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INVARIANT MEASURES IN SIMPLE AND IN SMALL
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ARTEM CHERNIKOV, EHUD HRUSHOVSKI, ALEX KRUCKMAN, KRZYSZTOF
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ABSTRACT. We give examples of (i) a simple theory with a formula (with
parameters) which does not fork over ) but has y-measure 0 for every auto-
morphism invariant Keisler measure p, and (ii) a definable group G in a simple
theory such that G is not definably amenable, i.e. there is no translation in-
variant Keisler measure on G.

We also discuss paradoxical decompositions both in the setting of discrete
groups and of definable groups, and prove some positive results about small
theories, including the definable amenability of definable groups.

1. INTRODUCTION AND PRELIMINARIES

We begin with an introduction for a general audience. The paper is about
amenability in model-theoretic environments, with both nonexistence and existence
theorems. The expression “amenability” often refers to the existence of a finitely
additive probability measure u on some suitable collection B of subsets of a given
set X, which is invariant under a certain action of a certain group G. When X = G,
B is the collection of all subsets of GG, and the action is the action of G on B by left
translation, then we obtain precisely the “classical” notion of amenability of G as a
discrete group. Remaining in this context, one could replace the Boolean algebra of
all subsets of G by some other Boolean algebra of subsets of G invariant under left
translation, and ask for amenability with respect to the new Boolean algebra. In
some interesting examples one obtains strikingly different behaviour when passing
to natural and reasonably rich Boolean algebras. For example the free group F» on
two generators is not amenable as a discrete group, but if we choose instead the
Boolean algebra B to be the collection of subsets of F» which are definable (with
parameters) in the structure (Fs, x), then not only do we get amenability, but
“unique ergodicity”: there is a unique invariant measure which is moreover {0,1}-
valued. This is a consequence of the fact that the first order theory Th((Fz, x)) of
the structure (Fy, x) has a property called stability, which can be summed up by the
statement that “any stable group is (uniquely) definably amenable”. In addition to
the free group, all commutative groups and all algebraic groups over algebraically
closed fields are stable. A more general class of first order theories, the class of
so-called simple theories was defined and studied beginning in the 1980’s, often in
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the context of specific examples of independent interest such as pseudofinite fields
(logical limits of finite fields). Early applications were to algebraic groups over finite
fields [13]. Groups definable in pseudofinite fields are definably amenable witnessed
by a “nonstandard counting measure”. It was asked around ten years ago whether
groups definable in any simple theory are definably amenable. One of our main
theorems appearing in Section 3 (as in (ii) of the abstract) is a counterexample.

We now give some background for (i) in the abstract, which on the face of it, may
seem less accessible to the general reader. The context, implicit in the paragraph
above, is a structure M in the sense of model theory, namely an underlying set which
we also call M, equipped with a collection D of distinguished subsets of various
Cartesian powers M™ of M, including the diagonal C M?2. The automorphism
group Aut(M) is the group of permutations of M which fix setwise each of the
distinguished sets. Closing under the operations of finite Boolean combination,
and projection (from M"*! to M™), we obtain the class D; of (-definable sets. For
X C M™% in Dy, and a € M*, let Xz = {b€ M™: (b,a) € X}. These various X;
(as X and @ vary), are called the definable (with parameters) sets in the structure
M. Aut(M) acts on the collection of definable sets. We fix some ambient Cartesian
power M™ of M, and consider the Boolean algebra B of definable subsets of M™,
again acted on by Aut(M). We make an additional assumption on M (saturation)
ensuring that Aut(M) is “large” in a suitable sense. One of the recent waves of
connections between model theory and combinatorics, specifically [11], was largely
based on an analogy between two kinds of (Aut(M)-)invariant ideals of B: the
“forking ideal” Iy in the case that the first order theory Th(M) is simple (see
below for details and definitions) and for any invariant finitely additive probability
measure p on B, such as the nonstandard counting measure when M is pseudofinite,
the p-measure 0 ideal I,,. We always have that Iy C I,,, and it was an open question
whether for simple theories I; is precisely the intersection of the I, as p varies over
all invariant measures. We answer this question negatively in this paper. The
main example is constructed in Section 2, producing a theory with many invariant
measures, and a formula which is in I, for all ;4 but not in Iy. On the other hand,
a corollary of the main theorem in Section 3, is the existence of a simple theory
and a “sort” on which there are no invariant measures, giving another route to a
negative answer to the question.

Another aspect of the paper, which is made explicit in Section 4, concerns the
“paradoxical decomposition” obstructions to amenability in the various senses. We
are interested in definable versions of paradoxical decompositions, and which model
theoretic properties of theories T' are incompatible with definable paradoxical de-
compositions. Various results are obtained including the definable amenability of
definable groups in “small” theories (where the Boolean algebras of (-definable sets
admit a Cantor-Bendixon analysis).

We now pass on to a more technical introduction, for readers familiar with model
theory.

In stable theories, Keisler measures are very well understood, originating in [19].
There was a comprehensive study of Keisler measures in NIP theories, starting
with [15], [16], [17]. There are indications that many of these results fail outside of
NIP (see [8]). It is very natural to ask what happens in simple theories. The main
thrust of the current paper is to give counterexamples to some of these questions,
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as in the abstract. Another aspect of the paper is to give some positive results in
the case of countable small theories.

Partly as motivation we will, in this introduction, discuss and recall what is
known about Keisler measures and forking in general, as well as in stable and NIP
theories and then state the questions which are answered in the body of this paper.

Our model-theoretic notation is standard. Models will be denoted by M, N, ...
and subsets (sets of parameters) by A, B, . ... If and when we work with a complete
theory T then we often work in a sufficiently saturated model, called € or M; a,b, . ..
refer to tuples in models of T unless we say otherwise or clear from the context.

The study of stable theories is connected to categoricity and is largely due to
Shelah [28]. There are many other reference books, including [26]. In the middle
1990’s the machinery of stability theory was extended or generalized to the class of
sitmple theories which had been defined earlier by Shelah in [29]. This development
was closely connected to and went in parallel with the concrete analysis of sev-
eral kinds of structures and theories, including Lie coordinatizable and smoothly
approximable structures ([18], [3]), and bounded PAC fields ([14] and the later
published [10]), using tools with a stability theoretic flavour. In fact Hrushovski’s
S1-theories already provided a certain abstract finite rank environment for adapt-
ing stability to the more general situations. The technical breakthroughs came
with Byunghan Kim’s thesis [20], [21] followed by [23]. Kim showed that all the
machinery of nonforking independence extended word-for-word from stable theories
to simple theories, except for stationarity of types over models (or more generally
algebraically closed sets), and [23] found the appropriate weak version of the sta-
tionarity theory: the Independence Theorem over a model, or more generally for
Lascar strong types. The latter, improved to so-called Kim-Pillay strong types,
migrated and became essential in all of model theory, and also made connections to
combinatorics and Lie groups possible, although we still do not know, whether this
level of generality, versus the strong types of Shelah, is really needed in simple the-
ories. The expression “Independence Theorem” already appears in the earlier work
on Si-theories, and was borrowed from there. In addition to the original papers,
there are several good texts on simple theories [30], [22], [1]. The original definition
of simplicity was in terms of not having the “tree property”. We will define it here
in terms of “dividing” as it is an opportunity to introduce dividing and forking.

Definition 1.1. (i) A formula ¢(z,b) divides over A if there exists an A-indis-
cernible sequence (b; : i < w) with b = by such that {¢(z,b;) : i < w} is
inconsistent.

(ii) If ¥(x) is a partial type over a set B closed under conjunctions and A C B,
then X(z) divides over A if some formula ¢(x,b) € X(z) divides over A.

(iii) A formula forks over A if it implies a finite disjunction of formulas each of
which divides over A.

(iv) For ¥(z), A C B as in (ii), X(z) forks over A if some formula in X(z) forks
over A.

(v) The complete theory T is said to be simple if for any complete type p(z) €
S(B) there is a subset A C B of cardinality at most |T'| such that p(z) does
not divide over A.

In simple theories, dividing and forking coincide. Stable theories can be charac-
terized as simple theories such that for any model M, p(z) € S(M), and M < N,
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p(z) has a unique extension to a complete type g(z) € S(N) which does not fork
over M.

The stable forking conjecture says that in a simple theory T, forking is explained
by the “stable part” of T' (in a sense that we will not describe in detail). There are
many simple theories T which have a stable reduct Ty (with quantifier elimination)
such that T is the model companion of Ty together with the new relations (possibly
modulo some mild universal theory). Typically in such a situation forking in T is
witnessed by forking in Ty so the stable forking conjecture holds. Our two main
examples of simple theories will have this feature.

In a simple theory T' we will say that a and b are independent over A (in the sense
of nonforking) if ¢tp(a/A,b) does not fork over A. This satisfies a number of proper-
ties: invariance, finite character, local character, existence of nonforking extensions,
symmetry, transitivity, and the “Independence Theorem over a model”. Moreover
the existence of an “abstract independence relation” satisfying these properties im-
plies simplicity of T as well as that this relation coincides with nonforking. This
will be used in Sections 2 and 3 and we will give a few more details there. Among
the “simplest” simple theories are the theories of SU-rank 1, where every complete
nonalgebraic 1-type has only algebraic forking extensions.

Although NIP theories are not really objects of study in the current paper,
they form part of the motivation. A theory T is NIP if there is no formula ¢(z,y)
and a; for i € w and bg for S C w in some model M of T such that for all 7,.5,
M E ¢(a;,bs) iff i € S. NIP theories are generalization of stable theories in an
orthogonal direction from simple theories, and in fact T is stable if and only if T’
is both simple and NIP. Although forking is not so well-behaved in NIP unstable
theories, it still plays a big role. In particular, forking coincides with dividing over
models [5], and global nonforking extensions of types over a model M are precisely
extensions which are invariant under automorphisms fixing M pointwise. For a
type p(x) over a set A its global nonforking extensions (if they exist) are rather
invariant over the bounded closure “bdd(A)”.

The other main ingredients in this paper are Keisler measures. Given a structure
M (or model M of T), and variable z, a Keisler measure p, over M is a finitely
additive probability measure on the Boolean algebra of definable (with parameters)
subsets of the x-sort in M. Keisler measures generalize complete types p(x) over
M which are the special case where the measure is {0, 1}-valued (0 for false, 1 for
true). It took a long time for Keisler measures to become part of everyday model
theory (see [4] for a quick survey). They were studied by Keisler in [19] which is, on
the face of it, about NIP theories, but where, among the main points, is that for
stable theories, locally (formula-by-formula) Keisler measures are weighted, possibly
infinite, sums of types. (See also [27] where this is used to give a pseudofinite
account of the stable regularity lemma.) In the N1P environment, Keisler measures
were a very useful tool in solving some conjectures about definable groups in o-
minimal structures [15]. In [16], [17], the ubiquity of automorphism (translation)
invariant Keisler measures in NIP theories (groups) was pointed out. In [12] a
first-order theory was defined to be amenable if every complete type over @) extends
to a global automorphism invariant Keisler measure.

For pseudofinite fields, the nonstandard counting measure provides both au-
tomorphism invariant measures on definable sets, as well as translation invariant
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measures on definable groups (with very good definability properties). The exam-
ples given in Sections 2 and 3 of the current paper show in particular that such
behaviour does not extend to simple theories in general.

We will now describe the main results of the paper, with motivations coming
from what is known in the stable context.

We will talk about (non-)forking over (), but () can be systematically replaced by
any small set A of parameters.

The following is well-known ([15], [25]) but we recall the proof anyway.

Fact 1.2. (No assumption onT.) Suppose ¢(z,b) forks over (. Then pu(p(x,b)) =0
for any automorphism invariant global Keisler measure pu(x).

