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COMBINATORIAL PROPERTIES OF NON-ARCHIMEDEAN
CONVEX SETS

ARTEM CHERNIKOV AND ALEX MENNEN

ABSTRACT. We study combinatorial properties of convex sets over arbitrary val-
ued fields. We demonstrate analogs of some classical results for convex sets over
the reals (e.g. the fractional Helly theorem and Bérany’s theorem on points in
many simplices), along with some additional properties not satisfied by convex
sets over the reals, including finite breadth and VC-dimension. These results are
deduced from a simple combinatorial description of modules over the valuation
ring in a spherically complete valued field.

1. INTRODUCTION

Convexity in the context of non-archimedean valued fields was introduced in
a series of papers by Monna in 1940’s [Mon46|, and has been extensively studied
since then in non-archimedean functional analysis (see e.g. the monographs [PGS10,
Sch13| on the subject). Convexity here is defined analogously to the real case, with
the role of the unit interval played instead by a valuational unit ball (see Definition
2.1). Convex subsets of R? admit rich combinatorial structure, including many
classical results around the theorems of Helly, Radon, Carathéodory, Tverberg,
etc. — we refer to e.g. [DLGMM19] for a recent survey of the subject. In the case
of R, or more generally a real closed field, there is a remarkable parallel between
the combinatorial properties of convex and semi-algebraic sets (which correspond
to definable sets from the point of view of model theory). They share many (but
not all) properties in the form of various restrictions on the possible intersection
patterns, including the fractional Helly theorem and existence of (weak) e-nets.
A well-studied phenomenon in model theory establishes strong parallels between
definable sets in R and in many non-archimedean valued fields such as the p-adics
Q, or various fields of power series (see e.g. [vdD14]). In this paper we focus on the
combinatorial study of convex sets over general valued fields, trying to understand
if there is similarly a parallel theory. On the one hand, we demonstrate valued field
analogs of some classical results for convex sets over the reals (e.g. the fractional
Helly theorem and Barény’s theorem on points in many simplices). On the other,
we establish some additional properties not satisfied by convex sets over the reals,
including finite breadth and VC-dimension. This suggests that in a sense convex
sets over valued fields are the best of both worlds combinatorially, and satisfy
various properties enjoyed either by convex or by semialgebraic sets over the reals.

We give a quick outline of the paper. Section 2 covers some basics concern-
ing convexity for subsets of K? over an arbitrary valued field K, in particular
discussing the connection to modules over the valuation ring. These results are
mostly standard (or small variations of standard results), and can be found e.g. in

[PGS10, Sch13| under the unnecessary assumption that K is spherically complete
1
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and (I, +) C (Rs, X); we provide some proofs for completeness. In Section 3 we
give a simple combinatorial description of the submodules of K¢ over the valuation
ring O in the case of a spherically complete field K (Theorem 3.6 and Corollary
3.12), and an analog for finitely generated modules over arbitrary valued fields
(Corollary 3.14). We also give an example of a convex set over the field of Puiseux
series demonstrating that the assumption of spherical completeness is necessary for
our presentation in the non-finitely generated case (Example 3.11). In Section 4
we use this description of modules to deduce various combinatorial properties of
the family of convex subsets Conv g« of K¢ over an arbitrary valued field K. First
we show that Conva has breadth d (Theorem 4.3), VC-dimension d+ 1 (Theorem
4.8), dual VC-dimension d (Theorem 4.10) — in stark contrast, all of these are infi-
nite for the family of convex subsets of R? for d > 2. On the other hand, we obtain
valued field analogs of the following classical results: the family Convya has Helly
number d+ 1 (Theorem 4.5), fractional Helly number d + 1 (Theorem 4.14), satis-
fies a strong form of Tverberg’s theorem (Theorem 4.15) and Boros-Fiiredi/Barany
theorem on the existence of a common point in a positive fraction of all geomet-
ric simplices generated by an arbitrary finite set of points in K¢ (Theorem 4.16).
Some of the proofs here are adaptations of the classical arguments, and some rely
crucially on the finite breadth property specific to the valued field context. Finally,
in Section 5.1 we point out some further applications, e.g. a valued field analogue
of the celebrated (p, ¢)-theorem of Alon and Kleitman [AK92| (Corollary 5.1), and
that all convex sets over a spherically complete field are externally definable in the
sense of model theory (Remark 5.7); as well as pose some questions and conjec-
tures. We also discuss some other notions of convexity over non-archimedean fields
appearing in the literature in Section 5.2, and place our work in the context of
the study of abstract convexity spaces in discrete geometry and combinatorics in
Section 5.3.

Acknowledgements. We thank the referees for many very helpful literature point-
ers and suggestions on improving the paper. In particular, Sections 5.2 and 5.3 were
added following their suggestions. We thank Lou van den Dries for pointing out
Monna’s work to us, Dave Marker for pointing out Example 5.8, and Matthias As-
chenbrenner for a helpful conversation. Both authors were partially supported by
the NSF CAREER grant DMS-1651321, and Chernikov was additionally supported
by a Simons fellowship.

2. PRELIMINARIES ON CONVEXITY OVER VALUED FIELDS

Notation. For n € N3y, we write [n] = {1,...,n} and () denotes the span in
vector spaces. Throughout the paper, K will denote a valued field, with value
group I' = T'k, and valuation v = vg : K — ' := ' U {o0}, valuation ring

O = O = v ([0, 00]), maximal ideal m = mg = v~ ((0, 00]), and residue field*
k = O/m. The residue map O — k will be denoted o — a. For a ring R, R*
denotes its group of units.

The following definition of convexity is analogous to the usual one over R, with
the unit interval replaced by the (valuational) unit ball.

1Also commonly referred to as the “residue class field” in the literature.



COMBINATORIAL PROPERTIES OF NON-ARCHIMEDEAN CONVEX SETS 3

Definition 2.1. (1) For d € N>y, a set X C K¢ is convex if, for any n € N>,
r1,...,¢, € X, and aq,...,qa, € O such that a; + ...+ «,, = 1 we have
a1y + ...+ a,z, € X (in the vector space K?).
(2) The family of convex subsets of K¢ will be denoted Conv ya.

It is immediate from the definition that the intersection of any collection of convex
subsets of K¢ is convex.

Definition 2.2. Given an arbitrary set X C K¢, its convex hull conv(X) is the
convex set given by the intersection of all convex sets containing X, equivalently

conv(X) = {Zaixi neN o €O,x; € X,ZO%‘ = 1}.
i=1 i=1

Definition 2.3. A (valuational) quasi-ball is a set B = {z € K :v(z —¢) € A}
for some ¢ € K and an upwards closed subset A of I'y,. In this case we say
that B is around c, and refer to A as the quasi-radius of B. We say that B is a
closed (respectively, open) ball if additionally A = {r € I : v > r} (respectively,
A={yeTl:y>r}) for some r € ', and just ball if B is either an open or a
closed ball (in which case we refer to r as its radius).

Remark 2.4. (1) If the value group I' is Dedekind complete, then every quasi-
ball is a ball (except for K itself, which is a quasi-ball of quasi-radius I'y).
(2) Note also that if B is a quasi-ball of quasi-radius A around ¢ and ¢ € B is
arbitrary, then B is also a quasi-ball of quasi-radius A around .
(3) In particular, any two quasi-balls are either disjoint, or one of them contains
the other.

Example 2.5. (1) The convex subsets of K = K are exactly () and the quasi-
balls (see Proposition 2.10 and Example 2.11).
(2) If ey, ..., eq is the standard basis of the vector space K%, then

conv ({0, ey,...,eq}) = O

(3) The image and the preimage of a convex set under an affine map are convex.
In particular, a translate of a convex set is convex, and a projection of a
convex set is convex. (Recall that given two vector spaces V, W over the
same field K, amap f: V — W is affine if f(ax+ py) = af(x) + 5f(y)
forall z,y e Vo, € K,a+ = 1.)

One might expect, by analogy with real convexity, that the definition of a convex
set could be simplified to: if x,y € X, a,8 € O such that a + = 1, then
ax+ Py € X. The following two propositions show that this is the case if and only
if the residue field is not isomorphic to Fy, and that in general we have to require
closure under 3-element convex combinations.

Proposition 2.6. Let K be a valued field and X C K?. If X is closed under
3-element convex combinations (in the sense that if x,y,z € X and o, 3,7 € O
such that o+ f+~v =1, then ax + Py + vz € X ), then X is conver.

Proof. Suppose X is closed under 3-element convex combinations. We will show
by induction on n that then X is closed under n-element convex combinations. Let
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n>3 r,....,x, € X and aq,...,a, € O such that oy + ... + «a,, = 1 be given.
Then one of the following two cases holds.

Case 1: a1 + as € O*.
Then —*— and —*2— are elements of O that sum to 1, so

a1tz a1ta2
Q Q
! Ty + 2 Te € X
a1+ Qo a1+ Qo
by assumption. But then
aq (6]
a1+ .. A apr, = (g + ag) T + Ty | +ozrs+ ... +oa,r, €X
a1 + Qo Q1 + Qo

by the induction hypothesis, as it is a convex combination of n — 1 elements
of X.

