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TRANSITIVITY, LOWNESS, AND RANKS IN NSOP1 THEORIES

ARTEM CHERNIKOV, BYUNGHAN KIM, NICHOLAS RAMSEY

Abstract. We develop the theory of Kim-independence in the context of
NSOP1 theories satsifying the existence axiom. We show that, in such theories,

Kim-independence is transitive and that |
⌣

K-Morley sequences witness Kim-
dividing. As applications, we show that, under the assumption of existence,
in a low NSOP1 theory, Shelah strong types and Lascar strong types coincide
and, additionally, we introduce a notion of rank for NSOP1 theories.
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This paper furthers the development of the theory of Kim-independence in the
context of NSOP1 theories satisfying the existence axiom. Building on earlier work
in [4] and a suggestion of the second-named author [11], Kim-independence was
introduced in [7], where it was shown to be a well-behaved notion of independence
in NSOP1 theories. This work established a strong analogy between the theory
of non-forking independence in simple theories and Kim-independence in NSOP1

theories, an analogy which subsequent works have only deepened [8,9,13]. Nonethe-
less, one major difference between the two notions of independence is that, unlike
non-forking which makes sense over all sets, Kim-independence is only a sensible
notion of independence over models : Kim-independence is defined in terms of for-
mulas that divide with respect to a Morley sequence in a global invariant type,
and such a sequence, in general, is only guaranteed to exist over a model. In [5],
the second and third-named author, together with Dobrowolski, focused on the
context of NSOP1 theories that satisfy the existence axiom. There, it was shown
that Kim-independence may be defined over arbitrary sets and basic theorems of
Kim-independence over models hold in this broader context.

The existence axiom states that every complete type has a global non-forking
extension, i.e. every set is an extension base in the terminology of [3]. This is

Date: June 5, 2023.
Chernikov was partially supported by the NSF CAREER grant DMS-1651321 and by a Si-

mons fellowship. Kim has been supported by Samsung Science Technology Foundation un-
der Project Number SSTF-BA1301-03 and NRF of Korea grants 2018R1D1A1A02085584 and
2021R1A2C1009639.

1



2 ARTEM CHERNIKOV, BYUNGHAN KIM, NICHOLAS RAMSEY

equivalent to the statement that, in every type, there is a (non-forking) Morley
sequence and, hence, assuming existence, one may redefine Kim-independence in
terms of the formulas that divide alongMorley sequences of this kind. New technical
challenges arise in this setting, but in [5] it was shown that Kim-independence
satisfies Kim’s lemma, symmetry, and the independence theorem for Lascar strong
types. Moreover, all simple theories and all known examples in the growing list of
NSOP1 theories satisfy existence, and it is expected to hold in all NSOP1 theories,
see, e.g., [5, Fact 2.14].

Here we continue work on Kim-independence in NSOP1 theories satisfying ex-
istence, in particular, exploring aspects of the theory that are too cumbersome or
uninteresting over models. In Section 2, we show that Kim-independence is tran-
sitive in an NSOP1 theory satisfying existence and that, moreover, Kim-dividing

is witnessed by |⌣
K
-Morley sequences. These results were first established over

models for all NSOP1 theories in [8] and our proofs largely follow the same strat-
egy. Nonetheless, suitable replacements need to be found for notions that only
make sense, in general, over models, like heirs and coheirs. We find that arguments
involving these notions can often be replaced by an argument involving a tree-
induction, as in the construction of tree Morley sequences in [8]. In Section 3, we
apply these results to low NSOP1 theories satisfying existence, showing that Shelah
strong types and Lascar strong types coincide, generalizing a result of Buechler for
simple theories [1] (see also [12, 17]). In Section 4, we introduce a notion of rank
for NSOP1 theories and establish some of its basic properties. Finally, in Section 5,
we generalize the Kim-Pillay criterion for Kim-independence from [4, Theorem 6.1]
and [8, Theorem 6.11] to give a criterion for NSOP1 in theories satisfying existence,
which, additionally, gives an abstract characterization of Kim-independence over
arbitrary sets in this setting.

1. Preliminaries

In this paper, T will always be a complete theory with monster model M. We will
implicitly assume all models and sets of parameters are small, that is, of cardinality
less than the degree of saturation and homogeneity of M. If we discuss an I-indexed
indiscernible sequence (ai)i∈I , we will implicitly assume I is linearly ordered by <
and, given i ∈ I, we will write a<i and a≤i for the subsequences (aj)j<i and (aj)j≤i

respectively.

Definition 1.1. Suppose A is a set of parameters.

(1) We say that a formula ϕ(x; a) divides over a set A if there is an A-
indiscernible sequence 〈ai : i < ω〉 with a0 = a such that {ϕ(x; ai) : i < ω}
is inconsistent.

(2) A formula ϕ(x; a) is said to fork over A if ϕ(x; a) ⊢
∨

i<k ψi(x; ci), for some
k < ω, with ψi(x; ci) dividing over A.

(3) We say a partial type divides (forks) over A if it implies a formula that
divides (forks) over A.

(4) For tuples a and b, we write a |⌣
d

A
b or a |⌣A

b to indicate that tp(a/Ab)
does not divide over A or does not fork over A, respectively.

(5) A Morley sequence (ai)i∈I over A is an infinite A-indiscernible sequence
such that ai |⌣A

a<i for all i ∈ I. If p ∈ S(A), we say (ai)i∈I is a Morley

sequence in p if, additionally, ai |= p for all i ∈ I.
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The following is one of the key definitions of this paper. It defines a context in
which Kim-independence may be studied over arbitrary sets.

Definition 1.2. We define the existence axiom to be any one of the following
equivalent conditions on T :

(1) For all parameter sets A, any type p ∈ S(A) does not fork over A.
(2) For all parameter sets A, no consistent formula over A forks over A.
(3) For all parameter sets A, every type p ∈ S(A) has a global extension that

does not fork over A.
(4) For all parameter sets A and any p ∈ S(A), there is a Morley sequence in

p.

If T satisfies the existence axiom, we will often abbreviate this by writing T is with
existence. See, e.g., [5, Remark 2.6] for the equivalence of (1)—(4).

Under existence, we may define Kim-independence over arbitrary sets. The
following definition was given in [5], but it was observed already in [7, Theorem
7.7] that this agrees with the original definition over models.

Definition 1.3. Suppose T satisfies the existence axiom.

(1) We say a formula ϕ(x; a) Kim-divides over A if there is a sequence 〈ai : i <
ω〉 which is a Morley sequence over A with a0 = a and {ϕ(x; ai) : i < ω}
inconsistent.

(2) A formula ϕ(x; a) is said to Kim-fork over A if ϕ(x; a) ⊢
∨

i<k ψi(x; ci),
where each ψi(x; ci) Kim-divides over A.

(3) We say a type Kim-divides (Kim-forks) over A if it implies a formula that
Kim-divides (Kim-forks) over A.

(4) For tuples a and b, we write a |⌣
K

A
b to indicate that tp(a/Ab) does not

Kim-divide over A.
(5) An |⌣

K
-Morley sequence (ai)i∈I over A is an infinite A-indiscernible se-

quence such that ai |⌣
K

A
a<i for all i ∈ I.

Remark 1.4. By Kim’s lemma [12, Proposition 2.2.6], if T is simple, a formula
Kim-divides over a set A if and only if it divides over A.

Definition 1.5. [6, Definition 2.2] The formula ϕ(x; y) has SOP1 if there is a
collection of tuples (aη)η∈2<ω so that

• For all η ∈ 2ω, {ϕ(x; aη|α) : α < ω} is consistent.
• For all η ∈ 2<ω, if ν extends η ⌢ 〈0〉, then {ϕ(x; aν), ϕ(x; aη⌢1)} is incon-
sistent,

where E denotes the tree partial order on 2<ω. We say T is SOP1 if some formula
has SOP1 modulo T . T is NSOP1 otherwise.

Definition 1.6. Suppose A is a set of parameters.

(1) We say that tuples a and b have the same (Shelah) strong type over A,
written a ≡S

A b, if E(a, b) holds (i.e. E(a′, b′) holds for all corresponding
finite subtuples a′ and b′ of a and b respectively) for every A-definable
equivalence relation E(x, y) with finitely many classes.

(2) The group Autf(M/A) of Lascar strong automorphisms (of the monster)
over A is the subgroup of Aut(M/A) generated by

⋃

{Aut(M/M) : A ⊆
M ≺ M}. We say a and b have the same Lascar strong type over A, written
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a ≡L
A b, if there is some σ ∈ Autf(M/A) such that σ(a) = b. By a Lascar

strong type over A, we mean an equivalence class of the relation ≡L
A.

(3) A type-definable equivalence relation E on α-tuples, for an ordinal α, is
called bounded if it has small number of classes. We say a and b have
the same KP-strong type over A, written a ≡KP

A b, if E(a, b) holds for all
bounded type-definable equivalence relations over A.

(4) We say that T is G-compact over A when a ≡L
A b if and only if a ≡KP

A b for
all (possibly infinite) tuples a, b. We say T is G-compact if it is G-compact
over all finite sets A.

In [5], several basic facts about Kim-independence in NSOP1 theories with ex-
istence were established. As we will make extensive use of them throughout the
paper, we record them below.

Fact 1.7. Assume T is NSOP1 with existence and A is a set of parameters. Then
the following properties hold.

(1) Extension: If π(x) is a partial type over B ⊇ A which does not Kim-divide
over A, then there is a completion p ∈ S(B) of π that does not Kim-divide

over A. In particular, if a |⌣
K

A
b and c is arbitrary, there is some a′ ≡Ab a

such that a |⌣
K

A
bc. [5, Proposition 4.1]

(2) Symmetry: a |⌣
K

A
b ⇐⇒ b |⌣

K

A
a. [5, Corollary 4.9]

(3) Kim’s Lemma for Morley sequences: the formula ϕ(x; a) Kim-divides over
A if and only if {ϕ(x; ai) : i < ω} is inconsistent for all Morley sequences
〈ai : i < ω〉 over A with a0 = a. [5, Theorem 3.5]

(4) Kim-forking = Kim-dividing: if a formula ϕ(x; a) Kim-forks over A, then
ϕ(x; a) Kim-divides over A. [5, Proposition 4.1]

(5) The chain condition: if a |⌣
K

A
b and I = 〈bi : i < ω〉 is a Morley sequence

over A with b0 = b, then there is a′ ≡Ab a such that I is Aa′-indiscernible

and a′ |⌣
K

A
I (this follows from (3), as in, e.g., [5, Corollary 5.15]).

(6) The independence theorem for Lascar strong types: if a0 ≡L
A a1, a0 |⌣

K

A
b,

a1 |⌣
K

A
c, and b |⌣

K

A
c, then there is some a∗ with a∗ ≡L

Ab a0, a∗ ≡L
Ac a1,

and a∗ |⌣
K

A
bc. [5, Theorem 5.8]

(7) TA is G-compact for any small set A, where TA is the theory of the monster
model in the language with constants for the elements of A. [5, Corollary
5.9]

As these facts make up part of the standard tool box for reasoning about Kim-
independence, we will often make implicit use of these properties. For example,
Kim’s Lemma for Morley sequences, Item (3) in the above list, is often used in this
paper in the following way: if I = 〈ai : i < ω〉 is a Morley sequence over A with

a0 = a which is Ab-indiscernible, then a |⌣
K

A
b. To see this, by symmetry (Item

(2)), it suffices to show that b |⌣
K

A
a which, by Item (4), means that we need to

show that there is no formula ϕ(x; a) ∈ tp(b/Aa) which Kim-divides over A. But
if ϕ(x; a) Kim-divides over A, then Kim’s lemma implies that {ϕ(x; ai) : i < ω} is
inconsistent. This set of formulas, however, is realized by b so there can be no such
formula.

