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ABSTRACT. We develop the theory of Kim-independence in the context of
NSOP; theories satsifying the existence axiom. We show that, in such theories,
Kim-independence is transitive and that \LK—Morley sequences witness Kim-
dividing. As applications, we show that, under the assumption of existence,
in a low NSOP; theory, Shelah strong types and Lascar strong types coincide
and, additionally, we introduce a notion of rank for NSOP; theories.
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This paper furthers the development of the theory of Kim-independence in the
context of NSOP; theories satisfying the existence axiom. Building on earlier work
in [4] and a suggestion of the second-named author [11], Kim-independence was
introduced in [7], where it was shown to be a well-behaved notion of independence
in NSOP; theories. This work established a strong analogy between the theory
of non-forking independence in simple theories and Kim-independence in NSOP;
theories, an analogy which subsequent works have only deepened [8,9,13]. Nonethe-
less, one major difference between the two notions of independence is that, unlike
non-forking which makes sense over all sets, Kim-independence is only a sensible
notion of independence over models: Kim-independence is defined in terms of for-
mulas that divide with respect to a Morley sequence in a global invariant type,
and such a sequence, in general, is only guaranteed to exist over a model. In [5],
the second and third-named author, together with Dobrowolski, focused on the
context of NSOP; theories that satisfy the existence axiom. There, it was shown
that Kim-independence may be defined over arbitrary sets and basic theorems of
Kim-independence over models hold in this broader context.

The existence axiom states that every complete type has a global non-forking
extension, i.e. every set is an extension base in the terminology of [3]. This is
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equivalent to the statement that, in every type, there is a (non-forking) Morley
sequence and, hence, assuming existence, one may redefine Kim-independence in
terms of the formulas that divide along Morley sequences of this kind. New technical
challenges arise in this setting, but in [5] it was shown that Kim-independence
satisfies Kim’s lemma, symmetry, and the independence theorem for Lascar strong
types. Moreover, all simple theories and all known examples in the growing list of
NSOP; theories satisfy existence, and it is expected to hold in all NSOP; theories,
see, e.g., [, Fact 2.14].

Here we continue work on Kim-independence in NSOP; theories satisfying ex-
istence, in particular, exploring aspects of the theory that are too cumbersome or
uninteresting over models. In Section 2, we show that Kim-independence is tran-
sitive in an NSOP; theory satisfying existence and that, moreover, Kim-dividing
is witnessed by J/K—Morley sequences. These results were first established over
models for all NSOP; theories in [8] and our proofs largely follow the same strat-
egy. Nonetheless, suitable replacements need to be found for notions that only
make sense, in general, over models, like heirs and coheirs. We find that arguments
involving these notions can often be replaced by an argument involving a tree-
induction, as in the construction of tree Morley sequences in [8]. In Section 3, we
apply these results to low NSOP; theories satisfying existence, showing that Shelah
strong types and Lascar strong types coincide, generalizing a result of Buechler for
simple theories [1] (see also [12,17]). In Section 4, we introduce a notion of rank
for NSOP; theories and establish some of its basic properties. Finally, in Section 5,
we generalize the Kim-Pillay criterion for Kim-independence from [4, Theorem 6.1]
and [8, Theorem 6.11] to give a criterion for NSOP; in theories satisfying existence,
which, additionally, gives an abstract characterization of Kim-independence over
arbitrary sets in this setting.

1. PRELIMINARIES

In this paper, T will always be a complete theory with monster model Ml. We will
implicitly assume all models and sets of parameters are small, that is, of cardinality
less than the degree of saturation and homogeneity of M. If we discuss an I-indexed
indiscernible sequence (a;);er, we will implicitly assume I is linearly ordered by <
and, given ¢ € I, we will write a<; and a<; for the subsequences (a;);<; and (a;);<;
respectively.

Definition 1.1. Suppose A is a set of parameters.

(1) We say that a formula ¢(z;a) divides over a set A if there is an A-
indiscernible sequence (a; : i < w) with ag = a such that {¢(z;a;) : i < w}
is inconsistent.

(2) A formula ¢(x;a) is said to fork over A if o(x;a) =\, ¥i(x; ¢;), for some
k < w, with ¢;(z; ¢;) dividing over A.

(3) We say a partial type divides (forks) over A if it implies a formula that
divides (forks) over A.

. d o

(4) For tuples a and b, we write @ |, b or a | , b to indicate that tp(a/Ab)
does not divide over A or does not fork over A, respectively.

(5) A Morley sequence (a;);c; over A is an infinite A-indiscernible sequence
such that a; | , a; for alli € I. If p € S(A), we say (a;)ics is a Morley
sequence in p if, additionally, a; = p for all i € I.
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The following is one of the key definitions of this paper. It defines a context in
which Kim-independence may be studied over arbitrary sets.

Definition 1.2. We define the existence aziom to be any one of the following
equivalent conditions on T

(1) For all parameter sets A, any type p € S(A) does not fork over A.
(2) For all parameter sets A, no consistent formula over A forks over A.
(3) For all parameter sets A, every type p € S(A) has a global extension that
does not fork over A.
(4) For all parameter sets A and any p € S(A), there is a Morley sequence in
.
If T satisfies the existence axiom, we will often abbreviate this by writing T is with
existence. See, e.g., [5, Remark 2.6] for the equivalence of (1)—(4).

Under existence, we may define Kim-independence over arbitrary sets. The
following definition was given in [5], but it was observed already in [7, Theorem
7.7] that this agrees with the original definition over models.

Definition 1.3. Suppose T satisfies the existence axiom.

(1) We say a formula ¢(z;a) Kim-divides over A if there is a sequence (a; : i <
w) which is a Morley sequence over A with ag = a and {¢(z;a;) : i < w}
inconsistent.

(2) A formula p(z;a) is said to Kim-fork over A if o(x;a) =\, i(w;¢4),
where each 1;(x; ¢;) Kim-divides over A.

(3) We say a type Kim-divides (Kim-forks) over A if it implies a formula that
Kim-divides (Kim-forks) over A.

(4) For tuples a and b, we write a \Lfb to indicate that tp(a/Ab) does not
Kim-divide over A.

(5) An | ™-Morley sequence (a;)ser over A is an infinite A-indiscernible se-

quence such that a; J/f a<; for all i € I.

Remark 1.4. By Kim’s lemma [12, Proposition 2.2.6], if T is simple, a formula
Kim-divides over a set A if and only if it divides over A.

Definition 1.5. [6, Definition 2.2] The formula ¢(x;y) has SOP; if there is a
collection of tuples (ay)ye2<~ so that

e For all n € 2%, {¢(¥;ayq) : @ < w} is consistent.
e For all n € 2<¥, if v extends n —~ (0), then {¢(z;a,), p(x;a,~1)} is incon-
sistent,

where < denotes the tree partial order on 2<%. We say T is SOP; if some formula
has SOP; modulo T'. T is NSOP; otherwise.

Definition 1.6. Suppose A is a set of parameters.

(1) We say that tuples a and b have the same (Shelah) strong type over A,
written a =5 b, if F(a,b) holds (i.e. E(a’,b') holds for all corresponding
finite subtuples o’ and b’ of a and b respectively) for every A-definable
equivalence relation E(x,y) with finitely many classes.

(2) The group Autf(M/A) of Lascar strong automorphisms (of the monster)
over A is the subgroup of Aut(M/A) generated by [J{Aut(M/M) : A C
M < M}. We say a and b have the same Lascar strong type over A, written
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a =5 b, if there is some o € Autf(M/A) such that o(a) = b. By a Lascar
strong type over A, we mean an equivalence class of the relation =%.

(3) A type-definable equivalence relation E on a-tuples, for an ordinal «, is
called bounded if it has small number of classes. We say a and b have
the same KP-strong type over A, written a =XF b, if E(a,b) holds for all
bounded type-definable equivalence relations over A.

(4) We say that T' is G-compact over A when a =L b if and only if a =§F b for
all (possibly infinite) tuples a,b. We say T' is G-compact if it is G-compact
over all finite sets A.

In [5], several basic facts about Kim-independence in NSOP; theories with ex-
istence were established. As we will make extensive use of them throughout the
paper, we record them below.

Fact 1.7. Assume T is NSOP; with existence and A is a set of parameters. Then
the following properties hold.
(1) Extension: If 7(z) is a partial type over B 2 A which does not Kim-divide
over A, then there is a completion p € S(B) of 7 that does not Kim-divide
over A. In particular, if a J/f b and c is arbitrary, there is some a’ =43 a
such that a J/f be. [5, Proposition 4.1]
(2) Symmetry: a \Lfb = b\Lfa. [5, Corollary 4.9]
(3) Kim’s Lemma for Morley sequences: the formula ¢(z;a) Kim-divides over
A if and only if {¢(z;a;) : i < w} is inconsistent for all Morley sequences
(a; 1 i < w) over A with ag = a. [5, Theorem 3.5
(4) Kim-forking = Kim-dividing: if a formula ¢(z;a) Kim-forks over A, then
(x; a) Kim-divides over A. [5, Proposition 4.1]
(5) The chain condition: if a J/j band I = (b; : i < w) is a Morley sequence
over A with by = b, then there is @’ =43 a such that I is Aa’-indiscernible
and o’ \Lf I (this follows from (3), as in, e.g., [5, Corollary 5.15]).
(6) The independence theorem for Lascar strong types: if ag =4 a1, ag \Lf b,
ar \Lf ¢, and b \Lfc, then there is some a. with a, =4, ag, a. =L, a1,
and a, \Lf be. [5, Theorem 5.8]
(7) Ty is G-compact for any small set A, where T} is the theory of the monster

model in the language with constants for the elements of A. [5, Corollary
5.9]

As these facts make up part of the standard tool box for reasoning about Kim-
independence, we will often make implicit use of these properties. For example,
Kim’s Lemma for Morley sequences, Item (3) in the above list, is often used in this
paper in the following way: if I = (a; : i < w) is a Morley sequence over A with
ap = a which is Ab-indiscernible, then a \LZ b. To see this, by symmetry (Item

(2)), it suffices to show that b J/j a which, by Item (4), means that we need to
show that there is no formula ¢(z;a) € tp(b/Aa) which Kim-divides over A. But
if p(z;a) Kim-divides over A, then Kim’s lemma implies that {¢(z;a;) : 4 < w} is
inconsistent. This set of formulas, however, is realized by b so there can be no such
formula.