Case 2: a1 + a9 € m.
Then, as v (3", a;) = 0, there must exist some ¢ with 3 <1 < n such that
a; € O*. Hence ag + as + a; € OF, so a1+z;+ai, a1+gz+a¢’ and aﬁiim
are elements of O that sum to 1. Thus

a7 (6%} Q;
<—) x|+ (—> To + (—> x; € X
a1+ ag + oy a1+ oo+ oy o1+ g+ oy

by assumption, and so

a1y + ...+ oapx, =
Qi Q2 &
(Oél + oo + Oél') T+ T9 + xT;
o1+ Qo + o1+ Qo + oy a1+ Qo + o
+asrs + ...+ 0121 + 011 + .o+ Xy, € X

by the induction hypothesis, as it is a convex combination of n — 2 elements

of X. O
Proposition 2.7. For any valued field K, the following are equivalent:

(1) for every d > 1, every set in K¢ that is closed under 2-element convex
combinations is convex;
(2) the residue field k is not isomorphic to Fs.

Proof. (1) implies (2). If k = Fo, consider the set
X :={(a1,a2,0a3) | a1, a2,a3 € O, Jia; € m} C K*.

We claim that X is closed under 2-element convex combinations. That is, given
arbitrary (ai, as,as), (b1,bs,b03) € X and o, f € O with a + 8 = 1, we must show
that a (a1, as,as) + B (b1, b, b3) € X. We have @ + 3 = 1 in k = [y, so necessarily
one of @ and 3 is 1 and the other is 0. Without loss of generality @ = 1 and 3 = 0.
Then g € m. By definition of X, a; € m for some i. Then aa; € m, and 8b; € m as
b; € O, so aa; + pb; € m. Thus (aay + by, aas + Bbe, aasz + Bbs) € X. However
X is not convex: for an arbitrary a € m we have (0,0,0),(1,0,0),(0,1,1) € X,
1,-1 € O, but (-1)(0,0,0) +1(1,0,0) + 1(0,1,1) = (1,1,1) ¢ X. (This example
can be modified to work in K?2.)
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(2) implies (1). If k 2 Fo, suppose X is closed under 2-element convex com-
binations. By Proposition 2.6, we only need to check that it is then closed un-
der 3-element convex combinations. Let z,y,2z € X, and «, 3,7 € O such that
a+ 8+ v = 1. Then one of the following two cases holds.

Case 1: At least one of a4 3,8 + 7, a + v is an element of O*.
Without loss of generality, a + 8 € O*. Then ﬁx + a’%ﬁy € X by
assumption, and thus

aaz+6y
a+p a+p

a:c—l—ﬁy—l—fyz:(a—l—ﬁ)( )+’yz€X.
Case 2: a+ 3,8 +v,a+yem. B
In the residue field, a + 8= +5y=a+7 =0, and a+ 8+ 7 =1, hence
necessarily & = =% = 1, and char (k) = 2. Since k 2 Fy, thereis 6 € O
such that ¢ {0,1}. Thena+0=14+0#0and —d+5 =09 #0, so
ar + Py +yz =
Q )

p-9 g
(a+9) (a+5az+a+5y>+(ﬁ—5+’y) (5_5+7y+ﬁ_5+72) e X.

U

The following proposition gives a very strong form of Radon’s theorem (not only
we obtain a partition into two sets with intersecting convex hulls, but moreover
one of the points is in the convex hull of the other ones).

Proposition 2.8. Let K be a valued field. For any d+2 points x1, ..., Tqps € K9,

one of them is in the convex hull of the others.

Proof. There exist ay,...,aq400 € K, not all 0, such that Zﬁf a;x; = 0 and

7

Eﬁf a; = 0 (because those are d + 1 linear equations on d + 2 variables, as
we are working in K?). Let i € [d+ 2] be such that v (a;) is minimal among
v(ai),...,v(aqy2), in particular a; # 0. Then x; = 3, _a—fjxj, and this is a con-

vex combination: for i # j we have =% € O (as v <_a—a’> = v(a;) — v(a;) > 0 by

the choice of i) and > ., =2 = T O

J#i a4 a; a;

By a repeated application of Proposition 2.8 we immediately get a very strong form
of Carathéodory’s theorem:

Corollary 2.9. Let K be a valued field. Then the convex hull of any finite set in
K is already given by the convex hull of at most d + 1 points from it.

Convex sets over valued fields have a natural algebraic characterization.

Proposition 2.10. (1) A subset C C K% is an O-submodule of K< if and only
if it is convex and contains 0.

(2) Nonempty convex subsets of K are precisely the translates of O-submodules
of K4.
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Proof. (1) First, O-submodules of K% are clearly convex and contain 0. Now
suppose C C K% is convex and 0 € C. Then for any @« € O and z € C,
ar=ar+(l—a)0e€ C. And for any z,y € C,z+y=1-24+1-y—1-0€ C.
Therefore C' is an O-submodule. (2) Given a non-empty convex C' C K¢, we can

choose a € K% such that the translate C' +a contains 0, and it is still convex, hence
C + a is an O-submodule of K< by (1). O

Example 2.11. Let C' be an O-submodule of K, and take A := v(C). Then A
is non-empty because it contains oo = v(0), and upward-closed because for v € A
and 0 > 7, there is x € C with v(z) = v, and a € K with v(a) = § — 7; then
axr € C and v(ax) = 4. Clearly C C {z € K | v(z) € A} by definition of A. To
show C D {z € K | v(x) € A}, given any x € K with v(z) € A, thereisy #0 € C
with v(y) = v(z), and £ € O,s0x =y € C. Thus C ={z € K [v(z) € A} isa
quasi-ball around 0.

Corollary 2.12. The convez hull of any finite set in K% is the image of O% under
an affine map.

Proof. By Corollary 2.9, the convex hull of a finite subset of K¢ is the convex hull
of some d + 1 points z, ..., z4 from it (possibly with z; = x; for some ¢, j). Let
e1,...,eq be the standard basis for K¢, and let f be an affine map f : K — K¢
such that f(0) = z¢ and f (e;) = x; for 1 < i < d (can take f to be the composition
of two affine maps: the linear map sending e; to z;—x for 1 < i < d, and translation
by zg). Then we have conv ({zo,...,z4}) = f (conv{0,e1,...,eq4}) = f ((’)d) (by
Example 2.5(2)). O

Proposition 2.13. For any convex C C K% and a € K9, the translate C + a :=
{z+a|xzeC} is either equal to or disjoint from C.

Proof. lf t e CN(C+a), then Vy € C y+a=y+z—(x —a) € C, since that is a
convex combination, and conversely, if y +a € C theny = (y+a) —z+ (z —a) €

C. O

Definition 2.14. Given a valued field K, by a valued K-vector space we mean a
K-vector space V' equipped with a surjective map v = vy : V — ', = T'U {00}
such that v(z) = oo if and only if x = 0, v(z 4+ y) > min{v(z),v(y)} and v(ax) =
vi(a) +v(z) forall z,y € V and a € K.

Remark 2.15. Here we restrict to the case when V' has the same value group
as K, and refer to [Fuc75| for a more general treatment (see also [Johl6, Section
6.1.3|, [Hrul4, Section 2.5] or [AvdDvdH17, Section 2.3]).

By a morphism of valued K-vector spaces we mean a morphism of vector spaces
preserving valuation. If V' and W are valued K-vector spaces, their direct sum
V@ W is the direct sum of the underlying vector spaces equipped with the valuation
v(z,y) := min{vy(z),vw(y)}. In particular, the vector space K¢ is a valued K-
vector space with respect to the valuation vga : K¢ — I'y, given by

Viga (21, ..., 2q) == min{vg (x1), ..., vk (24)}.

Note that for any scalar o € K and vector v € K we have vga(av) = vi(a) +
vka(v). By a (valuational) ball in K¢ we mean a set of the form {z € K9 :
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vga(xr — ¢)0r} for some center ¢ € K¢ radius r € T'U {oo} and O € {>,>}
(corresponding to open or closed ball, respectively). The collection of all open
balls forms a basis for the valuation topology on K¢ turning it into a topological
vector space. Note that due to the “ultra-metric” property of valuations, every
open ball is also a closed ball, and vice versa. Equivalently, this topology on K¢ is
just the product topology induced from the valuation topology on K.

Recall that the affine span aff(X) of a set X C K@ is the intersection of all affine
sets (i.e. translates of vector subspaces of K?) containing X, equivalently

aff(X) = {ZO&Z‘SL’Z’ZHENZhOQ EK,.TZ‘ EX,ZO[Z-: 1}

i=1 i=1
We have conv(X) C aff(X) for any X.

Proposition 2.16. Any conver set in K¢ is open in its affine span.

Proof. For x € C C K9, C convex, let d < d be the dimension of the affine span
of C', and let yq,...,yy € C be such that z,y;,...,ys are affinely independent,
and thus have the same affine span as C. Then the map (aq,...,aq¢) — = +
a1 (y1 —x) + ... + ag (yo — 2) is a homeomorphism from K¢ to the affine span

of C, and sends O (which is open in K%) to a neighborhood of = contained in
C. O

Corollary 2.17. Convez sets in K¢ are closed.

Proof. For convex C' C K% and z € aff (C) \ C, C + z is an open subset of aff (C)
that is disjoint from C', so C' is a closed subset of its affine span, and hence closed
in K%, since affine subspaces are closed. U

3. CLASSIFICATION OF (O-SUBMODULES OF K¢

In this section we provide a simple description for the O-submodules of K¢ over
a spherically complete valued field K (and over an arbitrary valued field K in the
finitely generated case). Combined with the description of convex sets in terms of
O-submodules from Section 2, this will allow us to establish various combinatorial
properties of convex sets over valued fields in the next section. In the following
lemma, the construction of the valuation v is a special case of the standard con-
struction of the quotient norm, when modding out a normed space by a closed
subspace, while the second part is more specific to our situation.