The following is local character of Kim-independence for NSOP1 theories. The
usual formulation of local character for non-forking independence in simple theories
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merely asserts that, for any type p ∈ S(A), the set of B with |B| ≤ |T | such that
p does not fork over B is non-empty, but it follows by base monotonicity, then,
that p does not fork over C for any B ⊆ C ⊆ A. Because Kim-independence, in
general, does not satisfy base monotonicity in NSOP1 theories, the following is the
appropriate analogue for this setting:

Fact 1.8. [9, Theorem 3.9] Suppose T is NSOP1 and M |= T with |M | ≥ |T |.
Given any p ∈ S(M) (in finitely many variables), the set X defined by

X := {N ≺M : |N | = |T | and p does not Kim-divide over N}

satisfies the following:

(1) X is closed: if 〈Ni : i < |T |〉 is a sequence of models in X with Ni ⊆ Nj for
all i < j, then

⋃

i<|T |Ni ∈ X .

(2) X is unbounded: if Y ⊂ M has cardinality ≤ |T |, there is some N ∈ X
with Y ⊆ N .

Remark 1.9. It is an easy consequence of Fact 1.8 that if M |= T is equal to the
union of 〈Ni : i < |T |+〉, an increasing and continuous (i.e. Nδ =

⋃

i<δ Ni for all
limit δ) elementary chain of models of T of size |T |, then for any p ∈ S(M), there
is some i < |T |+ such that p does not Kim-divide over Ni.

1.1. Trees. At several points in the paper, we will construct indiscernible sequences
by an inductive construction of indiscernible trees. We recall the basic framework
for these ‘tree-inductions’ from [7]. For an ordinal α, let the language Ls,α be
〈E,∧, <lex, (Pβ)β≤α〉. For us, a tree will mean a partial order E such that for all
x, the elements {y : y E x} below x are linearly ordered (and not necessarily well-
ordered) by E and such that for all x, y, x and y have an infimum, i.e. there is a
E-greatest element z E x, y, which is called the meet of x and y. We may view a
tree with α levels as an Ls,α-structure by interpreting E as the tree partial order, ∧
as the binary meet function, <lex as the lexicographic order, and Pβ interpreted to
define level β. The specific trees, and the interpretations of these symbols that turn
them into Ls,α-structures, that we will need in this paper are outlined precisely in
Definition 1.12 below.

We now recall the modeling property. In what follows, we will write qftpL′(a)
to denote the quantifier-free type of a in the language L′ and write tp∆(b/A) to
denote the ∆-type of b over A (i.e. the set of positive and negative instances of
formulas in ∆ with parameters from A satisfied by b). Although the subscript is
used in two conflicting ways, it will be clear from context which is intended.

Definition 1.10. Suppose I is an L′-structure, where L′ is some language.

(1) We say (ai : i ∈ I) is a set of I-indexed indiscernibles over A if whenever
(s0, . . . , sn−1), (t0, . . . , tn−1) are tuples from I with

qftpL′(s0, . . . , sn−1) = qftpL′(t0, . . . , tn−1),

then we have

tp(as0 , . . . , asn−1
/A) = tp(at0 , . . . , atn−1

/A).

(2) In the case that L′ = Ls,α for some α, we say that an I-indexed indiscernible
is s-indiscernible. As the only Ls,α-structures we will consider will be trees,
we will often refer to I-indexed indiscernibles in this case as s-indiscernible
trees.
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(3) We say that I-indexed indiscernibles have the modeling property if, given
any (ai : i ∈ I) from M and any A, there is an I-indexed indiscernible
(bi : i ∈ I) over A in M locally based on (ai : i ∈ I) over A. That is, given
any finite set of formulas ∆ from L(A) and a finite tuple (t0, . . . , tn−1) from
I, there is a tuple (s0, . . . , sn−1) from I so that

qftpL′(t0, . . . , tn−1) = qftpL′(s0, . . . , sn−1)

and also

tp∆(bt0 , . . . , btn−1
) = tp∆(as0 , . . . , asn−1

).

Fact 1.11. [14, Theorem 4.3] Let Is denote the Ls,ω-structure

Is = (ω<ω,E, <lex,∧, (Pα)α<ω)

with all symbols being given their intended interpretations and each Pα naming the
elements of the tree at level α. Then Is-indexed indiscernibles have the modeling
property.

Our trees will be understood to be an Ls,α-structure for some appropriate α. As
in [7], we introduce a distinguished class of trees Tα.

Definition 1.12. Suppose α is an ordinal. We define Tα to be the set of functions
f such that

• dom(f) is an end-segment of α of the form [β, α) for β equal to 0 or a
successor ordinal. If α is a successor, we allow β = α, i.e. dom(f) = ∅.

• ran(f) ⊆ ω.
• finite support: the set {γ ∈ dom(f) : f(γ) 6= 0} is finite.

We interpret Tα as an Ls,α-structure by defining

• f E g if and only if f ⊆ g. Write f ⊥ g if ¬(f E g) and ¬(g E f).
• f ∧ g = f |[β,α) = g|[β,α) where β = min{γ : f |[γ,α) = g|[γ,α)}, if non-empty
(note that β will not be a limit, by finite support). Define f ∧ g to be the
empty function if this set is empty (note that this cannot occur if α is a
limit).

• f <lex g if and only if f ⊳ g or, f ⊥ g with dom(f ∧ g) = [γ + 1, α) and
f(γ) < g(γ)

• For all β ≤ α, Pβ = {f ∈ Tα : dom(f) = [β, α)}. Note that P0 are the
leaves of the tree (i.e. the top level) and Pα is empty for α limit.

Fact 1.11 and compactness can be used to show that Tα-indexed indiscernibles
have the modeling property as well [7, Corollary 5.6].

Definition 1.13. Suppose α is an ordinal.

(1) (Restriction) If v ⊆ α, the restriction of Tα to the set of levels v is the
Ls,α-substructure of Tα with the following underlying set:

Tα ↾ v = {η ∈ Tα : min(dom(η)) ∈ v and β ∈ dom(η) \ v =⇒ η(β) = 0}.

(2) (Concatenation) If η ∈ Tα, dom(η) = [β + 1, α) for β non-limit, and i < ω,
let η ⌢ 〈i〉 denote the function η ∪ {(β, i)}. We define 〈i〉 ⌢ η ∈ Tα+1 to
be η ∪ {(α, i)}. We write 〈i〉 for ∅⌢ 〈i〉.

(3) (Canonical inclusions) If α < β, we define the map ιαβ : Tα → Tβ by
ιαβ(f) := f ∪ {(γ, 0) : γ ∈ β \ α}.
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(4) (The all 0’s path) If β < α, then ζβ denotes the function with dom(ζβ) =
[β, α) and ζβ(γ) = 0 for all γ ∈ [β, α). This defines an element of Tα if and
only if β ∈ {γ ∈ α | γ is not limit} =: [α].

(5) (Tuple notation) Given ν ∈ Tα, we write aDν for the tuple enumerating
{aξ : ν E ξ ∈ Tα}.

In previous works on Kim-independence over arbitrary sets, there was a gap
concerning the construction of Morley trees (and a parallel gap in the theory over
models), first discovered by Jan Dobrowolski and Mark Kamsma. Namely, there
is no reason a priori for an s-indiscernible tree locally based on a weakly spread
out tree (see Definition 1.17) to be weakly spread out, which is needed to continue
the induction. Over models this has a very easy fix: one can check that it is
possible to choose a global M -invariant type q ⊇ tp((aη)η∈Tα

/M) such that, if
(a′η)η∈Tα

|= q then (a′η)η∈Tα
is M-indiscernible. Morley sequences in such types

allow the argument to work without change (the details for this case will appear
elsewhere). But over sets, a lengthier argument is required to patch the proofs. The
relevant notion for the modification is that of a mutually s-indiscernible sequence.
We prove in Lemma 1.15 that, given an s-indiscernible tree, there is a Morley
sequence starting with this tree which is mutually s-indiscernible, and then we show
in Lemma 1.16 that this notion is preserved upon passage to an s-indiscernible tree.

Definition 1.14. We say a sequence 〈(aη,i)η∈Tα
: i < κ〉 is mutually s-indiscernible

over A if, for all i < κ, (aη,i)η∈Tα
is s-indiscernible over A{aη,j : η ∈ Tα, j 6= i}.

Lemma 1.15. Assume A is an extension base. Given a tree (aη)η∈Tα
that is

s-indiscernible over A, there is a sequence I = 〈(aη,i)η∈Tα
: i < ω〉 such that

(aη,0)η∈Tα
= (aη)η∈Tα

, I is a Morley sequence over A, and I is mutually s-
indiscernible over A.

Proof. Let κ be sufficiently large with respect to |A|. By induction on γ < κ, we will
choose (aη,γ)η∈Tα

such that, taking Iγ to be the sequence 〈(aη,i)η∈Tα
: i < γ〉, we

have that Iγ starts with (aη)η∈Tα
, is mutually s-indiscernible over A, and satisfies

(aη,i)η∈Tα
|⌣
A

(aη,j)η∈Tα,j<i

for all i < γ. The sequence I1 is already specified and trivially satisfies the require-
ments.

Assume we are given (aη,i)η∈Tα
for all i < γ and set Iγ = 〈(aη,i)η∈Tα

: i < γ〉.
Apply extension to get some (bη)η∈Tα

≡A (aη)η∈Tα
such that

(bη)η∈Tα
|⌣
A

Iγ .

By the modeling property, we can take (b′η)η∈Tα
to be locally based on (bη)η∈Tα

and
s-indiscernible over AIγ , then we we still have (b′η)η∈Tα

≡A (aη)η∈Tα
, as (aη)η∈Tα

was assumed to be s-indiscernible over A, and local basedness and strong finite
character of non-forking imply

(b′η)η∈Tα
|⌣
A

Iγ .

Now by induction on i < γ, we will choose (a′η,i)η∈Tα
satisfying the following

conditions:
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(1) (a′η,i)η∈Tα
is s-indiscernible over

A ∪ {a′η,j : η ∈ Tα, j < i} ∪ {aη,k : η ∈ Tα, k > i} ∪ {b′η : η ∈ Tα}.

(2) (b′η)η∈Tα
is s-indiscernible over

A ∪ {a′η,j : η ∈ Tα, j ≤ i} ∪ {aη,k : η ∈ Tα, k > i}.

(3) (a′η,j)η∈Tα,j≤i(aη,k)η∈Tα,k>i ≡A (aη,j)η∈Tα,j≤i(aη,k)η∈Tα,k>i.
(4) The following independence holds:

(b′η)η∈Tα
|⌣
A

(a′η,j)η∈Tα,j≤i(aη,k)η∈Tα,k>i

Fix i < γ and suppose we have chosen (a′η,j)η∈Tα
for all j < i. Pick (a′η,i)η∈Tα

s-indiscernible over A∪{a′η,j : η ∈ Tα, j < i}∪{aη,k : η ∈ Tα, k > i}∪{b′η : η ∈ Tα}
and locally based on (aη,i)η∈Tα

. Then (1) is satisfied and (2) is easy to check using
local basedness and the inductive assumption. We assumed Iγ was mutually s-
indiscernible over A and hence by (3) of the inductive hypothesis, we know that
(aη,i)η∈Tα

is s-indiscernible over

A ∪ {a′η,j : η ∈ Tα, j < i} ∪ {aη,k : η ∈ Tα, k > i}

and therefore (a′η,i)η∈Tα
has the same type over this set, which establishes (3).

Finally, (4) follows by local basedness, (3), and the invariance of non-forking inde-
pendence. More explicitly, suppose there is a finite tuple b from (b′η)η∈Tα

, a finite
tuple a from {a′η,j : j < i} ∪ {aη,k : k > i}, and a finite tuple η from Tα such that

|= ϕ(b; a′η,i, a)

where ϕ(x; y, z) ∈ L(A) is a formula such that ϕ(x; a′η,i, a) forks over A. Local

basedness entails that there is ν with qftpLs,α
(ν) = qftpLs,α

(η) such that

|= ϕ(b; aν,i, a).