The following is local character of Kim-independence for NSOP; theories. The
usual formulation of local character for non-forking independence in simple theories
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merely asserts that, for any type p € S(A), the set of B with |B| < |T| such that
p does not fork over B is non-empty, but it follows by base monotonicity, then,
that p does not fork over C' for any B C C' C A. Because Kim-independence, in
general, does not satisfy base monotonicity in NSOP; theories, the following is the
appropriate analogue for this setting:

Fact 1.8. [9, Theorem 3.9] Suppose T is NSOP; and M = T with |M| > |T.
Given any p € S(M) (in finitely many variables), the set X defined by

X :={N <M :|N|=|T| and p does not Kim-divide over N}
satisfies the following:
(1) X is closed: if (N; : i < |T|) is a sequence of models in X with N; C N; for
all i < j, then U, 7 Ni € X.
(2) X is unbounded: if Y € M has cardinality < |T|, there is some N € X
with Y C N.

Remark 1.9. Tt is an easy consequence of Fact 1.8 that if M = T is equal to the
union of (N; : ¢ < |T'|*), an increasing and continuous (i.e. N5 = [J;,_; N; for all
limit §) elementary chain of models of T of size |T'|, then for any p € S(M), there
is some i < |T'|" such that p does not Kim-divide over N;.

1.1. Trees. At several points in the paper, we will construct indiscernible sequences
by an inductive construction of indiscernible trees. We recall the basic framework
for these ‘tree-inductions’ from [7]. For an ordinal «, let the language L, be
(9, A, <iex; (P3)g<a). For us, a tree will mean a partial order < such that for all
x, the elements {y : y <z} below z are linearly ordered (and not necessarily well-
ordered) by < and such that for all z,y,  and y have an infimum, i.e. there is a
<-greatest element z < x,y, which is called the meet of x and y. We may view a
tree with « levels as an L o-structure by interpreting < as the tree partial order, A
as the binary meet function, <., as the lexicographic order, and Pg interpreted to
define level 8. The specific trees, and the interpretations of these symbols that turn
them into Lg ,-structures, that we will need in this paper are outlined precisely in
Definition 1.12 below.

We now recall the modeling property. In what follows, we will write qftp;,(a)
to denote the quantifier-free type of a in the language L’ and write tpa(b/A) to
denote the A-type of b over A (i.e. the set of positive and negative instances of
formulas in A with parameters from A satisfied by b). Although the subscript is
used in two conflicting ways, it will be clear from context which is intended.

Definition 1.10. Suppose I is an L’-structure, where L’ is some language.
(1) We say (a; : i € I) is a set of I-indexed indiscernibles over A if whenever
(80y---y8n—-1), (to,.-.,tn—1) are tuples from I with
aftpy/(sos .-, 8n—1) = aftpy, (to, .-, tn—1),

then we have

tp(asgs - -5 s,y [A) = tp(atg, -+ ar, -, /A).

(2) Inthe casethat L' = L, for some a, we say that an I-indexed indiscernible
is s-indiscernible. As the only L ,-structures we will consider will be trees,
we will often refer to I-indexed indiscernibles in this case as s-indiscernible
trees.
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(3) We say that I-indexed indiscernibles have the modeling property if, given
any (a; : ¢ € I) from M and any A, there is an I-indexed indiscernible
(b; : i € I) over A in M locally based on (a; : i € I) over A. That is, given
any finite set of formulas A from L(A) and a finite tuple (¢, ...,t,—1) from
I, there is a tuple (sq,...,sp—1) from I so that

aftp/ (tos .-y tn—1) = aftp (S0, -+, Sn—1)

and also

tpA(btov ceey btn—l) = tpA(asoa B aasn—l)'
Fact 1.11. [14, Theorem 4.3] Let I, denote the L ,-structure
IS = (w<w7 S‘a <lex /\7 (Pa)a<w)

with all symbols being given their intended interpretations and each P, naming the
elements of the tree at level a. Then Is-indexed indiscernibles have the modeling

property.

Our trees will be understood to be an L, o-structure for some appropriate o.. As
in [7], we introduce a distinguished class of trees 7Ty

Definition 1.12. Suppose « is an ordinal. We define 7, to be the set of functions
f such that
e dom(f) is an end-segment of « of the form [3,a) for § equal to 0 or a
successor ordinal. If « is a successor, we allow 8 = a, i.e. dom(f) = 0.
e ran(f) Cw.
e finite support: the set {y € dom(f) : f(v) # 0} is finite.
We interpret 7, as an L o-structure by defining
e f<Qgifandonlyif fCg. Write f L gif =(f Jg) and =(g < f).
e fAg= f|[5,a) = g|[ﬁ,a) where 3 = min{’y : f|[’y,a) = gl[’y,a)}v if non-empty
(note that 8 will not be a limit, by finite support). Define f A g to be the
empty function if this set is empty (note that this cannot occur if « is a
limit).
o f <iex gif and only if f < g or, f L g with dom(f Ag) = [y+1,a) and
() <9(v)
e For all 8 < «a, Pg = {f € To : dom(f) = [8,a)}. Note that Py are the
leaves of the tree (i.e. the top level) and P, is empty for « limit.

Fact 1.11 and compactness can be used to show that 7T,-indexed indiscernibles
have the modeling property as well [7, Corollary 5.6].

Definition 1.13. Suppose « is an ordinal.

(1) (Restriction) If v C «, the restriction of T, to the set of levels v is the
L o-substructure of 7, with the following underlying set:

Ta 1 v={n € Ty : min(dom(n)) € v and S € dom(n) \v = n(B) = 0}.

(2) (Concatenation) If € T, dom(n) = [8 + 1, ) for B non-limit, and i < w,
let n ~ (i) denote the function n U {(8,4)}. We define (i) ~n € Tot1 to
be nU {(a,)}. We write (i) for  —~ (3).

(3) (Canonical inclusions) If a@ < 8, we define the map tap @ To — T by
tap(f) == fU{(7,0):7v € B\a}.
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(4) (The all 0’s path) If 5 < «, then (3 denotes the function with dom({z) =
[8, @) and (g(y) = 0 for all v € [8, ). This defines an element of 7, if and
only if 8 € {y € a| v is not limit} =: [«a].

(5) (Tuple notation) Given v € T,, we write ap, for the tuple enumerating

{ag : v L€ e To}.

In previous works on Kim-independence over arbitrary sets, there was a gap
concerning the construction of Morley trees (and a parallel gap in the theory over
models), first discovered by Jan Dobrowolski and Mark Kamsma. Namely, there
is no reason a priori for an s-indiscernible tree locally based on a weakly spread
out tree (see Definition 1.17) to be weakly spread out, which is needed to continue
the induction. Over models this has a very easy fix: one can check that it is
possible to choose a global M-invariant type ¢ 2 tp((ay)ye7. /M) such that, if
(ay)net. = q then (a;)ye7, is M-indiscernible. Morley sequences in such types
allow the argument to work without change (the details for this case will appear
elsewhere). But over sets, a lengthier argument is required to patch the proofs. The
relevant notion for the modification is that of a mutually s-indiscernible sequence.
We prove in Lemma 1.15 that, given an s-indiscernible tree, there is a Morley
sequence starting with this tree which is mutually s-indiscernible, and then we show
in Lemma 1.16 that this notion is preserved upon passage to an s-indiscernible tree.

Definition 1.14. We say a sequence ((ay ;)neTs, : @ < k) is mutually s-indiscernible
over A if, for all i < k, (ay,i)neT, is s-indiscernible over A{a, ; : n € Ta,j # i}.

Lemma 1.15. Assume A is an extension base. Given a tree (an)ye7, that is
s-indiscernible over A, there is a sequence I = ((ayi)ne7, : ¢ < w) such that
(@n,0)nete = (an)nets, I is a Morley sequence over A, and I is mutually s-
indiscernible over A.

Proof. Let k be sufficiently large with respect to |A|. By induction on v < &, we will
choose (ay,~)ne7, such that, taking I, to be the sequence ((ay i)neT, @1 < ), We
have that I, starts with (a,)ne7,, is mutually s-indiscernible over A, and satisfies

(ani)nets L(anj)neta i<i
A

for all ¢ < . The sequence I is already specified and trivially satisfies the require-
ments.

Assume we are given (a,i)ne7, for all i < v and set Iy = ((ani)neTs ¢ < 7).
Apply extension to get some (by)ne7, =a (ay)neT, such that

(bn)neTa \L IV'
A

By the modeling property, we can take (b,)ye7,, to be locally based on (b;),e7, and
s-indiscernible over AL,, then we we still have (0] ),e7, =4 (ay)net., as (ay)yeT,
was assumed to be s-indiscernible over A, and local basedness and strong finite
character of non-forking imply

(b’/n)"]ETa \|./ I’Y'
A

Now by induction on i < 7, we will choose (a; ,;)ne7, satisfying the following
conditions:
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(1) (ay ;)neT., is s-indiscernible over
Au{ay j:n€Ta,j <ifU{anr:n € Tak > i} UL, :n €T}
(2) (b),)neT. is s-indiscernible over
Au{ay j:n €T, g <iyU{angk:n€ Ta k> i}

(3) (a;;,j)neTa,jgi(an,k)nen,k» =A (an,j)neTa,jSi(an,k)neTa,k>i-
(4) The following independence holds:

O )neTe L(ay IneTi<i(@nk)ne T, k>
A
Fi.x i. <7 .and suppose W/e have chose'n (‘f%,j)nGTa for all j < z Pick/ (ay i)neT.
s-indiscernible over AU{a;, ; : 1 € Ta,j <itU{ank :n € Ta, k> i} U{by :n € Ta}
and locally based on (ay,i)ne7,- Then (1) is satisfied and (2) is easy to check using
local basedness and the inductive assumption. We assumed I, was mutually s-

indiscernible over A and hence by (3) of the inductive hypothesis, we know that
(@n,i)neT. is s-indiscernible over

Au{ay, ;:n€Ta,j<ifU{ayr:n € Ta k> i}

and therefore (a; ;)ye7, has the same type over this set, which establishes (3).
Finally, (4) follows by local basedness, (3), and the invariance of non-forking inde-
pendence. More explicitly, suppose there is a finite tuple b from (b;;)nETaa a finite

tuple a from {a;, ;: j <i}U{a,: k> i}, and a finite tuple 77 from 7, such that

): Sp(b» alﬁ,iv a)
where o(2;y,2) € L(A) is a formula such that ¢(z;az;,a) forks over A. Local
basedness entails that there is 7 with qftp,_  (7) = qftp,, (7) such that

= o(b; ap,i, a).
But by mutual s-indiscernibility, az; =aq ag,; and, by (3), a5, =aa a’m and hence
o(x; ap,i,a) forks over A as well. This contradicts the inductive hypothesis that

(b%)neTa 5L (a%,j)neTa7j<i(an7k)neTa7kZi'
A

This shows that our choice of (aj, ;),e7, satisfies the requirements.

