ESAIM: M2AN 57 (2023) 621-644 ESAIM: Mathematical Modelling and Numerical Analysis
https://doi.org/10.1051/m2an /2022086 WWW.esalm-m2an.org

DEVELOPING AND ANALYZING AN EXPLICIT UNCONDITIONALLY STABLE
FINITE ELEMENT SCHEME FOR AN EQUIVALENT BERENGER’S PML
MODEL

YUNQING HUANG!, JicHUN L1** AND XiIN Liu!

Abstract. The original Bérenger’s perfectly matched layer (PML) was quite effective in simulating
wave propagation problem in unbounded domains. But its stability is very challenging to prove. Later,
some equivalent PML models were developed by Bécache and Joly [ESAIM: M2AN 36 (2002) 87-119]
and their stabilities were established. Hence studying and developing efficicent numerical methods for
solving those equivalent PML models are needed and interesting. Here we propose a novel explicit
unconditionally stable finite element scheme to solve an equivalent Bérenger’s PML model. Both the
stability and convergence analysis are proved for the proposed scheme. Numerical results justifying the
theoretical analysis are presented. We also demonstrate the effectiveness of this PML in simulating
wave propagation in the free space. To our best knowledge, this is the first explicit unconditionally
stable finite element scheme developed for this PML model.
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1. INTRODUCTION

In 1994, Bérenger [7] introduced the perfectly matched layer (PML) techqniue to develop efficient numerical
absorbing boundary conditions for solving the time-dependent Maxwell’s equations in unbounded domains. This
PML technique has been shown to be very effective and can absorb all impinging waves over a wide frequency
range. Since 1994, many different PML models have been developed and applied to solve Maxwell’s equations
in both time-domain [1,11,15,21,25,26, 32] and frequency domain [3,9, 16]. More details and references can
be found in the classic computational electromagnetic book [30], a review paper on PMLs [31], and our recent
book on metamaterials ([22], Chap. 8). Furthermore, the PML technique has been extended to solve other wave
propagation problems in different media, such as acoustics, elastodynamics [2,14], elasticity [20], anisotropic
dispersive media [6] and metamaterials [5,12,13]. Due to many potential applications of metamaterials such as
design of invisibility cloaks, recently there has been a growing interest in the study of the Maxwell’s equations
involving metamaterials (e.g., [8,23,24,33]).
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Even though the original splitted Bérenger PML works very well in practical numerical simulations, the
mathematical analysis of its energy stability for the general variable damping function case is still an open
problem. Until 2002, Bécache and Joly [4] managed to establish a stability result for an equivalent Bérenger
PML model. Inspired by their work, recently we [17,18] proposed and analyzed some finite diffence and finite
element methods for solving those equivalent PML models. Those schemes we proposed so far are explicit and has
a time step constraint. In 2021, we [19] discovered a novel technique in constructing an explicit unconditionally
finite element method for solving Maxwell’s equations in the free space and in Drude metamaterials. One major
contribution of this paper is that we successfully extend that technique to construct and prove an explicit
unconditionally stable scheme for solving this complicated equivalent Bérenger’s PML model. This new scheme
is not only easy in implementation but also very efficient like other explicit leapfrog type schemes. To the best
of our knowledge, this is the first explicit unconditionally stable finite element scheme constructed and analyzed
for this PML model.

The rest of the paper is organized as follows. In Section 2, we first present the PML model equations and
construct a semi-discrete scheme for the PML model. This semi-discrete scheme is a small perturbation of the
usual leapfrog scheme for this PML model. This small pertubation plays the magic for the construction of an
explicit unconditionally stable scheme. In Section 3, we first develop our fully-discrete finite element scheme.
Then we prove the unconditional stability and the optimal error estimate for this scheme. In Section 4, we
present some numerical results to confirm our theoretical analysis and further apply our scheme to simulate
some practical wave propagation problem to show the long stability of the scheme and the effective wave
absorbing property of this equivalent PML model. We conclude the paper in Section 5.

