-derived
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soils occur along the Kern Canyon Fault, an approximately 150
km fault that parallels the Kern River through the Southern
Sierra [40,41]. Site identifiers are 57x (KYE) and 22x (S22), for
consistency with previous and future C. x. xantiana studies.
Though it was long assumed that Clarkia species had little if
any seed storage (e.g. [42]), recent work has shown that
C. x. xantiana populations can harbour substantial seed banks
[39,43].

(b) Climatic and demographic data
We obtained growing season precipitation data (November–
June) for years 2006–2017 from long-term weather monitoring
stations (HOBO Onset) at each site. Demographic data were col-
lected as part of a long-term study of 36 populations across the
range of C. x. xantiana in years 2006–2017 (detailed in electronic
supplementary material, A). Using a population projection
model approach, we combined estimates of seed input in each
year with estimates of seed bank vital rates (survival and germi-
nation) for KYE and S22 from [43] to estimate the age distribution
of germinants in each population in each year (assuming a maxi-
mum seed age of 3 years). Siegmund et al. [43] estimated these
vital rates for the two populations in our study as seed survival
rate (KYE = 0.66; S22 = 0.61) and germination rate (KYE = 0.13;
S22 = 0.27). The multi-year field experiments used to estimate
these vital rates are detailed in [43] and [39].

(c) Seed collection and refresher generation
We used seeds collected as part of the aforementioned long-term
demographic study on C. x. xantiana. Seeds were collected from a
haphazard sampling of plants (dozens to hundreds of plants,
depending on field conditions) across the spatial extent of sites
KYE and S22 in late June of years 2011 (pre-drought), 2015
(end of drought) and 2017 (after 2 years of more average precipi-
tation following the drought). All seeds from a given dam
constitute a maternal family. Because C. x. xantiana is a highly
outcrossing species [44] with multiple paternity (D.A.M. 2006–
2017, unpublished data), each maternal family sampled from
the field was a collection of full and half-sibs. Seeds were
stored at room temperature in plastic boxes containing silica
desiccant, with maternal families each in their own coin envel-
ope. To standardize maternal environmental effects, we grew
plants from each year together in a greenhouse for one ‘refresher’
generation to produce seeds for the resurrection experiment [10].

For each of the three generations of each population (six
‘cohorts’), we grew 1–5 plants from each of 20 haphazardly
selected maternal families (N = 219 plants total) in a fully ran-
domized design in the greenhouse in spring 2018. Most (66%)
of maternal families were represented by two plants, represen-
tation of families varied due to unequal germination. Within
each cohort, half the plants were randomly assigned as sires
and each sire was mated to two unique dams (with all plants ser-
ving as dams) to produce a pedigreed population for the
measurement round of the experiment. We also grew individuals
from a third site, Mill Creek, during this generation prior to the
resurrection experiment, but dropped this site from the sub-
sequent experiment for feasibility; data from the Mill Creek
refresher generation did not suggest evolution of any of the
three measured traits (growth rate, days to flowering, specific
leaf area (SLA); electronic supplementary material, figure S4).

(d) Measurement generation
With the seeds produced from crosses, we grew the six offspring
cohorts in a fully randomized design in the greenhouse in spring
2019 to assess phenotypic changes across generations for each
population. Of the original 20 maternal families planted for
each year cohort in the refresher generation, 16–20 were
represented (as sire and/or dam) in this pedigreed population
of offspring. We sowed six seeds for each of 22–28 dams from
each refresher cohort in plug trays with germination mix in the
growth chamber and scored germination for 33 days. There
were 83–122 germinants per cohort (electronic supplementary
material, table S2); germination rates ranged from 0.61 to 0.75
(electronic supplementary material, table S1). Up to four seed-
lings per dam (haphazardly chosen) were transplanted into
individual 656 ml Deepots (Stuewe & Sons, Tangent, OR) filled
with a 1 : 1 mix of sand and potting soil. Pots were arranged in
a completely randomized design in the greenhouse on a 16/8 h
light schedule and watered as needed. Final sample sizes
varied due to unequal seed availability and germination
among cohorts (n = 65–97 individuals per year cohort for post-
germination traits; electronic supplementary material, table S2).