Having constructed our sequence I, = ((aj ;)neT,, i <), we have I' =4 I, by
(3) and (b, )ner, is s-indiscernible over I by (2). Moreover, each (a.i),eT, is indis-
cernible over A(b)))neT, (an,j)neTa iz by (1). Finally, by (4), we have (b;)pe7., L , 15
Choosing (a,.~) such that

Iy(anq)net, =a I;(b%)nen
we arrive at I,y;. There is nothing to do at limits, so we have succeeded in

constructing our sequence I,. Applying Erdés-Rado to I, then, we obtain the
desired sequence I. (I

Lemma 1.16. Suppose (ay)neT.,, s a tree of tuples such that I = (ap gy @1 < w)
is mutually s-indiscernible and Morley over A. Then if (a} )ner,, ,, 1 s-indiscernible
and locally based on (ay)neT, ., over A and I' = (ag;y i <w), then I' =4 I and
thus I' is also mutually s-indiscernible and Morley over A.
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Proof. Suppose 7] and 7 are tuples from 711 \{0} with aftp,_ . (7) = aftp,, (7).
After possibly reordering the tuples, there are ig < ... <ir_1 and jo < ... < jr—1
such that 7 = (7,,...,7_1) and ¥ = (Vo,...,Ux_1) where each 7, comes from
the tree >(i;) and 7; comes from the tree >(j;) for | < k. Then, in particular,
aftp, .., (M) = aftp,, ., (71) for all I < k. Additionally, for all I < k, let 7j; be
the element of the tree I>(j;) corresponding to 7j; (i.e. replace each node (i;)™¢
enumerated in 7j; with (j;)"&). Because I is an A-indiscernible sequence, we have

(aﬁo,...,amil) =A (a%,...,amil),

Additionally, in the tree >(j;) (naturally viewed as an L ,-structure), we have
aftpy_ () = aftpy_ () for all | < k. Thus, mutual s-indiscernibility entails

(amys - am,_ ) =4 (g, -0,y )-

Thus we have shown that az =4 ap. Therefore, it follows, by local basedness, that
I =4 I’ and the result follows. O

Definition 1.17. Suppose (a,)neT, is a tree of tuples in M, and A is a set of
parameters.

(1) We say (an)neT, is weakly spread out over A if for all n € T, with dom(n) =
[B+1,a) for some 3 € [a], the sequence of cones (apy () )i<w is a Morley
sequence in tp(apy—~(0)/A)-

(2) Suppose (ay)neT, is a tree which is weakly spread out and s-indiscernible
over A and for all pairs of finite subsets w, v of o with |w| = |v|,

(an)neTurw =a (ay)neTatv

then we say (an)neT, is a weakly Morley tree over A.

(3) A weak tree Morley sequence over A is a A-indiscernible sequence of the form
(a¢s)pefa) for some weakly Morley tree (a,)ye7, over A. More generally,
we will say an A-indiscernible sequence I is a weak tree Morley sequence
over A if it is EM-equivalent to a sequence of this form.

Remark 1.18. If I = (b; : i < w) is an A-indiscernible sequence and I =4 J for
some weak tree Morley sequence J over A, then [ is a weak tree Morley sequence
over A. In particular, if I is a subsequence of J, by the A-indiscernibility of J, the
sequence [ is also weak tree Morley over A.

Fact 1.19. Suppose T is NSOP; with existence and A is a set of parameters.

(1) Ifa J/f b, there is an Ab-indiscernible sequence I = (a; : i < w) over A
with ap = a such that I is weak tree Morley over A. [5, Lemma 4.7]

(2) Kim’s Lemma for weak tree Morley sequences: the fomula ¢(x;a¢) Kim-
divides over A if and only if {p(z;a;) : ¢ < w} is inconsistent for some weak
tree Morley sequence (a; : i < w) over A if and only if {¢(z;a;) : i < w}
is inconsistent for all weak tree Morley sequences (a; : i < w) over A. [5,
Corollary 4.8]

(3) If a =L b and a J/f b, there is an | "-Morley sequence over A starting
with (a, b) as its first two elements (follows from Fact 1.7 as in [7, Corollary
6.6]).
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1.2. Further properties of Kim-independence.

Fact 1.20. [5, Lemma 5.7] Suppose T is NSOP; with existence. If A is a set of
parameters, c¢ is an arbitrary tuple, and a \Lf b, then there is a’ Eﬁb a such that

;K
a" L, be
The following lemma is easy and well-known, but, in the absence of a clear
reference, we provide a proof:

Lemma 1.21. Suppose T is NSOP; with existence, A is a set of parameters, and
p(x) € S(A).
(1) Given any tuple of variables y, there is a partial type T'(x,y) over A such
that (a,b) = T(x,y) if and only if a = p and a J/i{ b.
(2) There is a partial type A(x; : 1 < w) over A such that I = (a; : i <w) E A
if and only if I is an \LK-Morley sequence over A in p.

Proof. (1) By compactness, we may assume y is finite. Fix ¢ = p and define T'(z, y)
by
I(x,y) = p(z) U{=o(y; z) : o(y; c) Kim-divides over A}.
By symmetry, invariance, and Kim-forking = Kim-dividing, this partial type is as
desired.
(2) One can take A to be the partial type that asserts (z; : i < w) is A-
indiscernible, every z; | p, and x; J/f:z:@ (which is type-definable over A by

(1))- U

The following lemma is the analogue of the ‘strong independence theorem’ of [16,
Theorem 2.3] for Lascar strong types.

Lemma 1.22. Suppose T is NSOP; with existence. If A is a set of parameters,
ag J/II: b, a1 Lfc, bifc, and ag =4 ay, then there is a such that a =5, ao,

a =L a1 and, additionally, we have a JJ(I: be, b J/i{ ac, and ¢ J/i{ ab.

Proof. By Fact 1.20, there is ¢/ =L, ¢ such that ¢/ \LIZ be. Let o € Autf(M/Ab) be

an automorphism such that o(¢’) = c and let ¢y = o(c). Then we have ¢ J/f by and
co Eﬁb c and hence, in particular, cob =% ¢b. By symmetry and a second application
of Fact 1.20 once again, we find b”¢”" =4 bey with b’ ¢” J/f be. Let 7 € Autf(M/Ac)
be a strong automorphism with 7(b”¢”) = bey and define by = 7(b). Then by
construction, we have b”’¢” =4 bey and beg =L be, it follows that b’c¢” =L be,
and hence 7(b"¢") =4 7(bc), which, after unraveling definitions, gives bcg =4 bc.
Moreover, since b"c” \LIZ be, we obtain bcg J/f bic by invariance. Let by = b and
¢1 = c¢. By Fact 1.19(3), we can extend the sequence ((b;,¢;) : i < 2) to a weak tree
Morley sequence I = ((b;,¢;) : i € Z) over A.

Choose a’ such that ajc; =k a’co. Then we have ag =5 d/, as well as ag J/f bo,
a J/f co by our assumptions. Additionally, since b J/f ¢, bp = b and c =43 cg, we
have by J/I,: co. Therefore, by Fact 1.7(6), there is a, with a, Eﬁbo ag, G EﬁcO a,
with a. J/Z boco.

Because I is a weak tree Morley sequence and a. J/f boco, by Kim’s lemma,

compactness, and an automorphism, there is @ \LIZ I such that a..bgco Eﬁ abgcy
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and such that I is Aa..-indiscernible. Note that, by construction, .. Eﬁb aop,
—L K

Qs =4, a1, and as, |, be.

Additionally, the sequence (b; : i € Z=C) is a weak tree Morley sequence over
A which is Aa.«c-indiscernible and containing by = b, hence a..c J/K b, by Kim’s
lemma for weak tree Morley sequences. Similarly, the sequence {(c; : i € Z=1') is a
weak tree Morley sequence over A containing ¢ = ¢; which is Aa.b-indiscernible,
yielding a..b \LIZ c. By symmetry, we conclude. O

2. TRANSITIVITY AND WITNESSING

2.1. Preliminary lemmas. We begin by establishing some lemmas, allowing us
to construct sequences that are J/K-Morley over more than one base simultane-
ously. The broad structure of the argument will follow that of [8], which established
transitivity over models for Kim-independence in NSOP; theories, however all uses
of coheirs and heirs will need to be replaced.

In particular, the following lemma does not follow the corresponding [8, Lemma
3.1], instead producing the desired sequence by a tree-induction.

Lemma 2.1. Suppose T is NSOPy and satisfies the existence aziom. If A C B
and a J/ll:B, then there is a weak tree Morley sequence {a; : i < w) over B with

ag = a such that a; J/II: Bac; for alli < w.

Proof. By induction on «, we will construct trees (a;))ye7, so that

(1) (ag)neT, is s-indiscernible and weakly spread out over B.

