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KEISLER MEASURES IN THE WILD

GABRIEL CONANT, KYLE GANNON, AND JAMES HANSON

ABSTRACT. We investigate Keisler measures in arbitrary theories. Our initial
focus is on Borel definability. We show that when working over countable
parameter sets in countable theories, Borel definable measures are closed un-
der Morley products and satisfy associativity. However, we also demonstrate
failures of both properties over uncountable parameter sets. In particular, we
show that the Morley product of Borel definable types need not be Borel de-
finable (correcting an erroneous result from the literature). We then study
various notions of generic stability for Keisler measures and generalize several
results from the NIP setting to arbitrary theories. We also prove some positive
results for the class of frequency interpretation measures in arbitrary theories,
namely, that such measures are closed under convex combinations and com-
mute with all Borel definable measures. Finally, we construct the first example
of a complete type which is definable and finitely satisfiable in a small model,
but not finitely approximated over any small model.
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INTRODUCTION

Finitely additive probability measures on definable sets were originally intro-
duced by Keisler as a tool to study forking in NIP theories [23]. Since then, Keisler
measures have found extensive connections to various contexts in both pure and
applied model theory. They played a pivotal role in resolving the Pillay conjec-
tures on definably compact groups definable in o-minimal theories [21] and, more
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generally, are a crucial tool in the study of definably amenable groups definable
in NIP theories [8, 26]. Keisler measures are a vital component in the interplay
between model theory and combinatorics (especially in connection to the regularity
theorems) [9, 14]. Additionally, Keisler measures also arise naturally in continuous
logic as types over models of the randomization [3].

Despite this plethora of research, there is an obvious gap in the existing results: A
clear structural understanding of Keisler measures only exists in NIP theories, and,
with a few specialized exceptions, the deepest results concerning Keisler measures
exist in that context. This paper lays the foundational groundwork for the study
of Keisler measures outside the boundary of NIP. Our results demonstrate that
the general theory of Keisler measures is fundamentally more complicated than
previously thought. Broadly speaking, whereas Keisler measures in NIP theories
can be sufficiently approximated by types, and so are tame, measures in arbitrary
theories are far more sensitive to analytic and descriptive set theoretic issues, and it
is no longer possible to directly generalize proofs from types to measures. Indeed, we
will develop several examples demonstrating novel and exotic behavior of arbitrary
Keisler measures outside of NIP. However, we also prove positive results concerning
the theory of ‘generically stable’ Keisler measures, which further demonstrate that
structural understanding is possible.

In arbitrary theories, invariant types can be ‘freely’ amalgamated using the Mor-
ley product operation, sometimes also called the nonforking product. In NIP theo-
ries, this operation extends automatically to invariant Keisler measures, thanks to
the result of Hrushovski and Pillay [20] that any such measure in an NIP theory
is Borel definable. While this need not hold outside of NIP, one can still define
the Morley product of measures that are Borel definable. Thus the first main goal
of this paper is to establish basic properties of Borel definable Keisler measures in
arbitrary theories. We consider the two questions of whether Borel definability is
preserved by Morley products, and whether the Morley product is associative for
Borel definable measures. Despite the fundamental nature of these questions, the
previous literature has been somewhat vague regarding the answers. A positive
answer to the first question is stated without proof in [21, Lemma 1.6]. Moreover,
while associativity of the Morley product seems to be tacitly assumed in various
places, it is only directly addressed in [28] under the assumption of NIP (and, even
in this case, a complete proof of associativity was given only recently; see Remark
2.14). The goal of Sections 2 and 3 is to clarify this situation. In Section 2, we
show that if 7" is any countable theory, and A C U is countable, then the set of
measures that are Borel definable over A is closed under Morley products, and
associativity holds for such measures. On the other hand, we will see in Section 3
that both properties can fail without the extra countability assumptions (even in
simple theories). In particular, this refutes the unproven claim in [21].

The rest of the paper is devoted to developing various notions of ‘generic stability’
for Keisler measures in arbitrary theories. We focus on three classes: measures that
are definable and finitely satisfiable in a small model (or dfs), measures that are
finitely approximated in a small model (or fam), and measures that are frequency
interpretation measures with respect to a small model (or fim). Section 4 provides
definitions and a review of basic facts about fim, fam, and dfs measures.

In NIP theories, the three classes of measures described above coincide, and a
Keisler measure with these properties is called ‘generically stable’. Outside of NIP
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theories, these properties are no longer equivalent, and thus one obtains three com-
peting notions of generic stability for measures. An assessment of this competition
was undertaken in [12], mostly focusing on types. The present article continues this
work with a greater emphasis on measures. A recurring question is the extent to
which fundamental results on generically stable Keisler measures in NIP theories
can be generalized to arbitrary theories, and we will prove several results to this ef-
fect. These results help to clarify when NIP is playing a crucial role in a given result
about measures, versus when a similar result can be obtained in general, perhaps
after some appropriate modification of the working assumptions. In particular, a
fundamental fact about NIP theories is that any Keisler measure can be locally
approximated by types. This result is often used to replace measures by types in
various arguments, and thus avoid the necessity of pure measure theory and in-
tegration techniques. On the other hand, our work will show that generalizations
of certain results on NIP theories can indeed be obtained using more measure-
theoretic proofs which, although possibly more complicated methodologically, are
also shorter and in some cases more concise.

In Section 5, we focus on the question of commutativity for the Morley product
of Borel definable Keisler measures. This is motivated by the result of Hrushovski,
Pillay, and Simon [21] that, in NIP theories, definable measures commute with
finitely satisfiable measures and, moreover, dfs measures commute with arbitrary
invariant measures. The goal of Section 5 is to obtain suitable generalizations
of these results for arbitrary theories. We first show that in any theory, if p is
a definable measure, and v is Borel definable and finitely satisfiable, then p and
v commute provided that for any small model M, p|as has some definable global
extension that commutes with v (see Theorem 5.7). This recovers the corresponding
fact from [21] since, in NIP theories, any measure over a small model has a smooth
global extension, and it is easy to show that smooth measures (in any theory)
are definable and commute with all Borel definable measures. We also show later
in the paper that, in Theorem 5.7, the extra assumption on restrictions of y to
small models (which is automatic in NIP theories) is necessary. In particular, we
construct a theory with a dfs type and a definable measure that do not commute (see
Proposition 7.14). Finally in Section 5, we show that in any theory, fim measures
commute with Borel definable measures (see Theorem 5.16). In other words, the
corresponding result for NIP theories from [21] generalizes to arbitrary theories,
provided one replaces dfs with fim.

In Section 6, we focus on further properties of fimm measures. Evidence suggests
that fim is the ‘right’ notion of generic stability for measures in arbitrary theories.
In particular, the notion of a generically stable type is well established in the liter-
ature, and the first two authors showed in [12] that this notion coincides with fim
when viewing types as {0, 1}-valued measures. In Theorem 6.2, we show that fim
measures are closed under convex combinations. The analogous result for dfs and
fam measures is quite easy to prove (see Proposition 4.11) and so, in light of [21],
Theorem 6.2 again generalizes known facts from the study of NIP theories. How-
ever, we will see that working directly with fim measures in general theories leads
to significantly more complicated proofs. We finish Section 6 with a discussion of
the still open question of whether fim measures are preserved by Morley products
(an earlier draft of this article contained an erroneous proof of a positive answer).
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In Section 7, we answer one of the main questions left open in [12], which is on
the existence of a complete global measure that is dfs and not fam (an example
involving a local type was given in [12]). We will first give a new local example
of this phenomenon, which is built using subsets of the interval [0, 1] of Lebesgue
measure % Then we develop this example into a more complicated theory with a
complete dfs type that is not fam.

Section 8 focuses on examples of measures that are fam and not fim. We first
show that a purported example from [1] of this phenomenon does not work. Then
we revisit a different example from [12] in the theory of the generic K-free graph
(for fixed s > 3). We develop further properties of this example, and correct an
erroneous proof from [12]. Finally, we give a new example of a complete type that
is fam and not fim, which is obtained by taking a certain reduct of the dfs and

non-fam type from Section 7.

Corrigendum. For the sake of clarifying the literature, we summarize the incor-
rect results and proofs from previous work that are addressed in this article.

(1) We recall that the product of two Borel definable Keisler measures is Borel
definable in the NIP setting. In [21, Lemma 1.6], it is claimed, but not proved,
that the Morley product of two Borel definable Keisler measures is Borel defin-
able. We show here that this is not always true, even for Borel definable types
(see Proposition 3.9).

(2) Example 1.7 of [1] describes a complete theory that is claimed to admit a global
generically stable type p such that p ® p is not generically stable. This claim is
repeated in [12, Fact 5.4]. It turns out that p is not well-defined, and we show
here that this particular theory has no global non-algebraic generically stable
types (see Theorem 8.5). The question of whether Morley products preserve
generic stability remains open. See the end of Section 6 for further discussion.

(3) Remark 4.2 of [12] makes an unjustified claim that dfs, fam, and fim measures
are closed under localization at arbitrary Borel sets, which seems likely to be
false. In Section 8, we supply correct proofs of the results in [12] that used this
remark (see Proposition 8.2, Remark 8.3, and Theorem 8.10).

1. BASIC DEFINITIONS AND NOTATION

We start with some general notation that will be used throughout the paper. Let
X be a set. Given a point a € X, we let §, denote the Dirac measure on X concen-
trating at a. For @ € X", we let Av(a) denote the ‘average’ measure = 37" | §,,.
Given a (bounded) real-valued function f on X, define || f||oc == sup,cx |f(x)|.

Given r, s € R and ¢ > 0, we write r =, s to denote |[r — s| < . Given an integer
n>1,let [n] ={1,...,n}.

Now let T' be a complete L-theory with monster model &. We work with formulas
in the language £ with parameters from U. A formula ¢(x) is over A C U if all
parameters in ¢(z) come from A. In this case we say ¢(x) is an L£4-formula. An
L-formula is a formula without parameters. We will use x,vy, z, etc., to denote
tuples of variables, although at times we may also employ vector notation Z, ¥, z,
etc., for clarity. As usual, we often partition the free variables in a formula p(z,y)
into object variables # and parameter variables y.

Given A C U, let Def,(A) denote the Boolean algebra of L -formulas with
free variables x, up to equivalence modulo 7' expanded by constants for A. The
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corresponding Stone space of types is denoted S, (A). Given an L 4-formula o(z),
we let [p(x)] denote the clopen set of types in S;(A) containing ¢(z).

We let 9, (A) denote the space of Keisler measures (i.e., finitely additive prob-
ability measures) on Def,(A). Recall that any p € 9M;(A) determines a unique
regular Borel probability measure @ on S, (A) such that if ¢(z) is an £4-formula
then p(p(z)) = ([e(x)]) (and, furthermore, any regular Borel probability measure
on S;(A) is of this form). See [28, Section 7.1] for an explicit construction of f.
By identifying p and , we can view u as a regular Borel probability measure on
Sz (A). For further details on Borel measures and regularity, see Section A.1 of the
appendix. We will use the following special case of Fact A.4.

Fact 1.1. Fiz ACU and p € M, (A).
(a) If U C S,(A) is open then

w(U) = sup{u(p(x)) : p(z) is an La-formula and [p(x)] C U}.

(b) If v is a regular Borel probability measure on S;(A), and v(p(x)) = ulp(z))
for any La-formula ¢(x), then u = v.

Given A C B C U and a tuple z of variables, let p% 4: Sz(B) — Sz(A) denote
the restriction map. Note that pf; 4 is a continuous surjective map between compact
Hausdorff spaces, and thus is a quotient map. Let p% denote pj; 4. Given u €
M, (U) and A CU, we let u|a denote the restriction of p to Def, (A).

Remark 1.2. If 4 € M, (U) and A C U then, as a regular Borel measure on S;(A),
|4 is the pushforward of p to S;(A) along p%. In other words, if X C S,(A) is
Borel then pfa(X) = u((p%)(X)). Indeed, by definition of u|4, this holds when
X = [p(z)] for some L 4-formula ¢(x). Thus it holds for all Borel X by Fact 1.1(b),
and since pushforwards preserve regularity in this context (see Fact A.3).

We write A C U to denote that A is a subset of & which is small, i.e., U is | A|*-
saturated and strongly |A|*-homogeneous. A measure p € MM, (U) is invariant if
there is some A C U such that for any L-formula ¢(z,y), if b,b’ € UY have the
same type over A, then u(p(x,b)) = p(e(x,b’)). In this case, we also say that p is
invariant over A or A-invariant.

Suppose pu € M, (U) is invariant over A C U. Given an L-formula ¢(z,y),
define FY ,: S,(A) — [0,1] such that F ,(q) = pu(p(z,d)) for some/any b |= q.
Note that if B O A then p is invariant over B and, if ¢(z,y) is an £ a-formula,
then FZB = F:),AOP%,A'

A Keisler measure p € 9, () is Borel definable if there is some A C U such
that p is A-invariant and F ;f 4 1s a Borel map for any L-formula ¢(z,y). In this
case, we also say that u is Borel definable over A. Note that if p is Borel
definable over A, then F 4 is Borel for any £a-formula ¢(z,y) and, moreover, y
is Borel definable over any B D A (see also [15, Proposition 2.22]).

Finally, we define the Morley product of Keisler measures. Given a Borel defin-
able measure p € M, (U) and a measure v € M, (U), we define a measure p @ v in
My, (U) such that, given an Ly-formula ¢(z,y),

)

ey = [  Fradvla
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where A C U is any small set such that ¢(z,y) is over A and p is Borel definable
over A. One can show that this does not depend on the choice of A. The measure
1@ v is called the Morley product of p and v.

Remark 1.3. To help ease notation, we will write integrals |, S, (A) f dv|a simply
Y
as fs (A) fdv. In other words, the fact that we integrate with respect to v|4 is
Y

implied by the domain of integration S, (A). When f is (or involves) a function of
the form FY ,, we write fsy(A) F¢ dv instead of fsy(A) Yy dv.

Recall that S, (U) can be identified with a closed subset of 9, (U) by viewing
types as {0, 1}-valued measures. If ¢ € S, (i) is a type, then we have a well-defined
Morley product p ® ¢ for any invariant p € M, (U) since any function is integrable
with respect to ¢ as a Dirac measure. More explicitly, (¢ ® q)(¢(x,y)) = p(e(z, b)),
where 1 is A-invariant, ¢(x,y) is over A, and b = g|a. If u is a type p € S, (U),
then p ® ¢ is a type in Sy (U), and (z,y) € p® ¢ if and only if p(x,b) € p (where
b is as before). We recall the following easy exercise.

Fact 1.4. Suppose pn € M, (U) and v € M, (U) are invariant. If p is Borel defin-
able, or if v is a type, then p @ v is invariant.

2. BOREL DEFINABILITY OVER COUNTABLE SETS

As explained in the introduction, one main goal of this paper is to settle the
question of whether the Morley product of Keisler measures preserves Borel de-
finability, and also to address associativity. In this section, we show that both
properties hold when working over countable parameter sets in countable theories.
We will approach this result from a general perspective that will lead to further
facts about Borel definable measures, and also explain precisely how the situation
turns complicated (and counterintuitive) over uncountable sets. This perspective
will also lead to some useful conclusions for definable measures (see Section 2.4).

2.1. Fiber functions over Borel sets. Recall that if y € 9, (U) is Borel defin-
able over A C U, then it is Borel definable over any B O A. We now observe that
Borel definability can also be dropped to smaller parameter sets, provided one still
has invariance. The proof uses a result from [18], which can be viewed as a Borel
variation on the universal property of quotient maps.

Theorem 2.1 (Holicky & Spurny [18]). Suppose p: X — Y is a surjective con-
tinuous map between compact Hausdorff spaces. Then for any E CY, if p*(E) is
Borel then E is Borel. Therefore, if f: Y — Z is a map to a topological space Z,
and f o p is Borel, then f is Borel.

Proof. The first claim is a special case of [18, Theorem 10]. The second claim
follows from the first. Indeed, if U C Z is open and f o p is Borel, then p(f*(U))
is a Borel set, and thus so is f(U). O

Corollary 2.2. Suppose p € M, (U) is Borel definable, and invariant over A C U.
Then 1 is Borel definable over A.

Proof. This follows from Theorem 2.1 since if p is Borel definable over B O A then,
for any L-formula p(z,y), 5 = Ff 40 pp 4. O



KEISLER MEASURES IN THE WILD 7

Remark 2.3. Despite the simplicity of the proof, Corollary 2.2 does not appear
in previous literature, possibly due to the use of [18]. On the other hand, the
analogue of this corollary for definable measures (which are discussed in Section
2.4) is well known and follows from a similar proof. Indeed, if p is definable over
B and invariant over A C B, then F lf p is continuous and thus F;i 4 1s continuous
by the universal property of quotient maps. It follows that p is definable over A.

Our next goal is to redefine F:),A with an arbitrary Borel set W (x,y) C Szy(A) in
place of ¢(x,y). The underlying idea is quite natural. We will ‘plug in’ a parameter
b for the y variables, and apply the measure . This perspective of treating Borel
sets like formulas crops up in the literature, though often informally. We will
see that while some techniques pass from formulas to Borel sets without any issues,
there are certain places where things can go wrong. These subtleties will eventually
lead to examples where Borel definable measures fail to be closed under Morley
products, and where associativity of the Morley product fails. For this reason, we
will proceed carefully with the next few definitions and basic observations, so as to
ensure a solid foundation for the passage from formulas to Borel sets.

Definition 2.4. Given A C U, we say that a set W C S, (i) is p%-invariant if
membership in W depends only on p%, i.e., W = (p%)(p% (W)).

Remark 2.5. If W C S, (U) is Borel and p%-invariant for some A C U, then
p% (W) is a Borel set in S;(A) by Theorem 2.1.

Definition 2.6. Suppose A C U and W C S, (A). Given b € UY, we define
W(x,b) ={p € S.(U) : tp(a,b/A) € W for some/any a |= p|asp}.
Note that W (x,b) is p%,-invariant.

Lemma 2.7. Suppose A CU and W C S, (A) is Borel.

(a) If b € UY then W(x,b) is a Borel subset of Sy(U).
(b) If u € M, (U) is A-invariant, and b,b" € UY with b =4 V', then u(W(z,b)) =
(W (2,0')).

Proof. Both parts can be proved directly by induction on the 3-complexity of W,
using only elementary steps. We will sketch alternative ‘high-level” arguments. For
part (a), fix b € UY and let X = {q € Syy(A) : q(z,b) is consistent}, which is closed
in Sy, (A). Set 7: X — S, (Ab) such that 7(¢) = ¢(z,b). Then 7 is surjective and
continuous, and 71 (7(W N X)) = W N X. So 7(W N X) is Borel by Theorem 2.1.
Thus W (z,b) = (p%,) " (7(W N X)) is Borel.

For part (b), suppose we have b, b’ € UY and o € Aut(U/A) such that o(b) =b'.
Then o induces a homeomorphism of S, (i), which yields a regular Borel measure
v = po on S, (U). Since p is A-invariant, it agrees with v on clopen sets, and thus
u=v by Fact 1.1(b). So u(W(z,b")) = v(W(x,b)) = u(W(z,b)). O

Definition 2.8. Suppose p € M, () is invariant over A C U, and W C S, (A) is
Borel. Define F;K/A: Sy(A) — [0, 1] such that FJYA(q) = p(W(x,b)) where b = q.

Note that FE/A is well-defined by Lemma 2.7. We also note that if W is the
clopen set determined by some L 4-formula ¢(z,y), then F:V 4 coincides with F;i A
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2.2. Products and associativity. In this subsection, we formulate some ad hoc
conditions on Borel definable measures that allow one to prove preservation under
Morley products and associativity. In the next subsection, we will see that these
conditions hold over countable sets. We start with some motivation.

Consider a measure p € M, () that is Borel definable over some A C Y. Then
maps of the form FE)VA are Borel for any clopen set W C Sgy(A). But we will
eventually see that this is not enough to ensure FZV 4 is Borel for general Borel sets
W. To obtain this, one needs to further assume that Fg 4 is Borel for any open U C
Szy(A) (see Lemma 2.10). We will show that this assumption suffices to address
preservation of Borel definability in Morley products. The issue of associativity,
however, requires consideration of further subtleties. In particular, with u as above,
suppose we have some fixed open set U C S;,(A) such that F;SJ,A is Borel. Then
given some v € M, (U), we have a well-defined integral fsy(A) F[L] dv. On other
hand, Fact 1.1(a) gives an explicit expression for (1 ® v)|4(U) which, as we will
see in later examples, need not be the same as the previous integral (note that if
U is clopen then we do have such an equality by definition of the Morley product).
Altogether, this discussion motivates the following definition.

Definition 2.9. Suppose p € 9, (U) is invariant over A C U. We say pu is BDT
over A if, for any y and any open U C S;,(A), the map F[LJ)A is Borel. Moreover,
we say p is BDTT over A if it is BDT over A and, for any y, any open U C S, (A),
and any v € M, (U), we have (u @ v)|a(U) = fsy(A) FYdv.

Next we show that the defining properties of BDT and BDTT extend automati-
cally from open sets to arbitrary Borel sets. For BD™T, this boils down to the fact
that pointwise limits of Borel functions are Borel. For BDTT we will apply the
Dominated Convergence Theorem [10, Theorem 2.4.5].