Lemma 3.1. Let K be a valued field, and V C K? a subspace. Then the quotient
vector space K%V is a valued K -vector space equipped with the valuation

v (u) := max {vga (v) | 7 (v) = u,0 € K},

foru e KV, where 7 : K® — K9/V is the projection map (and the maximum is
taken in Ty ). If dim(V) = n, then K¢/V = K9 as valued K -vector spaces, and
there is a valuation preserving embedding of K -vector spaces f : K¢/V — K% so
that wo f = idgay.
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Proof. First we prove the lemma for n = 1. Let V C K% be one-dimensional.
There exists i € [d] such that vga ((x1,...,24)) = vk (z;) for all (xq,...,24) € V

(indeed, if vi(z;) = min{vk(zy),...,vik(zq)} for some (z1,...,24) € V, then
we also have vk (ax;) = vi(a) + vi(z;) = vi(a) + min{vg(z1), ..., vg(xq)} =
min{vg (axy), ..., vg(azg)} for any a € K). Given any (x1,...,14) € K¢ with

x; =0and (y1,...,yq) €V, we have
(3.1) via (T1+ Y1, -, Ta+ Ya) = Hég}l{VK (xj+y;)} =
j

min e ) min (e (a4 0} ) < e (0) = s G

Now consider an arbitrary affine translate  +V of V, v = (21,...,24) € K%
Then there exists @' = (2,...,2)) € v+ V so that 2; = 0. Indeed, fix any
0#y €V, thenV ={ay : a € K}. Take o' := —T (note that, by the choice of i,

Y # 0= via(y) # oo = vk(y)) # 0o =y #0), and let 2/ = z + 'y’. We claim
that vga(z') = max {vga(2) : 2 € x + V}, in particular the valuation v on K/V is
well-defined. Indeed, z+V =2'+V, sofixany y € V. If vga(2') < vga(a' +y), we
must necessarily have vga(z') = vga(y), but by (3.1) we have via(2'+y) < vga(y),
s0 vga(y) < vga(y) — a contradiction; thus vga(z') > via(z' +y).

Let K' := {(21,...,24) € K| 2; =0}, then we have K¢ = V @& K’ as vector
spaces, hence the projection of K¢ onto K’ along V induces an isomorphism be-
tween K¢/V and K’, which in turn is naturally isomorphic to K91, and these iso-
morphisms preserve the valuation and give the desired embedding f : K¢/V — K.
The general case follows by induction on n using the vector space isomorphism the-
orems. U

We recall an appropriate notion of completeness for valued fields. Recall that a
family {C; : ¢ € I} of subsets of a set X is nested if for any ¢, j € I, either C; C C}
or C; C C;.

Definition 3.2. A valued field K is spherically complete if every nested family of
(closed or open) valuational balls has non-empty intersection.

For the following standard fact, see for example [Sch50, Theorem 5 in Section
I1.3 + Theorem 8 in section I1.6].

Fact 3.3. Every valued field K (with valuation vi, value group T'x and residue

field kx ) admits a spherical completion, i.e. a valued field K (with valuation vz,
value group Iz and residue field k) so that:

(1) K is an immediate extension of K, i.e. K is a field extension of K, vg [k=
Vi, Ff( = FK and /{Zf( = /{ZK;
(2) K is spherically complete.

We remark that in general a valued field might have multiple non-isomorphic
spherical completions.

Lemma 3.4. If K is spherically complete, then every nested family of non-empty
convex subsets of K% has a non-empty intersection.
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Proof. By induction on d. For d = 1, let {C;},.; be a nested family of nonempty
convex sets, so each C; is a quasi-ball (see Example 2.5(1)). If there exists some
t € I so that C; is the smallest of these under inclusion then any element of C; is
in the intersection of the whole family. Hence we may assume that for each ¢ € I
there exists some i’ € [ such that Cy C C;. Let A; and A be the quasi-radii of C;
and Cy, respectively. We may assume that both quasi-balls are around the same
point z; € Cy (by Remark 2.4), hence necessarily A;; C A;. Let r; € A; \ Ay, and
let C! be a (open or closed) ball of radius r; around z;. We have C] C C;, so if
Nic; Ci is nonempty, then so is (,.; C;. Hence it is sufficient to show that {Cj},,
is nested, and then the intersection is non-empty by spherical completeness of K.
By construction for any i, j € I there exists some ¢ € I such that Cy C C{ N C}, so
C; and C7 have non-empty intersection, and are thus nested as they are balls.

For d > 2, let {C;},.; be a nested family of nonempty convex sets, and let 7 :
K% — K be the projection onto the first coordinate. Then {m (C;)},.; is a nested
family of nonempty convex sets in K, hence has an intersection point x. Then
{ri' ()N Ci}iel is a nested family of nonempty convex sets in 7, ! (z) = K%,
which is nonempty by the induction hypothesis. U

Lemma 3.5. If C C K% is an O-module, and v € T, then the set
Xy ={(z1,...,241) €O |Ta e Kv(a) =7, (a,ax1,...,az41) € C}
1S convex.
Proof. Let x = (z1,...,24-1),y = (y1,---,Yd¢-1),2 = (21,...,24-1) € X, and

B1, B2, B3 € O with B+ 2+ 3 = 1 be arbitrary. Then there exist some aq, ag, a3 €
K with v (a;) = 7 so that

(1,001, ..o anmg 1), (Q, oy, - - QoYa1) , (@3, 321, ..., a32q-1) € C.
Taking « := a1, we have
= (o, axy,. .., arg 1),y = (,ayr, .., aya 1), 2 = (a,az, ... ,azq 1) € C,

as for every i € [3], & € O, and hence 2v € C for any v € C as C'is an O-module.
Using this and convexity of C' we thus have

(0% a(frxr + Poyr + B321), - -, a(Brxg—1 + Boya—1 + 53%-1)) =
/81 <Oé7 ATy, ..., Oé'rdfl) + ﬁ? <Oé7 Ay, .- -, Oéyd—l) + 63 (Oé, Az, ..., O[zdfl) =
pia’ + Boy' + B3z’ € C.

This shows that 812+ foy + B3z € X, and hence that X, is convex by Proposition
2.6. O

Combining the lemmas, we obtain the following description of the Og-submodules
of K¢ for spherically complete K.

Theorem 3.6. Suppose K is a spherically complete valued field, d € N>y, and let
C C K4 be an O-submodule. Then there exists a complete flag of vector subspaces
{0} S Fy C...C Fy= K% and a decreasing sequence of nonempty, upwards-closed
subsets A1 D Ay D ... D Ay of ' such that

C={vi+...4v|v; € F, v(v;) € A;}.



10 ARTEM CHERNIKOV AND ALEX MENNEN

Remark 3.7. If F;, A; satisfy the conclusion of Theorem 3.6 for C, then vga(C'N
Fl) = VKd<C) = AI-

Indeed, any v € C is of the form v = v; + ... + vy with v; € F}, v(v;) € A; and
Ay D A, for all i € [d], hence v(v) > min{v(v;) : i € [d]} € Ay, hence v(v) € Ay
as A is upwards closed, so v(C) C A;. Conversely, assume v € Ay, If 7 = oo,
then v(0) = oo and 0 € Fy. So assume v € I and let v be any non-zero vector in
Fy, in particular § := v(v) € I'. Taking @ € K so that vg(a) = v — 0, we have
av € Iy and via(av) = vi(a)+vga(v) = 7. Note also that av = v; +. ..+ v, with
vy = av,v; := 0 for 2 < i < d, in particular v; € F; and v(v;) € A;, so av € C,
hence Ay Cv(F; N C).

Proof of Theorem 3.6. By induction on d. For d = 1, every O-submodule of K is
a quasi-ball C = {z € K : v(z) € A} for some upwards-closed A C I'U {oo} (see
Example 2.11), hence we take F} := K and A; := A.

Ford>1,let Ay :={y el | Fv e C vga(v) =~} Note that A; is nonempty
because it contains oo = v(0). Then there is some i € [d] such that every v € A
is the valuation of the ith coordinate of some element of C'. To see this, note that
for each i € [d], the set

Si={y €l |TFv=(v1,...,v) € Cvga(v) =v(v;) =7}

is upwards closed in I',. Indeed, assume v = (v1,...,v4) € C, v = v(v;) =
min{v(v;) : j € [d]} and § > v in I'y,. Let a € K be arbitrary with v(a) =0 — 7,
then o € O, hence av € C, and so vga(av) = min{v(av;) : j € [d]} = v(av;) = 0.
As we also have Ay = [J;cy Si, it follows that A; = S; for some i € [d] as wanted
(and in particular A; is upwards closed in T'y,).

Without loss of generality we may assume ¢ = 1. Then, given any v € Ay,
there is some (o, y1,...,yq—1) € C such that v = v(a) < min{v(y;) : j € [d —1]}.
Taking x; := % € O, we thus have (a, axy,...,ax4-1) € C. Hence for any v € Ay,
the set

Xy ={(z1,...,2421) €O |Ja e Kv(a)=7 A (a,az,...,azq1) € C}

is nonempty, and convex (by Lemma 3.5). Note that for v < § € I'o we have X, C
Xs, hence ﬂ«/eAl X, # 0 by Lemma 3.4. That is, there exists (z1,...,24.1) € Q%!
such that Vy € Ay 3a € K (v(a) =7 A (o, axq,...,azs 1) € C). Hence

(3.2) Vae K, v(a) e Ay = (a,axy,...,axsq) € C

(since we have 38 € Kv(B) = v(a) A (B, Bz1,...,Bx4-1) € C, 0 § € O and

multiplying by it we get (o, axy, ..., axs 1) € C).