But by mutual s-indiscernibility, aν,i ≡Aa aη,i and, by (3), aη,i ≡Aa a
′
η,i and hence

ϕ(x; aν,i, a) forks over A as well. This contradicts the inductive hypothesis that

(b′η)η∈Tα
|⌣
A

(a′η,j)η∈Tα,j<i(aη,k)η∈Tα,k≥i.

This shows that our choice of (a′η,i)η∈Tα
satisfies the requirements.

Having constructed our sequence I ′γ = 〈(a′η,i)η∈Tα
: i < γ〉, we have I ′γ ≡A Iγ by

(3) and (b′η)η∈Tα
is s-indiscernible over I ′γ by (2). Moreover, each (aη,i)η∈Tα

is indis-
cernible overA(b′η)η∈Tα

(aη,j)η∈Tα,j 6=i by (1). Finally, by (4), we have (b
′
η)η∈Tα

|⌣A
I ′γ .

Choosing (aη,γ) such that

Iγ(aη,γ)η∈Tα
≡A I ′γ(b

′
η)η∈Tα

we arrive at Iγ+1. There is nothing to do at limits, so we have succeeded in
constructing our sequence Iκ. Applying Erdős-Rado to Iκ, then, we obtain the
desired sequence I. �

Lemma 1.16. Suppose (aη)η∈Tα+1
is a tree of tuples such that I = 〈aD〈i〉 : i < ω〉

is mutually s-indiscernible and Morley over A. Then if (a′η)η∈Tα+1
is s-indiscernible

and locally based on (aη)η∈Tα+1
over A and I ′ = 〈a′

D〈i〉 : i < ω〉, then I ′ ≡A I and

thus I ′ is also mutually s-indiscernible and Morley over A.
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Proof. Suppose η and ν are tuples from Tα+1\{∅}with qftpLs,α+1
(η) = qftpLs,α+1

(ν).
After possibly reordering the tuples, there are i0 < . . . < ik−1 and j0 < . . . < jk−1

such that η = (η0, . . . , ηk−1) and ν = (ν0, . . . , νk−1) where each ηl comes from
the tree D〈il〉 and νl comes from the tree D〈jl〉 for l < k. Then, in particular,
qftpLs,α+1

(ηl) = qftpLs,α+1
(νl) for all l < k. Additionally, for all l < k, let η′l be

the element of the tree D〈jl〉 corresponding to ηl (i.e. replace each node 〈il〉⌢ξ
enumerated in ηl with 〈jl〉⌢ξ). Because I is an A-indiscernible sequence, we have

(aη0
, . . . , aηk−1

) ≡A (aη′
0
, . . . , aη′

k−1
).

Additionally, in the tree D〈jl〉 (naturally viewed as an Ls,α-structure), we have
qftpLs,α

(η′l) = qftpLs,α
(ηl) for all l < k. Thus, mutual s-indiscernibility entails

(aη′
0
, . . . , aη′

k−1
) ≡A (aν0

, . . . , aνk−1
).

Thus we have shown that aη ≡A aν . Therefore, it follows, by local basedness, that
I ≡A I ′ and the result follows. �

Definition 1.17. Suppose (aη)η∈Tα
is a tree of tuples in M, and A is a set of

parameters.

(1) We say (aη)η∈Tα
is weakly spread out over A if for all η ∈ Tα with dom(η) =

[β + 1, α) for some β ∈ [α], the sequence of cones (aDη⌢〈i〉)i<ω is a Morley
sequence in tp(aDη⌢〈0〉/A).

(2) Suppose (aη)η∈Tα
is a tree which is weakly spread out and s-indiscernible

over A and for all pairs of finite subsets w, v of α with |w| = |v|,

(aη)η∈Tα↾w ≡A (aη)η∈Tα↾v

then we say (aη)η∈Tα
is a weakly Morley tree over A.

(3) A weak tree Morley sequence overA is aA-indiscernible sequence of the form
(aζβ )β∈[α] for some weakly Morley tree (aη)η∈Tα

over A. More generally,
we will say an A-indiscernible sequence I is a weak tree Morley sequence
over A if it is EM-equivalent to a sequence of this form.

Remark 1.18. If I = 〈bi : i < ω〉 is an A-indiscernible sequence and I ≡A J for
some weak tree Morley sequence J over A, then I is a weak tree Morley sequence
over A. In particular, if I is a subsequence of J , by the A-indiscernibility of J , the
sequence I is also weak tree Morley over A.

Fact 1.19. Suppose T is NSOP1 with existence and A is a set of parameters.

(1) If a |⌣
K

A
b, there is an Ab-indiscernible sequence I = 〈ai : i < ω〉 over A

with a0 = a such that I is weak tree Morley over A. [5, Lemma 4.7]
(2) Kim’s Lemma for weak tree Morley sequences: the fomula ϕ(x; a0) Kim-

divides over A if and only if {ϕ(x; ai) : i < ω} is inconsistent for some weak
tree Morley sequence 〈ai : i < ω〉 over A if and only if {ϕ(x; ai) : i < ω}
is inconsistent for all weak tree Morley sequences 〈ai : i < ω〉 over A. [5,
Corollary 4.8]

(3) If a ≡L
A b and a |⌣

K

A
b, there is an |⌣

K
-Morley sequence over A starting

with (a, b) as its first two elements (follows from Fact 1.7 as in [7, Corollary
6.6]).
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1.2. Further properties of Kim-independence.

Fact 1.20. [5, Lemma 5.7] Suppose T is NSOP1 with existence. If A is a set of

parameters, c is an arbitrary tuple, and a |⌣
K

A
b, then there is a′ ≡L

Ab a such that

a′ |⌣
K

A
bc.

The following lemma is easy and well-known, but, in the absence of a clear
reference, we provide a proof:

Lemma 1.21. Suppose T is NSOP1 with existence, A is a set of parameters, and
p(x) ∈ S(A).

(1) Given any tuple of variables y, there is a partial type Γ(x, y) over A such

that (a, b) |= Γ(x, y) if and only if a |= p and a |⌣
K

A
b.

(2) There is a partial type ∆(xi : i < ω) over A such that I = 〈ai : i < ω〉 |= ∆

if and only if I is an |⌣
K
-Morley sequence over A in p.

Proof. (1) By compactness, we may assume y is finite. Fix c |= p and define Γ(x, y)
by

Γ(x, y) = p(x) ∪ {¬ϕ(y;x) : ϕ(y; c) Kim-divides over A}.

By symmetry, invariance, and Kim-forking = Kim-dividing, this partial type is as
desired.

(2) One can take ∆ to be the partial type that asserts 〈xi : i < ω〉 is A-

indiscernible, every xi |= p, and xi |⌣
K

A
x<i (which is type-definable over A by

(1)). �

The following lemma is the analogue of the ‘strong independence theorem’ of [16,
Theorem 2.3] for Lascar strong types.

Lemma 1.22. Suppose T is NSOP1 with existence. If A is a set of parameters,

a0 |⌣
K

A
b, a1 |⌣

K

A
c, b |⌣

K

A
c, and a0 ≡L

A a1, then there is a such that a ≡L
Ab a0,

a ≡L
Ac a1 and, additionally, we have a |⌣

K

A
bc, b |⌣

K

A
ac, and c |⌣

K

A
ab.

Proof. By Fact 1.20, there is c′ ≡L
Ab c such that c′ |⌣

K

A
bc. Let σ ∈ Autf(M/Ab) be

an automorphism such that σ(c′) = c and let c0 = σ(c). Then we have c |⌣
K

A
bc0 and

c0 ≡L
Ab c and hence, in particular, c0b ≡L

A cb. By symmetry and a second application

of Fact 1.20 once again, we find b′′c′′ ≡L
Ac bc0 with b

′′c′′ |⌣
K

A
bc. Let τ ∈ Autf(M/Ac)

be a strong automorphism with τ(b′′c′′) = bc0 and define b1 = τ(b). Then by
construction, we have b′′c′′ ≡A bc0 and bc0 ≡L

A bc, it follows that b′′c′′ ≡L
A bc,

and hence τ(b′′c′′) ≡L
A τ(bc), which, after unraveling definitions, gives bc0 ≡L

A b1c.

Moreover, since b′′c′′ |⌣
K

A
bc, we obtain bc0 |⌣

K

A
b1c by invariance. Let b0 = b and

c1 = c. By Fact 1.19(3), we can extend the sequence 〈(bi, ci) : i < 2〉 to a weak tree
Morley sequence I = 〈(bi, ci) : i ∈ Z〉 over A.

Choose a′ such that a1c1 ≡L
A a′c0. Then we have a0 ≡L

A a′, as well as a0 |⌣
K

A
b0,

a′ |⌣
K

A
c0 by our assumptions. Additionally, since b |⌣

K

A
c, b0 = b and c ≡Ab c0, we

have b0 |⌣
K

A
c0. Therefore, by Fact 1.7(6), there is a∗ with a∗ ≡L

Ab0
a0, a∗ ≡L

Ac0
a′,

with a∗ |⌣
K

A
b0c0.

Because I is a weak tree Morley sequence and a∗ |⌣
K

A
b0c0, by Kim’s lemma,

compactness, and an automorphism, there is a∗∗ |⌣
K

A
I such that a∗∗b0c0 ≡L

A a∗b0c0
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and such that I is Aa∗∗-indiscernible. Note that, by construction, a∗∗ ≡L
Ab a0,

a∗∗ ≡L
Ac a1, and a∗∗ |⌣

K

A
bc.

Additionally, the sequence 〈bi : i ∈ Z
≤0〉 is a weak tree Morley sequence over

A which is Aa∗∗c-indiscernible and containing b0 = b, hence a∗∗c |⌣
K b, by Kim’s

lemma for weak tree Morley sequences. Similarly, the sequence 〈ci : i ∈ Z
≥1〉 is a

weak tree Morley sequence over A containing c = c1 which is Aa∗∗b-indiscernible,

yielding a∗∗b |⌣
K

A
c. By symmetry, we conclude. �

2. Transitivity and witnessing

2.1. Preliminary lemmas. We begin by establishing some lemmas, allowing us

to construct sequences that are |⌣
K
-Morley over more than one base simultane-

ously. The broad structure of the argument will follow that of [8], which established
transitivity over models for Kim-independence in NSOP1 theories, however all uses
of coheirs and heirs will need to be replaced.

In particular, the following lemma does not follow the corresponding [8, Lemma
3.1], instead producing the desired sequence by a tree-induction.

Lemma 2.1. Suppose T is NSOP1 and satisfies the existence axiom. If A ⊆ B

and a |⌣
K

A
B, then there is a weak tree Morley sequence 〈ai : i < ω〉 over B with

a0 = a such that ai |⌣
K

A
Ba<i for all i < ω.

Proof. By induction on α, we will construct trees (aαη )η∈Tα
so that

(1) (aαη )η∈Tα
is s-indiscernible and weakly spread out over B.

(2) aαη |= tp(a/B) for all η ∈ Tα.

(3) If α is a successor, aα∅ |⌣
K

A
Baα

⊲∅.

(4) If α < β, then aβ
ιαβ(η)

= aαη for all η ∈ Tα.