Proof. Working in the saturated model M we may assume that ¢(z,b) divides over
(), witnessed by indiscernible sequence (bg, b1, ...) with by = b such that {¢(x,b;) :
i < w}isinconsistent. So ¢(x, bo)Ad(x,bi)A. . . A(z, by) is inconsistent for some k >
1. Assume for a contradiction that p(¢(z, b)) > 0 for some automorphism invariant
global Keisler measure p. Choose 0 < r < k maximum such that pu(é(z,bo) A... A
¢(x,b,)) =t for some t > 0. Let ¥,(x) = ¢(x,bo) A ... A p(z,b,-1) A Pz, b;) for

j=mr,r+1,r+2,.... Then by indiscernibility, invariance of y and choice of r, we
have that p(y;(z))) =t for all j > r, but p(y;(z) Ay (x)) =0forr<j<j —a
contradiction as pu(z = z) = 1. O

Remark 1.3. Suppose T is stable (and complete in language L), and p(x) is a
complete type over (). Then there is a global Keisler measure p(z) (i.e. over a
saturated model M) which extends p(z) and is Aut(M)-invariant. Moreover p is
the unique Aut(M)-invariant global Keisler measure extending p.

Proof. Again we give a proof, for completeness. The reader is referred to Section
2 of Chapter 1 of [26] for notation and facts that we use. Fix a finite set A of
L-formulas of the form ¢(z,y), and consider the collection of p’(z)|A where p’ is a
global nonforking extension of p. We know that there are only finitely many such,
say pi,...,pn. Let pua be the average of {p1,...,pn}, namely for each ¢(z,y) € A
and b € M, jia(6(,b)) = (1/n)(5 pi(6(2,))) (where pi(6(z,b)) = 1if 6(x,b) € p;
and 0 otherwise).

One has to check that A C A’ implies that puas agrees with pa on A-formulas,
so that the directed union of the ua gives a global Keisler measure p. For this we
use transitivity of the action of Aut(M) on the set of global nonforking extensions
of p. From the definition of y and invariance of non-forking, we deduce that u is
Aut(M)-invariant.

Uniqueness of p follows from Fact 1.2. O

Corollary 1.4. Suppose that T is stable and ¢(x,b) is a formula which does not fork

over B. Then there is an Aut(M)-invariant global Keisler measure giving ¢(x,b)
positive measure.

Proof. Let p’ be a global type which contains ¢(z,b) and does not fork over §), and
let p be the restriction of p’ to §. The Aut(M )-invariant Keisler measure extending
p constructed in Remark 1.3 gives ¢(z, b) positive measure. O

A weak version of the corollary above holds in NIP theories using Proposition
4.7 of [16].



6 CHERNIKOV, HRUSHOVSKI, KRUCKMAN, KRUPINSKI, MOCONJA, PILLAY, RAMSEY

The issue for the current paper is what happens in simple theories, where the
role, if any, of Keisler measures was not well understood. We will expand on some
earlier comments. We fix a complete theory T', saturated model M, sort S, and the
Boolean algebra B of definable (with parameters) in M subsets of the sort S. The
ideal I; is the collection of such definable sets which fork over ). For any Aut(M)-
invariant Keisler measure p on S, let I, be the ideal of definable sets with p-measure
0. Fact 1.2 says that Iy C I, for all such . In [11], an Aut(M )-invariant ideal I of B
was defined to be an Sy-ideal if for any L-formula ¢(x,y) (where z is of sort S) and
indiscernible sequence (b, : 1 < w), if ¢(x, b1) Ad(x,be) € I, then ¢(x,b1) € I. Such
S1 ideals appeared in the “Stabilizer Theorem” from [11]. Among the analogies
between the forking ideal Iy and the ideals I, is that (i) I, is an S; ideal, and
(ii) for simple T', Iy is an Sy ideal [21]. The open problem (raised also by both
the first author and Leo Harrington in personal communications) is whether, in
a simple theory T' (and working in a fixed sort), Iy is the intersection of the I,
for p ranging over invariant global Keisler measures. In the light of Fact 1.2, this
reduces to the question whether (in a simple theory) any formula (with parameters)
which does not fork over (), has p-measure > 0 for some invariant measure pu. Of
course if there are no invariant Keisler measures on sort .S, then the question has
a negative answer, and Corollary 1.9 below gives such an example. However we
are also interested in the situation where there do exist (many) invariant measures,
namely where T is also amenable in the sense described earlier. So we prove:

Theorem 1.5. There is a simple theory T (of SU-rank 1) which is amenable,
together with a formula ¢(x,b) which does not fork over O but has measure O for all
automorphism invariant global Keisler measures.

We now turn to the case of definable groups. Recall:

Definition 1.6. Let G be a group definable (say without parameters) in a structure
M. Then G is said to be definably amenable if there is a Keisler measure on G over
M which is invariant under left translation by G.

So definable amenability is a function not just of (G, -) but of the ambient struc-
ture M.

Recall from Section 5 of [15] that definable amenability of G depends only on
Th(M), not the particular model chosen. The relation with paradoxical decompo-
sitions will be discussed in detail in Section 4. The group version of Remark 1.3
is:

Fact 1.7. Stable groups are definably amenable. More precisely if Th(M) is stable
and G a group definable in M, then G is definably amenable. Moreover there is a
unique left invariant Keisler measure on G (over M ) which is also the unique right
imvariant Keisler measure.

Ezxplanation. This is well-known but spelled out in detail for the more general case
of “generically stable” groups in Corollary 6.10 of [16]. Also it is done explicitly in
the local (formula-by-formula) case in [9].

It was asked by several people, including the sixth author, whether groups de-
finable in models of simple theories are definably amenable. Note that this is the
case for groups definable in pseudofinite fields (or arbitrary pseudofinite theories).
Nevertheless, our second main result is:
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Theorem 1.8. There is a simple theory (of SU-rank 1) and a definable group G
in it which is NOT definably amenable.

The usual move of expanding a theory by a new sort for a principal homogeneous
space (PHS) for a definable group yields:

Corollary 1.9. There is a simple theory which is NOT amenable. In fact there is
a sort S with a unique 1-type over (), such that there is no global invariant Keisler
measure on sort S.

We recall briefly the situation for definable groups in NIP theories. First there
DO exist non definably amenable groups; such as SL(2,R) as a group definable in
the real field. Nevertheless there is a very nice theory of definably amenable groups,
beginning in [16], continued in [17, 6] and brought to a fairly comprehensive con-
clusion in [7]. The latter paper includes a classification of the translation invariant
Keisler measures on definably amenable groups in NI P theories.

Theorem 1.5 will be proved in Section 2. Theorem 1.8 and Corollary 1.9 will
be proved in Section 3. The constructions of the theories and structures which
give these (counter-)examples are a bit complicated from the combinatorial point
of view.

There is a general theory of “definable paradoxical decompositions” from [15],
which gives obstructions to definable amenability of groups. A general problem is
to determine which interesting model-theoretic properties are inconsistent with the
existence of a definable paradoxical decomposition. In Section 4, we show directly
that smallness of T (as well as stability) is such a property, yielding the definable
amenability of groups definable in small theories and in stable theories (although the
latter was given earlier in the paper). We also give a “simpler” witness to Theorem
1.8, in terms of certain invariants related to definable paradoxical decompositions.
Finally we discuss Grothendieck rings of structures, and show the non-triviality of
the graded Grothendieck ring of any structure with small theory.

Thanks to the referee for many helpful suggestions.

2. A SIMPLE THEORY WHERE FORKING IS NOT DETECTED BY MEASURES

Here we prove Theorem 1.5. We first give an overview and then the technical
details. Recall first that for any group G and a free action of G on a set P we can
consider P as a structure in a language with function symbols f, for each g € G.
When G is infinite, all such structures are elementarily equivalent, the theory is
strongly minimal and there is a unique 1-type over (). We will choose G to be the
free group F5 on 5 generators. We will add another sort O to the picture and a
relation R C O x P and find a1, ...,a5 in P such that R(z,a1), R(z,a2), R(x,as)
are disjoint infinite sets, which are contained in the union of R(z, a4) and R(x,as).
It will be done sufficiently generically such that there is still a unique 1-type realized
in P, and the theory of the structure is simple (of SU-rank 1). As all of the a;
have the same type, any automorphism invariant Keisler measure (on the sort O)
will assign the same measure to each of the R(z,a;), which will have to be 0. But
R(x,a;) (being infinite) does not fork over .

2.1. The universal theory. As usual we mix up notation for symbols of the
language and their interpretations. As above we have two sorts O, P, and relation
R C Ox P. And it is convenient to only have function symbols for 5 free generators
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of F5 and their inverses, which we will call fli, fQi, f;t, gf, and gzi. We get a
language L. Terms corresponds to elements of the free group F5, which will act on
the sort P, via the function symbols. For a € P, let R, denote the subset of O
defined by R(z,a).

Then we can express by a collection of universal sentences in L that

(i) the map taking (¢,a) € G x P to ta € P is a free action of G on P,
(ii) for alla € P, the sets (subsets of O), Ry, (a), Rf,(a), Rf,(a) are pairwise disjoint
and each is contained in the union of Ry, () and Ry, (q)-

We will call this universal L-theory T

We will define a theory T in L which extends T and has quantifier elimination,
so will be the model companion of 7. As usual to show the existence of model
companions one needs to describe, in the parameters, when a quantifier-free formula
¢(x) over a model M of T has a solution in a larger model N of T'. The key issue
is Axiom (ii) above. So some combinatorics is required which will be done in the
next section.

2.2. Colourings and free actions. We fix a free action of F5 on a set X. As
above, we will denote by {f1, f2, f3, 91,92} a system of free generators for the free
group F5. There is an induced graph structure on X, where we put an edge between
u and v if v = gu for g one of the distinguished generators f;, g; or its inverse. If
u,v € X are distinct, then by a path between u and v, we mean a sequence uy, .., Uy,
of distinct elements of X such that ug = u, u, = v, and u;, ;41 are joined by an
edge for i = 0,..,n — 1. As the action of F5 on X is free, there is at most one
path between distinct elements u, v of X and we have the corresponding metric d.
d(u,v) = 0 if u = v, and is the length (number of edges) of the path between wu, v if
there is such a path and = oo otherwise. So if d(u,v) = n > 0 it means that there
is a (unique) reduced word w of length n in the generators and their inverses such
that wu = v. In the case that u = v, it is convenient to define {u} to be the path
between u and v, which is of length 0.

We will have a similar set-up in Section 3.2 but with Fj5 in place of F5.

For v € X, let B, (v), the ball around v of radius n, be {u € X : d(v,u) < n}
and for V' a subset of X, B, (V) = U,y Bn(v).

Definition 2.1. (i) Define <* on X by u <* v if there exist ¢ € [3] and j € [2]
such that v = gjf[lu.
(ii) Let < be the reflexive and transitive closure of <* and for v € X, let U, =
{ueX:v<u}.
(iii) The nth level of U, is {u € U, : d(v,u) = 2n}.
(iv) By a complete tree for v € X we mean a subset T of X containing v such that
for all w € T, and i € [3] there is j € [2] such that g, f; ' (u) € T.
(v) By a depth n tree for v € X, we restrict (iv) to T' C Bs,(v) and require the
second clause of (iv) only for u € Ba,_2(v)NT.

Remark 2.2. (a) Explanation of (v): Note that if d(v,u) = 2n — 2 then for any
i € [3] and j € [2], g;f; “u has distance at most 2n from v.

(b) Any product of words of the form g; f;"* for i € [3] and j € [2] will be a reduced
word. Hence if w,w’ are distinct such reduced words, and u,v € X then we
could not have that both wu = v and w'u = v.
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Lemma 2.3. Suppose v € X, and Y C X with |[Y| < n+ 1. Suppose there is a
depth n tree T for v with TNY = (. Then there is a complete tree T' for v which
is disjoint from Y .