2. THE MODEL EQUATIONS AND CONSTRUCTION OF A SEMI-DISCRETE SCHEME

By following the idea of [4], we derived the governing equations of an equivalent Bérenger’s PML model for
the Transverse Electric (TEz) mode given as follows ([17], Egs. (32)—(36)): for any (a,t) € Q x (0,77,

0 E+Y"E =V x H := (0,H,—0,H)", (1a)
c0OE = 90, FE + 3., E, (1b)
o H* = =V x E = —(8,E, — 9,E,), (1c)
0,H = H, (1d)
OH + ey (0p +0y)H + EaQUxoyﬁI =0,H", (le)

where gg and p are the permittivity and permeability in free space, E = (E,, E,)" and H are the electric field
and magnetic field, E = (E,, E,)’, H and H* are auxiliary variables, and

Y = diag(oy, 04), Y = diag(os, oy).

Moreover o,(x),0,(y) are nonnegative damping functions in the z,y directions, respectively. Here, we assume
that Q is an open bounded Lipschitz polygon in R? with boundary 92 and outward unit normal vector n. To
complete the model problem (1a)—(le), we further assume that it satisfies the perfect electric conductive (PEC)
boundary condition:

nxE=0 on 090, (2)

and the initial conditions:
E(z,0) = Ey(z), E(x,0) = Ey(x), H(z,0)= Hy(z), H*(x,0) = H(x), H(x,0)= Hy(x), Ve, (3)

where Ey, EO, Hy, H; and }70 are some given functions.

First, let us partition the time interval [0,7] uniformly by points ¢; = ir,i = 0,---, Ny, where 7 = %
denotes the time step size. Denote E™ := E(-,t,). Similar notations are used for other unknowns. Before we
derive an explicit unconditionally stable scheme, we first consider a two step scheme of (1a)—(le):

o
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Step 1.
coE"tE = ey BN — gE**E"“ T gv x H™1 (4)
coE"T2 =B 4 g (E"JF% — E”“) + %E**E”H (5)
o = poH* M — 2V x B (6)
Hrts = Frdt 4 gH’”% (7)
H™ 8 = B = 25 oy + 0 H' = Deg20,0, 7 4 (Homtd — gt ), (8)
Step 2.
coE" = ey E"tE — gz**E"“ T gv x H™1 9)
eoE" = g E"E 4+ (E”+1 - EH%) + %2**15”“ (10)
poH* " = poH* S — 2V x B (11)
HrH = fnts 4 %H”*é (12)
HH = gots - gsal(agg toy, ) HME - %gg%zayﬁ"% + (H*’”“ - H*’”+%>. (13)

=3 1 n+1 n
Reducing all n’s in (4) by 1, adding the result with (9), and denoting E - E++E, we have

1
n+z

0B = coE" — r2ETTE 4 %v x (H™ + H™). (14)

Reducing all n’s in (6) and (8) by 1, and subtracting the result from (11) and (13), respectively, we have
o (H*’”“ +HP 2H*’”+%> = f%v x (E”H - E") (15)

and
HTL+1 +Hn _ 2H’n+% — H*,nJrl +H*,n _ 2H*,n+%. (16)

Then substituting (15) and (16) into (14), we have

gl ~ ~
0B = B — 72 ETT 4 gv x <2H"+é - QLV x (E"+1 — E”)) (17)
Ho

Reducing all n’s of (5) by 1, and adding the result with (10), we obtain
- ~ et d
coE" = gE" +¢o(E™ — E") + 15, B 2. (18)
Adding (6) and (11) together, adding (7) and (12) together, and adding (8) and (13) together, we have

poH* ™3 = g H*"3 — 7V x Bt (19)
- g(H’”% + H”*é), (20)

[N

Hn+% o I:'[nJr
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and

HS = gt — Leolo, 4o (HYS + HY 2 ) — Leg20,0, (A3 + B3 4 (543 — ontd). (21)
2 0 x Yy 2 0 ¥y .

Using the following average operator and central difference operator in time:

ﬂn+1 — %(un—&-% T un+%)’ 5Tun+l — 1 (un+% _ un+%>’
T
we can be rewrite (17)—(21) as follows:
1 —n+1i 1 T2 ~ .1
£, E""2 + Y*E T2 =V x H""2 — VX VX §;E" T2, (22a)
Ho
~ —n4L
00, BT = 8 EMTE 40, B2, (22b)
pob, H* " = v x " (22¢)
S H L = (22d)
5 Hn+1 + —1 w5+l -2 =ntl _ *,n+1
- ey (0o +oy)H — +ey°0p0y)H =0.H . (22¢)

Remark 1. It is interesting to remark that the semi-discrete scheme (22a)—(22e) can be seen as a small per-
turbation of a standard explicit leapfrog scheme for solving (1a)—(1le) with the first equation added by the last
O(72) term. With this extra term, we can develop and prove an explicit unconditionally stable scheme out of
(22a)—(22¢) in the next section.