Let Iy := ((1,21,...,741)). Let # : K¢ - K%/F, be the projection map,
f: K¢/ F, — K the valuation preserving embedding given by Lemma 3.1, and
7= form: K¢ — K9 Note that K¢/F, = K9 as a valued K-vector space by
Lemma 3.1, and that C := 7(C) is still an O-submodule of K¢/F,. By induction
hypothesis there is a full flag {0} € F5 € ... C Fy; = K?/F, and upwards-closed
subsets VKd/p, (5’) = Ay D ... D Ay of I'y, satisfying the conclusion of the theorem
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with respect to C' (the equality VKd/F1(5> = A, is by Remark 3.7). Note that
(3.3) Vo € K, via(m'(v)) = vy (1(0)) > via(v).
In particular we have A; O As.

Let the subspaces Fs, ..., F; be the preimages of j":’z, e ﬁd in K¢ Welet W :=
f(K4/F)) C K9 be the image of the valuation preserving embedding f : K¢/Fy —
K9 Then we have

(3.4) C={vi+w|v €F, vga(v)) €A, we CNW}.

To see this, given an arbitrary v € C, let w := 7'(v) and vy :=v —w. Asmwo f =
idga/p by assumption, we have 7(w) = 7 (7'(v)) = 7(f(7(v))) = 7(v), hence v; €
Fy. By (3.3) we have vga(w) > viga(v), and thus vga(vy) > min{vga(v), vga(w)} >
via(v) as well. Thus vga(vy) € Ay, and vy € Fy, which together with (3.2) and
the definition of F; implies v; € C; hence w = v — v; € C' as well. The opposite
inclusion is obvious.

Furthermore, applying the isomorphism f : K¢/F, — W to
C=C/F = {v2 v | v € Fyvgag (v) € Ai}
we get
CNW ={vg+...4vg|v; € FNW, vga (v;) € A}
which together with (3.4) implies
C={vi+...+vg|vi € F, v(v,) € A;, v; €W for i > 2}.

Now C'={vi+...4+v4 | v; € F;, v(v;) € A;} follows because for any such vec-
tors vy, ..., vq, the vector v; (for i > 2) can be moved into W by subtracting an
element of F} with valuation in A;, and collecting the differences in with v;. That
is, given arbitrary v; € F; with v(v;) € A;, let w; :== 7' (v;) € W for i > 2, and let
wy :=v1 + (vg — 7" (v2)) + ...+ (vg — 7 (vq)). As above, using (3.3), for each ¢ > 2
we have vya(v; — 7' (v;)) > min{vga(v;), vga(7'(v;))} > vga(v;) € A; € Ay Hence
Viga (w1) > min{vy,ve — 7' (vg),...,v4 — 7' (vg)} € Ay. We also have vga(w;) >
via(v;) € A; for i > 2 by (3.3). Using that f is a one-sided inverse of 7 as above,
we also have v; — 7'(v;) € Fy; C F; for i > 2. It follows that w; € F; for all i € [d].
Putting all of this together, we get wy+...4wg = vi+. .. +vg, w; € F;, v (w;) € A,
and w; € W for ¢ > 2. O

Remark 3.8. Note that as F; = K¢ in Theorem 3.6, we have
Ng={vel|WeK! v(v)=y = veC]}.
That is, A4 is the quasi-radius of the largest quasi-ball around 0 contained in C.

Remark 3.9. Given a convex set 0 € C C K% and any Fj, A;,i € [d] satisfying
the conclusion of Theorem 3.6 with respect to it, for every j € [d] we have

CNFy={vi+...+v;|v € F, v(v,) €A forall je[i}.

Indeed, if z € CNF}, then z = v1+. . .+v, € F; for some v; € F; with v(v;) € A, for
i € [d]. Then, using that the F; are increasing under inclusion and A; are increasing
under inclusion and upwards closed, vj1+...+v4 € F}; and taking v;. =vj+.. .+
we have v; € Fj,v(vi) > min{v(v;) 1 j <i<d} € Ajand z = vy +...+ vy + v}
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Conversely, any element z = vy + ...+ v; with v; € Fj, v(v;) € A, for i € [j] can be
written as © = v; +...+vg with v; :== 0 € F; and v(v;) =00 € A; for j+1 <i <d.
Sox e CNEj.

Remark 3.10. (1) It follows from the conclusion of Theorem 3.6 that the sub-
space Fj;_; is a linear hyperplane in K% and every element of C differs
from an element of F; ; (and hence of F; 1 N C in view of Remark 3.9) by
a vector in K¢ with valuation in Ay (with Ay as in Remark 3.8).

(2) Conversely, F;_; can be chosen to be any linear hyperplane H in K¢ such
that every element of C' differs from an element of H by a vector in K¢ with
valuation in A4. To see this, let H be such a hyperplane in K¢. Then CNH
is a convex subset of H = K% ! containing 0, hence an O-submodule of H
by Proposition 2.10. Applying Theorem 3.6 to CNH in H (with the induced
valuation on H), thereare Ay D Ay D ... D Ay jand afull flag {0} C F} C
..CFy1=H,suchthat CNH ={v1 +...4+v41 | v; € F}, v(v;) € A}
Then

{nn+...Fuv|veF, vy e A}={w+tv|weCNH, v(v) € Ay} =C.

Example 3.11. The assumption of spherical completeness of K is necessary in
Theorem 3.6. For example, let K :=J,, k ((t%>> be the field of Puiseux series

over a field k, and let K=k HtQH be the field of Hahn series over k with rational
exponents, it is the spherical completion of K (both fields have value group Q and
valuation v (x) = ¢ where x has leading term t¢7; see e.g. [AvdDvdH17, Example

3.3.23|). In particular ) -, =% € K\ K, and let

C:= {a (1,2&31) +vlaeK,ve [?Q,Vg(a) >0, v (v) > 1} C K2,

n>1

and let C := C'N K2, Then C is convex in K 2 and hence C is also convex as a
subset of K2. The basic idea behind why C'is not of the form described in Theorem
3.6 is that C'is close enough to €', and the subspace F} appearing in the conclusion

of Theorem 3.6 for C' must be close to <<1, 2@1 t1*%)>; specifically, it must be
<(1,x + Zn21t1_%>> for some x € K? with v (x) > 1, but K? contains no such

subspaces.

Indeed, by Remark 3.7, given any F;, A; satisfying the conclusion of Theorem 3.6
with respect to C', the valuation of every element of C' must also be the valuation
of some element of F; N C. So, to show that C' is not of the form described in
Theorem 3.6, it suffices to show that C' contains elements of valuation arbitrarily
close to 0, but that for every 1-dimensional subspace F; C K2, there is some ¢ > 0
in I" such that every element of F; NC has valuation at least ¢ (and note that from
the definition of C, every element in it has positive valuation).

Claim 1. For every n € Nxy, there is some v € C with vy (v) = +.
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Proof. To see this, note that

n—1
tr (LZtl’i) = tr (LZtlr}w) ~tn (O, ZﬁJL) cC

m>1

as Vi (t%) =1 >0 and vge (tn (O > men 1’i>> =14+ (1-YH>1 O

Claim 2. For every 1-dimensional subspace Fy C K?, there is some n € N,>1 such
that every element of F1 N C' has valuation at least %

Proof. We prove this by breaking into two cases.
Case 1. F; = ((0,1)).

Assume x € F; N C, then z = (21,22) = « <1,En21 tI*%> + v for some « €
K,v = (v1,1,) € K2 with vi(a) > 0,vz:(v) > 1, and 1 = 0, 80 a = —v;. But 1 <
Viz2(v) = min{vz(v1), v (v2)}, hence vi(a) > 1 as well. Since vz (Zn21 =) =

0, it follows that vz.(x) = min {I/f((()),l/f( (a (anﬁfl_%))} > 1. Thus every
element of F; N C has valuation at least 1.

Case 2. Fy = ((1,z)) for some z € K.

1

Given any x € K, there must exist some n € N such that vz (:c — > st tl’ﬁ) <
— % Given any v € F} N C, we have

v=a(l,z)=p <1,Zt1;> +w

m>1

for some o € K, some f € K with v (B) > 0 and w = (wy,ws) € K? with
Vi (w) > 1. Without loss of generality o # 0, so we have

-1
x:%:@ﬁﬁztl‘%)(wwﬁ < +Zt1“>( “g) .
m>1 m>1

-1
l/f((%)>1—%, I/g(%)>1—%, I/f(<<1+%) )ZO,and
AR N
Vi <+?) — > —g,so

w _ 1 w7
(g (o (g) (05) )

1
>1——,
n

a contradiction to the choice of n. Thus v (8) > £, and hence v (v) > +. O
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Thus no 1-dimensional subspace F; of K? can fill its desired role in the presen-
tation for C.

Theorem 3.6 implies the following simple description of convex sets over spheri-
cally complete valued fields.

Corollary 3.12. If K is a spherically complete valued field and d € Nsq, then the
non-empty convex subsets of K% are precisely the affine images of v (A1) x ... x
v (Ag) for some upwards closed Ay, ..., Ag C .