Proof. The proof is by induction on n. When n = 0, we may assume Y is a singleton
{z}, and T = {v} with v # x.

For i € [3] and j € [2] let v;; = g;f; 'v. By Remark 2.2(b), there will be at
most one v; ; such that v; ; < x. Hence for each ¢ € [3] there is j(¢) € [2] such that
v; (i) £ @. Hence also for each i € 3], # ¢ U,, ,, . Hence {v} U Uiegz Uvij Is @
complete tree for v which is disjoint from Y = {z}.

The inductive step: Suppose |Y| =n+1 and T is a depth n tree for v such that
TNY =0 (and n > 0). As above denote by v; ;, g;f; 'v. Fix i € [3] and one of
the j’s € [2] such that v; ; € T. Then clearly TNU,, ; is a depth n — 1 tree for v; ;
which is disjoint from Y.

Case 1. |Y NU,, ;| <n. Then by induction hypothesis, there is complete tree T; for
v;,; which is disjoint from Y N U,, ;. AsT; C Uy, ; it follows that T; is also disjoint
from Y.

Case 2. [YNU,, ;| =n+1. Namely Y C U,, ;. Let j" # j, j' € [2]. So clearly U,, ,
is disjoint from U,, ; (again by freeness of the action of F5) and so disjoint from Y.
In this case define T; to be Uvi’j/, a complete tree for v; ;» which is disjoint from Y.

Now let 7" = {v} UU,¢3 Ti- Then T is disjoint from Y and is a complete tree
for v. O

The motivation for part (1) of the next definition is to use colourings to describe
quantifier-free 1 types over P realized in O in models of T'. That is, a colouring ¢
of P with colours 4+, — will correspond to the quantifier-free type p(z) on O where
R(z,a) € p(z) iff ¢(a) = +. Conditions (a) and (b) below correspond to Axiom (ii)
from the universal theory T'.

Definition 2.4. (1) Suppose D C X. By a good colouring of D we mean a function
¢: D — {+,—}, such that if v € D and ¢(v) = + then
(a) for all i € [3] there is j € [2] such that ¢(g; f; ' (v)) = + if g; f;* (v) € D.
(b) and for all i # j € [3], c(f; f; 'v) = —, if f;f; 'v € D.
Moreover if D = X we call ¢ a total good colouring.

(2) We say that vy, ve € X are a conflicting pair, if there are wy € U, and ws € U,,
such that wy = f;f; "w; for some i # j € [3].

Lemma 2.5. (i) Being a conflicting pair is symmetric.
(i) If v1 and vy are a conflicting pair, then there are unique wy € U,, and ws €
Uy, such that wa = f;f; 'wy for some i # j € [3]. We call wy,ws the conflict
points.

Proof. (i) is obvious.

(ii) Let wy € U,,, we € U,, witness that v; and vy are a conflicting pair, namely
Wy = fjfflwl for some i # j € [3]. Let wy = zv; and we = yve, where x and
y are products (maybe empty) of pairs of free generators of the form g f[l (as
wy € U, and wy € U,,). Then vy = y_lfjfflxvl. The product y_lfjfflx is
already reduced (as y~! ends and  begins with a g-generator). Thus x and y are
uniquely determined, hence w; and ws too. O
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Proposition 2.6. Let V and W be disjoint finite subsets of X, both of which have
cardinality at most n. Let ¢: VUW — {+,—} be a good colouring of VUW given
by cis+ onV and — on W. Let N = n(n+ 1) — 2. Then there is total good
colouring (i.e. of X ) extending c if and only if there is good colouring of By (V)
extending the restriction of ¢ to By (V)N (VUW).

Proof. One direction is obvious: if ¢’ is a total good colouring then its restriction
to By (V) of course extends its further restriction to By (V) N (V U W).

For the other direction: suppose ¢’ is a good colouring of By (V') extending the
restriction of ¢ to By (V)N (VU W).

Note in passing that V' C Bx (V). We will define a set Y which consists of W
together with one element from each pair (w, w’) of conflict points which come from
a conflicting pair (v1,v2) of elements of V. So given such v1,v2 € V and conflict
points wy, wa:

Case 1. Both wy,wy € By (V). Then by the good colouring condition 1(b) (from
Definition 2.4), not both ¢/ (w1) and ¢/ (w2) equal +. So choose one of them, without
loss wy such that ¢/(w;) = — and put w; into Y.

Case 2. At least one of wy,wq, without loss wy is NOT in By (V). Then add wy
toY.

There are at most n(n — 1)/2 conflicting (unordered) pairs from V', and hence
Y| <n+nn-1)/2=n(n+1)/2 = N/2+ 1, and by construction ¢'(x) = — for
allz € YN Byn(V).

Now for each v € V, T = {u € By(v) : ¢/(u) = +} is a depth N/2 tree for v
which is disjoint from Y (by definition of a good colouring and the construction of
Y). By Lemma 2.3 (as [Y| < N/2+ 1) there is, for each v € V, a complete tree T,
for v which is disjoint from Y. Let us then define a (total) colouring ¢’ of X which
has value + on T, for each v € V and — otherwise.

As cis + on V, and — on W which is contained in Y which is disjoint from each
T,, ¢’ extends c.

Claim. ¢” is good.

Proof of Claim. Suppose ¢’(u) = +. So u € T, for some v € V. But T, is a
complete tree for v, so for each i € [3] there is j € [2] such that g;f; 'u € T,
whereby ¢”(g;f;'u) = +. This gives 1(a) in the definition (Definition 2.4) of a
good colouring.

For 1(b): suppose for a contradiction that ¢’(w;) = + and ¢/ (wa) = + for wy,
wy in X such that wy = fjfflwl for some i # j € [3]. But then wy € T, and
wy € T, for some vi,vy € V, and we see that w;,ws are conflict points for the
conflicting pair vi,vs € V. But by the definition of Y, one of w1, w5 is in Y and so
gets ¢’ colour —. A contradiction. O

Corollary 2.7. For each v € X there are good colourings c,c of X such that
c(v) =+ and ' (v) = —.

2.3. The model companion 7*. We return to the context of Section 2.1, namely
the language L and universal theory T. To any element h of F5 expressed in terms
of the generators and their inverses in reduced form we have a term ¢, of L. Note
that if ¢ is a term in nonreduced form then there will be some h such that t = ¢; is
true in all models of T'.
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We will give two axiom schema, which in addition to T' give a theory T™ in
the given language. We will check subsequently that (T*)y = T', and that T* has
quantifier elimination (and is complete), so is the model companion of T'.

We want to describe which quantifier-free 1 types over a model M of T can be
realized in some extension N of M to a model of T, by expressing the existence of
solutions of appropriate approximations. There are two kinds of 1-types: realized
by an element of P, and realized by an element of O. We introduce some notation
to deal with each of these cases.

Let p;(z,x) for ¢ € I be a list of all (complete) quantifier-free types (over 0) of
pairs (a,b) in models M of T where a € O(M) and b € P(M). So p;(z,x) will be a
maximal consistent (with 7') set of formulas of the form R(z,tx(x)), “R(z,tn(x))
for h ranging over F5. (The inequalities between = and the t5(x) for h # 1 will
come free from 7).

For each n, let v, (z1,...,Zn, Y1, - ., Yn) be a quantifier-free L-formula expressing
the existence of a good colouring ¢ of By({x1,...,2,}) such that ¢(x;) = + for
i=1,...,n and ¢(y;) = — for each y; which happens to be in By({z1,...,2n})

(where N =n(n+1) —2).
Axiom Schema I. All sentences of the form

(Vxl,...,:cnEP)(Vzl,...,zneO)(/\zi;ézj —

i#j
GeeP)( N\ duzan N wrw)),
Jj=1,..., n i=1,..., n
where n > 1, i1,...,i, € I and each ¢;, (2, ) is a finite conjunction of formulas in

pi; (2, ).
Axiom Schema II. All sentences of the form

(le,...,xn,yl,...,ynEP)(Vzl,...,zn60)(Wn(:vl,...,xn,yl,...,yn)—>
(3z € O)( /\ (R(z, ;) AN —R(z,9:)) A /\ z;ézl))
i=1,..., n 1=1,..., n
for n > 1.

We define T* to be (the theory axiomatized by) T together with Axiom Schemas
I and II.

Lemma 2.8. Any existentially closed model of T' is a model of T*. In particular
T* is consistent and (T*)y =T.

Proof. Let M be an existentially closed model of T'. Consider an axiom

(Va1,...,xn € P)Y(V21,...,2n € O)(/\zl # zj —
i)
(3z € P)( /\ bi; (2, 2) A /\ x # xz))
Jj=1,....n 1=1,...,n
belonging to Axiom Schema I.
Choose aq, ..., a, € O(M), which we may assume to be distinct. We will build a

certain model M’ of T' containing M. Let X be a principal homogeneous space for
F5 (disjoint from P(M)) with a distinguished point b. Let P(M’) = P(M)UX with
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the natural action of F5. For h € F5, we put (a;,hd) € Riff R(z,tn(x)) € pi; (2, 7).
And for any other a € O(M), we put —R(a,c) for any ¢ € X. We also define
O(M') to be O(M). Then it can be checked that M’ is a model of T. Now b
witnesses that the formula (3z € P)(A;=; , ¢, (aj,2) ANN\;=y & # b;)) for any
bi,...,b, € P(M) holds in M’. As M is existentially closed in M’, this formula
also holds in M. We have shown that M is a model of Axiom Schema I.

Now let

(Ve1, .o @, Y1y Yn € PY(V21,. .0, 20 60)(’yn(:zrl,...,:zrn,yl,...,yn) —

(Fz € O)( /\ (R(z,2;) N=R(2,y3)) A /\ z # ZZ))

i=1,...,n i=1,...,n

be a sentence in Axiom Schema II.

Choose by, ...,by,c1,...,c, € P(M). We will add a new point * to the O sort to
get a structure M’ extending M. Let us assume that M = v, (b1, ...,bn,C1,...,Cn).
By Proposition 2.6, there is a good colouring ¢ of P(M) such that c¢(b;) = +
and ¢(¢;) = — for i = 1,...,n. For d € P(M) = P(M') we define R(x,d) iff
¢(d) = +. Then M’ is a model of T, and again as M is existentially closed in M’,
(Fz € O) (N n(R(2,0) A =R(z,¢:)) AN N\i—y ., % # ai)) is true in M, for any
ai,...,an € O(M). So M is a model of Axiom Schema II. O

Proposition 2.9. (i) T* is complete with quantifier elimination,
(i) T* is the model companion of T,
(i) for any model M of T* and A C M, the algebraic closure of A in M (in the
sense of the structure M ) is precisely (A), the substructure of M generated by
A.

Proof. For (i) we use the well-known criterion that for M, N w-saturated models of
T*, the collection of partial isomorphisms between finitely generated substructures
of M and N is nonempty and has the back-and-forth property.

First to show nonemptiness: Let a € O(M) and b € O(N). Then {a}, {b} are
isomorphic substructures of M and N.

Now suppose f is an isomorphism between finitely generated substructures M
and No of M and N respectively. Let a € M. We want to extend f to g with
a € dom(g). We may assume a ¢ M.

Case 1. a € P(M).

Let p(z) = qftp(a/Mo) (quantifier-free type of a over My). For each b € O(My),
let pp(z,2) = qftp(b,a/0). Then p(x) is axiomatized by {z # ¢ : ¢ € P(Mp)} U
Useo(ar) Po(b, ). Now f(p) is precisely {z # d : d € P(No) }UlUyeo(ar,) Po(f (), @)

By Axiom Schema I and w-saturation, f(p) is realized in N.