(e) Trait measurements
We measured five traits that have previously been shown to be
related to drought escape and/or avoidance: days to germination,
growth rate, days to flowering, SLA and leaf succulence. Faster
germination, growth or flowering phenology may allow plants
to take advantage of the relatively mesic early growing season
and complete their life cycle before the onset of drier conditions
[5,11,45], though delayed germination may also be selected for
in arid environments (e.g. [46]). Lower SLA and increased leaf suc-
culence can increase water use efficiency, and evolution in these
physiological traits may represent drought avoidance adaptations
[45,47]. We also measured two fitness proxies: total number of
flowers produced and shoot (aboveground) biomass.

Days to germination was the number of days elapsed
between sowing and cotyledon emergence. Growth rate was
measured as the number of leaves produced per day, measured
for plants 41–43 days post-germination (i.e. growth rate was cal-
culated as the number of leaves at measurement divided by the
plant age in days at measurement). One fully expanded leaf
was collected from each plant 64–75 days post-germination; we
recorded fresh and dry weight for that leaf and used ImageJ
[48] to measure leaf area from a photo of the fresh leaf. SLA
was calculated as mm2 mg−1; leaf succulence was calculated as
leaf wet weight / leaf dry weight. Days to flowering were
measured as the days elapsed between seed sowing and the
opening of a plant’s first flower. Measuring flowering time in
such a way, as opposed to the days elapsed between germination
and flowering, incorporates variability in time to germination
and is more directly relevant to phenological timing as measured
in wild populations; both traits showed a similar pattern across
years (electronic supplementary material, table S2). Total
number of flowers produced was measured when all flowers
had opened on a plant. Shoot biomass was collected at the end
of the experiment and plants were dried before weighing. Two
pairs of traits were strongly correlated [number of flowers pro-
duced and shoot biomass (r = 0.72); SLA and leaf succulence
(r = 0.81); electronic supplementary material, figure S5]. We
report on number of flowers produced and SLA below, as flowers
produced is a more direct proxy for plant fitness than shoot bio-
mass, and SLA is a more commonly reported trait than leaf
succulence. We include descriptive statistics for shoot biomass
and leaf succulence in the electronic supplementary material,
table S2. Our analyses of invisible fraction bias (sensu [49]) indi-
cated that any bias in estimation of trait means due to unequal
seed survival among genotypes was likely minimal (electronic
supplementary material, B).

( f ) Statistical analyses for resurrection experiment
All statistical analyses were conducted in R v. 4.1.2 [50]. Data
were organized and summarized using the tidyr [51] and
dplyr [52] packages and plotted using ggplot2 [53].
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(i) Phenotypic evolution
We used linear mixed models (package lme4 [54]) to test for
differences among year cohorts in the measured phenotypic
traits (days to germination, growth rate, flowering date, SLA
and flower number). We analysed populations separately because
our main interest was in differences among year cohorts, not
populations, and we had limited power to detect interactions
between population and year. All models took the general form
of response∼ year + transplant age + (1|sire/dam). Transplant age
(days elapsed between germination and transplanting from germi-
nation tray to full pot) was included as a covariate to account for
differing seedling ages when transplanted to pots. Sire, and dam
nested within sire, were included as random effects to account
for non-independence among related individuals. For days to ger-
mination, dam average seed weight was included as a covariate
and transplant age was not. Only seeds that germinated were
included in days to germination analyses to avoid any confound-
ing of dormancy with seed viability. Days to germination and SLA
were log transformed prior to analysis to better meet assumptions
of homoscedasticity and normality of model residuals. We tested
whether inclusion of terms improved model fit with Wald λ2