Proof. Let C C K% be an affine image of v (Ay) x...xv™1 (A,) for some upwards
closed Ay,...,Ay C I'y,. Note that v71 (A;) x ... x v71(4Ay) is convex, and an
image of a convex set under an affine map is convex (Example 2.5), hence C' is
convex.

Conversely, let ) # C C K9 be convex. Since the affine images of O-submodules
of K% give us all non-empty convex sets by Proposition 2.10, without loss of gen-
erality 0 € C and C is an O-submodule of K¢. Let {0} C F} € ... C Fy; = K% and
viga(C) = A1 D Ay O ... D Ay be as given by Theorem 3.6 for C'. Using Lemma

3.1 we can choose vy, ...,vq € K¢ such that for every i € [d] we have:
(1) vy,...,v; is a basis for F;,
(2) v(vi) =0,

(3) v(v;+x) <0 forall x € F; ;.

Then C'is the image of 71 (A;) x ... x 71 (A4) under the linear map f: K¢ —
K such that f (e;) = v;, where e; is the ith standard basis vector. Indeed, if
e f( (A x...x v (Ay)) then z = 3¢ ¢y for some ¢; with v(¢;) € A,
Using (2) this implies v(c;v;) = v(¢;) € Ay, and ¢;v; € F;, hence x € C. Conversely,
let  be an arbitrary element of C, then z = w; + ... 4+ wy for some w; € F; with
v(w;) € A;. Each w; is a linear combination of vy, ..., v;, say w; = 23:1 Ci jVj.

Now we claim that for any i € [d], « € K and v € F;_; we have v(av; +v) =
min{v(av;),v(v)}. Indeed, replacing v and o by a™'v € F;_; and a'a € K,
respectively, changes both sides of the claimed equality by the same amount, hence
we may assume that o = 0 or « = 1. The first case holds trivially, in the second
case we need to show that v(v; + v) = min{v(v;),v(v)}. If v(v;) # v(v) this holds
by the ultrametric inequality, so we assume v(v;) = v(v) = 0 (using (2)). Then,
using (3), 0 > v(v; +v) > min{v(v;),v(v)} =0, so v(v; +v) = 0 as well.

Applying this claim by induction on ¢ € [d], we get
v ¢.iv; | = min{v(c iv;)},
() =m0

which using (2) implies v(w;) = v (Z;Zl cm»v]) = min; {v(c;;)} for each i € [d].
As for each i € [d] we have v(w;) € A; and A; is upwards closed, it follows that
v(c;;) € A; for all i € [d], j € [i]. Regrouping the summands ¢; jv;, it follows that
T = w; + ...+ wy is a linear combination of vy, ..., vy where the coefficient of v;
has valuation in A;, hence x belongs to f (v~ (A1) x ... x v 1 (Ay)). O
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We can eliminate the assumption of spherical completeness of the field when
only considering convex hulls of finite sets. We will say that a convex set is finitely
generated if it is the convex hull of a finite set of points.

Lemma 3.13. A subset C C K< is a finitely generated O-module if and only if it
is a finitely generated convex set and contains 0.

Proof. If an O-module C' C K? is generated as an O-module by some finite set X,
then it is the convex hull of X U{0}. If a set C' is the convex hull of some finite set
X and contains 0, then it is an O-module by Proposition 2.10, clearly generated
as an O-module by X. O

We have the following analog of Theorem 3.6 in the finitely generated case over
an arbitrary valued field.

Corollary 3.14. Let K be an arbitrary valued field and C' a finitely generated
conver set containing 0. Then there is a full flag {0} € F1 € ... C Fy = K and
an increasing sequence y1 < v < ... < g € I'y such that

C={vi+...4v|v €F;, v(v,) >v}.

Proof. Let C' > 0 be the convex hull of some finite set X C K d. By a repeated
application of Proposition 2.8, C'is the convex hull of some d+ 1 elements vy, . . ., v4
from X (possibly with z; = x; for some 4, j). As 0 € C, we have 0 = Z?:o Q;v;
for some a; € O with Z?:o a; = 1. Let j be such that v(a;) is minimal among

{v(a;) : 0 <i < d}. In particular a; # 0, hence v; = (1 -> ﬂ) 042 iz atvi

7] aj
By the choice of j we have Z—J € O for alli # j, hence also 1—Ei#j Z_J € O, thusv; €
conv ({0} U{v; : i # j}), and so also C' = conv ({0} U {v; : i # j}). Reordering if
necessary, we can thus assume that C' is the convex hull of some {0, v1,...,v5} C C
with v (v1) < v (v;) for each i € [d].

Let Fy = (v;) and v, = v(v1). Let m : K¢ - K%/F, be the projection
map, f1 : K%/F; < K? the valuation preserving embedding given by Lemma 3.1,
‘/1 = f1 (Kd/Fl) and 7Ti = f1 o7 : K — K.

For i > 2, as explained after (3.4) in the proof of Theorem 3.6 we have v; —
71 (v;) € Fy; and by (3.3) there and assumption we have v(7](v;)) > v(v;) > v(v1).
So v; — 7 (v;) € Oy for all ¢ > 2, which implies

conv ({0, vy, 7] (va),...,m (vg)}) = conv ({0, v1,...,v4}) = C.
Without loss of generality we suppose v (7] (v2)) < v (7} (v;)) for i > 3, and let
Fy = (vy,m(v2)) and o := v (7] (v2)) > v(v1) = ;1 by assumption. By definition
of the valuation on the quotient space, using the properties of f, we have

vic(mi(vi)) = vigaym (m1(03)) = vigaypy (m1(7y (07))) 2 viga(my (v5) + avs)

for all @ € K. As in the proof of Corollary 3.12, this implies v(87}(v;) + avy) =
min{ Sv(m(v;)),v(avy))} for all i > 2 and «, f € K. It follows that

{nvy + mmy(va) | n,m € O} = {wy +wq | w; € Fy, v(w;) > i}

To see that the set on the right is contained in the set on the left, assume x =
wy + wy for some w; € Fj,v(w;)) > 7. Then w; = aqv; and wy = asvy +
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pr(vg) for some aj,as, € K, and by the observation above v < v(wp) =
min{v (), v(Bmy(v2))}. So & = (a1 + a)vr + fmy(v2), v((on + az)vr) 2 7 =
v(v1), so (a1 + ag) € O, and v(f) > 79, as wanted.

Now we replace v; by 7 (v;) for i > 2, and let m : K¢ — K%/ F, be the projection
map, fo : K%/ F, — K the valuation preserving embedding given by Lemma 3.1,
Vo = fo (K F,) and 7} = fyom : K¢ — K% Fori > 3, v; — m (v;) € F
and v; — 7 (v;) € Ovy + Ovs, so again replacing v; with 7 (v;) for i > 3 does not
change the convex hull. Again we may assume v (7} (v3)) < v (7} (v;)) for i > 4,
and let F3 := (vq,v9,v3) and 73 := v (7} (v3)). Repeating this argument as above d
times, we have chosen vectors v;, increasing spaces F; = (v, ..., v;) and increasing
v = v(v;) €T for i € [d] so that

C =conv ({0,vy,...,v4}) =
{nv1 + ...+ ngug | n; € O} ={wi + ... +wy | w; € Fy, v(w;) >} O

4. COMBINATORIAL PROPERTIES OF CONVEX SETS

The following definition is from [ADH*16, Section 2.4].

Definition 4.1. Given a set X and d € N3y, a family of subsets 7 C P (X) has
breadth d if any nonempty intersection of finitely many sets in F is the intersection
of at most d of them, and d is minimal with this property.

Lemma 4.2. Let K be a valued field and S a convex subset of K9.

(1) If 0 € S and S is finitely generated, then it is generated as an O-module by
a finite linearly independent set of vectors. N
(2) Let K be a valued field extension of K and S := convz.(S) C K% Then

SNK¢=S§.

Proof. (1) By Lemma 3.13, S is generated as an O-module by some finite set
v,...,U, € 5. Assume these vectors are not linearly independent, then 0 =
D icn) iv; for some a; € K not all 0. Let i € [n] be such that v(a;) < v(a;) for all
j € [n], in particular a; # 0. Then v; = 3, =2v; and v (%) =v(oj) —v(a;) >
0, hence le € O for all j # 4, and S is still generated as an O-module by the set
{v; : j # i}. Repeating this finitely many times, we arrive at a linearly independent
set of generators.

(2) Since convexity is invariant under translates, we may assume 0 € S. Since
every element in the convex hull of a set is in the convex hull of some finite subset,
we may also assume that S is finitely generated as an O-module, and by (1) let
v1,...,U, € S be a linearly independent (in the vector space K¢, son < d) set of its
generators. Let v,,1,...,v4 € K¢ be so that {v; : i € [d]} is a basis of K%, and say
v; = (v;; 1 j € [d]) with v;; € K. Then the square matrix A := (v;; : 4,7 € [d]) €
Myyq(K) is invertible, so A7t € My q(K) C ded(l?), so A is also invertible in
Myxqa(K), hence {v; : i € [d]} are linearly independent vectors in K¢ as well. But

now if ) i) 6V = U for some o; € K and u € K%, then necessarily a; € K for all

i (otherwise we would get a non-trivial linear combination of vy, ..., vq in K9). In
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particular, any element of the Oz-module generated by vy, ..., v, which is in K¢
already belongs to the Ox-module generated by vy, ..., v,, hence SNK?=S. O

We can now demonstrate an (optimal) finite bound on the breadth of the family
of convex sets over valued fields. In sharp contrast, over the reals there is no finite
bound on the breadth already for convex subsets of R? (for any n, a convex n-gon
in R? is the intersection of n half-planes, but not the intersection of any fewer of
them).