For α = 0, we put a0∅ = a, and for δ limit, we will define (aδη)η∈Tδ
by setting

aδιαδ(η)
= aαη for all α < δ and η ∈ Tα which, by (4) and induction, is well-defined

and satisfies the requirements.
Now suppose we are given (aβη )η∈Tβ

satisfying the requirements for all β ≤ α.
Let 〈(aαη,i)η∈Tα

: i < ω〉 be a mutually s-indiscernible Morley sequence over B
with aαη,0 = aαη for all η ∈ Tα, which exists by Lemma 1.15. Apply extension to

find a∗ ≡B a so that a∗ |⌣
K

A
B(aαη,i)η∈Tα,i<ω . Define a tree (bη)η∈Tα+1

by setting

b∅ = a∗ and b〈i〉⌢η = aαη,i for all i < ω and η ∈ Tα. We may define (aα+1
η )η∈Tα+1

to be a tree which is s-indiscernible over B and locally based on (bη)η∈Tα+1
over

B. By an automorphism, we may assume aα+1
ιαα+1(η)

= aαη for all η ∈ Tα, hence

conditions (2), and (4) are clearly satisfied. Moreover, by Lemma 1.16, we have
〈(aη,i)η∈Tα

: i < ω〉 ≡B 〈aα+1
D〈i〉 : i < ω〉 so 〈aα+1

D〈i〉 : i < ω〉 is a Morley sequence over

B. Then by (4) and induction, it follows that (aα+1
η )η∈Tα+1

is s-indiscernible and
spread out over B, which shows (1).

For (3), we just note that, by symmetry, if aα+1
∅ 6 |⌣

K

A
Baα+1

⊲∅ , there is some

formula ϕ(x; aα+1
∅ ) ∈ tp(Baα+1

⊲∅ /Aaα+1
∅ ) that Kim-divides over A. As the tree

(aα+1
η )η∈Tα+1

is locally based on (bη)η∈Tα+1
, it follows that some tuple from Bb⊲∅

also realizes ϕ(x; a∗) and a∗ ≡B aα+1
∅ , so ϕ(x; a∗) Kim-divides over A as well,

contradicting the choice of a∗. This contradiction establishes (3), completing the
induction.
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By considering (aκη)η∈Tκ
for κ sufficiently large, we may apply Erdős-Rado, as

in [7, Lemma 5.10], to find the desired sequence. �

The proof of the next lemma follows [8, Lemma 3.2].

Lemma 2.2. Suppose T is an NSOP1 theory satisfying the existence axiom. If

a |⌣
K

A
b and c |⌣

K

A
b, then there is c′ so that c′ ≡Ab c, ac

′ |⌣
K

A
b, and a |⌣

K

Ab
c′.

Proof. Define a partial type Γ(x; b, a) over Aab as follows:

Γ(x; b, a) = tp(c/Ab) ∪ {¬ϕ(x, a; b) : ϕ(x, y; b) ∈ L(Ab) Kim-divides over A}

Claim 1: If 〈ai : i < ω〉 is an Ab-indiscernible sequence satisfying a0 = a and

ai |⌣
K

A
ba<i for all i < ω, then

⋃

i<ω Γ(x; b, ai) is consistent.

Proof of claim: By induction on n < ω, we will find cn ≡L
A c such that

cn |⌣
K

A
ba<n and cn |=

⋃

i<n Γ(x; b, ai). For n = 0, we can put c0 = c, since c |⌣
K

A
b

by assumption. Assume we have found cn, and, by Fact 1.20, choose c′ such that

c′ ≡L
A c and c′ |⌣

K

A
an. Then c′ ≡L

A c ≡L
A cn and, since an |⌣

K

A
ba<n, we may ap-

ply Lemma 1.22 to find cn+1 ≡L
A c such that cn+1 |= tp(cn/Aba<n) ∪ tp(c′/Aan)

and such that cn+1 |⌣
K

A
ba<n+1 and ancn+1 |⌣

K

A
ba<n, hence, in particular, cn+1 |=

⋃

i<n+1 Γ(x; b, ai). The claim follows by compactness. �

Next we define a partial type ∆(x; b, a) as follows:

∆(x; b, a) = Γ(x; b, a) ∪ {¬ψ(x; b, a) : ψ(x; b, a) ∈ L(Aab) Kim-divides over Ab}.

Claim 2: The set of formulas ∆(x; b, a) is consistent.
Proof of claim: Suppose not. Then because Kim-forking and Kim-dividing are

the same in NSOP1 with existence, there is some formula ψ(x; b, a) ∈ L(Aab) such
that

Γ(x; b, a) ⊢ ψ(x; b, a)

and ψ(x; b, a) Kim-divides over Ab. As a |⌣
K

A
b, we know by Lemma 2.1 that there

is a sequence 〈ai : i < ω〉 with a0 = a which is a weak tree Morley sequence over

Ab and satisfies ai |⌣
K

A
ba<i for all i < ω. Then by Claim 1,

⋃

i<ω Γ(x; b, ai) is
consistent. However, we have

⋃

i<ω

Γ(x; b, ai) ⊢ {ψ(x; b, ai) : i < ω}

and {ψ(x; b, ai) : i < ω} is inconsistent, because weak tree Morley sequences witness
Kim-dividing. This contradiction proves the claim. �

To conclude, we may take c′ to be any realization of ∆(x; b, a). �

The next proposition is a strengthening of Fact 1.19(1).

Proposition 2.3. Suppose T is an NSOP1 theory satisfying the existence axiom.

If a |⌣
K

A
b, then there is a sequence I = 〈ai : i < ω〉 with a0 = a such that I is a

weak tree Morley sequence over A and an |⌣
K
-Morley sequence over Ab.

Proof. By induction on α, we will construct trees (aαη )η∈Tα
satisfying the following:

(1) For all η ∈ Tα, aαη |= tp(a/Ab).
(2) The tree (aαη )η∈Tα

is s-indiscernible over Ab and weakly spread out over A.

(3) If α is a successor, then aα∅ |⌣
K

Ab
aα
⊲∅.

(4) (aαη )η∈Tα
|⌣

K

A
b.
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(5) If α < β, then aβ
ιαβ(η)

= aαη for all η ∈ Tα.

Put a0∅ = a and for δ limit, if we are given (aαη )η∈Tα
for every α < δ, we can define

(aδη)η∈Tδ
by setting aδιαδ(η)

= aαη for all α < δ and η ∈ Tα, which is well-defined by

(5) and is easily seen to satisfy the requirements.
Suppose now we are given (aαη )η∈Tα

. Let J = 〈(aαη,i)η∈Tα
: i < ω〉 be a mutually

s-indiscernible Morley sequence over A with (aαη,0)η∈Tα
= (aαη )η∈Tα

, which exists
by Lemma 1.15. By (4), symmetry, and the Chain Condition, Fact 1.7(5) we may

assume J is Ab-indiscernible and J |⌣
K

A
b. By Lemma 2.2, there is a∗ ≡Ab a such

that a∗ |⌣
K

Ab
J and a∗J |⌣

K

A
b. After defining a tree (cη)η∈Tα+1

by c∅ = a∗ and

c〈i〉⌢η = aαη,i for all η ∈ Tα, these conditions on a∗ imply that (cη)η∈Tα
satisfy (3)

and (4) respectively. Let (aα+1
η )η∈Tα+1

be any tree s-indiscernible over Ab locally
based on (cη)η∈Tα

over Ab. This still satisfies (2) by Lemma 1.16. Moreover,
as cD〈i〉 |= tp((aαη )η∈Tα

/Ab) for all i < ω, it follows from local basedness that

aα+1
D〈i〉 |= tp((aαη )η∈Tα

/Ab) for all i < ω as well. Hence, by an automorphism over

Ab, we may assume aα+1
0⌢η = aαη for all η ∈ Tα, which ensures the constructed tree

satisfies (5), and (1)-(4) are easy to verify.
Given (aκη)η∈Tκ

for κ sufficiently large, we may, by Erdős-Rado (see, e.g., [7,
Lemma 5.10]), obtain a weak Morley tree (bη)η∈Tω

over A satisfying (1)—(4). Then
the sequence I = 〈ai : i < ω〉 defined by ai = bζi for all i < ω is a weak tree Morley
sequence over A, as it is a path in a weak Morley tree over A, but by (3), we have

ai |⌣
K

Ab
a<i for all i, so I is |⌣

K
-Morley over Ab as well. �

2.2. Transitivity and witnessing. The following theorem establishes the transi-
tivity of Kim-independence in NSOP1 theories with existence.

Theorem 2.4. Suppose T is NSOP1 with existence. Then if A ⊆ B, a |⌣
K

A
B and

a |⌣
K

B
c, then a |⌣

K

A
Bc.

Proof. By Proposition 2.3 and the assumption that a |⌣
K

A
B, there is a sequence

I = 〈ai : i < ω〉 with a0 = a such that I is an |⌣
K
-Morley sequence over B and a

weak tree Morley sequence over A. As c |⌣
K

B
a, by symmetry, and I is |⌣

K-Morley

over B, there is I ′ ≡Ba I such that I ′ is Bc-indiscernible. Because I ′ is also a

weak tree Morley sequence over A, it follows by Kim’s lemma that Bc |⌣
K

A
a. By

symmetry, we conclude. �

Proposition 2.5. Assume T is NSOP1 with existence. The following are equiva-
lent.

(1) a |⌣
K

A
b

(2) There is a model M ⊇ A such that M |⌣
K

A
ab (or M |⌣A

ab) and a |⌣
K

M
b.

(3) There is a model M ⊇ A such that M |⌣
K

A
a (or M |⌣A

a) and a |⌣
K

M
b.

Proof. (1)⇒(2) Since a |⌣
K

A
b, there is a Morley sequence I = 〈ai : i < ω〉 over

A with a0 = a such that I is Ab-indiscernible. By [5, Lemma 2.17], there is a
model N containing A such that N |⌣A

I and I is a coheir sequence over N . By
compactness and extension we can clearly assume the length of I is arbitrarily large,
and N |⌣A

Ib. Hence by the pigeonhole principle, there is an infinite subsequence

J of I such that all the tuples in J have the same type over Nb. Thus, for a′ ∈ J ,
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we have a′ |⌣
K

N
b and N |⌣A

a′b. Hence M = f(N) is a desired model, where f is

an Ab-automorphism sending a′ to a.
(2)⇒(3) Clear.

(3)⇒(1) follows from transitivity and symmetry of |⌣
K . �

Proposition 2.6. Suppose T satisfies the existence axiom. The following are equiv-
alent for a cardinal κ ≥ |T |:

(1) T is NSOP1.
(2) There is no increasing continuous sequence 〈Ai : i < κ+〉 of parameter sets

and finite tuple d such that |Ai| ≤ κ and d 6 |⌣
K

Ai
Ai+1 for all i < κ+.

(3) There is no set A of parameters of size κ+ and p(x) ∈ S(A) with x a finite
tuple of variables such that for some increasing and continuous sequence of
sets 〈Ai : i < κ+〉 with union A, we have |Ai| ≤ κ and p Kim-divides over
Ai for all i < κ+.

Proof. (1) =⇒ (2) It suffices to show that, given any increasing continuous sequence

〈Ai : i < κ+〉 of parameter sets and tuple d such that |Ai| ≤ κ and d 6 |⌣
K

Ai
Ai+1 for

all i < κ+, there is a continuous increasing sequence of models 〈Mi : i < κ+〉 and

a finite tuple d′ such that |Mi| ≤ κ and d′ 6 |⌣
K

Mi
Mi+1 for all i < κ+. This follows

from Fact 1.8, since the existence of such a sequence of models implies T has SOP1.
Moreover, after naming constants, we may assume κ = |T |.

So suppose we are given 〈Ai : i < |T |+〉, an increasing continuous sequence
of sets of parameters with |Ai| ≤ |T | for all i < |T |+. Let A =

⋃

i<|T |+ Ai,

and suppose further that we are given some tuple d such that d 6 |⌣
K

Ai
Ai+1 for

all i < |T |+. By induction on i < |T |+ we will build increasing and continuous
sequences 〈A′

i : i < |T |+〉 and 〈Mi : i < |T |+〉 satisfying the following for all
i < |T |+:

(1) A′
0 = A0 and A′

≤i ≡ A≤i.