3. THE FULLY DISCRETE SCHEME AND ITS ANALYSIS

To solve the problem (1a)—(1le) by a finite element method, we partition the physical domain Q by a family
of regular triangular mesh T, with maximum mesh size h, and adopt the I-th (I > 1) order Raviart-Thomas—
Nédélec (RTN) mixed finite element spaces V', and Uy, [27-29]: For any [ > 1,

V= {’Uh c LQ(Q) : 'Uh|K € Pi—1, VKEe Th},
Uy = {up € Hlcwl; Q) : uy|x € (m-1)?*®S), VKe Tn}, Si={pe (), x-p= 0},

where p; denotes the space of homogeneous polynomials of degree [, and p; denotes the space of polynomials
of degree less than or equal to [ in variables z, y, respectively. To impose the PEC boundary condition (2), we
denote the subspace U = {u € Uj, : u x n =0 on 0Q}.

Now we construct the following leapfrog type scheme for (la)—(le): given initial approximations

~ 1 1 1 ~ 3 3 ~ 3
EY,EY HZ H* HZ, for any n >0, find EM*' EP e U, H' 2 H" 2 H'2 € Vj, such that

nal went+1 ntl
50(57Eh+2,¢h> T (z Eh+2,¢h> - (Hhﬂ‘,v x ¢h>

s 5, Bt 0
_% VX Ty, 7V><¢h 5 v¢h€Uh, (233.)

Ents 7o) nty 7 N olane - 0
€0 6"'Eh ,on | =¢€o 67—Eh ,on | + 2**Eh ,On |, Yon € Uy, (23b)
Ho (67'H;:n+17wh) = 7(v X E2+1awh)7 th € Vha (230)
(&ﬁ;ﬂﬁay@h) = (ﬁ;H’gzgy{gh), Vi € Vi, (23d)

~ —n ~ _ =n+l <
(6-HE T 00) + 20 (00 + o) i) + 25 <Uzath ,wh)
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= (57-H;;n+1,1//}\h), VTZJ\h € V. (23e)

Note that for theoretical analysis purpose, we multiplied o0, to both sides of (23d).

- 1 1.1

The initial approximations E), EY) can be simply obtained by the Nédélec interpolation, while H?, H,?, H?
and be done by a Taylor expansion followed by a standard L? projections. More specifically, we have the following
approximations:

E)(z) =1.Ey(x), EY(x)=II.E(z), (24a)
1 _ T . T( 1 = -1 -2 r7
H? (z) = P, (Ho(:n) + 5atH(a;)) — Py |Ho— 7 (uo V x By + ey (04 + 04)Ho + £ UxayH())] . (24b)
1 —1 -
Hy (@) = Po(H; (@) + S0 (2)) = P (Hg; - v x E0>, (24c)
1} (@) = P (Holw) + Soidl(@)) = Pa(Ho+ ZHy ). (24)

where II.Ey, € U, denotes the Nédélec interpolation operator, and Pj, denotes the standard L? projection
operator into the space V}, .
It is known that the following interpolation and projection error estimates hold true [27]:

|E —TLE|+ |V x (E-1.E)| < Ch|Ellgi(un.y,  VE € H'(curl,Q), 1>1, (25)
|H — PyH|| < CR'||H || 110y, VH ¢ H(Q), 1 > 1. (26)
Here and in the rest of the paper, we denote |-|| for the L? norm on .

3.1. The unconditional stability analysis

This subsection is devoted to the unconditional stability analysis of our scheme (23a)—(23e).

Theorem 1. Denote the discrete energy at time t,, as:
2

2 T ~ 12

)*M‘ + e 2o | (oa0) FHE

2y/o

1
2
0

m+3 m
o, + V x Ej}

2 ~
+ || B - B3

£ (1) 1= 50<HE,’;L

Then under the time step constraint

£0
T< , (27)
3(lloalloe + lloyllo)
we have the following stability for the scheme (23a)—(23e): for any m > 0,
£ (tm) < exp[4(lloelloo + lloyll,)eo (mT)] - L5 (t0)- (28)

Remark 2. We want to remark that the stability (28) is unconditionally stable, since the time step constraint
(27) is independent of mesh size h. Furthermore, the stability (28) has exactly the same form as the following
continuous stability established in our previous work ([18], Thm. 1):

