
Computers and Mathematics with Applications 142 (2023) 268–282
Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

A new time-domain finite element method for simulating surface plasmon 

polaritons on graphene sheets

Jichun Li a,∗, Li Zhu a, Todd Arbogast b

a Department of Mathematical Sciences, University of Nevada Las Vegas, NV 89154-4020, USA
b Department of Mathematics, University of Texas at Austin, Austin, TX 78712-1202, USA

A R T I C L E I N F O A B S T R A C T

Keywords:

Maxwell’s equations
Finite element time-domain methods
Edge elements
Graphene

In this paper, we develop a new variational form to simulate the propagation of surface plasmon polaritons 
on graphene sheets. Here the graphene is treated as a thin sheet of current with an effective conductivity, and 
modeled as a lower-dimensional interface. A novel time-domain finite element method is proposed for solving 
this graphene model, which coupled an ordinary differential equation on the interface with Maxwell’s equations 
in the physical domain. Discrete stability and error estimate are proved for our proposed method. Numerical 
results are presented to demonstrate the effectiveness of this graphene model for simulating the surface plasmon 
polaritons propagating on graphene sheets.

1. Introduction

The two-dimensional (2-D) material graphene was rediscovered, isolated and investigated by Novoselov, Geim and co-workers [30] in 2004. 
The 2010 Nobel Prize in Physics was awarded to Geim and Novoselov “for groundbreaking experiments regarding the two-dimensional material 
graphene.” Since 2004, graphene has become a valuable and useful nanomaterial, and its study has become a very hot research topic [4,12,35]
due to its exceptionally high tensile strength, high electronic mobility, high thermal conductivity, low absorption of light, and being the thinnest 
two-dimensional material in the world.

Numerical simulation of electromagnetic wave propagation plays a very important role in the study of graphene and its applications. The 
finite difference time-domain (FDTD) method (e.g., [1,11,14,15,19,24,39]) and the finite element method (FEM) (e.g., [3,6–8,10,16,17,21,31]) are 
arguably the two most popular numerical methods in computational electromagnetics, which can solve Maxwell’s equations in various media. More 
details and references on the FDTD method and FEM for Maxwell’s equations can be found in related FDTD books [34] and FEM books [9,22,28].

Compared to many existing papers on simulation of graphene and its applications by FDTD methods [5,27,29], there are quite limited publications 
on FEMs for graphene simulation, e.g., [23,36] are on discontinuous Galerkin time-domain (DGTD) modeling of graphene devices, and [26,33] are 
on frequency-domain finite element simulation of graphene sheet. Recently, Li and collaborators [18,20,38] have proposed and analyzed some finite 
element time-domain (FETD) methods for graphene simulation. In [18,20,38], the graphene has been treated with some thickness (though very 
thin). A major drawback of this approach is that a particularly fine spatial mesh is needed for the graphene part, which makes the implementation 
time consuming. Mathematical analysis of graphene model in time domain is very limited. In a recent work [37], the authors investigated the 
effects of modulating the electronic doping of graphene in time on plasmon dynamics, and they also established the existence, uniqueness, and 
regularity for solutions to the resulting current equation. In this paper, we will investigate a time-domain graphene model and treat the graphene 
as an infinitesimal thin conductive sheet. For the first time a new finite element time-domain method is proposed and analyzed for solving this 
graphene model.

The rest of the paper is organized as follows. In Section 2, we first present the time-domain governing equations for modeling the surface 
plasmon polaritons on the graphene sheet. Then we prove an energy identity and a stability for the system of the modeling equations. In Section 3, 
we propose a leapfrog type scheme for solving the modeling equations, and prove the discrete stability and the optimal error estimate for our 

* Corresponding author.
E-mail addresses: jichun.li@unlv.edu (J. Li), zhul5@unlv.nevada.edu (L. Zhu), arbogast@oden.utexas.edu (T. Arbogast).
https://doi.org/10.1016/j.camwa.2023.05.003

Received 13 October 2022; Received in revised form 25 March 2023; Accepted 6 May 2023

0898-1221/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.camwa.2023.05.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2023.05.003&domain=pdf
mailto:jichun.li@unlv.edu
mailto:zhul5@unlv.nevada.edu
mailto:arbogast@oden.utexas.edu
https://doi.org/10.1016/j.camwa.2023.05.003


J. Li, L. Zhu and T. Arbogast Computers and Mathematics with Applications 142 (2023) 268–282
scheme. In Section 4, we present extensive numerical results to demonstrate the propagation of surface plasmon polaritons appearing on various 
graphene sheets. We conclude the paper in Section 5.

2. The governing equations and stability analysis

We assume that Ω is a bounded Lipschitz polygonal domain in 2 with boundary 𝜕Ω. In our previous works [18,20,38], we treated the graphene 
as a homogenized material of small thickness with an effective permittivity. Here we adopt another way to treat graphene as a thin sheet of current 
with an effective conductivity.

Considering that the interband conductivity is not that significant in most cases, we will ignore it in this paper. For simplicity, we consider the 
𝑇𝐸𝑧 mode problem with electric field 𝑬 = (𝐸𝑥, 𝐸𝑦)′ and magnetic field 𝐻 =𝐻𝑧. From [38, (2.7)-(2.12)] (see also [18, (2.10)-(2.13)]), we have the 
following governing equations for simulating surface plasmon propagation on graphene:

𝜖0𝜕𝑡𝑬 =∇×𝐻, in Ω, (2.1)

𝜇0𝜕𝑡𝐻 = −∇×𝑬 −𝐾𝑠, in Ω, (2.2)

𝜏0𝜕𝑡𝑱 + 𝑱 = 𝜎0𝑬, on Γ, (2.3)

where 𝐾𝑠 is an imposed magnetic source function, 𝑱 ∶= 𝑱 𝑑 (as denoted in [38]) is the induced intraband surface current in graphene, 𝜖0 and 𝜇0 are 
respectively the permittivity and permeability in vacuum, the positive constant 𝜏0 denotes the relaxation time, and the positive constant 𝜎0 denotes 
the graphene surface conductivity. Here Γ represents the graphene sheet buried in the domain Ω. It appears as a line in our 2D domain (cf. Figs. 1, 
3, 5, and 7 shown later). Finally, the 2D curl operators are defined as ∇ ×𝐻 ∶= (𝜕𝑦𝐻, −𝜕𝑥𝐻)′ and ∇ ×𝑬 ∶= 𝜕𝑥𝐸𝑦 − 𝜕𝑦𝐸𝑥.

According to [2, Fig. 1], the boundary conditions on the graphene interface are:

𝑛̂1 ×𝑬1 = 𝑛̂2 ×𝑬2, on Γ, (2.4)

𝐻1 −𝐻2 = 𝑱 × 𝑛̂, on Γ, (2.5)

which mean that the tangential electric field is continuous across the interface, and the jump of the tangential component of the magnetic field along 
the interface is equal to the surface current. Here 𝐻1 and 𝐻2 represent the magnetic field above and below the interface, respective, 𝑛̂ ∶= (𝑛𝑥, 𝑛𝑦)′ is 
the unit normal vector pointing upward, and 𝑛̂1 and 𝑛̂2 are the unit outward normal vectors from top and bottom subdomains of the interface. Here 
we denote the 2D cross product 𝑱 × 𝑛̂ ∶= 𝐽𝑥𝑛𝑦 − 𝐽𝑦𝑛𝑥.

We remark that (2.3) was originally developed for a graphene sheet with small thickness in [38]. For an infinitely thin graphene sheet, the 
surface current must lie within Γ, and so the equation must be interpreted as

𝜏0𝜕𝑡(𝑱 × 𝑛̂) + 𝑱 × 𝑛̂ = 𝜎0𝑬 × 𝑛̂. (2.6)

To complete the problem, we assume that (2.1)-(2.3) is subject to the perfectly conducting (PEC) boundary condition:

𝜈̂ ×𝑬 = 0, on 𝜕Ω, (2.7)

and the initial conditions

𝑬(𝒙,0) =𝑬0(𝒙), 𝐻(𝒙,0) =𝐻0(𝒙), 𝑱 (𝒙,0)|Γ = 𝑱 0(𝒙)|Γ, (2.8)

where 𝜈̂ is the unit outward normal vector on 𝜕Ω, and 𝑬0, 𝐻0, 𝑱 0 are some given functions.
We want to remark that the system (2.1)-(2.8) can be used to model the propagation of the surface plasmon polaritons on graphene, which is 

usually embedded inside other materials such as vacuum. Moreover, the system (2.1)-(2.3) can be reduced to the standard Maxwell’s equations in 
vacuum by setting 𝑱 to be zero and ignoring (2.3).

Denote the Sobolev space

𝐻0(curl;Ω) = {𝒖 ∈ (𝐿2(Ω))2 ∶ ∇ × 𝒖 ∈𝐿2(Ω), 𝜈̂ × 𝒖 = 0 on 𝜕Ω}.

We can easily obtain the following weak formulation: Find the solution

𝑬 ∈𝐿2(0, 𝑇 ;𝐻0(curl;Ω)) ∩𝐻1(0, 𝑇 ; (𝐿2(Ω))2),𝐻 ∈𝐻1(0, 𝑇 ;𝐿2(Ω)),𝑱 ∈𝐻1(0, 𝑇 ; (𝐿2(Γ))2),

such that

𝜖0(𝜕𝑡𝑬,𝝓) = (𝐻,∇×𝝓) − ⟨𝑱 ,𝝓⟩Γ (2.9)

𝜇0(𝜕𝑡𝐻,𝜓) = −(∇ ×𝑬, 𝜓) − (𝐾𝑠,𝜓) (2.10)

⟨𝜏0𝜕𝑡𝑱 ,𝝌⟩Γ + ⟨𝑱 ,𝝌⟩Γ = ⟨𝜎0𝑬,𝝌⟩Γ (2.11)

hold true for any test functions 𝝓∈𝐻0(𝑐𝑢𝑟𝑙; Ω), 𝜓 ∈𝐿2(Ω) and 𝝌 ∈ (𝐿2(Γ))2. To obtain (2.9), we use the integration by parts over Ω and the boundary 
condition (2.5). Here and below we denote (⋅, ⋅) for the inner product over Ω, and ⟨𝑱 , 𝝓⟩Γ ∶= ∫Γ 𝑱 × 𝑛̂ ⋅𝝓× 𝑛̂ 𝑑𝑠 for the inner product on Γ. Only 𝑱 × 𝑛̂

is determined by the differential and variational formulations, and only the component 𝝌 × 𝑛̂ of 𝝌 is used as a test function.
To simplify the notation, we denote the 𝐿2 norm of 𝑢 in Ω as ||𝑢|| ∶= ||𝑢||𝐿2(Ω), and the 𝐿2 norm of 𝒖 on Γ as ||𝒖||Γ ∶= (∫Γ |𝒖× 𝑛̂|2 𝑑𝑠)1∕2.
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Theorem 2.1. For the solution (𝑬, 𝐻, 𝑱 ) of (2.9)-(2.11), the following energy identity holds true for any 𝑡 ∈ [0, 𝑇 ]:

𝐸𝑁𝐺(𝑡) −𝐸𝑁𝐺(0) +

𝑡

∫
0

2
𝜎0

‖𝑱‖2Γ𝑑𝑡= −

𝑡

∫
0

2(𝐾𝑠,𝐻)𝑑𝑡, (2.12)

where we denote the energy

𝐸𝑁𝐺(𝑡) ∶=
[
𝜖0‖𝑬‖2 + 𝜇0‖𝐻‖2 + 𝜏0

𝜎0
‖𝑱‖2Γ] (𝑡). (2.13)

Furthermore, we have the following continuous stability:

𝐸𝑁𝐺(𝑡) ≤
⎡⎢⎢⎣𝐸𝑁𝐺(0) +

𝑡

∫
0

1
𝜇0

‖𝐾𝑠‖2𝑑𝑡⎤⎥⎥⎦ ⋅ exp(𝑡), ∀ 𝑡 ∈ [0, 𝑇 ]. (2.14)

Proof. By choosing 𝝓 = 2𝑬, 𝜓 = 2𝐻, 𝝌 = 2
𝜎0
𝑱 in (2.9)-(2.11), respectively, then adding the results together, we have

𝑑

𝑑𝑡

(
𝜖0‖𝑬‖2 + 𝜇0‖𝐻‖2 + 𝜏0

𝜎0
‖𝑱‖2Γ)+ 2

𝜎0
‖𝑱‖2Γ = −2(𝐾𝑠,𝐻). (2.15)

Integrating (2.15) with respect to 𝑡 from 0 to 𝑡, and using the energy notation defined by (2.13), we immediately have the energy identity (2.12).
Using the following Young’s inequality

−

𝑡

∫
0

2(𝐾𝑠,𝐻)𝑑𝑡 ≤
𝑡

∫
0

(𝜇0‖𝐻‖2 + 1
𝜇𝑜

‖𝐾𝑠‖2)𝑑𝑡,
in (2.12), and dropping the nonnegative term ∫ 𝑡

0
𝜏0
𝜎0

‖𝑱‖2Γ𝑑𝑡 on the left hand side, we obtain
𝐸𝑁𝐺(𝑡) ≤

⎡⎢⎢⎣𝐸𝑁𝐺(0) +

𝑡

∫
0

1
𝜇𝑜

‖𝐾𝑠‖2𝑑𝑡⎤⎥⎥⎦+
𝑡

∫
0

𝜇0‖𝐻‖2𝑑𝑡
≤
⎡⎢⎢⎣𝐸𝑁𝐺(0) +

𝑡

∫
0

1
𝜇𝑜

‖𝐾𝑠‖2𝑑𝑡⎤⎥⎥⎦+
𝑡

∫
0

𝐸𝑁𝐺(𝑠)𝑑𝑠. (2.16)

The proof of (2.14) is completed by the Gronwall inequality applied to (2.16). □

3. The leapfrog finite element scheme and its analysis

To design a finite element method, we partition the physical domain Ω with Γ as an internal boundary by a shape regular triangular mesh ℎ
with maximum mesh size ℎ. Without loss of generality, we consider the following Raviart-Thomas-Nédélec (RTN)’s mixed spaces 𝑈ℎ and 𝑽 ℎ on 
triangular elements [22,28]: For any 𝑟 ≥ 1,

𝑈ℎ = {𝑢ℎ ∈𝐿2(Ω) ∶ 𝑢ℎ|𝐾 ∈ 𝑝𝑟−1,∀𝐾 ∈ 𝑇ℎ},

𝑽 ℎ = {𝒗ℎ ∈𝐻(𝑐𝑢𝑟𝑙;Ω) ∶ 𝒗ℎ|𝐾 ∈ (𝑝𝑟−1)2 ⊕𝑆𝑟,∀𝐾 ∈ 𝑇ℎ}, 𝑆𝑟 = {⃖⃗𝑝 ∈ 𝑝𝑟
2,𝒙 ⋅ ⃖⃗𝑝 = 0}.

To handle the PEC boundary condition (2.7), we introduce the subspace

𝑽 0
ℎ
= {𝒗ℎ ∈ 𝑽 ℎ ∶ 𝜈̂ × 𝒗ℎ = 0 on 𝜕Ω}.

To construct the fully discrete finite element scheme, we partition the time interval [0, 𝑇 ] uniformly by points 𝑡𝑖 = 𝑖𝜏, 𝑖 = 0, ..., 𝑁𝑡, where 𝜏 =
𝑇

𝑁𝑡

denotes the time step size.

Now we can construct the following leapfrog type scheme: Given proper initial approximations of 𝑬0
ℎ
∈ 𝑽 0

ℎ
, 𝑱

1
2
ℎ
∈𝑾 ℎ, 𝐻

1
2
ℎ
∈ 𝑈ℎ, for any 𝑛 ≥ 0, 

find 𝑬𝑛+1
ℎ

∈ 𝑽 0
ℎ
, 𝑱 𝑛+ 3

2
ℎ

∈𝑾 ℎ (i.e., 𝑱
𝑛+ 3

2
ℎ

× 𝑛̂ ∈𝑾 ℎ × 𝑛̂), 𝐻𝑛+ 3
2

ℎ
∈𝑈ℎ such that

𝜖0(𝛿𝜏𝑬
𝑛+ 1

2
ℎ

,𝝓ℎ) = (𝐻
𝑛+ 1

2
ℎ

,∇×𝝓ℎ) − ⟨𝑱 𝑛+ 1
2

ℎ
,𝝓ℎ⟩Γ, (3.1)

𝜇0(𝛿𝜏𝐻𝑛+1
ℎ

,𝜓ℎ) = −(∇ ×𝑬𝑛+1
ℎ

,𝜓ℎ) − (𝐾𝑛+1
𝑠 ,𝜓ℎ), (3.2)

𝜏0⟨𝛿𝜏𝑱 𝑛+1
ℎ

,𝝌ℎ⟩Γ + ⟨𝑱 𝑛+1
ℎ ,𝝌ℎ⟩Γ = 𝜎0⟨𝑬𝑛+1

ℎ
,𝝌ℎ⟩Γ, (3.3)

hold true for any test functions 𝝓ℎ ∈ 𝑽 0
ℎ
, 𝜓ℎ ∈𝑈ℎ and 𝝌ℎ ∈𝑾 ℎ. Here we choose

𝑾 ℎ = {𝒘ℎ ∈ (𝐿2(Ω))2 ∶ ∃ 𝒗ℎ ∈ 𝑽 ℎ such that 𝒗ℎ × 𝑛̂ =𝒘ℎ on Γ},

and adopt the following central difference operator and averaging operator in time: For any time sequence function 𝑢𝑛 ,

𝛿𝜏𝑢
𝑛+ 1

2 = 𝑢𝑛+1 − 𝑢𝑛
, 𝑢

𝑛+ 1
2 = 𝑢𝑛+1 + 𝑢𝑛

.

𝜏 2
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Corresponding to the finite element spaces 𝑽 ℎ and 𝑈ℎ, we denote Π𝑐 and Π2 for the standard Nédélec interpolation in space 𝑽 ℎ and the standard 
𝐿2 projection onto space 𝑈ℎ, respectively. Furthermore, the following interpolation and projection errors hold true (cf. [22,28]):

||𝒖−Π𝑐𝒖||𝐻(curl;Ω) ≤ 𝑐ℎ𝑟||𝒖||
𝐻𝑟(curl;Ω), ∀ 𝒖 ∈𝐻𝑟(curl;Ω), 𝑟 ≥ 1, (3.4)

||𝑢−Π2𝑢||𝐿2(Ω) ≤ 𝑐ℎ𝑟||𝑢||𝐻𝑟(Ω), ∀ 𝑢 ∈𝐻𝑟(Ω), 𝑟 ≥ 0, (3.5)

where ||𝑢||𝐻𝑟(Ω) denotes the norm for the Sobolev space 𝐻𝑟(Ω), and ||𝒖||
𝐻𝑟(curl;Ω) ∶= (||𝒖||2

(𝐻𝑟(Ω))2
+ ||∇ × 𝒖||2

𝐻𝑟(Ω))
1∕2 is the norm for the Sobolev 

space

𝐻𝑟(curl;Ω) = {𝒖 ∈ (𝐻𝑟(Ω))2 ∶ ∇ × 𝒖 ∈𝐻𝑟(Ω)}.

The initial conditions (2.8) are discretized as follows:

𝑬0
ℎ
=Π𝑐𝑬0(𝒙), (3.6)

𝐻
1
2
ℎ
=Π2(𝐻(⋅,0) + 𝜏

2
𝜕𝑡𝐻(⋅,0)) = Π2

[
𝐻0(𝒙) −

𝜏

2𝜇0
(∇ ×𝑬0(𝒙) +𝐾𝑠(𝒙,0))

]
, (3.7)

𝑱
1
2
ℎ
× 𝑛̂ =Π2

[
(𝑱 (⋅,0) + 𝜏

2
𝜕𝑡𝑱 (⋅,0)) × 𝑛̂

]
=Π2

[
𝑱 0 × 𝑛̂+ 𝜏

2𝜏0
(𝜎0𝑬0 − 𝑱 0) × 𝑛̂

]
, (3.8)

where we use the Taylor expansion and the governing equations (2.2) and (2.3).
Below we will present the stability and convergence analysis for our scheme.

3.1. Stability analysis

To prove the discrete stability for the fully-discrete scheme, we denote the wave propagation speed in vacuum 𝐶𝑣 =
1√
𝜖0𝜇0

≈ 3 × 108𝑚∕𝑠, and 
introduce the standard inverse estimate:

||∇× 𝜙ℎ|| ≤ 𝐶𝑖𝑛ℎ
−1||𝜙ℎ||, ∀ 𝜙ℎ ∈ 𝑽 ℎ, (3.9)

and the trace estimate:

||𝜙ℎ||𝐿2(Γ) ≤ 𝐶𝑡𝑟ℎ
−1∕2||𝜙ℎ||𝐿2(Ω), ∀ 𝜙ℎ ∈ 𝑽 ℎ, (3.10)

where the positive constants 𝐶𝑖𝑛 and 𝐶𝑡𝑟 are independent of the mesh size ℎ.