(2) Mi |= T with |Mi| = |T | and A′
i ⊆Mi.

(3) A′
i+1 |⌣

K

A′
i

Mi.

To begin, we define A′
0 = A0 and take M0 be any model containing A′

0 of size
|T |. Given A′

≤i and M≤i satisfying the requirements, we pick A′′
i+1 such that

A′
≤iA

′′
i+1 ≡ A≤i+1. Then we apply extension, to obtain A′

i+1 ≡A′
≤i

A′′
i+1 such

that A′
i+1 |⌣

K

A′
i

Mi. Note that A′
≤i+1 ≡ A≤i+1. We define Mi+1 to be any model

containing A′
i+1Mi of size |T |. This satisfies the requirements.

At limit δ, we define A′
δ =

⋃

i<δ A
′
i and Mδ =

⋃

i<δ Mi. This clearly satisfies (1)
and (2) and (3) is trivial. Therefore this completes the construction.

Let M =
⋃

i<|T |+ Mi. Choose d′ such that d〈Ai : i < |T |+〉 ≡ d′〈A′
i : i < |T |+〉,

which is possible by (1). Then we have d′ 6 |⌣
K

A′
i

A′
i+1 for all i < |T |+.

Towards contradiction, suppose that there is some i < |T |+ with the property

that d′ |⌣
K

Mi
Mi+1. Then, in particular, we have d′ |⌣

K

Mi
A′

i+1. Additionally, be-

cause Mi |⌣
K

A′
i

A′
i+1, we know, by symmetry and transitivity, that A′

i+1 |⌣
K

A′
i

d′Mi.

By symmetry once more, we get d′ |⌣
K

A′
i

A′
i+1, a contradiction. This shows that

d′ 6 |⌣
K

Mi
Mi+1 for all i < |T |+, completing the proof of this direction.
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(2) =⇒ (3) Suppose (3) fails, i.e. we are given A of size κ+, p ∈ S(A), and an
increasing continuous sequence of sets 〈Ai : i < ω〉 such that |Ai| ≤ κ and p Kim-
divides over Ai for all i < κ+. We will define an increasing continuous sequence of
ordinals 〈αi : i < κ+〉 such that αi ∈ κ+ and p ↾ Aαi+1

Kim-divides over Aαi
for all

i < κ+. We set α0 = 0 and given 〈αj : j ≤ i〉, we know that there is some formula
ϕ(x; ai+1) ∈ p that Kim-divides over Aαi

, by our assumption on p. Let αi+1 be the
least ordinal < κ+ such that ai+1 is contained in Aαi+1

. For limit i, if we are given
〈αj : j < i〉, we put αi = supj<i αj . Then we define 〈Ai : i < κ+〉 by A′

i = Aαi
for

all i < κ, and let d |= p be any realization. By construction, we have d 6 |⌣
K

A′
i

A′
i+1

for all i < κ+, which witnesses the failure of (2).
(3) =⇒ (1) This was established in [9, Theorem 3.9]. �

Remark 2.7. In [2, Proposition 4.6] it is shown that in every theory with TP2, there
is an increasing chain of sets 〈Di : i < |T |+〉 and tuple d such that |Di| ≤ |T | and

d 6 |⌣
K

Di
Di+1 for all i < |T |+. Hence, for non-simple NSOP1 theories, the condition

of continuity in the statement of Proposition 2.6 is essential.

The following theorem will be referred to as ‘witnessing.’ It shows that |⌣
K
-

Morley sequences are witnesses to Kim-dividing. Over models this was established
in [8, Theorem 5.1], however for us it will be deduced as a corollary of Proposition
2.6.

Theorem 2.8. Suppose T is NSOP1 with existence and I = 〈ai : i < ω〉 is an |⌣
K
-

Morley sequence over A. If ϕ(x; a0) Kim-divides over A, then {ϕ(x; ai) : i < ω} is
inconsistent.

Proof. Suppose towards contradiction that ϕ(x; a0) Kim-divides over A and I =

〈ai : i < ω〉 is an |⌣
K
-Morley sequence over A such that {ϕ(x; ai) : i < ω} is

consistent. By naming A as constants, we may assume |A| ≤ |T |. We may stretch
I such that I = 〈ai : i < |T |+〉. Define Ai = Aa<i. Then 〈Ai : i < |T |+〉
is increasing and continuous and |Ai| ≤ |T |. Let d |= {ϕ(x; ai) : i < |T |+}.

We claim d 6 |⌣
K

Ai
Ai+1 for all i < |T |+. If not, then for some i < |T |+, we have

d |⌣
K

Ai
Ai+1, or, in other words d |⌣

K

Aa<i
ai. Since I is an |⌣

K
-Morley sequence,

we also have ai |⌣
K

A
a<i, hence da<i |⌣

K

A
ai, by transitivity (Theorem 2.4). This

entails, in particular, that d |⌣
K

A
ai, which is a contradiction, since ϕ(x; ai) Kim-

divides over A. This completes the proof. �

3. Low NSOP1 theories

This section is dedicated to proving that Lascar and Shelah strong types coincide
in any low NSOP1 theory with existence. This generalizes the corresponding result
of Buechler for low simple theories [1] (also independently discovered by Shami [17]).

Definition 3.1. We say that the theory T is low if, for every formula ϕ(x; y),
there is some k < ω, such that if I = 〈ai : i < ω〉 is an indiscernible sequence and
{ϕ(x; ai) : i < ω} is inconsistent, then it is k-inconsistent.

In [1], the definition of lowness is given in terms of the finiteness of certain
D(p, ϕ) ranks, which we will not need here. However, as observed in [1], the above
definition coincides with this definition in the case that T is simple.
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Lemma 3.2. Suppose T is NSOP1 with existence. Assume we are given tuples

(ai)i≤n and L(A)-formulas (ϕi(x; yi))i≤n such that ai |⌣
K

A
a<i for all i ≤ n. Then

the following are equivalent:

(1) The formula
∧

i≤n ϕi(x; ai) does not Kim-divide over A.

(2) For all A-indiscernible sequences 〈aj : j < ω〉 = 〈(aj,0, . . . , aj,n) : j < ω〉

with (a0,0, . . . , a0,n) = (a0, . . . , an) and aj,i |⌣
K

A
a<jaj,<i for all j < ω and

i ≤ n, the following set of formulas does not Kim-divide over A:






∧

i≤n

ϕi(x; aj,i) : j < ω







.

(3) There is an A-indiscernible sequence 〈aj : j < ω〉 = 〈(aj,0, . . . , aj,n) : j < ω〉

with (a0,0, . . . , a0,n) = (a0, . . . , an) and aj,i |⌣
K

A
a<jaj,<i for all j < ω,

i ≤ n such that






∧

i≤n

ϕi(x; aj,i) : j < ω







is consistent.

Proof. (1) =⇒ (2) Suppose we are given 〈aj : j < ω〉 as in (2) and let c |=
∧

i≤n ϕi(x; ai) with c |⌣
K

A
a0. As 〈aj : j < ω〉 is A-indiscernible, for each j > 0,

there is some σj ∈ Autf(M/A) with σj(a0) = aj . Define c0 = c and cj = σj(c)
for all j > 0. Then we have cj ≡L

A c0 and cj |=
∧

i≤n ϕi(x; aj,i) for all j < ω. By

inductively applying the independence theorem (with respect to the lexicographic

order on ω×n), we obtain c∗ |= {ϕi(x; aj,i) : i ≤ n, j < ω} with c∗ |⌣
K

A
a<ω, which

establishes (2).
(2) =⇒ (3) It suffices to show that there is an A-indiscernible sequence 〈aj : j <

ω〉 = 〈(aj,0, . . . , aj,n) : j < ω〉 with (a0,0, . . . , a0,n) = (a0, . . . , an) and such that

aj,i |⌣
K

A
a<jaj,<i for all j < ω, i ≤ n.

First, we construct by induction a sequence 〈(a′j,0, . . . , a
′
j,n : j < ω〉 = 〈a′j : j <

ω〉 with a′j ≡A (a0, . . . , an) and a
′
j,i |⌣

K

A
a′<jaj,<i for all j < ω, i ≤ n. Given a′≤k, we

apply extension to find a′k+1,0 ≡A a0 with a′k+1,0 |⌣
K

A
a′≤k. Given a′k+1,≤i for i < n,

we find bk+1,i+1 such that a′k+1,≤ibk+1,i+1 ≡A a≤iai+1. By invariance, this implies

bk+1,i+1 |⌣
K

A
a′k+1,≤i. Applying extension once more, we can find a′k+1,i+1 ≡Aa′

k+1,≤i

bk+1,i+1 such that a′k+1,i+1 |⌣
K

A
a′≤ka

′
k+1,≤i. This completes the construction of

〈a′j : j < ω〉. By Ramsey, compactness, and an automorphism, we can extract an
A-indiscernible sequence 〈aj : j < ω〉 with a0 = (a0, . . . , an) as desired.

(3) =⇒ (1) Let c |=
{

∧

i≤n ϕi(x; aj,i) : j < ω
}

. Note that, for each i ≤ n, the

sequence 〈aj,i : j < ω〉 is an |⌣
K
-Morley sequence over A. Hence, by witnessing,

Theorem 2.8, and the fact that c |= {ϕi(x; aj,i) : j < ω}, we see that c |⌣
K

A
ai for

each i ≤ n.
By induction on k ≤ n, we will choose ck ≡L

A c such that ck |= {ϕi(x; ai) : i ≤ k}

and ck |⌣
K

A
a≤k. To begin we set c0 = c. Given ck for some k < n, we apply

the independence theorem to find ck+1 with ck+1 ≡L
Aa≤k

ck, ck+1 ≡L
Aak+1

c, and
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ck+1 |⌣
K

A
a≤k+1. After n steps, we obtain cn |=

∧

i≤n ϕi(x; ai) with cn |⌣
K

A
a≤n,

which shows (1). �

Remark 3.3. The independence conditions of (2) and (3) do not imply that the

sequence 〈(ai,0, . . . , ai,n) : i < ω〉 is |⌣
K-Morley, due to the lack of base monotonic-

ity. Consequently, this lemma strengthens witnessing, Theorem 2.8, for formulas of
a certain form, showing that they Kim-divide along sequences that are themselves

not necessarily |⌣
K
-Morley sequences.

Corollary 3.4. Suppose T is NSOP1 with existence. Assume that for each i ≤ n,
we are given a complete type p(yi) ∈ S(A) and an L(A)-formula ϕi(x; yi).

(1) There is a partial type R(y0, . . . , yn) over A containing
⋃

i≤n pi(yi) such

that a′0, . . . , a
′
n |= R(y0, . . . , yn) if and only if a′i |⌣

K

A
a′<i for all i ≤ n and

∧

i≤n ϕi(x; a
′
i) does not Kim-divide over A.

(2) If, additionally, T is low, then there is a formula γ(y0, . . . , yn) over A such

that, if (a′0, . . . , a
′
n) |= p(y0)∪ . . .∪ p(yn) and a′i |⌣

K

A
a′<i for all i ≤ n, then

M |= γ(a′0, . . . , a
′
n) if and only if

∧

i≤n ϕi(x; a
′
i) does not Kim-divide over

A.

Proof. By Lemma 1.21(1), there is a partial type Λ(zi,j : i < ω, j ≤ n) over A
which expresses the following:

(a) zi,j |= pj for all i < ω and j ≤ n.

(b) zi,j |⌣
K

A
z<izi,<j for all i < ω and j ≤ n, where zi = (zi,0, . . . , zi,n).

(c) The sequence 〈zi : i < ω〉 is A-indiscernible.