Lemma 2.10. Suppose p € M, (U) is BDT over A C U, and W C S, (A) is Borel.
Then F;Y-VA is Borel. Moreover, if u is BD over A then, for any v € M, (U), we

have (1@ v)|a(W) = fsy(A) EVdy.

Proof. We proceed by induction on the 3-complexity of W. The base case when
W is open holds by assumption. So fix 1 < o < w; and assume the result for E%
subsets of S,,(A) for all 8 < a. Suppose W is a B set. Then, for i < w, we
have W, € Egi for some «a; < o, such that W = J,_,, =W;. Since each Hg class is
closed under finite unions (see [25, Theorem 2.1]), we may assume without loss of
generality that =W; C =W, for all i < w. Given g € Sy(A) and b = ¢, we have

Flalg) = p(W(x,b)) = lim p((=W;)(x, b))
= lim (1 — (Wi, b)) = lim (1 = F,"3(q)).

1—00 1—00

By induction, F' ;’V 4 is a pointwise limit of Borel functions, and thus is Borel. More-
over, if pu is BD™" over A, then, by induction and the Dominated Convergence
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Theorem, we have

(LRV)a(W) = lim (p@v)|a(-W;) =1— lim F:V’ dv
11— 00 71— 00 Sy(A)
:/ _hm(l—FlfVi)dy:/ FYdv. O
S, (A) 170 Sy(A)

We can now prove the main result concerning BD™ and BD.

Theorem 2.11. Suppose u € M, (U) is Borel definable over A C U.

(a) If v e M, (U) is BD' over A, then u® v is Borel definable over A.

(b) If v e M, (U) is BDTT over A, then (n@v) @ N)|a = (u® (v @ N))|a for any
A e M. (U).

Proof. Before proving the two statements, we will develop some preliminaries. Fix
an L4-formula ¢(z,y,2). Then FY ,: S,.(A) — [0,1] is Borel, and so there is
a sequence (f,)5%, of simple Borel functions on S,.(A) converging pointwise to
F:ﬁ 4- (See Fact A.1; in fact, this convergence can be made uniform, but we will
work with pointwise convergence in preparation for Remark 2.19.) For n > 0, write
fn =20 o i, , where Wy, ; € S, (A) is Borel and a,; € [0, 1].

Given ¢ € U, we set the following notation. Let W ; := p% (W i(y,c)), which
is a Borel subset of S, (Ac) by Remark 2.5. Define the map f; = > anilwe
on S, (Ac). Finally, let ¢.(z,y) denote ¢(z,y,c). Y

Claim 1: Fix ¢ € U*. Then (f5)72, converges pointwise to F)7, ..
Proof: Fix g € Sy(Ac), and let s = tp(b,c/A) where b |= ¢q. Then for any i < m,,,
we have s € W, ; if and only if ¢ € Wy ;. Tt follows that f,.(s) = f5(q) for any
n > 0. Therefore

Frac(@) = ple(z,b,0)) = F74(s) = lim fo(s) = lim fi(q). Aelaim

n—00
Now fix some A-invariant measure v € M, (U). Given n > 0, define the function
n Wn,i
hy, = 221 ani F, ;" on S.(A).

Claim 2: (hy)pe, converges pointwise to F7. .

Proof: Fix r € S,(A), and let ¢ = r. Then v|a.(Wy ;) = Fm‘(r) for any n > 0
and ¢ < m,,. So for any n > 0, we have

() = Y a5 ) = Y enarlacWe) = [ frw
i=1 i=1 Sy(Ae)
Therefore, by Claim 1 and the Dominated Convergence Theorem, we have

F? r) = F?edy = lim Cdy = lim h,(7). elaim
H®V,A( ) /Sy(Ac) w N0 5, (Ac) fn n=so00 ( ) cl
We can now prove the theorem. For part (a), suppose v € 9, (U) is BDT over
A. Then each function h,, above is Borel by Lemma 2.10. So Ff@u,A is a pointwise
limit of Borel functions by Claim 2, and thus is Borel. Since ¢(z,y, z) is an arbitrary
L a-formula, we have that p ® v is Borel definable over A.
Finally, for part (b), suppose v € M, () is BDT over A. Fix some A € M. (U).

Then for any n > 0 and i < m,, we have (v ® \)|a(W,,;) = sz(A) F)™ dX by
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Lemma 2.10. Therefore

(1® (v ® N)(p(z, 9. 2)) = /S B e = lim fud(v ® \)

n—o0o Sy- (A)
= lim > ani(v@N)(Wai) = lim » an; / FVos d\
e ; noreo ; " Js.(a)

—Jim [ mdd= [ B, dd = (18 0) © N(ele,2)
5.(A) 5.(A)

n—oo

Note that the second and sixth equalities again use dominated convergence. Since
©(x,y, z) is an arbitrary £ 4-formula, we have (p®@v)@A)|ja = (LR (@ A))|a. O

2.3. Countable sets. Next we show that in a countable theory, Borel definability
coincides with BDTT over countable parameter sets. This is another straightfor-
ward application of dominated convergence (similar to Lemma 2.10).

Lemma 2.12. Assume T is countable, and suppose p € M, (U) is Borel definable
over a countable set A CU. Then p is BDTT over A.

Proof. Fix anopenset U C S, (A). Since T and A are countable, we can write U =
Un<ol@n(z,y)], where each ¢, (z,y) is an La-formula and @, (U™Y) C @, 1 (U™)
for all n < w. Given g € Sy(A) and b |= ¢, we have

Fy a(q) = p(U(2,b)) = lim p(pn(z,b)) = lim F7 (q).

n—oo

So F [LJ 4 is the pointwise limit of a countable sequence of Borel functions, and hence
is Borel. Now fix another measure v € 9, (U). Then

pRv)(U) = lim (u®v)(o,(x,y)) = lim F?r dy
(o )U) = Jim (6 & V) pn(e) = Jim [

= / lim Ffm dy = / FY dv,
Sy (A) MR Sy(A)

where the third equality uses the Dominated Convergence Theorem. O

Theorem 2.13. Assume T is countable, and suppose u € M, (U) and v € M, (U)
are Borel definable over a countable set A CU. Then pu® v is Borel definable over
A and, for any A € M, (U), we have (L@ V) @A =p® (¥ N).

Proof. By Theorem 2.11(a) and Lemma 2.12, u ® v is Borel definable over A.
Note that g and v are Borel definable over any B 2 A. So v is BDTT over
any countable B O A by Lemma 2.12. Therefore, for any A € 9, (U), we have
(p@v)@N)|s = (ke (r®\))|p for any countable B O A by Theorem 2.11(b). It
follows that (L@ V) @A =p® (V@ ). O

It is well-known that the Dominated Convergence Theorem does not hold for
nets, and so the proof of Lemma 2.12 cannot be generalized to Borel definable
measures over uncountable models. Indeed, in Section 3 we will give an example
showing that Theorem 2.13 can fail without the countability assumptions.

Remark 2.14. Theorem 2.13 holds for NIP theories without the countability as-
sumptions. In particular, Hrushovski and Pillay [20] proved that if T is NIP then
any invariant Keisler measure is Borel definable (see also [28, Proposition 7.19]).
Combined with Fact 1.4, it follows that Borel definability is preserved by Morley
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products in NIP theories. As for associativity of the Morley product in NIP the-
ories, a proof sketch is given after Exercise 7.20 in [28]. However, as pointed out
recently by Krupinski, the argument tacitly uses assumptions along the lines of
BD** without justification. This motivated the first two authors [13] to write a
different proof of associativity in NIP theories, which uses the existence of ‘smooth
extensions’. We will note a similar proof in Corollary 2.22.

2.4. Definable measures. In this section we use the material developed above to
prove some useful facts about definable measures. The definition of this notion is
based on the following standard exercise (see also [15, Proposition 2.17]).

Fact 2.15. Suppose u € M, (U) is invariant over A C U. Given an L-formula
o(x,y), the following are equivalent.
(1) F7 4 is continuous.
(it) For any any e > 0, there are L a-formulas ¥1(y), ..., ¥n(y) and real numbers
1,y Tn € [0,1] such that [|FY 4 — 370 mily, [l < e
(i3i) For any e > 0, the set {b € UY : u(p(x,b)) < e} is type-definable over A.

Definition 2.16. A measure p € M, (U) is definable if there is some A C U such
that p is A-invariant and, for any £-formula ¢(z,y), the equivalent conditions of
Fact 2.15 hold. In this case, we also say that p is definable over A.

Note that condition (iii) of Fact 2.15 makes sense without assuming p is invari-
ant. Moreover, if (iii) holds for all L-formulas ¢(x,y), then it follows that p is
A-invariant. Therefore, a measure p € 9, (U) is definable over A C U/ if and only
if, for any L-formula ¢(x,y), condition (zi7) holds.

In [12], it is shown that definable measures are closed under Morley products
and satisfy associativity. Here we prove a more general associativity result when
only one definable measure is involved. Note first that any definable measure is
clearly Borel definable. The next lemma strengthens this fact.

Lemma 2.17. If u € M, (U) is definable over A C U, then it is BDTT over A.

Proof. Let U C S;,(A) be open. Similar to the proof of Lemma 2.12, we can
write U = J;¢;[@i(z,y)] for some collection {p;(x,y) : i € I} of La-formulas
where I is a directed partial order and for any 4,5 € I, if i < j then ¢;(U™Y) C
©;(U™). Then F;SJ,A is the pointwise limit of the increasing net (FlfiA)ie]. More-
over, given r € [0,1], we claim that (FY )™ ((r,1]) = U, (F7%) ™ ((r,1]). Indeed,
p € (FZLJ)A)J((T, 1]) implies that p(U(x,b)) € (r,1]. By regularity, there exists
some @;(z,b) such that u(p;(x, b)) € (r,1]. The other direction is similar. Since
each F'y is continuous, we now have that for any r € [0,1], (FgA)‘l((r, 1]) is
open. Since sets of the form (r, 1] generate the Borel o-algebra on [0, 1], it follows
that F [LJ 4 1s Borel (in fact, upper semi-continuous). Now, for any v € 9, (U), we
have fsy(A) FYdv = lim, fsy(A) F¢i dv by the monotone convergence theorem for
uniformly bounded increasing nets of continuous functions on compact Hausdorff
spaces (see [27, Theorem IV.15]). It follows that p is BD™T over A, as in the proof
of Lemma 2.12. O

We can now prove the main associativity result for definable measures.

Theorem 2.18. Suppose p € M(U) and v € M, (U) are Borel definable over
some A C U, and at least one of p or v is definable over A. Then u ® v is Borel
definable over A and, for any A € M. (U), we have (LR V) @A =pQ (V¥ @ N).
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Proof. First assume v is definable over A. Then, by Lemma 2.17 and Theorem
2.11, p ® v is Borel definable over A and (1 ®@v) @ A\)|a = (1 ® (v @ A))|a for any
A € M, (U). Moreover, note that if B D A then  is definable over B and v is Borel
definable over B. So this argument works over any B D A.

Now assume p is definable over A. In this case, the proof is almost the same as
that of Theorem 2.11 (applied to p and v), and so we just explain the necessary
adjustments. In particular, since p is definable, we can use Fact 2.15 to assume that
the Borel sets W), ; in the proof of Theorem 2.11 are actually clopen. Therefore, one
only needs Borel definability of v to conclude that the maps F:[j: “ and h,, are each
Borel. This is all that is needed to conclude p® v is Borel definable over A. Finally,
in the associativity argument, we do not need to assume v is BD™T to know that
(v @ N)|a(W, fs FUW" dv. Indeed, since W, ; is clopen, this follows from
the deﬁmtlon of the Morley product. So we have (1 ®@v) @A) |a = (@ (Y@ A))|a
by the same steps. Once again, this argument works over any B D A. 0

Remark 2.19. Call an A-invariant measure pu € M, (U) Baire-1 definable over A
if for any L-formula ¢(z,y), F;ZA is a function of Baire class 1, i.e., the pointwise
limit of a sequence of continuous functions. Note that, as a property of measures,
Baire-1 definability is stronger than Borel definability, but weaker than definability.
We claim that if ;1 € 9, (U) is Baire-1 definable over A, and v € M, (U) is Borel
definable over A, then pu ® v is Borel definable over A and, for any A\ € 9, (U),
we have (p®@v) @ A = p® (v ® ). Indeed, the proof of Theorem 2.11 only
required pointwise limits, and so one can argue using the same adjustments as in
Theorem 2.18 (together with the exercise that a Baire-1 function on a Stone space
is a pointwise limit of finite linear combinations of indicator functions of clopen

sets).

In light of Theorem 2.18, it is natural to ask if one gains any traction in proving
associativity by assuming that the measure in the third position is definable. In
Corollary 3.12, we will give an example of Borel definable types p and ¢, and a
definable measure A, such that p® ¢ is Borel definable, but (p®¢q) @A # pR (¢ ).
On the other hand, we do have the following result.

Corollary 2.20. Fiz pn € M,(U) and v € My (U) such that p, v, and p @ v are
each Borel definable over some A C U. Suppose X\ € M, (U) is such that A\ 4 has a

definable global extension A em. (U) that commutes with u, v, and p @ v. Then
(L@V)@A)|a=(L® (v A))a-

Proof. Fix an L s-formula p(z,y, z). Then we have the following calculations (in-
dividual steps are justified afterward):

(nov) @ N(p(e,y,2)) = (h©v) ® X (p(e,y,2))
= (A (nav)(p(e,y,2) = (A u) @v)(p(@,y,2))
= (n@ X)) @v)(p(r,y,2)) = (n© (A v))(p(z,y,2))
= (® Ve N)(p@,y,2) = (1 (v © N)(P(z,y,2)).

In the above calculations, the first and last equalities use A\|4 = 5\| A, the third and
fifth equalities use Theorem 2.18 and definability of A, and the remaining equalities
use the commutativity assumptions on A. O
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Remark 2.21. Note that in the previous result we do not need to assume that
\ is definable over A. For example, given p € S,(U) and A C U, if a = p|4 and
p = tp(a/U), then p|a = pla, p is definable over {a}, and p commutes with any
invariant measure. So if the measure A in Corollary 2.20 is a type, then such a A
exists for any A C U (See Fact 3.1 below for a full account of associativity when
the measure in the third position is a type.)

For a more interesting example of when Corollary 2.20 is applicable, one can turn
to the class of NIP theories. Recall that if 7" is NIP then any invariant global Keisler
measure is Borel definable by [20]. Moreover, by the original work of Keisler [23],
any measure over a small model M of an NIP theory has a global extension that is
smooth, i.e., it is the unique global extension of its restriction to some small model
N = M (see also [28, Proposition 7.9]). For example, if p € S, (M) and a € U*
realizes p, then tp(a/U) is a smooth global extension of p. It is not hard to show that
smooth measures are definable and commute with all Borel definable measures (see
[21, Section 2]). So if T is NIP then any global measure \ satisfies the assumptions
of Corollary 2.20 for any A C U. Altogether, this reaffirms associativity of the
Morley product for invariant measures in NIP theories (recall Remark 2.14).

Corollary 2.22. If T is NIP then the Morley product of invariant measures is
associative.

3. COUNTEREXAMPLES IN BOREL DEFINABILITY

The goal of this section is to show that, over uncountable sets, the Morley product
of two Borel definable measures need not be Borel definable and, moreover, that
the Morley product can fail to be associative (even when all products involved are
well-defined and Borel definable). In fact, we will demonstrate this behavior in a
relatively straightforward simple unstable (countable) theory. Before getting into
this example, we first discuss some preliminaries.

3.1. Strongly continuous measures. The purpose of this subsection is mainly
to provide context for how Morley products can fail associativity. Let T be a
complete L-theory with monster model U. It is well-known (and easy to show)
that the Morley product is associative with respect to invariant types (see [28, Fact
2.20]), and so a failure of associativity must involve at least one ‘true’ measure.
Toward making this remark more precise, we state the following fact, which is left
as an exercise (the mechanics of the proof are similar to that of Corollary 2.20).

Fact 3.1. Suppose u € M, (U) is Borel definable and v € M, U) is invariant.
Then (p@v)@r=p® v r) for anyr e S,(U).

Next, we recall some terminology (taken from the theory of charges [4]) that will
be used to make the idea of a ‘true’ measure more rigorous.

Definition 3.2. Given A C U, a measure u € M, (A) is strongly continuous if,
for any € > 0, there is a partition of S, (A) into finitely many clopen sets of measure
less than .

Despite the use of the word ‘continuous’ in the previous definition, we caution the
reader that there is no general connection between strongly continuous measures
and definable measures.
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Remark 3.3. By compactness, a measure p € 9, (A) is strongly continuous if and
only if p({p}) = 0 for all p € S,(A4). Note also that if p € M, (U) is strongly con-
tinuous, then there is some countable A C U such that p|, is strongly continuous.

Let p € M, (U) be a Keisler measure. By the Sobczyk-Hammer decomposition
theorem for finitely additive bounded charges (see [4, Theorem 5.2.7]), one can
write 1 = aofto + Yoy GnPn Where each ay, is in [0,1] with >°>° ja, = 1, each
pn is a type in S, (U), and either g is a strongly continuous measure in 9, (),
or ap = 0 and g is the identically zero measure (in this case, we call u atomic).
The next fact, which we leave as an exercise, follows from Fact 3.1 together with
standard measure-theoretic computations.

Fact 3.4. Fiz € M, (U), v € My(U), and X € M. (U). Let X = agAo+Y_ ey Cnbn

be the Sobczyk-Hammer decomposition of \ described above.

(a) Assume X is atomic. If ju is Borel definable and v is invariant, then (u®@v) @\
is well-defined and equal to 1 ® (v @ \).

(b) Assume X\ is not atomic. If p, v, and pu ® v are each Borel definable, then
(LRV)R@A=p® (@ N) if and only if (n@ V) @ X =pu® (¥ ® \o)

In other words, this fact says that in any situation where the Morley product
of Keisler measures fails associativity, the measure in the third coordinate cannot
be atomic, and so the failure of associativity can be traced back to an underlying
strongly continuous measure.

Finally, we recall a known result from the folklore characterizing the existence
of strongly continuous Keisler measures.

Fact 3.5. Given a complete theory T, the following are equivalent.

(1) T is totally transcendental (i.e., every formula has ordinal Morley rank).
(14) There is no strongly continuous measure in M, (U) for any x.
(#it) There is no strongly continuous measure in M, (U) for any tuple of variables
x of length one.

Proof. This follows from standard results on type spaces in totally transcendental
theories, combined with various facts about strongly continuous measures (see [4,
Theorem 5.3.2, Lemma 5.3.8, Theorem 5.3.9]). See also [6, Fact 3.3], which discusses
some details, including the relevance of [23, Lemma 1.7]. O

3.2. Relative measurability. Later in this section, we will construct Borel defin-
able global types p and ¢ (in a specific theory) such that p® ¢ is not Borel definable.
In this case, one might wonder if p ® ¢ still admits Morley products with restricted
classes of measures with nice behavior (e.g., if r is a type then (p ® q) @ r is well-
defined since p®q is still invariant). However, our construction will show that p® ¢
can be arbitrarily bad. This will be made precise using the following notions.

Definition 3.6. Let X be a topological space. Given a Borel measure o on X, a
subset of X is called u-measurable if it is measurable with respect to the com-
pletion of . A subset Z of X is called a Bernstein set if both Z and X\Z
nontrivially intersect every uncountable closed subset of X.

Recall that, in the above context, a subset of X is p-measurable if and only if
it is of the form B U FE, where B is Borel and E is contained in a p-null Borel set.
It is also a standard fact that any Polish space contains a Bernstein set (see, e.g.,
Theorem 4 in [22, Chapter 11]).



KEISLER MEASURES IN THE WILD 15

Lemma 3.7. Suppose p: X —Y is a surjective continuous map between compact
Hausdorff spaces, and 1 is a reqular Borel measure on X . Let v be the pushforward
of u along p, and assume that any singleton in'Y is v-null. Then, for any Bernstein
set Z C Y, the set p™t(Z) is not u-measurable.

Proof. Suppose pt(Z) is y-measurable. Since Y'\Z is also a Bernstein set, we may
assume without loss of generality that u(pt(Z)) > 0. By regularity, there is a closed
set C' C pt(Z) such that u(C) > 0. Since p(C) is closed, and contained in Z, it
must be countable. So v(p(C)) = 0 by assumption on v and countable additivity.
But then u(C) < u(p(p(C))) = v(p(C)) = 0, which is a contradiction. O

Corollary 3.8. Let T be a complete L-theory with monster model U. Fix A CU
and suppose p € M, (A) is strongly continuous. Then there is a subset of S, (A)
that is not p-measurable.