(2) a |: tp(a/B) for all n € T,.
)
)

(3 If « is a successor, ag \L Bag,

(4

For a = 0, we put aw = a, and for ¢ limit, we will define (ag)ng—é by setting
af s = ay for all @ < § and n € 7, which, by (4) and induction, is well-defined
and satisfies the requirements.

Now suppose we are given (ag JneTs satisfying the requirements for all 5 < a.
Let ((ay;)pet. @ < w) be a mutually s-indiscernible Morley sequence over B
with apy = ajy for all n € T, which exists by Lemma 1.15. Apply extension to

find a. =p a so that a. J/fB(af;ﬂ-

bp = ax and by ~, = ay; for all i <w and n € T,. We may define (G%H)neTaH
to be a tree which is s-indiscernible over B and locally based on (b,)ye7, ., over

If & < 3, then a ) = 8 for all n € Ta.

JneTa,i<w- Define a tree (by),e7.,, by setting

B. By an automorphism, we may assume aO‘HH(n) = ay for all n € 7y, hence
conditions (2), and (4) are clearly satisfied. Moreover, by Lemma 1.16, we have

((ani)peT, 11 <w) =B <a§J<r$ i < w) so <a§J<r$ i < w) is a Morley sequence over

B. Then by (4) and induction, it follows that (a2™'),e7,,, is s-indiscernible and
spread out over B, which shows (1).

For (3), we just note that, by symmetry, if ao‘+1 j/fBag?gl, there is some

formula ¢(z; a%“"l) € tp(BanH/AaO‘H) that Klm divides over A. As the tree
(a9 )pet., is locally based on (by)yeT,,,, it follows that some tuple from Bbyg
also realizes ¢(z;a.) and a. =p a%‘“, so ¢(x;a,) Kim-divides over A as well,
contradicting the choice of a.. This contradiction establishes (3), completing the
induction.
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By considering (ay)ye7, for s sufficiently large, we may apply Erdés-Rado, as
in [7, Lemma 5.10], to find the desired sequence. O

The proof of the next lemma follows [8, Lemma 3.2].

Lemma 2.2. Suppose T is an NSOP; theory satisfying the existence axiom. If
a J/f b and c\Lib, then there is ¢ so that ¢’ =45 ¢, ac’ \Lib, and a Lfb d
Proof. Define a partial type I'(z;b,a) over Aab as follows:
I'(x;b,a) = tp(c/Ab) U {—p(x,a;b) : p(z,y;b) € L(Ab) Kim-divides over A}
Claim 1: If {(a; : i < w) is an Ab-indiscernible sequence satisfying ag = a and
a; J/f ba; for all i < w, then |J;_,,
Proof of claim: By induction on n < w, we will find ¢, =% ¢ such that

I'(x;b,a;) is consistent.

Cn \Li ba<y and ¢, = U, ., I'(2;b,a;). For n =0, we can put ¢ = ¢, since ¢ \Li b

by assumpmon Assume we have found cn, and, by Fact 1.20, choose ¢’ such that

¢ =L cand ¢ J/A an. Then ¢ :ﬁ ¢ =k ¢, and, since a, J/fba<n, we may ap-

ply Lemma 1.22 to find c¢,41 =4 ¢ such that c,41 | tp(en/Abacy,) Utp(c'/Aay)

and such that ¢, 41 J/f ba<nt1 and apcpi1 J/f ba<n, hence, in particular, ¢, 11 E

Uicnsr L(@50,a;). The claim follows by compactness. O
Next we define a partial type A(z;b,a) as follows:

A(z;b,a) =T(x;b,a) U{—(x;b,a) : Y(x;b,a) € L(Aab) Kim-divides over Ab}.
Claim 2: The set of formulas A(x;b,a) is consistent.

Proof of claim: Suppose not. Then because Kim-forking and Kim-dividing are
the same in NSOP; with existence, there is some formula ¢ (z;b,a) € L(Aab) such
that

[(x;b,a) = 4(z;0,a)

and ¥ (z; b, a) Kim-divides over Ab. As a \Li b, we know by Lemma 2.1 that there
is a sequence (a; : i < w) with ap = a which is a weak tree Morley sequence over
Ab and satisfies a; \Lfba«- for all i < w. Then by Claim 1, UJ,., I'(z;b,a;) is
consistent. However, we have

U D(x;b,a:) F {(z;b,a;) 17 < w}

i<w
and {¢(z;b,a;) : i < w} is inconsistent, because weak tree Morley sequences witness
Kim-dividing. This contradiction proves the claim. O

To conclude, we may take ¢’ to be any realization of A(z;b,a). O

The next proposition is a strengthening of Fact 1.19(1).

Proposition 2.3. Suppose T is an NSOP; theory satisfying the existence axiom.
Ifa \Lib, then there is a sequence I = (a; : i < w) with ag = a such that I is a
weak tree Morley sequence over A and an J/K-Morley sequence over Ab.

Proof. By induction on «, we will construct trees (aj)ye7, satisfying the following:

(1) For all n € Ta, aj = tp(a/Ab).

2) The tree (a )neTa is s-indiscernible over Ab and weakly spread out over A.
)
)

(
(3) If a is a successor, then af J/Ab 2o
(

4 ( )WGTQ J/A b.
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(5) If o < f3, then aiﬁ(n) = a2 for all n € T,.

Put af = a and for ¢ limit, if we are given (a)neT, for every a < §, we can define
(af,)ng—& by setting afﬂs(n) = ay for all « < § and n € 7, which is well-defined by
(5) and is easily seen to satisfy the requirements.

Suppose now we are given (aj)),e7, . Let J = ((ap ;)ne7s, 7 < w) be a mutually
s-indiscernible Morley sequence over A with (aj )ye7, = (a5)ne7,, which exists
by Lemma 1.15. By (4), symmetry, and the Chain Condition, Fact 1.7(5) we may
assume J is Ab-indiscernible and J J/f b. By Lemma 2.2, there is a, =43 a such

that a. J/be and a.J J/fb. After defining a tree (c¢y)ye7.., by ¢p = a. and
Cliy~n = ayy; for all n € Ty, these conditions on a. imply that (c,)ye7, satisfy (3)
and (4) respectively. Let (ag™!),e7,,, be any tree s-indiscernible over Ab locally
based on (c;)ner, over Ab. This still satisfies (2) by Lemma 1.16. Moreover,
as ey = tp((ay)per, /Ab) for all i < w, it follows from local basedness that

a;m = tp((ap)yeT, /Ab) for all i < w as well. Hence, by an automorphism over

Ab, we may assume ag‘i; = ay for all n € T4, which ensures the constructed tree
satisfies (5), and (1)-(4) are easy to verify.

Given (a;)neTN for x sufficiently large, we may, by Erdds-Rado (see, e.g., [7,
Lemma 5.10]), obtain a weak Morley tree (by),ec7., over A satisfying (1)—(4). Then
the sequence I = (a; : i < w) defined by a; = b, for all i < w is a weak tree Morley
sequence over A, as it is a path in a weak Morley tree over A, but by (3), we have

a; Lfb a<i for all i, so I is | "-Morley over Ab as well. O

2.2. Transitivity and witnessing. The following theorem establishes the transi-
tivity of Kim-independence in NSOP; theories with existence.

Theorem 2.4. Suppose T is NSOP; with existence. Then if A C B, a J/i{ B and
a J/g ¢, then a J/f Be.

Proof. By Proposition 2.3 and the assumption that a \LZ B, there is a sequence
I ={(a;:i<w) with ap = a such that I is an J/K-Morley sequence over B and a
weak tree Morley sequence over A. As ¢ \Lg a, by symmetry, and I is \LK—Morley
over B, there is I’ =g, I such that I’ is Be-indiscernible. Because I’ is also a

weak tree Morley sequence over A, it follows by Kim’s lemma that Bc Lf a. By
symmetry, we conclude.

Proposition 2.5. Assume T is NSOP; with existence. The following are equiva-
lent.

(1) allb
(2) There is a model M D A such that M\Lfab (or M | ,ab) and a\Lf\Z b.
(8) There is a model M D A such thatM\Li{a (or M | ,a) anda\Lzb.

Proof. (1)=(2) Since a J/fb, there is a Morley sequence I = (a; : ¢ < w) over
A with ag = a such that I is Ab-indiscernible. By [5, Lemma 2.17], there is a
model N containing A such that N | A I and I is a coheir sequence over N. By
compactness and extension we can clearly assume the length of I is arbitrarily large,
and N | A Ib. Hence by the pigeonhole principle, there is an infinite subsequence
J of I such that all the tuples in J have the same type over Nb. Thus, for a’ € J,
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we have a’ J/g band N |, a’b. Hence M = f(N) is a desired model, where f is
an Ab-automorphism sending a’ to a.

(2)=(3) Clear.

(3)=(1) follows from transitivity and symmetry of | **. O

Proposition 2.6. Suppose T satisfies the existence axiom. The following are equiv-
alent for a cardinal k > |T|:

(1) T is NSOP;.

(2) There is no increasing continuous sequence (A; : i < k) of parameter sets
and finite tuple d such that |A;| < k and d J/f Aiyq for alli < k™.

(3) There is no set A of parameters of size k* and p(x) € S(A) with x a finite
tuple of variables such that for some increasing and continuous sequence of
sets (A; 1 i < k™) with union A, we have |A;| < k and p Kim-divides over
A; for alli < k.

Proof. (1) = (2) It suffices to show that, given any increasing continuous sequence
(A; 14 < k™) of parameter sets and tuple d such that |A;] < k and d j/f Ay for
all i < k™, there is a continuous increasing sequence of models (M; : i < £1) and
a finite tuple d’ such that |M;| < k and d’ j/f\; M1 for all i < k™. This follows
from Fact 1.8, since the existence of such a sequence of models implies T" has SOP;.
Moreover, after naming constants, we may assume k = |T|.

