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ARTICLE INFO ABSTRACT
Keywords: In this paper, we develop a new variational form to simulate the propagation of surface plasmon polaritons
Maxwell’s equations on graphene sheets. Here the graphene is treated as a thin sheet of current with an effective conductivity, and

Finite element time-domain methods
Edge elements
Graphene

modeled as a lower-dimensional interface. A novel time-domain finite element method is proposed for solving
this graphene model, which coupled an ordinary differential equation on the interface with Maxwell’s equations
in the physical domain. Discrete stability and error estimate are proved for our proposed method. Numerical
results are presented to demonstrate the effectiveness of this graphene model for simulating the surface plasmon
polaritons propagating on graphene sheets.

1. Introduction

The two-dimensional (2-D) material graphene was rediscovered, isolated and investigated by Novoselov, Geim and co-workers [30] in 2004.
The 2010 Nobel Prize in Physics was awarded to Geim and Novoselov “for groundbreaking experiments regarding the two-dimensional material
graphene.” Since 2004, graphene has become a valuable and useful nanomaterial, and its study has become a very hot research topic [4,12,35]
due to its exceptionally high tensile strength, high electronic mobility, high thermal conductivity, low absorption of light, and being the thinnest
two-dimensional material in the world.

Numerical simulation of electromagnetic wave propagation plays a very important role in the study of graphene and its applications. The
finite difference time-domain (FDTD) method (e.g., [1,11,14,15,19,24,39]) and the finite element method (FEM) (e.g., [3,6-8,10,16,17,21,31]) are
arguably the two most popular numerical methods in computational electromagnetics, which can solve Maxwell’s equations in various media. More
details and references on the FDTD method and FEM for Maxwell’s equations can be found in related FDTD books [34] and FEM books [9,22,28].

Compared to many existing papers on simulation of graphene and its applications by FDTD methods [5,27,29], there are quite limited publications
on FEMs for graphene simulation, e.g., [23,36] are on discontinuous Galerkin time-domain (DGTD) modeling of graphene devices, and [26,33] are
on frequency-domain finite element simulation of graphene sheet. Recently, Li and collaborators [18,20,38] have proposed and analyzed some finite
element time-domain (FETD) methods for graphene simulation. In [18,20,38], the graphene has been treated with some thickness (though very
thin). A major drawback of this approach is that a particularly fine spatial mesh is needed for the graphene part, which makes the implementation
time consuming. Mathematical analysis of graphene model in time domain is very limited. In a recent work [37], the authors investigated the
effects of modulating the electronic doping of graphene in time on plasmon dynamics, and they also established the existence, uniqueness, and
regularity for solutions to the resulting current equation. In this paper, we will investigate a time-domain graphene model and treat the graphene
as an infinitesimal thin conductive sheet. For the first time a new finite element time-domain method is proposed and analyzed for solving this
graphene model.

The rest of the paper is organized as follows. In Section 2, we first present the time-domain governing equations for modeling the surface
plasmon polaritons on the graphene sheet. Then we prove an energy identity and a stability for the system of the modeling equations. In Section 3,
we propose a leapfrog type scheme for solving the modeling equations, and prove the discrete stability and the optimal error estimate for our
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scheme. In Section 4, we present extensive numerical results to demonstrate the propagation of surface plasmon polaritons appearing on various
graphene sheets. We conclude the paper in Section 5.

2. The governing equations and stability analysis

We assume that Q is a bounded Lipschitz polygonal domain in R? with boundary Q. In our previous works [18,20,38], we treated the graphene
as a homogenized material of small thickness with an effective permittivity. Here we adopt another way to treat graphene as a thin sheet of current
with an effective conductivity.

Considering that the interband conductivity is not that significant in most cases, we will ignore it in this paper. For simplicity, we consider the
T E, mode problem with electric field E = (E,, Ey)’ and magnetic field H = H,. From [38, (2.7)-(2.12)] (see also [18, (2.10)-(2.13)]), we have the
following governing equations for simulating surface plasmon propagation on graphene:

€, E=VxH, in Q 2.1)
ppd, H=-VxE—-K, in Q (2.2)
100, +J=0,E, onT, (2.3)

where K is an imposed magnetic source function, J :=J; (as denoted in [38]) is the induced intraband surface current in graphene, ¢, and y, are
respectively the permittivity and permeability in vacuum, the positive constant 7, denotes the relaxation time, and the positive constant ¢, denotes
the graphene surface conductivity. Here I' represents the graphene sheet buried in the domain Q. It appears as a line in our 2D domain (cf. Figs. 1,
3, 5, and 7 shown later). Finally, the 2D curl operators are defined as Vx H := (0,H,-0. H Y and VXE := 0 E,—0,E,.

According to [2, Fig. 1], the boundary conditions on the graphene interface are:

Ay X E, =fyx Ey, onT, (2.4)

H, —-H,=Jx#, onT, (2.5)

which mean that the tangential electric field is continuous across the interface, and the jump of the tangential component of the magnetic field along
the interface is equal to the surface current. Here H; and H, represent the magnetic field above and below the interface, respective, A := (nx,ny)’ is
the unit normal vector pointing upward, and 4, and #, are the unit outward normal vectors from top and bottom subdomains of the interface. Here
we denote the 2D cross product J X it 1= Jn, — Jyn,.
We remark that (2.3) was originally developed for a graphene sheet with small thickness in [38]. For an infinitely thin graphene sheet, the
surface current must lie within I', and so the equation must be interpreted as
700,(J X A) + J X i = 6 E X A. (2.6)

To complete the problem, we assume that (2.1)-(2.3) is subject to the perfectly conducting (PEC) boundary condition:

VX E=0, onodQ, (2.7)

and the initial conditions

E(x,0)= Ey(x), H(x,0)= Hy(x), J(x,0)|r = Jo(x)|r, (2.8)

where ¥ is the unit outward normal vector on 0Q, and E,, H, J, are some given functions.