Proof. Choose a countable set Ay C A, and a countable sub-language Ly C L,
such that if v is the restriction of u|a, to (Lo)a,-formulas, then v is still strongly
continuous. Let X = S5(A) and Y = S59(Ap), and define p: X — Y to be the
composition of p% , with restriction to Lo. Then v is the pushforward of u along
p (as in Remark 1.2). Not that any singleton in Y is v-null by strong continuity of
. Since Y is Polish, there is a Bernstein set Z C Y. Altogether, p}(Z) C S,(A)
is not p-measurable by Lemma 3.7. 0

3.3. The random ternary relation. Given any finite relational language £, the
class of finite L-structures is a Fraissé class, and the complete theory of the corre-
sponding Fraissé limit is Rg-categorical and has quantifier elimination (this follows
from [17, Theorem 7.4.1]). It is well known, and not hard to prove, that any theory
obtained this way is supersimple of SU-rank 1, and is also unstable if and only if £
contains a relation of arity at least 2.

In this subsection, we work with the theory Tk obtained in the above fashion,
where L consists of a single ternary relation R(x,y,z). Throughout this section,
U is a monster model of Tr. We will first show that in Tr, Borel definability of
measures is not preserved by Morley products. So this refutes the unproven claim
in [21, Lemma 1.6]. In fact, we show that the product of Borel definable types is
not necessarily Borel definable.

Proposition 3.9. There are Borel definable p,q € S1(U) such that p @ q is not
Borel definable.

Proof. Fix an infinite set B C U and an arbitrary set Z C S7(B) such that x :=
|Z] > |B|. We will construct types p,q € S1(U) satisfying the following properties.

(i) p and q are Borel definable over some A D B of cardinality .
(1) For any c € U, R(x,y,c) € p® q if and only if tp(c/B) € Z.

In particular, setting Z* = (p% )™ (Z), we have FZ%;_”%Z) = 1z by (i7). Soif Z

is not Borel then p ® ¢ is not Borel definable by Theorem 2.1 and Corollary 2.2.
Note also that S;(B) has a topological basis of size |B|, and thus has at most 2/
Borel subsets. On the other hand, S;(B) has 22" subsets (since it has size 2/B).
So there are non-Borel choices for the set Z above.

Fix A D B of cardinality k. Given an A-invariant type p € Sz () and a formula
©o(7;7), we define dp(p) = {s € Sz(A) : ¢(#;b) € pforb = s} (in particular,
we have F;f A= 1dp(<p))' Let z,y,z be tuples of variables of length one, and let
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Ry (z;y, z) and Ra(y;x, z) be partitions of R(z,y, z). Enumerate A = {a; : i < Kk}
and Z = {r; : i < k}. We construct the desired types p and g.

First, define p € S;(U) so that the positive instances of R in p (which actu-
ally involve z) are precisely those of the form R(z,b,c) where b,c € U are such
that R(a;,b,c) holds for some i < k. Note that p is A-invariant. To prove Borel
definability of p, it suffices by quantifier elimination to focus on atomic formu-
las; and by definition of p, we only need to consider R;(x;y,z). By construction,
dp(R1) = U, .[R(ms,y, 2)], which is open.

Now define ¢ € S, (U) so that the positive instances of R in ¢ (which actually
involve y) are precisely those of the form R(a,y,c) where a,c € U are such that
a = a; and ¢ |= r; for some ¢ < k. Then ¢ is A-invariant by construction. We claim
that ¢ is Borel-definable. By quantifier elimination, and the definition of g, it suffices
to consider Ry(y;x, z). Given i < &, set K; = {s € S;.(A) : s;|p = i}, and note
that K is closed. From the definition of ¢, we have that dq(Rs) = U, _,. K;N[z = a4,
which is an infinite union of closed sets. However, if we set K = (,_, K; U [z # a4
and U = | J,.,.[r = a4], then K is closed, U is open, and dg(R2) = K NU.

We have now built p and ¢ satisfying (¢). It remains to show that p ® ¢ satisfies
(4i). It is easy to check that any positive instance of R in p®gq involving the variables
2 and y must have the form R(z,y,c) for some ¢ € U. So fix ¢ € U. Using the
definition of p, we have R(x,y,¢) € p® ¢ if and only if there are i < k and b = q|ac
such that R(a;,b,c¢). Using the definition of ¢, we conclude that R(z,y,c) € p® q
if and only if ¢ = r; for some @ < k. Altogether, we have property (i). O

<K

We now use the previous construction to produce Borel definable types p,q €
S1(U), and a measure A € My (), such that the Morley product of p ® g with A is
not well-defined. First, using Fact 3.5, we may fix a strongly continuous measure
A € My (U) (one can even choose A to be definable via Lemma 3.11 below). Let
B C U be an infinite set such that \|p is strongly continuous. By Corollary 3.8,
there is a set Z C S1(B) that is not A|p-measurable. Now choose p,q € S1(U)
as in the proof of Proposition 3.9; in particular, R(x,y,c¢) € p ® ¢ if and only if
tp(c/B) € Z. Then (p ® q) ® A is not well-defined since F} 5 = 1z. Note that
p® (q® N) is well-defined however, and so this also produces a rather cheap failure
of associativity.

Next we will demonstrate a more substantial failure of associativity in which all
Morley products involved are well-defined. Intuitively speaking, the construction
uses something like the ‘first-year probability theory paradox’ that the measure of
[0,1] is 1, yet the measure of {z} for any = € [0, 1] is 0.

Proposition 3.10. Suppose A € M (U) is a strongly continuous measure. Then
there are types p,q € S1(U) such that p, q, and p®q are Borel definable, the measures
g, (p@q) @A\, and p®@ (@ \) are well-defined, but ((p® q) @ \)(R(z,y,2)) =1
and (p® (q @ N)(R(z,y,2)) =0.

Proof. We use similar notation as in the proof of Proposition 3.9. Using Remark
3.3, we may choose infinite B C A C U such that « := |A] = 2/8l and A|4({r}) =0
for all € S1(A). Enumerate A = {a; : i < k} and S1(B) = {r; : i < K}.

Define p € S, (U) so that the positive instances of R in p are precisely those of
the form R(x,b,c¢) where b,¢ € U are such that R(a;,b,c) holds for some i < k.
Define ¢ € S, (U) so that the positive instances of R in g are precisely those of the
form R(a,y,c) where a,c € U are such that a = a; and ¢ |= r; for some ¢ < k. In
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other words, p and ¢ are exactly as in the proof of Proposition 3.9, if one chooses
Z = S.(B) in the definition of ¢. So p, ¢, and p ® g are Borel definable over A.
(Note that, in the general construction from the proof of Proposition 3.9, p ® ¢ is
Borel definable if and only if Z is Borel.)

Note that ¢ ® A, (p®¢) ® A, and p ® (¢ ® A) are well-defined since the left most
term in each product is Borel definable. Let 71 = (p®¢q) @ A and 2 = p® (¢ ®@ N).
Then 7y (R(z,y,2)) = 1 since F;%;:Z;Z) takes the constant value 1 on S,(A). It
remains to show that ne(R(z,y, z)) = 0.

By definition, we have na(R(x,y, 2)) = (¢ @ A)|a(U) where U = dp(R(z;y, 2)) =
Ui<x[R(ai,y,2)]. So U is an open set in S,.(A). Moreover, if i < & then

(¢ @ M) (R(ai,y, 2)) = Maldg(R(ai, y; 2))) = Ala({ri}) = 0.
So by compactness, Fact 1.1(a), and finite additivity of (¢ ® A)|4, we have

n2(R(z,y,2)) = (g N)]a(U) < . s[u]p Z(q@ Mla(R(ai,y,2)) = 0. O
€lrl=ier

In fact, we can strengthen the previous result using the existence of a definable
strongly continuous measure in T, namely, the ‘coin-flipping’ measure, which in-
dependently assigns R-neighborhoods measure % Similar measures on the random
graph are studied by Albert in [2].

Lemma 3.11. There is an @-definable strongly continuous measure in My (U).

Proof. Let A be the unique measure in 9 (U) satisfying the property that if
01(x),...,0,(z) are pairwise distinct (positive) instances of R in one free variable,
and ;(x) is either 0;(x) or —6;(z), then

A (&) A Aale) = g
The justification that such a measure exists is given in Section A.2 of the appendix.

To see that A is strongly continuous, fix n > 0 and distinct aq,...,a, € U.
Suppose 0(z) = A, 0;(z), where 0;(z) is either R(z,a;,a;) or =R(x,a;,a;). Then
M6(z)) = 5. Since the collection of all such #(z) forms a finite partition of U?,
we conclude that A\ is strongly continuous.

Finally, to see that A is @-definable, fix a formula ¢(z;y1,. .., yn). By quantifier-
elimination, we may assume ¢ is a conjunction of atomic and negated atomic for-
mulas. We may also assume without loss of generality that ¢ contains y; # y; for
all i < j. Note that A(X) = 0 for any finite X C U. Altogether, every consistent
instance of ¢ has the same measure. Therefore for any formula 0(z;y1, ..., yn) =
(@Y1, Yn) Ni<icjcn Vi # Y5, the map FY 5 : S5(@) — [0,1] is well-defined and
constant, and in particular, continuous. Hence A is @-definable. ]

The two previous results together yield a strong failure of associativity for the
Morley product in Tz, which also provides a counterpoint to Theorem 2.18.

Corollary 3.12. There are p,q € S1(U) and X\ € S1(U) such that p, q, and p R q
are Borel definable, and X\ is @-definable, but ((p ® q) ® N)(R(z,y,z)) = 1 and
(p®(¢®@ N)(R(z,y,2)) = 0.

Note that in the previous result, ¢® A and (p® q) ® A are also Borel definable by
Theorem 2.18. One can further show that if A is the specific measure from Lemma
3.11, then p ® (¢ ® A) is Borel definable. But this involves a somewhat technical
case analysis so we omit the details.
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4. FIM FAM FLIM FLAM

We now change our overall focus from Borel definability to stronger notions mo-
tivated by the study of model-theoretic tameness. In this section, we review several
properties which, in the setting of NIP theories, characterize a canonical notion
of ‘generic stability’ for invariant Keisler measures. These properties are referred
to using the descriptors fim, fam, and dfs, which stand for frequency interpreta-
tion measure, finitely approximated measure, and definable and finitely satisfiable,
respectively. See Definition 4.1 below for full details. Much of the motivation for
studying these notions comes from the fundamental result, due to Hrushovski, Pil-
lay, and Simon [21], that if T is NIP then fim, fam, and dfs are equivalent. More
precisely, we have the following implications:

fim = fam = dfs pLy fim.

The first implication is clear from the definitions (given below), the second is a
standard exercise (e.g., [15, Proposition 2.30]; see also Proposition 4.3 below), and
the third is [21, Theorem 3.2]. The purpose of this section is to rapidly review the
parade of definitions and basic facts about fim, fam, and dfs that we will need for
later results.

Let T be a complete theory with monster model U. Given measures u,v €
M, (U), and some Ly-formula ¢(z,y), we write p & v to denote that pu(p(z,d)) ~
v(p(x,b)) for all b € UY. Note that if  and v are invariant over A C U and p(z,y)
is an La-formula, then p ~¢ v if and only if ||} 4 — F7 4[| <&

Given a Borel definable measure p € M, (U) and some n > 1, we define u(™ €
My, o, (U) by setting u™) = p,, and p*+H) = M,y @ ugﬁ)zn Note that even
if (™) is not Borel definable for some n, the product involved in the definition of
D) s still well-defined. Also, if p is a type p € S, (U), then one only needs
invariance in order to define p(™.

We now recall the definitions of the properties mentioned above. For various
reasons, these notions are more effective when formulated over small models, rather
than arbitrary parameter sets. Thus we will now shift our focus to small models.

Definition 4.1. Fix g € M, (U).

(1) p is finitely satisfiable in M < U if for any £y-formula ¢(z), if p(e(z)) >0
then o(x) is realized in M.

(2) pis dfs if there is some M < U such that p is definable over M and finitely
satisfiable in M. In this case, we also say that u is dfs over M.

(3) wis fam (‘finitely approximated measure’) if there is some M < U such that, for
any L-formula ¢(x,y) and any € > 0, there is a € (M*)™ such that p ~¢ Av(a).
In this case, we also say that M is fam over M.

(4) pis fim (‘frequency interpretation measure’) if there is some M < U such that,
for any L-formula (x,y), there is a sequence (0, (21, ..., z,))22, of consistent
Lr-formulas satisfying the following properties:

(7) For any € > 0 there is some n(g) > 1 such that, if n > n(e) and a = 6,,
then p ~¥ Av(a).
(i1) limy, o0 (™ (6,) = 1.
In this case, we also say that M is fim over M.



KEISLER MEASURES IN THE WILD 19

The definition of fim implicitly assumes that the Morley products p(™) are well-
defined. This is justified by the fact that condition (i) ensures u is fam (since we
work over small models), and thus definable. We also note the following easy facts.

Remark 4.2. Fix p € M, (U) and M < U.

(1) If p is finitely satisfiable in M then it is invariant over M.
(2) If a € (M™)™ then Av(a) € M, (U) is fim over M.

Next we take the opportunity to provide a novel characterization of dfs, which
is formulated using fam-like behavior. In particular, we show that dfs is equivalent
to being “piecewise” fam. This result also provides further evidence that dfs is a
natural notion in its own right, rather than just an arbitrary combination of two
separate notions.

Proposition 4.3. Fiz yu € M, (U) and M <U. Then u is dfs over M if and only
if for any L-formula p(x,y) and any € > 0, there are tuples a; € (M®)™, ... a4y €
(M=) and Lpr-formulas Y1 (y), . .., ¥r(y) partitioning MY such that for any b €
U, iU | n(b) then p(p(a, b)) e Av(ao)((x, ).

Proof. Suppose first that u satisfies the latter condition. Then p is clearly invariant
over M and, for any L-formula o(z,y), Flf u is @ uniform limit of continuous
functions on S, (M) (specifically piecewise constant functions with clopen pieces).
Therefore F;i v is continuous for any ¢(z,y), whence p is definable over M. Finite
satisfiability of p in M is straightforward and left to the reader (the argument is
nearly identical to showing that fam over M implies finitely satisfiable in M).
Conversely, suppose p is dfs over M. Fix an L-formula ¢(z,y). Then F ;i et
continuous. Let F be the set of functions FKV(&),M for a € (M*)<¥. In particular,

F is a set of continuous functions from S,(M) to [0,1]. To ease notation, let
g= F;fM and X = S, (M).

Claim: For any ¢ € X and any € > 0, there is some f € F such that | f(q)—g(q)| < .
Proof: Fix ¢ € X and b = ¢q. There are three cases: either p(p(z,b)) = 0,
plp(z, b)) =1, or pu(p(z,b)) € (0,1).

In the first case, we can find a € M such that —(a, b) holds. In the second case,
we can find a € M*® such that ¢(a,b) holds. So in either case, if f = FKv(a),M =
1,(a,y), then f € F and f(q) = g(q).

In the third case, we can find a4, a_ € M7 such that ¢(a4,b) and —p(a_,b) both
hold. Fix € > 0, and choose a rational » = m/n € [0, 1] such that |r — g(q)| < e.
Let a = (a1,...,a,) with a; = ay for 1 <i < m and a; = a_ form < i <n. If
f="FZ @) m then f € F and f(q) =r, hence |f(q) — g(q)| <e. Aclaim

Fix ¢ > 0. We will now find a clopen partition Ay,..., Ay of X, along with
functions fi,..., fr € F, such that for any ¢ € X and 1 < i < k, if ¢ € A; then
|fi(q) — g(q)] < e. By choice of F and g, this will finish the proof.

For each ¢ € X, we apply the claim to find f, € F such that |f,(z) — g(q)| < 3e.
Since g and f, are continuous, we can also find a clopen neighborhood B, of ¢ such
that for any p € By, |f,(p) — f4(q)] < 3¢ and |g(p) — g(q)| < 3&. In particular, this
implies that for any p € By,

|fa@) — g®)| < |fa(p) = fo(@] + |fa(a) — g(@)] + |9(q) — g(p)| <e.
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By compactness, we can find a finite sequence q, ..., qr such that B, ,..., By,
covers X. Setting f; = fq, and A; = By, \U i<i Bg;, we have the required functions
and partition (after possibly decreasing k and discarding any empty A;). O

Note that p € M, (U) is fam over M < U if and only if it satisfies the conditions
of the previous proposition with k = 1.
Next we review basic properties about approximations.

Definition 4.4. Given a measure p € M, (U), an Ly-formula ¢(z,y), an integer
n > 1, and some C C [0,1], let Z = (x1,...x,) and define

AvE(p, ) = {aeU” : |u(p(x, b)) — Av(a)(p(x,b))| € C for all b € UY}.

Note that a measure pu € M, (U) is fam over M < U if and only if, for any £-
formula ¢(z,y) and € > 0, there is some n > 1 such that AvZ_ (i, ) N (M*)" # @.

Lemma 4.5. Suppose u € M, (U) is Borel definable and @(x,y) is an Ly -formula.
Then for any a € AvZ.(u, ) and any v € M, (U), we have

(n@v)(p(z,y)) = (Av(a) @ v)(p(2,y)) = % > vlelaiy)).

Proof. This is a straightforward calculation (integrate over Sy (M), where M < U
is such that ¢(z,y) is over M, u is Borel definable over M, and a € M7). il

Next we work toward a characterization of fim (Proposition 4.8 below), which
will be useful in several later results. Recall that a set (in i) is co-type-definable if
its complement is type-definable.

Lemma 4.6. Suppose p € M, (U) is definable over A C U. Then, for any La-
formula (x,y) and anyn > 1 and e > 0, AvZ_(u, @) is type-definable over A, and
AVZ (1, ) is co-type-definable over A.

Proof. Fix ¢(x,y), n > 1, and € > 0. For any closed set C C [0, 1], we have a well-
defined partial y-type “u(p(x,y)) € C” over A. Let qo(T,y) be the type defined
by
N (Av@)(p(z,9) = £) = (ulp(x,y)) € C+ ) V (u(e(a,y) € £ - C)).
i=0
Then (a,b) = qc if and only if |u(¢(x,b)) — Av(a)(e(x,b))| € C. Now AvZ_ (i, ¢)
is defined by Yy qo.)(Z,y), and = AvZ_(p, ) is defined by Jy g 1)(Z,y), both of
which are types over A. O

Definition 4.7. Suppose p € M, (U) and p(z,y) is an L-formula. Given € > 0, we
say that a sequence (xn(1,...,2n))52, of Ly-formulas is a (¢, £)-approximation
sequence for 4 if, for all n > 1, we have AvZ_ 5(u, ») C xn(UT) € AVZ (11, 0).
We also say that such a sequence is over A C U if each x,, is an L 4-formula.

Note that, by Lemma 4.6, if u € 9, (i) is definable over A C U, then for any
L-formula ¢(z,y) and € > 0, there is a (¢, £)-approximation sequence for p over A
(but the formulas in the sequence may be unsatisfiable).

Proposition 4.8. Suppose € M, (U) is definable over M <U. Then the follow-
ing are equivalent.
(1) p is fim over M.
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(13) For any L-formula p(x,y) and e > 0, there is a (@, €)-approzimation sequence
(xn)Sq for p over M such that lim,, o p™ (xn) = 1.

(#3i) For any L-formula ¢(z,y) and € > 0, if (xn)nlo is a (p,€)-approzimation
sequence for p over M, then lim,, o p™ (xn) = 1.

Proof. (i) = (4i7). Assume p is fim over M. Fix an L-formula ¢(x,y). Since p
is fim, there are formulas (6, (21,...,,))S; such that lim, . u(™(6,) = 1 and,
for all € > 0, we have 6,,(U) C AVZ_ )5 (11, p) for sufficiently large n. Now fix £ > 0,
and let (x,)5%, be a (¢, ¢e)-approximation sequence for p over M. Then 6,,(U”) C
AVZ, 5(s 0) € xn(UT) for sufficiently large n, and so limy, oo 1™ (xp) = 1.

(#31) = (47) is trivial since approximation sequences for p exist by Lemma 4.6.

(13) = (2). Assume p satisfies (i), and fix an L-formula ¢(z,y). For all i > 1,
we have an Ly-formula x,, (21, ..., 2,,) such that x,, (U* %) C Avi”l/i(u,cp)
and (™) (x,,) > 1 — 1/i. This suffices to prove that y is fim over M (similar to
the proof of [12, Proposition 3.2]). O

We now summarize the situation concerning the analogue of Corollary 2.2 for
various properties of measures.

Proposition 4.9. Suppose u € M, (U) is fim (resp., fam, finitely satisfiable in
some small model, definable, or Borel definable), and also invariant over M < U.
Then w is fim over M (resp., fam over M, finitely satisfiable in M, definable over
M, or Borel definable over M ).

Proof. Corollary 2.2 provides the Borel definable case, and the definable case is
similar (see Remark 2.3). The finitely satisfiable case is a straightforward modifica-
tion of the proof for types, e.g., as in [28, Lemma 2.18]. See [15, Proposition 2.18]
for details. It remains to consider fim and fam.