tests using Type II SS (Anova.mermod() function in the car pack-
age [55]). If year was a significant predictor at α = 0.05, we
followed up with pairwise Tukey contrasts between year cohorts
using the emmeans package [56]. We computed estimated
marginal means for each year cohort using emmeans.
(ii) Genetic variance components
We estimated quantitative genetic variance components for all
traits in both populations using an animal model implemented
in the MCMCglmm package [57]. In short, the animal model
approach comprises a linear mixed effects model with an indi-
vidual’s breeding (i.e. additive genetic) value modelled as a
random effect [58,59]. A pedigree of the population provides
an expectation of how breeding values should covary between
individuals and thus allows for an estimate of a trait’s additive
genetic variance in that population. MCMCglmm uses a
Markov chain Monte Carlo approach in a Bayesian framework
to approximate the posterior distribution of quantitative genetic
variance components (analyses detailed in electronic supplemen-
tary material, C). Following [60], we obtained estimates of
additive genetic variance (VA), residual variance (VR) and the
variance explained by fixed effects (VF) from the model and cal-
culated h2 =VA / (VA +VR+VF); we report the mean of the
posterior distribution of h2 as our estimate. We considered a
trait to exhibit significant heritability if its 95% credible interval
for h2 did not touch 0.001 (in MCMCglmm, variance estimates
must be greater than zero). MCMCglmm diagnostic plots and
posterior distribution of model parameters are included in elec-
tronic supplementary material: MCMCglmm.
(g) Testing seed bank effects on evolutionary responses
We used an individual-based, genomically explicit evolutionary
simulation model, paired with approximate Bayesian compu-
tation (ABC), to test two key hypotheses: (1) seed banks
influenced the degree of evolutionary change in our populations,
and (2) the selective environment returned to its pre-drought
state after drought. Using the SLiM modelling framework [61],
we built models tracking the demography and evolution of a
population of diploid, hermaphroditic individuals that experi-
ence an environmental perturbation (e.g. drought). For each of
our two populations, we asked which of four candidate models
(table 1) best fit our observed evolutionary and demographic
data. Models varied in whether or not they had seed banks,
and whether or not the selective environment returned to
historical conditions once the perturbation ended.
(i) Model structure
We focused this investigation on one trait, flowering phenology,
which displayed contrasting evolutionary responses in our two
populations (Results). In our models, individual female fitness
(here, the probability of surviving to set seed) was determined
by the deviation of an individual’s phenotype (here, flowering
phenology, which is under stabilizing selection and controlled
by multiple QTL) from the optimal phenotype; the optimal phe-
notype is assumed to change based on current environmental
conditions. We focused on female fitness (i.e. siring success is
not affected by an individual’s phenotype) because earlier
work in C. x. xantiana has demonstrated strong selection on flow-
ering phenology via female fitness in arid conditions [62] but we
have no such tests of selection via male fitness. After a long burn-
in period with a relatively stable environment (and thus pheno-
typic optimum), the model environment and population size
were explicitly tied to our observed 12 year dataset. There was
an environmental perturbation (e.g. drought) in year 7 that
changes the phenotypic optimum, and modelled population
sizes in each year were proportional to the observed census
sizes of natural populations in each year. Full model details are
in the electronic supplementary material, D.

We ran 20 000 simulations of each model (table 1) for model
comparison via ABC (see Overview of ABC in electronic sup-
plementary material, D). Models were run separately for each
population because model demography was explicitly tied to
observed census sizes in each population (see above). In the
models without seed banks (Models A and B), seed survival
was set to 0.0 and seed germination was set to 1.0, while the
change in optimum was allowed to vary between −20.0 and
0.0 (table 1) across the 20 000 simulations. For models with
seed banks (Models C and D), seed survival and germination
rates were also allowed to vary between 0.05 and 0.75, which
encompasses the range of values for these parameters estimated
across 20 C. x. xantiana populations in [43] (range of posterior
mode for germination = [0.11, 0.27]; seed survival [0.45, 0.72]).
In models A and C, the phenotypic optimum returned to its
pre-drought level after the drought period ended, but in
models B and D, the phenotypic optimum did not change in
the post-drought period.
(ii) Model comparison and parameter estimation
Posterior probabilities of our four candidate models were calcu-
lated via ABC (abc package [63]) based on the distance
between observed and simulated summary statistics (see Over-
view of ABC in the electronic supplementary material, D). ABC
is a statistical method used to estimate model parameters and
choose among a set of candidate models when likelihood calcu-
lations are intractable (reviewed in [64]). The small number of
simulations that went extinct (KYE: 1.3% of simulations; S22:
2.3%) were discarded, as summary statistics could not be calcu-
lated. Our three summary statistics were (i) the difference in
mean phenotype between 2011 and 2015 (which we measured
in the resurrection experiment), (ii) the difference in mean pheno-
type between 2015 and 2017 (measured in the resurrection
experiment) and (iii) the ratio of survival rates between the
drought (averaging 2012–2015) and pre-drought (averaging
2006–2011) periods (measured in the field). The observed
values of the first two summary statistics were calculated using
the estimated marginal means from the linear mixed effects
models described above. For the observed value of the third
summary statistic, because survival in the model is only affected
by the focal trait but in the field is likely affected by multiple
traits, we assumed that one-third of the decrease in survival
during drought in natural populations was due to the focal
trait (flowering phenology). Assuming instead that one-quarter
or one-half of the decrease in survival was due to the focal