Theorem 4.3. Let K be a valued field and d > 1. Then the family Convga has
breadth d. That is, any nonempty intersection of finitely many convexr subsets of
K9 is the intersection of at most d of them.

Proof. The family Conv g cannot have breadth less than d because the d coordinate-
aligned hyperplanes are convex, have common intersection {0}, but any d — 1 of
them intersect in a line.

We now show that Convga has breadth at most d, by induction on d. The case
d = 1 is clear by Example 2.5(1) since for any two quasi-balls, they are either
disjoint or one is contained in the other. For d > 1, assume C4,...,C, € Convyga
with n > d are convex and satisfy () }Ci # (). Translating, we may assume

0e ﬂle[n] Cl

We may also assume that K is spherically complete. Indeed, let K be a spherical
completion of K as in Fact 3.3, and let 6’2 = convq(C;) € Convy,. By Lemma
4.2(2), CiNK? = C; for each i € [n]. Hence Niep C; # 0, and if Nicp Ci = Njes Ci
for some S C [n] with |S| < d, then also (;c(, Ci = Nics Ci-

Then let the vector subspaces {0} € Fy € ... € F; = K¢ and the upwards closed
subsets Ay D Ay D ... D Ay of 'y, be as given by Theorem 3.6 for the convex set
C:=CyN...NnC,. By Remark 3.8 we have

Ad:{nyFoo\VveKd, viv) =y = vEClﬂ...ﬂCn}.

i€n

It follows that there is some iy € [n] such that in fact
(4.1) Ag={vel| VWweK!, v(v)=y = veC,}

(since these are finitely many upwards closed sets in I, their intersection is already
given by one of them).

Let {0} € F/ € ... C Fj=K¥and A} D A, D ... D A/ be as given by
Theorem 3.6 for C;,. By Remark 3.10(1), F),_, is a linear hyperplane so that every
element of C;, differs from an element of F; |, N C;, by a vector with valuation in
Al As Ay = Al by (4.1) and C C C;,, by Remark 3.10(1) we may assume that
Fy_1 = F}_,, hence every element in C;, differs from an element of F,;_; N C;, by
a vector with valuation in Ay.

Consider CNF;_ 1 =CiN...NC,NE; 1 =(CiNFy_1)N...N0(C, N Fy_q). Note
that each C; N F,;_, is a convex subset of Fy_; = K%' so by induction hypothesis
there exist i1, ...,74-1 € [n] such that

(42) C“ﬂﬂCZ ﬂFd,1:Clﬂ...ﬂCand,1:CﬂFd,1.

d—1
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Let x € C;; N...NC;, be arbitrary. As x € C;,, by the choice of Fy;_1, 2 = w+ vy
for some w € Fy_; and vy € K¢ with v(vg) € Agq. By the choice of Ay we have
in particular vy € C;;, N...NC;,. And as each C; is a module, it follows that also
w € C;, N...NC;,. Combining this with (4.2) and using Remark 3.9 (for j =d—1)
we thus have

Con...NCyy={w+uvg|weCynN...NCi, N Fy_q, v(vq) € Ag} =
{w—+vg|weCNF 1, v(vg) € Ay} =
{14+ ...+vg|v; € Fy, v(v;) € Aj} =
Cin...NnGC,. O

Definition 4.4. (1) A family of sets F C P (X) has Helly number k € Nx;
if given any n € N and any sets Si,...,S5, € F, if every k-subset of
{S1,.-., 5.} has nonempty intersection, then (1, Si # 0-

(2) The Helly number of F refers to the minimal k& with this property (or oo if
it does not exist).
(3) We say that F has the Helly property if it has a finite Helly number.

Theorem 4.5. Let K be a valued field and d > 1. Then the Helly number of
Convya is d + 1.

Proof. The Helly number is bounded by the Radon number minus 1 in an arbitrary
convexity space (see Section 5.3), but we include a proof for completeness. Let n
be arbitrary, and let Sy, ..., S, C K¢ be convex sets so that any d+ 1 of them have
a non-empty intersection. We will show by induction on n that S;N...N S, # 0.

Base case: n =d + 2.

By assumption for each i € [d + 2] there exists some z; € K¢ so that z; €
Mjelara\ iy Si- By Proposition 2.8 there exists some i* € [d + 2] so that z;+ €
conv ({z; | i # i*}). By the choice of the x;’s we have z;» € S; for all i # *. We
also have z; € Sy« for all i # i*, S;+ is convex and x;« € conv ({z; | ¢ # i*}), hence
X € Sy Thus 2 € S;, as wanted.

Inductive step: n > d + 2.

i€[d+2]

Let gn_l = S,-1 NS, in particular §n_1 is convex. By induction hypothesis, any
n — 1 sets from {S7,...,S5,} have a non-empty intersection. Hence any n — 2 sets
from {Sl, ey Sha, gn_l} have a non-empty intersection. As n —2 > d + 1 by

assumption, applying the induction hypothesis again we get
SiN...NS=8N...NS 2N, 0.

This completes the induction, and shows that Conv s has Helly number d + 1.

It remains to show that Conv g« does not have Helly number d. Let e; € K% be
the ith standard basis vector. In particular the set E := {0, e1,...,¢e4} is affinely
independent, hence the intersection of the affine spans of its d + 1 maximal proper
subsets is empty. The convex hull of a subset of K¢ is contained in its affine hull,
hence the intersection of the d + 1 convex hulls of its maximal proper subsets is
also empty. But for any d among the (d + 1) maximal proper subsets of E, some
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element of F belongs to their intersection, and hence in particular the intersection
of their convex hulls is non-empty. g

We recall some terminology around the Vapnik-Chervonenkis dimension (and
refer to [ADHT16, Sections 1 and 2| for further details).

Definition 4.6. Let F C P(X) be a family of subsets of X.

(1) For asubset Y C X, welet FNY :={SNY:SeY} CPY).

(2) We say that F shatters a subset Y C X if FNY = P(Y).

(3) The VC-dimension of F, or VC(F), is the largest k& € N (if one exists) such
that F shatters some subset of X size k. If F shatters arbitrarily large
finite subsets of X, then it is said to have infinite VC-dimension.

(4) The dual family F* C P (F) is given by F* = {S, | x € X}, where S, =
{Ae Flze A}

(5) The dual VC-dimension of F, or VC*(F), is the VC-dimension of F*.
Equivalently, it is the largest & € N (or co if no such k exists) such
that there are sets Si,..., S, € F that generate a Boolean algebra with
2 atoms (i.e. for any distinct I,J C [k], N;c; Si N Nicpps (X \S) #
ﬂiEJ Si N ﬂie[k}\J (X \ SZ))

(6) The shatter function 7 : N — N of F is

7r(n) =max{|FNY|:Y CX,|Y|=n}.

(7) By the Sauer-Shelah lemma (see e.g. [ADH' 16, Lemma 2.1], if VC(F) < d,
then mx(n) < (s)dnd forallm > d (and mx(n) = 2" for all n if VC(F) = o0).

(8) The VC-density of F, or vc(F), is the infimum of all » € Ry so that
mx(n) = O(n"), and o if there is no such r. (In particular ve(F) < VC(F).)

(9) Finally, we define the dual shatter function % = mr« and the dual VC-
density vc*(F) := ve(F*) of the family F.

Remark 4.7. Note that if 7/ C P(X) and Y C X, then VC(FNY) < VC(F) and
VC(FNY) < VO (F).

The following results is in stark contrast with the situation for the family of
convex sets over the reals, where already the family of convex subsets of R? has
infinite VC-dimension (e.g., any set of points on a circle is shattered by the family
of convex hulls of its subsets).

Theorem 4.8. Let K be a valued field and d > 1. Then the family Convga has
VC-dimension d + 1.

Proof. We have VC (Conva) > d+ 1 since the set E := {0, ¢e1,...,eq} C K% with
e; the 1th vector of the standard basis, is shattered by Convga. Indeed, the convex
hull of any subset is contained in its affine span, and for any S C F, aff(S) does
not contain any of the points in F \ S.

On the other hand, VC (Convga) < d+ 1 as no subset Y of K with |Y| > d+2
can be shattered by Convga. Indeed, by Proposition 2.8, at least one of the points
of Y belongs to every convex set containing all the other points of Y. U

The dual VC-dimension of a family of sets is bounded by its breadth.
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Fact 4.9. [ADH"16, Lemma 2.9] Let F C P(X) be a family of subsets of X of
breadth at most d. Then also VC*(F) < d.

Using it, we get the following:

Theorem 4.10. For any valued field K and d > 1, the family Convga has dual
VC-dimension d.

Proof. The dual VC-dimension of Convya is at least d because the d coordinate-
aligned (convex) hyperplanes in K¢ generate a Boolean algebra with 2¢ atoms.

Conversely, the breadth of Convga is d by Theorem 4.3, hence by Fact 4.9 its
dual VC-dimension is also at most d. O

Definition 4.11. (1) A family of sets F C P(X) has fractional Helly number

k € Ny, if for every a € R+ there exists 3 € R so that: for any n € N and

any sets Si,...,S5, € F (possibly with repetitions), if there are > a(Z) k-

element subsets of the multiset {Si, ..., 5,} with a non-empty intersection,

then there are > fn sets from {S,...,S,} with a non-empty intersection.

(2) The fractional Helly number of F refers to the minimal & with this property.