Ere(t) < exp[4(lloullc + lloyll,)eq 't] - Erelto),

where the energy is denoted as:

et = [of 1+ =)+

1 ~||? 112
ng H + %ﬂov X EH +562,u0H(axoy)%HH ](t)
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1

—=n-+ —n
Proof. Choosing ¢p = E,, *in (23a) and vy, = HhH in (23c), and adding the results, we obtain:

—n+1

1 Tn+l n
o (5TE§+2,Eh ) T (z**Eh“ E, ) +uo<6TH;’”+1 Hh“)

:< Jefan VxEZ+ ) (VXE"“ H"“) T (HVXEZ“H2—HVM§2

%[(H}j*%,v x E,’;) _ (H,’;*%,v X E*;;H)] .

8M0(\1VXE”“H v

1

Choosing ¢y, = E,, *in (23b) and Uy = NOFZ—H in (23e), respectively, we have

- 2 ~ 2 1 —=n+i —n+1i
(] ) = (m B < (s B,

+32 - 1ntl|2 =l _np
*HHZ 2H >+501N0H(‘71+‘7y)2Hz H JFE()Q'UO(UI%HI«L JH),

— 1o (5 J7ptian H"+1>.

and

Sl
(I

Adding (29)-(31), we attain

€ ~. 2 TP 2 |2 1112 - -
et o R (sl A T e
—n+1 —n+1 1
+€O /JO 0'$0'th 7H +a HVXE H —HVXEh
0
g T L (gt o B ntd g gt
(B B (9 ) - (s B )]

~ —n+1
Choosing vy, = &5 %uoH,  in (23d), and using it to replace the fourth term in (32), we have

o (Nlgn+1]]® _ || zn]]?) L Ho n+3 2
(R
27 (H h h + 27 h

€o Ho 1 ~n+d
+ 27 (H ox0y)* Hy "

n+%
1K

2 T
) ‘*‘EEIMOH(% +0y)2Hh+1H

n+3

— H a:cay)QH

810
1

SV < By - (79 < By

-
- ((Z** - S™E, B, 2) T3

+ +3 .
Choosing ¢h = 2 2

— E,;"? in (23b), we obtain

€o n n 2 n n 2 n+g =nt3 —=nt3
T(HEh“—Eh“H —HEh—Eh ) (E**Eh *E, —E| )

Adding (33) and (34) together, then summing up from n = 0 to m, we obtain

~ 2 ~ m 1))
(R (A I A RS ol (R
n=0

1
_ 2
‘ ’ h

)
)

)+(HwEn+1H ~||v < &

)

—

29)

(33)

(34)
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-2 1 ~m+32 2 1 ~1(2 ~0 ]2
+ S0 Ho H(ozay)th 3" = H(Jxay)thz Hv x E’”HH _ Hv x E,?H
2 SMO
E m m
(A HEh =)
1 1 ~ 3 ~
_TZ< S —SEL 2 E )+;[(H}§,V><E2)—(H,T*?,VxE;jl“)}

—pt1 —n+1i —n 3
+TZ<Z**Eh+2,Eh ‘- E +2> =" Em. (35)
n=0 =1

Using inequalities |a7+b|2 < 3(a® +b?) and |a|? = |a — b+ b|? < 2(Ja — b]? + b?), we have

—=n+3 7'5_1 0. — O 2 —n+3 2
T((E** *E**)Eh+2 E, > < | m2 e |ﬁo’ E) ’ +eo|| E) i
TgalHUm - O’y“ n+2 Tn-i-% 7n+2
= 5 =|eo||Ey © —E, +E, +eo || E
_1 —nti T’I’H’% 2 3 TTH’%
<71eg low — oyl |eo||ER * — E), +5¢0 E,

~ 2 ~
<rei o - oyl |3 (| - B+ |2 - B

2 3
>+€o

~ 2 ~
(e

) e

Similarly, we can obtain
1

n+i =N +3 n+ n+ 7n+§ =n+3 =ntz —n+3

2 e
0
+2

—=n+3

€0 n
FE
h

1
€0 =nt3 gl
2

Eh _Eh

T
)
)

< 7'561 maX(HUwHoov ||Uy||oo)