Suppose g is fam. Fix an L-formula ¢(z,y) and ¢ > 0. We want to find
n > 1 such that AvZ_(u, ) N M* # &. By assumption, there is some n > 1 and
a* € AvZ, )5(p, ) NUT. Since p is definable and M-invariant, it is definable over
M. So AvZ, )5(p, ¢) is type-definable over M, and contained in AvZ, (x, ¢), which
is co-type-definable over M. Therefore we may find an £y;-formula y(z1,...,x,)
such that AvZ_ o(p, ) € x(U”) € AVZ (1, ¢). Then U = x(a*) and so, since
M < U, there is a € (M™)" such that M = x(a). So a € AvZ_ (1, ) N M7,

Finally, suppose p is fim. Fix an L-formula ¢(z,y) and € > 0. Then there is a
(¢, e/2)-approximation sequence (x* )32, for 1 such that lim, o u™ (x%) = 1. As
before, p is definable over M. Let (x,)5, be (¢, €)-approximation sequence for p
over M. Then x (U?) C x,(U?) for all n > 1, which implies lim,, oo ™ () = 1.
So w is fim over M by Proposition 4.8. O

Next we summarize what is known about the preservation of various properties
with respect to Morley products.

Proposition 4.10. Fiz p € M, (U), v € M, (U), and M < U.

(a) If p and v are fam (resp., definable) over M, then u®v is fam (resp., definable)
over M.

(b) u and v are finitely satisfiable in M, and p is Borel definable or v is a type,
then p ® v is finitely satisfiable in M.

Proof. Part (a). See Propositions 2.10 and 2.6 of [12].
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Part (b). See [21, Lemma 1.6]. The authors there do not explicitly assume p is
Borel definable (which is needed for p® v to be well-defined). Instead, they assume
T is NIP so that this becomes automatic. See also [15, Proposition 2.25]. (]

In contrast to the previous result, we have already seen that Borel definable
measures are not necessarily closed under Morley products. In [12] it is claimed
that this is also the case for fim measures, due to an example from [1]. However,
that example turns out not to work (see Section 8.1) and it remains an open question
whether fim measures are closed under Morley products (see the end of Section 6
for further discussion).

Finally, in preparation for the main result in Section 6, we make some easy
observations about convex combinations.

Proposition 4.11. Fiz M < U, and suppose p,v € M, (U) are fam over M (resp.,
finitely satisfiable in M, definable over M, or Borel definable over M ). Then, for
any r € [0,1], A == ru+ (1 — r)v is fam over M (resp, finitely satisfiable in M,
definable over M, or Borel definable over M ).

Proof. Fix a formula ¢(z,y). Note that, in any case, u is invariant over M. If p
and v are definable (resp., Borel definable), then F)Y,, and F;7,, are continuous
(vesp., Borel), and so FY,, = rFf, + (1 —r)F7,, is continuous (resp., Borel),
which implies A is definable (resp., Borel definable) with respect ¢(x,y). Also, if u
and v are both finitely satisfiable in M, then it is clear that A is too.

Finally, suppose p and v are fam over M. Fix € > 0. Then there are a,b €
(M?®)<“ such that pu ~% Av(a) and v ~% Av(b). Let n = r Av(a) + (1 — ) Av(b).
Then A ~¢ 7, and it is easy to find some ¢ € (M*)<“ such that n ~¢ Av(¢). So
A ~5_ Av(c). This shows A is fam over M. O

Once again, fim measures are missing from the previous result. We will show in
Theorem 6.2 that fim measures are also closed under convex combinations.

5. COMMUTING MEASURES

Let T be a complete L-theory with monster model ¢. In this section, we inves-
tigate pairs of measures that commute. Let us start with some results from the
literature. The first is an easy exercise.

Proposition 5.1. If p € S.(U) is definable and v € M, (U) is finitely satisfiable
in some small model, then p@v =v R p.

Proof. The argument is similar to that of [20, Lemma 3.4] (which assumes v is a
type). Fix an Ly-formula ¢(z,y) and let M < U be such that ¢(z,y) is over M,
p is definable over M, and v is finitely satisfiable in M. Choose an Lj;-formula
¥ (y) such that o(x,b) € p if and only if U = ¢ (b). Let a |= p|pr. Then we have
wla, MY) = p(MY), and so v(¢(a,y) 21(y)) = 0 since v is finitely satisfiable in M.
Therefore (p ® v)(¢(2,y)) = v(¥(y)) = v(p(a,y)) = (v © p)(¢(z,y)). O

An obvious question is whether the previous result holds when p is replaced by
a definable global measure (and v is also Borel definable so that both products are
well-defined). We will show later on that this is not the case (see Example 5.9).
However, Hrushovski, Pillay, and Simon [21] proved the following generalization
and elaboration of Proposition 5.1 in the setting of NIP theories.
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Theorem 5.2 (Hrushovski, Pillay, Simon [21]). Assume T is NIP.

(a) If p € M, (U) is definable, and v € M, (U) is finitely satisfiable in some small
model, then p®@ v =v ® L.

(b) If p € ML(U) is dfs, then p@v =v @ p for any invariant v € M, (U).

(¢) If p € M, (U) is invariant, then it is dfs if and only if gy @ fly = fyr @ fiy.

In this section, we pursue results along the lines of adapting Theorem 5.2 to arbi-
trary theories. First, we briefly note that outside of NIP, self-commuting measures
(in the sense of Theorem 5.2(c)) need not have any special properties.

Example 5.3. Let T be the theory of the random graph. Then any invariant global
type in a one free variable commutes with itself. On other hand, for any M < U
and Z C S1(M), there is a unique non-algebraic M-invariant type pz € S1(U) such
that E(z,b) € pz if and only if tp(b/M) € Z. So pz is Borel definable (resp.,
definable) if and only if Z is Borel (resp., clopen). Note also that the ‘generic’
definable types py and pg, () are not finitely satisfiable in M. In fact, 7" has no
nontrivial dfs global measures (see [12, Theorem 4.9]).

The first goal this section is a suitable generalization of Theorem 5.2(a) for
arbitrary theories. The original proof of this theorem relied on a fundamental
property of measures in the NIP setting, namely, that any Keisler measure can be
locally uniformly approximated by averaging on a finite collection of types in the
support of the given measure. Using this, the authors of [21] were able to reduce
the problem of whether a finitely satisfiable measure commutes with a definable
measure to the question of whether a finitely satisfiable type commutes with a
definable measure (note the duality to Proposition 5.1 in this statement). That
being said, the proof of this ‘easier’ problem remained nontrivial and still required
the use of NIP, along with the weak law of large numbers. Unfortunately there are
two major obstacles one finds when trying to directly adapt this proof of Theorem
5.2(a) to the general setting. First, Keisler measures in the wild do not admit
approximations by types as discussed above. Secondly, and more importantly, the
statement in total generality is false. Indeed, Proposition 7.14 gives an example
of a dfs type and a definable measure that do not commute. Therefore the dual
version of Proposition 5.1 alluded to above fails outside of NIP.

Fortunately however, one can give a simpler proof of Theorem 5.2(a) in the NIP
context by treating smooth extensions of measures as analogous to realizations of
types, along with some elementary topology (see [16, Proposition 3.6]). By embrac-
ing this ideology, and widening the focus to commuting extensions of measures, we
will recover a ‘deviant’ generalization of Theorem 5.2(a), which applies to general
theories and has a purely topological proof. This generalization is given in Theorem
5.7 below. We start with some topological lemmas.

Recall that 9, () is a compact Hausdorff space under the subspace topology
induced from [0, 1]Pef=0),

Lemma 5.4. Suppose p € M, (U) is definable. Then for any Ly-formula o(x,y),
the map v — (L@ v)(p(x,y)) is continuous from M, (U) to [0,1].

Proof. This involves similar calculations as in the proofs of [6, Proposition 6.3] and
[12, Proposition 2.6]. Fix an Ly-formula ¢(z,y), and fix A C U such that ¢(z,y)
is over A and p is definable over A. Fix € > 0. By Fact 2.15, there are £ 4-formulas
V1Y), ¥n(y) and r1,...,r, € [0,1] such that [[Ff, = 370 rily, e < e
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Hence, for arbitrary v € M, (i), we have

n

(1 ® v)(o()) = /S P /S Sy dv = 3 rv(i(y)).

y(A4) s i=1

By definition of the topology on 9, (i), the map v — v(¢;(y)) is continuous. So
the map v — > 1", (¢ (y)) is also continuous since it is a linear combination of
continuous functions. Since v was arbitrary we have

n

(n@v)(p(x,y) = > riv(¥i(y))

=1

sup
veMm, (U)

<e.

Therefore v — (u®@v)(¢(x,y)) is a uniform limit of continuous functions, and hence
is continuous. D

In the subsequent results, we will consider pairs of global measures in the same
variable sort, which have the same restriction to some small model. Thus we take a
moment to point out various subtleties that arise. In particular, suppose p € 9, (U)
is Borel definable over A C U, and v, v € M, (U) are such that v|4 = P|4. Then we
trivially have (u ® v)|a = (¢ ® P)|4. But note that this can fail if u is only Borel
definable over some larger B O A, since in this case the Morley products with p must
be computed with respect to v|p and 7| (even when applied to £4-formulas). It
is also important to point out that if we instead have p, ji € 9, (U) Borel definable
over A, with pu|a = fi|a, then one cannot necessarily conclude (p®@v)|a = (A Q@v)|a
for a given v € M, (U).

Definition 5.5. Suppose p € 9, (U) is Borel definable over A C U. Then a
Borel definable measure v € M, (U) A-commutes with p if (u®@v)|a = (¥ @ p)|a.
Define C}/(A) to be the set of measures in 9, (U) that are Borel definable over A
and A-commute with pu.

As we will see below, Theorem 5.2(a) can be viewed as a question of when
Cl(A) contains certain limit points. The next lemma describes a technical scenario
in which this can happen.

Lemma 5.6. Suppose p € M, (U) is definable over A, and v € M, (U) is a Borel
definable measure, which is the limit of a net (vi)icr from Cf{(A). If pla has a
definable global extension i € M, (U), which A-commutes with v and v; for all
i€, thenv e Cl(A).

Proof. We first note that v is A-invariant, and thus Borel definable over A by Corol-
lary 2.2. Now fix an £4-formula ¢(z,y). Then we have the following calculations
(individual steps are justified afterward):
(p@v)(p(z,y)) =lim(p® vi)(p(z,y)) = lim(; @ u)(e(z,y))
= lim(v; ® @) (p(2,y)) = lm(a ® vi)(e(z,9)) = (@ v)(p(z,y))
= e p)(ez,y) = Ve up (e y)).

The first and fifth equalities above use Lemma 5.4; the second equality uses the
assumption that v; is in Clf(A); the third and seventh equalities use ju[a = fi]a;
and the fourth and sixth equalities use the commutativity assumptions on . [



KEISLER MEASURES IN THE WILD 25

Note that in the statement of Lemma 5.6, we do not need to assume that f is
definable over A. For example, if 1 is a type then such a i exists as in Remark 2.21.
So we see that if p € S, (U) is definable over A C U, then the set of A-invariant
measures in 9, (U) that A-commute with p is closed (as usual, when working with
types, Borel definability can be weakened to invariance). However, when u is a
measure, the existence of i as in Lemma 5.6 is a nontrivial assumption.

We can now prove a generalization of Theorem 5.2(a) for arbitrary theories.

Theorem 5.7. Suppose € M, (U) is definable over M < U, and v € M, (U) is
Borel definable and finitely satisfiable in M. If u|as has a definable global extension
that M -commutes with v, then (u @ v)|p = (v & p)|ar-

Proof. Let X denote the convex hull of {§, : a € MY} in M, (U). Then it is not
hard to show that v is in the closure of X (see also [6, Proposition 2.11]). Moreover,
by an easy calculation, a measure in X commutes with every invariant measure.
Thus the hypotheses of Lemma 5.6 are satisfied, and so we have v € C}/ (M). O

Remark 5.8. Theorem 5.2(a) is a consequence of Theorem 5.7 together with the
fundamental results on NIP theories discussed before Corollary 2.22. Indeed, sup-
pose T is NIP, u € 9, (U) is definable, and v is finitely satisfiable in some M < U.
Without loss of generality, u is definable over M. Moreover, v is M-invariant and
hence Borel definable over M. Finally, u|as has a global extension that is smooth,
and thus is definable and commutes with v. Since all of this works over any N = M,
we have  ® v = v ® u by Theorem 5.7.

In light of Proposition 5.1, it is natural to ask whether the assumption on pu|/
in Theorem 5.7 is necessary. A counterexample, which we only mention now, will
be given later in the paper.

Example 5.9. There is a complete theory T, a definable measure p € 9, (U) and
a dfs type q € Sy(U), such that p ® g # g ® pu. See Section 7.4 for details.

On the other hand, the following question remains open.

Question 5.10. Do any two dfs global measures commute? (Note that for types
this is a special case of Proposition 5.1.)

The next goal of this section is to show that fim measures commute with Borel
definable measures. In other words, Theorem 5.2(b) generalizes to arbitrary theo-
ries, provided that dfs is replaced by fim (which is equivalent in NIP). This result
also generalizes the easier fact that smooth measures commute with Borel definable
measures [21]. In analogy to the comparison between Proposition 5.1 and Theorem
5.7, we will also see that fim types commute with invariant measures. However, in
this case the overall structure of the proof for types is not that much different than
for measures. So to avoid repetitive arguments, we will use the relative notion of
measurability from Section 3.2.

Definition 5.11. Suppose p € 9, (U) is invariant over A C U, and v € M, (U).
Then p is v-measurable over A if, for any £ 4-formula ¢(x,y), the map F;fA is

v|a-measurable, i.e., (F;fA)‘l(U) is v|a-measurable for any open U C [0, 1].
Let us note the two examples of interest.

Example 5.12. Fix p € M, (U) and A C U.
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(1) If p is Borel definable over A then it is v-measurable over A for any v € M, (U).
(2) If p is invariant over A then it is g-measurable over A for any ¢ € S, (U).

Suppose p € M, (U) is invariant over A C U, and v € M, (U), and p is v-
measurable over A. Given an L4-formula o(x,y), we set (u ®4 v)(p(x,y)) =
fSy(A) F¢ dv. This yields a well-defined Keisler measure p ®4 v in M, (A). Note
that if p is either Borel definable over A, or v is a type in Sy (i), then p®4 v =
(1 ® v)|a. However, unlike the situation with Borel definability, it is possible for
a measure [ to be v-measurable over some A C U, but not r-measurable over
any proper B D A (see Proposition A.8 for an example). So we may not have a
well-defined global product p ® v.

Next, we recall the weak law of large numbers (a special case of Chebyshev’s
inequality). Our formulation of this result follows [28, Proposition B.4], except we
have sharpened the bound slightly (in a way that is evident from how Chebyshev
is applied).

Fact 5.13. Suppose (0, B, 1) is a probability space, and fir X € B and € > 0.
Given n > 1, let u™ denote the usual product measure on Q™ and let

Xpe ={a e Q" u(X) ~ Av(@)(X)}.

Then X, - is p"-measurable, and p"™(Xpe) > 1 — w
The next lemma uses Fact 5.13 to highlight the leverage obtained when working

with fim measures. This distinction is further discussed after Theorem 5.16.

Lemma 5.14. Suppose pu € M, (U) is fim over M <U. Fiz an L-formula ¢(x,y)
and p|p-measurable sets Xq,..., X, C Sy (M). Then for any € > 0, there is an
integer k > 1 and a sequence (ay,...,ar) € (UT)* such that p =9 Av(a) and
wlar(X5) me Av(a) | (X;) for all 1 <i < n.

Proof. The argument is similar to various parts of Section 3 in [21] (see, e.g.,
[21, Lemma 3.6]). Fix ¢ > 0. Choose Lp-formulas 6x(z1,...,2x) such that
limy 00 £ (6) = 1 and, for k sufficiently large, if 6 (a) holds then yu ~% Av(a).
For 1 <i<nand k > 1, define

Xiw={(p1,...,pr) € So(M)*: p|ar(X;) = Av(p)(X;)}, and

}/i,k - {p E le ey, T (M) : (p|:617 ce 7p|zk) 6 X’Lk}
Then each set Y is u*)|y-measurable and p® |5 (Vi) = (ular)*(Xix). So we
have limy,_, o0 pu®) (Yix) = 1 by Fact 5.13. Choose k large enough so that uk) (Ok),

B (Y1), ..., u®) (Y1) are each strictly greater than 47 Then there is some
p €] NYirN...NY,k Let a€ U realize p. Then a satisfies the desired
conditions. g

We now prove a proposition that provides the heart of the result that fim mea-
sures commute with Borel definable measures.

Proposition 5.15. Suppose p € M, (U) is fim over M < U and v € M, (U) is
pu-measurable over M. Then (u @ v)|p = v @ p.

Proof. Fix an L)-formula ¢(z,y) and some ¢ > 0. Let ¢*(y,x) denote the same
formula p(z,y), but with the roles of object and parameter variables exchanged.

Since F,f 18 bounded and p|pr-measurable, it can be approximated uniformly by
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simple p|ps-measurable functions (see Fact A.1). So there are | p-measurable sets
X1,y Xn © So(M), and 71, ..., 7, € [0,1] such that [|[F7,, — >3 rilx,[lee < e
By Lemma 5.14, there is some a € (Z/{I) such that p ~¢ Av(a) and ((X;)| v ~eyn
Av(a)|m(X;) for all 1 <i <n. Let p; = tp(a;/M). Then

k k
(1@ ) (ol 0)) ~= (Av(@) @ ») (g =%Z —%Z £ es)

k n
DD rilx.(p))

j=1i=1

n

n k
ZZ 0a I (Xi) = D i Av(@) e (X))

i=1

E

e
MH

n

~e D rinl(X) :/ Z“IX o NE/( )Ff* dp = (v @ p) (2, y))-
Se (M

1=1 M)z 1

Since € > 0 was arbitrary, we have the desired result. 0

Theorem 5.16.

(a) If p € Mo (U) is fim and v € M, (U) is Borel definable, then p @ v =v @ p.
(b) If p € So(U) is fim and v € My, (U) is invariant, then p Qv =v @ p.

Proof. In light of Example 5.12; this follows immediately from Proposition 5.15. [

A natural question is whether one can get away with using fam measures in place
of fim measures in Theorem 5.16. However, note that in the proof of Proposition
5.15, we need to approximate p simultaneously on instances of the formula p(z,y) as
well as finitely many Borel sets. A priori, the assumption of fam is not sufficient to
obtain this level of approximation. That being said, it is perhaps worth emphasizing
that this kind of approximation for a measure y is all that is needed to prove that
1 commutes with any Borel definable measure. Thus it may be worth pursuing the
question of whether this is strictly weaker than the fim assumption.

On the other hand, if in Proposition 5.15 we restrict to the case where v is
definable, then we only need to approximate p on instances of ¢(x,y) and finitely
many clopen sets (i.e., formulas). In this case, such an approximation is possible
when p is only fam. These observations yield the next result, which was first shown
by the second author using different methods (see [16, Corollary 3.8]).

Proposition 5.17. Suppose p € M, (U) is fam and v € M, (U) is definable. Then
LRV =v&LWL.

Proof. Following the proof of Proposition 5.15, we can use definability of v (and
Fact 2.15) to ensure each set X; is clopen (say given by the formula ;(z)). Then,
since y is fam, we may choose an =-appproximation (ai, ..., ax) for the finite set of
formulas {¢(x,y), Y1 (x),...,¥n(x)}. The rest of the calculations are the same. [

In [12], it is shown that a type p € S, (U) is fim over M < U if and only if it
is generically stable over M, i.e., p is M-invariant and there does not exist an
L-formula ¢(x,y), a sequence (b;)i<, from UY, and a Morley sequence (a;)i<, in
plar, such that U = ¢(a;, b;) if and only if ¢ < j. So we have shown that generically
stable types commute with invariant measures.

Remark 5.18. There is a more direct proof that generically stable types commute
with invariant types. For the sake of completeness, we include the argument (which
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is similar to the proof that in NIP theories, dfs types commute with invariant types
[28, Proposition 2.33]). Suppose p € Sg(U) is generically stable, and ¢ € S, (U) is
invariant. Fix ¢(z,y) € ¢ ® p. Let M < U be such that o(x,y) is over M, p is
generically stable over M, and ¢ is M-invariant. Let (a;)i<. be a Morley sequence
in p over M, and fix b |= ¢|aprq.,,- Then, for all i < w, we have (a;,0) E (¢ ®p)|m
and so p(a;,b) holds. By generic stability, p coincides with the average type of
(@i)i<w (see [12, Section 3]), and so ¢(x,b) € p. Thus ¢(z,y) € p®q since b = q| -

It is natural to ask at this point whether commuting with all Borel definable
measures characterizes fim. This turns out to not be the case.

Example 5.19. There is a complete theory T" and a fam (but not fim) global type
that commutes with every invariant measure. See Section 8.2 for details.

On the other hand, we know from Example 5.9 that dfs is not sufficient to ensure
commuting with Borel definable measures. So this leaves the following questions.

Question 5.20. Let T be a complete theory, and fix u € 9, (U).

(1) Suppose p is fam. Does p commute with every Borel definable measure?
(2) Suppose p commutes with every Borel definable measure. Is u fam?

6. CLOSURE PROPERTIES OF fim MEASURES

In this section, we focus specifically on frequency interpretation measures, which
seem to provide the ‘right’ generalization of the notion of generically stable types
(recall the discussion before Remark 5.18) to the setting of Keisler measures. Our
goal is to investigate preservation of fim under natural operations on Keisler mea-
sures. We first consider convex combinations.