Say that F has the fractional Helly property if it has a fractional Helly
number.

Note that any finite family of sets trivially has fractional Helly number 1 by
choosing [ sufficiently small with respect to the size of 7. We will use the following
theorem of Matousek.

Fact 4.12. [Mat04, Theorem 2| Let F C P(X) be a set system whose dual shatter
function satisfies Tx(n) = o(n*), i.e. lim, oo 7x(n)/n* = 0, where k is a fized
integer. Then F has fractional Helly number k.

Remark 4.13. Moreover, if VC*(F) = d < oo, then the fractional Helly number
is < d + 1, and the [ witnessing this can be chosen depending only on d and «
(and not on the family F).

Indeed, by Definition 4.6, if VC*(F) < d, then 7%(n) < (g)dnd for all n > d,

hence 7%(n) < cn? for all n € N, where ¢ = ¢(d) := (g)d + 24, In particular we can
choose m = m(d, ) so that 7(m) < ia(dTl). Then it follows from the proof of
[Mat04, Theorem 2| that 8 = 5 works for all n > 5= 2m?, and trivially f = =

2m?
works for all n < 2m?, hence § := f(w, d) := 55 works for all n € N.

Using this, we get the following:

Theorem 4.14. If K is a valued field, d > 1, and X C K¢ is an arbitrary subset,
then the fractional Helly number of the family

ConvigaNX ={CNX:C € Convyga} C P(X)

1s at most d+1. Moreover, 3 in Definition 4.11 can be chosen depending only on d
and o (and not on the field K or set X ). And if K is infinite, then the fractional
Helly number of the family Convga 1s exactly d + 1.
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Proof. By Fact 4.12 we have that the fractional Helly number of a set system is
at most the smallest integer larger than its dual VC-density. Dual VC-density
is, in turn, at most its dual VC-dimension. Also for any set X C K% we have
VC* (Convga NX) < VC* (Convga) by Remark 4.7. So Convga NX has dual VC-
density at most d by Theorem 4.10, hence its fractional Helly number is at most
d+ 1 by Fact 4.12. And an appropriate [ can be chosen depending only on d and
a by Remark 4.13.

To show that the fractional Helly number of Convga is at least d + 1 when K
is infinite, we can use the standard example with affine hyperplanes in general
position. We include the details for completeness. First note that as the field K is
infinite, for any K-vector space V of dimension k and v € V' \ {0} there exists an
infinite set S C V so that v € S and any k vectors from S are linearly independent.
This is clear for k£ = 1 by taking any infinite set of non-zero vectors, so assume that
k > 1. By induction on i € Ns; we can find sets S; such that v € S;,]S;| > @ and
every k vectors from S; are linearly independent, for all . Let S be any basis of
V' containing v. Assume i > k and S; satisfies the assumption. Since K is infinite,
V' is not a union of finitely many proper subspaces, in particular there exists some

weV\ U (s).
sCS;,|s|=k—1
Let S;11 := S; U {w}. Since in particular any s C S; with |s| = k — 1 is linearly
independent by the inductive assumption, it follows that s U {w} is also linearly

independent, hence S;;; satisfies the assumption. Finally, S := UieN>k S; is as

wanted.

In particular, we can find an infinite set of vectors S in K¢ x K so that any d+ 1
of them are linearly independent and the standard basis vector e;, 1 € S. Then

X ={{v,-):ve S} C (deK)*

is an infinite set of dual vectors such that any d+1 of them are linearly independent,
and it contains the projection map onto the last coordinate 7411 == (egi1, —) :
(x1,...,%q11) > x441. Consider the family

H:={ker (f) | f € X\ {mas1}} C P (K? x K)

of kernels of these dual vectors (excluding the projection map onto the last coor-
dinate), and let

H ={{veK?|(v,1)eH} |He H} CP (K.

Then A’ is an infinite family of affine hyperplanes in K%, and we wish to show
that any d element of H’ intersect in a point, and any d + 1 elements of H’ have
empty intersection. For any pairwise distinct fi,...,fs € X \ {may1}, by linear
independence

dim (ker (f1)N...Nker (fy)) =d+1—dim ((f1,..., fa)) = 1.
And by their linear independence with 7y, 1,
dim (ker (f1) N...Nker (fy) Nker (7441)) = 0.

That is, ker (f;) N ... Nker (f;) is a line in K¢ x K that intersects ker (my,,) =
K4 x {0} only at the origin, and thus must also intersect K¢ x {1} in a single point;



22 ARTEM CHERNIKOV AND ALEX MENNEN

this shows that every d elements of H’ intersect in a point. And any pairwise
distinct f1,..., fax1 € X \ {mar1} span (Kd X K)* by linear independence, so
ker (f1) N ...Nker (f401) = {0}, and thus has empty intersection with K% x {1}.
This shows that every d + 1 elements of H' have empty intersection.

Using a = 1, for any 8 > 0, take an arbitrary n > %. Let Hy,...,H, € H be

any distinct hyperplanes from this collection. All d-subsets (so, a(Z) of them) of
{Hy,..., H,} have an intersection point, but there are no fn > d+ 1 of them with
a common intersection point. Therefore Convga does not have fractional Helly
number d. 0J

Note that Theorems 4.5 and 4.14 replicate results for real convex sets, while
Theorems 4.3, 4.8, and 4.10 do not: as we have already remarked, Convg2 has
infinite breadth, VC-dimension, and dual VC-dimension. The following result is
somewhere in between. The classical Tverberg theorem says that for any X C R¢
with | X| > (d+1)(r—1)+1, X can be partitioned into r disjoint subsets X1, ..., X,
whose convex hulls intersect; that is, conv(X7) N...Nconv(X,) # (). Over valued
fields, we obtain a much stronger version (note that any element of the non-empty
set X, in the statement of theorem 4.15 belongs to the convex hulls of each of the
sets X;,i € [r] — which gives the usual conclusion of Tverberg’s theorem over the
reals):

Theorem 4.15. Let K be a valued field and d,7 € Nsi. Then any set X C K¢
with
IX|>d+1)(r—1)+1

points in K can be partitioned into subsets X1, ..., X, such that |X;| =d+ 1 for
i<r, | X;|=|X|—-(d+1)(r—1), and conv (X;) D conv (X;) for all i < j € [r].

Proof. Since any finitely generated convex set is the convex hull of some d-+1 points
from it by Corollary 2.9, we can find X; C X with |X;| = d+ 1 and conv (X;) =
conv (X), Xo C X \ Xj with |X3| = d+ 1 and conv (X3) = conv (X \ X3), and

so on: once Xi,...,X; 1 have been chosen, pick X; C X \ <U;;11 Xj) such that

| X;| = d+1, conv (X;) = conv (X \ U;;ll XJ), and then let X, consist of everything
left over at the end. O]

From this strong Tverberg theorem and the fractional Helly property, we finally
get an analog of the result due to Boros-Fiiredi |[BF84| and Barany [Bar82| on the
common points in the intersections of many “simplices” over valued fields (note that
the conclusion is actually stronger than over the reals: the common point comes
from the set X itself). This answers a question asked by Kobi Peterzil and Itay
Kaplan. Our argument is an adaptation of the second proof in [Mat02, Theorem
9.1.1].

Theorem 4.16. For each d > 1 there is a constant ¢ = ¢(d) > 0 such that: for
any valued field K and any finite X C K¢ (say n := |X|), there is some a € X

contained in the convex hulls of at least c(dil) of the (dil) subsets of X of size
d+1.
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Proof. Let X C K% with | X| = n be given, and let
F:=ConvgaNX ={CNX:C € Convyga}

be the family of all subsets of X cut out by the convex subsets of K¢. Let (.5;) ie[N]
with S; € Convga be the sequence listing all convex hulls of subsets of X of size
d + 1 in an arbitrary order (possibly with repetitions). Then N = ( dil)’ and for
a (d + 1)-element subset Y C X we let g(Y) € [N] be the index at which conv(Y)
appears in this sequence. For each ¢ € [N] let S! := S;N X € F. It is thus
sufficient to show that there exists some a > 0, depending only on d, such that at
least a(dﬂ\rfl) of the (d + 1)-element subsets I C [N] satisfy (,.; S; # 0 — as then
Theorem 4.14 applied to F C P(X) shows the existence of ¢ > 0 depending only
on a,d, and hence only on d, so that for some I C [N] with |I| > ¢N = ¢("))

dt1
there exists some a € (,c; S; € [;e; i (in particular a € X).

Now we find an appropriate o. For any (d + 1)2—element subset Y C X, by
Theorem 4.15 (with r := d 4 1), we can fix a partition of Y into d + 1 disjoint
parts Yi,...,Yy.1, each of which has d + 1 elements, and so that conv(Y;) 2
conv(Y;) for all i < j € [d+ 1]. In particular any element of the non-empty

set Ygy1) © X belongs to (V;cgyq) (conv(Y;) NX) = (Nigpapy) ( ;(Yi)>' As g is a

bijection, Y — {g(Y;) : i € [d+ 1]} gives a function f from (d + 1)*-element sub-
sets of X to (d+ 1)-element subsets I C [N] so that (,.; S/ # 0. Moreover, f
is an injection. Indeed, given a set {j; : i € [d + 1]} in the image of f, as g is a
bijection, there is a unique set {Y7,...,Y; 1} with ¥; C X disjoint of size d + 1 so
that ¢g(Y;) = j; for all i € [d + 1], and there can be only one set Y C X of size
(d+ 1)? for which it is a partition. If follows that the number of sets I C [N] with

Mier Si # 0 is at least
n _ (d+1)2 > N
((d+1)2) Q(" >—a d+1

for some sufficiently small o depending only on d. O

5. FINAL REMARKS AND QUESTIONS

5.1. Some further results and future directions. The results of Section 4
imply the following analog of the celebrated (p, q)-theorem of Alon and Kleitman
[AK92] for convex sets over valued fields.