Table 1. Description and parameter prior distributions for the four candidate models. Values for varying parameters were drawn from uniform distributions (e.g.
U[x, x]).

description

parameters

seed
survival rate

seed
germination rate

change in
optimum

Model A no seed bank, with the trait optimum changing at the beginning

of the drought, then returning to the historical optimum after

drought

0.0 1.0 U[−20.0, 0.0]

Model B no seed bank, with the trait optimum changing at the beginning

of the drought and staying the same post-drought

0.0 1.0 U[−20.0, 0.0]

Model C with seed bank, with the trait optimum changing at the

beginning of the drought, then returning to the historical

optimum after drought

U[0.05, 0.75] U[0.05, 0.75] U[−20.0, 0.0]

Model D with seed bank, with the trait optimum changing at the

beginning of the drought and staying the same post-drought

U[0.05, 0.75] U[0.05, 0.75] U[−20.0, 0.0]
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trait produced qualitatively and quantitatively similar seed bank
parameter estimates (electronic supplementary material, figure
S6). We used the rejection method with a tolerance rate of 0.01
to calculate posterior probabilities for each model and used the
resulting Bayes factors to select the best model for each popu-
lation. We ran an additional 20 000 simulations of the selected
model for each population to aid in parameter estimation. Par-
ameter posterior distributions were estimated using localized
linear regression and a tolerance rate of 0.01. Graphical posterior
predictive checks were performed using 500 simulations run
with parameter values drawn from these estimated parameter
posterior distributions.
(iii) What underlies contrasting evolutionary responses between
populations?

To estimate the individual effects of aboveground demography
(seed input), seed bank vital rates (survival and germination)
and selection environment (change in phenotypic optimum
during drought) on the evolutionary stasis of KYE relative to
S22 (Results), we compared the posterior predictive checks
described above to additional batches of simulations (500
simulations each) as follows:

1. Aboveground demographic effect: seed bank (survival and
germination) and optimum change parameters estimated for
KYE, but with demographic history of S22.

2. Seed bank effect: optimum change estimated for KYE, with
KYE demographic history, but with seed bank parameters
estimated for S22.

3. Selection environment effect: seed bank parameters estimated
for KYE, with KYE demographic history, but with optimum
change parameter estimated for S22.

3. Results
(a) Climate and demography
Both sites experienced a period of substantially reduced pre-
cipitation in years 2012–2015 (figure 1). For KYE, growing
season precipitation was reduced by 45% compared to 2006–
2011; for S22, precipitation was reduced 57%. Precipitation
increased in 2016 and 2017 at both sites, with particularly
high precipitation in 2017.

Overall, KYE, which is nearer the range centre, had higher
density and total population size than S22, which is located
near the range edge (average density across 12 years: 4.03
and 1.36 fruiting plants per m2, respectively; average popu-
lation size: 282 704 and 9166 fruiting plants). Reduced
precipitation during the 2012–2015 drought period had
strong demographic effects at both sites (figure 1). At both
sites, survival rates of plants in permanent plots decreased
over 85 per cent during drought relative to pre-drought
averages (KYE survival rates: pre-drought = 0.34, drought =
0.05; S22 pre-drought = 0.35, drought = 0.02). At KYE, fruiting
plant estimates during this drought period were 94% lower
than pre-drought estimates (0.5 and 7.7 fruiting plants per
m2, respectively), though the pre-drought average was
largely influenced by high abundances in 2010 and 2011
(figure 1). At S22, plant densities during the drought
period were 83% lower than pre-drought estimates (0.4 and
2.3 fruiting plants per m2, respectively). In the 2 years post-
drought, fruiting plants remained few at KYE. At S22, the
number of fruiting plants somewhat rebounded in 2017.