Theorem 3.1. Denote the discrete energy:

𝐸𝑁𝐺𝑑𝑖𝑠(𝑚) ∶= 𝜖0||𝑬𝑚
ℎ
||2 + 𝜇0||𝐻𝑚+ 1

2
ℎ

||2 + 𝜏0
𝜎0

||𝑱𝑚+ 1
2

ℎ
||2Γ. (3.11)

Then under the time step constraint:

𝜏 ≤min

(
1
2
,

ℎ

2𝐶𝑣𝐶𝑖𝑛

,
ℎ

1
2

2𝐶𝑡𝑟

√
𝜖0𝜏0
𝜎0

)
, (3.12)

we have: For any 𝑚 ∈ [1, 𝑁𝑡 − 1],

𝐸𝑁𝐺𝑑𝑖𝑠(𝑚) ≤ 2

[
𝐸𝑁𝐺𝑑𝑖𝑠(0) + 𝜏

𝑚−1∑
𝑛=0

1
𝜇0

||𝐾𝑛+1
𝑠 ||2] exp(2𝑚𝜏). (3.13)

Proof. Choosing 𝝓ℎ = 2𝜏𝑬
𝑛+ 1

2
ℎ

, 𝜓ℎ = 2𝜏𝐻
𝑛+1
ℎ , 𝝌ℎ =

2𝜏
𝜎0
𝑱
𝑛+1
ℎ in (3.1)-(3.3), respectively, then adding them together, we have

𝜖0(||𝑬𝑛+1
ℎ

||2 − ||𝑬𝑛
ℎ
||2) + 𝜇0(||𝐻𝑛+ 3

2
ℎ

||2 − ||𝐻𝑛+ 1
2

ℎ
||2) + 𝜏0

𝜎0
(||𝑱 𝑛+ 3

2
ℎ

||2Γ − ||𝑱 𝑛+ 1
2

ℎ
||2Γ)

+2𝜏
𝜎0

||𝑱 𝑛+1
ℎ ||2Γ = 𝜏

[
(𝐻

𝑛+ 1
2

ℎ
,∇×𝑬𝑛

ℎ
) − (𝐻

𝑛+ 3
2

ℎ
,∇×𝑬𝑛+1

ℎ
)
]

+𝜏
[⟨𝑬𝑛+1

ℎ
,𝑱

𝑛+ 3
2

ℎ
⟩Γ − ⟨𝑬𝑛

ℎ
,𝑱

𝑛+ 1
2

ℎ
⟩Γ]− 2𝜏(𝐾𝑛+1

𝑠 ,𝐻
𝑛+1
ℎ ). (3.14)

Now summing up (3.14) over 𝑛 from 𝑛 = 0 to any 𝑚 ≤𝑁𝑡 − 2, and dropping the nonnegative term 2𝜏
𝜎0

||𝑱 𝑛+1
ℎ ||2Γ on the left hand side of (3.14), we 

obtain

𝜖0(||𝑬𝑚+1
ℎ

||2 − ||𝑬0
ℎ
||2) + 𝜇0(||𝐻𝑚+ 3

2
ℎ

||2 − ||𝐻 1
2
ℎ
||2) + 𝜏0

𝜎0
(||𝑱𝑚+ 3

2
ℎ

||2Γ − ||𝑱 1
2
ℎ
||2Γ)

≤ 𝜏

[
(𝐻

1
2
ℎ
,∇×𝑬0

ℎ
) − (𝐻

𝑚+ 3
2

ℎ
,∇×𝑬𝑚+1

ℎ
)
]

+𝜏
[⟨𝑬𝑚+1

ℎ
,𝑱

𝑚+ 3
2

ℎ
⟩Γ − ⟨𝑬0

ℎ
,𝑱

1
2
ℎ
⟩Γ]− 2𝜏

𝑚∑
(𝐾𝑛+1

𝑠 ,𝐻
𝑛+1
ℎ ). (3.15)
𝑛=0
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By the inverse estimate (3.9), the Cauchy-Schwarz inequality, and the notation 𝐶𝑣, we have

𝜏(𝐻
𝑚+ 3

2
ℎ

,∇×𝑬𝑚+1
ℎ

) ≤ 𝜏𝐶𝑣

√
𝜇0||𝐻𝑚+ 3

2
ℎ

|| ⋅𝐶𝑖𝑛ℎ
−1√𝜖0||𝑬𝑚+1

ℎ
||

≤ 1
2
𝜏𝐶𝑣𝐶𝑖𝑛ℎ

−1(𝜇0||𝐻𝑚+ 3
2

ℎ
||2 + 𝜖0||𝑬𝑚+1

ℎ
||2), (3.16)

which also holds true for 𝑚 = −1.
Similarly, by the trace estimate (3.10) and the Cauchy-Schwarz inequality, we have

𝜏⟨𝑬𝑚+1
ℎ

,𝑱
𝑚+ 3

2
ℎ

⟩Γ ≤ 𝜏𝐶𝑡𝑟ℎ
− 1

2

√
𝜎0
𝜖0𝜏0

⋅
√
𝜖0||𝑬𝑚+1

ℎ
|| ⋅√ 𝜏0

𝜎0
||𝑱𝑚+ 3

2
ℎ

||Γ
≤ 1

2
𝜏𝐶𝑡𝑟ℎ

− 1
2

√
𝜎0
𝜖0𝜏0

(𝜖0||𝑬𝑚+1
ℎ

||2 + 𝜏0
𝜎0

||𝑱𝑚+ 3
2

ℎ
||2Γ), (3.17)

which also holds true for 𝑚 = −1.
Finally, by the similar technique, we have

2𝜏
𝑚∑
𝑛=0

(𝐾𝑛+1
𝑠 ,𝐻

𝑛+1
ℎ ) ≤ 𝜏

𝑚∑
𝑛=0

(𝜇0||𝐻𝑛+1
ℎ ||2 + 1

𝜇0
||𝐾𝑛+1

𝑠 ||2)
≤ 𝜏

𝑚∑
𝑛=0

[
𝜇0
2
(||𝐻𝑛+ 3

2
ℎ

||2 + ||𝐻𝑛+ 1
2

ℎ
||2) + 1

𝜇0
||𝐾𝑛+1

𝑠 ||2]
≤ 𝜏𝜇0

2
||𝐻𝑚+ 3

2
ℎ

||2 + 𝜏

𝑚∑
𝑛=0

𝜇0||𝐻𝑛+ 1
2

ℎ
||2 + 𝜏

𝑚∑
𝑛=0

1
𝜇0

||𝐾𝑛+1
𝑠 ||2. (3.18)

Substituting the above estimates (3.16)-(3.18) into (3.15), and choosing 𝜏 small enough, such as

𝜏 ≤ 1
2
, 𝜏𝐶𝑣𝐶𝑖𝑛ℎ

−1 ≤ 1
2
, 𝜏𝐶𝑡𝑟ℎ

− 1
2

√
𝜎0
𝜖0𝜏0

≤ 1
2
, (3.19)

which is equivalent to (3.12), we obtain

1
2

(
𝜖0||𝑬𝑚+1

ℎ
||2 + 𝜇0||𝐻𝑚+ 3

2
ℎ

||2 + 𝜏0
𝜎0

||𝑱𝑚+ 3
2

ℎ
||2Γ)

≤ 𝜖0||𝑬0
ℎ
||2 + 𝜇0||𝐻 1

2
ℎ
||2 + 𝜏0

𝜎0
||𝑱 1

2
ℎ
||2Γ + 𝜏

𝑚∑
𝑛=0

1
𝜇0

||𝐾𝑛+1
𝑠 ||2 + 𝜏

𝑚∑
𝑛=0

𝜇0||𝐻𝑛+ 1
2

ℎ
||2. (3.20)

Using the discrete Gronwall inequality, we immediately have

𝜖0||𝑬𝑚+1
ℎ

||2 + 𝜇0||𝐻𝑚+ 3
2

ℎ
||2 + 𝜏0

𝜎0
||𝑱𝑚+ 3

2
ℎ

||2Γ
≤ 2

[
𝜖0||𝑬0

ℎ
||2 + 𝜇0||𝐻 1

2
ℎ
||2 + 𝜏0

𝜎0
||𝑱 1

2
ℎ
||2Γ + 𝜏

𝑚∑
𝑛=0

1
𝜇0

||𝐾𝑛+1
𝑠 ||2] ⋅ exp(2(𝑚+ 1)𝜏), (3.21)

which completes the proof of (3.13). □

By Theorem 3.1, it is easy to conclude the existence of a unique solution to our scheme.

Corollary 3.1. Under the time constraint (3.12), for all 𝑛 ≥ 0, there exists a unique solution 𝑬𝑛+1
ℎ

∈ 𝑽 0
ℎ
, 𝑱 𝑛+ 3

2
ℎ

× 𝑛̂ ∈𝑾 ℎ × 𝑛̂, 𝐻𝑛+ 3
2

ℎ
∈ 𝑈ℎ to the scheme

(3.1)-(3.3).

3.2. Convergence analysis

To prove the error estimate for our scheme (3.1)-(3.3), we introduce the error notations:

𝑛
ℎ
∶=𝑬(𝑡𝑛) −𝑬𝑛

ℎ
=
(
𝑬(𝑡𝑛) − Π𝑐𝑬(𝑡𝑛)

)
−
(
𝑬𝑛

ℎ
−Π𝑐𝑬(𝑡𝑛)

)
∶=𝑬𝑛

ℎ𝜉
−𝑬𝑛

ℎ𝜂
, (3.22)

𝑛
ℎ
∶=𝐻(𝑡𝑛) −𝐻𝑛

ℎ
=
(
𝐻(𝑡𝑛) − Π2𝐻(𝑡𝑛)

)
−
(
𝐻𝑛

ℎ
−Π2𝐻(𝑡𝑛)

)
∶=𝐻𝑛

ℎ𝜉
−𝐻𝑛

ℎ𝜂
, (3.23)

where 𝑬𝑛
ℎ𝜂
, 𝐻𝑛

ℎ𝜂
represent the errors between the finite element solutions and the interpolations or projections of the exact solutions, and 𝑬𝑛

ℎ𝜉
, 𝐻𝑛

ℎ𝜉

represent the interpolation or projection errors.
Moreover, we need the following lemma.

Lemma 3.1. [22, Lemmas 3.16 and 3.19] Denote 𝑢𝑛 ∶= 𝑢(⋅, 𝑡𝑛). We have

(𝑖) ‖𝛿𝜏𝑢𝑛+ 1
2 ‖2 = ‖ 𝑢𝑛+1−𝑢𝑛

𝜏
‖2 ≤ 1

𝜏
∫ 𝑡𝑛+1
𝑡𝑛

‖𝜕𝑡𝑢(𝑡)‖2 𝑑𝑡, ∀𝑢 ∈𝐻1(0, 𝑇 ;𝐿2(Ω)), (3.24)

(𝑖𝑖) ‖𝑢𝑛+ 1
2 − 1

𝜏
∫ 𝑡𝑛+1
𝑡𝑛

𝑢(𝑡)𝑑𝑡‖2 ≤ 𝜏3

4
∫ 𝑡𝑛+1
𝑡𝑛

‖𝜕𝑡𝑡𝑢(𝑡)‖2 𝑑𝑡, ∀𝑢 ∈𝐻2(0, 𝑇 ;𝐿2(Ω)), (3.25)

(𝑖𝑖𝑖) ‖𝑢𝑛+ 1
2 − 1 ∫ 𝑡𝑛+1

𝑡
𝑢(𝑡)𝑑𝑡‖2 ≤ 𝜏3 ∫ 𝑡𝑛+1

𝑡
‖𝜕𝑡𝑡𝑢(𝑡)‖2 𝑑𝑡, ∀𝑢 ∈𝐻2(0, 𝑇 ;𝐿2(Ω)). (3.26)
𝜏 𝑛 4 𝑛
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Integrating (2.9) with 𝝓 = 𝝓ℎ from 𝑡 = 𝑡𝑛 to 𝑡 = 𝑡𝑛+1, then dividing by 𝜏, and using the result to subtract (3.1), we obtain the error equation for 𝑬:

𝜖0(𝛿𝜏𝑬
𝑛+ 1

2
ℎ

,𝝓ℎ) − (𝐻
𝑛+ 1

2
ℎ

,∇×𝝓ℎ) + ⟨𝑱 𝑛+ 1
2 − 𝑱

𝑛+ 1
2

ℎ
,𝝓ℎ⟩Γ,

= ( 1
𝜏

𝑡𝑛+1

∫
𝑡𝑛

𝐻 𝑑𝑡−𝐻
𝑛+ 1

2 ,∇×𝝓ℎ) − ⟨ 1
𝜏

𝑡𝑛+1

∫
𝑡𝑛

𝑱 𝑑𝑡− 𝑱
𝑛+ 1

2 ,𝝓ℎ⟩Γ, (3.27)

where for simplicity we denote the exact solutions 𝐻𝑛+ 1
2 ∶=𝐻(⋅, 𝑡

𝑛+ 1
2
) and 𝑱 𝑛+ 1

2 ∶= 𝑱 (⋅, 𝑡
𝑛+ 1

2
).