_ eo (|| zntr|® o || 7
< rey (I s o) | 2 (8201 + B

€0 n+1 n+1 2 n n
(B B m

where we used the estimate

n T’ﬂ'f‘l T’I’L'f‘l —n
(2 (E *: _E, 2>,Eh _E, ) <0
to obtain the first inequality.
It is easy to check that the following identity holds true:

m+3 m+1
Va4 5 v < B
2./ 1o

Substituting the above estimates (36)—(38) into (35), we have

€o =m 2 ~0 ]2 1
(]~ ) + 5 v

3
ZMOHHZHr2

2 m+2 - 1 7_2 - N 2
+r(Hy 2,VXE$+)+%HVXE,T+ e

-
2\/1o

2 m
_ —n+1
+7501MOZH(%+%) Hy, H
n=0
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2 €0 m—+1 m-+1 2 70 0 2
(e -t

€ ~ 2 3e
< regtloy — oyl [20 o o (e ]

]

_ g0 || mmi1][2 | €0 fm 2
+ e max(|| o, | . ||ay||00)(4 ’E}THH + ZHE}TH B E;’lﬂH )

2

-2
£ ~m
+ 02M0 <H Uxay) Hh +3

1 ~1
~||(ze) 2

2 350

it HEh

m
+reg o — oyl S [EOHE}; —Er
n=0

i 2
_ eoll = 2
+7'501max(||0x|OO,||Uy||OO)Z{2 ‘EZL’ 4
n=0

50 Nn n
S| - B

2 1 1
} + QH.%H; 7=V E° (39)

To get a nice stability result, now we relax the bound for those coefficients on the right hand side of (39) b
the following simple estimates:
loz = oyl < lloall + oyl max(llozll, loyll) < lloalle + lloyl

Using the following time step constraints (equivalent to (27)):

1
3’

dropping the nonnegative term of the left hand side of (39), then using the discrete Gronwall inequality, we
have

7eg " (o2l + lloyll,) <

~ 2 3
o B+ e (o) )

2
1 3 T ~
7 pymta m+1
pEHI'E 4 V x EJ

2y/ko

< exp (Aol + llry )™ (m + 1)7]
~ 12 ~ 2
eolllEl el ) « v

which completes the proof of (28).

2 - 2
¥ 50HE}T+1 _ E,T“H

} (40)

O

~1
Vth —|—50 MOH 0z0y) %H,'f

\ﬁ

3.2. The convergence analysis

In this subsection, we will carry out the convergence analysis of our scheme (23a)—(23d). To accomplish that
we need the following lemma.

Lemma 1 ([22], Chap. 3). Denote u™ := u(-,t,). We have

2 n+l _ ,n|? 1 tnt1
() |lo,untz|| = % <= / 1Bwu(®)|?dt,  Yue HY(0,T; L2(R)), (41)
tn
A SO e A s 2 2 2
(i) @ -~ u(t)dt)| < - [Oweu(t)|”dt,  Vue H(0,TL7(Q)), (42)
tn tn
1 tni1 2 3 tn+1
(iii) [|u"tz — 7/ u(t)dt|| < TZ/ Ouu(®)|®dt,  Yu e H?(0,T;L*()). (43)
T Jt, t

n

To simplify the analysis, let us introduce the solution errors:

E" = E(t,) — E} = (E(t,) — IL.E") + (L.E" — E}) := E? — E},
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£ —E(,) - E= (E(tn) - Hj”) n (HCE” - E;;) = B} — B},

2

n+i n+i nt1 n+1 n+i n+i n+1

HE = H (b, ) = Hy 7 = (H (b ) = P ) o (PH 8 = 3 ) o= 5

*.n4L * *,n-‘r% _ * *,m 1 *n 1 *,n-{-% L *,n-&-% *,n-&-%
Wt = 1 (b)) = 8 = (H () = P ) s (Pt - ™8 ) e 8

~ ~ ~ il ~ ~ ~ ~ il 4l ~pal

HS = A (tey) = B = (A (tgy) = PaE™) 4 (P = HYY) = HE -
where II.E and HCE € Uy, denote the Nédélec interpolations, P, H, P, H*, and Phﬁ € V}, denote the standard
L? projections.