We want to remark that the system (2.1)-(2.8) can be used to model the propagation of the surface plasmon polaritons on graphene, which is
usually embedded inside other materials such as vacuum. Moreover, the system (2.1)-(2.3) can be reduced to the standard Maxwell’s equations in
vacuum by setting J to be zero and ignoring (2.3).

Denote the Sobolev space

Hy(curl; Q) = {ue (L*(Q))* : Vxue LX(Q), ¥ xu=0on iQ}.

We can easily obtain the following weak formulation: Find the solution

E € L*(0,T; Hy(curl; Q) n H'(0,T;(L*(Q))*), H € H'(0,T; L*(Q)),J € H'(0,T;(L*(D))*),

such that
€0, E,$)=(H,Vx$)—(J,P)r 2.9
o0 H,y)=—(VXE,y)— (K, y) (2.10)
(790, J, X)r +{J, x)r = (0o E, x¥)r (2.11)

hold true for any test functions ¢ € Hy(curl; Q),w € L*(Q) and y € (L*(T"))%. To obtain (2.9), we use the integration by parts over Q and the boundary
condition (2.5). Here and below we denote (-,-) for the inner product over Q, and (J, @) := f.J X /- ¢ x A ds for the inner product on I'. Only J x A
is determined by the differential and variational formulations, and only the component y x /i of y is used as a test function.

To simplify the notation, we denote the L? norm of u in Q as ||u|| :=||u|| 2, and the L? norm of u on T as |Jul|r := (/. [ux A|* ds)!/2.
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Theorem 2.1. For the solution (E, H,J) of (2.9)-(2.11), the following energy identity holds true for any t € [0,T]:
t t
ENG(t)— ENG(0) +/ 2z ||J||1%dt =- / 2(K,, H)dt, (2.12)
o0
0 0

where we denote the energy
T
ENG() := [eonEn2 + ol H I + 6—°||J||%] (). 2.13)
0

Furthermore, we have the following continuous stability:

t

ENG(@) <| ENG(0) + / i||KS||2dz -exp(t), Vie[0,T]. (2.14)
Ho

Proof. By choosing ¢ =2E,y =2H,y = %J in (2.9)-(2.11), respectively, then adding the results together, we have
0
d K 2
i <€o||E|I2 +upl HI? + = IIJII%> + =TI = —2(K,, H). (2.15)
t ) )

Integrating (2.15) with respect to ¢ from O to 7, and using the energy notation defined by (2.13), we immediately have the energy identity (2.12).
Using the following Young’s inequality

t 1
1
- / 2K, H)di < / Gl HIP + 1K, P,
0
0 0

t

in (2.12), and dropping the nonnegative term | ;—‘; |J ||12_dt on the left hand side, we obtain

t t
ENGO <| ENGO)+ [ LIkt |+ [ ol Par
Ho

0
t t

< ENG(0)+/L||KS||2dz +/ENG(s)ds. (2.16)
Ho
0

The proof of (2.14) is completed by the Gronwall inequality applied to (2.16). []
3. The leapfrog finite element scheme and its analysis

To design a finite element method, we partition the physical domain Q with I" as an internal boundary by a shape regular triangular mesh 7,
with maximum mesh size 4. Without loss of generality, we consider the following Raviart-Thomas-Nédélec (RTN)’s mixed spaces U, and ¥, on
triangular elements [22,28]: For any r > 1,

Uy, ={u, € L*(Q) : uylg €p,_i, VK €T}),

V,={v,€H(curl;Q) : vl €(p,_1)* ® S,.VK€T,}, S,={pep’x =0}
To handle the PEC boundary condition (2.7), we introduce the subspace

Vi={v,€V,: ¥xv,=0 onaQ}.

To construct the fully discrete finite element scheme, we partition the time interval [0,T] uniformly by points t; = iz,i =0,..., N;, where 7 = NL
T
denotes the time step size.

1 1
Now we can construct the following leapfrog type scheme: Given proper initial approximations of E(;’ S Vz, J, eW,, H} €U, for any n>0,

3 3 3
find E/*' V), I, 2 €W, (ie, J) 2 xA€ W, xi), H, * €U, such that
1 o1 L
0G.E, 2. ¢p)=(H, > Vx¢y)—(J, 2. @1
HoG H M oy = —(VX ET oy — (K ), (3.2)
—n+1
o8I0 e+ (T, e =0olER xudrs (3.3)

hold true for any test functions ¢, € V‘,’l, v, €U, and y, € W,,. Here we choose

W, ={w, e(L*Q)*: v, €V, suchthat v, xAi=w, onT},
and adopt the following central difference operator and averaging operator in time: For any time sequence function u",

1 n+1 n 1 n+1 n
L —u" _prl w u
61“"+2=—’ un+2 =—+,

T 2
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Corresponding to the finite element spaces V', and U,, we denote II. and I, for the standard Nédélec interpolation in space ¥, and the standard
L? projection onto space U, respectively. Furthermore, the following interpolation and projection errors hold true (cf. [22,28]):

||lu— ch”H(curl;Q) < Chr”u”w(curl;gy Yue H (cur;Q), r>1, (3.4)
[ —Tyull 2 S ch'llull gr), Yu€H'(Q), rx0, (3.5)
_ 2 2 1/2 :
where ||u]| ;rq) denotes the norm for the Sobolev space H'(Q), and ”"HH*(curl;sz) 1= (||u||(Hr(Q))2 + ||V % u||H,(Q)) /2 is the norm for the Sobolev

space

H'(curl; Q)= {ue (H'(Q))?: Vxue H'(Q))}.