Using the error notations (3.22)-(3.23), we can rewrite (3.27) as follows:

𝜖0(𝛿𝜏𝑬
𝑛+ 1

2
ℎ𝜂

,𝝓ℎ) − (𝐻
𝑛+ 1

2
ℎ𝜂

,∇×𝝓ℎ) + ⟨𝑱 𝑛+ 1
2

ℎ𝜂
,𝝓ℎ⟩Γ

= 𝜖0(𝛿𝜏𝑬
𝑛+ 1

2
ℎ𝜉

,𝝓ℎ) − (𝐻
𝑛+ 1

2
ℎ𝜉

,∇×𝝓ℎ) + ⟨𝑱 𝑛+ 1
2

ℎ𝜉
,𝝓ℎ⟩Γ

+(𝐻𝑛+ 1
2 − 1

𝜏

𝑡𝑛+1

∫
𝑡𝑛

𝐻 𝑑𝑡,∇×𝝓ℎ) + ⟨ 1
𝜏

𝑡𝑛+1

∫
𝑡𝑛

𝑱 𝑑𝑡− 𝑱
𝑛+ 1

2 ,𝝓ℎ⟩Γ, (3.28)

where we used the following simplified notations

⟨𝑱 𝑛+ 1
2

ℎ𝜂
,𝝓ℎ⟩Γ = ∫

Γ

(
𝑱
𝑛+ 1

2
ℎ

× 𝑛̂−Π2(𝑱
𝑛+ 1

2 × 𝑛̂)
)
⋅𝝓ℎ × 𝑛̂ 𝑑𝑠, (3.29)

⟨𝑱 𝑛+ 1
2

ℎ𝜉
,𝝓ℎ⟩Γ = ∫

Γ

(
𝑱
𝑛+ 1

2 × 𝑛̂−Π2(𝑱
𝑛+ 1

2 × 𝑛̂)
)
⋅𝝓ℎ × 𝑛̂ 𝑑𝑠. (3.30)

Similarly, integrating (2.10) with 𝜓 = 𝜓ℎ from 𝑡 = 𝑡
𝑛+ 1

2
to 𝑡 = 𝑡

𝑛+ 3
2
, then dividing by 𝜏, and using the result to subtract (3.2), we can obtain the 

error equation for 𝐻 :

𝜇0(𝛿𝜏𝐻𝑛+1
ℎ𝜂

,𝜓ℎ) + (∇ ×𝑬𝑛+1
ℎ𝜂

,𝜓ℎ) = 𝜇0(𝛿𝜏𝐻𝑛+1
ℎ𝜉

,𝜓ℎ) + (∇ ×𝑬𝑛+1
ℎ𝜉

,𝜓ℎ)

+( 1
𝜏

𝑡
𝑛+ 3

2

∫
𝑡
𝑛+ 1

2

∇ ×𝑬 𝑑𝑡−∇×𝑬𝑛+1, 𝜓ℎ) + ( 1
𝜏

𝑡
𝑛+ 3

2

∫
𝑡
𝑛+ 1

2

𝐾𝑠 𝑑𝑡−𝐾𝑛+1
𝑠 ,𝜓ℎ). (3.31)

Finally, integrating (2.11) with 𝜓 = 𝜓ℎ from 𝑡 = 𝑡
𝑛+ 1

2
to 𝑡 = 𝑡

𝑛+ 3
2
, then dividing by 𝜏, and using the result to subtract (3.2), we can obtain the error 

equation for 𝑱 :

𝜏0⟨𝛿𝜏𝑱 𝑛+1
ℎ𝜂

,𝝌ℎ⟩Γ + ⟨𝑱 𝑛+1
ℎ𝜂 ,𝝌ℎ⟩Γ − 𝜎0⟨𝑬𝑛+1

ℎ𝜂
,𝝌ℎ⟩Γ

= 𝜏0⟨𝛿𝜏𝑱 𝑛+1
ℎ𝜉

,𝝌ℎ⟩Γ + ⟨𝑱 𝑛+1
ℎ𝜉 ,𝝌ℎ⟩Γ − 𝜎0⟨𝑬𝑛+1

ℎ𝜉
,𝝌ℎ⟩Γ

+⟨ 1
𝜏

𝑡
𝑛+ 3

2

∫
𝑡
𝑛+ 1

2

𝑱 𝑑𝑡− 𝑱
𝑛+1

,𝝌ℎ⟩Γ − 𝜎0⟨( 1𝜏
𝑡
𝑛+ 3

2

∫
𝑡
𝑛+ 1

2

𝑬 𝑑𝑡−𝑬𝑛+1,𝝌ℎ⟩Γ. (3.32)

With the above error equations, we can prove the following error estimate for our scheme (3.1)-(3.3).

Theorem 3.2. For the scheme (3.1)-(3.3) with initial approximations (3.7)-(3.8), under the time step constraint (3.12) and the following regularity assump-
tions:

𝑬 ∈𝐿∞(0, 𝑇 ;𝐻𝑟(curl;Ω)), 𝐻 ∈𝐿∞(0, 𝑇 ;𝐻𝑟(Ω)), 𝑱 ∈𝐿∞(0, 𝑇 ;𝐿2(Γ)), (3.33)

𝜕𝑡𝑬 ∈𝐿2(0, 𝑇 ;𝐻𝑟(curl;Ω)), 𝜕𝑡𝑡𝐾𝑠, 𝜕𝑡𝑡(∇ ×𝑬) ∈𝐿2(0, 𝑇 ;𝐿2(Ω)), (3.34)

𝜕𝑡𝑡(∇ ×𝐻) ∈𝐿2(0, 𝑇 ; (𝐿2(Ω))2), 𝜕𝑡𝑡𝑱 , 𝜕𝑡𝑡𝑬 ∈𝐿2(0, 𝑇 ;𝐿2(Γ)), (3.35)

we have: For any 0 ≤𝑚 ≤𝑁𝑡 − 1,

𝜖0||𝑬𝑚
ℎ
−𝑬𝑚||2 + 𝜇0||𝐻𝑚+ 1

2
ℎ

−𝐻𝑚+ 1
2 ||2 + 𝜏0

𝜎0
||𝑱𝑚+ 1

2
ℎ

− 𝑱
𝑚+ 1

2 ||2Γ ≤ 𝐶(𝜏3 + ℎ2𝑟−1),

where the constant 𝐶 > 0 is independent of 𝜏 and ℎ, and 𝑟 ≥ 1 is the order of the basis functions in spaces 𝑈ℎ and 𝑽 ℎ.

Proof. Choosing 𝝓ℎ = 2𝜏𝑬
𝑛+ 1

2
ℎ𝜂

, 𝜓ℎ = 2𝜏𝐻
𝑛+1
ℎ𝜂 , 𝝌ℎ =

2𝜏
𝜎0
𝑱
𝑛+1
ℎ𝜂 in (3.28)-(3.32), respectively, then adding them together, we have

𝜖0(||𝑬𝑛+1
ℎ𝜂

||2 − ||𝑬𝑛
ℎ𝜂
||2) + 𝜇0(||𝐻𝑛+ 3

2
ℎ𝜂

||2 − ||𝐻𝑛+ 1
2

ℎ𝜂
||2) + 𝜏0 (||𝑱 𝑛+ 3

2
ℎ𝜂

||2Γ − ||𝑱 𝑛+ 1
2

ℎ𝜂
||2Γ)
𝜎0
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+2𝜏
𝜎0

||𝑱 𝑛+1
ℎ𝜂 ||2Γ = 𝜏

[
(𝐻

𝑛+ 1
2

ℎ𝜂
,∇×𝑬𝑛

ℎ𝜂
) − (𝐻

𝑛+ 3
2

ℎ𝜂
,∇×𝑬𝑛+1

ℎ𝜂
)
]

+𝜏
[⟨𝑬𝑛+1

ℎ𝜂
,𝑱

𝑛+ 3
2

ℎ𝜂
⟩Γ − ⟨𝑬𝑛

ℎ𝜂
,𝑱

𝑛+ 1
2

ℎ𝜂
⟩Γ]

+2𝜏𝜖0(𝛿𝜏𝑬
𝑛+ 1

2
ℎ𝜉

,𝑬
𝑛+ 1

2
ℎ𝜂

) − 2𝜏(𝐻
𝑛+ 1

2
ℎ𝜉

,∇×𝑬
𝑛+ 1

2
ℎ𝜂

) + 2𝜏⟨𝑱 𝑛+ 1
2

ℎ𝜉
,𝑬

𝑛+ 1
2

ℎ𝜂
⟩Γ

+2𝜏(𝐻𝑛+ 1
2 − 1

𝜏

𝑡𝑛+1

∫
𝑡𝑛

𝐻 𝑑𝑡,∇×𝑬
𝑛+ 1

2
ℎ𝜂

) + 2𝜏⟨ 1
𝜏

𝑡𝑛+1

∫
𝑡𝑛

𝑱 𝑑𝑡− 𝑱
𝑛+ 1

2 ,𝑬
𝑛+ 1

2
ℎ𝜂

⟩Γ
+2𝜏𝜇0(𝛿𝜏𝐻𝑛+1

ℎ𝜉
,𝐻

𝑛+1
ℎ𝜂 ) + 2𝜏(∇ ×𝑬𝑛+1

ℎ𝜉
,𝐻

𝑛+1
ℎ𝜂 )

+2𝜏( 1
𝜏

𝑡
𝑛+ 3

2

∫
𝑡
𝑛+ 1

2

∇ ×𝑬 𝑑𝑡−∇×𝑬𝑛+1,𝐻
𝑛+1
ℎ𝜂 ) + 2𝜏( 1

𝜏

𝑡
𝑛+ 3

2

∫
𝑡
𝑛+ 1

2

𝐾𝑠 𝑑𝑡−𝐾𝑛+1
𝑠 ,𝐻

𝑛+1
ℎ𝜂 )