One fundamental difference between the space of types and the space of Keisler
measures is that the latter admits a convex structure. More explicitly, given any
two Keisler measures p and v in 9, (U) and any real number r in the interval
[0,1], one can construct the measure ru + (1 — r)v € M, (U). Thus the question
arises as to which collections of measures are preserved under this construction,
or which subsets of the space 9, (U) are conver. While it is easily observed that
the classes of dfs and fam measures form convex sets (see Proposition 4.11), this
property does not obviously hold for the class of fimm measures. In this section,
we demonstrate that the class of fimm measures is also convex. This result provides
some fundamental geometric information about the space of fim measures, and also
provides a process for making new fim measures from old ones. For example, the
average of finitely many fim measures is still fim. In fact, showing this even in the
case of fim types is nontrivial.

The proof that fim is preserved under convex combinations will require the fol-
lowing tail bound for a binomial distribution. Note that, for any real number r
and integer n > 1, we have ngn] rI X1 — )= IXI = 1. Given n > 1, € > 0, and
r € [0,1], let P, .(n) denote the collection of subsets X C [n] such that |X|/n ~. r.

Fact 6.1. Ifr € [0,1] and € > 0 then

DG (b PN Chukr}

e2n
XePr(n)
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Proof. This follows from Chebyshev’s inequality applied to the biniomial distribu-
tion B(n,r) (the sum above is precisely P(|B(n,r) — rn| < en)). Equivalently,
apply Fact 5.13 with Q = {0,1}, B="P(Q), X = {1}, and pu(X) =r. O

Theorem 6.2. Suppose p,v € M, (U) are fim over M < U, and fiz r € [0,1].
Then A =rp+ (1 —r)v is fim over M.

Proof. Note that p and v are definable over M, and thus so is A by Proposition 4.11.
Fix a formula ¢(z,y). For each & > 0, let (x4 )72, (X4.c)olo, and (x) )l be
(¢, )-approximation sequences over M for p, v, and A, respectively. By Proposition
4.8, we have that for every & > 0, lim,, o u(™ (x4 -) = 1, and likewise for v. We
need to show lim, 0 AT (x} o) =1 for all € > 0. So fix some ¢ > 0. Without loss
of generality, assume & < min{3, 1; }. What we will end up showing is that for any
§ > 0, there is an integer n(5) > 1 such that, if n > n(5) then A" (x}) ¢.) > (1-0)%.
Given this, we can conclude lim,, . A(™ (Xn6e) = 1. Since € > 0 is arbitrarily
small, this suffices to yield the desired result.
Given n > 1 and X C [n], let

_ S ieX
An,X-@i{yj ’L%X}

i=

Note that A, x is well-defined by associativity for definable measures. By linearity
of the Morley product, we have that for any n > 1,

A = Z rIX(1 — ey XN, .

XC|[n]

Now fix some ¢ > 0. Choose n, > 1 so that if n > §n, then u(™ (Xﬁ,g) >1-90,
and if n > 457n, then v (x% ) > 1—4. Since ¢ < min{%, 15}, we have that for
any n > n, and any m < n, if% ~. r then m > %n* and n —m > 1—;’”11*

Suppose n > n, and X € P..(n). We will show A\, x(x)e.) > (1 —0)%. Let

m = |X|. By construction, we have m > %n* and n —m > 1§Tn*. Enumerate

X ={i1,...,im} and [P\X ={j1, - Jn-m]-

Consider the formula ®(z1,...,zn) = Xh, (Tiys - Tin, ) A X e (Tgrs oo o5 g, )-
Then we have

Anx (@) = p () - T () > (1= )%
Furthermore, for any a = ® and b € UY, we have
M (@,0)) = ru(e(z, b)) + (1 = r)v(p(e, b))
~ae (o, b)) + (b))
~e T AV, (9(@,0) + T AV, g, ) (0, b)
= Av(ar,...,a,)(p(z,b)).

Thus BUT) C AV (A ) C ¥ U7), and 50 Aux () 6e) = Anx (@) > (1= 5)2.
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Finally, fix n > n(d) = max{n., T(;;;T)}. We show A" (xhg.) > (1 —6)>%
Indeed, we have just shown that A, x (X7 ¢.) > (1 —6)? for all X € Pr.o(n). So

A0 = D I =) TN x () 20)

XCln]
> 3 =), (0 2e)
XeEPr.e(n)
>@a=02 > rXa—pmIXl
XePr(n)
> (1 - 5)35
where the final inequality uses Fact 6.1 and choice of n. O

Finally, we discuss the question of whether fim measures are closed under the
Morley product. In [12], a negative answer to this question was claimed by the first
two authors, due to an example from [1] of a generically stable type p such that
p ® p is not generically stable. However, a gap in the proof was later noted by the
third author. In fact, we will show in Section 8.1 that the ambient theory defined in
[1] admits no nontrivial dfs measures. In an earlier draft of this paper, we further
claimed that fim measures are indeed closed under Morley products, but an error in
our proof was found by Silvain Rideau and Paul Wang. Thus the question remains
open, and so we close this section with some remarks on the underlying subtleties.

Suppose u € M, (U) and v € M, (U) are fim over some M < U. To analyze
the question of fim for p ® v, we consider a formula ¢(z,y,z) which, without
loss of generality, is over M. Let (0n(x1,...,20))52 and (Xn (Y1, -, Yn))o be
sequences of L-formulas obtained by applying the definition of fim to p and v
with respect to the relevant bi-parititions of ¢(x,y, z). If we let ¥, (z1,y1, ..., T, Yn)
denote the Ly-formula 6, (21, ..., 2n) A Xn (Y1, ..., Yn ), then it is not difficult to show
that lim,, .o (1 ® )™ (¢,) = 1 and, for any € > 0, if n is sufficiently large then
u@v 2% Av(a;,b;)i j<n for any (@, b) = 1,. However, this does not (a priori) imply
the same conclusion for Av(a;,b;);<n, which would be needed to conclude p ® v is
fim using this argument. Indeed, despite obtaining arbitrarily good approximations
along the full array (a;,b;)ij<n, there could be very different behavior on the
‘diagonal’. This suggests that perhaps the original intuition from [1] is correct after
all, and counterexamples may exist in sufficiently complicated theories. Such issues
will be considered in future work, along with other questions about fim measures
and generic stability.

7. EXAMPLES: dfs AND NOT fam

One of the main questions left open in [12] was on the existence of a global
measure that is dfs but not fam. What was done in [12] was a local version of this
phenomenon. Specifically, it was shown that for any s > r > 3, if T}, 5 is the theory
of the generic K!-free r-uniform hypergraph (where K7 is the complete r-uniform
hypergraph on s vertices), then there is a formula ¢(z,y) and a ¢-type in S, (U)
that is dfs and not fam with respect to ¢(x,y). However, it is also proved in [12]
that this type cannot be extended to a dfs global type (or measure).
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The goal of this section is to construct complete theory with a dfs global type
that is not fam. Our theory, denoted 77, will be much more complicated than T;.
(although the proof of dfs and not fam will be easier in some ways). Therefore,
we will first construct a less complicated theory Ty, with a complete quantifier-free
type qo that is dfs and not fam. We will then note some problems that arise when
investigating quantifier elimination for 71, which, in particular, suggest that finding
a complete dfs extension of qg is likely to be difficult, if not impossible. This will
motivate the construction of 777, a complicated variation of 71, which admits a
global complete type ¢ that is dfs and not fam. We will also construct a definable
measure g in 777 that does not commute with ¢ (as promised in Example 5.9).

7.1. Sets that are half full. In this section we define T%,. This theory seems to
represent the paradigm for the combinatorial separation of dfs from fam. We will
work with the interval [0,1). Given n > 1, let Z,, = {[=1, L) : 1 < i < n}.

Let £ = {P,Q,E} where P and @Q are unary sorts and E is a binary relation on
P x @. Define an L-structure My, such that

* P(M.y,) is the interval [0,1),
* Q(M.y,) is the set of subsets of [0, 1) obtained as the union of exactly n distinct
intervals in Zy,, for some n > 1, and

x* EM2 i the membership relation.

Note that any set in Q (M) has Lebesgue measure %

Define Ty, = Th(My,). Let U > M., be a monster model. Define

w(y) ={a Ey:ac PU)}.
Note that g0 | y # b for all b € Q(U). So qo determines a unique complete
quantifier-free type, which is @-definable with respect to quantifier-free formulas.

Proposition 7.1. qq is finitely satisfiable in My, but not finitely approximated in
My, with respect to x E y.

Proof. We first show ¢q is finitely satisfiable in M,. Fix aq,...,a, € P(U). We
need to find some b € Q(Mys) such that a; £ b holds for all 1 < i < n. Let
bi,...,br € Q(Mys,) enumerate the sets obtained as the union of exactly n intervals
in Zy, (so k = (27?)) Then M., satisfies the Ly, ,-sentence saying that for any n
elements from P, there is some b; containing them.

Now we show that qg is not finitely approximated in My, with respect to = E y.
Fix a tuple b € Q(M,)". We find a € [0,1) such that {1 <i<n:aE b} < 2.
Define f:[0,1) — {0,1,...,n} such that f(a) = {1 < i < n :a E b}, ie,
f =31 ,1. Then f is integrable and we have

1 1 n n 1
n
fdx:/ 1y, do = / 1, de = —.

So there is some a € [0,1) such that f(a) < %, as desired. O

Altogether, qg is a complete quantifier-free global type, which is both @-definable
and finitely satisfiable in My,. By @-definability, we conclude that gy is finitely
satisfiable in any small model, but not finitely approximated in any small model.
However, the theory Ti, does not have quantifier elimination. For example, we
can define relations on @ of the form f(z) = g(g) where f and g are terms in the
language of Boolean algebras. A natural route to a theory with reasonable quantifier
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elimination might involve replacing Q(M.,) by a suitable Boolean algebra. But,
as we show in the next section, this would cause problems for finding nontrivial
dfs types. Therefore we will abandon T1,, and replace it with a more complicated
theory that is able to sidestep the obstacles created by Boolean algebras.

7.2. Interlude on dfs types in Boolean algebras.

Proposition 7.2. Let T be the complete theory of a Boolean algebra, and suppose
p € S1(U) is dfs over M <U. Then p is realized in M.

Proof. We use the symbols LI, M,¢, T, L, and C to denote the join, meet, comple-
ment, top element, bottom element, and induced partial order, respectively. Choose
L -formulas ¢(y) and ¥ (y) such that, given ¢ € U, we have p = x C ¢ if and only
if p(c), and p = ¢ C z if and only if ¢(c). By [12, Proposition 2.9], we may assume
©(y) is a Boolean combination of formulas of the form a C y for a € M, and ¢(y) is
a Boolean combination of formulas of the form y C a for a € M. So we can choose
a1,...,0k,01,...,bp € M and finite sets X1,..., Xy, Y7,...,Yr C M such that

k
) =V ((ai Cynr N\ ~(mC y))

meX;

((y Co)n N\ ~(yE n))

ney;
Note that both ¢(y) and ¢ (y) are consistent since we have ¢(T) and ¢(L). So we
can discard any inconsistent disjuncts in either formula. It then follows that ¢(a;)
holds for all 1 < ¢ < k, and ¢(b;) holds for all 1 < i < . Sop = a C a; for all
i<k,andpkEb Caforalli</{ Thusifa=aiM...Mar and b="by U...U by,
then we have p = b C z C a.

Since p is consistent, we know that b C a. Moreover, for any cc U, if bC cC a
then —¢(c) A —p(c) holds, and so p = =(x E ¢V e C x).

Let B={me M :bC mLC a}. We view B as a Boolean algebra, with bottom
element b and top element a. We will show that |B| < 2, from which it follows
that M = —3z(b C « C a), and so p must be realized by a or by b. Toward a
contradiction, suppose |B| > 2.

Let P be an ultrafilter over B. Then the type {b T T m : m € P} is
finitely satisfiable, and thus realized by some ¢ € U. Note that b C ¢ C a. Let
d=>bU(anc) (ie., d is the complement of ¢ in B({)). Then b C d T a as well.
Therefore p = (b C z C a) A —=(c C z) A =(z C d). So we can find some m € M
realizing this formula. Then m € B since b T m C a. Since (¢ C m), we must
have m ¢ P. So bl (aMmc) € P, and so ¢ C b (a MmS). It follows that m C d,
which contradicts the choice of m. (]

After relativizing the previous argument, we have the following conclusion.

Corollary 7.3. Let T be a complete theory, and suppose p € S,(U) is a global
type, which is dfs over some M < U. Given an Lyr-formula p(x) € p, if there is
an M -definable Boolean algebra on o(M™), then p is realized in p(M?®).

Remark 7.4. We briefly note that one can construct measures in Boolean algebras
that are nontrivial in the sense of Definition 8.1. (This was posed as a question in a
preliminary version of the paper.) In particular, let ABA be the theory of atomless
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Boolean algebras, and fix U = ABA. We construct a nontrivial dfs (in fact, smooth)
measure o € My (U).

Say that an Ly-formula ¢(z) (in a single free variable) is convex if whenever
©(a) holds, ¢(c) holds, and a T b C ¢, then () holds. It is not too hard to show,
using quantifier elimination for ABA, that every formula in a single free variable is
equivalent to a (finite) disjunction of convex formulas.

Let H be the Boolean algebra of subsets of [0, 1) generated by half-open intervals
of the form [a,b) with 0 < a < b < 1. Note that H is an atomless Boolean algebra.
We will regard H as an elementary sub-structure of . Given an Ly-formula ¢(z),
we define X (¢) = {r € [0,1] : U = »((0,7])}.

For any convex Ly-formula ¢(z), it is easy to see that X(¢) is an interval.
Therefore, for any Ly-formula ¢ (z), we have that X (¢) is a finite union of intervals
and is thus Lebesgue measurable. Define a measure o by setting o(1(x)) equal to
the Lebesgue measure of X (¢). Then o is clearly not a trivial measure. Moreover,
o is the unique global extension of o[H (this follows using an argument analogous
to the proof that Lebesgue measure restricted to the interval [0,1] is smooth in
DLO).

7.3. Amalgamated Boolean algebras. In this section, we construct a theory,
denoted 775, which admits a complete dfs global type that is not fam. This theory
will be obtained from T4, by making various modifications, which are guided by two
opposing forces. On the one hand, quantifier elimination is made easier by working
with a richer structure in the @ sort, such as a Boolean algebra. So we start with
the Boolean algebra H from Remark 7.4, i.e., the sub-algebra of P([0, 1)) generated
by half-open intervals [a,b). On the other hand, Corollary 7.3 tells us that using H
in the @ sort will destroy any chance of obtaining a nontrivial dfs type. In order
to fix this issue, we will replace H by a certain algebraic lattice, denoted Q, which
will be obtained by taking infinitely many disjoint copies of H and identifying all of
the top elements and all of the bottom elements. By doing this, we will be able to
construct a complete global type, which is built from the same local instance of dfs
and not fam found in Ty, but is also able to avoid concentrating on any ‘standard’
Boolean algebra defined in U, and thus maintain dfs globally.

We now work toward the definition of 77, starting with a precise description of
Q (which, in fact, will be a lattice with a complement operator). First, let H be as
defined above, and set Ho = H\{2,[0,1)}. Set @ = (N x Ho) U {L, T}, where L
and T are new symbols. Define the structure (Q, M, L, ¢, 1, T) as follows.

* Given m,n € Nand X,Y € Hg,
XnYy) ifm=

(m, X) 11 (n,¥) = { X OY)iEm=n

€ if m #n,

’ ’ T lfm#n, and
(m, X)¢ = (m, [0, 1)\ X).
x Given b € Q,

1nb=bnl=1 4 Lub=bul=b
ThNb=bnT=0b " Tup=buT=T.

* 1°=Tand T = L.
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In fact, Q is an orthocomplemented lattice; however, general familiarity with such
structures will not be necessary, and the reader will only need the definition above.
We let Qg denote O\{L, T} =N x H,.

The next goal is to describe the set that will play the same role held by [0,1) in
the P sort of Th,. Since Q is not a Boolean algebra of subsets of some ground set,
we first need to define an analogous notion of ‘membership’ in elements of Q.

Definition 7.5. Define a binary relation £ on [0,1)Y x Q such that a £ b if and
only if either b= T or b= (n,X) € Qp and a(n) € X.

In order to obtain quantifier elimination for 77, we will not use [0,1)Y in the
P sort, but rather a countable subset S satisfying certain properties (described in
Lemma 7.8 below). We first need some terminology.

Definition 7.6. A cube is a nonempty subset of [0, 1) of the form C' = [T, c[@n, bn)
with a, = 0 and b,, = 1 for all but finitely many n € N. If, moreover, a,, and b,
are rational for all n, then C is a rational cube.

The following facts, which will use later on, are easy to verify.

Fact 7.7. Let B be the Boolean algebra on [0,1)N generated by sets of the form

{a€[0,1)N:aEb} for allb € Q.

(a) B is the same as the Boolean algebra generated by cubes.

(b) Ewery element of B can be written as a disjoint union of finitely many cubes.

(c) Suppose f:[0,1)N = R is a finite linear combination of indicator functions of
sets in B. Then f can be written as ), milc,, where {C;}icy is a partition
of [0, 1) into disjoint cubes and each r; is in the image of f.

Lemma 7.8. There is a countably infinite set S C [0,1) such that:

(i) S nontrivially intersects any cube in [0,1)Y, and
(1) the map (a,n) — a(n) from S x N to [0,1] is injective.

Proof. Let {Cy}sen be an enumeration of all rational cubes. We will build the set
S = {as}een in stages. At stage £, pick a, € [0,1)" so that

(1) ap € Cy,

(2) ag is an injective map whose range is disjoint from those of a; for each i < £.

Since at each stage we have only used countably many elements of [0, 1), it is clear
that we can always make such a choice of a,. Now, since any cube in [0, 1) contains
a rational cube, we have condition (7) of the lemma by part (1) of the construction.
Condition (i7) of the lemma follows from part (2). O

We now have all of the ingredients necessary to define 777. In order to mimic the
behavior in Proposition 7.1, we need to be able to pick out sets in Q of ‘measure’
%. With an eye toward quantifier elimination, we will add a third sort R for the
ordered group of reals, and a unary function from @ to R for the appropriate

measure. Altogether, we define £ ={P,Q, R, E,~,¢,M, 1, ¢, L, T,+,<,0,1} where
P, @, and R are unary sorts,

E is a binary relation on P X @,

~ is a binary relation on @,

¢ is a unary function from @ to R,

{M,, ¢, L, T} is the language of ‘lattices with complements’ on @, and

* X X X ¥
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x {4, <,0,1} is the language of ordered abelian groups on R, with an additional
constant symbol 1.

Now let A denote the Lebesgue measure on [0,1). We define an L-structure M7S
via the following interpretation of L.

P(M:2) is a fixed set S C [0,1)N as in Lemma 7.8.

(Q(M9), MU, ¢, L, T)is (Q,M, L, <, L, T).

(R(M%),+,<,0,1) is (R, +, <,0,1).

E is as described in Definition 7.5 (but restricted to P(M73) x Q).

If b,c € Q(M:Y), then b ~ ¢ holds if and only if b and ¢ are both in Qy and have
the same first coordinates.

*

* X X ¥

AX) ifb=(n,X)eNx%H,
If b e Q(M) then £(b) =<0 if b= 1, and
1 ifo=T.
Finally, we define 779 = Th(MY).
Let U = M35 be a monster model. For the rest of this section, we let y denote
a variable (of length one) in the @ sort. Define

a(y)={aEy:aec PU}IU{ly) =35} U{y£b:beQU)}.
We now observe that ¢ is a partial global type exhibiting the same behavior found
in Proposition 7.1.

*

Proposition 7.9. q; is finitely satisfiable in Mg, but not finitely approzimated in
M3 with respect to the formula ¥(y,z) = (z E y) A (((y) = 3).

Proof. We first show ¢; is finitely satisfiable in MpY. Fix ai,...,a, € P(U) and
bi,....bm € Q(U). We need to find some ¢ € Q such that ¢(c) = 3, a; E ¢ holds
forall 1 < i < mn, and ¢ ¢ b; for all 1 < i < m. Fix s € N such that, for all
1<i<m,b; # (s,X) for any X € Ho. Let X1,..., X € Hop enumerate the sets
obtained as the union of exactly n intervals in Zs,, and consider ¢; = (s, X;) € Q
for ¢ < k. Then by construction there exists some t, < k such that U = a; E ¢,
for all 1 <i < n, as desired.

Now we show that ¢; is not finitely approximated in M7y with respect to ¥ (y, ).
Fix a tuple b € Q". We find a € P(M%) such that [{1 < i < n:(b,a)}| < 2.
Without loss of generality, we may assume £(b;) = % forall 1 < i < n. Let AN
denote the measure on [0,1)" obtained from the product of A on [0,1). Define
f:100,1)N —{0,1,...,n} such that f(a) = {1 <i<n:aE b} Given 1 <i<n,
set B; = {a € [0,1)Y : a E b;}. Then each B; is \N-measurable, with \Y(B;) =
0(b;) = %, and f =7 1p,. Therefore f is AN-integrable and

n n n
faxy = / 1p, d\Y = / 1p,d\Y = —.
/[o,l)N Z ; [0,1)% 2

(L5 R

By Fact 7.7, f = EK,C rjlc, where {C}} <k is a partition of [0, 1)N into disjoint

cubes and each r; is in {0,1,...,n}. So it must be the case that r; < % for some
j < k. By our choice of P(MY), there must be some a € P(M7y) N C;, which
therefore has f(a) < %, as desired. O

We now turn to the main goal, which is to show that ¢; extends to a complete
global type in Sq(U) that is dfs and not fam (here Sg(U) denotes the space of
complete global types concentrating on the @ sort). In fact, we will show that ¢;
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determines a unique complete type in Sqo(U) and that this type has the desired
properties. The first step is quantifier elimination.