Case 2. a € O(M).

Let q(2) = aftp(a/Mo). Then flq) = {= # d : d € O(No)} U{R(z, f(b)) : b €
P(My), M = R(a,b)} U{=R(z, f(b)) : b € P(My), M = —R(a,b)}. Choose
bi,...,b, € P(Mp) such that M = R(a,b;), and c1,...,¢, € P(Mp) such that
M = =R(a,c;) (if such exist). Then as M is a model of T* (and so of T') we have
M = 4, (b1, ..., by, c1,. .., cpn), whereby

N ): ’Yn(f(bl)u ceey f(bn)7 f(cl)u ey f(cn))
So by Axiom Schema II and the w-saturation of N, f(q) is realized in N.
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(ii) follows immediately as T is model-complete (by (i)) and (T*)y = T (by Lemma
2.8).

(iii) By quantifier-elimination, we have to show that for any small substructure M
of a (saturated) model of T*, and a € M \ My, ¢ftp(a/Mop) has infinitely many
realizations. For a € P(M) this is by Axiom Schema I and saturation. And for
a € O(M) this is by Axiom Schema IT and saturation. O

2.4. Simplicity and the proof of Theorem 1.5. We now work in a saturated
model M of the complete theory T* defined earlier.

Proposition 2.10. Let a be an element (so an element of O(M) or of P(M)), and
B a (small) subset. Then a ¢ acl(B) implies that tp(a/B) does not divide over ().

Proof. We may assume that B is a substructure, enumerated by an infinite tuple bg.
Let I = (bo, b1, b2, ...) be an indiscernible sequence. Note that | J I is a substructure,
say My, of M.
Let p(z,bg) = tp(a/by) with a ¢ B.
Case 1. a € P(M).
Define a new structure M extending My, by adjoining new elements {*, : g € F5}
satisfying P, and for any element ¢ in some b,, such that O(c), define R to hold
of (c,x4) iff the corresponding element of by is in the relation R with ¢4(a). Also
define the fii and gji tautologically on {x, : g € F5}. Then check that M; is a
model of T, so by quantifier elimination and saturation of M we may assume that
M, is an extension of My inside M. And we see that x. realizes p(z,b;) for all i.
Hence p(z, by) does not divide over §.
Case 2. a € O(M).
Do the analogous thing: define an L-structure extending M, with a single new
element x which is in O and with R(x,¢) for ¢ in some b,, (such that P(c)) iff a is
R-related to the corresponding element of by. Again check that we get a model of

T, so can be assumed to live in M over M, and * realizes p(x, b;) for all i. O
Corollary 2.11. (i) T* is simple and of SU-rank 1 (each of the sorts O, P has
SU-rank 1).

(ii) For all tuples a, b and subset A (of M), a is independent from b over A iff
(aA) N (DA) = (A).
(i1i) Each of the sorts has a unique 1-type over ().

Proof. By Proposition 2.10, every complete 1-type (over any set) is either algebraic
or does not divide over (), which implies that T is simple. In particular forking
equals dividing and is symmetric. And so the proposition says that the only forking
extensions of any complete 1-type are algebraic, namely that each of the sorts has
SU-rank 1.

(ii) follows from Proposition 2.10 (and Proposition 2.9 (iii)) by forking calculus,
using also the fact for any set B, (B) = (J,c(b), which follows from there being
only unary function symbols in the language.

And (iii) is a consequence of quantifier elimination. O

The proof of Theorem 1.5 is completed by the following results:

Proposition 2.12. For any a € P, the formula R(z,a) does not fork over 0 but
has measure 0 for any (automorphism) invariant Keisler measure pu (on the sort

0).
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Proof. Let u be an invariant Keisler measure on the sort O. As there is a unique
1-type over @ realized in P, u(R(z,a)) = u(R(z,b)) for all a,b € P. But for any
given a, and i € [3], R(z, fi(a)) — (R(x,g1(a))V R(z,g2(a))), and R(z, f1(a)),
R(z, f2(a)), R(z, f5(a)) are pairwise inconsistent. So this forces pu(R(z,a)) = 0 for
all @ € P. On the other hand R(x,a) has infinitely many realizations, so as O has
SU-rank 1, R(x,a) does not fork over 0. O

Proposition 2.13. The theory T* is extremely amenable: every complete type
over () has a global (automorphism) invariant extension.

Proof. We just give a sketch, leaving details to the interested reader. Let p(Z, z) =
tp(a,b/) where @ is a tuple from P and b a tuple from O. Let M be a saturated
model. Then we can find a realization (@, b) of p in some elementary extension N
of M such that all the elements from the tuple (@', ') are in N\ M, N |= —~R(d, a)
for each a € @', d € O(M), and N = —R(b,d) for each b € b’ and d € P(M). Then
tp((a’,b')/M) is clearly Aut(M)-invariant (using quantifier elimination). O

3. A NON DEFINABLY AMENABLE GROUP DEFINABLE IN A SIMPLE THEORY

In this section we will prove Theorem 1.8. Again we start with an overview.
Our theory T will be a certain expansion of AC'Fy, and the group G which is
not definably amenable will be SLs(K), where K is the underlying algebraically
closed field. Of course working just in ACFy, SL2(K) will be definably (extremely)
amenable. The additional structure we will add will be a partition of SLy(K) into
4 sets C1, Co, Cs,Cy. We will choose matrices a(i,j) € SL2(Z) for i € [4], 7 € [3],
which freely generate Fia, and require that for each i € [4], U,¢( a(i,j)~1C; =
SLo(K). The C; will be chosen sufficiently generically so that the theory T of the
structure (K, +, x, C1, Ca, C5, Cy) is simple of SU-rank 1. If by way of contradiction
G = SLy(K) were definably amenable, witnessed by (left) invariant Keisler measure
i, then the requirement above implies that p(C;) > 1/3 for each ¢ € [4] but then
by disjointness, u(G) > 4/3 a contradiction.

In Section 4, we will mention a closely related example with Fg in place of Fiq
but with a partition of SLy(K) into six sets rather than four. In terms of certain
invariants related to “definable paradoxical decompositions”, this other example
could be considered “better”. The general theory of paradoxical decompositions in
both the abstract or discrete groups setting and the definable setting will also be
discussed.

As in Section 2, we will describe a universal theory T, and T will be its model
companion, but no longer complete.

3.1. The universal theory. The language L will be that of unital rings, together
with four 4-ary predicate symbols C1,Cs, Cs, Cy.

It is well-known that
(1 2 b— 1 0
“=\o 1) "7 \2 1

generate a free group in SLy(Z). Hence so do the matrices

ko ke (1—4k  —8k?
a "ba _( 2 4k+1)°
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for k =0,...,11. We number these 12 matrices in some way as a(i, j), for ¢ € [4],
j € [3]. We will refer to the group generated by these matrices as Fi2. Note that
the entries of each a(i, j) are terms of the language.

For an integral domain R of characteristic 0, SLa(R) is the collection of 2 x 2
matrices over R of determinant 1. The (universal) theory T in the language L will
be the theory of integral domains R of characteristic 0 together with axioms:

(i) The 4-ary predicates C1,...,Cy partition SLy(R), and
(i) For each z € SLa(R) and each i € [4], there is j € [3] such that a(i,j) -z € C;.

3.2. Combinatorics and colourings. We prove some lemmas needed for defining
T*. The context in this section is simply the free group G = Fi5 on 12 generators
numbered as a(s, j) for i € [4] and j € [3] together with a free action of G on a set
X.

Definition 3.1. Let Xy C X. A colouring ¢ : Xg — [4] is good if for all z € X
and i € [4], IF a(i,7) -z € X, for all j € [3], THEN c(a(%, ) -x) = i for some j € [3].
We call this condition the ith colouring axiom at x. Also we may call the (good)
colouring total if Xo = X.

As at the beginning of Section 2.2 we have a graph structure on X, relative to our
choice above of free generators of Fjs, the notion of a path between two points of
X, and the distance function d. Recall that there will be at most one path between
distinct points z,y € X. For X, a subset of X, B, (Xo) is the ball of radius n
around Xy, namely the set of z € X such that there is y € Xy with d(z,y) < n.
We will not have an explicit analogue of the tree structure from Definition 2.1.

We now mention some additional conventions and facts that we will make use of
for the new example. First a subset X is said to be connected if for any x,y € X,
d(x,y) < oo and all points on the path from z to y are in X. Note that this notion
depends only on the graph structure on X.

Given a subset Xy of X, a maximal connected subset of Xy will be called a
connected component of Xy, and X will be a disjoint union of its connected com-
ponents. Note that a connected component of X itself is the same thing as an
F12—OI‘bit.

Finally, given disjoint connected subsets Cy, C1 of X, by a path between Cy and
C7 we mean a path zg,z1,...,z, between some zo € Cy and some x,, € C; such
that no z; fori =1,..,n—11s in Cy UCy. It is easy to check that if there is such a
path, then it has to be unique, in which case we let d(Cp, C7) be the length of such
a path.

We will use freely these notations and facts in the rest of Section 3.2.

We now give some lemmas about extending good colourings.

Lemma 3.2. Suppose that Xo C X is connected. Then any good colouring cg :
Xo — [4] extends to a total good colouring.

Proof. We may assume that Xy # (), otherwise replace it by a singleton coloured
with any colour. As good colourings can be defined independently on connected
components of X, we may assume that X is connected, so equals | J,, Bn(Xo). And
note that each B,,(X() is connected. We extend ¢y to X by induction. Assume that
we already have a good colouring ¢, : B,(Xo) — [4] extending ¢y. We extend to
Cnt1- Suppose first that y = a(i,j) -« € Bpy1(Xo) \ Bn(Xp) for some = € B, (Xp),
and some 4, j, then define ¢,,11(y) = 7. Note that this is well-defined, as {z, y} is the
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unique path between the connected sets B, (Xo) and {y}. If y € Bp4+1(Xo0)\ Bn(Xo0)
is not of the form, a(i, j)x for z € B,(Xy), define ¢,41(y) € [4] arbitrarily.

We have to check that ¢,11 is a good colouring of B,,1(Xp). Suppose z €
B+1(Xo) and i € [4], and a(i,5) - © € Bp41(Xo) for all j € [3]. Now if a(4,j) -z €
B, (Xo) for all j € [3] then by connectedness of B, (Xy) also z € B,(Xy) and
So as ¢, is a good colouring and c,41 extends c,, the ith colouring axiom at z
is satisfied. Otherwise a(i,j) - © € Bny1(Xo) \ Bn(Xo) for some j € [3]. Let
y = a(i,j)z. Then z € B, (Xy), for if not, both z and y have distance n + 1 from
Xy, contradicting the existence of a unique path between the connected sets X
and {z,y}. Hence c¢,t1(y) = i by definition, and we have shown that the ¢, 11
satisfies the ith colouring axiom at x. As x € B,4+1(Xo) and ¢ € [4] were arbitrary
we see that ¢,41 is a good colouring of B;,41(Xp)- O

Lemma 3.3. Let Cy, C1 be disjoint connected subsets of X with 3 < d(Cy,Ch)
< 0. Let C be the smallest connected subset of X containing Cy U Cy. Then any
good colouring cy of Cy U C1 extends to a good colouring of C.

Proof. Note that C is the union of Cy, C; and the points on the unique path I
connecting them. By assumption the length of I is > 3, namely |I| > 4. Now
extending, if necessary, Cy to a suitable B,(Cy) and extending ¢|Cy to a good
colouring of B, (Cy) we may assume that I = (u,v,y,z) with u € Cy, z € Cy and
v,Y ¢ OO U Cl.