Seed input prior to the drought was roughly twice as high
at KYE relative to S22 (yearly mean of 1198 and 646 seeds per
m2, respectively). Seed input was especially high at KYE in
the 2 years preceding the drought, 2010–2011. Seed input
was similar at KYE and S22 during the 2012–2015 drought
period (92 and 76 seeds per m2, respectively; figure 1). In
the 2 years post-drought, patterns of seed input mirrored pat-
terns of plant density, with input remaining low at KYE but
trending upward at S22 in 2017. The decreased germination
and increased seed survival rates of KYE (estimated in [43])
along with high seed input resulted in KYE having a more
substantial seed bank than S22, with estimated mean germi-
nant age ca. 20% higher than S22 (1.27 versus 1.04 mean
germinant age, respectively; figure 1). In both populations,
low seed input during drought resulted in increased germi-
nant age during that period due to older seeds comprising
a larger proportion of the seed bank (figure 1; electronic
supplementary material, figure S9).
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Figure 1. Environmental and demographic trends in two populations (KYE, S22) of the California annual plant Clarkia xantiana ssp. xantiana from 2006 to 2017.
Dotted vertical lines mark cohorts collected for the resurrection experiment. Precipitation represents the cumulative growing season precipitation, in mm, for a given
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(b) Phenotypic evolution
For S22, days to flowering differed among year cohorts ( p =
0.005; figure 2; electronic supplementary material, table S3).
Days to flowering decreased 1.6 days from 2011 to 2015,
and another 1.4 days from 2015 to 2017. Pairwise Tukey
tests identified the 2011 / 2017 contrast in days to flowering
as significant (69.4 versus 66.4 days, respectively; p = 0.006).
Phenotypic variance in days to flowering also decreased
across year cohorts, from 28.6 in 2011, to 21.3 in 2015, to
14.3 in 2017 (electronic supplementary material, table S2).
There was also a trend in S22, albeit not significant, for
growth rate to increase over this timeline, which may have
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material, figure S7.
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contributed to earlier flowering time. There was no statisti-
cally significant evidence of phenotypic evolution of other
traits for S22, nor any traits in the KYE population.
(c) Additive genetic variance
There was evidence of significant additive genetic variance
(VA) for days to germination, flowering date and flower
number in both populations (figure 3; electronic supple-
mentary material, tables S4 and S5) The h2 estimates for
these traits ranged from 0.32–0.59. There was also evidence
of significant VA for growth rate in the S22 population,
but not in the KYE population. We did not find evidence
that VA for SLA was significantly different from zero in
either population.

(d) Testing seed bank effects on evolutionary responses
For both populations, the model with the highest posterior
probability was Model D (population with a seed bank,
with post-drought phenotypic optimum equal to optimum
during drought) (electronic supplementary material, table
S6). Posterior probability of Model D was much higher than
all other models for KYE (Bayes factors all greater than 12;
electronic supplementary material, table S6). For S22, the
contrast of Model D with the second best model, Model B
(population without a seed bank, with post-drought
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Figure 3. Estimates of narrow-sense heritability (h2) for traits, with 95% credible intervals. Estimates of additive genetic variance for each trait are in the electronic
supplementary material, table S4.
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phenotypic optimum equal to optimum during drought),
was weaker (Bayes factor = 2.3), indicating less support for
an influential seed bank in that population compared to
KYE. Overall, without a seed bank, populations experiencing
a strong demographic decline due to large changes in pheno-
typic optima saw rapid phenotypic evolution toward the new
optimum (electronic supplementary material, figure S10a).
However, with a seed bank, even large changes in optima
usually resulted in only modest phenotypic evolution like
that observed in our populations. These constrained evol-
utionary responses were caused by gene flow from prior
generations via the seed bank.

We can concisely describe the strength of a population’s
seed bank as a combination of the seed germination and sur-
vival rates, ϕ = (1− g)s. Thus, ϕ (‘seed bank strength’ in
figure 4) describes the expected proportion of seeds available
for germination in year t that will be available for germina-
tion in year t + 1, with larger values of ϕ indicating a
stronger seed bank. The strength of the seed bank at KYE
was estimated to be more than five-fold higher than that of
S22 (0.47 versus 0.07) due to a higher seed survival rate
and a lower germination rate (figure 4a). KYE was also
estimated to have experienced a 15% smaller change in opti-
mum during drought compared to S22 (−6.1 versus −7.2
days; figure 4a). Observed evolutionary and demographic
responses of both populations fell within the distributions
of posterior predictive checks (figure 4b).