+
2𝜏𝜏0
𝜎0

⟨𝛿𝜏𝑱 𝑛+1
ℎ𝜉

,𝑱
𝑛+1
ℎ𝜂 ⟩Γ + 2𝜏

𝜎0
⟨𝑱 𝑛+1

ℎ𝜉 ,𝑱
𝑛+1
ℎ𝜂 ⟩Γ − 2𝜏⟨𝑬𝑛+1

ℎ𝜉
,𝑱

𝑛+1
ℎ𝜂 ⟩Γ

+2𝜏
𝜎0

⟨ 1
𝜏

𝑡
𝑛+ 3

2

∫
𝑡
𝑛+ 1

2

𝑱 𝑑𝑡− 𝑱
𝑛+1

,𝑱
𝑛+1
ℎ𝜂 ⟩Γ − 2𝜏⟨ 1

𝜏

𝑡
𝑛+ 3

2

∫
𝑡
𝑛+ 1

2

𝑬 𝑑𝑡−𝑬𝑛+1,𝑱
𝑛+1
ℎ𝜂 ⟩Γ. (3.36)

Summing up (3.36) from 𝑛 = 0 to any 𝑚 ≤𝑁𝑡 − 2, we obtain

𝜖0(||𝑬𝑚+1
ℎ𝜂

||2 − ||𝑬0
ℎ𝜂
||2) + 𝜇0(||𝐻𝑚+ 3

2
ℎ𝜂

||2 − ||𝐻 1
2
ℎ𝜂
||2) + 𝜏0

𝜎0
(||𝑱𝑚+ 3

2
ℎ𝜂

||2Γ − ||𝑱 1
2
ℎ𝜂
||2Γ)

+2𝜏
𝜎0

𝑚∑
𝑛=0

||𝑱 𝑛+1
ℎ𝜂 ||2Γ ≤ 16∑

𝑖=1
𝐸𝑟𝑟𝑖. (3.37)

Now we just need to estimate each 𝐸𝑟𝑟𝑖. Similar to the proofs of (3.16) and (3.17), we immediately have

𝐸𝑟𝑟1 = 𝜏

[
(𝐻

1
2
ℎ𝜂
,∇×𝑬0

ℎ𝜂
) − (𝐻

𝑚+ 3
2

ℎ𝜂
,∇×𝑬𝑚+1

ℎ𝜂
)
]

(3.38)

≤ 1
2
𝜏𝐶𝑣𝐶𝑖𝑛ℎ

−1(𝜇0||𝐻 1
2
ℎ𝜂
||2 + 𝜖0||𝑬0

ℎ𝜂
||2) + 1

2
𝜏𝐶𝑣𝐶𝑖𝑛ℎ

−1(𝜇0||𝐻𝑚+ 3
2

ℎ𝜂
||2 + 𝜖0||𝑬𝑚+1

ℎ𝜂
||2),

and

𝐸𝑟𝑟2 = 𝜏

[⟨𝑬𝑚+1
ℎ𝜂

,𝑱
𝑚+ 3

2
ℎ𝜂

⟩Γ − ⟨𝑬0
ℎ𝜂
,𝑱

1
2
ℎ𝜂
⟩Γ] (3.39)

≤ 1
2
𝜏𝐶𝑡𝑟ℎ

− 1
2

√
𝜎0
𝜖0𝜏0

(𝜖0||𝑬𝑚+1
ℎ𝜂

||2 + 𝜏0
𝜎0

||𝑱𝑚+ 3
2

ℎ𝜂
||2Γ) + 1

2
𝜏𝐶𝑡𝑟ℎ

− 1
2

√
𝜎0
𝜖0𝜏0

(𝜖0||𝑬0
ℎ𝜂
||2 + 𝜏0

𝜎0
||𝑱 1

2
ℎ𝜂
||2Γ).

Using the inequality (𝑎, 𝑏) ≤ 𝛿‖𝑎‖2 + 1
4𝛿 ‖𝑏‖2, Lemma 3.1 (i), and the interpolation error estimate (3.4), we have

𝐸𝑟𝑟3 =
𝑚∑
𝑛=0

2𝜏𝜖0(𝛿𝜏𝑬
𝑛+ 1

2
ℎ𝜉

,𝑬
𝑛+ 1

2
ℎ𝜂

) ≤
𝑚∑
𝑛=0

2𝜏𝜖0
(
𝛿3||𝑬𝑛+ 1

2
ℎ𝜂

||2 + 1
4𝛿3

||𝛿𝜏𝑬𝑛+ 1
2

ℎ𝜉
||2)

≤ 𝜏𝜖0𝛿3

𝑚∑
𝑛=0

(||𝑬𝑛+1
ℎ𝜂

||2 + ||𝑬𝑛
ℎ𝜂
||2) + 𝜖0

2𝛿3

𝑚∑
𝑛=0

𝑡𝑛+1

∫
𝑡𝑛

𝐶ℎ2𝑟||𝜕𝑡𝑬||2
𝐻𝑟(𝑐𝑢𝑟𝑙;Ω)𝑑𝑡. (3.40)

Using the fact that ∇ ×𝑬
𝑛+ 1

2
ℎ𝜂

∈𝑈ℎ and the projection operator property, we have

𝐸𝑟𝑟4 = −2𝜏
𝑚∑
𝑛=0

(𝐻
𝑛+ 1

2
ℎ𝜉

,∇×𝑬
𝑛+ 1

2
ℎ𝜂

) = 0. (3.41)

By the definition of (3.30), we have

𝐸𝑟𝑟5 = 2𝜏
𝑚∑
𝑛=0

⟨𝑱 𝑛+ 1
2

ℎ𝜉
,𝑬

𝑛+ 1
2

ℎ𝜂
⟩Γ = 0. (3.42)

Using integration by parts, the PEC boundary condition (2.7), the inequality (𝑎, 𝑏) ≤ 𝛿‖𝑎‖2 + 1
4𝛿 ‖𝑏‖2, and Lemma 3.1 (iii), we obtain

𝐸𝑟𝑟6 = 2𝜏
𝑚∑
𝑛=0

(∇ ×𝐻𝑛+ 1
2 − 1

𝜏

𝑡𝑛+1

∫
𝑡

∇×𝐻 𝑑𝑡,𝑬
𝑛+ 1

2
ℎ𝜂

)

𝑛
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≤ 2𝜏𝐶𝑣

𝑚∑
𝑛=0

⎛⎜⎜⎝𝛿6𝜖0||𝑬
𝑛+ 1

2
ℎ𝜂

||2 + 𝜇0
4𝛿6

||∇×𝐻𝑛+ 1
2 − 1

𝜏

𝑡𝑛+1

∫
𝑡𝑛

∇×𝐻 𝑑𝑡||2⎞⎟⎟⎠
≤ 𝜏𝐶𝑣𝛿6𝜖0

𝑚∑
𝑛=0

(||𝑬𝑛+1
ℎ𝜂

||2 + ||𝑬𝑛
ℎ𝜂
||2) + 𝜏4𝐶𝑣𝜇0

8𝛿6

𝑚∑
𝑛=0

𝑡𝑛+1

∫
𝑡𝑛

||𝜕𝑡𝑡∇×𝐻||2 𝑑𝑡. (3.43)

By the trace inequality and Lemma 3.1 (iii), we have

𝐸𝑟𝑟7 = 2𝜏
𝑚∑
𝑛=0

⟨ 1
𝜏

𝑡𝑛+1

∫
𝑡𝑛

𝑱 𝑑𝑡− 𝑱
𝑛+ 1

2 ,𝑬
𝑛+ 1

2
ℎ𝜂

⟩Γ
≤ 2𝜏

𝑚∑
𝑛=0

|| 1
𝜏

𝑡𝑛+1

∫
𝑡𝑛

𝑱 𝑑𝑡− 𝑱
𝑛+ 1

2 ||Γ ⋅𝐶𝑡𝑟ℎ
− 1

2 ||𝑬𝑛+ 1
2

ℎ𝜂
||

≤ 2𝜏
𝑚∑
𝑛=0

⎛⎜⎜⎝𝛿7𝜖0||𝑬
𝑛+ 1

2
ℎ𝜂

||2 + 𝐶2
𝑡𝑟ℎ

−1

4𝛿7𝜖0
⋅
𝜏3

4

𝑡𝑛+1

∫
𝑡𝑛

||𝜕𝑡𝑡𝑱 ||2Γ 𝑑𝑡

⎞⎟⎟⎠
≤ 𝜏𝛿7𝜖0

𝑚∑
𝑛=0

(||𝑬𝑛+1
ℎ𝜂

||2 + ||𝑬𝑛
ℎ𝜂
||2) + 𝐶2

𝑡𝑟𝜏
4ℎ−1

8𝛿7𝜖0

𝑚∑
𝑛=0

𝑡𝑛+1

∫
𝑡𝑛

||𝜕𝑡𝑡𝑱 ||2Γ 𝑑𝑡. (3.44)

By the 𝐿2 projection property, we have

𝐸𝑟𝑟8 = 2𝜏𝜇0
𝑚∑
𝑛=0

(𝛿𝜏𝐻𝑛+1
ℎ𝜉

,𝐻
𝑛+1
ℎ𝜂 ) = 0. (3.45)

Using the interpolation error estimate (3.4), we have

𝐸𝑟𝑟9 = 2𝜏
𝑚∑
𝑛=0

(∇ ×𝑬𝑛+1
ℎ𝜉

,𝐻
𝑛+1
ℎ𝜂 ) ≤ 2𝜏𝐶𝑣

𝑚∑
𝑛=0

(
𝛿9𝜇0||𝐻𝑛+1

ℎ𝜂 ||2 + 𝜖0
4𝛿9

||∇×𝑬𝑛+1
ℎ𝜉

||2)

≤ 𝜏𝐶𝑣𝛿9𝜇0

𝑚∑
𝑛=0

(||𝐻𝑛+ 3
2

ℎ𝜂
||2 + ||𝐻𝑛+ 1

2
ℎ𝜂

||2) + 𝜏𝐶𝑣𝜖0
𝛿9

𝑚∑
𝑛=0

𝐶ℎ2𝑟||𝑬||2
𝐿∞(0,𝑇 ;𝐻𝑟(𝑐𝑢𝑟𝑙;Ω)). (3.46)

By Lemma 3.1 (iii), we have

𝐸𝑟𝑟10 = 2𝜏
𝑚∑
𝑛=0

( 1
𝜏

𝑡
𝑛+ 3

2

∫
𝑡
𝑛+ 1

2

∇ ×𝑬 𝑑𝑡−∇×𝑬𝑛+1,𝐻
𝑛+1
ℎ𝜂 )

≤ 2𝜏𝐶𝑣

𝑚∑
𝑛=0

⎛⎜⎜⎜⎜⎝
𝛿10𝜇0||𝐻𝑛+1

ℎ𝜂 ||2 + 𝜖0
4𝛿10

|| 1
𝜏

𝑡
𝑛+ 3

2

∫
𝑡
𝑛+ 1

2

∇ ×𝑬 𝑑𝑡−∇×𝑬𝑛+1||2
⎞⎟⎟⎟⎟⎠

(3.47)

≤ 𝜏𝐶𝑣𝛿10𝜇0

𝑚∑
𝑛=0

(||𝐻𝑛+ 3
2

ℎ𝜂
||2 + ||𝐻𝑛+ 1

2
ℎ𝜂

||2) + 𝜏4𝐶𝑣𝜖0
8𝛿10

𝑚∑
𝑛=0

𝑡
𝑛+ 3

2

∫
𝑡
𝑛+ 1

2

||𝜕𝑡𝑡∇×𝑬||2 𝑑𝑡.