So suppose we are given (A4; : i < |T|T), an increasing continuous sequence
of sets of parameters with [4;| < |T| for all ¢ < |T[*. Let A = U;o\p+ Ais
and suppose further that we are given some tuple d such that d j/ii A;ypq for
all i < |T|". By induction on i < |T|* we will build increasing and continuous
sequences (A} : ¢ < |T|") and (M; : i < |T|*) satisfying the following for all
i< |TI*:

(1) Aj = Ap and A, = A<;.
(2) M; E T with |M;| = |T| and A C M,.
(3) ALy LS M

To begin, we define A, = Ay and take My be any model containing Aj of size
IT|. Given AL, and Mc; satisfying the requirements, we pick A ; such that
AL;AYy = Aciy1. Then we apply extension, to obtain A}, =a, Aj | such
that A, J/Z M;. Note that AL, | = A<;41. We define M; 1 to be any model

containing A}, | M; of size |T'|. This satisfies the requirements.

At limit §, we define A5 = (J,_5 A; and Ms = |J,s M;. This clearly satisfies (1)
and (2) and (3) is trivial. Therefore this completes the construction.

Let M = U, |+ Mi. Choose d’ such that d(A; : i < |T|*) = d'(A] : i < [T|T),

which is possible by (1). Then we have d’ J//II:/_ Aj | foralli < |T|F.

Towards contradiction, suppose that there is some i < |T'|T with the property
that d’ J/f/[ M;y1. Then, in particular, we have d’ J/f\; A}, ;. Additionally, be-

cause M; J/f{ Aj,, we know, by symmetry and transitivity, that Aj_ JJ{I:/_ d' M;.
By symmetry once more, we get d’ J/f,_ A}, a contradiction. This shows that

d’ \,Lf/[ M, for all i < |T|*, completing the proof of this direction.
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(2) = (3) Suppose (3) fails, i.e. we are given A of size kT, p € S(A), and an
increasing continuous sequence of sets (A4; : ¢ < w) such that |4;] < x and p Kim-
divides over A; for all ¢ < k. We will define an increasing continuous sequence of
ordinals (a; : @ < k1) such that a; € kT and p | A,,,, Kim-divides over A,, for all
i < KkT. We set ag =0 and given («; : j < i), we know that there is some formula
o(z;a;41) € p that Kim-divides over A,,, by our assumption on p. Let a;; 11 be the
least ordinal < sk such that a;y1 is contained in A, .- For limit 4, if we are given
(aj : j < i), we put a; = sup;_; ;. Then we define (4; : i < k™) by Aj = A,, for
all i < k, and let d = p be any realization. By construction, we have d \X/f{ Ai

for all i < k*, which witnesses the failure of (2).
(3) = (1) This was established in [9, Theorem 3.9]. O

Remark 2.7. In [2, Proposition 4.6] it is shown that in every theory with TPq, there
is an increasing chain of sets (D; : i < |T'|") and tuple d such that |D;| < |T'| and
d j/g D;yq for all i < |T|T. Hence, for non-simple NSOP; theories, the condition
of continuity in the statement of Proposition 2.6 is essential.

The following theorem will be referred to as ‘witnessing.” It shows that J/K—
Morley sequences are witnesses to Kim-dividing. Over models this was established
in [8, Theorem 5.1}, however for us it will be deduced as a corollary of Proposition
2.6.

Theorem 2.8. Suppose T is NSOP; with ezistence and I = (a; : i < w) is an J/K—
Morley sequence over A. If p(x;a0) Kim-divides over A, then {¢(z;a;) : i < w} is
mconsistent.

Proof. Suppose towards contradiction that ¢(x;ap) Kim-divides over A and I =
(a; 11 < w) is an J/K—Morley sequence over A such that {p(z;a;) @ @ < w} is
consistent. By naming A as constants, we may assume |A| < |T|. We may stretch
I such that I = {(a; : i < |T|"). Define A; = Aac;. Then (4; : i < |T|T)
is increasing and continuous and |A;| < |T|. Let d | {¢(z;a;) : i < |T|"}.
We claim dj/j A;pq for all 4 < |T|*. If not, then for some i < |T|", we have
d J/i A;it1, or, in other words d \Lifad a;. Since I is an | ®-Morley sequence,
we also have a; J/f: a<i, hence da; J/f: a;, by transitivity (Theorem 2.4). This

entails, in particular, that d J/IZ a;, which is a contradiction, since ¢(zx;a;) Kim-
divides over A. This completes the proof. O

3. Low NSOP; THEORIES

This section is dedicated to proving that Lascar and Shelah strong types coincide
in any low NSOP; theory with existence. This generalizes the corresponding result
of Buechler for low simple theories [1] (also independently discovered by Shami [17]).

Definition 3.1. We say that the theory T is low if, for every formula ¢(x;y),
there is some k < w, such that if I = {(a; : i < w) is an indiscernible sequence and
{¢(z;0a;) : i < w} is inconsistent, then it is k-inconsistent.

In [1], the definition of lowness is given in terms of the finiteness of certain
D(p, p) ranks, which we will not need here. However, as observed in [1], the above
definition coincides with this definition in the case that T is simple.
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Lemma 3.2. Suppose T is NSOP; with existence. Assume we are given tuples
(@i)i<n and L(A)-formulas (pi(z;y:))i<n such that a; JJ(I: a<i for alli <n. Then
the following are equivalent:
(1) The formula \,-,, vi(x;a;) does not Kim-divide over A.
(2) For all A-indiscernible sequences (@; : j < w) = ((ajo,---,a5n) : j < w)
with (ao0,...,00n) = (Go,.-.,an) and a;; L§5<jaj,<i for all j <w and
i < n, the following set of formulas does not Kim-divide over A:

N ei(msa:):j <w

i<n
(8) There is an A-indiscernible sequence (G, : j < w) = ((aj0,---,Qjn) 1 J <w)
with (ao,0,-..,00n) = (ag,...,an) and a;; L§E<jaj7<i for all j < w,

i < n such that

N\ wilwiazi):j <w

i<n
s consistent.

Proof. (1) = (2) Suppose we are given (@; : j < w) as in (2) and let ¢ =
Nicn #i(T;a;) with c\LiEo. As (a; : j < w) is A-indiscernible, for each j > 0,
there is some o; € Autf(M/A) with 0;(Go) = G;. Define ¢9 = ¢ and ¢; = 0j(c)
for all j > 0. Then we have ¢; =4 ¢y and ¢; | Nicn @i(x5a5,) for all j < w. By
inductively applying the independence theorem (with respect to the lexicographic
order on w x n), we obtain ¢, = {@;(x;a;;) 1 <n,j <w} with ¢, Lfa@, which
establishes (2).

(2) = (3) It suffices to show that there is an A-indiscernible sequence (a@; : j <

w) = ((aj0,---,a5n) : j < w) with (ago,...,a0n) = (ao,...,a,) and such that
aj; J/fﬁ<jaj7<i for all j <w, i <n.

First, we construct by induction a sequence ((a’jy,...,a}, :j <w) = (@ :j <
w) with @; =4 (ao, ..., a,) and a}; Lf&;jajKi forall j < w, i <n. Givena,y, we

. . K_ . _ .
apply extension to find aj ;o =4 ao with aj ., o |, @< Given @, <, fori <n,
we find by41,541 such that a§€+1$ibk+1)i+1 =4 a<;a;y1. By invariance, this implies

K . .
brt1,i+1 J/A a;c—i-l,gi' Applying extension once more, we can find a§€+1)i+1 =Aal,,

bk+1,i+1 such that a;€+17i+1 J/,I:E/gka;cﬂ,gi- This completes the construction of
(@, : j < w). By Ramsey, compactness, and an automorphism, we can extract an
A-indiscernible sequence (@, : j < w) with @y = (ao,...,a,) as desired.

(3) = (1) Let ¢ = {/\Kn wi(xya;;) 7 < w}. Note that, for each i < n, the
sequence (a;; : j < w) is an J/K—Morley sequence over A. Hence, by witnessing,
Theorem 2.8, and the fact that ¢ = {@;(x;a;,) : j < w}, we see that cifai for
each 7 < n.

By induction on k < n, we will choose ¢;; =} ¢ such that ¢ = {@:i(z;a;) 11 < k}
and cg Lfagk. To begin we set ¢y = c¢. Given ¢ for some k < n, we apply
the independence theorem to find ciq1 with cgy1 Eﬁagk Ck, Ch+1 Efmkﬂ ¢, and
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Cht1 J/fagkﬂ. After n steps, we obtain ¢, E /\ign wi(x;a;) with ¢, J/fagn,
which shows (1). O

Remark 3.3. The independence conditions of (2) and (3) do not imply that the
sequence ((aio,...,ain) i <w)is | “-Morley, due to the lack of base monotonic-
ity. Consequently, this lemma strengthens witnessing, Theorem 2.8, for formulas of
a certain form, showing that they Kim-divide along sequences that are themselves
not necessarily J/K-Morley sequences.

Corollary 3.4. Suppose T is NSOP; with existence. Assume that for each i < n,
we are given a complete type p(y;) € S(A) and an L(A)-formula p;(z;y;).

(1) There is a partial type R(Yo,...,yn) over A containing \J,.,, pi(yi) such

that ag,...,a, = R(Yo,...,yn) if and only if i{a’Q for alli < n and

Ni<n pi(x;a}) does not Kim-divide over A.

(2) If, additionally, T is low, then there is a formula y(yo, ..., Yyn) over A such
that, if (ag,-..,al) Ep(yo)U...Up(y,) and a; \Lf al_; for alli < n, then
M = ~(ag, ..., a},) if and only if \,-, vi(x;a;) does not Kim-divide over
A. B

Proof. By Lemma 1.21(1), there is a partial type A(z;,; : ¢ < w,j < n) over A
which expresses the following:
(a) zj Epjforalli<wandj<n.
(b) zi; J/II:EQ-ZZKJ- for all i <w and j < n, where Z; = (2i,0,-- ., Zin)-
(c) The sequence (Z; : i < w) is A-indiscernible.
Let X (yo, - - -, Yn, Zi - © < w) be the partial type given by {y; = 20 : § <n}UA(Z; :
i <w).