If v = a(i,j) - u for some 4,5 put c(v) = i. Otherwise define it arbitrarily.
Likewise if y = a(i, j) - z for some i, j define ¢(y) = 7. Note that this is well-defined.
We have to check that ¢ is a good colouring. And for this it is clear that we only
need to check the ith colouring axioms at u,v,y, z (for all i). For u, z it is clear by
construction. And for v,y it is also clear vacuously, because it cannot be the case
that all of a(i, 1) - v, a(i,2) - v and a(7, 3) - v lie in C, and similarly for y. O

Lemma 3.4. Suppose Xo C X has n connected components, any two of which
are of distance > 2™ apart. Then any good colouring co of Xo extends to a good
colouring of X.

Proof. By induction on n. The case n = 1 is Lemma 3.2. The case n = 2 is Lemma
3.3, noting that 22 =4 > 3.

So let us assume n > 2 and the lemma holds for n and we want to prove it for
n+ 1. Let Xy have n + 1 connected components Cy,...,C, and let ¢y be a good
colouring of Xy. As the connected components of X can be coloured separately,
we may assume that the C; lie on a common connected component of X. We may
also assume that the distance [ between Cy and (' is the minimal distance between
distinct pairs C;, Cj. Let C] be the smallest connected subset of X containing Cj
and C; (as mentioned earlier Cf is the union of Cy, Cy and the points on the unique
shortest path between Cy and C;). Using Lemma 3.3, let ¢} be a good colouring of
C1 extending co|(Co U Ch).

Claim. For each i > 1, the distance between C{ and C; is at least 2™.

Proof of Claim. Fix i > 1 and let d = d(C], C;) and suppose for a contradiction that
d < 2". As d(Cy, C;) and d(C4,C;) are both > 271/ then d has to be witnessed
by d(z,C;), where x is a point on the unique shortest path I between Cy and C;
which we know has length I. So d(x, C;) < 2™, d(z,Cy) = ly say, and d(z,C1) =11
say with lo + 1 = I. Moreover d(Cy,C;) < lp + d and d(C1,C;) < I3 4+ d, both of
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which are > [ by choice of Cy and C;. But then [ +2d = lp +d+ 11 + d > 2] which
implies 2d > [ > 2"+, which implies d > 2", a contradiction.

Let X{, = C{UC2U...UC,, and let ¢, be ¢ on CoU...UC,, and ¢} on C}. Note
that ¢f, is a good colouring on X as it is good on each connected component of X{.
Then by the claim, and the induction hypothesis, ¢, extends to a good colouring ¢
of X, and as ¢} extends ¢y, ¢ extends ¢y too. O

Lemma 3.5. Suppose Xog C X has size n. Let a(n) = 2"t —1, and let co : Xo —
[4] be a good colouring which extends to a good colouring ¢’ : By n)(Xo) — [4]. Then
¢ extends to a good colouring ¢ : X — [4] of X.

Proof. Let ko be the number of connected components of Xy. So kg < n.

Case 1. Either kg = 1 (X is connected) or kg > 1 and the ko connected components
of Xy are at distance > 2o apart.

Then by Lemma 3.4, ¢y extends to a good colouring of X. And we are finished.
Case 2. Otherwise. Then define X7 = Bk, (Xp), and k1 to be the number of
connected components of X;. And note that k1 < ko and X1 C By ) (Xo).

Again if either X is connected or the k1 connected components of X; are of distance
> 2F1 apart, then the good colouring ¢/|X; extends to a good colouring of X, and
we finish.

Otherwise define Xo = Bk, (X71) and k2 to be the number of connected compo-
nents of Xs. So ko < k1.

We continue this way to produce kg > k1 > ... >k >1land X C X; C... C X]
where X; has k; connected components, until we get that X; is connected or its k;
connected components are at distance > 2% apart, and we extend ¢’|X; to a good
colouring of X.

We have to check why the process can be continued, in particular why each
Xi € Bamn)(Xo). It is because, k; < n — i for each 4, and so Zizo,...,l 2k <
R2nt=% 20 =2" — 1 = a(n). Whereby X; C Byn)(Xo) for all

O

..........

3.3. The theory T*. Here we will obtain the model companion 7™ of the universal
theory T introduced in Section 3.1. In terms of compatibility with notation in
the previous section, we will write a model of T as M = (R,c¢), where R is an
integral domain of characteristic 0 and c¢ is the colouring SLy(R) — [4] such that
Ci(M) = ¢ (i) for i = 1,...,4. So as Fyy is acting freely on SLa(R) by left
multiplication, the axioms from Section 3.1 say precisely that c is a good colouring.
In this context we will use freely the colouring notation from the previous section.
We begin with some observations which will be useful for the rest of Section 3.

Lemma 3.6. (i) Let R be an integral domain, let X C SLa(R) be a union of
Fia-orbits (connected components of SLa(R)), and let ¢ be a colouring of X
whose restriction to each Fio-orbit is good. Then c extends to a good colouring

(i) Let R C S be integral domains. Then S3(R) is a union of Fiz-orbits, and any
good colouring of SL2(R) extends to a good colouring of SLa(S).

(ii) Let K C Ky, Ky be algebraically closed fields, such that Ky is independent
from Ko over K (in some ambient algebraically closed field, and in the sense
of ACFy). Let L be the compositum of (the field generated by) K1 and K.
Then SLy(L) is a disjoint union of Fia-orbits contained in SLo(K), Fio-orbits
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contained in SLo(K1) \ SLa(K), Fiz-orbits contained in SLa(K2) \ SL2(K),
and Fya-orbits contained in SLa(L)\ (SLa(K71) U SLa(K2)).

Proof. (i) First note that by the definition of a good colouring c¢ is a good colouring
of X. Each Fys orbit in SLo(R) which does not intersect X is disjoint from X and
has a good colouring, by Lemma 3.2. And again all these good colourings, together
with ¢ give a good colouring of SLa(R).

(ii) is immediate, using (i).

(iii) The independence assumption tells us that SLo(K7) N SLy(K2) = SLa(K),
from which everything else follows. O

By part (ii) of the above lemma, if (R, ¢) is an existentially closed model of T
then R is an algebraically closed field. From now on we will assume that R = K
is an algebraically closed field, and we situate K in a larger saturated algebraically
closed field K from which we can choose generic points of algebraic varieties over
K (and write SLy for SLo(K)).

For technical reasons related to a subsequent relative quantifier elimination proof
by a back and forth argument we will be concerned with extending the colouring
¢ of SLy(K) to generic points of curves on (SL2)". Here by a curve on (SLz2)™
over K, we mean an (absolutely) irreducible curve C C (SL3)", defined over K,
for some n. We will call C' a good curve over K, or good K -curve, if in addition if
d=(dy,...,d,) is a generic point of C over K, then each d; ¢ SL(K).

In the following a(n) = 2"*! — 1 as in Lemma 3.5.

Definition 3.7. Let K be an algebraically closed field. Let n > 1, let C C (SL2)™
be a good K-curve, and let ¢y : [n] — [4]. We will say that C is safe for co over K if
ford = (dy,...,d,) a generic point of C over K, the colouring ¢ : {dy,...,d,} — [4]
defined by &(d;) = co(i), extends to a good colouring & of By, ({d1,...,dn}) C
SLy(K).

Fix n. Let us now fix a (quantifier-free) formula ¢(z,q) in the language L, of
rings such that for any algebraically closed field F' and tuple @ from F (whose
length is the same as the length of §), ¢(Z,a), if consistent, defines a good F-curve
D; C SLy(F)™. We call such ¢(Z,7) a “good formula”.

Remark 3.8. Note that for any algebraically closed field F' and good curve D C
SLy(F)™, there is a good formula ¢(Z,y) and @ € F such that D = D;. This is
because we can express dimension and irreducibility of algebraic varieties, and we
can also express that the projection of a curve onto each coordinate has infinite
image.

Lemma 3.9. Given n, good formula ¢(Z, ) as above, and a function ¢y : [n] — [4],
there is a formula (g) in L, such that for every algebraically closed field K and
a € K, K E=(a) iff the curve D3 is safe for co over K.

Proof. Note that we are working completely in the language of rings, even though we
mention colourings. First note that for a curve C C SLo(K)™ and any (dy, . ..,d,) €
C(K), there is a bound &, on the cardinality of By ,y({d1,...,d,}), and moreover
by a case analysis we can identify definably, from properties of the d; the precise
cardinality. There is a formula x(z1,...,2,) in L, expressing that ¢ is a good
coloring of By (n) ({21, - -, 2n}) into 4 colours {1, 2, 3,4} such that c(z;) = co(7).
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We now bring in the good formula ¢(z, 7). Let ¢ (y) express that for infinitely
many Z such that ¢(Z, ) holds, x(Z) holds. Then for K algebraically closed, and
a € K, K |= v(a) iff for generic d on D over K, there is a good colouring ¢ of
Bomy({di,...,dn}) such that c¢(d;) = co(i) for i = 1,...,n, namely that Dj is safe

for ¢g over K. O
We can now define T*.

Definition 3.10. T* is the L-theory expressing of (K, ¢), that:
(i) K is algebraically closed and (K, ¢) = T;
(ii) whenever C' C (SL2)™ is a good curve over K, ¢g : [n] — [4] and C is safe
for ¢, then there are infinitely many d = (di,...,d,) € C(K) such that
co(i) =c¢(d;) fori=1,...,n.

Remark 3.11. By Remark 3.8 and Lemma 3.9, the property (ii) in the definition
of T* above is expressed by an axiom schema, ranging over n and good formulas

é(z,7) € L.

Lemma 3.12. Any model (R, c) of T extends to a model (F,c’) of T*. In particular
(T*)y =T and T* is consistent.

Proof. Fix (R,c) E T and as mentioned after Lemma 3.6 we may assume R = K
to be an algebraically closed field. We will fix a good curve C' C (SL3)™ over K
and ¢g : [n] — [4], such that C is safe for ¢y, and find an extension (F, ) of (K,c¢)
and d = (di,...,dn) € C(F) such that ¢/(d;) = ¢o(¢) for i = 1,...,n. We will also
choose F' algebraically closed. So in (F, ') we satisfy Axiom Schema (i) as well as
a weaker form of one instance of the Axiom Schema (ii) for 7", namely that there
is at least one, rather than infinitely many, d satisfying the required conditions.
Extending (K, c¢) to a model of T is then a routine union of chains argument,
including finding the infinitely many d as above. Details are left to the reader.
Simply choose d = (di,...,dy,) to be a point of C' in K generic over K. By
goodness of C, each d; € SLy(K)\SLo(K). By assumption there is a good colouring
" of Bymy({d1,...,dn}) such that ¢”(d;) = co(i) for i = 1,...,n. Let F be the
algebraic closure of the field generated by K and d. And let X = SLy(F)\ SLy(K).
Then X is a union of Fys-orbits and By,)({di,...,dn}) C X. Hence, by Lemma
3.5, there is a good colouring ¢’ of X with ¢”/(d;) = ¢o(i) for i =1,...,n. As X
and SLy(K) are both unions of Fjz-orbits, cUc” will be a good colouring of S Lo (F)
extending c¢. Denote c U ¢” by ¢/, and we have produced our required extension
(F, ) of (K,c). O

Lemma 3.13. Let (Fi,c1), (Fo,c2) be Wy-saturated models of T*. Let I be the
collection of partial isomorphisms between (nonempty) countable substructures of
F1, Fy respectively which are of the form (K1, c1|K1), (Ka,ca|Ka) where K1, K
are algebraically closed fields. Then I has the back-and-forth property.

Proof. Suppose that we are given an isomorphism f between (Ki,c1|K;) and
(K2,c2]K2). Tt is enough to extend f to g with domain L; O K; where L is
algebraically closed and of transcendence degree 1 over K;. By compactness, it
suffices to prove the following.