Similar to 𝐸𝑟𝑟10, we have

𝐸𝑟𝑟11 = 2𝜏
𝑚∑
𝑛=0

( 1
𝜏

𝑡
𝑛+ 3

2

∫
𝑡
𝑛+ 1

2

𝐾𝑠 𝑑𝑡−𝐾𝑛+1
𝑠 ,𝐻

𝑛+1
ℎ𝜂 ) (3.48)

≤ 𝜏𝐶𝑣𝛿11𝜇0

𝑚∑
𝑛=0

(||𝐻𝑛+ 3
2

ℎ𝜂
||2 + ||𝐻𝑛+ 1

2
ℎ𝜂

||2) + 𝜏4𝐶𝑣𝜖0
8𝛿11

𝑚∑
𝑛=0

𝑡
𝑛+ 3

2

∫
𝑡
𝑛+ 1

2

||𝜕𝑡𝑡𝐾𝑠||2 𝑑𝑡.

By the definition of (3.30), we obtain

𝐸𝑟𝑟12 =
2𝜏𝜏0
𝜎0

𝑚∑
𝑛=0

⟨𝛿𝜏𝑱 𝑛+1
ℎ𝜉

,𝑱
𝑛+1
ℎ𝜂 ⟩Γ = 0, (3.49)

and
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𝐸𝑟𝑟13 =
2𝜏
𝜎0

𝑚∑
𝑛=0

⟨𝑱 𝑛+1
ℎ𝜉 ,𝑱

𝑛+1
ℎ𝜂 ⟩Γ = 0. (3.50)

By the trace inequality and the interpolation error estimate (3.4), we have

𝐸𝑟𝑟14 = −2𝜏
𝑚∑
𝑛=0

⟨𝑬𝑛+1
ℎ𝜉

,𝑱
𝑛+1
ℎ𝜂 ⟩Γ ≤ 2𝜏

𝑚∑
𝑛=0

𝐶𝑡𝑟ℎ
− 1

2 ||𝑬𝑛+1
ℎ𝜉

|| ⋅ ||𝑱 𝑛+1
ℎ𝜂 ||Γ

≤ 𝜏𝛿14

𝑚∑
𝑛=0

(||𝑱 𝑛+ 3
2

ℎ𝜂
||2Γ + ||𝑱 𝑛+ 1

2
ℎ𝜂

||2Γ) + 𝜏𝐶2
𝑡𝑟ℎ

2𝑟−1

2𝛿14

𝑚∑
𝑛=0

||𝑬||2
𝐿∞(0,𝑇 ;𝐻𝑟(𝑐𝑢𝑟𝑙;Ω)). (3.51)

By Lemma 3.1 (ii), we have

𝐸𝑟𝑟15 =
2𝜏
𝜎0

𝑚∑
𝑛=0

⟨ 1
𝜏

𝑡
𝑛+ 3

2

∫
𝑡
𝑛+ 1

2

𝑱 𝑑𝑡− 𝑱
𝑛+1

,𝑱
𝑛+1
ℎ𝜂 ⟩Γ

≤ 𝜏𝛿15
𝜎0

𝑚∑
𝑛=0

(||𝑱 𝑛+ 3
2

ℎ𝜂
||2Γ + ||𝑱 𝑛+ 1

2
ℎ𝜂

||2Γ) + 𝜏4

8𝛿15𝜎0

𝑚∑
𝑛=0

𝑡
𝑛+ 3

2

∫
𝑡
𝑛+ 1

2

||𝜕𝑡𝑡𝑱 ||2Γ 𝑑𝑡. (3.52)

Similarly, by Lemma 3.1 (iii), we have

𝐸𝑟𝑟16 = −2𝜏
𝑚∑
𝑛=0

⟨ 1
𝜏

𝑡
𝑛+ 3

2

∫
𝑡
𝑛+ 1

2

𝑬 𝑑𝑡−𝑬𝑛+1,𝑱
𝑛+1
ℎ𝜂 ⟩Γ

≤ 𝜏𝛿16

𝑚∑
𝑛=0

(||𝑱 𝑛+ 3
2

ℎ𝜂
||2Γ + ||𝑱 𝑛+ 1

2
ℎ𝜂

||2Γ) + 𝜏4

8𝛿16

𝑚∑
𝑛=0

𝑡
𝑛+ 3

2

∫
𝑡
𝑛+ 1

2

||𝜕𝑡𝑡𝑬||2Γ 𝑑𝑡. (3.53)

Substituting the above estimates of 𝐸𝑟𝑟𝑖 into (3.37), combining like terms together, and dropping the last nonnegative term on the left hand side, 
we obtain

𝜖0(||𝑬𝑚+1
ℎ𝜂

||2 − ||𝑬0
ℎ𝜂
||2) + 𝜇0(||𝐻𝑚+ 3

2
ℎ𝜂

||2 − ||𝐻 1
2
ℎ𝜂
||2) + 𝜏0

𝜎0
(||𝑱𝑚+ 3

2
ℎ𝜂

||2Γ − ||𝑱 1
2
ℎ𝜂
||2Γ)

≤ 1
2
𝜏𝐶𝑣𝐶𝑖𝑛ℎ

−1(𝜇0||𝐻 1
2
ℎ𝜂
||2 + 𝜖0||𝑬0

ℎ𝜂
||2) + 1

2
𝜏𝐶𝑡𝑟ℎ

− 1
2

√
𝜎0
𝜖0𝜏0

(𝜖0||𝑬0
ℎ𝜂
||2 + 𝜏0

𝜎0
||𝑱 1

2
ℎ𝜂
||2Γ)

+
( 1
2
𝜏𝐶𝑣𝐶𝑖𝑛ℎ

−1 + 𝜏𝐶𝑣𝛿9 + 𝜏𝐶𝑣𝛿10 + 𝜏𝐶𝑣𝛿11

)
𝜇0||𝐻𝑚+ 3

2
ℎ𝜂

||2
+
(
1
2
𝜏𝐶𝑣𝐶𝑖𝑛ℎ

−1 + 1
2
𝜏𝐶𝑡𝑟ℎ

− 1
2

√
𝜎0
𝜖0𝜏0

+ 𝜏𝛿3 + 𝜏𝐶𝑣𝛿6 + 𝜏𝛿7

)
𝜖0||𝑬𝑚+1

ℎ𝜂
||2

+
(
1
2
𝜏𝐶𝑡𝑟ℎ

− 1
2

√
𝜎0
𝜖0𝜏0

+
𝜏𝛿14𝜎0
𝜏0

+
𝜏𝛿15
𝜏0

+
𝜏𝛿16𝜎0
𝜏0

)
𝜏0
𝜎0

||𝑱𝑚+ 3
2

ℎ𝜂
||2Γ

+𝜏(2𝛿3 + 2𝐶𝑣𝛿6 + 2𝛿7)𝜖0
𝑚∑
𝑛=0

||𝑬𝑛
ℎ𝜂
||2 + 𝜏(2𝐶𝑣𝛿9 + 2𝐶𝑣𝛿10 + 2𝐶𝑣𝛿11)𝜇0

𝑚∑
𝑛=0

||𝐻𝑛+ 1
2

ℎ𝜂
||2

+𝜏(
2𝜎0𝛿14
𝜏0

+
2𝛿15
𝜏0

+
2𝜎0𝛿16
𝜏0

)
𝜏0
𝜎0

𝑚∑
𝑛=0

||𝑱 𝑛+ 1
2

ℎ𝜂
||2Γ (3.54)

+
𝜖0𝐶ℎ2𝑟

2𝛿3

𝑇

∫
0

||𝜕𝑡𝑬||2
𝐻𝑟(𝑐𝑢𝑟𝑙;Ω)𝑑𝑡+ (

𝑇𝐶𝑣𝜖0𝐶ℎ2𝑟

𝛿9
+

𝑇𝐶2
𝑡𝑟ℎ

2𝑟−1

2𝛿14
)||𝑬||2

𝐿∞(0,𝑇 ;𝐻𝑟(𝑐𝑢𝑟𝑙;Ω))

+
𝜏4𝐶𝑣𝜇0
8𝛿6

𝑇

∫
0

||𝜕𝑡𝑡∇×𝐻||2 𝑑𝑡+ (
𝐶2
𝑡𝑟𝜏

4ℎ−1

8𝛿7𝜖0
+ + 𝜏4

8𝛿15𝜎0
)

𝑇

∫
0

||𝜕𝑡𝑡𝑱 ||2Γ 𝑑𝑡

+
𝜏4𝐶𝑣𝜖0
8𝛿10

𝑇

∫
0

||𝜕𝑡𝑡∇×𝑬||2 𝑑𝑡+
𝜏4𝐶𝑣𝜖0
8𝛿11

𝑇

∫
0

||𝜕𝑡𝑡𝐾𝑠||2 𝑑𝑡+ 𝜏4

8𝛿16

𝑇

∫
0

||𝜕𝑡𝑡𝑬||2Γ 𝑑𝑡.

Under the same time step constraint (3.12), by using the discrete Gronwall inequality and choosing those 𝛿𝑖 properly, such as

𝛿9 = 𝛿10 = 𝛿11 =
1

8𝐶𝑣

, 𝛿3 = 𝛿7 =
1
16

, 𝛿6 =
1

8𝐶𝑣

, 𝛿14 = 𝛿16 =
𝜏0
8𝜎0

, 𝛿15 =
𝜏0
8
,

we have
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Table 1

The errors obtained for Example 1 with 𝑁𝑡 = 1000, 𝜏 = 1 × 10−4, 𝑟 = 1.

ℎ ‖𝑬 −𝑬ℎ‖𝐿2 (Ω) rate ‖𝐻 −𝐻ℎ‖𝐿2 (Ω) rate ‖𝑱 − 𝑱 ℎ‖Γ rate

1/4 1.9581 × 10−2 5.0621 × 10−4 9.8589 × 10−5

1/8 9.9814 × 10−3 0.9721 2.4718 × 10−4 1.0341 5.0621 × 10−4 0.9721

1/16 5.0220 × 10−3 0.9909 1.1794 × 10−4 1.0674 5.0255 × 10−5 0.9909

1/32 2.5152 × 10−3 0.9975 5.4204 × 10−5 1.1216 2.5285 × 10−5 0.9975

1/64 1.2581 × 10−3 0.9993 2.3716 × 10−5 1.1925 1.2663 × 10−5 0.9993

1/128 6.3045 × 10−4 0.9968 1.2374 × 10−5 0.9385 3.1693 × 10−6 0.9990

Table 2

The errors obtained for Example 1 with 𝑁𝑡 = 1000, 𝜏 = 1 × 10−4, 𝑟 = 2.