Corollary 5.1. For any d,p,q € N>y with p > q > d + 1 there exists T =
T(p,q,d) € N such that: if K is a valued field and F is a family of convex subsets
of K% such that among every p sets of F, some q have a non-empty intersection,
then there exists a T-element set Y C K% intersecting all sets of F.

Corollary 5.1 follows formally by applying [AKMMO02, Theorem 8] since the family
Convga has fractional Helly property (Theorem 4.14) and is closed under inter-
sections. Alternatively, it follows with a slightly better bound on 7" by combining
the fractional Helly property with the existence of e-nets for families of bounded
VC-dimension (Theorem 4.8), as outlined at the end of [Mat04, Section 1]. The
problem of determining the optimal bound on T'(p, q,d) is widely open over the
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reals (see [BK22, Section 2.6]), and we expect that it might be easier in the valued
fields setting.

Kalai [Kal84] and Eckhoff [Eck85] proved that in the fractional Helly property

for convex sets over the reals, one can take f(d,a) = 1—(1— a)#l (and this bound
is sharp).

Problem 5.2. What is the optimal dependence of 5 on d, @ in Theorem 4.147

Over R, Sierksma’s Dutch cheese conjecture predicts a lower bound for the num-
ber of Tverberg partitions (see e.g. [DLGMM19, Conjecture 3.12| and the references
there). We expect the same bound to holds over valued fields:

Conjecture 5.3. For any valued field K and X C K? with | X| = (r—1)(d+1)+1,
there are at least ((r —1)!)¢ partitions of X into parts whose convex hulls intersect.

Remark 5.4. In Theorem 4.15, we showed the existence of Tverberg partitions
satisfying the stronger property that the convex hulls of the parts are linearly
ordered by inclusion. It is not true that for X C K¢ with |X| = (d+1)(r —1) + 1,
there are at least ((r — 1)!)¢ different ways of partitioning X into Xi,..., X, such
that conv(X;) 2 ... D conv(X,). Thus any attempt to prove Conjecture 5.3
would have to involve other Tverberg partitions that do not have this property.
For an example in K? where this bound fails, let z € K with v(X) # 0, and let
X :={(a",z7™)|n € [3(r — 1) + 1]}. For any partition of X into Xi,..., X, such
that conv(X;) D ... D conv(X,), for each ¢ < r, X; must consist of the points
corresponding to the lowest and highest values of n among all points not already
in Xj U...U X, 4, together with one of the other 3(r — i) — 1 remaining points,
and X, must consist of whatever point is left over. So the number of partitions of
X of this form is [[/—; (3(r —i) — 1) < [[\Z; 3(r —i) = 3" 1(r — D) < ((r — 1)!)?
for large enough 7.

We expect that the colorful Tverberg theorem also holds over valued fields, how-
ever the proofs for convex sets over R rely on topological arguments not readily
available in the valued field context:

Conjecture 5.5. For any integers r,d > 2 there exists ¢ > r such that: for any
valued field K and X C K¢ with |X| = t(d + 1), partitioned into d + 1 color
classes C',...,C4y1 each of size ¢, there exist pairwise disjoint X;,..., X, C X
with |[X; N Cj| =1 fori € [r] and j € [d + 1], and (¢}, conv (X;) # 0.

It would formally imply (see e.g. [Mat02, Section 9.2]) the “second selection lemma”
over valued fields generalizing Theorem 4.16:

Conjecture 5.6. For each d € N>, there exist ¢, s > 0 such that: for any valued
field K, o € (0,1] and n € N, for every X C K¢ with |X| = n, and every family

F of (d + 1)-element subsets of X with |F| > o dil)’ there is a point contained in

the convex hulls of at least ca® ( dil) of the elements of F.

Corollary 3.12 has the following immediate model-theoretic application.

Remark 5.7. If K is a spherically complete valued field, then every convex subset
of K% is definable in the expansion of the field K by a predicate for each Dedekind
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cut of the value group (so in particular definable in Shelah ezpansion of K by all
externally definable sets [She09, CS13]). And conversely, every Dedekind cut of the
value group is definable in the expansion of K by a predicate for each O-submodule
of K. In particular, if K has value group Z, then all convex subsets of K¢ form a
definable family.

Example 5.8. In contrast, naming a single (bounded) convex subset of R? in the
field of reals allows to define the set of integers. Indeed, we can define a continuous
and piecewise linear function f : [0, 1] — [0, 1] such that

C:={(z,y) -2 €[0,1],0 <y < f(z)}

is convex but the set of points where f is not differentiable is exactly {% ‘n € sz}.
Now in the field of reals with a predicate for C' we can define f and the set of points
where it is not differentiable, hence N is also definable.

5.2. Other notions of convexity over non-archimedean fields. We briefly
overview several other kinds of convexities over non-archimedean fields considered
in the literature. The extension of Hilbert (projective) geometry to convex sets
in a generalized sense is a topic of high current interest, see e.g. [Guil6|. In a
different spirit, in tropical geometry, convex sets over real closed non-archimedean
fields have been considered (unlike what is done here, this leads to a combinato-
rial convexity similar to the classical one, since by Tarski’s completeness theorem,
polyhedral properties of a combinatorial nature are the same over all real closed
fields). Moreover, tropical polyhedra are obtained as images of such polyhedra by
the nonarchimedean valuation, see e.g. [DY07]. Polytopes and simplexes in p-adic
fields are introduced in [Darl7, Darl9|, and demonstrated to play in p-adically
closed fields the role played by real simplexes in the classical results of triangula-
tion of semi-algebraic sets over real closed fields. Although we are not aware of any
direct link of these results with the present work, we hope for some connections to
be found in the future.

5.3. Abstract convexity spaces. Our results here can be naturally placed in the
context of abstract convexity spaces, we refer to e.g. [vDV93] for an introduction
to the subject. A convexity space is a pair (X,C), where X is a set and C C 2%
is a family of subsets of X closed under intersection with (), X € C. The sets in C
are called convez. Given a subset Y C X, the convez hull of Y, denoted conv(Y'),
is the smallest set in C containing Y (equivalently, the intersection of all sets in C
containing Y). A convex set C' € C is called a half-space if its complement is also
convex. The convexity space (X,C) is separable if for every C € C and z € X \ C,
there exists a half-space H € C so that C' C H and = ¢ H (equivalently, if every
convex set is the intersection of all half-spaces containing it). Separability is an ab-
straction of the hyperplane separation (and more generally Hahn-Banach) theorem.
In particular, (Rd, COHVRd) is a separable convexity space (see e.g. [MY19, Section
1.1] or [vDV93] for many other examples). The Radon number? of a convexity space
(X, C) is the smallest k € Nx (if it exists) such that every Y C X with |Y| > k can
be partitioned into two parts Y7, Ys such that conv(Y7) N conv(Yz) # 0 (the classi-
cal Radon’s theorem states that the Radon number of (Rd, COHV]Rd) equals d + 1).

2Sometimes in the literature it is defined with “>” instead of “>" leading to the value off by
1, we are following the notation from [vDV93, Chapter II] here.



26 ARTEM CHERNIKOV AND ALEX MENNEN

Given ) #Y C X, a partition Vi, ..., Y, of Y is Twerberg if (;_, conv(Y;) # 0. The
rth Tverberg number of (X,C) is the smallest k so that every Y C X with |Y| > k
has a Tverberg partition in r + 1 parts. Note that the first Tverberg number is the
Radon number, and the classical theorem of Tverberg says that the rth Tverberg
number of (R?, Convga) is r(d + 1).

Now let K be a valued field and d € N>;. Then (K 4 Conv Kd) is a convexity
space, but we stress that it is not separable; in fact, ) and K% are the only half-
spaces. This is because for any non-empty proper convex set C, let x € C, y €
Ki\C,anda € K\O. Then z :=x+aly—=z) ¢ C,sincey =a 12+ (1 —a )z
is a convex combination. But then x = (1 — a)™!(z — ay) is a convex combination
of elements of K¢\ C, so K%\ C is not convex.

Proposition 2.8 implies that the Radon number of (K d COHVKd) isd+ 1. By
the Levi inequality in an arbitrary convexity space ([vDV93, Chapter 1I(1.9)]), it
follows that the Helly number of Conv g (Definition 4.4) is < d+ 1 (we included a
proof in Theorem 4.5 for completeness). It was also recently shown in [HL21] that in
any convexity space (X, C) with Radon number &, C has a fractional Helly number
(Definition 4.11) bounded by some function of k. In the case of (K 4 Conv Kd) this
general bound is much weaker than the optimal bound d 4+ 1 given in Theorem
4.14. Corollary 2.9 implies that the Carathéodory number of (Kd, COHVKd) isd+1
(see [vDV93, Chapter II(1.5)] for the definition). Finally, Theorem 4.15 implies
that the rth Tverberg number of (K, Convga) is r(d + 1) (finiteness of the rth
Tverberg numbers for all r follows from the finiteness of the Radon number in an
arbitrary convexity space, with a much weaker bound [vDV93, Chapter 11(5.2)]).
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