Claim. For every finite tuple di,...,d, from SLo(L1) there are ei,...,e, in
SLa(Fy) such that the map g which extends f and takes d; to e; fori=1,... n pre-
serves quantifier-free L,.-types, as well as satisfying ca(e;) = c1(d;) fori=1,...,n.
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Proof of Claim. We may clearly assume that dy,...,d, ¢ SLy(Kq) fori=1,...,n.
It follows that (d1,...,d,) is a generic over K7 point of a good curve C; C SL%
over K1. Let ¢g : [n] — [4] be defined by ¢y(i) = ¢1(d;). Hence CY is safe for ¢y over
Ki. As f is an isomorphism of algebraically closed fields, the curve Cy = f(Ch)
is safe for ¢y over Ko. In particular Cs is safe for ¢y over Fy. However (Fs,co)
is a model of T*, so Axiom Schema (ii) implies that there are infinitely many
e=(e1,...,en) € Ca(F2) such that co(i) = ca(e;) fori = 1,...,n. By Ny-saturation
of (Fy, c2) (and countability of K3) we can find e = (eq,. .., e,) € SLa(F2) a generic
over Ky point of Cy such that ¢p(i) = ca(e;) for i = 1,...,n. As the quantifier-free
L.-type of e over K5 is the image under f of the quantifier-free L,-type of d over
Ky, and ¢1(d;) = ¢o(i) = ca(e;) for i = 1,...,n we have proved the claim, and
hence the lemma. O
Theorem 3.14. (i) Let a = (aq : a <7), b= (bs : @ < 7) be tuples of the same
length v in models M, N of T*, where vy is an ordinal. Then tpy(a) = tpy (D)
iff the map taking as to by for o < v extends to an isomorphism between the
substructures (K, c) of M and (K',c') of N where K = acl(a) and K' = acl(b)
in the sense of fields.
(i) In a model M of T*, the model theoretic algebraic closure of a subset A of M
coincides with the (field theoretic) algebraic closure of the field generated by
A.
(iii) The completions of T* are determined by the isomorphism types of the alge-
braic closure of Q equipped with an L-structure.
(iv) T* is the model companion of T.

Proof. (i) is an immediate consequence of Lemma 3.13.

(ii). In the light of (i) we have to check that if M is a saturated model of T*
and (K, c) is a (small) substructure of M where K is algebraically closed as a field,
then for any a € M \ K, there are infinitely many realizations of the type of a
over K in the sense of the ambient model M of T*. Let K’ be the (field-theoretic)
algebraic closure in M of the field K(a). Then (K’,c¢|K') is an L-structure whose
isomorphism type determines its type by (i). Now we build abstractly another
“algebraically closed” model of T, as follows. Let K be a large algebraically closed
field containing K and let (a; : i < w) in K be algebraically independent over K.
Let K! be the (field-theoretic) algebraic closure of K(a;). Fix field isomorphisms
fi of K’ with K| over K which take a to a;, and use these to copy the additional
structure (the colouring) to the K. So each K is equipped with a good colouring c;
extending ¢ on K. Let F be the field generated by |J, K. Notice that | J, SL2(K7)
is a union of Fyp-orbits inside F' and |J; ¢; gives a good colouring of this union.
Hence by Lemma 3.6, we can extend |J, ¢; to a good colouring ¢’ of SLy(F') to get
(F,d) ET. Embed (F,c') in a model N of T*, and we see by (i), that each a; has
the same type over K in N, which also equals tp(a/K) in M.

(iii) is a special case of (i) (for the empty tuples).

(iv) is another special case of (i): let M C N be models of T*. Then the
identity map M — N is an isomorphism of L-structures whose underlying field is
algebraically closed, hence an elementary map by (i). So T* is model complete,
hence by Lemma 3.12 is the model companion of 7T'. O

3.4. Simplicity and the proof of Theorem 1.8. To prove simplicity of the
theory T* (namely of any of its completions) we will make use of Theorem 4.2 from
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[23] which says that it suffices to prove that one has a “notion of independence”
which satisfies the Independence Theorem over a model. See [23] for the notion
of independence. The Independence Theorem over a model states that (in the
context of a saturated model M of a complete theory), if M is a small elementary
substructure of M, and a,b,dy,d;, are tuples such that a and b are independent
over M, dy and a are independent over M, d; and b are independent over M, and
tp(do/M) = tp(dy /M), THEN there is d realizing tp(do /M, a) as well as tp(dy /M, b)
such that d is independent from M, a,b over M.

Proposition 3.15. Every completion of T* is simple, and nonforking independence
coincides with independence in the sense of the reduct to ACFy. In particular the
SU-rank of v = x is 1.

Proof. Fix a saturated model M of T*. We let ¢ denote the colouring on M.

Types will refer to types in M and tpacr to types in the reduct of M to the field
language. We will prove that AC' F-independence is a notion of independence which
satisfies the Independence Theorem over a model, as described above. The only
nontrivial thing to check in terms of being a notion of independence is the extension
property, but it follows easily from Theorem 3.14(ii), or by our method of proof be-
low of the Independence Theorem. So it remains to prove that AC F-independence
in M satisfies the Independence Theorem over a model: namely suppose M is a
small elementary substructure of M and a, b, dg, d; are tuples such that a and b are
ACF independent over M, dy and a are ACF independent over M, d; and b are
ACF-independent over M, and tp(do/M) = tp(di/M), THEN there is d realizing
tp(do/M,a) U tp(dy/M,b) such that d is ACF-independent from M, a,b over M.
Let Dy = acl(dgM), D1 = acl(diM), A = acl(aM) and B = acl(bM). In spite of
the notation we will enumerate Dy, D1, A and B (and other sets introduced below)
in a consistent fashion (vis-a-vis, do,d1, a,b) as tuples and treat them as such. In
particular Dy and D; will have the same type over M in the structure M so also in
the ACF reduct. By stationarity of this type in the AC' F-reduct, if D realizes this
ACF-type, ACF-independently from AU B over M then D realizes tpacr(Do/A)
as well as tpacr(D1/B).

Let o9 be a (field) isomorphism between acl(DgA) and acl(DA) over A (again
treating these consistently as tuples), and likewise o1 an isomorphism between
acl(D1B) and acl(DB). Use the isomorphisms oy and o7 to transport the colour-
ings of SLa(acl(DyA)) and SLo(acl(DyB)) (coming from the structure M) to
SLa(acl(DA)) and SLs(acl(DB)), which we call ¢y and ¢;. Let F be the sub-
field of M generated by acl(AB), acl(DA) and acl(DB). Note that ¢y and ¢
agree on D, ¢y and ¢ agree on A, and ¢; and ¢ agree on B. As we have that D is
ACF-independent from AB over each of A, B, and A is AC' F-independent from B
over D, we conclude using Lemma 3.6 that the colouring ¢’ obtained by taking the
union of ¢|acl(AB), ¢y and ¢y, is well-defined, and extends to a good colouring ¢’
of SLy(F). By Lemma 3.13 we can embed (F,c”) into M over acl(AB), by a map
o. Let D' = o(D). So D’ is ACF-independent from AB over M.

Claim. D’ realizes tp(Do/A) Utp(D1/B).

Proof of Claim. We let alg(C) denote the field-theoretic algebraic closure of the
subfield of M generated by C.

Then o o og(alg(DoA)) = alg(D’A), and for every e € SLy(alg(DoA)) we have
that c(e) = co(oo(e)) = (oo(e)) = c(o o op(e)). Thus we have an isomorphism
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over A between
(alg(DoA),c|SLa(alg(DyA))) and (alg(D'A),c|SLsa(alg(D'A))).

Hence by Theorem 3.14(i), D’ realizes tp(Dgy/A). By a similar proof, D’ realizes
tp(D1/B).
This proves the claim as well as the proposition. (I

Proof of Theorem 1.8: existence of a non definably amenable group definable in a
simple theory. This is precisely as mentioned in the introduction to Section 3: Fix
a model M = (K, c) of T* and let T** be the complete theory of M. Proposition
3.15 says that T** is simple of SU-rank 1. Let G = SLs(K) as a group definable in
M and we use notation as in Section 3.1. Assume for the sake of contradiction that
 is a left invariant Keisler measure on G. Fix an arbitrary a € G and i € [4]. Then
by Axiom (ii) (of T'), G = a(i,1)71C; Ua(i,2)"1C; Ua(i,3)1C;. So by invariance
of u, p(C;) > 1/3. On the other hand the C; for i € [4] partition G, whereby
u(G) > 4/3, a contradiction. O

Proof of Corollary 1.9. Let M = (K,c¢) be a saturated model of T*. Adjoin an
“affine copy” of SLo(K) as a new sort. Namely add a new sort S together with
a regular action of SLy(K) on S, to get a (saturated) structure M’. Then there
is a unique 1-type over () realized in S. Any automorphism invariant Keisler mea-
sure on the sort S would yield a translation invariant Keisler measure on SLz(K),
contradicting Theorem 1.8. O

Remark 3.16. Combining the proof of Theorem 1.8 with the setting of [2], it should
be possible to obtain the following generalization of Theorem 1.8. Let T" be a simple
model complete theory eliminating 3°° quantifier, and G a definable group contain-
ing a non-abelian free subgroup (as an abstract group, not necessarily definable).
Then there exists a simple theory T expanding T so that forking in T™* coincides
with forking in the reduct T' (in particular, T* has the same SU-rank as T') and G
is not definably amenable in T*.

4. PARADOXICAL DECOMPOSITIONS AND ADDITIONAL RESULTS.

Lying behind the second example (and also in a sense the first example) is
the theory of “definable paradoxical decompositions” from [15], giving necessary
and sufficient conditions for a group G definable in a structure M to be definably
amenable. When the structure M is a model of set theory and G is just a group, or
just when all subsets of G are definable, then we are in the context of amenability
of a discrete group G, and where there are classical results giving equivalent con-
ditions. In any case the theory of definable paradoxical decompositions gives some
interesting invariants of non definably amenable groups and we can ask about the
invariants of the example in Section 3. This and various other things are discussed
in this final section.

4.1. Definable paradoxical decompositions. Let us first recall the (classical)
notion of a paradoxical decomposition of a discrete or abstract group G. We
will abbreviate this notion as cpd for “classical paradoxical decomposition”. A
cpd for G consists of pairwise disjoint subsets Xi,..., X, Y1,...,Y, of G and
g1s---s9m,h1,...,hy, € G such that G is the union of the ¢g;X; and is also the
union of the h;Y;. Recall that the discrete group G is said to be amenable if there
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is a (left) translation invariant finitely additive probability measure on the collection
(Boolean algebra) of all subsets of G. The well-known theorem of Tarski is:

Fact 4.1. Let G a be group. Then G is amenable if and only if G has no paradozical
decomposition.

Remark 4.2. Clearly after replacing the X;,Y; by suitable subsets, we can assume
that each of the (¢;X;); and (h;Y;); form partitions of G.

One could ask whether for a definable group G (essentially a group equipped
with a certain Boolean algebra of subsets, closed under left translation), we have
the identical result: G is definably amenable iff G has a definable cpd, namely where
the X;,Y; are definable? We expect the answer is no. In any case Tarski’s proof of
“nonamenability implies the existence of a cpd” is nonconstructive and does not go
over immediately to a definable version.

In [15] there is another version of paradoxical decomposition which does give
a characterization of definable amenability, remaining in the Boolean algebra of
definable sets.

We will briefly describe this here. We fix a definable group G in a structure M.
Definable will mean with parameters.