ℎ ‖𝑬 −𝑬ℎ‖𝐿2 (Ω) rate ‖𝐻 −𝐻ℎ‖𝐿2 (Ω) rate ‖𝑱 − 𝑱 ℎ‖Γ rate

1/4 4.4129 × 10−3 2.5281 × 10−4 2.2218 × 10−5

1/8 1.0730 × 10−3 2.0400 1.2988 × 10−4 0.9607 5.4012 × 10−6 2.0403

1/16 2.6160 × 10−4 2.0361 6.3906 × 10−5 1.0232 1.3113 × 10−6 2.0422

1/32 6.8419 × 10−5 1.9349 2.1809 × 10−5 1.5510 3.2979 × 10−7 1.9913

1/64 2.1824 × 10−5 1.6484 4.0333 × 10−6 2.4349 9.2774 × 10−8 1.8297

1/128 6.9954 × 10−6 1.6414 1.0048 × 10−6 2.0050 2.9704 × 10−8 1.6430

𝜖0||𝑬𝑚+1
ℎ𝜂

||2 + 𝜇0||𝐻𝑚+ 3
2

ℎ𝜂
||2 + 𝜏0

𝜎0
||𝑱𝑚+ 3

2
ℎ𝜂

||2Γ (3.55)

≤ 𝐶

(
𝜖0||𝑬0

ℎ𝜂
||2 + 𝜇0||𝐻 1

2
ℎ𝜂
||2 + 𝜏0

𝜎0
||𝑱 1

2
ℎ𝜂
||2Γ + ℎ2𝑟−1 + 𝜏3

)
exp(12(𝑚+ 1)𝜏) ≤ 𝐶(ℎ2𝑟−1 + 𝜏3),

where in the last step we used the following initial approximation error estimates

||𝑬0
ℎ
−𝑬0|| ≤ 𝐶ℎ𝑟, ||𝐻 1

2
ℎ
−𝐻

1
2 || ≤ 𝐶(ℎ𝑟 + 𝜏2), ||𝑱 1

2
ℎ
− 𝑱

1
2 ||Γ ≤ 𝐶(ℎ𝑟 + 𝜏2). (3.56)

Finally, using the triangle inequality, the interpolation error estimate (3.4), and the 𝐿2 projection error estimate, from (3.55) we conclude the 
proof. □

4. Numerical results

In this section, we present several numerical examples to demonstrate the effectiveness of our graphene model in simulating the propagation of 
surface plasmon polaritons (SPPs) on graphene sheets. Our numerical tests are carried out by using FEniCS [25].

4.1. Test of convergence rates

The first example is developed to test the theoretical convergence rate of our numerical scheme by a manufactured exact solution:

𝐄(𝑥, 𝑦, 𝑡) =
(
𝐸𝑥

𝐸𝑦

)
=
(

sin(2𝜋𝑥) sin(2𝜋𝑦)𝑠𝑖𝑛(2𝜋𝑡)
cos(2𝜋𝑥) cos(2𝜋𝑦)𝑠𝑖𝑛(2𝜋𝑡)

)
,

𝐉(𝑥, 𝑦, 𝑡) =
(
𝐽𝑥
𝐽𝑦

)
=

( 1
1+4𝜋2 sin(2𝜋𝑥) sin(2𝜋𝑦)(sin(2𝜋𝑡) − 2𝜋 cos(2𝜋𝑡) + 2𝜋 exp(−𝑡))
1

1+4𝜋2 cos(2𝜋𝑥) cos(2𝜋𝑦)(sin(2𝜋𝑡) − 2𝜋 cos(2𝜋𝑡) + 2𝜋 exp(−𝑡))

)
,

𝐻1(𝑥, 𝑦, 𝑡) =
1

1 + 4𝜋2 sin(2𝜋𝑥) sin(2𝜋𝑦) sin(2𝜋𝑡),

𝐻2(𝑥, 𝑦, 𝑡) =
1

1 + 4𝜋2 sin(2𝜋𝑥) sin(2𝜋𝑦)(2𝜋 cos(2𝜋𝑡) − 2𝜋 exp(−𝑡)),

which satisfies the following graphene model equations:

𝜖0𝜕𝑡𝑬 =∇×𝐻1 − 𝑱 + 𝒇 1, in Ω1, (4.1)

𝜇0𝜕𝑡𝐻1 = −∇×𝑬 + 𝑓2, in Ω1, (4.2)

𝜏0𝜕𝑡𝑱 + 𝑱 = 𝜎0𝑬, on Γ, (4.3)

𝜖0𝜕𝑡𝑬 =∇×𝐻2 − 𝑱 + 𝒇 3, in Ω2, (4.4)

𝜇0𝜕𝑡𝐻2 = −∇×𝑬 + 𝑓4, in Ω2. (4.5)

Here the added source terms 𝒇 1, 𝑓2, 𝒇 3 and 𝑓4 can be calculated from the given exact solution 𝑬, 𝐻1, 𝐻2 and 𝑱 .
For simplicity, we choose the physical domain Ω = (0, 1)2, which is split into two subdomains Ω1 = (0, 1) × (0.5, 1) and Ω2 = (0, 1) × (0, 0.5) with 

interface Γ = {𝑦 = 0.5, 𝑥 ∈ [0, 1]}. We apply our developed scheme (3.1)-(3.3) to solve (4.1)-(4.5) with physical parameters 𝜖0 = 𝜇0 = 𝜏0 = 𝜎0 = 1.
First, we solve this example with a fixed small time step size 𝜏 = 1 ×10−4 and various mesh sizes for 𝑁𝑡 = 1000 time steps. The obtained 𝐿2 errors 

are presented in Tables 1 and 2 for the RTN finite element spaces 𝑈ℎ and 𝑽 ℎ with 𝑟 = 1, 2, respectively. Our results show that the obtained 𝐿2 errors 
are at least 𝑂(ℎ𝑟−0.5) for 𝑟 = 1, 2, respectively.
277



J. Li, L. Zhu and T. Arbogast Computers and Mathematics with Applications 142 (2023) 268–282
Table 3

The obtained errors obtained for 𝑟 = 1 by fixing 𝜏 = ℎ

200
.

ℎ ‖𝑬 −𝑬ℎ‖𝐿2 (Ω) rate ‖𝐻 −𝐻ℎ‖𝐿2 (Ω) rate ‖𝑱 − 𝑱 ℎ‖Γ rate

1/10 8.0084 × 10−3 2.0027 × 10−4 4.1938 × 10−5

1/20 4.0208 × 10−3 0.9940 9.3324 × 10−5 1.1016 2.0546 × 10−5 0.9721

1/40 2.0126 × 10−3 0.9984 4.1560 × 10−5 1.1670 1.0158 × 10−5 0.9909

1/80 1.0066 × 10−3 0.9995 1.8654 × 10−5 1.1556 5.0491 × 10−6 0.9975

1/160 5.0537 × 10−4 0.9940 1.0326 × 10−5 0.8532 2.5194 × 10−6 0.9993

Table 4

The obtained errors obtained for 𝑟 = 2 by fixing 𝜏 = ℎ

200
.

ℎ ‖𝑬 −𝑬ℎ‖𝐿2 (Ω) rate ‖𝐻 −𝐻ℎ‖𝐿2 (Ω) rate ‖𝑱 − 𝑱 ℎ‖Γ rate

1/10 6.7883 × 10−4 1.0984 × 10−4 3.5527 × 10−6

1/20 1.6779 × 10−4 2.0164 4.8473 × 10−5 1.1801 8.4889 × 10−7 2.0652

1/40 4.5943 × 10−5 1.8687 1.3049 × 10−5 1.8931 2.1569 × 10−6 1.9765

1/80 1.7540 × 10−5 1.3892 3.5181 × 10−6 1.8911 6.5890 × 10−7 1.7108

1/160 6.9715 × 10−6 1.3311 9.6548 × 10−7 1.8654 2.1517 × 10−8 1.6145

Then we test the convergence rate in terms of 𝜏 by fixing 𝜏 = ℎ

200 to guarantee the stability constraint. The obtained 𝐿
2 errors are presented in 

Tables 3-4 for 𝑟 = 1, 2, respectively, and they are at least 𝑂(𝜏1.5). When 𝑟 = 1, due to the time step constraint 𝜏 = 𝑂(ℎ), the theoretical convergence 
rate should be dominated by 𝑂(ℎ0.5) =𝑂(𝜏0.5), but our numerical errors are better and almost 𝑂(ℎ).

4.2. Simulation of surface plasmon polaritons along the graphene sheets

To simulate the SPP phenomenon on the graphene sheet, we need to use a PML to surround the physical domain Ω. Here we adopt the 2D TEz 
Ziolkowski PML model in the PML region Ω𝑝𝑚𝑙 , which can be written as follows (cf. [32, p.157]):

𝜖0𝜕𝑡𝑬 = −𝜖0𝐷1𝑬 +∇×𝐻𝑧 − 𝑱 , in Ω𝑝𝑚𝑙, (4.6)

𝜇0𝜕𝑡𝐻 = −𝜇0(𝜎𝑥 + 𝜎𝑦)𝐻𝑧 −∇×𝑬 −𝐾𝑧, in Ω𝑝𝑚𝑙, (4.7)

𝜕𝑡𝑱 = −𝐷2𝑱 + 𝜖0𝐷3𝑬, in Ω𝑝𝑚𝑙, (4.8)

𝜕𝑡𝐾𝑧 = 𝜇0𝜎𝑥𝜎𝑦𝐻𝑧, in Ω𝑝𝑚𝑙, (4.9)

where 𝜎𝑥(𝑥) and 𝜎𝑦(𝑦) are the nonnegative damping functions in the 𝑥 and 𝑦 directions, respectively, the diagonal matrices 𝐷𝑖 (𝑖 = 1, 2, 3) are given 
as follows:

𝐷1 = 𝑑𝑖𝑎𝑔(𝜎𝑦 − 𝜎𝑥, 𝜎𝑥 − 𝜎𝑦), 𝐷2 = 𝑑𝑖𝑎𝑔(𝜎𝑥, 𝜎𝑦), 𝐷3 = 𝑑𝑖𝑎𝑔(𝜎𝑥(𝜎𝑥 − 𝜎𝑦), 𝜎𝑦(𝜎𝑦 − 𝜎𝑥)). (4.10)

We propose the following finite element scheme for the above PML model in Ω𝑝𝑚𝑙 : For any 𝑛 ≥ 0, find 𝑬𝑛+1
ℎ

, 𝑱 𝑛+ 3
2

ℎ
∈ 𝑽 0

ℎ
, 𝐻𝑛+ 3

2
ℎ

, 𝐾𝑛+1
𝑧ℎ

∈ 𝑈ℎ such 
that

𝜖0(𝛿𝜏𝑬
𝑛+ 1

2
ℎ

,𝝓ℎ) = −𝜖0(𝐷1𝑬
𝑛+ 1

2
ℎ

,𝝓ℎ) + (𝐻
𝑛+ 1

2
𝑧ℎ

,∇×𝝓ℎ) − (𝑱
𝑛+ 1

2
ℎ

,𝝓ℎ), (4.11)

𝜇0(𝛿𝜏𝐻𝑛+1
𝑧ℎ

,𝜓ℎ) = −𝜇0((𝜎𝑥 + 𝜎𝑦)𝐻
𝑛+1
𝑧ℎ ,𝜓ℎ) − (∇ ×𝑬𝑛+1

ℎ
,𝜓ℎ) − (𝐾𝑛+1

𝑧ℎ
,𝜓ℎ), (4.12)

(𝛿𝜏𝑱 𝑛+1
ℎ

,𝝌ℎ) = −(𝐷2𝑱
𝑛+1
ℎ ,𝝌ℎ) + 𝜖0(𝐷3𝑬

𝑛+1
ℎ

,𝝌ℎ), (4.13)

(𝛿𝜏𝐾
𝑛+ 1

2
𝑧ℎ

,𝜑ℎ) = 𝜇0(𝜎𝑥𝜎𝑦𝐻
𝑛+ 1

2
𝑧ℎ

,𝜑ℎ), (4.14)

hold true for any test functions 𝝓ℎ ∈ 𝑽 0
ℎ
, 𝜓ℎ, 𝜑ℎ ∈𝑈ℎ and 𝝌ℎ ∈𝑊ℎ.