To show (1), consider the partial type Ro(yo, .-, ¥Yn,Zi : ¢ < w) which extends
A" and expresses additionally that {A,_,, i(x;zi;) 1 i < w} is consistent. Then R
may be defined by

R(yovvyn) = (EE’L ) <w)/\R0(y077yn72137’ <w)

This R is clearly type definable and, by Lemma 3.2(3), R has the desired properties.
For (2), we know, by the lowness of T', that there is some k < w such that, if,
given any ((a; ;)j<n : i < w) is an A-indiscernible sequence and

/\ wi(x;a:5) i <w

j<n
is inconsistent, then this set of formulas is k-inconsistent. Consider the partial
type R1(Yo,---,Un,Z; : ¢ < w) which extends A\ and expresses additionally that
{Nj<n #i(m;2i5) 10 < w} is k-inconsistent. Then we will define R’ by

R (Yo, yn) = (EEi:i<w)/\R1(yo,...,yn,Ei;i<w).

It follows that if (a});<n F U<, Pj(y;) and a] fa’q, then (a});<n = R if and
only if A, ¢;(z;a}) Kim-divides over A, by Lemma 3.2(2). We showed in (1)
that the complement of R’ is type-definable (by R), and therefore, by compactness,

we obtain the desired 7. O
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Theorem 3.5. If T is a low NSOP; theory with existence, then Lascar strong
types are strong types. That is, for any (possibly infinite) tuples a,b and small set
of parameters A, if a =3 b then a =4 b.

Proof. Let A be any small set of parameters. As Ty is G-compact by Fact 1.7(7)
and, trivially, T4 is low, it suffices to prove the theorem when a and b realize a
type p(z) over (), where x is a finite tuple of variables. Let r(z,y) be a partial
type, closed under conjunctions, expressing that x =% y, i.e. r(x,y) defines the
finest type-definable equivalence relation over {) with boundedly many classes. Fix
o(x;y) € r(x,y). Note that, for any a = p, p(x;a) does not divide over ), because
if {a; : i < w) is an indiscernible sequence with ag = a, then ag =L g, for all i < w,
hence ag = ., 7(z;a;). In particular, o(z;a) does not Kim-divide over (.
Define a relation R, (u,v) expressing the following:

(1) uw,v Ep.
(2) There exists v’ satisfying:
(a) v =L .
(b) u | Fv.
(€) p(x;u) A p(z;v") does not Kim-divide over §.
Clearly if v = p and v =" v/, then v/ |= p. By Lemma 1.21 and Corollary 3.4(1),
there is a partial type I'(z,w) over @ such that (v/,u) = I'(z,w) if and only if
vouEp, u J/Kv’, and ¢(z;v") A p(z;u) does not Kim-divide over §. It follows
that Ry (u,v) if and only if (Fv') [A7(v,v") AT(v',u)], which shows Ry (u,v) is
type-definable.
In a similar fashion, we define a relation S,(u,v) to hold when the following
conditions are satisfied:

(1) u,v Ep.
(2) There is v satistying the following:
(a) v =Fw.
(b) u | Fv.
(c) ¢(z;u) A p(x;v) Kim-divides over ().

The type-definability of S, follows from an identical argument, using Corollary
3.4(2) in the place of Corollary 3.4(1) (this is where we make use of our hypothesis
that 7" is low).

From here, our proof follows the argument of [1], as presented in [12, Section
5.2]. First, we show the following:

Claim 1: If u,v = p, then R, (u,v) if and only if =S, (u, v).

Proof of Claim 1: First, it is clear that it is impossible for both —R(u,v) and
=S, (u,v) to hold since, by extension for Lascar strong types (Fact 1.20) there is
v =L v with v | " v/ and it must be the case that either (x,u) A o(z;v") Kim-
divides or ¢(x;u) A p(z;v") does not Kim-divide over ().

Secondly, suppose R, (u,v) holds witnessed by v" and S, (u,v) holds witnessed
by v". Then we have v =L v/ =L v" u J/K v, u J/K V" p(x;u) Ap(z;v') does not
Kim-divide over (}, and ¢(z;u) A p(x;v”) Kim-divides over (). Choose ¢’ realizing
o(z;u) A p(x;v") with ¢ J/Ku,v’, and pick ¢’ so that ¢v' =¥ ¢’v”. Then, in
particular, we have ¢/ =L ¢, ¢/ J/K u, ¢’ J/K v’ and u J/K v” so, by the indepen-
dence theorem, there is ¢ with ¢ |= Lstp(c//u) ULstp(c/v”) and ¢ | * u,v”. Since ¢



TRANSITIVITY, LOWNESS, AND RANKS IN NSOP; THEORIES 19

realizes p(z;u) A p(x;0"), we obtain a contradiction. Together with the first part,
this establishes the claim. O

By the claim and compactness, there is a formula o(z,y) = o, (z,y) such that
p(x)Up(y) F Ry (z,y) if and only if o(x, y). Moreover, it is clear from the definitions
that Ry (z,y) Ar(y,y’) implies R,(x,y"). Again by compactness, there is a formula
d(z) € p(x) such that

(*) 0(z) No(y) No(z,y) AN (z, 2) | oz, 2).
It follows from (*) and the symmetry of r that, for any z = 0, we have = o(z, ) <

o(z,y), for all z,y = 6. Therefore, we obtain a definable equivalence relation
E,(z,y) as follows:

Ep(z,y) = [20(x) A=6(y)] v [0(x) Ad(y) A (V2) (0(2) = (a(z,2) < a(z,9))]-

To conclude, we establish the following:

Claim 2: The partial type p(z) U p(y) implies r(x,y) holds if and only if
/\cper E,(z,y) holds.

Proof of Claim: First, we will show r(z,y) entails E,(z,y) for all ¢ € r. Clearly
r(z,y) implies 6(x) <> d(y). Moreover, as noted above, if r(z,y) and §(z) A d(y)
both hold, then for any z = § we have o(z,z) + o(z,y) by (*) above and the
symmetry of r(z,y). Hence E,(x,y) holds.

Secondly, we will show that if (a,b) E p(z) U p(y) does not realize r(z,y), then
= ANper Bpla,b). Choose ¢(x,y) € r(z,y) such that —p(a,b). Because r is an
equivalence relation, there is some ¢(z,y) € r(z,y) such that

(Fz,2") (p(z,y) A p(a,2") Ap(a’, 2)) - (y, 2).

Then if E,(a,b) holds, then, because R,(a,a) holds, we have o, (a, a) and o,(a,b)
and therefore R (a,b). By the definition of Ry (a,b), this implies there is some ¢ =L
b such that ¢(z,a) A p(x, ) is consistent, and therefore |= 9 (a,b), a contradiction.
This concludes the proof of the claim, and hence the theorem. (I

4. RANK

In this section, we introduce a family of ranks, suitable for the study of NSOP,
theories. This makes critical use of witnessing over arbitrary sets and provides a
clear context in which working over arbitrary sets greatly simplifies the situation.
Our definition is close to the definition of D-rank familiar from simple theories, but
we are required to add a new parameter in the rank, which keeps track of the type
of the parameters that appear in instances of Kim-dividing.

Definition 4.1. Suppose q(y) € S(B), A(z;y) is a finite set of L(B)-formulas, and
k < w. Then for any set of formulas 7(z) over M, we define D (m, A k,q) >0 if 7
is consistent, and Di(m, A, k,q) > n + 1 if there is a sequence I = (¢; : i < w) such
that the following conditions hold:

(1) The sequence I is an \LK—Morley sequence over B with ¢; | q.

(2) The sequence [ is indiscernible over dom(w)B (and hence dom(m) \Lg
for all ).

(3) We have {p(z;¢;) : i < w} is k-inconsistent for some formula p(z;y) € A.

(4) We have Dy (m U {p(x;¢)}, A k,q) > n for all i < w.

Ci
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We define Di(m, A, k,q) = n if n is least such that Dq(m, A, k,q) > n and also
Di(m,Ak,q) 2 n+ 1. We say Di(m,Ak,q) = oo if Di(m,Ak,q) > n for all
n < w.

Lemma 4.2. Suppose q(y) € S(B), A(z;y) is a finite set of L(B)-formulas, and
k < w. Then we have the following.

(1) For all 0 € Aut(M/B),
Dy(o(m),Ak,q) = D1(m, Ak, q).
(2) If T and 7' are partial types over M such that w(x) - n'(x), then
Dy(m, Ak, q) < Di(n', Ak, q).

(3) If n > m, then Di(m, A, k,q) > n implies Dy (m, A k,q) > m.
(4) If Yo(x),. .., Ym-1(x) are formulas over M, then

Dl U \/ 1/’1(17) 7A7kaq :maXDl(ﬂ-U{/l/}J(‘r)}vAvkaq)
j<m J<m
Proof. (1) is clear.
(2) By induction on n, we will show

Dl(ﬂ-vAvkaq) >n — Dl(ﬂ'laAakv(I) > n.

For n = 0 there is nothing to show. Suppose the statement holds for n, and assume
D1(m,Ak,q) > n+ 1. Then there is a dom(n)B-indiscernible sequence I = (¢; :
i < w) which is additionally an \LK—Morley sequence over B in g and ¢(x;y) € A
such that {p(z;¢;) : ¢ < w} is k-inconsistent and Di(m U {p(z;¢:)}, Ak, q) >
n. Let I' = (¢} : i < w) be a Bdom(w)dom(n’)-indiscernible sequence locally
based on I. Clearly we have that I’ is an \LK—Morley sequence in q over B and
Dy (mU{p(z; )}, Ak, q) > nforalli <w, by (1). AsmU{p(z;c)} F 7'U{e(x; )},
we have Dy (7' U{p(z;c;)}, A, k, q¢) > n by induction, which implies Dy (7', A, k, q) >
n+ 1.

(3) We will prove by induction on ! < w that Dq(m,d,k,q) > n + [ implies
Dy(m,d,k,q) > n. For | = 0, this is trivial. Assume it has been shown for  and
that Dq(m, A, k,q) > n+1+ 1. Then there is a sequence I = (¢; : i < w) satisfying
the conditions of Definition 4.1 such that Dq(7m U {p(z;¢:)}, Ak, q) > n+ 1 for
all i. By (2), this entails, in particular, that Di(m, A k,q) > n + [ and hence
D1 (7, Ak, q) > n by induction.