KYE’s mating population had a consistently higher mean
age than S22’s because of its stronger seed bank (figure 4c).
However, mean age for both populations increased during
the drought period due to low fecundity and increased rep-
resentation of older generations. The increased gene flow
from earlier generations in KYE led to the mean phenotype
of its mating pool responding much more slowly to the
environmental perturbation than S22 (figure 4c; electronic
supplementary material, figure S10b). Further simulation
runs indicated that the difference in evolutionary responses
was overwhelmingly due to differences in seed bank vital
rates, as opposed to differences in aboveground demography
or selective environments (figure 4d ). Simulations run with
the selective environment and aboveground demography of
KYE, but with the seed bank rates of S22, produced
evolutionary change nearly equal to that observed in
simulations run with full S22 parameters.
4. Discussion
Extreme environmental perturbations offer an opportunity to
examine rapid evolution in natural populations. We used a
resurrection experiment to test whether native plant popu-
lations rapidly evolved in response to a multi-year drought
despite severe demographic declines. In one population
(S22), earlier flowering evolved by the end of the drought
and continued to evolve in the same direction after the
drought ended. However, no other traits diverged at S22,
and all traits exhibited stasis in the second population,
KYE. We detected substantial additive genetic variance for
multiple traits in both populations, including flowering
phenology, suggesting that responses to selection were not
constrained by limited genetic variation. Evolutionary simu-
lations integrated with our demographic and experimental
data suggested that seed banks constrained evolutionary
responses in both populations. In KYE, the seed bank had a
stronger effect resulting in evolutionary stasis; whereas in
S22, the seed bank had a weaker effect, which facilitated
closer tracking of changing phenotypic optima.

Why does rapid evolution occur in some populations but
not others? One hypothesis is that a lack of quantitative gen-
etic variation limits adaptive responses even when selection
is intense. However, we found substantial VA and high herit-
ability for flowering phenology in both populations (with the
caveat that estimates of h2 are environment-dependent and
could differ between the greenhouse and field). In fact,
KYE contained twice the additive genetic variance in flower-
ing time compared to S22. Thus, these results are inconsistent
with the hypothesis that genetic variation prevented rapid
evolution. Other studies have similarly found that rapid
evolution occurred in some but not all studied populations
[12–14]. However, estimates of VA are rarely quantified in
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this context and thus the importance of genetic constraints is
poorly understood (but see [5]). It is also worth noting that
phenotypic variance in flowering phenology in S22 decreased
50% over our study, consistent with a strong episode of selec-
tion (electronic supplementary material, tables S2 and S5).
Thus, the erosion of genetic variation due to this drought
could constrain future responses to selection on phenology.

A more likely explanation for the lack of phenological
evolution in KYE is that gene flow from the seed bank rein-
troduced alleles that were maladaptive during the drought.
Previous field observations and experiments had demon-
strated that both populations harboured seed banks but
differed in their seed bank vital rates. We used individual-
based simulations to ask whether these seed bank differences
could explain the populations’ contrasting evolutionary
responses to drought. Models suggested that decreased ger-
mination and increased seed survival rates resulted in a
seed bank at KYE that strongly constrained phenotypic evol-
ution. The recruitment and mating of older individuals from
the seed bank essentially caused maladaptive gene flow
through time (figure 4c). A third population grown during
the refresher generation likewise showed no significant evol-
utionary response to the drought (electronic supplementary
material, figure S4) and was estimated in [43] to have seed
bank vital rates similar to KYE (low germination and high
seed survival). The seed bank also constrained phenotypic
evolution in the evolving population, S22, but to a lesser
extent due to a relatively weaker seed bank.