To simplify the implementation, we merge the graphene scheme (3.1)-(3.3) and the PML scheme (4.11)-(4.14) together by using subdomain 
dependent coefficients and rewrite them as follows:(

𝜖0(𝐼 +
𝜏𝐷1
2

)𝑬𝑛+1
ℎ

,𝝓ℎ

)
=
(
𝜖0(𝐼 −

𝜏𝐷1
2

)𝑬𝑛
ℎ
,𝝓ℎ

)
+ 𝜏(𝐻

𝑛+ 1
2

ℎ
,∇×𝝓ℎ)

+ 𝜏⟨𝑱 𝑛+ 1
2

ℎ
,𝝓ℎ⟩Γ − 𝜏(𝐶𝑖𝑑𝑱

𝑛+ 1
2

ℎ
,𝝓ℎ), (4.15)(

𝜇0(1 +
𝜏(𝜎𝑥 + 𝜎𝑦)

2
)𝐻

𝑛+ 3
2

ℎ
,𝜓ℎ

)
=
(
𝜇0(1 −

𝜏(𝜎𝑥 + 𝜎𝑦)
2

)𝐻
𝑛+ 1

2
ℎ

,𝜓ℎ

)
− 𝜏(∇ ×𝑬𝑛+1

ℎ
,𝜓ℎ)

− 𝜏(𝐶𝑖𝑑𝐾
𝑛+1
ℎ

,𝜓ℎ) − 𝜏(𝐾𝑛+1
𝑠ℎ

,𝜓ℎ), (4.16)(
(𝐼 +

𝜏𝐷2
2

)𝑱
𝑛+ 3

2
ℎ

,𝝌ℎ

)
+ ⟨(1 + 𝜏

2𝜏0
)𝑱

𝑛+ 3
2

ℎ
,𝝌ℎ⟩Γ =(

(𝐼 −
𝜏𝐷2
2

)𝐽
𝑛+ 1

2
ℎ

,𝝌ℎ

)
+ 𝜏(𝜖0𝐷3𝑬

𝑛+1
ℎ

,𝒗ℎ)

+ ⟨(1 − 𝜏

2𝜏0
)𝐽

𝑛+ 1
2

ℎ
,𝝌ℎ⟩Γ + 𝜏⟨𝜎0

𝜏0
𝑬𝑛+1

ℎ
,𝝌ℎ⟩Γ, (4.17)

(𝐾𝑛+1
ℎ

,𝜑ℎ) = (𝐾𝑛
ℎ
,𝜑ℎ) + 𝜏𝜇0(𝜎𝑥𝜎𝑦𝐻

𝑛+ 1
2

ℎ
,𝜑ℎ), (4.18)
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Fig. 1. The setup demonstration (with a coarse mesh) for Example 1.

Fig. 2. Example 1. Contour plots of 𝐻𝑧 at 1000, 2000, 4000, 6000, 8000, and 10000 time steps.

where we denote the identity matrix 𝐼 = 𝑑𝑖𝑎𝑔(1, 1), write 𝐻𝑧ℎ and 𝐽𝑧ℎ in the PML subdomain as 𝐻ℎ and 𝐽ℎ, and use the subdomain identify function

𝐶𝑖𝑑 =

{
0, if 𝒙 ∈Ω,

1, if 𝒙 ∈Ω𝑝𝑚𝑙.
(4.19)

In our simulation, we choose a physical domain Ω= [−30, 30] μm× [−10, 10] μm, which is surrounded by the Ziolkowski PML with thickness 12ℎ𝑥
and 12ℎ𝑦 in the 𝑥 and 𝑦 directions, respectively, where ℎ𝑥 and ℎ𝑦 are the mesh sizes in the 𝑥 and 𝑦 directions, respectively. We use a uniformly 
refined triangular mesh with 128 × 128 rectangles bisected into triangles.

The damping functions 𝜎𝑥 and 𝜎𝑦 for the PML are chosen as a fourth order polynomial:

𝜎𝑥(𝑥) =

{
𝜎𝑚𝑎𝑥(

|𝑥|−30
𝑑𝑑

)4, when |𝑥| ≥ 30,
0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒,

where the coefficient 𝜎𝑚𝑎𝑥 = − log(𝑒𝑟𝑟) ⋅ 5 ⋅ 𝐶𝑣∕(2 ⋅ 𝑑𝑑) with 𝑒𝑟𝑟 = 10−7, and 𝑑𝑑 denotes the thickness of the PML in the 𝑥 direction. The function 𝜎𝑦
has the same form but varies with respect to the 𝑦 variables.

Example 1. A straight graphene sheet
In this example, we present a simulation of SPPs along one graphene sheet aligned horizontally. The simulation setup is shown in Fig. 1, where 

a graphene sheet of 40 μm long is embedded in domain Ω. Outside of Ω is surrounded by the PML.
A pair of dipole source waves are placed at points (−27, 1) μm and (−27, −1) μm, and imposed as 𝐾𝑠 = sin(2𝜋𝑓0𝑡)∕ℎ𝑦 and 𝐾𝑠 = − sin(2𝜋𝑓0𝑡)∕ℎ𝑦, 

respectively. In our simulation, we choose frequency 𝑓0 = 10 THz, relaxation time 𝜏0 = 1.2 ps, and the surface conductivity 𝜎0 given by the formula:

𝜎0 = −
𝑞2𝑘𝐵𝑇 𝜏0

𝜋ℏ2

(
𝜇𝑐

𝑘𝐵𝑇
+ 2 ln(exp(−

𝜇𝑐

𝑘𝐵𝑇
) + 1)

)
, (4.20)

where the electron charge 𝑞 = 1.6022𝑒 − 19, the Kelvin temperature 𝑇 = 300 𝐾 , the reduced Plank constant ℏ = 1.0546𝑒 − 34, the Boltzman constant 
𝑘𝐵 = 1.3806𝑒 − 23, and the chemical potential 𝜇𝑐 = 1.5 eV.

We use the time step 𝜏 = 8.3 × 10−17 s, and run the simulation for 10000 time steps. Some snapshots of the obtained magnetic field 𝐻𝑧 are shown 
in Fig. 2, which clearly show the SPPs propagate along the graphene sheet.
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Fig. 3. Example 2. The setup (shown in a coarse mesh) for four adjacent graphene sheets buried in Ω.

Fig. 4. Example 2. Contour plots of 𝐻𝑧 obtained at 1000, 2000, 4000, 6000, 8000, and 10000 time steps.

Fig. 5. Example 3. The setup for the tilted graphene sheet.

Example 2. Four adjacent graphene sheets
In this example, we simulate the wave propagation along four adjacent graphene sheets by our FETD scheme. The simulation setup is shown 

in Fig. 3, where four graphene sheets of length 10 μm are embedded in domain Ω0. A pair of dipole incident waves are placed at points 
(−27, 3.12) μm) and (−27, −3.12) μm. We use the same simulation parameters as Example 1. Some snapshots of the magnetic field 𝐻𝑧 are presented 
in Fig. 4, which shows clearly that the SPPs propagate along the graphene sheets as demonstrated in the previous work [38].

Example 3. A tilted graphene sheet
This example is developed to simulate the propagation of SPPs along a tilted graphene sheet by our FETD scheme. The simulation setup is shown 

in Fig. 5, where one tilted graphene sheet situating on the line 𝑦 = 1
3𝑥 with length 20

√
5 μm is embedded in domain Ω0. A pair of dipole source 

waves are placed at points (−21, −6) μm and (−21, −8) μm. The rest of the simulation data are the same as Example 1. The calculated magnetic fields 
𝐻𝑧 obtained at different time steps are presented in Fig. 6, which shows that the SPPs also propagate along this tilted graphene sheet.

Example 4. SPPs propagating along a bifurcated graphene sheet
Finally, we present a bifurcated graphene sheet to demonstrate the flexibility of our FETD scheme to handle a complicated geometry. The 

simulation setup is illustrated in Fig. 7, and the rest simulation data are kept the same as Example 1. The obtained numerical magnetic fields 𝐻𝑧 at 
various time steps are presented in Fig. 8, which shows that the SPPs can propagate along this complicated graphene sheet.
J. Li, L. Zhu and T. Arbogast Computers and Mathematics with Applications 142 (2023) 268–282
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Fig. 6. Example 3. Contour plots of 𝐻𝑧 obtained at 1000, 2000, 4000, 6000, 8000, and 10000 time steps.

Fig. 7. Example 4. The simulation setup for the bifurcated graphene sheet (illustrated with a coarse mesh).

Fig. 8. Example 4. Contour plots of 𝐻𝑧 at 500, 1000, 2000, 4000, 6000, and 10000 time steps.
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5. Conclusion

In this paper, we develop a new formulation to simulate the surface plasmon polaritons propagating on graphene sheets. We treat the graphene 
as a thin sheet of current with an effective conductivity. A novel finite element method is proposed for solving this graphene model. Numerical 
results demonstrate the effectiveness of this graphene model for simulating the surface plasmon polaritons propagating on graphene sheets. The 
current error estimate is sub-optimal and the loss of half-order accuracy is caused by those graphene interface terms 𝐸𝑟𝑟𝑖, 𝑖 = 2, 7, 14. We will continue 
exploring more efficient and optimally convergent schemes in the future, since much works are needed for the time-dependent 𝐻(𝑐𝑢𝑟𝑙; Ω)-interface 
problem as pointed out in the last sentence of Conclusion in [13].
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