The initial conditions (2.8) are discretized as follows:

E) =T1,E(x), (3.6)
1
H;} =TL(H(,0)+ S0, H(,0) =11, [Ho(x) - ﬁ(v x Eqy(x) + Ks(x,O))] , (3.7)
0
JIxa=TI, [(J(~,O) +20.d(.0) ﬁ] -1, [JO X i+ ZLTO(GOE0 — Ty n] , (3.8)

where we use the Taylor expansion and the governing equations (2.2) and (2.3).
Below we will present the stability and convergence analysis for our scheme.
3.1. Stability analysis

1
€0Ho

To prove the discrete stability for the fully-discrete scheme, we denote the wave propagation speed in vacuum C, = ~3x108m/s, and

;

introduce the standard inverse estimate:

IV X @ull < Cpt ™ NIdpll, ¥ dp €V, (3.9)

and the trace estimate:

ball 2y < Corh™ 1 dnll 2y ¥ b0 € Ve (3.10)
where the positive constants C;, and C,, are independent of the mesh size A.
Theorem 3.1. Denote the discrete energy:

ENGy,(m) := el [EJI> + Mo||HZl+% P+ ;—ZIIJT% I3 (3.11)

Then under the time step constraint:

1
. 1 h h2 €070
< gL UL 3.12
T—mm(z 26,¢,.2¢, \ o ) (3.12)

we have: For any m € [1,N, — 1],

m—1
ENGy;(0)+7 ), ”ille"“Hz] exp(2m). (3.13)
n=0 "0

ENG;(m) <2

—ntd —n+1 —n+1
Proof. Choosing ¢, = ZrE: 2w, =2tH Z+ s Xn= i—;J : in (3.1)-(3.3), respectively, then adding them together, we have

ntl (2 ni2 "3 my o T 3 nt3 o

eUIE, 17 = NELID + uo(l1H, 211" =1H, *| )+0'_(”Jh e=1d, 1D
0

27 7+l 2 "+% n n+% n+1

+6—0||Jh 2=7|H, >.VXE})~(H, *.VxE*)

+7

n+1 "+% n "+% n+l -t
(Em T, 2y = (BT, )| - 20 (KM H, . (3.14)
—n+l
Now summing up (3.14) over n from n=0 to any m < N, — 2, and dropping the nonnegative term ? |1 Z+ ||% on the left hand side of (3.14), we
0
obtain

3 1 3 1
12 012 mta2 2112y 4 FO mta2 212
eoUIEY 1P = 11EQP) + no(I1H, 2117 = [|H 2| )+U—0(||J,, e =12 1D

1 3
<z [(H,f,VxE‘;)—(H:”,VxEZ“)]

3 1 m

2 > —n+1

+7 [(E:,"“JZ“» —(E).J} )r] ~2e Y (KU, (3.15)
n=0
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By the inverse estimate (3.9), the Cauchy-Schwarz inequality, and the notation C,, we have

m+3 mt3 _
w(H, > VX E}*) <oCJugllH, 11 - Gy~ \fegl L EjH|
1 m+3
< 5TCCuh™ ol 2 11 + ol LEG 1),
which also holds true for m = —1.
Similarly, by the trace estimate (3.10) and the Cauchy-Schwarz inequality, we have

3
(o1} T m+=
T<EZH,J 2>F<TCh \l—'\/€0||E;I"H||'\/—||Jh N
€070 )
12 4 To mh3 o
_—TC 2 (6 NER12+ =11d, 2 1IDs
o0

which also holds true for m=—1.
Finally, by the similar technique, we have

m m
—n+1 —n+1 1
2TZ(K:+1,H,, )<t Y (ol IH, ||2+M—0||K;“||2)
n=0 n=0

ntd 1
Z [—(IIH 2P, P + M—IIKs”“IIZ]
=0 0

m
THUy 1
=1, 2||2+TZM0||H I YTl
n=0 n=0 Ho

I/\

Substituting the above estimates (3.16)-(3.18) into (3.15), and choosing = small enough, such as

11 _L [ o l
, 7C,C;,h SE, tC,.h™2 a 5

which is equivalent to (3.12), we obtain

T<

N —

1 112 m+§ ) 70 m+§ 2
5<eo||E;,"+ 1P+ ol H, 2P+ =110, 2112
o0
0112 2. 032 ¢ 1 12 ¢ mt o
<ellEYI? + ol 1H 1| +;”’Z|lr+f2,7“1<§+ P +7 Y wollH, 211>
0 n=0 H0 n=0

Using the discrete Gronwall inequality, we immediately have
3 3
1112 m+3s o K0 m+3 o
ol BT 2 4 ol H, 2 12+ 2010772 2
%0
m

1 1
= 1'0 = 1
<2 [eOHE&ill2 + ol [ |1+ =10 2 R+7Y ”—IIKs”“IIZJ -exp(2(m + 1)7),
0 n=0 "0

which completes the proof of (3.13). []

By Theorem 3.1, it is easy to conclude the existence of a unique solution to our scheme.

Corollary 3.1. Under the time constraint (3.12), for all n > 0, there exists a unique solution E;“ [S V(;)u J n

h
(3.1)-(3.3).