(4) By (2), we have

max Dy (m U{¢Y;(x)}, A k,q) <D [ TU \/ vi(x) p, Ak, q
j<m

j<m

Hence, it suffices to show, for n < w, that

Dy | mU \/ %(55) 7A7kuq >n = IIiaXDl(WU{@/Jj(!T)},A,k,q)Z?’L.
. j<m
j<m
Let C be the (finite) set of parameters appearing in the formulas vy, ..., 1¥,_1. For
n = 0, this is clear. If Dy (wU {\/j<m wj(:v)} ,A,k,q) > n+ 1, then, as in (2),
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there is an J/K—Morley sequence I = (¢; : i < w) over B in ¢ which is dom(w)BC-
indiscernible and ¢(z;y) € A such that {¢(x;¢;) 1 i < w} is k-inconsistent with

Dy (wug \/ vi(@) p Ufp(ic)} Ak g | >n,

j<m

which implies max;<,, D1(m U {¢;(2), p(x; i)}, A, k,q) > n, by the induction hy-
pothesis for n, for each i. By the pigeonhole principle, we may assume this
maximum witnessed by the same j for all i < w. This shows max <, D1(7 U

{vj(x)}, Ak, q) = n+ 1. O

Remark 4.3. Lemma 4.2(2) implies, in particular, that if 7(x) and 7’(z) are equiv-
alent then the ranks (with respect to a choice of A, k, and ¢) will be the same, even
if they have different domains.

Lemma 4.4. Suppose T is NSOP; with existence. Suppose q € S(B), A(x;y)
is a finite set of L(B)-formulas, and k < w. Then for all n < w, we have
Di(m, A k,q) > n if and only if there are (c;)pew<n\oy and pi(z;y) € A for
1 < n satisfying the following:

(a) For alln € w™,
() U{pi(z; cpiir1)) 11 < n}
18 consistent.
(b) For alln € w<", {@ym)(x;cp—qy) : 1 < w} is k-inconsistent.
(c) For alln € w<", (cp—~q 11 <w) is an L -Morley sequence over B in q.
(d) The tree (cy),ecw<n\ (g} 5 s-indiscernible over Bdom ().

Proof. For the case of n = 0, (a) is satisfied if and only if 7 is consistent and
(b)—(d) hold trivially, which gives the desired equivalence.

Now assume, for a given n, that Di(m, A k,q) > n if and only if there are
(cn)newsm\(oy and wi(x;y) € A for i < n such that (a)—(d) hold. First, suppose
Di(m,Ak,q) > n+ 1. Then we can find a dom(7)B-indiscernible sequence I =
(¢; i < w) which is also | ®-Morley over B in ¢ and @(z;y) € A such that
{¢(z;¢;) : i <w} is k-inconsistent and Dy (7w U {¢(z;¢:)}, Ak, q) > n for all i < w.
By induction, for each i < w, there is a tree (¢; ;) pew<n\ (g} and sequence of formulas
(pi;(T;y))1<j<n from A satisfying (a)—(d), with = replaced by = U {¢(z;¢;)}. As
A is a finite set of formulas, we may, by the pigeonhole principle, assume that there
are ¢; € A such that ¢, ;(x;y) = @j(z;y) for all i < wand 1 < j < n. Now
define a tree (c}),eo<n+1\(g) such that ¢,y = c; and ¢,y = ¢y for all i < w
and n € w="\ {0}. Define po(z;y) = @(z;y). Let (¢y),en<nrn (g3 be a tree that
is s-indiscernible tree over dom(7)B and locally based on (c;),c<nt1\ (g} OVer B.
Note that for all € w<"*!, the sequence (¢, : i < w) has the same type over
B as a Morley sequence in ¢ and hence is a Morley sequence in ¢. It is clear that
(cn)newsningoy and (p;(7;y))j<n+1 satisfy the requirements.

Conversely, given (c;),co<nti\(gy and (¢;(z;y))j<nt1 satisfying (a)—(d), we
observe by induction that the tree (c(;—y)pecwsn\ (g} Witnesses

D1(7T U {900(‘I7 C(l))}? Aa kv Q) > n,
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for all i < w. As the sequence (c;y : i < w) is J/K—Morley over B and dom(w)B-
indiscernible, and {o(x;cpy) @ i < w} is k-inconsistent, it follows that

Dl(ﬂ-v Av ka q) Z n+ 15
completing the proof. O

Corollary 4.5. If T is NSOP; with existence, then given q(y) € S(B), a finite
set of L(B)-formulas A(z;y), and k < w, there is some n < w such that D1(z =
z, Ak, q) =n.

Proof. Suppose towards contradiction that there are g, A, and k < w such that
D(x ==z,A,k,q) > nfor all n < w. By Lemma 4.4, Lemma 1.21, compactness, and
the pigeonhole principle (by the finiteness of A), we can find a tree (c,),ecw<<\{0}
and ¢(z;y) € A satisfying the following:
(a) For all n € w®,
{e(@;enitr)) 11 <w}
is consistent.
(b) For all n € w<¥, {o(z;¢;~py) : 4 < w} is k-inconsistent.
(c) Forallp € w<, (¢~ i <w) is an | ®-Morley sequence over B in q.
(d) The tree (c;)pew<«\ (0} is s-indiscernible over B.

Note that, by s-indiscernibility, we have (con ;) : 7 < w) is an J/K—Morley sequence
over B which is Bcg—g<n-indiscernible, for all n < w. By witnessing, it follows that
Co~0<n J/g cont1 for all n. Let (d; : i < w) be a B-indiscernible sequence locally
based on {(con : 1 < n < w) over B. As each con = ¢, for 1 < n < w, we have that
dep \Lg d,, for all n as well, and therefore (d; : i < w) is an | "-Morley sequence
over B in ¢’. Moreover, since {¢(x;con) : 1 < n < w} is consistent, we know
{¢(x;dy) : n < w} is consistent. However, we know ¢(z;con) Kim-divides over
B and hence ¢(z;d,) Kim-divides over B. This contradicts witnessing (Theorem
2.5). O

Remark 4.6. Corollary 4.5 has a converse: if T" has SOP;, then for some B, there
is a q(y) € S(B), a finite set of L(B)-formulas A(z;y), and k < w such that
Di(z = z,A,k,q) = co. One way to see this is to note that by [5, Corollary 3.7]
Kim’s Lemma for non-forking Morley sequences fails over some set B in any theory
with SOP; (this doesn’t use existence). Concretely, this means there are Morley
sequences I = (a; : i < w) and J = (b; : i < w) over B with ag = by and a
formula ¢(x;y) such that {¢(z;a;) : i < w} is k-inconsistent and {p(x;b;) 1 i < w}
is consistent. Then, by [5, Lemma 3.4], this implies there is a tree (c¢y)ycw<w
satisfying the following properties:

(1) For all n € w<¥, (cy—~g))i<w =B 1.

(2) For all n € w<, (cy, Cylim)—1s---»C0) =B (bo, b1, ..., b))

(3) (¢n)new<e« is s-indiscernible over B.
Then, by Lemma 4.4, for ¢ = tp(ag/B), we have D1 (x =z, A, k,q) > n for all n.

Lemma 4.7. Suppose T is NSOP; with existence. Suppose q(y) € S(B), A(x,y)
is a finite set of L(B)-formulas, and k < w.

(1) For any partial type p, there is a finite v C p such that
Dl(p5A5k7Q) = Dl(TaAakvq)'
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(2) For any small set A C M and any partial type p over A, there is p’ € S(A)
extending p such that

Dl(p7A7k7q) = Dl(p7A7k7q)'

Proof. (1) By Lemma 4.2(1), if r is a subtype of p then D1 (r, A, k,q) > D1(p, A, k, q)
so it suffices to find a finite » C p with D1(r, A, k,q) < Di(p,A,k,q). Suppose
Di(p,A,k,q) = n. Consider, for each sequence 3 = (©;(x;y))icns+1 of formulas
from A, the set of formulas I's(, (2;),cu<n+1\(g}) Over dom(p)B expressing the
following:

(1) For all n € w"Th

p(x) U{pi(x; 2y (i41)) 1 <n+1}

is consistent.

(2) For all n € w<""! {0 (@; 2y ~(5y) 1 i < w} is k-inconsistent.

(3) For all p € w<"*1 (2, ;) :i <w)is an J/K—Morley sequence over B in ¢
(possible by Lemma 1.21(2)).

(4) The tree (z),cw<n+1\(p} is s-indiscernible over Bdom(p).

By Lemma 4.4 and the fact that Di(p, A, k,q) = n < n+ 1, we know that I'z is
inconsistent. By compactness, there is some finite r5(z) C p(z) such that, replacing
p(z) with rg(x) in (1), the formulas remain inconsistent. Let r be the union of rg
as § ranges over all length n 4 1 sequences of formulas of A. As A is finite, this is a
finite set, so r is a finite extension of each rz and a subtype of p. Then by Lemma
4.4 again, D1(r,Ak,q) <n = Di(p,Ak,q).

(2) Let T'(z) be defined as follows:

F(‘T) = {ﬂﬁ(:ﬂ) € L(A) : Dl(p(‘r) U {¢($)}a Av ka) < Dl(pu Au ka)}'

If p(z) UT(x) is inconsistent, then by compactness, there are ¢, ..., 1¥,—1 € ' such

that p(z) -V, _,, 1;. By Lemma 4.2(1) and (2), this gives

Dl(p7A7k7q) = Dl pU \/w](x) 7A7k7q

j<n
= mjaxD1(pU{¢j(fC)}aAak=‘J)
< Dl(vavkaq)v

a contradiction. Therefore, we can choose a complete type p’ € S(A) extending
p(x) UT(x). By (1), if D1(p',A,k,q) < D1(p, ¢, k,q), then there is a formula
P(z) € p’ such that Dy(p U {¢(z)}, Ak, q) < D1(p, A, k,q) but this is impossible
by the definition of I". Therefore p’ is as desired. O

Theorem 4.8. Assume T is NSOP; with existence.