By a (m-)cycle (for m > 0) we mean a formal sum ,_,  X; of definable
subsets X; of G. If all the X; are the same we could write th1s formal sum as
mX,;. We can add such cycles in the obvious way to get the “free abelian monoid”
generated by the definable subsets of G. And any definable subset X of G (including
G itself) is of course a (1-)cycle.

EX=5%,, ,XiandY =3, Yjaretwo cycles, then by a definable
piecewise translation f from X to Y we mean a map f from the formal disjoint
union X; LI...U X, to the formal disjoint union Y7 U ... LY, for which there is a
partition of each X; into definable subsets X1, ..., Xin,, and for each ¢ and ¢t < n;,
an element g;; of G such that the restriction f|X;; of f to X, is just left translation
by git, and ¢;;X;¢ is a subset of one of the Y}’s. By a definable map from X to Y
we mean just the same thing except that translation by g;; on X;; is replaced by a
definable function with domain X;; and image contained in some Y;.

Such a definable piecewise translation (or definable map) f is said to be injective
if it is injective as a map between formal disjoint unions. So for example, in the
case of definable piecewise translations this would mean that for each ¢,7 < m and
t <mn;,t' <ny if f takes both X;; and X,y into the same Y}, then for x € X;; and
x' € Xy, f(x) = f(2') implies that i =4/, t =t' and z = 2.

We write X < Y if there is an injective piecewise definable translation f from
X to Y. Note that < is reflexive and transitive. Also X < W and Y < Z implies
X+Y <W+~Z.

Definition 4.3. By a definable paradozical decomposition (dpd) of the definable
group G we mean an injective definable piecewise translation from G +Y to Y for
some cycle Y.

The following is proved in [15] (Proposition 5.4).
Fact 4.4. G is definably amenable if and only if G does not have a dpd.

Lemma 4.5. Suppose G+Y <Y where Y =3%",_, Y (with the Y; definable).
Then:
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(i) mG+Y <Y forallm>1,
(i) 2Y <Y,
(iit) (n+1)G < nG.

Proof. (i) By induction: G4+Y <Y implies (m+ 1)G+Y =mG+G+Y <
mG+Y <Y.

(i) Y +Y <nG+Y <Y (by taking n = m in part (i)).

(iii) (n+1)G < (n+1)G+Y <Y (by (i) = >y, Yi< >y ,G=nG. O

Corollary 4.6. G has a dpd iff (n 4+ 1)G < nG for somen > 1.
On the other hand:

Lemma 4.7. G has a definable cpd (a cpd where the X; and Y; are definable) if
and only if 2G < G (if and only if (n+ 1)G < nG for all n).

Proof. Suppose G = ;1 9iXi = U;—; _, hiY; witnesses a definable cpd. As
mentioned in Remark 4.2, by replacing the X; and Y; by suitable subsets we can
assume pairwise disjointness of the g; X;, as well as pairwise disjointness of the h;Y3,
and we get that G+ G < UZ—XiUUij < @G.

The converse works the same way: if G+ G < G, then we have two partitions of
G, as U, Xi and |J; Y; as well as g;,h; € G, such that the sets 9; ' X, hj_le are
all pairwise disjoint. (I

.....

Hence the question of whether a non definably amenable group G has a definable
cpd is the same as asking whether 2G < G. (Of course when G is equipped with
predicates for all subsets then this has a positive answer, by Tarski’s theorem.) We
expect it has a negative answer in general.

Remark 4.8. Let G be the definable group produced in Section 3 above. Then
4G < 3G.

Proof. We have (with notation as in Section 3), that G = [, ¢35, a(i, 7)~1C; for each
i € [4]. By cutting down each C; we may assume that for each 4, the a(i, j)~1C; are
disjoint. (Of course the C;’s remain disjoint although their union may no longer
equal G.)

Now we obtain an injective piecewise definable translation from 4G to 3G by
taking a(i,7)"1C; in the ith copy of G to C; in the jth copy of G, for i € [4],
j €3] 0

It is likely that the generic nature of the example from Section 3 implies that
n = 3 is least such that (n + 1)G < nG.

In the rest of this subsection we will explain how to modify the example so as to
produce 2G < G also in an ambient SU-rank 1 theory. So this will be in a sense,
a “better” example, with respect to the invariant “least possible n” where n is as
in Corollary 4.6. Thus, in this modified example there is a definable c¢pd and we
will see below that the “definable Tarski number” (the least sum m + n that can
appear in a definable ¢pd of G) equals 6 which is the least possible for non definably
amenable groups definable in simple theories.

We do a similar thing to Section 3, but with Fg in place of Fj5 and six colours
in place of four colours. We choose a; for i = 1,...,6 to be elements of SLy(Z)
which are free generators of a copy of Fg inside SLy(Z). For the universal theory T
in Section 3.1 we work in the language of rings with 6 additional 4-ary predicates
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C1,...,Cg and the axioms say that R is an integral domain of characteristic 0, that
C4,...,Cs partition SLo(R), and SLy(R) = aflCl U a;lC’z U a;lcg = a;lC’4 U
aglcg, U agng.

Note that this will already give a definable ¢pd of G = SL2(R) and so 2G < G
by Lemma 4.7.

We have to construct again the model companion 7™ of T" and show it to be
simple (of SU-rank 1).

The main thing is to modify the combinatorial lemmas in Section 3.2. So now
we have a free action of Fg on a set X, and for Xy C X, by a good colouring
¢: Xo — [6] we mean that for all z € X

(i) if a; - @ € X for all i = 1,2, 3 then ¢(a; - ) = i for some i = 1,2, 3, and

(ii) if aj -z € X for all j =4,5,6 then c(a; - x) = j for some j = 4,5, 6.

Again we have the notions of distance, connectedness etc., with respect to the

relevant Cayley graph on X.

Lemma 3.2°. Suppose Xo C X is connected. Then any good colouring co : Xo —
[6] extends to a total good colouring.

Proof. (By induction on n.) Suppose we have extended the good colouring ¢ of
Xo to a good colouring ¢, of B,(Xp). Suppose i € [6], and y = a; - is in
Bp+1(Xo) \ Bn(Xo) for some & € B, (Xy), then define ¢,11(y) = ¢. This is well-
defined by uniqueness of paths. And if y € By,4+1(Xo) \ Bn(Xo) is not of this form,
define ¢, 41 (y) arbitrarily.

Again we have to check that ¢, is a good colouring of By,+1(Xp). Suppose
T € Bn+1(X0) and a; - x € BnJrl(XO) for all 1 = 1,2, 3. Ifa;, -z € Bn(Xo) for all
i =1,2,3, then connectedness of B, (Xp) implies that also z € B,(Xo). So as ¢,
is a good colouring of B, (Xj), and c¢p4+1 extends ¢, Axiom (i) is satisfied at z.
Otherwise a; -z € Bp41(Xo)\ Bn(Xo) for some i = 1,2,3 and so x € B, (Xp), hence
ent1(a; - ) =i.

Exactly the same holds for € Bj,41(Xo) for which a; -z € Bj,41(Xp) for all
i=4,5,6.

So, as in Lemma 3.2, we have extended the good colouring of Xy to a good
colouring of X. O

Lemma 3.3°. Suppose Cy and Cy are disjoint connected subsets of X with 3 <
d(Cy,Cy) < oo. Let C be the smallest connected subset of X containing Co U CY.
Then any good colouring co : Co U C1 — [6] extends to a good colouring of C.

Proof. We have Cy, C; connected subsets of X with 3 < d(Cp,C1) < oo and C
is the smallest connected set containing Cy U C;. And we want to extend a good
colouring ¢y of Cy U C; to a good colouring ¢ of C. As in Lemma 3.3 we reduce
to the case of a path (u,v,y,2) from u € Cy to z € Cy where v,y ¢ Co U Cy. If
v = a;-u for some i € [6], put ¢(v) = 4, and define it arbitrarily otherwise. Likewise
if y = a; - z for some i € [6] put c(y) = 4, and define it arbitrarily otherwise. Again
we check that c is well-defined and that the good colouring axioms are satisfied. [

Lemmas 3.4 and 3.5 adapt (formally) word for word to the new context. As well
as the definition of the model companion 7™ in Section 3.3 and the simplicity of
(all completions of) T* in Section 3.4.

So the conclusion is:
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Proposition 4.9. There is a definable group G in a model of a simple theory such
that non definable amenability of G is witnessed by a definable cpd, equivalently
such that 2G < G.

A final remark in this section concerns the numbers m,n witnessing a defin-
able cpd, namely the existence of pairwise disjoint definable subsets X1,..., X,
}/17---7Yn of G and 91,---79m,h1,---,hn € @G such that G = ngxl = UhJ}/J
Following classical terminology, for a definable group G which is not definably
amenable, a least possible value of m 4 n that occurs in a definable cpd of G can
be called the definable Tarski number of G. (And if G has no definable cpd we will
say that its definable Tarski number is 0o.)

Proposition 4.10. Suppose G is a definable group in a structure M and G has a
definable cpd with attached numbers m,n. If either m = 2 or n = 2 then Th(M)
has the strict order property. In particular, the definable Tarski number of a non
definably amenable group definable in a simple theory is at least 6.

Proof. So we assume that G is the disjoint union of nonempty X7, X5, and Y and
that G = g1 X7 U g2X5. Then G is also the disjoint union of g1 X7, g1 X2 and ¢1Y.
Replacing X1, X2,Y by their g;-translates, and changing notation there is g € G
such that X; U gXs = G. So X, is a proper subset of gXs. Iterating we have a
strictly increasing sequence Xo C gXa C g°Xa C ¢°X5 C ..., yielding the strict
order property. ([l

Thus in the modified example above, the definable Tarski number is 6 (as there
is a definable ¢pd with n = m = 3). So in terms of definable Tarski number, this
is the simplest possible example of a non definably amenable group definable in a
simple theory.

4.2. Small theories. The aim here is to give some positive results concerning
definable amenability for groups definable in (models of) small theories T', as well
as some related results around amenability of small theories.

Recall that a complete countable theory 7 is said to be small if for all n € N>,
the type space S,,(T') is countable. This is equivalent to saying that for any model
M of T and finite subset A of M, the type space S1(A) is countable.

We could prove the definable amenability of definable groups in small theories
directly from Fact 4.4. But we can slightly generalize the set-up so as to obtain
other corollaries.

Our general context consists of a group G acting on a set S and where we are
given a Boolean algebra B of subsets of S which is closed under the action of G (in
particular ) and S are elements of B). We will call B a G-invariant Boolean algebra
of subsets of S.

Replacing “definable” by “in B”, we can copy the notions of (m-)cycles and
B-piecewise translations from Section 4.1 to the present context. We can also
introduce the notion of B-map f from a cycle >, X; to a cycle Zj Y;. This will be
a map from the formal disjoint union | |; X; to the formal disjoint union | |; Y; such
that for every ¢ and B € B with B C X;, and for every j, f(B)NY; € B. Note that
this makes sense without any G-action. Note also that any B-piecewise translation
is a B-map, and that injectivity makes sense for B-maps.
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Observe that both the class of B-piecewise translations and the class of B-maps
are closed under composition. As before we write X < Y if there is an injective
B-piecewise translation from X to Y.

By a B-paradoxical decomposition (Bpd) we mean an injective B-piecewise trans-
lation from S+Y to Y for some cycle Y. Also we say that the G-set S is B-amenable
if there is a G-invariant finitely additive probability measure on B. The proof of
Fact 4.4 in [15] adapts to yield:

Proposition 4.11. The G-set S is B-amenable if and only if S has no B-paradoxical
decomposition.

Lemma 4.5 and Corollary 4.6 remain valid in the more general context of B-
piecewise translations. We use this generalization of Lemma 4.5(ii) in the proof of
Proposition 4.13 below.

We will call a Boolean algebra B small if its Stone space is countable, in other
words there are only countably many ultrafilters on B.