In general, theory has outpaced empirical work on
the evolutionary consequences of germ banks in natural
populations (but see [25,26,28]). Future resurrection studies
could explicitly sample populations across a range of
germ bank vital rates to further dissect germ bank effects
on evolutionary responses. Wholly lacking are experimental
investigations, where germ banks are manipulated in natural
populations prior to (natural or experimentally imposed)
environmental change. Such work is needed to test predic-
tions arising from theory regarding the balance of negative
(adaptation lag) and positive (increase in genetic variance)
genetic effects of germ banks on adaptation [30]. Of course,
evolutionary effects of germ banks will be influenced by,
and potentially influence, their more well-studied demo-
graphic effects [22,39,43,65,66]. An especially fruitful
approach would integrate experiments with models explor-
ing the interplay between demographic and evolutionary
rescue during environmental change across short and long
time scales.

The hypotheses tested above are not exhaustive, and it is
worth exploring alternative explanations for the lack of evol-
utionary change in phenology at KYE. Trait plasticity could
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allow a population to weather an environmental perturbation
with little or no evolutionary change [67]. However, plastic
responses in flowering time were nearly identical for our
two populations (electronic supplementary material, figure
S11), suggesting that greater plasticity in KYE cannot explain
its evolutionary stasis. Spatial gene flow among populations
could potentially oppose allele frequency changes favoured
by selection. However, gene flow is unlikely to be strong
enough over this short time window to prevent evolutionary
change, especially given that our populations are isolated
from others (greater than 1 km) and lack adaptations for
long-distance dispersal. It is also possible that advanced
phenology simply did not confer fitness benefits during
drought at KYE, though this would be contrary to both
general trends in plants [45] and the well-documented
relationship between early flowering time and adaptation to
aridity in C. xantiana and close relatives [38,46,62,68–70].
It is also interesting that, in contrast with expectations,
empirical and simulation results suggested that phenotypic
optima did not return to their pre-drought level after the
drought ended. This insight is consistent with the obser-
vation that population demography did not rebound after
drought as one might expect (figure 1). Although the
causes of this trend are unclear, it could be related to
the timing of precipitation (e.g. most precipitation fell early
in the season, which seems to promote germination but
not survival in C. x. xantiana; D.A.M. & J.W.B. 2006–2017,
personal observation).

The evolution of earlier flowering at S22 is consistent with
post-drought resurrection studies in Brassica rapa [5,34] and
probably reflects a strategy of drought escape (reviewed in
[45,71,72]). Past work on C. x. xantiana has shown that QST

for flowering phenology is more than twice as high (QST =
0.7) than QST for five other ecologically important traits [68].
This result suggests that flowering phenology is often the
target of spatially variable selection and readily evolves, as
has been frequently observed in many systems [5,45,73,74].
Earlier flowering may evolve more readily than other traits
under selection if its genetic architecture is comparatively
simple (e.g. [71]), which can quicken responses to selection
relative to more highly polygenic traits. The evolutionary labi-
lity of flowering phenology could also be due to its direct tie to
assortative mating [75]—early flowering individuals tend to
mate with other early flowering individuals. Theoretical
work has shown that when there is directional selection on
flowering time, positive assortative mating can increase gen-
etic variation and the rate of phenotypic evolution compared
to scenarios with random mating [76,77].

A population’s response to environmental change will be
determined by the interplay of demography, genetics, selec-
tion and stochastic processes. Here, we have shown that
flowering phenology rapidly evolved during and after a
severe drought in one population. In a second population,
we observed no sign of rapid evolution despite similar
environmental stress, demographic decline and even greater
additive genetic variance in phenology. In both populations,
our results are consistent with the hypothesis that gene flow
through time via seed banks either slowed or prevented rapid
evolution. Our results are inconsistent with the hypotheses
that plasticity or limited genetic variation constrained
responses to selection. While rapid evolution in response to
environmental perturbations has been repeatedly demon-
strated, few studies have tackled the problem of why
evolutionary stasis is so commonly observed across studies
and systems. Our results emphasize that studies of adap-
tation in plant populations experiencing environmental
change should consider both above and belowground pro-
cesses affecting population demography and fitness.
Extensions of our model could incorporate assortative
mating, asymmetry in fitness functions [78] and genetic cor-
relations to further our understanding of the genetic and
ecological controls on rapid adaptation. Future empirical
work should attempt to experimentally test key theoretical
predictions and consider both the demographic and evol-
utionary effects of germ banks. As we seek to build more
predictive models of the evolutionary process, the synthesis
of demographic, environmental and quantitative genetic
data with empirical and modelling approaches will be invalu-
able for understanding where and when rapid evolution is
likely to occur.
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