Let λ′(y0, . . . , yn, zi : i < ω) be the partial type given by {yj = z0,j : j ≤ n}∪Λ(zi :
i < ω).

To show (1), consider the partial type R0(y0, . . . , yn, zi : i < ω) which extends
λ′ and expresses additionally that {

∧

i≤n ϕi(x; zi,j) : i < ω} is consistent. Then R
may be defined by

R(y0, . . . , yn) ≡ (∃zi : i < ω)
∧

R0(y0, . . . , yn, zi; i < ω).

This R is clearly type definable and, by Lemma 3.2(3), R has the desired properties.
For (2), we know, by the lowness of T , that there is some k < ω such that, if,

given any 〈(a′i,j)j≤n : i < ω〉 is an A-indiscernible sequence and






∧

j≤n

ϕi(x; ai,j) : i < ω







is inconsistent, then this set of formulas is k-inconsistent. Consider the partial
type R1(y0, . . . , yn, zi : i < ω) which extends λ′ and expresses additionally that
{
∧

j≤n ϕi(x; zi,j) : i < ω} is k-inconsistent. Then we will define R′ by

R′(y0, . . . , yn) ≡ (∃zi : i < ω)
∧

R1(y0, . . . , yn, zi; i < ω).

It follows that if (a′j)j≤n |=
⋃

j≤n pj(yj) and a
′
j |⌣

K

A
a′<j , then (a′j)j≤n |= R′ if and

only if
∧

j≤n ϕj(x; a
′
j) Kim-divides over A, by Lemma 3.2(2). We showed in (1)

that the complement of R′ is type-definable (by R), and therefore, by compactness,
we obtain the desired γ. �
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Theorem 3.5. If T is a low NSOP1 theory with existence, then Lascar strong
types are strong types. That is, for any (possibly infinite) tuples a, b and small set
of parameters A, if a ≡S

A b then a ≡L
A b.

Proof. Let A be any small set of parameters. As TA is G-compact by Fact 1.7(7)
and, trivially, TA is low, it suffices to prove the theorem when a and b realize a
type p(x) over ∅, where x is a finite tuple of variables. Let r(x, y) be a partial
type, closed under conjunctions, expressing that x ≡L y, i.e. r(x, y) defines the
finest type-definable equivalence relation over ∅ with boundedly many classes. Fix
ϕ(x; y) ∈ r(x, y). Note that, for any a |= p, ϕ(x; a) does not divide over ∅, because
if 〈ai : i < ω〉 is an indiscernible sequence with a0 = a, then a0 ≡L ai for all i < ω,
hence a0 |=

⋃

i<ω r(x; ai). In particular, ϕ(x; a) does not Kim-divide over ∅.
Define a relation Rϕ(u, v) expressing the following:

(1) u, v |= p.
(2) There exists v′ satisfying:

(a) v′ ≡L v.

(b) u |⌣
K
v′.

(c) ϕ(x;u) ∧ ϕ(x; v′) does not Kim-divide over ∅.

Clearly if v |= p and v ≡L v′, then v′ |= p. By Lemma 1.21 and Corollary 3.4(1),
there is a partial type Γ(z, w) over ∅ such that (v′, u) |= Γ(z, w) if and only if

v′, u |= p, u |⌣
K v′, and ϕ(x; v′) ∧ ϕ(x;u) does not Kim-divide over ∅. It follows

that Rϕ(u, v) if and only if (∃v′) [
∧

r(v, v′) ∧ Γ(v′, u)], which shows Rϕ(u, v) is
type-definable.

In a similar fashion, we define a relation Sϕ(u, v) to hold when the following
conditions are satisfied:

(1) u, v |= p.
(2) There is v′ satisfying the following:

(a) v′ ≡L v.

(b) u |⌣
K v′.

(c) ϕ(x;u) ∧ ϕ(x; v) Kim-divides over ∅.

The type-definability of Sϕ follows from an identical argument, using Corollary
3.4(2) in the place of Corollary 3.4(1) (this is where we make use of our hypothesis
that T is low).

From here, our proof follows the argument of [1], as presented in [12, Section
5.2]. First, we show the following:

Claim 1: If u, v |= p, then Rϕ(u, v) if and only if ¬Sϕ(u, v).
Proof of Claim 1 : First, it is clear that it is impossible for both ¬Rϕ(u, v) and

¬Sϕ(u, v) to hold since, by extension for Lascar strong types (Fact 1.20) there is

v′ ≡L v with u |⌣
K v′ and it must be the case that either ϕ(x, u) ∧ ϕ(x; v′) Kim-

divides or ϕ(x;u) ∧ ϕ(x; v′) does not Kim-divide over ∅.
Secondly, suppose Rϕ(u, v) holds witnessed by v′ and Sϕ(u, v) holds witnessed

by v′′. Then we have v ≡L v′ ≡L v′′, u |⌣
K v′, u |⌣

K v′′, ϕ(x;u)∧ϕ(x; v′) does not
Kim-divide over ∅, and ϕ(x;u) ∧ ϕ(x; v′′) Kim-divides over ∅. Choose c′ realizing

ϕ(x;u) ∧ ϕ(x; v′) with c′ |⌣
K
u, v′, and pick c′′ so that c′v′ ≡L c′′v′′. Then, in

particular, we have c′ ≡L c′′, c′ |⌣
K
u, c′′ |⌣

K
v′′, and u |⌣

K
v′′ so, by the indepen-

dence theorem, there is c with c |= Lstp(c′/u)∪Lstp(c/v′′) and c |⌣
K
u, v′′. Since c
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realizes ϕ(x;u) ∧ ϕ(x; v′′), we obtain a contradiction. Together with the first part,
this establishes the claim. �

By the claim and compactness, there is a formula σ(x, y) = σϕ(x, y) such that
p(x)∪p(y) ⊢ Rϕ(x, y) if and only if σ(x, y). Moreover, it is clear from the definitions
that Rϕ(x, y)∧ r(y, y

′) implies Rϕ(x, y
′). Again by compactness, there is a formula

δ(x) ∈ p(x) such that

(*) δ(x) ∧ δ(y) ∧ σ(x, y) ∧
∧

r(x, z) |= σ(x, z).

It follows from (∗) and the symmetry of r that, for any z |= δ, we have |= σ(z, x) ↔
σ(z, y), for all x, y |= δ. Therefore, we obtain a definable equivalence relation
Eϕ(x, y) as follows:

Eϕ(x, y) ≡ [¬δ(x) ∧ ¬δ(y)] ∨ [δ(x) ∧ δ(y) ∧ (∀z) (δ(z) → (σ(z, x) ↔ σ(z, y))] .

To conclude, we establish the following:
Claim 2: The partial type p(x) ∪ p(y) implies r(x, y) holds if and only if

∧

ϕ∈r Eϕ(x, y) holds.

Proof of Claim: First, we will show r(x, y) entails Eϕ(x, y) for all ϕ ∈ r. Clearly
r(x, y) implies δ(x) ↔ δ(y). Moreover, as noted above, if r(x, y) and δ(x) ∧ δ(y)
both hold, then for any z |= δ we have σ(z, x) ↔ σ(z, y) by (*) above and the
symmetry of r(x, y). Hence Eϕ(x, y) holds.

Secondly, we will show that if (a, b) |= p(x) ∪ p(y) does not realize r(x, y), then
¬
∧

ϕ∈r Eϕ(a, b). Choose ψ(x, y) ∈ r(x, y) such that ¬ψ(a, b). Because r is an

equivalence relation, there is some ϕ(x, y) ∈ r(x, y) such that

(∃x, x′) (ϕ(x, y) ∧ ϕ(x, x′) ∧ ϕ(x′, z)) ⊢ ψ(y, z).

Then if Eϕ(a, b) holds, then, because Rϕ(a, a) holds, we have σϕ(a, a) and σϕ(a, b)
and therefore Rϕ(a, b). By the definition of Rϕ(a, b), this implies there is some c ≡L

b such that ϕ(x, a) ∧ ϕ(x, c) is consistent, and therefore |= ψ(a, b), a contradiction.
This concludes the proof of the claim, and hence the theorem. �

4. Rank

In this section, we introduce a family of ranks, suitable for the study of NSOP1

theories. This makes critical use of witnessing over arbitrary sets and provides a
clear context in which working over arbitrary sets greatly simplifies the situation.
Our definition is close to the definition of D-rank familiar from simple theories, but
we are required to add a new parameter in the rank, which keeps track of the type
of the parameters that appear in instances of Kim-dividing.

Definition 4.1. Suppose q(y) ∈ S(B), ∆(x; y) is a finite set of L(B)-formulas, and
k < ω. Then for any set of formulas π(x) over M, we define D1(π,∆, k, q) ≥ 0 if π
is consistent, and D1(π,∆, k, q) ≥ n+ 1 if there is a sequence I = 〈ci : i < ω〉 such
that the following conditions hold:

(1) The sequence I is an |⌣
K-Morley sequence over B with ci |= q.

(2) The sequence I is indiscernible over dom(π)B (and hence dom(π) |⌣
K

B
ci

for all i).
(3) We have {ϕ(x; ci) : i < ω} is k-inconsistent for some formula ϕ(x; y) ∈ ∆.
(4) We have D1(π ∪ {ϕ(x; ci)},∆, k, q) ≥ n for all i < ω.
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We define D1(π,∆, k, q) = n if n is least such that D1(π,∆, k, q) ≥ n and also
D1(π,∆, k, q) 6≥ n + 1. We say D1(π,∆, k, q) = ∞ if D1(π,∆, k, q) ≥ n for all
n < ω.

Lemma 4.2. Suppose q(y) ∈ S(B), ∆(x; y) is a finite set of L(B)-formulas, and
k < ω. Then we have the following.

(1) For all σ ∈ Aut(M/B),

D1(σ(π),∆, k, q) = D1(π,∆, k, q).

(2) If π and π′ are partial types over M such that π(x) ⊢ π′(x), then

D1(π,∆, k, q) ≤ D1(π
′,∆, k, q).

(3) If n ≥ m, then D1(π,∆, k, q) ≥ n implies D1(π,∆, k, q) ≥ m.
(4) If ψ0(x), . . . , ψm−1(x) are formulas over M, then

D1



π ∪







∨

j<m

ψi(x)







,∆, k, q



 = max
j<m

D1(π ∪ {ψj(x)},∆, k, q).

Proof. (1) is clear.
(2) By induction on n, we will show

D1(π,∆, k, q) ≥ n =⇒ D1(π
′,∆, k, q) ≥ n.

For n = 0 there is nothing to show. Suppose the statement holds for n, and assume
D1(π,∆, k, q) ≥ n + 1. Then there is a dom(π)B-indiscernible sequence I = 〈ci :

i < ω〉 which is additionally an |⌣
K-Morley sequence over B in q and ϕ(x; y) ∈ ∆

such that {ϕ(x; ci) : i < ω} is k-inconsistent and D1(π ∪ {ϕ(x; ci)},∆, k, q) ≥
n. Let I ′ = 〈c′i : i < ω〉 be a Bdom(π)dom(π′)-indiscernible sequence locally

based on I. Clearly we have that I ′ is an |⌣
K
-Morley sequence in q over B and

D1(π∪{ϕ(x; c′i)},∆, k, q) ≥ n for all i < ω, by (1). As π∪{ϕ(x; c′i)} ⊢ π′∪{ϕ(x; c′i)},
we haveD1(π

′∪{ϕ(x; c′i)},∆, k, q) ≥ n by induction, which impliesD1(π
′,∆, k, q) ≥

n+ 1.
(3) We will prove by induction on l < ω that D1(π, δ, k, q) ≥ n + l implies

D1(π, δ, k, q) ≥ n. For l = 0, this is trivial. Assume it has been shown for l and
that D1(π,∆, k, q) ≥ n+ l+ 1. Then there is a sequence I = 〈ci : i < ω〉 satisfying
the conditions of Definition 4.1 such that D1(π ∪ {ϕ(x; ci)},∆, k, q) ≥ n + l for
all i. By (2), this entails, in particular, that D1(π,∆, k, q) ≥ n + l and hence
D1(π,∆, k, q) ≥ n by induction.