Let us introduce some notation for cycles which will be used in a proof below.
The context here and in the next lemma is simply a Boolean algebra B of subsets
ofaset S. Let X =3, , _X;and Z=> .,  Z; becycles (son is the same

..........

in both). We also fix the ordermg of the X; and Z;.

(1) X C Z means that X; C Z; for each 1,
(2) X N Z =0 means that X; N Z; = () for each i, and
(3) X # () means that some X; is nonempty.

If moreover f is a B-map from X to Z, then by the image f(X) of X under f we
mean the cycle Y, W; where W; is f(X; U...UX,)N Z; which we note is in B.

Lemma 4.12. Suppose that'Y is a nonempty cycle and fo, f1 are injective B-maps
fromY toY such that fo(Y)N f1(Y) = 0. Then B is not small.

Proof. The proof goes by induction on the length of the cycle Y. First suppose
that Y is a 1-cycle, i.e. Y is in B. For n € 2<%, let f,, : Y — Y be given by: fj is
the identity, and f, = fy0)© fyayo- ..o fy—1) when dom(n) = {0,...,k—1} with
k> 0. And let Y = f,(Y). Then the Y are nonempty subsets of ¥ which are in
B (as the f; are B maps), Y7 D Y™ when 7 extends n, and Y0 NY " = () for all 7.
For n € 2 let ¥, = {Y"" : n < w}. Then each ¥, extends to an ultrafilter p, on
B and p, # pr for n # 7€ 2.

When Y is an n-cycle ). 1.0 Yi for n > 1 it is a bit more complicated. With
the notation introduced above, deﬁne the f, : Y — Y in the same way for n € 2<%,
and define Y7 = f,(Y), and now define Y;” to be f,(Y1 U...UY,)NY;.

Agam the sets Y;" are in B and we have, for all n € 2<‘*’:

(1) Y7=5, .Y

(2) Y"£0,

(3) Y"C Y™ whenever n extends 7, and
(4) YOy =4g.

Note that in particular the Y;7 satisfy both (3) and (4). If they also satisfy (2)
then we get continuum many ultrafilters on B as in the n = 1 case. Otherwise there
is 17 such that Y;” = () and therefore so is Y”, for all 7’ extending 7. Consider the
tree of cycles (Y/); where Y/ =>",_, Y77 These are (n — 1)-cycles and so
by the inductive hypothesis, we obtain cbntmuum many ultrafilters on B. O
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Proposition 4.13. Let S be a G-set with a G-invariant Boolean algebra B of
subsets. Suppose that for every finitely generated subgroup Go of G and finite subset
By of B the Boolean algebra (GoBy) generated by all translates of elements of By
by elements of Gg is small. Then S is B-amenable. In particular if B is small, S
is B-amenable.

Proof. If S is not B-amenable then it is witnessed by S+Y <Y for some nonempty
cycle Y. By the generalization of Lemma 4.5(ii) mentioned after the statement of
Proposition 4.11, we get 2Y < Y, so we have injective B-piecewise translations
fo:Y =Y and f1 : Y — Y such that fo(Y) N f1(Y) = 0. Let Gy be the subgroup
of G generated by the finitely many elements of G appearing in the translations
in fy, f1, and let By be the finite collection of elements of B which appear as the
subsets of the elements of the cycle Y which are translated in the maps fo, fi.
Then fo and f; are (GoBo)-maps, so {(GoBy) is not small by Lemma 4.12. Hence,
B is not small. O

Here are some applications:

Corollary 4.14. Suppose that G is a definable group in a model M of a small
theory T. Then G is definably amenable.

Proof. First as T remains small after naming finitely many parameters we may
assume G is (-definable. Remember that definable amenability of G refers to there
being a translation invariant Keisler measure on the family of all definable, with
parameters in M, subsets of G. We apply Proposition 4.13 to the case S = G and
B the collection of definable subsets of G. If By is a finite subset of B and Gy is a
finitely generated subgroup of G then the elements of the Boolean algebra (GoBy)
are all definable over a fixed finite set A of parameters. So by smallness of T' this
Boolean algebra is small, and we can apply Proposition 4.13. (|

Proposition 4.13 also gives another proof of Fact 1.7 above:

Corollary 4.15. Any group G definable in a model M of a stable theory is definably
amenable.

Proof. By Fact 4.4 we may assume that 7' is countable and M is countable. Then
for any finite collection X7,...,X,, of definable subsets of G, the Boolean algebra
generated by the set of all left G-translates of the X, is small. (For any finite
collection of L-formulas ¢1(x,y1), ..., dn(x,ys) where z ranges over G and the y;
are arbitrary tuples, the Boolean algebra generated by instances ¢;(x, a;) of the ¢;,
with @; in a given countable model is small.) So we can apply Proposition 4.13
again. ([

One could unify the two previous corollaries as follows. Let G be a definable
group. Suppose that for every finite set A = {¢1(x,y1),...,dn(z,yn)} of L-
formulas, and finite set A of parameters, the Boolean algebra of subsets of G which
are both A-definable and A-definable, is small. Then G is definably amenable.

It is natural to ask whether every complete countable small theory T is amenable,
as defined in the introduction. However the theory of the dense circular ordering is
w-categorical, with a unique 1-type over ), but there is no automorphism invariant
Keisler measure on the universe x = z, as explained in Remark 2.2 of [12], as 0 is
not an extension base.

But we point out that a rather weaker property follows from Proposition 4.13:
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(x) For every (-definable set D there is a global Keisler measure concentrated
on D which is invariant under definable automorphisms.

We may want to call a complete theory T' weakly amenable if it satisfies (), but
this would be an unnecessary introduction of new terminology. In any case:

Corollary 4.16. Suppose that the countable complete theory T is small. Then T
satisfies (x).

Proof. Let D be a (-definable set in a saturated model M of T. Let Autges(M)
be the group of automorphisms of M which are definable (with parameters) in M.
Apply Proposition 4.13 to the situation where G = Autge;(M), S = D, and B
is the Boolean algebra of all definable (with parameters) subsets of D. Then by

smallness the assumption of Proposition 4.13 is satisfied, so we get (). (]

Remark 4.17. (i) Corollary 4.16 implies Corollary 4.14 via the usual trick of
adding a new affine sort.

(ii) We obtain a characterization of when an (-definable set D satisfies (x), by
the nonexistence of an appropriate paradoxical decomposition. This is by
Proposition 4.11 applied to G = Autqe;(M), S = D and B the Boolean
algebra of definable subsets of D.

(iii) Similarly taking G = Aut(M), S = D and B as in (ii) we obtain a characteri-
zation of when there is an automorphism invariant global Keisler measure on
D.

Finally we give an application of the discussion above (Lemma 4.12) to prove the
nontriviality of graded Grothendieck rings of small theories. We first recall the usual
Grothendieck rings ([24]) attached to a structure M which may be many sorted,
although we give a slightly different presentation. We will assume that some sort has
at least 2 elements. Let Def (M) be the collection of all definable (with parameters
from M) subsets of products of the basic sorts of M. Let K (M) be the free abelian
monoid generated by Def(M). We can view the elements of K(M) as cycles
Zi:l,...,n X; where the X; are definable sets. As earlier we have the notion of a
definable map between cycles and in particular a definable bijection between cycles.
Let ~ be the equivalence relation on K (M) of being in definable bijection, for a cycle
D let [D] be its ~-equivalence class, and let Kgemi(M) be the quotient K (M)/ ~.
In this context one sees that every cycle is ~-equivalent to a definable set (in an
appropriate product of sorts), whereby Ksemi(M) = {[D] : D € Def(M)}, and is
moreover an abelian monoid with 0 = [(}]. It also has a unital commutative semiring
structure by defining [D4] - [D2] = [D1 X D3] and taking the multiplicative identity
to be [{a}] for any singleton in any sort. Finally we put an equivalence relation ~q
on Kgemi(M): [D1] ~o [Do2] if there is [D] such that [Dq] + [D] = [D2] + [D]. We
denote the quotient by K.,,.,(M), a cancellative, unital, commutative semiring.
We let [D]g denote the ~p-class of [D]. Then adding formal additive inverses
yields a canonical unital commutative ring Ko(M) extending K ,..(M), called the
Grothendieck ring of the structure M. The elements of Ko(M) can be written in
the form [Dl]O — [DQ]O, for D1,D5 € Def(M)

Ezample 4.18. Let M = (N, s), where s is the successor function. Then Th(M) is
small, but Ko(M) is trivial.
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Proof. The function s gives a definable bijection from N to N\ {0} whereby [{0}]o+
[N]Jo = [N]p in Ko(M), hence [{0}]o is the zero element of Ko(M). As it is also the
1 of Ko(M), Ko(M) is trivial. O

However by working with graded Grothendieck rings we get a rather different
situation. Again we fix a structure M, maybe many-sorted, but we define K(S)
for S a sort, or product of sorts, and define KJ™**(M) to be @g Ko(S). Here
are the details. First fix a sort S (or product of sorts). Start with Def(S) the
Boolean algebra of definable (with parameters) subsets of S. Again define K(S) to
be collection of cycles of formal sums of elements of Def(S), and ~ the equivalence
relation on K (S) of being in definable bijection. Let Kemi(S) be the quotient
K(S)/ ~. It is no longer true that every element of Kemi(S) is of the form [D]
for D € Def(S). Again form K/ .(S), and Ky(S) whose elements are of the form
[D1]o — [D2]o for D1, D3 € Kgemi(S). Now Ky(S) is just a commutative group with
no ring structure. We define K"**(M) to be the direct sum D Ko(S) with its
abelian group structure, but also with a commutative ring structure obtained as
follows: for Dy € Def(Sl) and Dy € Def(Sg), let [Dl]O . [DQ]O = [Dl X DQ]O in
K(S1 x S2). And extend it bilinearly to - from Ky(S7) X Ko(S2) to Ko(S1 x S2).

Proposition 4.19. Let M be any structure in a countable language such that
Th(M) is small. Then

(i) For every sort S, the group (Z,+) embeds into the group Ko(S), in particular
Ko (S) is nontrivial,
(ii) The ideal tZ[t] in the polynomial ring Z[t] embeds in KI™**(M).

Proof. (i) Consider the homomorphism from (Z, +) to K (5) which takes 1 to [S]o.
To show it is an embedding we have only to show that for each n > 1, n[S]y # 0.
Otherwise there is a cycle Y € K(S) such that n[S]+[Y] = [Y], yielding a definable
injection from S +Y to Y, and thus from Y + Y to Y by the obvious variant of
Lemma 4.5(ii). So we have definable injections fo: Y — Y and f1 : Y — Y with
fo(Y)Nf1(Y) = 0. Let B be the Boolean algebra of subsets of S which are definable
over the fixed finite set of parameters over which fy, f1 and the summands of Y are
defined. Then fy, f1 are B-maps. By Lemma 4.12, B is not small, hence Th(M) is
not small, a contradiction.

(ii) Given a sort S, we see from the proof of (i) that [S]y generates a subring
isomorphic to tZ[t]. O

Note that we obtain a characterization of when K" **(M) is trivial. It is precisely
that for every sort S and definable subset D of S there is a cycle Y € K(S) such
that D +Y ~ Y.

On the other hand, triviality of the Grothendieck ring Ko(M) is equivalent to
there being a definable set D and d € D such that D and D \ {d} are in definable
bijection.

A final remark is that the definition of K&™**(M) depends on the choice of sorts
S. We could rechoose all definable sets to be sorts, in which case the new graded
Grothendieck ring will be bigger and nontrivial, because for a singleton sort .S, all
cycles on S are finite sums of singletons and two such cycles are ~-equivalent iff
they have the same cardinality.
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