3.2. Convergence analysis

To prove the error estimate for our scheme (3.1)-(3.3), we introduce the error notations:
& 1= E(t,) - E = (E@,) - 1L E,)) - (E} ~ILE,)) := E;, — E} .
My :=H(t,) - Hy=(Ht,)-TLH,)) - (H; ~TLH®,)) :=H,.— H; .

where E’
represent the interpolation or projection errors.
Moreover, we need the following lemma.

Lemma 3.1. [22, Lemmas 3.16 and 3.19] Denote u" :=u(-,t,). We have

n+l

@ N8P = SR P < L oulP e, Yue HYOT; L)),
(ORTAEE j"“u(r)druzsf; S I9,u@? dt, Yue HA0,T; LA(Q)),

i) ™ =L [ u@di? < T [ [0,u|Pdr. Yu€ HX0.T; LAQ).
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Integrating (2.9) with ¢ = ¢, from =1, to r =1¢,,, then dividing by 7, and using the result to subtract (3.1), we obtain the error equation for E:

n+% n+% n+d n+%
0@.E, 2 —(H, 2 VX )+ (I =0 2 ¢y,

Thtl Tyl
1 1
=(l/Hdz_H"+z,V><¢h)—<l/sz—1"+z,¢h>r, (3.27)
T T
1, In
1 1
where for simplicity we denote the exact solutions H""2 := H(.,t, 1) and J"™2 :=J (1 1).
2 2
Using the error notations (3.22)-(3.23), we can rewrite (3.27) as follows:
n+1 nJrl nJr1
B Elpy? ) = (Hypr 2V X )+ (T2 i)
n+l n+l n+l
=6, E. 7 p) = (H, 2. VX @)+ (T 7 dp)r
Thyl Tyt
1 1
+H(H™3 -1/Hdz,vX¢h)+<l/sz-J“i,qsh)r, (3.28)
T T
1, Iy
where we used the following simplified notations
ntd n+d ntd
<J,m2,¢h>r=/<Jh T xA—TL(J"2 ><r”z)>~¢h><ﬁ ds, (3.29)
r
1 1 1
(J';l;'z b = / (J"+§ X A—TL(J"2 x ﬁ)) - X Ads. (3.30)

r
Similarly, integrating (2.10) with y =y, from t=1 1 tor= tn+% , then dividing by 7, and using the result to subtract (3.2), we can obtain the

error equation for H:

poB Hyt wiy) + (VX Eptl oy = uo (S Hyt owy) + (VX EjE )

t"‘*‘% tn+%

+(% / VxEdt—VxE”“,y/h)+(%/KS dt — K™ ). (3.31)
o L
nt3 nts

Finally, integrating (2.11) with y =y, fromr=¢ \ tot=1_ 5, then dividing by r, and using the result to subtract (3.2), we can obtain the error
2 2

equation for J:
n+1 Sl n+1
70{0ed o e + (I > Xndr = 0oCEL T Xadr

—n+1
= fo('ﬂ-’fgl’lh)r +{Jpe - Xndr - GO<E;zleh>F

In+% tn+%
v [ ra=T oo E | Eai—E™ . g (3.32)
p > XnIT — 00 z s Xn/T- .
L L
s wtl

With the above error equations, we can prove the following error estimate for our scheme (3.1)-(3.3).

Theorem 3.2. For the scheme (3.1)-(3.3) with initial approximations (3.7)-(3.8), under the time step constraint (3.12) and the following regularity assump-
tions:

EeL®0,T; H (curl;Q)), H € L*(0,T; H'(Q)), J € L®(0,T; L), (3.33)
0,E € L*(0,T; H' (curl;Q)), 9,,K,,9,(V x E) € L*(0,T; L*()), (3.349)
0,(Vx H) e L*0,T;(L*(Q))*), d,J, 0,,E € L*(0,T; L>(I")), (3.35)

we have: Forany 0<m< N, —1,
+5 1 7 +1 1
eollEj = EMP+ poll Hy 2 = H™ 2P+ 2|7, 72 = J™ 2R < 0@+,
0
where the constant C > 0 is independent of © and h, and r > 1 is the order of the basis functions in spaces U, and V ,,.

1

—ntl —ntl —n+l
Proof. Choosing ¢, = ZTE::Z , W, =2tH ::; s Xn= i—;J Z: in (3.28)-(3.32), respectively, then adding them together, we have

n+12 n o2 ”+% 2 "+% 2y, o "*% 2 "+% 2
ol EL P = 11 E, 112+ oI Hyy 2 12 = 11H, 21D+ (1, 2 1R =119, 2 1)
0}
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2t —=n+l 2 n+ n n+% il
+0’_0||Jh” ||I‘_T (H]m VXE )_(Hhr, ,VXEM)

+7 [(E'hLl J z) (E h:l>1“]

1
ol
+27€,(5, Ehf, 2)—2(H 2V><E 2)+2¢-<th, o

Tn1 Tnt1 !
N+

1 —ntl 1 —ptl
+21(H"+5—l/Hdt,VxE2:2)+2r(l/Jdt—J"*i,Ehnz)r
T T
1

—n+l —n+1
+27p(8, H;;;l, i )+21(V><EZ;1,H )

"+% nt3
—n+1 —n+1
+2‘r(l/VxEdt—VxE"+1,H2;)+2r(l/stt—KS"“,HZ;)
T T

LI L

n+l ntd
211 +1 —n+1 —n l
+o 0T T >F+ <th T - 20(E T
"‘+% ,n+%
—n+1 —n+1 —n+1
2—T(l / Jar-T T ar(d / Edi—E™ T (3.36)
" < n
rn+% ’n+%