(4) By (2), we have

max
j<m

D1(π ∪ {ψj(x)},∆, k, q) ≤ D1



π ∪







∨

j<m

ψj(x)







,∆, k, q



 .

Hence, it suffices to show, for n < ω, that

D1



π ∪







∨

j<m

ψj(x)







,∆, k, q



 ≥ n =⇒ max
j<m

D1(π ∪ {ψj(x)},∆, k, q) ≥ n.

Let C be the (finite) set of parameters appearing in the formulas ψ0, . . . , ψn−1. For

n = 0, this is clear. If D1

(

π ∪
{

∨

j<m ψj(x)
}

,∆, k, q
)

≥ n + 1, then, as in (2),
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there is an |⌣
K
-Morley sequence I = 〈ci : i < ω〉 over B in q which is dom(π)BC-

indiscernible and ϕ(x; y) ∈ ∆ such that {ϕ(x; ci) : i < ω} is k-inconsistent with

D1



π ∪







∨

j<m

ψj(x)







∪ {ϕ(x; ci)},∆, k, q



 ≥ n,

which implies maxj<mD1(π ∪ {ψj(x), ϕ(x; ci)},∆, k, q) ≥ n, by the induction hy-
pothesis for n, for each i. By the pigeonhole principle, we may assume this
maximum witnessed by the same j for all i < ω. This shows maxj<mD1(π ∪
{ψj(x)},∆, k, q) ≥ n+ 1. �

Remark 4.3. Lemma 4.2(2) implies, in particular, that if π(x) and π′(x) are equiv-
alent then the ranks (with respect to a choice of ∆, k, and q) will be the same, even
if they have different domains.

Lemma 4.4. Suppose T is NSOP1 with existence. Suppose q ∈ S(B), ∆(x; y)
is a finite set of L(B)-formulas, and k < ω. Then for all n < ω, we have
D1(π,∆, k, q) ≥ n if and only if there are (cη)η∈ω≤n\{∅} and ϕi(x; y) ∈ ∆ for
i < n satisfying the following:

(a) For all η ∈ ωn,

π(x) ∪ {ϕi(x; cη|(i+1)) : i < n}

is consistent.
(b) For all η ∈ ω<n, {ϕl(η)(x; cη⌢〈i〉) : i < ω} is k-inconsistent.

(c) For all η ∈ ω<n, 〈cη⌢〈i〉 : i < ω〉 is an |⌣
K
-Morley sequence over B in q.

(d) The tree (cη)η∈ω≤n\{∅} is s-indiscernible over Bdom(π).

Proof. For the case of n = 0, (a) is satisfied if and only if π is consistent and
(b)—(d) hold trivially, which gives the desired equivalence.

Now assume, for a given n, that D1(π,∆, k, q) ≥ n if and only if there are
(cη)η∈ω≤n\{∅} and ϕi(x; y) ∈ ∆ for i < n such that (a)—(d) hold. First, suppose
D1(π,∆, k, q) ≥ n + 1. Then we can find a dom(π)B-indiscernible sequence I =

〈ci : i < ω〉 which is also |⌣
K-Morley over B in q and ϕ(x; y) ∈ ∆ such that

{ϕ(x; ci) : i < ω} is k-inconsistent and D1(π ∪ {ϕ(x; ci)},∆, k, q) ≥ n for all i < ω.
By induction, for each i < ω, there is a tree (ci,η)η∈ω≤n\{∅} and sequence of formulas
(ϕi,j(x; y))1≤j≤n from ∆ satisfying (a)—(d), with π replaced by π ∪ {ϕ(x; ci)}. As
∆ is a finite set of formulas, we may, by the pigeonhole principle, assume that there
are ϕj ∈ ∆ such that ϕi,j(x; y) = ϕj(x; y) for all i < ω and 1 ≤ j ≤ n. Now
define a tree (c′η)η∈ω≤n+1\{∅} such that c′〈i〉 = ci and c′〈i〉⌢η = ci,η for all i < ω

and η ∈ ω≤n \ {∅}. Define ϕ0(x; y) = ϕ(x; y). Let (cη)η∈ω≤n+1\{∅} be a tree that
is s-indiscernible tree over dom(π)B and locally based on (c′η)η∈ω≤n+1\{∅} over B.

Note that for all η ∈ ω<n+1, the sequence 〈cη⌢〈i〉 : i < ω〉 has the same type over
B as a Morley sequence in q and hence is a Morley sequence in q. It is clear that
(cη)η∈ω≤n+1\{∅} and (ϕj(x; y))j<n+1 satisfy the requirements.

Conversely, given (cη)η∈ω≤n+1\{∅} and (ϕj(x; y))j<n+1 satisfying (a)—(d), we
observe by induction that the tree (c〈i〉⌢η)η∈ω≤n\{∅} witnesses

D1(π ∪ {ϕ0(x; c〈i〉)},∆, k, q) ≥ n,
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for all i < ω. As the sequence 〈c〈i〉 : i < ω〉 is |⌣
K
-Morley over B and dom(π)B-

indiscernible, and {ϕ0(x; c〈i〉) : i < ω} is k-inconsistent, it follows that

D1(π,∆, k, q) ≥ n+ 1,

completing the proof. �

Corollary 4.5. If T is NSOP1 with existence, then given q(y) ∈ S(B), a finite
set of L(B)-formulas ∆(x; y), and k < ω, there is some n < ω such that D1(x =
x,∆, k, q) = n.

Proof. Suppose towards contradiction that there are q, ∆, and k < ω such that
D(x = x,∆, k, q) > n for all n < ω. By Lemma 4.4, Lemma 1.21, compactness, and
the pigeonhole principle (by the finiteness of ∆), we can find a tree (cη)η∈ω<ω\{∅}

and ϕ(x; y) ∈ ∆ satisfying the following:

(a) For all η ∈ ωω,

{ϕ(x; cη|(i+1)) : i < ω}

is consistent.
(b) For all η ∈ ω<ω, {ϕ(x; cη⌢〈i〉) : i < ω} is k-inconsistent.

(c) For all η ∈ ω<ω, 〈cη⌢〈i〉 : i < ω〉 is an |⌣
K
-Morley sequence over B in q.

(d) The tree (cη)η∈ω<ω\{∅} is s-indiscernible over B.

Note that, by s-indiscernibility, we have 〈c0n⌢〈i〉 : i < ω〉 is an |⌣
K
-Morley sequence

over B which is Bc0⌢0<n -indiscernible, for all n < ω. By witnessing, it follows that

c0⌢0<n |⌣
K

B
c0n+1 for all n. Let 〈di : i < ω〉 be a B-indiscernible sequence locally

based on 〈c0n : 1 ≤ n < ω〉 over B. As each c0n |= q, for 1 ≤ n < ω, we have that

d<n |⌣
K

B
dn for all n as well, and therefore 〈di : i < ω〉 is an |⌣

K
-Morley sequence

over B in q′. Moreover, since {ϕ(x; c0n) : 1 ≤ n < ω} is consistent, we know
{ϕ(x; dn) : n < ω} is consistent. However, we know ϕ(x; c0n) Kim-divides over
B and hence ϕ(x; dn) Kim-divides over B. This contradicts witnessing (Theorem
2.5). �

Remark 4.6. Corollary 4.5 has a converse: if T has SOP1, then for some B, there
is a q(y) ∈ S(B), a finite set of L(B)-formulas ∆(x; y), and k < ω such that
D1(x = x,∆, k, q) = ∞. One way to see this is to note that by [5, Corollary 3.7]
Kim’s Lemma for non-forking Morley sequences fails over some set B in any theory
with SOP1 (this doesn’t use existence). Concretely, this means there are Morley
sequences I = 〈ai : i < ω〉 and J = 〈bi : i < ω〉 over B with a0 = b0 and a
formula ϕ(x; y) such that {ϕ(x; ai) : i < ω} is k-inconsistent and {ϕ(x; bi) : i < ω}
is consistent. Then, by [5, Lemma 3.4], this implies there is a tree (cη)η∈ω<ω

satisfying the following properties:

(1) For all η ∈ ω<ω, (cη⌢〈i〉)i<ω ≡B I.
(2) For all η ∈ ω<ω, (cη, cη|l(η)−1, . . . , c∅) ≡B (b0, b1, . . . , bl(η)).
(3) (cη)η∈ω<ω is s-indiscernible over B.

Then, by Lemma 4.4, for q = tp(a0/B), we have D1(x = x,∆, k, q) ≥ n for all n.

Lemma 4.7. Suppose T is NSOP1 with existence. Suppose q(y) ∈ S(B), ∆(x, y)
is a finite set of L(B)-formulas, and k < ω.

(1) For any partial type p, there is a finite r ⊆ p such that

D1(p,∆, k, q) = D1(r,∆, k, q).
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(2) For any small set A ⊆ M and any partial type p over A, there is p′ ∈ S(A)
extending p such that

D1(p,∆, k, q) = D1(p,∆, k, q).

Proof. (1) By Lemma 4.2(1), if r is a subtype of p thenD1(r,∆, k, q) ≥ D1(p,∆, k, q)
so it suffices to find a finite r ⊆ p with D1(r,∆, k, q) ≤ D1(p,∆, k, q). Suppose
D1(p,∆, k, q) = n. Consider, for each sequence s = (ϕi(x; y))i<n+1 of formulas
from ∆, the set of formulas Γs(x, (zη)η∈ω≤n+1\{∅}) over dom(p)B expressing the
following:

(1) For all η ∈ ωn+1,

p(x) ∪ {ϕi(x; zη|(i+1)) : i < n+ 1}

is consistent.
(2) For all η ∈ ω<n+1, {ϕl(η)(x; zη⌢〈i〉) : i < ω} is k-inconsistent.

(3) For all η ∈ ω<n+1, 〈zη⌢〈i〉 : i < ω〉 is an |⌣
K
-Morley sequence over B in q

(possible by Lemma 1.21(2)).
(4) The tree (zη)η∈ω≤n+1\{∅} is s-indiscernible over Bdom(p).

By Lemma 4.4 and the fact that D1(p,∆, k, q) = n < n + 1, we know that Γs is
inconsistent. By compactness, there is some finite rs(x) ⊆ p(x) such that, replacing
p(x) with rs(x) in (1), the formulas remain inconsistent. Let r be the union of rs
as s ranges over all length n+1 sequences of formulas of ∆. As ∆ is finite, this is a
finite set, so r is a finite extension of each rs and a subtype of p. Then by Lemma
4.4 again, D1(r,∆, k, q) ≤ n = D1(p,∆, k, q).

(2) Let Γ(x) be defined as follows:

Γ(x) = {¬ψ(x) ∈ L(A) : D1(p(x) ∪ {ψ(x)},∆, k, q) < D1(p,∆, k, q)}.

If p(x)∪Γ(x) is inconsistent, then by compactness, there are ψ0, . . . , ψn−1 ∈ Γ such
that p(x) ⊢

∨

j<n ψj . By Lemma 4.2(1) and (2), this gives

D1(p,∆, k, q) = D1



p ∪







∨

j<n

ψj(x)







,∆, k, q





= max
j
D1(p ∪ {ψj(x)},∆, k, q)

< D1(p,∆, k, q),

a contradiction. Therefore, we can choose a complete type p′ ∈ S(A) extending
p(x) ∪ Γ(x). By (1), if D1(p

′,∆, k, q) < D1(p, ϕ, k, q), then there is a formula
ψ(x) ∈ p′ such that D1(p ∪ {ψ(x)},∆, k, q) < D1(p,∆, k, q) but this is impossible
by the definition of Γ. Therefore p′ is as desired. �

Theorem 4.8. Assume T is NSOP1 with existence.