Theorem 7.10. 177 has quantifier elimination.

The proof of the previous theorem is rather involved and so, to avoid stalling the
primary exposition, we have cordoned off the details in Section A.3 of the appendix.
So let us now continue toward the main goal.

Lemma 7.11. For any L-formula ¢(y, Z), there is an L-formula ¥ (Z) such that,
for any b € U?, if U = (D) then g1 |= ¢(y,b), and if U |= —~)(b) then q1 = —(y,b).
Proof. Let Lo and Lg denote the restrictions of £ to the @ and R sorts, respec-
tively. We first claim that, for any Lg-term t(y, z), there is a term s(y, z) of the
form y, ¥, or u(2) such that q |= t(y, b) = s(y, b) for all b € UZ?. Indeed, this can be
proved by induction on terms. The main point is that, for any b € U, 1 = y # b,
andsoq = (yMb=1L)A(yUb=T).

Now we prove the lemma. It suffices to assume ¢ is atomic. We consider cases.

Suppose p(y, z,x) is « E t(y, Z) where t(y, 2) is an Lg-term. Let s be as in the
initial claim. If s is y, let ¥(Z,2) be x = z. If s is ¢, let ¥(Z,z) be x # x. If s is
u(z), let ¥(z,x) be z £ u(Z).

Suppose ¢(y, Z) is t1(y, Z) < ta(y, Z) where t1,t2 are Lo-terms and < is = or ~.
Let s; and sz be as in the initial claim. If s1,s2 € {y,y°}, then let 1(2) be z = z
if 1 and sy are the same or < is ~, and let ¥(z) be z # z otherwise. If s; and s9
are u1(z) and us(2), let ¥(Z) be ui(Z) < ua(z). Otherwise, let ¥(Z) be z # Z.

Finally, suppose ¢(y,z, @) is f({(t1(y, 2)), ..., L(tn(y,2)), @) < 0 where < is =
or <, each t; is an Lo-term, and f(vi,...,v,,w) is an Lr-term. Let s1,...,s,
be as in the initial claim. Recall that ¢ = ¢(y) = £(y°) = 3. Let v;(z) be either
1, if s is y or ¥, or £(u;(2)) if s; is u;(2). Then we may take (2, w) to be
f(01(2),...,v,(2),@) < 0. O
Corollary 7.12. There is a unique complete type q € Sq(U) extending ¢1. More-
over, q is F-definable and finitely satisfiable in any small model, but is not fam.

Proof. By Lemma 7.11, there is a unique type ¢ € Sq(U) extending ¢1, and ¢ is
@-definable. By Proposition 7.9, ¢ is finitely satisfiable in M{S (in particular, for
any () € ¢ there is some ¥ (z) € ¢; such that ¢ (z) implies ¢(x)), but not fam
over MPS. Since ¢ is @-invariant, the same is true over any small model. O

7.4. Failure to commute. Let U |= T7%. In this section, we construct a definable
measure u € Mp(U) that does not commute with the dfs type ¢ € Sq(U) from the
last section. This justifies the claim made in Example 5.9. Throughout this section,
z and y denote tuples of variables of length one in the P and @ sorts, respectively.

Recall that in the standard model MY of Ty7, the set P(M5Y) is a subset of
[0, 1), which is equipped with the product-Lebesgue measure \. Now suppose
p(x) is an Lzg-formula in the P sort. By quantifier elimination, the subset of
P(M;3y) defined by ¢(x) differs by finitely many elements from a set of the form
P(M35) N U, <, Cs, with each C; a cube. Furthermore, the set J,_,, C; is uniquely
determined by ¢(z). The map from M;g-definable subsets of P(M:S) to sub-
sets from [0,1)" defined by taking each ¢(z) to the corresponding |, C; is a
Boolean algebra homomorphism. Let A* be the pullback of AN along this homo-
morphism. Then \* is automatically a finitely additive probability measure on the
M -definable subsets of P(M7Y), so it is an element of Mp(M7Y).
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Lemma 7.13. There is a unique &-definable measure y € Mp(U) extending \*.

Proof. Let M = M7y. The proof amounts to showing that A\* € Mp(M) is “@-
definable”. This notion of definability for Keisler measures over small models is
similar to that for global measures. See Section A.4 of the appendix for details. We
will apply Remark A.22 and Theorem A.24. Fix an L-formula ®(z;w,y, zZ) which
is a conjunction of atomic and negated atomic formulas, where w is of sort P, 7 is
of sort Q, and % is of sort R. Define the map f.: (b,¢,d) — A\*(®(z;b,¢,d)) from
M™% to [0,1]. We want to show that fy. has an @-invariant continuous extension
to Sgyz(M) (see also Definition A.18 and surrounding discussion).

Write ®(x;w, 7, 2) as p(x,g) A O(x, @) A x(w,y, Z) where:

x x(w,y, Z) is some L-formula not mentioning x,

* O(z,w) = A\, (z =; w;), where =; is = or #, and

* o(x,y) = Ni_y(z E; t:(y)), where E; is E or #, and each t;(Z) is an Lo-term.
If some =; is = then ffl is identically 0, in which case our task is trivial. So we
may assume that each =; is #. In this case, we have fy. = (f{. o p)1,, where
p: M™¥% — MY is the subtuple map. So it suffices to show that f{. has an -
invariant continuous extension to Sy(M).

Let ~* denote the equivalence relation on () obtained from ~ by making T and
| singleton classes, i.e., y ~* ¢ iff (y ~y)V(y =9 =T)V(y =y = L). Note that
~* is @-definable. Let ¥ denote the set of partitions of [n]. Given o € X, let 6, ()
be the conjunction of ¢;(y) ~* t;(y) for all o-related i,j € [n], and ¢;(y) #£* t;(7)
for all o-unrelated i, j € [n]. Let ¢, (z,7) be the L-formula ¢, (z,7) A 0,(7). Then
[ =2 pex [x . Soit suffices to show that each f{7 has an @-invariant continuous
extension to Sz(M).

Now fix 0 € ¥, and let 0 = {o1,...,0%}. For 1 < j <k, define the Lo-term

. ti(g), E; is E
Uj (y) = lle_al {tz(g)c7 £, is g} )

and let ¢j(z,9) be the L-formula x £ u;(7). Then, for any b € MY, we have

k k
£ (0) = M (e(a,0) = [ [ tlws () = ] £3:.0)
j=1 j=1

(note that here we are suppressing compositions with “subtuple” functions, as in the
first reduction from ® to ¢). So it suffices to show that each ffi has an @-invariant
continuous extension to Sz(M). For this, we apply Fact A.19. In particular, fix
1<j<kande<¢in|0,1]. Let ¢;(y) be the L-formula £(u;(y)) < «, where
a € (g,0) is rational. Then

{Be M FS(B) < a} C (M) C {Be M F5(b) < 5},
as desired. O

Now, since p and p are both definable, we have the Morley products p ® g and
q ® p, which are also both definable.

Proposition 7.14. (1 ®@q)(z Ey) =3 and (@ p)(z Ey) = 1.

Proof. Note that FEM is the constant function 1, and so (¢ ® u)(z E y) = 1. On

the other hand, we have (1 ® q)(z £ y) = p(z € b) where b = q|azs. So £(b) = 3.
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For any ¢ € Q, if £(c) = % then p(z E ¢) = XA*(x E ¢) = 1. By Remark A.23, this
also holds for all ¢ € Q(U), and thus p(z E b) = 3. O

With Question 5.10 in mind, we point out that u is not finitely satisfiable in M7}
(and hence not in any small model). Indeed, if b = g|arpg then p(x # ) = 1 by the
previous proof, but « # b has no solution in MY by definition of ¢. In fact, any
dfs measure in M p(U) must be a sum of countably many weighted Dirac measures
at points in P(U). This assertion follows from an argument nearly identical to the
proof of [12, Theorem 4.9], together with the following genericity property in M-
For any finite disjoint sets A, B C P(M;yy), there is some ¢ € Q(M7S) such that
aEcforalla € Aand b # cfor all b € B (indeed, by construction of P(M7Y),
such an element ¢ can be found in {n} x Hy for any n € N).

Note that Lemma 7.13, Proposition 7.14, and Proposition 5.17 provide another
demonstration that the type ¢ is not fam. By Theorem 5.7, we also have the
following conclusion for \*.

Corollary 7.15. No definable extension of \* in Mp(U) commutes with q. In
particular, \* has no smooth (or even fim) global extensions in Mp(U).

Remark 7.16. Furthermore, the restriction of A* to the language Lpg is an ex-
ample of a measure with no definable extension (and is the first such example that
we are aware of). Let Ap be this restriction. Assume that A% has some definable
extension v over some N = Mpg. Then we must have some £n-formula ¢ (y) such
that for any b € PV, if v(z £ b) < % then ¢ (b) holds, and if v(z E b) > 2 then
(b) fails to hold. This implies that for any b € PMre if X\p,(z £ D) < % then
¥(b) holds, and if v(x £ b) > 2 then v(b) fails to hold.

Find a ~-class C' in M pg such that no parameter of 1) is contained in C'. Let A be
the set of P-parameters in 1. For each a € A, we can find b, € C such that a £ b,
and A\pg (2 E by) < ﬁ. By construction, we have that Apg(z £ [ e ba) < 1.
Therefore, we can find ¢ and d in C with Ap(z E ¢) < 3 and A\pp(z E d) > 3
such that ¢ and d are disjoint from every b,.

By quantifier elimination (Proposition A.15), ¢ and d have the same type over
A, hence U |= 1(c) > p(d). But A\pg(z E ¢) < 1 and Apg(r E d) > 2, which is a
contradiction. Therefore Ap, has no definable extensions.

Remark 7.17. We showed above that ¢ does not admit fam approximations for
U(y,z) = (z E y) A ({(y) = 3) within error 3 (i.e., AVZy)5(q,9) = @ for all n).
Given a fixed rational € € (0,1), let g be the result of replacing % with € in the
definition of g¢;. Then similar arguments show that ¢. determines a complete dfs
type, with no fam approximations for (x £ y)A(¢(y) = €) within error 1—¢. In other
words, one can construct arbitrarily terrible failures of fam approximations for a dfs
type. This is in contrast to the result for 7). , from [12], mentioned at the beginning
of this section, which produced a dfs local p-type with no fam approximations for
¢ within error (r — 1)!/(r — 1)" %

The previous modification also results in a more severe failure of symmetry in
that we obtain (4 ® ¢.)(z E y) = ¢ and (¢- @ p)(z E y) = 1.

Finally, we reiterate that 77 is much more complicated than 7)., both in its
construction and with respect to its classification in neostability. In particular, T} g
is supersimple, while 777 interprets the theory of atomless Boolean algebras and
thus has TP, and SOP.
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Question 7.18. Is there a simple theory T and a global type p € S, (/) such that
p is dfs and not fam?

In general, it would be interesting to find less complicated examples of complete
theories separating dfs and fam, even at the level of measures.

8. EXAMPLES: fam AND NOT fim

In this section, we discuss examples of Keisler measures that are fam and not
fim, starting with a re-examination of some examples given in [12]. We first note
in Section 8.1 that one of those examples relied on an erroneous claim from [1],
and we show that in fact the ambient theory in this example has no nontrivial dfs
measures. So this reduces the previously known examples of theories with fam and
non-fim measures to essentially one family, namely, the generic K,-free graphs for
some fixed s > 3. In Section 8.2, we will develop more features of this example,
and then give a correct proof of a certain result from [12]. Finally, we will show
that in the reduct of 777 obtained by forgetting the measure ¢, the corresponding
reduct of the dfs and non-fam type in Section 7.3 becomes a new example of a fam
and non-fim complete type.

8.1. Parameterized equivalence relations. Let T, , denote the model comple-
tion of the theory of parameterized equivalence relations in which each equivalence
class has size 2. In [1, Example 1.7], it is claimed that this theory admits a generi-
cally stable (and thus fim) type p € S1(U) such that p(® is not generically stable,
and this was elaborated on in [12, Section 5.1]. However, it turns out that the type
p suggested in [1] is not well-defined (see Remark 8.6 for details). Here we show
that, in fact, there are no nontrivial dfs measures in T7, ,. We first recall some
definitions. Let T" be a complete L-theory with monster model U.

Definition 8.1. A measure 1 € 9, (U) is trivial if it can be written as Y~ 7,04,
where a,, € U* and r,, € [0,1], with >"°7 ;r, = 1. We say that T is dfs-trivial if
every dfs measure is trivial.

Note that a type p € S, (U) is trivial if and only if it is realized in U*. Tt is clear
that any trivial measure is fim. The following result was implicitly claimed in [12],
but the proof used an unjustified assumption involving localization of measures,
namely, [12, Remark 4.2]. In reality, the argument only requires a very weak version
of this remark, which is easily proved. So we clarify the details.

Proposition 8.2. A theory T is dfs-trivial if and only if for every x of length one
and every dfs measure p € M, (U), there is some b € U such that p(x =b) > 0.

Proof. Asnoted in the proof of [12, Proposition 4.3], the forward direction is trivial.
For the reverse implication, assume that for every x of length one and every dfs
measure j € M, (U), there is some b € U such that p(z = b) > 0. To show that T is
dfs-trivial, it suffices by [12, Proposition 4.5], to show that for any x of length one,
every dfs measure in 9, (U) is trivial. (The cited result from [12] works in a one-
sorted setting for simplicity; however the proof is by induction on the length of a
tuple of variables, which need not be all in the same sort for the argument to work.)
For this, it suffices by the proof of [12, Proposition 4.3], to show that for an arbitrary
variable tuple Z, dfs measures in Mz (U) are closed under the following special case
of localization. In particular, suppose p € Mz(U) is dfs, and let X = Sz(U)\S
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where S is a fixed countable set S C Sz (U) of realized types, with u(S) < 1. Let
o be the localization pg of p at X, i.e., uo(¢(z)) := p(p(z) N X)/p(X). Then we
claim that pg is dfs.

Fix M < U such that p is dfs over M, and any type in S is realized in M.
We show that pg is dfs over M. We may assume that p(S) > 0, since otherwise
o = p. It is clear that po is finitely satisfiable in M. Consider the trivial measure
o= ﬁzaes w(T = a)dz, which is definable over M. Set r := u(X), and
notice that g = rug + (1 — r)pr. So for any L-formula ¢(Z, ), we have F;fo,M =
%(FZM — (1 =7)E7 ), and thus F ,, is continuous since it can be written as a
linear combination of continuous functions. Therefore g is definable over M. [

Remark 8.3. For the sake of clarifying the literature, we note that Proposition
8.2 (and its proof) can be used in place of Remark 4.2 and Proposition 4.3 in [12]
to recover the proofs of Theorems 4.8, 4.9, and 5.10(a) in [12]. The only other use
of Remark 4.2 in [12] is in the proof of Theorem 5.10(b), which we address in the
next subsection (see Theorem 8.10 and preceding discussion).

Next, we describe a way to lift a dfs measure to an imaginary sort. Suppose
E(x,y) is a definable equivalence relation on #. We extend E to tuples from U™
in the obvious way. We view U/FE as a structure in a relational language £y such
that for any E-invariant formula ¢(z1,...,z,), we have an n-ary relation symbol
R, interpreted as p(U™)/E. Note that any quantifier free Lo-formula is equivalent
to R, for some equivariant ¢.

Now suppose we have a dfs measure g in 9 (U). Given an E-invariant formula
o(x;y1, ..., Yn) and by, ..., by, € U/E, define p1o(Ry(x; b1, ..., bn)) = ple(z; b3, ..., b%)),
where b} is a representative of b; in U.

Proposition 8.4. g is a dfs measure on quantifier-free Lo(U)-formulas.

Proof. First note that 11o(Ry(z;b1,...,by)) does not depend on the choice of repre-
sentatives by F-invariance, and so pg is well-defined. From there one easily shows
that po is a finitely-additive probability measure on quantifier-free Lo (U)-formulas.

Fix M < U such that p is dfs over M. We show that ug is dfs over M/E. First,
fix some Ry (x;91,...,Yn) and by,..., b, € U/E, with po(R,(z;b1,...,b,)) > 0.
Then there is a € M such that U = p(a;bf,...,b%). So [a]lg € M/E and U/E =
Rg,([a]E; bl, ceey bn)

Finally, fix an E-invariant formula ¢(z;y1,...,y,) and some £ > 0. Define

X ={be U/E)": po(Ry(x;b)) < e}.

Then X = Y/E where Y = {b* € U™ : p(p(x;b*)) < €}. Since p is dfs over M,
there is a small collection {¢;(7;Z) : @ € I} of Boolean combinations of ¢*(7;x;),
and tuples a; from M, such that Y = (., ¥s(U;a7). Let a; = [a;]g. Then we
have X = (,c; Ry, (U/E;a;). Therefore yig is definable over M. O

We now return to 7%, . This theory is in a two-sorted language £ with sorts O
and P, and a ternary relation E,(z,y) on O, x O, X P,. Then Tf*eq2 is the model
completion of the £-theory asserting that for any z, E.(z,y) is an equivalence rela-
tion in which all classes have size 2. We have quantifier elimination after expanding
by the function f: P x O — O such that, for any z € P, the induced function
f-: O — O swaps the two elements in any F,-class.

Theorem 8.5. TY, , is dfs-trivial.
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Proof. Suppose not. By Proposition 8.2, there is some dfs pu € 9 (U) such that
uw(x = b) = 0 for all b € U. Fix a parameter e € P(U). Let E(z,y) be the
equivalence relation on U which coincides with E.(z,y) on O(U) and equality on
P(U). Let pp be the (quantifier-free) dfs measure induced on U/E as above. Then
po(x =b) =0 for any b € U/E. Indeed, if b = [b*]g for some b* € U then, since
[b*] £ is finite, we have po(z = b) = p(E(z,b*)) = 0.

Finally, we show that the theory T, of the random bipartite graph is a (strong)
reduct of U/E using Lo-formulas. Given this, we will obtain a contradiction to
dfs-triviality of T,y (see [12, Theorem 4.9]). We work with T4, in the language
of bipartite graphs with unary predicates U and V, and a binary relation R on
U x V. We interpret U = O(U)/E and V = P(U)\{e} (note that both O(x) and
P(x)A\z # e are E-invariant). We then interpret R(z,y) on U xV as R, (z, y)A\y # e
where ¢(z,y) is the formula f.(x) = f,(z). To check that ¢(x,y) is E-invariant,
note that if b € P(U) and a,a’ € O(U) are distinct and E-equivalent, then

fela) = fola) & d =fila) & a=fild) & fd)=fild).

Let us now verify that (U, V; R) |= Tyg. First, fix finite disjoint sets X,Y C U.
We want to find some b € V such that R(x,b) holds for all z € X and —R(y,b)
holds for all y € Y. Without loss of generality, assume Y = {[a;] : i < n} where
nis even. Set Z = (J,cxuy * € OU). Then we have a well-defined partition
P =X U{{ai,a;} : {i,5} € S} U {{fe(azi), fe(azi+1)} : i < n/2} of Z into two-
element sets. So there is b € P(U)\{e} such that E} partitions Z according to P.
Then b satisfies the desired properties.

Now suppose X,Y C P(U) are finite and disjoint. We want to find some a €
O(U) such that R([a],x) holds for all z € X and —R([a],y) holds for all y € Y.
Since X U {e} is still disjoint from Y, there is a € O(U) such that f.(a) = fy(a)
for all z,y € X U{e}, and fy,(a) # fe(a) for all y € Y. Then a satisfies the desired
properties. O

Remark 8.6. In [12, Remark 5.2], it is claimed that any unary definable subset
of the object sort O of TF, , is finite or cofinite. This was used to justify the claim
in [1, Example 1.7] that 1%, » admits a global generically stable type p such that
p? is not generically stable. While p is not explicitly defined in [1], it is implied to
be the unique non-algebraic global type in O, the existence of which is equivalent
to the remark from [12] described above. But this remark is false, e.g., consider
instances of the formula ¢(z;y, z) given by f,(z) = f.(x).

8.2. Henson graphs. Fix s > 3 and let T denote the theory of the generic Ks-free
graph, in the language with a binary relation symbol E. Let U = Ts be a monster
model. By quantifier elimination, we have a unique non-realized type pg € S1(U)
containing —E(z,b) for all b € U. In [12], it is proved that pg is fam, but not
fim. The proof of fam was a combinatorial argument relying on growth rates of
certain Ramsey numbers. On the other hand, the failure of fim for pg is easy to
see (modulo the equivalence of fim and generic stability for types), since one can
clearly witness the order property for E(z,y) using Morley sequences in pg.