Summing up (3.36) from n =0 to any m < N, — 2, we obtain

3
m+3
oUIERT 1P = 11E), 1))+ uo(11 Hy, 2 117 = IIH ||)+—(I|Jh,72||r—||-’ [

m 16
2t —n+l 5
e Z;)w,m 12 < Z} Err,. (3.37)
n=| =

Now we just need to estimate each Err;. Similar to the proofs of (3.16) and (3.17), we immediately have

Errl—‘r[(H JVXEp) - (H 2V><E'"+1)] (3.38)
1
< 57CCh "ol H . ||2+€0||E I+ > TCth Yol | H,, 2||2+€OI|EZ;1I|2),
and
m+1 er% 0 %
EI‘F2:T <Eh,1 ’Jh,, >F_<Eh,7"’h,’>l" (339)

1
O'O 2 7.'0 _1 0'0 0 2 ‘L'O 3 2
‘L'Ch 20 (e [IEM 2+ 227 +2 +rCh — (&||E + 2| )
<3 ,/EOTO(oll hy |l GOII [12) e0r0(°|| mll UOII A

Using the inequality (a,b) < 6|a||*> + ﬁ ||b]|2, Lemma 3.1 (i), and the interpolation error estimate (3.4), we have

m 1 1 m 1
n+s —n+3 —n+5
Erry= ) 2163, E,.*  E, ') < ) 276 <53||Ehn 2112+ ||5 E? ||2>
n=0 n=0
Tyl
<oy Z(IIE"“I|2+|IE I >+—Z/ CRN10,E| Byt (3.40)

Using the fact that V x E + € U,, and the projection operator property, we have
“ n+l —n 1
Erry=-2r Z(Hhé 2,V x E 2) 0. (3.41)
n=0
By the definition of (3.30), we have
L4l
Errs=2c ) (J,.2E, *)r =0. (3.42)

Using integration by parts, the PEC boundary condition (2.7), the inequality (a, b) < §||a||> + 41—5 |6]1%, and Lemma 3.1 (iii), we obtain

1,
m n+l1

1 —n+ i
Err6=212(V><H"+5—l/Vdet,E:;z)
T

n=0 i
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<2:C, 2 Seeol | E, 2||2

/4
<rC66eoZ<||E"“||2+||E )+ Loet Ly
n=0

Tnt1

Ho v x B —1/V><H dt||?
56 T

IH

Tngl
/ 110,V x H||? dt.
"=0t

By the trace inequality and Lemma 3.1 (iii), we have

Int1
 —
Err7—212(—/ J"+5,E2:’rz)r
Tt

<2r2||—/

1 1 —
Jdt—J" 2| C,h 2 ||E,

m 2 1 3 Tnyl

<2c Y |6:6|IE, 2||2
n=0

456

tn

.
el

= [ o, ar

2 47-1 m Tntl

T
<r67eo§‘,<||E"“||2+||E P+ Z/

n=|
By the L? projection property, we have

m
—n+l
Errg=2tp, 2(5 HZ;'I, hy ) =0-
n=0

Using the interpolation error estimate (3.4), we have

m
Err9=272(V><E;gl,HM )<2:C, Z <59;40||th ||2+—||V><E"+1||2>

n=0 n=0
m "
i3
<TC,bomy Y (I Hy * 12+ Hpy 1)) 4 29
n=0
By Lemma 3.1 (iii), we have

t
wl

m
—
Err10=272(£/VxEdt—VxE"“,HZ)
n=0

el
1.3
“ +1 € 1 s
. )
<20, 3| 610101 ||2+—||—/VX
2 P+l
[
s

T
<rcl)5mu02<||H,,,,2||2+||Hh D)+
n=0

Similar to Err,,, we have

t .3
n+s
“ 1 el
Erry =20 ) (= [ K di—K!'*'H,")
n=0 Tt .
ntx

m 3
n+3
<tC,b1m0 Y (H, 2|+ 11 Hy i)+ DS
n=0

By the definition of (3.30), we obtain
Erry = 220§ 5 gmt T -

and

119,11 d.
0)‘

n

€0 2r
ZCh 11| F———

E dt -V x E"™|)?

’ 3
€
"2‘,/||a,,VxE||2 d.

n=0,
+

%
60
2 / 10, K, I dt.

275

Computers and Mathematics with Applications 142 (2023) 268-282

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)
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m
2t —n+1 —n+l
Erry3= J—OZUM Ay I =0.
n=0

By the trace inequality and the interpolation error estimate (3.4), we have

m
—n+l
Err14=—212:,)<E;;1,J,,,, >r<2rz WER T i
2h2r 1 m
<1614Z<||Jh,,2||r+||Jh,,2||r>+

By Lemma 3.1 (ii), we have

'
w3

—n+1 —n+1
Errys==~ Z(—/sz—J“,JZ )
I

NI

2 / 10,112 d.

m
T515 n+§ ,,Jrl
<2 Y, I+ 11,7 1D + o
0 p=0

N\

Similarly, by Lemma 3.1 (iii), we have

t
n+%

m
—n+l
Err16=—212(% / Edt—E"“,J;: )
n=0

n+%

<r5.62(||1,,,,2||r+||1,,,] ||r>+85 Z/IlanEllrdt

i

s E|| w011 (curt:0)
2514 ,Z:‘)” ||L (0,T;H" (curl;Q))
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(3.50)

(3.51)

(3.52)

(3.53)

Substituting the above estimates of Err; into (3.37), combining like terms together, and dropping the last nonnegative term on the left hand side,

we obtain

3 1 3 1
m+1 2 0 |12 mts2 2012y 4 F0 mt32 3012
eoUIER 11" = EL 17+ uo(I1H,, 117 = [ Hp, || )+6—(||J,,,1 HF =19, 11P)

—_

+ (%TCUC,-,,h_] +7C,80 +7C,8,0 + rcuau) ol Hyr 1l

1
+ (%TCUC,.”W1 + %TC,,h_i, /SOTO + 183 +7C, 56 +ns7> el Ep1?