(1) Suppose π is a partial type over B and π ⊆ π′. If π′ Kim-divides over B,

witnessed by the formula ϕ(x; c0), and I = 〈ci : i < ω〉 is an |⌣
K-Morley

sequence over B in q such that {ϕ(x; ci) : i < ω} is k-inconsistent, then we
have

D1(π
′, ϕ, k, q) < D1(π, ϕ, k, q).
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(2) If T is simple, a |⌣BD
C, then for any q(y) ∈ S(B), any finite set of L(B)-

formulas ∆(x, y), and any k < ω, we have

D1(p
′,∆, k, q) = D1(p,∆, k, q),

where p′ = tp(a/BDC) and p = tp(a/BD).

Proof. Suppose we are given π ⊆ π′, ϕ, k, I, and q as in the statement. We
claim that D1(π∪{ϕ(x; c0)}, ϕ, k, q) < D1(π, ϕ, k, q). If not, then, again by Lemma
4.2(1), we have

n := D1(π ∪ {ϕ(x; c0)}, ϕ, k, q) = D1(π, ϕ, k, q),

and therefore, by B-indiscernibility, D1(π ∪ {ϕ(x; ci)}, ϕ, k, q) = n for all i. This
implies, by definition of the rank, that D1(π, ϕ, k, q) ≥ n + 1, a contradiction.
Therefore, since ϕ(x; c0) ∈ π′, we have

D1(π
′, ϕ, k, q) ≤ D1(π ∪ {ϕ(x; c0)}, ϕ, k, q) < D1(π, ϕ, k, q),

which proves (1).
Now we prove (2). As we are working in a simple theory, Kim-dividing and

forking coincide by Kim’s lemma [10]. Fix an arbitrary q ∈ S(B), finite set of
L(B)-formulas ∆(x, y) and k < ω. By Lemma 4.2(2), we have

D1(p
′,∆, k, q) ≤ D1(p,∆, k, q).

Hence, it suffices to show, by induction on n < ω,

D1(p,∆, k, q) ≥ n =⇒ D1(p
′,∆, k, q) ≥ n.

For n = 0, this is clear, so assume it holds for n and suppose D1(p,∆, k, q) ≥ n+1.
Then there is a Morley sequence I = 〈ci : i < ω〉 over B in q which is BD-
indiscernible such that, for some ϕ(x, y) ∈ ∆, {ϕ(x; ci) : i < ω} is k-inconsistent
and D1(p∪ {ϕ(x; ci)},∆, k, q) ≥ n for all i < ω. Let p∗ = p∗(x; c0) be a completion
of p ∪ {ϕ(x; c0)} over BDc0 with

D1(p∗,∆, k, q) = D1(p ∪ {ϕ(x; c0)},∆, k, q) ≥ n,

which is possible by Lemma 4.7(2). Without loss of generality, a |= p∗.
By extension and an automorphism over aBD, we may assume C |⌣BD

ac0, and

hence there is I ′ = 〈c′i : i < ω〉 ≡BDc0 I such that I ′ is BCD-indiscernible. Note
that I ′ is still Morley in q. Moreover, by base monotonicity and symmetry, this
gives a |⌣BDc′

0

C. Let p′∗ = tp(a/BCDc′0) ⊇ p′. By the inductive hypothesis, the

fact that D1(p∗,∆, k, q) ≥ n gives

D1(p
′
∗,∆, k, q) ≥ n.

By Lemma 4.2(1) and (2), we obtain

D1(p
′ ∪ {ϕ(x; c′i)},∆, k, q) ≥ n

for all i < ω, which allows us to conclude D1(p
′,∆, k, q) ≥ n + 1, completing the

proof. �

Remark 4.9. By witnessing (Theorem 2.8), we know that if π is a partial type over
B and π′ Kim-divides over B, then this will be witnessed by some formula ϕ(x; c0)

implied by π′ and an |⌣
K
-Morley sequence over B. Therefore, Theorem 4.8(1)

implies that, if for all ϕ(x; y) ∈ L(B), q(y) ∈ S(B), and k < ω,

D1(π
′, ϕ, k, q) = D1(π, ϕ, k, q),
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then π′ does not Kim-divide over B.

Question 4.10. Does Theorem 4.8(2) hold for |⌣
K

in all NSOP1 theories satis-
fying existence? Evidently, the proof above makes use of base monotonicity, which
is known to fail in all non-simple NSOP1 theories.

5. The Kim-Pillay theorem over arbitrary sets

The Kim-Pillay-style criterion for NSOP1 of [4] proceeds, essentially, by first
showing that any relation that satisfies axioms (1)—(5) over models in the axioms
below must be weaker than coheir independence, in the sense that if M |= T and
tp(a/Mb) is finitely satisfiable in M then a |⌣M

b. Consequently, this proof does
not adapt to arbitrary sets. Instead, we relate any relation satisfying the axioms to
Kim-independence directly, using a tree-induction, to prove the following theorem.

Theorem 5.1. Assume T satisfies existence. The theory T is NSOP1 if and only
if there is an Aut(M)-invariant ternary relation |⌣ on small subsets of the monster
M |= T which satisfies the following properties, for an arbitrary set of parameters
A and arbitrary tuples from M.

(1) Strong finite character: if a 6 |⌣A
b, then there is a formula ϕ(x, b,m) ∈

tp(a/bA) such that for any a′ |= ϕ(x, b,m), a′ 6 |⌣A
b.

(2) Existence and Extension: a |⌣A
A always holds and, if a |⌣A

b, then, for

any c, there is a′ ≡Ab a such that a′ |⌣A
bc.

(3) Monotonicity: aa′ |⌣A
bb′ =⇒ a |⌣A

b.

(4) Symmetry: a |⌣A
b ⇐⇒ b |⌣A

a.

(5) The independence theorem: a |⌣A
b, a′ |⌣A

c, b |⌣A
c and a ≡L

A a′ implies

there is a′′ with a′′ ≡Ab a, a
′′ ≡Ac a

′ and a′′ |⌣A
bc.

Moreover, any such relation |⌣ satisfying (1)-(5) strengthens |⌣
K
, i.e. a |⌣A

b

implies a |⌣
K

A
b. If, additionally, |⌣ satisfies the following,

(6) Transitivity: if a |⌣A
b and a |⌣Ab

c then a |⌣A
bc.

(7) Local character: if κ ≥ |T |+ is a regular cardinal, 〈Ai : i < κ〉 is an
increasing continuous sequence of sets of size < κ, Aκ =

⋃

i<κAi and
|Aκ| = κ, then for any finite d, there is some α < κ such that d |⌣Aα

Aκ.

then |⌣ = |⌣
K
.

Proof. We know that if T is NSOP1 with existence then |⌣
K satisfies (1)-(5) by

Fact 1.7, so we will show the other direction.
First, assume |⌣ satisfies axioms (1)-(5), and we will show that |⌣ strengthens

|⌣
K
. By [4, Theorem 6.1], the existence of such a relation over models entails

that the theory is NSOP1. Towards contradiction, suppose there is some set of

parametersA and tuples a, b such that a |⌣A
b but a 6 |⌣

K

A
b, witnessed by the formula

ϕ(x; b) ∈ tp(a/Ab). By induction on the ordinals α, we will construct trees (bαη )η∈Tα

satisfying the following conditions for all α:

(a) For all η ∈ Tα, bαη |= tp(b/A).
(b) (bαη )η∈Tα

is s-indiscernible and weakly spread out over A.
(c) For α successor, bα∅ |⌣A

bα
⊲∅.

(d) If β < α, then bαιβα(η)
= bβη for all η ∈ Tβ .
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To begin, we may take b0∅ = b and at limits we take unions. Given (bαη )η∈Tα
, let

I = 〈(bαi,η)η∈Tα
: i < ω〉 be a mutually s-indiscernible Morley sequence over A with

(bα0,η)η∈Tα
= (bαη )η∈Tα

, which exists by Lemma 1.15. We may apply extension to
find b∗ ≡A b such that b∗ |⌣A

I. Define a tree (cη)η∈Tα+1
by setting c∅ = b∗ and

c〈i〉⌢η = bαi,η for all i < ω and η ∈ Tα. Finally, we may define (bα+1
η )η∈Tα+1

to
be an s-indiscernible tree over A locally based on (cη)η∈Tα+1

. After moving by an

automorphism, we can assume bα+1
ιαα+1(η)

= bαη for all η ∈ Tα. This completes the

construction. By strong finite character and invariance, our construction ensures
(b) and (c) will be satisfied for (bα+1

η )η∈Tα+1
.

Applying Erdős-Rado, we obtain a weak Morley tree (bη)η∈Tω
over A such that

bζα |⌣A
b⊲ζα for all α < ω. In particular, (bζα)α<ω is an |⌣-Morley sequence over

A. Define να = ζα+1 ⌢ 〈1〉 for all α < ω. Because the tree is weakly spread out

over A, we have for all α < ω, bDζα+1⌢〈1〉 |⌣
K

A
bDζα+1⌢0 and hence bνα |⌣

K

A
bν<α

since (bνβ )β<α was enumerated in bDζα+1⌢0. Since the tree is a weak Morley tree,
we have that both (bζα)α<ω and (bνα)α<ω are A-indiscernible.

As b ≡A bζ0 , there is a0 such that a0bζ0 ≡A ab. As (bζα)α<ω is A-indiscernible,
for each α > 0, there is σα ∈ Autf(M/A) such that σα(bζ0) = bζα . Setting aα =
σα(a0), we have aαbζα ≡L

A a0bζ0 . By the independence theorem for |⌣, we may
find some a∗ such that a∗bζα ≡A ab for all α < ω. In particular, this implies
{ϕ(x; bζα) : α < ω} is consistent. However, since ϕ(x; b) Kim-divides over A,
{ϕ(x; bνα) : α < ω} is k-inconsistent for some k. The s-indiscernibility of the tree
implies that bζα ≡Abζ>α

bν>α
bνα for all α, so by compactness, we have shown ϕ has

SOP1. This contradiction shows that |⌣ strengthens |⌣
K
.

Secondly, assume additionally that |⌣ satisfies (6) and (7). The proof of Theorem
2.8 shows that (6) and (7) imply witnessing: if I = (bi)i<ω is an A-indiscernible se-
quence with b0 = b satisfying bi |⌣A

b<i, then whenever a 6 |⌣A
b, there is ϕ(x; c, b) ∈

tp(a/Ab) such that {ϕ(x; c, bi) : i < ω} is inconsistent.

Suppose that a |⌣
K

A
b and, by extension and Erdős-Rado, find an |⌣-Morley

sequence I = 〈bi : i < ω〉 over A with b0 = b. By the remarks above, we know that

I is, in particular, an |⌣
K
-Morley sequence over A, so there is a′ ≡Ab a such that

I is Aa-indiscernible (using a |⌣
K

A
b). By witnessing, this entails a |⌣A

b. In other

words, |⌣ and |⌣
K

coincide. �

Remark 5.2. It is clear from the proof of Theorem 5.1 that, in order to get the
same conclusion, we can replace (6) and (7) with witnessing: if I = (bi)i<ω is an
A-indiscernible sequence with b0 = b satisfying bi |⌣A

b<i, then whenever a 6 |⌣A
b,

there is ϕ(x; c, b) ∈ tp(a/Ab) such that {ϕ(x; c, bi) : i < ω} is inconsistent.
To do so gives a result that more closely resembles [8, Theorem 6.11], while the

formulation of Theorem 5.1 above is closer to the original Kim-Pillay theorem for
simple theories [15, Theorem 4.2] (see also [12, Theorem 3.3.1]).
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