The first goal of this section is to show that pgr commutes with any invariant
measure in Ty (as promised in Example 5.19). First, we state a well-known Borel-
Cantelli-type result on finitely additive probability measures.
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Fact 8.7. For any e > 0 and k > 1, there is some § > 0 and n > 1 such that the
following holds. Let B be a Boolean algebra, and p a finitely additive probability
measure on B. Suppose x1,...,x, € B and u(x;) > € for all i € [n]. Then there is
a k-element set I C [n] such that pu([],c; i) > 6.

A standard consequence of the previous fact is that if p € 9, (U) is an M-
invariant measure (in any theory) and ¢(z) is an Ly-formula that forks over M,

then p(e(x)) =0.

Lemma 8.8. Suppose pn € My (U) is invariant over M < U. Then u(E(z,a)) =0
for some/any a = pg|u-

Proof. Consider the formula o(x,y1,...,ys—1) = /\15;11 E(x,y;). Then for any pair-
wise distinct aq,...,as—1 = pr|m, the formula ¢(x, a) forks over M by [11, Corol-
lary 4.8], and thus u(p(z,a)) = 0. Now let ¢ = p(E(x,a)) where a is some/any
realization of pg|y. Toward a contradiction, suppose € > 0. Let n > 1 and § > 0

be as in Fact 8.7, with & = s — 1. Choose pairwise distinct aq,...,a, = pg|m.
Then there is an (s — 1)-element set I C [n] such that u(p(z,ar)) > 6 > 0, which
is a contradiction. [l

Corollary 8.9. Suppose u € M, (U) is invariant. Then pp @ p= 1 Q pg.

Proof. Let v1 = pp ® p and vo = u ® pg. It suffices to show that v and v, agree
on formulas that are conjunctions of atomics and negated atomics. So fix such an
Ly-formula ¢(x, ), where |g| = n. Without loss of generality, ¢(z, ) is of the form
n n
N\ B (@, y) A\ (@ =i vi) A () AO(G)
i=1 i=1
where g; € {0,1}, E' is E, E° is =E, =; is either = or #, and ¥ (x) A §(j) is some
Ly-formula. Fix M < U such that ¢(x, ) is over M and p is invariant over M.
Given g € Sj(M), we have

¢ (q) = 0 if somee; =1, some =; is =, 0(§) & ¢, or Y(x) € p
P = N1 Gtherwise.

Therefore

vi(p(z,y)) = {

On the other hand, we have v2(¢(x,y)) = pu(e(a,y)), where a |= pgly. If some
g; = 1 then p(¢(a,g)) = 0 by Lemma 8.8. If some =; is =, then u(¢(a, 7)) = 0 since
a ¢ M and p is M-invariant. If ¢(z) & p, then clearly p(¢(a,y)) = 0. So we may
assume all ¢; are 0, all =; are #, and ¢(z) € p. Since u(—E(a,y;)) = pla #y;) =1
for all 7, we have ((a, 7)) = £(6(7)). So 1 (9(x,7)) = va((x, 7). O

In [12, Theorem 5.10], the first two authors made two more assertions about
Keisler measures in 7. First, it was claimed that a measure p € 0 (U) is dfs if
and only if it is fam, and in this case u is a convex combination of pr and a trivial
measure. Second, it is claimed that every fim measure in 9% (U) is trivial. As
indicated by Remark 8.3, both statements relied on an erroneous remark concern-
ing localization of measures, and the first statement is easily recovered using the
corrected proof of Proposition 8.2. On the other hand, the second result is more
complicated, and so we take the opportunity here to provide a correct proof.

0 if some ¢; = 1, some =; is =, or ¢¥(z) € p
w(0(g)) otherwise.
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Theorem 8.10. Any fim measure in My (U) s trivial.

Proof. Suppose p € My (U) is fim. By [12, Theorem 5.10(a)], we can write p =
rpg + (1 — r)v for some r € [0,1] and trivial v € 9 (). Toward a contradiction,

suppose r > 0. Set € = r/2 and fix n > ;2((11:2))' Since p is fim, there is a formula

O(z1,...,2,) such that u™ (A(Z)) > 1 — ¢ and if @ |= 0 then u ~F Av(a).
Fix M < U such that 6(Z) is over M and v is a weighted sum of Dirac measures
at points in M. By quantifier elimination, we may write

k
0(z) = \/ ()
t=1

where each 1;(Z) is a consistent conjunction of atomic and negated atomics. Given
1<t <k, call aset X C [n] t-good if ¥:(Z) does not prove a formula of the z; = b
for some i € X and b € M, or of the form E(x;,z;) for some i,j € X.

Suppose first that, for some 1 < ¢ < k, we have a t-good set X C [n] of size at
least en. Then we can find a realization a = 0(z) such that a;, ¢ M for all i € X,
and —E(a;, a;) for all 4, j € X. We may then choose b € U such that E(a;,b) holds
for all i € X and —E(b, m) holds for all m € M. Note that u(E(z,b)) = 0. On the
other hand, Av(a)(E(x,b)) > |X|/n > e, which contradicts the choice of 0(Z).

So now we can assume that for all 1 < ¢ < k, any ¢-good set X C [n] has size
strictly less than en. Given X C [n], set

X n—|X| e, i€X
rx =r W1 —r) and HX—®{ ; .
el ¢ X

By Fact 6.1 and choice of n, we have

pMO@) = > rxpx(@@) < Y rx+ > rxpx(0(@)

XC[n] XEPr.e(n) X€EPr(n)

<l-e4+ > rxpx(0(z)).
X€EPr(n)

Now fix X € Pro(n). Then |X| > rn/2 = en, and so X is not ¢-good for any
1<t <k Fix1<t<k. Then for any ¢, either 1:(Z) contains a conjunct x; = b
for some i € X and b € M, or a conjunct E(x;,z;) for some 4,j € X. In the first
case we have pux (¥¢(7)) < pux(z; = b) = pr(z; = b) = 0; and in the second case we
have pux (¢¥4(Z)) < pux(E(zi,z;)) = (pe @ pe)(E(z:, x;)) = 0. Altogether, we have
pux (Pe(z)) =0for all 1 <t <k, and so pux(0(z)) = 0. By the inqualities above, it
follows that u™(0(Z)) < 1 — e, which contradicts the choice of 6(Z). O

8.3. A new example of a famn and non-fim complete type. In this section,
we show that a certain reduct of the dfs and non-fam type built in Section 7.3 is
fam and non-fim. First, we prove a technical lemma regarding fam types in the
presence of quantifier elimination.

Lemma 8.11. Assume T has quantifier elimination, and fix p € Sy(U). Suppose
there exists a sequence of tuples (Cn)new such that for every atomic formula 0(x,7)
and every ¢ > 0 there exists N(g,0) so that for alln > N(g,0), p ~¢ Av(¢,). Then
p is finitely approzimated over any small model containing (¢p)new-
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Proof. We first note that for any formula ¢ (x,7) and any tuple @ of points in U*, we
have p ~¢ Av(a) if and only if p ~7¥ Av(a). Let v(z,7) = A\, 0;(x,7) where for
each j, the formula 6, (x,7) is either an atomic formula or the negation of an atomic
formula. Fix e > 0. For each 6,(x,7), choose N; = N(g/|J|,0;) as in the statement
of the lemma and fix n > max{N; : j € J}. First, assume that v(z,b) € p. For
each j € J, 0;(z,b) € p and so

Av(ea) (7(2,8) = 1 = Av(ea) (\/ ~5(2.5))

jeJ
> 13 Av(E) (6 5) > 1Y % —1-e
jeJ j6J| |

On the other hand, if =y(x,b) € p, then there exists some fixed j € J such that
_ i 0. B B - - _
0;(x,b) & p. Since p I Av(e,), we have Av(e,)(y(x, b)) < Av(E,)(0;(z,b)) <e.

Now assume that p(z,7) = \/,c; vi(2,7) where each v;(x,7) is as before (i.e. a
conjunction of atomic and negated atomic formulas). By the previous paragraph,
we can choose m € w so that for any ¢ € I, then p zz;m Av(¢,,). First, assume

that p(z,b) € p. Then there exists some fixed i € I so that v;(z,b) € p. So

AV (@) (p(x,b)) > Av(G)(7i(x,b)) > 1 — &. Finally, assume that —p(z,b) € p. So

for each i € I, we have that —y;(z,b) € p. Then, we have the following computation:

— - _ - €
AV(@n) (p(2,0)) < 3 AV(En)(i(x,B)) < |I|(m) —-. O
icl
Let Lpg be the reduct of the language described in Section 7.3 to just the P and
@ sort. Let ¢gpg(y) be the reduct of the type from Corollary 7.12 to the language
Lpg. By Proposition A.15, the reduct Tpg = T |Lpg has quantifier elimination.
From this it is not hard to show that ¢pq(y) is axiomatized the formulas

x a £y for every a € P(U),
x y#£ T, and
% y ot b for every b € Q(U).

By quantifier elimination for Tpq, and essentially the same arguments as in Section
7.3, gpg determines a unique @-definable complete type, which is finitely satisfiable
in any small model. However, we will now show that by dropping the measure sort,
gpg in fact becomes fam, but is still not fim.

Proposition 8.12. gpg is fam and not fim.

Proof. We first show fam. Fix n < w. For each i,j < n, we let d; ; = (i, [£, £21)) €
Q(M73) and define the tuple ¢, = (df ;)i j<n. We show that (¢,)n<. satisfies the
conditions of Lemma 8.11 with respect to the type ¢pg. By quantifier elimination
(Proposition A.15), we can then conclude that gpg is fam.

First, note that for any a € P(U), we clearly have Av(¢,)(a E y) = L. So the
conditions of Lemma 8.11 are satisfied for the atomic formula « £ y. Now consider
an atomic formula of the form ¢(Z,y) < s(Z,y) where < is either = or ~ and ¢ and
s are terms in the Q sort. For any tuple, b of elements of Q(U) it is not too hard
to see that if d is an element of Q(U) \ {T, L} that is not ~-equivalent to any b;,

then ¢(b,d) < s(b,d) holds if and only if ¢(b,y) < s(b,y) € gpg(y). Note that for



KEISLER MEASURES IN THE WILD 45

any tuple b of elements of Q(U), at most |Z| = |b| of the elements of ¢, can be ~-
equivalent to some b;. This implies that we always have Av(c,)(t(b,y) =< s(b,y)) >
":l\fl if gpg (y) satisfies t(b, y) < s(b,y) and Av(c,)(t(b,y) < s(b,y)) < lz] i arq(y)
does not satisfy t(b,y) < s(b,y).

Finally, we show gpq is not fim. Recall that for types, fim is equivalent to gener-
ically stable (see [12, Section 3]). Let (b;);<., be a Morley sequence in gpg(y) over
some set of parameters. Then b; ¢ b; for all ¢ # j. It follows (using compactness)
that for any I C w, there is an a; € P(U) such that for any i < w, a;y E b; if and
only if ¢ € I. Therefore gpg(y) is not generically stable and so not fim. O

9. CONCLUDING REMARKS

A recurring theme in the previous work is that, outside of NIP theories, the
study of Keisler measures is much more complicated and requires confrontation
with a greater amount of pure measure theory. We have also seen that much of the
aberrant behavior involving Morley products and Borel definable measures can be
found in a very straightforward simple unstable theory, namely, the random ternary
relation (see Proposition A.8 for another example of bad behavior in this theory).
This suggests that a coherent study of Keisler measures in simple theories may need
to focus on very different questions, as compared to NIP theories. On the other
hand, since our counterexamples were all built using a generic ternary relation,
perhaps it is possible to recover some good behavior in the setting of 2-dependent
theories (see [7] for the definition of k-dependence).

Question 9.1. Is the product of two Borel definable Keisler measures in a 2-
dependent theory again Borel definable? If so, does associativity hold for Borel
definable measures in 2-dependent theories?

Despite the bad news for Borel definability, our results on notions of ‘generic sta-
bility” for measures corroborate the philosophy of [12] that interesting results exist
outside of NIP. For example, we have shown further evidence that fim measures
are a sufficiently well-behaved class in general theories. Moreover, results such as
the weak law of large numbers continue to be effective tools for studying fim mea-
sures outside of NIP. However, these developments are somewhat dampened by the
fact that, while we have now found interesting and exotic dfs and fam measures
in independent theories, there is a concerning dearth of examples of nontrivial fim
measures. As for dfs and fam, our work in Section 5 shows that some nice behavior
can be recovered, and several interesting open questions remain. In particular, our
results further highlight the power of Keisler’s original result on the existence of
smooth extensions in NIP theories, and we have demonstrated that this phenome-
non remains powerful without a global NIP assumption. More specifically, we have
shown that several results about measures in NIP theories generalize to measures
in arbitrary theories, as along as one assumes that the measures in question admit
extensions with various properties exhibited by smooth measures.

APPENDIX .

A.1. Borel measures. Let (X,) be a measure space, i.e., X is a set and ¥
is a o-algebra of subsets of X. A function f: X — [0,00) is ¥-measurable if
fH(U) € X for all open U C [0,00). A ¥-measurable function on X is ¥-simple if
its image is finite.
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Fact A.1. If f: X — [0,00) is X-measurable then there is a sequence ()22 of X-
simple functions converging pointwise to f. Moreover, (f,)$2, converges uniformly
to [ on any subset of X for which [ is bounded.

Remark A.2. If f: X — [0, 1] is X-measurable, then in the previous fact one can
take f, = Z?:_ol L1p,, where B; = f((%,“]) for 0 < i < n — 1. Indeed, for any

n > 1, we have ||f — folloo < 2.

n

Now assume X is a compact Hausdorff space and X is the o-algebra of Borel
subsets of X. Let 1 be a Borel measure on X, i.e., a countably additive function
pu: X — [0,1] such that pu(@) = 0. We call 4 a Borel probability measure if,
moreover, u(X) = 1. Also, u is called regular if, for any Borel set B C X,

sup{u(C) : C C B, Cis closed} = u(B) = inf{u(U) : B C U, U is open}.

Given a continuous surjective map p: X — Y, with Y compact Hausdorff, and a
regular Borel measure p on X, the pushforward of ;i along p is the Borel measure
v on Y defined by v(B) = u(p*(B)) for any Borel B C Y.

Fact A.3. Suppose p: X — Y is a continuous surjective function between compact
Hausdorff spaces, and p is a reqular Borel probability measure on X. Then the
pushforward of 1 along p is regular.

Finally, we note some facts about totally disconnected compact Hausdorff spaces.

Fact A.4. Suppose X is a totally disconnected compact Hausdorff space, and let

be a regular Borel probability measure on X.

(a) If U C X is open, then u(U) =sup{u(K) : K C U, K is clopen}.

(b) If v is a regular Borel probability measure on X, and v(K) = p(K) for all
clopen K C X, then = v.

Proof. Part (a) is straightforward. Part (b) follows from part (a) and regularity. [

A.2. Measures on independent sets. The primary goal of this section is to
construct the measure defined in the proof of Lemma 3.11. We take a somewhat
broader approach of independent interest. Let B be a Boolean algebra, with join,
meet, complement, top element, bottom element, and induced partial order denoted
L, M, ¢ T, L, and C, respectively. Given X C B, let X¢ = {z¢: z € X} and,
assuming X is finite, let [1X =[] . x .

Definition A.5. A subset FF C B is independent if [|X M[]Y° # L for any
finite disjoint X,Y C F.

The following lemma is certainly well-known, but we were unable to find a suit-
able reference.

Lemma A.6. Suppose F' C B is independent, and let f: F — [0,1] be a function.
Then there is a finitely additive probability measure y on B such that, for any finite
disjoint X, Y C F,

p X ANY) = [leex f(2) - [Ley (1 = F(2)).

Proof. We first observe that we can reduce to the case that F’ is finite and generates
B. Indeed, given a finite subset ¥ C F', let Br be the sub-algebra generated by FE.
Suppose that for all finite £ C F', we have a finitely additive probability measure
ue on Bg satisfying the desired conclusion for all finite disjoint X,Y C E. We can
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extend each pp arbitrarily to some finitely additive probability measure uj, on B
(e.g., by [24]; see also [29, Theorem 3.7]). Then (u};) £ is a net in the compact space
of all finitely additive probability measures on B, and thus has a subnet converging
to some measure p with the desired properties.

So now assume F' is finite and generates B. Let n = |F|. Since F is independent,
B has 2™ atoms, which are precisely the elements of the form ax =[] X[ |(F\X)®
for X C F. A direct calculation show that the unique measure p satisfying u(ax) =
[Liex f(@)  IL.ep x (1 — f(z)) has the desired properties.

Thus we can view B as the event space of the experiment of flipping n indepen-
dent coins (identified with the elements of F'). If we assign 2z € F' the probability
f(x) of landing heads, then the resulting probability function is the desired finitely
additive measure on B. O

Corollary A.7. Let T be a complete theory with monster model U, and suppose
F C Def,(U) is independent. Then, for any f: F — [0, 1] there is some p € M, (U)
such that, for any finite disjoint X,) C F,

H (mAeX AN mBey ﬁB) = HAeX f(A) ’ HBey(l - f(B))
Proof. This follows directly from Lemma A.6. O

We now return to the theory Tr of the random ternary relation R, defined in
Section 3.3. Let U = T be a monster model. Let F be the collection of (positive)
instances of R in one free variable. Then F is independent by the extension axioms
for Tr. So we can apply Corollary A.7 with the constant % function to obtain a
measure A € My (U) such that if 6;(x),...,0,(z) are pairwise distinct (positive)

instances of R in one free variable, and v;(x) is either 6;(z) or =0;(x), then

MW (&) A A n(a)) = o

This finishes the construction of the measure defined in the proof of Lemma 3.11.

We can use a similar construction to justify a claim made after Example 5.12.
Fix any countably infinite set A C U. Define v € My (U) in the same way as A
above, except start by insisting that any instance of R involving only parameters
from A has v-measure 0, and all other instances of R have v-measure % Now view
v as a measure in M, (U). Fix a Bernstein set Z C S,,(A), and define p € S (i)
such that the positive instances of R in p are precisely those of the form R(z,b,c),
where tp(b, ¢/A) € Z. Note that p and v are A-invariant.

Proposition A.8. The type p is v-measurable over A, but not v-measurable over
any proper extension B D A.

Proof. Note that v|4 coincides with the unique type in S,(A) that contains the
negation of any instance of R involving y and parameters from A. So p is v-
measurable over A since any f: Sy(A) — [0, 1] is v|a-measurable.

Now fix a proper extension B D A, and fix some ¢ € B\ A. Let D = dp(R(x,y,c)) :
{¢ € Sy(B) : R(z,b,c) € pforsomeb = ¢q}. We claim that D is not v|p-
measurable, and thus p is not v-measurable over B. First, since ¢ € A, and A
is infinite, it follows that v|a. is strongly continuous (as in the proof of Lemma
3.11). Let p = pp 4, and let f: Sy(Ac) — S,.(A) be the natural inclusion map.
Then p(D) = f1(Z), and D = p*(p(D)) (by A-invariance of p). So, by Lemma
3.7, it suffices to show that f!(Z) is a Bernstein set in Sy(Ac). To see this, note
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that X = f(S,(Ac)) is a closed set in S, (A), whence Z N X is a Bernstein set in
X, and so f1(Z) is a Bernstein set in S, (Ac) as well. O

A.3. Quantifier elimination for 777. In this section, we prove that theory 77
defined in Section 7.3 has quantifier elimination (this was stated in Theorem 7.10).

Recall that H is the Boolean algebra on [0,1) generated by sets of the form
[a,b) with 0 < a < b < 1. Note that every element of H can be expressed as a
(possibly empty) finite union of half-open intervals of this form, and so in particular
‘H contains no singletons and is an atomless Boolean algebra. Recall also that A
denotes the Lebesgue measure on [0, 1).

We start with the following easy fact.

Fact A.9. For any X € H, any finite A C X, and any real number r € (0, A\(X)),
there is Y € H such that ACY C X and \(Y) =r.

Lemma A.10. For any finite set B C Q(M:Y), the substructure of Q(M5) gener-
ated by B 1is exhausted by elements of the form | |C where C' is some set of elements
of the form [ 1D for some D C BU{b°:b € B} (where U =1L and M@ =T ).

In particular, for any set of variables T of sort Q, there is a fized finite list of
Lo-terms {ti(Z)}icn such that for any b € Q(M:Y), {ti(b)}icn exhausts the Lo-
substructure of Q(MS) generated by B.

Proof. The first statement is easy to check, so for the second statement we may
take {t;(Z)}i<n to be an enumeration of all disjunctive normal form formal Boolean
combinations of the variables Z. O

Let Lpg be the sub-language of £ obtained by removing the sort R and all
associated symbols, and let Tpg denote the reduct of 77¢ to Lpg.

Corollary A.11. For any M = Ty9, Q(M) is locally finite with respect to Lpg
(i.e., every finite subset of Q(M) generates a finite L pgq-substructure).

Let M be amodel of 77%. Then M and Ul are lattice operations on Q(M). We will
denote the induced partial order by C. Furthermore, ~ is an equivalence relation
on Qo(M) = Q(M)\{L, T}. Given b € Qo(M), we set [bl~ = {c € Qo(M) : b ~
¢} and [b]*, = [b]~ U{L,T}. We refer to [b]. as the ~-class of b. Note that
([b]X, U, ¢, L, T) is an atomless Boolean algebra for any b € Qo(M). We also
emphasize that all of this notation depends implicitly on the ambient model M.