1 -1 I T840 76 76160
+( zre, 2y Ly AT0 T | CTI60 _||Jh 2||r
2 €070 70 70 70 n

m m 1
n+s
+7(263 +2C, 86 +267)eg ) |1 Ej, 17 +7(2C, 8 +2C, 810 + 2C, 81 )oY, |1 H,, 2 |1
n=0

n=0

(20‘0514 2515 260516 T Z“J,m 2

+
To To To r
TC,e,Ch? TC2h¥~!
’(curl;Q)dt + ( 59 2514 )l |E| |L°"(0 T H" (curl;Q2))
2 4p-1
U C,7
A °/||a,,VXH||2 di+ (S )/Ha,,JnF dr

1 1
1 302 0 (12 -3 2, %0722
ETCC h~ (Molthz,lll +ell B, 1D+ 5 TC h \/ (€o||E all +6—0||J,f,,||p)

T T T
4 4
T CLe) 2 T Cve()/ ) o / )
+ 0,VXE||” dt+ 0, K||” dt + — o,E||- dt.
8,0 /” 1t I 85,, [0, K|l 83,6 o, Ell:
0 0 0

(3.54)

Under the same time step constraint (3.12), by using the discrete Gronwall inequality and choosing those §; properly, such as

,53:57:L,56:

S0 =01n=0;1 =
9 10 11 16

1 €1
8C, 8C,’

v

we have
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Table 1
The errors obtained for Example 1 with N, =1000,7=1x10"4,r=1.
h 1E=Epll2 rate I1H = Hyll12q) rate 1T =Tl rate
1/4 1.9581 x 1072 5.0621 x 10~* 9.8589 x 10~°
1/8 9.9814 x 1073 0.9721 24718 x 10~* 1.0341 5.0621 x 10~* 0.9721
1/16 5.0220 x 1073 0.9909 1.1794 x 1074 1.0674 5.0255x 1072 0.9909
1/32 2.5152% 1073 0.9975 5.4204 x 1073 1.1216 2.5285% 10 0.9975
1/64 1.2581x 1073 0.9993 23716 x 1073 1.1925 1.2663 x 1072 0.9993
1/128 6.3045 x 107+ 0.9968 1.2374 x 1073 0.9385 3.1693 x 10~¢ 0.9990
Table 2
The errors obtained for Example 1 with N, = 1000,7=1x 107*,r=2.
h IIE = Ej |l 2 rate I1H = Hyll 12 rate 1= Jllr rate
1/4 4.4129%x 1073 2.5281 x 10~ 22218 x 1072
1/8 1.0730x 1073 2.0400 1.2988 x 10~* 0.9607 5.4012x 10 2.0403
1/16 2.6160x 10~* 2.0361 6.3906 x 1073 1.0232 1.3113x 107 2.0422
1/32 6.8419 x 107 1.9349 2.1809 x 1073 1.5510 3.2979 x 107 1.9913
1/64 2.1824 x 107 1.6484 4.0333x107° 2.4349 9.2774x 1078 1.8297
1/128 6.9954 x 107° 1.6414 1.0048 x 10-° 2.0050 2.9704 x 1078 1.6430
EMmL 2 H’”% 2. % J'"+% 2 (3.55)
ol ER 1+ poll Hyy 1P+ 20107 2 :

1 1
2 1'0 Z _ _
<C <e0||E?m| 1 + py| |th”||2 + ps 15,1 [2+h"" + T3> exp(12(m + 1)7) < C(h¥ 1 + %),
where in the last step we used the following initial approximation error estimates

1 1 1 1
||E) — E°|| <CH, ||H? —H2|| <C(H +72), ||} = T2 ||p <C(H +7%). (3.56)

Finally, using the triangle inequality, the interpolation error estimate (3.4), and the L? projection error estimate, from (3.55) we conclude the
proof. [

4. Numerical results

In this section, we present several numerical examples to demonstrate the effectiveness of our graphene model in simulating the propagation of
surface plasmon polaritons (SPPs) on graphene sheets. Our numerical tests are carried out by using FEniCS [25].

4.1. Test of convergence rates

The first example is developed to test the theoretical convergence rate of our numerical scheme by a manufactured exact solution:

E(uy.1) = E,\ _ [ sin2zx)sinQ2zy)sin(2xt)
PUENE, ) T\ cos@ax) cos@ryysinar) )

Yoyt = (_]X ) _ < Hﬁ sin(2zx) sin(2z y)(sin(2zxt) — 2z cos(2xt) + 2z exp(—t)) > ’

Jy, 1;7 cos(2zx) cos(2ry)(sin(2xt) — 2z cos(2xt) + 2x exp(—t))
H(x,y,t)= sin(2zx) sin(2zy) sin(2xt),

1 +4x?
Hy(x,y,1) = sin(2zx) sin(2zy)(2z cos(2xt) — 2z exp(—t)),

1+ 472

which satisfies the following graphene model equations:

eGE=VXH —-J+f, inQ, 4.1)
U0, Hi=-VXE+f,, inQ (4.2)
700, +J =0yE, onT, 4.3
€ E=VXH,—J+f;3 inQ, 4.4
HoO Hy ==V XE+ f;, inQ,. (4.5)