(1) Suppose 7 is a partial type over B and m C «’. If ©' Kim-divides over B,
witnessed by the formula p(x;¢o), and I = (¢; - i < w) is an | ™ -Morley
sequence over B in q such that {p(z;¢;) : i < w} is k-inconsistent, then we
have

Di(n', .k, q) < Di(m, 0,k q).
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(2) If T is simple, a |, C, then for any q(y) € S(B), any finite set of L(B)-
formulas A(x,y), and any k < w, we have
Dl (p/7 Aa ku Q) = Dl (p7 Aa ku Q)a

where p' = tp(a/BDC) and p = tp(a/BD).
Proof. Suppose we are given m C 7', ¢, k, I, and ¢ as in the statement. We
claim that Dy (mU{p(x;¢c0)}, 0, k,q) < D1(m, p, k, q). If not, then, again by Lemma
4.2(1), we have

n.= Dl(ﬂ- U {w(x7 CO)}’ 2 ka q) = Dl(ﬂ-v ®, kv Q)a
and therefore, by B-indiscernibility, D (7 U {¢(x;¢;)}, v, k,q) = n for all 4. This
implies, by definition of the rank, that Di(m, ¢,k,q) > n + 1, a contradiction.
Therefore, since p(z;cg) € 7', we have
Dy(n', 0.k, q) < Di(m U {p(z;c0)}, 0,k q) < Da(m, 0.k, q),

which proves (1).

Now we prove (2). As we are working in a simple theory, Kim-dividing and
forking coincide by Kim’s lemma [10]. Fix an arbitrary ¢ € S(B), finite set of
L(B)-formulas A(z,y) and k¥ < w. By Lemma 4.2(2), we have

Dl(p/7A7k7Q) < Dl(p7A7k7Q)'
Hence, it suffices to show, by induction on n < w,
Di(p,Ak,q) 2n = Di(p/, Ak, q) = n.

For n = 0, this is clear, so assume it holds for n and suppose D1(p, A, k,q) > n+1.
Then there is a Morley sequence I = (¢; : ¢ < w) over B in ¢ which is BD-
indiscernible such that, for some ¢(x,y) € A, {¢(z;¢;) : i < w} is k-inconsistent
and D1 (pU{p(z;¢:)}, Ak, q) > n for all i < w. Let p. = p.(z;¢o) be a completion
of pU{p(z;co)} over BDcy with

Dl(p*,A,k,Q) = Dl(pu {QD(,T;CQ)},A,/C,Q) >mn,
which is possible by Lemma 4.7(2). Without loss of generality, a = p..

By extension and an automorphism over aBD, we may assume C' | B @0, and
hence there is I’ = (¢} : i < w) =ppe¢, I such that I’ is BC'D-indiscernible. Note
that I’ is still Morley in g. Moreover, by base monotonicity and symmetry, this
gives a \LBD , C. Let pl, = tp(a/BCDc}y) 2 p’. By the inductive hypothesis, the

Co
fact that D1(p«, Ak, q) > n gives
Dl(p;aAakvq) 2 n.
By Lemma 4.2(1) and (2), we obtain
Di(p" U{p(@ici)}, Ak, q) = n

for all i < w, which allows us to conclude D1 (p’, A, k,q) > n + 1, completing the
proof. (I

Remark 4.9. By witnessing (Theorem 2.8), we know that if 7 is a partial type over
B and 7" Kim-divides over B, then this will be witnessed by some formula ¢(z;co)

implied by 7/ and an \LK—Morley sequence over B. Therefore, Theorem 4.8(1)
implies that, if for all ¢(z;y) € L(B), q(y) € S(B), and k < w,

Dl(wlakaaq) = Dl(ﬂ-v(/)a ka)a



TRANSITIVITY, LOWNESS, AND RANKS IN NSOP; THEORIES 25

then 7’ does not Kim-divide over B.

Question 4.10. Does Theorem 4.8(2) hold for \LK in all NSOP; theories satis-
fying existence? Evidently, the proof above makes use of base monotonicity, which
is known to fail in all non-simple NSOP; theories.

5. THE KIM-PILLAY THEOREM OVER ARBITRARY SETS

The Kim-Pillay-style criterion for NSOP; of [4] proceeds, essentially, by first
showing that any relation that satisfies axioms (1)—(5) over models in the axioms
below must be weaker than coheir independence, in the sense that if M = T and
tp(a/Mb) is finitely satisfiable in M then a | b Consequently, this proof does
not adapt to arbitrary sets. Instead, we relate any relation satisfying the axioms to
Kim-independence directly, using a tree-induction, to prove the following theorem.

Theorem 5.1. Assume T satisfies existence. The theory T is NSOP; if and only
if there is an Aut(M)-invariant ternary relation | on small subsets of the monster
M E T which satisfies the following properties, for an arbitrary set of parameters
A and arbitrary tuples from M.
(1) Strong finite character: if a [ , b, then there is a formula ¢(x,b,m) €
tp(a/bA) such that for any o' = ¢(z,b,m), a" [ ,b.
(2) Ezistence and Extension: a | , A always holds and, if a | , b, then, for
any c, there is a’ =3 a such that o J/A be.
(3) Monotonicity: aa" | , bb" = a | ,b.
(4) Symmetry: a |, b < b | ,a.
(5) The independence theorem: a | , b, a" | ,c,b | ,canda =L o' implies
there is a” with a” =4y a, a’’ =4, d’ and a” J/A be.
Moreover, any such relation | satisfying (1)-(5) strengthens J/K, ie al ,b
implies a J/i{b. If, additionally, | satisfies the following,
(6) Transitivity: ifa | ,banda |, c thena | , be.
(7) Local character: if k > |T|* is a regular cardinal, (A; : i < k) is an
increasing continuous sequence of sets of size < k, Ax = ;.. Ai and
|Ax| = K, then for any finite d, there is some o < K such that d | , Ax.

then | = J/K.

Proof. We know that if T' is NSOP; with existence then | * satisfies (1)-(5) by
Fact 1.7, so we will show the other direction.
First, assume | satisfies axioms (1)-(5), and we will show that | strengthens

J/K. By [4, Theorem 6.1], the existence of such a relation over models entails
that the theory is NSOP;. Towards contradiction, suppose there is some set of
parameters A and tuples a, b such that a | A bbut a j/if b, witnessed by the formula
¢(z;b) € tp(a/Ab). By induction on the ordinals a, we will construct trees (b5))ye7.
satisfying the following conditions for all a:

(a) For all n € Ty, by = tp(b/A).

(b) (b5)neT. is s-indiscernible and weakly spread out over A.
(¢) For a successor, by | , by
)

(d) If 8 < a, then b?aa(n) = bg for all n € T3.
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To begin, we may take b8 = b and at limits we take unions. Given (b})),e7.,, let
I =((b3,)neT. : i <w) be a mutually s-indiscernible Morley sequence over A with
(b8 )neTa = (b5)yeT., which exists by Lemma 1.15. We may apply extension to
find b, =4 b such that b, | , I. Define a tree (¢;)ne7.,, by setting ¢y = b, and
Cliy~n = b, for all i < w and n € T,. Finally, we may define (b;’;*‘l)ng—a+1 to
be an s-indiscernible tree over A locally based on (¢y)ye7.,,. After moving by an
f;til(n) = by for all n € T,. This completes the
construction. By strong finite character and invariance, our construction ensures
(b) and (c) will be satisfied for (b3*"),c7.,., -

Applying Erdés-Rado, we obtain a weak Morley tree (b,),c7, over A such that
be, L 4 bsc, for all @ <w. In particular, (be,)a<w is an | -Morley sequence over
A. Define v, = (ay1 — (1) for all @ < w. Because the tree is weakly spread out
over A, we have for all & < w, by¢,,,~(1) J/i{bggaﬂ,\o and hence b, J/f bu_.,
since (by,)s<a Was enumerated in by, ,, ~o. Since the tree is a weak Morley tree,
we have that both (b¢,)a<w and (b, )a<w are A-indiscernible.

As b =4 bg,, there is ag such that apbe, =4 ab. As (b¢,)a<w is A-indiscernible,
for each a > 0, there is 0, € Autf(M/A) such that o, (be,) = b¢,. Setting aq =
0a(ap), we have anbe, =% aobe,. By the independence theorem for | , we may
find some a, such that a.bs, =4 ab for all & < w. In particular, this implies
{p(z;bc,) + @ < w} is consistent. However, since ¢(z;b) Kim-divides over A,
{e(x;b,,) : a < w} is k-inconsistent for some k. The s-indiscernibility of the tree
implies that be, =ap coab by, for all a, so by compactness, we have shown ¢ has

automorphism, we can assume

V>
SOP;. This contradiction shows that | strengthens | .

Secondly, assume additionally that | satisfies (6) and (7). The proof of Theorem
2.8 shows that (6) and (7) imply witnessing: if I = (b;);<. is an A-indiscernible se-
quence with by = b satisfying b; | , b<;, then whenever a [ , b, there is p(z;¢,b) €
tp(a/Ab) such that {¢(z;¢,b;) 1 i <w} is inconsistent.

Suppose that a\LZb and, by extension and Erdés-Rado, find an | -Morley
sequence I = (b; : i < w) over A with by = b. By the remarks above, we know that
1 is, in particular, an J/K—Morley sequence over A, so there is a’ =4 a such that
I is Aa-indiscernible (using a J/f b). By witnessing, this entails @ | , b. In other

words, | and | * coincide. O

Remark 5.2. It is clear from the proof of Theorem 5.1 that, in order to get the
same conclusion, we can replace (6) and (7) with witnessing: if I = (b;);<. 1S an
A-indiscernible sequence with by = b satisfying b; | 4 b<i, then whenever a L A b
there is ¢(x;¢,b) € tp(a/Ab) such that {¢(z;¢,b;) 1 4 < w} is inconsistent.

To do so gives a result that more closely resembles [8, Theorem 6.11], while the
formulation of Theorem 5.1 above is closer to the original Kim-Pillay theorem for
simple theories [15, Theorem 4.2] (see also [12, Theorem 3.3.1]).
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