Definition A.12. Given a finite substructure B C Q(M), an element b € B is
minimal if it is not L and is minimal with regards to the partial order C.

Lemma A.13. For any M | TyF, any finite Lg-substructure B C Q(M), and
any a € P(M), there is, for each ~-class C' with representatives in B, a unique
minimal b € BN C such that a E b.

Proof. This is clearly a first-order property that holds in M. O

We will need the following lemma and proposition for quantifier elimination of
T%.
Lemma A.14. Let M be a model of Tpg. Let Y C P(M) be some finite set. For
any ~-class C' of M, and any sequence cy, ..., cn—1 € CU{T} with ¢;M¢; = L for

each i < j <n and with | |,_, ¢; =T, there exists a family {d,}acy of elements of
C such that

i<n
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x for any distinct a,a’ €Y, dy, Mdy = L,
x for each a €Y, dg T ¢; for some i <mn,
x for each i <mn, | {dg :ds E ¢} C ¢, and
x for eacha €Y, a E d,.

Proof. First note that for each fixed n, the stated property is equivalent to some
sentence in Lpg, so it is sufficient to show that the property holds in M.

So fix a finite set Y C P(M), a ~-class C'in M, and a finite sequence cq, . .., ¢,—1 €
C with ¢;M¢; = L for each i < j <m and with | |,_ ¢; = T. Let k € N be such
that C'is {k} x Ho.

For each i < n,let Y; = {a € Y : a £ ¢;}. Fix some ¢ < n. Call an element
of [0,1] a special point of ¢; if it either is a(k) for some in a € Y; or is in one of
the righthand endpoints of one of the constituent intervals in the subset of [0,1)
determined by ¢; (where if ¢; = T then this is [0,1)). Note that by our choice
of P(M), we have a(k) # a/(k) for any distinct a,a’ € Y;. So each element of Y;
corresponds to a unique special point of ¢;.

For each a € Y}, let do = (k, [a(k), %)), where r is the smallest special point
of ¢; strictly greater than a(k). Since no element of Y; yields a righthand endpoint
interval in ¢;, we clearly have that d, T ¢;. We also clearly have that a E d,, that
for any distinct a,a’ € Y;, d, Mdy = L, and that | [{d, : d, C ¢;} = [_|a€Yi dg C ¢;.

Since d, C ¢; for each a E ¢;, we have that for any distinct a,a’ € Y, d,MNd, = L,
and so the family {d,}.cy fulfills the requirements of the lemma. O

i<n

Proposition A.15. The theory Tpq is w-categorical and has quantifier elimina-
tion.

Proof. Let My and M; be two countable models of Tpg. Let (Yo, Co) and (Y7, Ch)
be isomorphic finite sub-structures of My and M7, respectively, and let f: (Yp, Co) —
(Y1, Cq) be a fixed isomorphism. All we need to show is that

x for any ag € P(My), there exists an a; € P(M;) such that f extends to an
isomorphism from (Yypag, Co) to (Yia1,Cy) sending ap to a1, and
« for any by € Q(My), there exists a by € Q(M;) such that f extends to an
isomorphism from (Yp, (Cobg)) to (Y1, (C1b1)) sending by to by.
Note that the same follows with 0 and 1 switched by symmetry. Also note that
since we are only assuming that f is an isomorphism, rather than an elementary
map, this is sufficient to show quantifier elimination.

Suppose we have (Yo, Cp), (Y1,C1), f, and ag € P(My). Assume that ag ¢ Yp.
By Lemma A.13, for each ~-class D in Cy, there is a unique minimal bp € D C Cj
such that ag £ bp. The elements f(bp) (for each ~-class D that intersects Cp)
are pairwise ~-inequivalent. 77 says that for any finite set X of pairwise ~-
inequivalent elements of Qg, there are infinitely many elements of P which are £-in
each element of X. Therefore we may find a1 € P(M;) that is =-in each f(bp)
and that is not in Y7, and we get that the obvious extension of f from (Ypag, Cop)
to (Y1a1,C1) is an isomorphism.

Suppose we have (Y, Co), (Y1,C1), f, and by € Q(Mp). Assume that by ¢ Cjp.
There are two cases: Either by is ~-equivalent to some element of C or it is not. If
by is not ~-equivalent to an element of Cy, then we may choose b; € Qg so that by
is not ~-equivalent to any element of C; and, for a € Yy, we have a E by if and only
if f(a) E b1. Then f extends to an isomorphism from (Yp, (Cobo)) to (Y1, (C1b1))
sending by to b;. Now suppose by is ~-equivalent to some element of Cy. Let E be



50 G. CONANT, K. GANNON, AND J. HANSON

the set of minimal elements of [by].. N Cy. For each e € FE and a € Y with a E e,
one of the following cases holds:

bopMe= 1 and a &£ by Me,

L CbhMNeCeandattbMe,

L CbhMeZeanda Ebyle, or

boMe=ceand a E byMe.

Let E = {co,...,cn-1}. The list {f(co),..., f(cn—1)} satisfies the requirements of
Lemma A.14, so we can apply with Y7 to get a family {d,}.cy, satisfying that
for any distinct z, 2’ € Y7, d, Mdy = L,

for each z € Y1, d, C f(¢;) for some i < n,

for each i < n, | {dy : ds C f(c;)} T f(ci), and

for each x € Y1, = E d,.

* X X ¥

*
*
*
*

Given the third condition, we can also clearly find, for each ¢ < n, an element
h; satisfying that 1L = h; © f(¢;) M (| {dx : dz T f(ci)})". In particular, each h;
satisfies x £ h; for all z € Y.

Now let

J—, bomCiZJ_
hi,  LCbyMe¢ CeiandatbyMe
b1:|_||_| dy 1L TCbyMe Ceand a EbyMe;
i<n a€Yy f(a)s 0 % i 0 i
s f(ci)u bO Me; = ¢

By construction, we now have that for any e € E and a € Yy with a E e,

x by M f(e) = L and f(a) £ by if and only if byMe = L and a &£ by,

x LCbiNf(e)C f(e) and f(a) & by if and only if L = byMe C e and a & by,

* L CbhhiMf(e)T fe) and f(a) E by if and only if L T by Me C e and a E by,

and

* b1 f(e) = f(e) and f(a) E by if and only if by Me = e and a E by.
These conditions are enough to imply that f extends (uniquely) to an isomorphism
from (Yp, (Cobo)) to (Y1, (C1b1)) sending by to by. O

Fact A.16. The reduct of T\ to the sort R is the theory of ordered divisible Abelian
groups with a nonzero constant. This theory has quantifier elimination.

We can now prove Theorem 7.10 (75 has quantifier elimination).

Proof of Theorem 7.10. For any finite tuples of variables T of sort P and y of
sort @ and any type p(z,y) € Sz5(Trq), let 7,(Z, y) be some fixed quantifier-free
formula isolating p (note that 7, exists by Proposition A.15).

Quantifier elimination can be established by showing that for any tuples of vari-
ables Z of sort P, § of sort @, and Z of sort R and for any formula of the form

(@, 9,2) = 1p(2,9) A p(U(to(9), £(t1(9)); - - - L(tk-1(7)), 2),

each of 3z, ypy, and 2y is equivalent to a quantifier free formula, where
* p € Szz(Tpg) is some type (which, by Proposition A.15, we may view as a
complete quantifier-free type in Lpg),
x p(w, z) is a quantifier-free atomic £ g-formula, and
% t;(y) is an Lo-term for each j < k.



KEISLER MEASURES IN THE WILD 51

(To see that this is sufficient, note that every quantifier-free formula is logically
equivalent to a disjunction of formulas of the same form as ¢(z, 7, z).)

Let £ be shorthand for the tuple (£(to(7)), £(t1 (7)), - ., L(tk—1(7))). (So we will
write o as p(/, 2).) Let Z, be T without zg, and let 7, and Z, be defined similarly.

Eliminating P quantifiers: Consider 379y (Z, ¥, 2). Since ¢ does not actually
contain xo, 3r0%(Z, ¥, 2) is logically equivalent to (¢, 2) AJzo7,(Z, y). By quantifier
elimination for Tpq, this is equivalent to (¢, 2) A T,|z, 5(Z«, %), which is quantifier
free.

Reducing @) quantifiers to R quantifiers: The type p(z,y) fully determines
the £pg-isomorphism type of the substructure of PQ) generated by zy. Let E be
a set of terms s(g.) corresponding to the minimal elements of the Lg-substructure
of @ generated by g.. (These terms exist for any given type p by Lemma A.10.)
Without loss of generality, assume that yo is not T or L (modulo p). Let E. be
the set of terms in F that are ~-equivalent to yo (modulo p) and let E be the set
of those that are not ~-equivalent to yo (modulo p).

Claim: In v, we may assume that each ¢;(y) is either s(y.) for some s € E4 or
$(7sx) Myo or s(gx) My§ for some s € E...
Proof: For every term of the form ¢(¢;(y)) either

* there is some Ey C E such that £(t;(3)) = > cp, £(5(7x)) or
* there are some F1, Fs C E. such that

Ut; () = Z £(s(g«) Myo) + Z £(s(g«) Myg)

seEq seFEs
(modulo p). By substituting these expressions into ¢, we get the claim. elaim

In light of the claim, we will split £ into three subtuples 7, £, and £, where

* 6:76 is a list of all terms of the form ¢(s(y.)) for s € E,
* £ is a list of all terms of the form £(s(y.) Myo) for s € £, and
* (2 is a list of all terms of the form ¢(s(g.) My§) for s € E. (in the same order).

So now we will think of ¢ as @(¢#,05,0>,2). Tt will also be useful to have the
notation £~ for a list of all terms of the form ¢(s(y.)) for s € E. (also in the same
order). Note that £* and £~ do not contain the variable yq.

The core idea for reducing the quantifier Jyy to some quantifiers in the R sort
is that once one fixes @ in P and b in Q satisfying plzg. as well as some ¢ in R, the
existence of some d such that (@, db, €) holds depends only on the existence of some
values {m;}sep._ for £(s(b) M d) which are consistent with the existing measures of
elements of F as well as whatever requirements are imposed by the formula ¢. In
order to be consistent with the existing measures of elements of E it is necessary

and sufficient that for each s € E.

x if p requires that s(g.) Myo = L, then my = 0,

* 1f p requires that L T s(7x) Myo C $(Fx), then 0 < my < £(s(7x)), and

* 1f p requires that s(7.) Myo = s(7x), then ms = £(s(7s)).
Let m and @ be two new tuples of R-variables in the same order as ¢~ (and so
also in the same order as £ and £77). Rather than writing literal numerical indices
for m and u, we will write expressions such as ms to mean the variable in m in
the same position as £(s(9.)) in £~. We need a formula n(m,u) expressing these
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compatibility requirements. So, to accomplish this, let

ms =0, P, 9) Esy) Nyo =L
n(m,a) = N\ {0<ms<us, p(@,7) k= LCs@)Nyo Csg) -
s€B~ (my = us, p(2,9) = s(5) Myo = 5(Ys)

It’s easy to see that the compatibility condition for m is equivalent to n(m, ™).
Now we can reduce the Jyg quantifier to Im. Consider the formula

X(ja y*v 2) = Tp\iﬂ* (1_77 g*) = [77(77% EN) A <P(€_7éa ’ﬁ’L, ZN - mv 2)] )
where ¢~ — m is the tuple whose elements are £(s(7.)) — my for s € E..

Claim: x(&, ¥y, ) is logically equivalent to Jyov)(Z, 7, 2).
Proof: Fix ain P, bin @, and ¢ in R.
<: Suppose that there exists some d in @ such that ¢ (a, db, ) holds. Clearly
we have that @b = plzg., S0 Tpz5. (@, ) holds. By setting m, equal to £(s(b) Md)
for each s € E., we get that the second part of x(a,b,é) holds. (Noting that
£(s(b) M dc) = £(s(b)) — £(s(b) M d).) Therefore x(a,b,¢) holds.
=: Suppose that x(@, b, ) holds. Let € be the tuple of elements of R witnessing
the 3m quantifier. For each s € E., choose f, such that
x if p requires that s(g.) Myo = L, then f, = L,
x if p requires that L T s(7.) Myo T s(¥«), then fs is some element satisfying
LT fsCsb), (fs) = es, and a; E f, if and only if p = 2; E yo and
* if p requires that s(7.) Myo = s(¥x), then f = s(b).
This is alway possible for each s € E.. since n(e, £~ (b)) holds and since the theory
T entails that, for any y € @, any disjoint finite sets P= and Pz of elements of
P, and any m € (0,4(z)), there exists a z € @ with L C z C y and £(z) = m such
that g £ z for every g € P= and g # z for every g € Pz. (Note that this is a family
of first-order statements that hold in MY.) Finally, let

d= || f.

seb~

By qu_antiﬁer elimination for T'pq, we have that ddB_)z P (wllere_ a is assigned to T
and db is assigned to ¥), so 7,(a, db) holds. Since o(0*(b), e, 0~ (b) — €,¢) holds and
since & = £5 (b, d), we have that (@, db, ¢) holds, whence Jyo1)(a, b, ¢) holds. ciaim

Therefore, once we can show that we can eliminate quantifiers of sort R, we will
have shown that we can eliminate quantifiers of sort Q.

Eliminating R quantifiers: The formula 3299 (Z, 7, z) is logically equivalent to
(%, 9) A J20p(£, 2). By quantifier elimination for Tr, J20p(, Z) (which is an Lg-
formula) is logically equivalent to some £ r-formula (9, Z,.). Therefore we have that
J209(Z, 9, 2) is logically equivalent to 7,(Z,9) A 0(£, 2,), which is a quantifier-free
formula.

Altogether, since we can reduce Q-quantifiers to R-quantifiers and eliminate P-
and R-quantifiers, we can eliminate quantifiers in general, and 777 admits quantifier
elimination. (]

Remark A.17. As an aside, quantifier elimination for 77% implies that the R sort
is stably embedded and that any types p(z) in the P sort and r(y) in the R sort
are weakly orthogonal (i.e., p(z) U r(y) axiomatizes a complete type).
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A.4. Heirs of definable measures. The purpose of this section is to discuss
definability for Keisler measures over small models, and prove that such definable
measures have definable global extensions. This material is known in the folklore,
especially from the perspective of continuous logic (see Remark A.25). See also
[19, Remark 2.7] and [29, Remark 3.20]. However, since a complete account does
not appear in the literature, we take the opportunity in this appendix to provide
complete definitions and some details of various proofs.

Let T be a complete theory with monster model &//. Throughout this section, we
fix a model M < U and an arbitrary parameter set A C M.

Definition A.18. Given u € M, (U) and an L-formula ¢(x,y), define the map
f2+ MY —[0,1] such that f£(b) = pu(p(x,b)).

We view M?® as a dense subset of S, (M) by identifying a € M* with the isolated
type tp(a/M). A function f: S,(M) — [0,1] is called A-invariant if f(p) = f(q)
whenever p|4 = g|a.

Fact A.19. Given a measure i € M, (M) and an L-formula (z,y), the following
are equivalent.

(i) f7 extends to an A-invariant continuous function from S,(M) to [0,1].
(13) For any e > 0, there are La-formulas ¥1(y), ..., ¥n(y) such that:

x {;(y) : 1 <i<n}is a partition of MY, and

* for any 1 < i <mn, if by, by € Pi(M) then [f7(b1) — f7(b2)] <e.

(7i1) For any e < 0 in [0,1], there is an La-formula ¥ (y) such that
{be MY [2(b) < e} CH(M) C {be MY [2(b) < 5}.

Proof. This is a standard exercise in topology, which is similar to Fact 2.15 and
could be phrased entirely for functions on arbitrary Stone spaces. The direction
requiring the most work is (iz) = (7). So we note that this task can be simplified
using Taimanov’s Theorem, which is a classical result that characterizes when a
function on a dense subset of a space X can be extended to a continuous function
on X. See [5] for details. O

Definition A.20. A measure p € M, (M) is A-definable if, for any £-formula
¢(x,y), the map f7 satisfies the equivalent properties in Fact A.19.

The previous definition appears also in [29, Definition 3.19] (using character-
ization (i7) of Fact A.19). Note that this definition does not conflict with the
formulation of definability for global measures. In particular, if we take M to be
the monster U, then Fact A.19 aligns with Fact 2.15.

Remark A.21. Let f be a map from M?® to a compact Hausdorff space X. Then
f is called A-definable if for any closed C' C X and open U C X, with C C U, there
is some A-definable set D C M?® such that f1(C) C D C f}(U). In particular,
condition (i7) of Fact A.19 is equivalent to A-definability of f.

Remark A.22. Suppose T has quantifier elimination in the language £. Then
w € M, (M) is A-definable if and only if the equivalent properties of Fact A.19 hold
for any L-formula op(z,y), which is a conjunction of atomic and negated atomic £-
formulas. Indeed, if every formula ¢(z,y) of the described form satisfies condition
(i) of Fact A.19, then so does every quantifier-free £-formula by inclusion-exclusion.
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The main result of this section says that definable global “heirs” of definable
measures exist and are unique. The uniqueness aspect is a consequence of the
following observation, which also makes explicit the analogy to heirs of types.

Remark A.23. Fix pu € 9, (M), and suppose i € M, (U) is an A-definable
extension of p. Then for any L-formula ¢(x,y), F, 5’7 7 18 an A-invariant continuous
extension of f7. Therefore p is A-definable. Moreover, for any £-formula o(x,y)
and any open set U C [0,1], if b € UY and fi(¢(x,b)) € U, then there is some
¥(y) € tp(b/A) such that fi(p(z,c)) € U for any ¢ € ¥(U) (so, in particular,
wu(p(z,c)) € U for some ¢ € MY). It follows that /i is the unique A-definable global
extension of p.

Theorem A.24. Suppose p € M, (M) is A-definable. Then p has a unique A-
definable extension i € M, (U).

Proof. By Remark A.23, it suffices to just show that i exists. Given an L-formula
o(x,y) and b € MY, define

(. b)) = i (tp(b/M)),

where f;f is the continuous A-invariant extension of f7 to S, (M). Assuming fi is
a well-defined Keisler measure, it follows that i is an A-invariant global extension
of u, and F' Ef” M= f;f for any L-formula ¢(x,y). In particular, ji is A-definable.

To show that i is well-defined, we need to verify that any inconsistent £y,-formula
has measure 0, and that finite additivity holds. So first fix an L-formula ¢(z,y)
and b € MY such that ¢(z,b) is inconsistent. Then tp(b/M) is in the clopen set
C = [Vz=p(z,y)] C Sy(M). Since f7 is identically 0 on C'N MY, which is dense
in C, we have fl‘f (tp(b/M)) = 0, as desired. Next, to verify finite additivity, fix £-
formulas ¢(x,y) and ¢(z, z), and let 6(z; y, z) and x(x;y, z) denote p(x,y) Vi (z, 2)
and ¢(z,y) A Y(x, 2), respectively. We need to show that if bec € U¥* then

Fi(ep(be/M)) = f£ (tp(b/M)) + £/ (tp(c/M) — fX(tp(be/M)).

Note that the previous equation holds for any bc € MY~ since u is a Keisler measure
and the f#—maps extend the f,-maps. So fix some bc € UY?, and let (b;c;)ier be a
net of points in MY# such that lim;es b;c; = tp(be/M) (recall that we identify points
from M with realized types over M). Then we have the following computation:

Fi(ep(be/M)) = lim fi(bies) = lim | £ (60) + £ (e) = FX(bics)|
= lim £ (b;) + lim £ (c:) — lim £} (bici)
= J{(ep(b/M)) + £ (tp(c/M)) — FX(tp(be/M)). O

Remark A.25. The proof of Theorem A.24 can be understood in an abstract way
with continuous logic. For the case of types, one can show that a definable type
p over a model M has a canonical definable global extension by arguing that the
theory of M ‘knows’ that the defining schema of p gives a complete type. This is
essentially the same as the argument we have presented here. A continuous real
valued function on a type space is the same thing as a definable predicate in the
sense of continuous logic (or a formula if one has a broad enough notion of formula).
Given a definable measure p over a model M, the theory of M ‘knows’ that the
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defining schema of p gives a measure, and so it follows that the same schema gives
a global measure.

Finally, we take a brief moment to note the existence of ‘coheirs’ for measures
over small models. This is not used in any part of the paper, but it is thematically
relevant to the aims of this part of the appendix.

Proposition A.26. For any p € M, (M) there is some i € M, (U) such that
flar = p and [i is finitely satisfiable in M.

Proof. Define M, (U, M) := {p € M, (U) : p is finitely satisfiable in M}. Let p be
the restriction of p,: M, (U) — M (M) to M, (U, M). We want to show that p is
surjective. Note that 0, (U, M) is closed in 9, (U), and so p is a continuous map
between compact Hausdorff spaces. Thus im(p) is closed in 9, (M). Moreover,
im(p) is a dense subset of M, (M) (consider the image of {Av(a) : @ € (M*)<“}).
Therefore p is surjective.
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