Here the added source terms f, f,, f3 and f, can be calculated from the given exact solution E, H,, H, and J.
For simplicity, we choose the physical domain Q = (0, 1)2, which is split into two subdomains Q; = (0, 1) x (0.5,1) and Q, = (0, 1) x (0,0.5) with
interface I'= {y = 0.5,x € [0, 1]}. We apply our developed scheme (3.1)-(3.3) to solve (4.1)-(4.5) with physical parameters e¢; = yy =75 =07 = 1.
First, we solve this example with a fixed small time step size r = 1 x 10~* and various mesh sizes for N, = 1000 time steps. The obtained L? errors
are presented in Tables 1 and 2 for the RTN finite element spaces U,, and ¥, with r = 1,2, respectively. Our results show that the obtained L? errors
are at least O(h"~9) for r = 1,2, respectively.
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Table 3

The obtained errors obtained for r =1 by fixing r = %.
h 1E = Epll 120 rate I1H = Hyll 120 rate 1T =Tl rate
1/10 8.0084 x 1073 2.0027 x 10~ 4.1938x 1073
1/20 4.0208 x 1073 0.9940 9.3324 x 1073 1.1016 2.0546 x 1072 0.9721
1/40 2.0126 x 1073 0.9984 4.1560 x 1073 1.1670 1.0158 x 107> 0.9909
1/80 1.0066 x 103 0.9995 1.8654 x 1073 1.1556 5.0491 x 10~° 0.9975
1/160 5.0537 x 10~ 0.9940 1.0326 x 1073 0.8532 2.5194 x 10~¢ 0.9993

Table 4

The obtained errors obtained for r =2 by fixing r = %.
h IE = Epll 120 rate 1H = Hyll 120 rate 1T =Tl rate
1/10 6.7883 x 10~ 1.0984 x 10~ 3.5527x 107
1/20 1.6779 x 10~ 2.0164 4.8473x 1073 1.1801 8.4889 x 1077 2.0652
1/40 4.5943 x 107 1.8687 1.3049 x 1073 1.8931 2.1569 x 107¢ 1.9765
1/80 1.7540x 107° 1.3892 3.5181x107° 1.8911 6.5890 x 1077 1.7108
1/160 6.9715x 107° 1.3311 9.6548 x 1077 1.8654 2.1517x 1078 1.6145

Then we test the convergence rate in terms of r by fixing r = % to guarantee the stability constraint. The obtained L? errors are presented in

Tables 3-4 for r = 1,2, respectively, and they are at least O(z!). When r = 1, due to the time step constraint = = O(h), the theoretical convergence
rate should be dominated by O(h%?) = O(z*), but our numerical errors are better and almost O(h).

4.2. Simulation of surface plasmon polaritons along the graphene sheets

To simulate the SPP phenomenon on the graphene sheet, we need to use a PML to surround the physical domain Q. Here we adopt the 2D TEz
Ziolkowski PML model in the PML region Q which can be written as follows (cf. [32, p.157]):

‘pml>
€0, E=—-¢DE+VXxH,-J, inQ,,, (4.6)
HoO H =—pg(o, +0,)H, —VXE—-K,, in Q,,., 4.7
0,J ==DyJ +¢,D;E, inQ,,, (4.8

ath = Mo‘fx‘Tszv in mel’ (49)

where o, (x) and o,(y) are the nonnegative damping functions in the x and y directions, respectively, the diagonal matrices D; (i = 1,2,3) are given
as follows:

D, =diag(c, - 0,,0, —0,), D, =diag(o,0),), D3 =diag(c.(o, —0c,),0,(0, —0,)). (4.10)

3 3
We propose the following finite element scheme for the above PML model in Q,,,,: For any » > 0, find E;’;” J :fz S V(p),’ H?

f K;’;,’l €U, such
that

1 —n+i 1 +1
@@, E, *.p)=—e(D1E, 2. ) +(H, . Vxd)— (T, >y, (4.11)
—n+1
HoB, HH y) = —po (o + 0,0 H  wy) = (VX EFFy) = (K2 yry), (4.12)
—n+1
Gy = =D T, xp) +eo(DsEN! ), (4.13)
n+% _ n+%
(6K, " on) = poloxo, H , =, ¢p), (4.14)

hold true for any test functions ¢, € Vg, v, 9, €U, and y, e W),
To simplify the implementation, we merge the graphene scheme (3.1)-(3.3) and the PML scheme (4.11)-(4.14) together by using subdomain
dependent coefficients and rewrite them as follows:

D D n+l
<eo(l+ TI)E;*‘,%) = <e0(1— TI)E”,th) +T(H, 2,V Xy
ol ol
+T<J:, 2’¢h>F_T(CidJZ 2.0, (4.15)
(o, +0,) n+d (0, +0,) +1
</40(1 + %)Hh Z,Wh> = (/40(1 - %)H; 2,1//,,) —7(Vx EZH’Wh)
—2(Cg KM yy) — (K ), (4.16)
D nt2 ntd D n+d
<(I+ =, 2’Xh> +(+ i)lh S Xnr = ((I— =, 2,xh> + (e D3 ET*' vy,)
0
+1 o
(=50, 2 e + (B (4.17)
TO TO

1
n+s
(Kt o) = (Kp, @4) + Ho(ox0, H, 2,0y, (4.18)
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Fig. 1. The setup demonstration (with a coarse mesh) for Example 1.

2.5e-04 2.5e-04

0.0002 0.0002

0.00015 - 0.00015
- 0.0001 - 0.0001
- 5e-5 -~ 5e-5
-0 S

-5e-5
-0.0001
-0.00015
-0.0002

-2.5e-04

-5e-5
-0.0001
-0.00015
-0.0002
-2.5e-04

2.5e-04
0.0002
0.00015

- 0.0001

- 5e-5

-0 £

-5e-5
-0.0001
-0.00015

-0.0002
-2.5e-04

Fig. 2. Example 1. Contour plots of H, at 1000, 2000, 4000, 6000, 8000, and 10000 time steps.

where we denote the identity matrix I = diag(1, 1), write H_, and J_, in the PML subdomain as H}, and J,, and use the subdomain identify function
0, ifxeQ,
Cy= ) (4.19)
I, ifxeQ,,.
In our simulation, we choose a physical domain Q = [—30,30] um x [—10, 10] pm, which is surrounded by the Ziolkowski PML with thickness 12k,

and 12h, in the x and y directions, respectively, where &, and h, are the mesh sizes in the x and y directions, respectively. We use a uniformly
refined triangular mesh with 128 x 128 rectangles bisected into triangles.

The damping functions o, and o, for the PML are chosen as a fourth order polynomial:

_ o-max( |Xl|;130 )45 when |x| > 30,
O-X(x) -
0, elsewhere,

where the coefficient o, = —log(err) - 5- C,/(2 - dd) with err =107, and dd denotes the thickness of the PML in the x direction. The function o,
has the same form but varies with respect to the y variables.

Example 1. A straight graphene sheet

In this example, we present a simulation of SPPs along one graphene sheet aligned horizontally. The simulation setup is shown in Fig. 1, where
a graphene sheet of 40 um long is embedded in domain Q. Outside of Q is surrounded by the PML.

A pair of dipole source waves are placed at points (—27,1) pm and (-27,~1) um, and imposed as K, = sin(27 fy1)/h, and K, = —sin(2z fy1)/h,,
respectively. In our simulation, we choose frequency f, = 10 THz, relaxation time 7, = 1.2 ps, and the surface conductivity o, given by the formula:

2

quTTO He He

—— | —= +21 - D), 4.20
S (e + D (4.20)

where the electron charge g = 1.6022¢ — 19, the Kelvin temperature T =300 K, the reduced Plank constant 7 = 1.0546¢ — 34, the Boltzman constant
kg =1.3806e — 23, and the chemical potential y, =1.5 eV.

We use the time step 7 = 8.3 x 1077 s, and run the simulation for 10000 time steps. Some snapshots of the obtained magnetic field H, are shown
in Fig. 2, which clearly show the SPPs propagate along the graphene sheet.

op =
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Fig. 3. Example 2. The setup (shown in a coarse mesh) for four adjacent graphene sheets buried in Q.
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Fig. 4. Example 2. Contour plots of H_ obtained at 1000, 2000, 4000, 6000, 8000, and 10000 time steps.

Fig. 5. Example 3. The setup for the tilted graphene sheet.

Example 2. Four adjacent graphene sheets

In this example, we simulate the wave propagation along four adjacent graphene sheets by our FETD scheme. The simulation setup is shown
in Fig. 3, where four graphene sheets of length 10 um are embedded in domain Q,. A pair of dipole incident waves are placed at points
(-=27,3.12) pm) and (-27,-3.12) um. We use the same simulation parameters as Example 1. Some snapshots of the magnetic field H, are presented
in Fig. 4, which shows clearly that the SPPs propagate along the graphene sheets as demonstrated in the previous work [38].

Example 3. A tilted graphene sheet

This example is developed to simulate the propagation of SPPs along a tilted graphene sheet by our FETD scheme. The simulation setup is shown
in Fig. 5, where one tilted graphene sheet situating on the line y = %x with length 204/5 um is embedded in domain €. A pair of dipole source
waves are placed at points (—21,—6) pm and (-21,—8) um. The rest of the simulation data are the same as Example 1. The calculated magnetic fields

H, obtained at different time steps are presented in Fig. 6, which shows that the SPPs also propagate along this tilted graphene sheet.

Example 4. SPPs propagating along a bifurcated graphene sheet

Finally, we present a bifurcated graphene sheet to demonstrate the flexibility of our FETD scheme to handle a complicated geometry. The
simulation setup is illustrated in Fig. 7, and the rest simulation data are kept the same as Example 1. The obtained numerical magnetic fields H, at
various time steps are presented in Fig. 8, which shows that the SPPs can propagate along this complicated graphene sheet.
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Fig. 6. Example 3. Contour plots of H_ obtained at 1000, 2000, 4000, 6000, 8000, and 10000 time steps.

Fig. 7. Example 4. The simulation setup for the bifurcated graphene sheet (illustrated with a coarse mesh).

Fig. 8. Example 4. Contour plots of H_ at 500, 1000, 2000, 4000, 6000, and 10000 time steps.
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5. Conclusion

In this paper, we develop a new formulation to simulate the surface plasmon polaritons propagating on graphene sheets. We treat the graphene
as a thin sheet of current with an effective conductivity. A novel finite element method is proposed for solving this graphene model. Numerical
results demonstrate the effectiveness of this graphene model for simulating the surface plasmon polaritons propagating on graphene sheets. The
current error estimate is sub-optimal and the loss of half-order accuracy is caused by those graphene interface terms Err;,i =2,7, 14. We will continue
exploring more efficient and optimally convergent schemes in the future, since much works are needed for the time-dependent H (curl;Q)-interface
problem as pointed out in the last sentence of Conclusion in [13].
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