To establish the error estimate for scheme (23a)—(23e), we first derive the error equations.
Integrating (1a), (1b) from t, to t,41 and integrating (1c)-(le) from ¢, 1 to ¢, s, and multiplying the

corresponding results by %d)m %ﬁgh, %1/%, %Umoy{/;h, @h, respectively, and integrating over (), we obtain

) 1 tnt1 1 tnt1
co(5. 500 + ( / 2**E<s>ds,¢>h) - ( [ sy« ¢>h), (44)
T Jt, T Jt,
~ .1 ~ 1~ 1 bt ~
co(0- B n ) = 20 (6, E"HE, 1) + ( / . E(s) ds, ¢>h>, (45)
T J,
1 fints ~
po (6,17 un) = =+ [V B ds.un | (46)
to .1
n+§
~ ~ 1 tn,+% ~
(5TH”+1,axoy1/)h) = f/ H(s)ds,oz0,¢1 |, (47)
TJ
n+§
~ 1 tn+% ~ 1 tn+% ~ ~
(&H”*l,wh)wal - / (0x +0y)H(s)ds, Pn | +e5°| = / opoyH(s)ds, ¢n
T tn+% T tn,+%
- (5TH*’"+1,1Z,1). (48)

Subtracting (44) from (23a), we obtain the first error equation:
n+3 w3 n+3 2 =n+ 5
o8By n) + (57 F on) — (Hi, .V xon) + (VX 6BV x )

— (5. B3 L g s ds — SHILE
- 0 T £ ) ¢h + T (S) S C ) ¢h
tn

1 tn+1 2 ~ 1
n <PhH”+2 - l/ H(s)ds, V x th) - T—(v x §,IL.E"%,V x ¢h). (49)
tn 410

T

Subtracting (45) from (23b), we have the 2nd error equation:

€0 (@EZ:%, $h) — €0 (5TE}TLL;_%;$}L) - (Z**Eﬁié,ih)
= co(0. By @) — (6.0 ) + (z**HCE"*5 -2 / S B(s) s, ¢7h). (50)
tn

Similarly, subtracting (46) from (23c), we obtain the 3rd error equation:

Ho (5THZ;7n+1,¢h) + (V X E;?,Tl,wh) = o (57Hg’"+1,¢h>
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1 [tn+2 ~
+ —/ (V x B(s) — V x HCE"“) ds, vn |- (51)
TJe

Subtracting (47) from (23d), we obtain the 4th error equation:

n+%

tn ~ —n+1 ~ ~n ~ —n+1 1 t ~
(&'Hh;rla Ungﬂ/}h) - (Hh; aaxayz/}h> = ((5TH£ +1u O—mo'yz/}h) + | PnH A ; / H(S) ds, Jxaywh . (52)
t

n+i

Subtracting (48) from (23e), we obtain the 5th error equation:
n+1 -1 Zntl o —2 = *nbl
(- Hnt i) + 25 (0w + o) Hiy ' 00) + 202 (w0 iy 00 ) — (8- Hiy )

—~ 1 tn+§ —n —~
= (57H9+1,1/1h> +e5! - / “(on +0y) (H(s) — P,H H)ds,wh
t 1

n+§

1 [tns3 ~ —n+1 ~ ~
et (2 [ o (A - BE T Yasdu | - (G o

n+%
With the above preparations, we can prove the following optimal error estimate for the scheme (23a)—(23e).

Theorem 2. Under the following regularity assumptions:

E, E, VX E e L>*(0,T;H (cur,Q)), H, He L>(0,T; H(Q)), (54a)
attE, V x 8”E7 attH7 V x 8ttH, 8”}?[ S LQ(O,T,LQ(Q>), (54b)
E, OE, V x OE € L*(0,T; H (curl,Q)), 9,H € L*(0,T; H'(Q)), (54c)

then we have: for any 0 < m < N; — 2,

|

(Urgy)%Her%

~m+1H H~m+1 m+1m H mad T ~m+1H —1,%
+|[g™ —g o H™ e+ v x EM | e
Mo 2o o Mo

< C(h +77), (55)

where the constant C' > 0 is independent of h and T.

1

777/"‘2 —n
Proof. Choosing ¢p = Ej,,  in (49) and vy, = th in (51), then adding the results together, we have
n+3 =nty - ] =nts *,M Zn+1 n+% =nt3
o (&E}”7 : By, ) (2 B2 By )+ o (5 Hy H, ) —eo( 6. B2 B,

n+ n+432 ~nal 2
ol v ) - e B - )

1 [l gt —n+1 1 [in+1 L —=n+3
+ (T /t 7 (B(s) - LB )ds, B, ) + (T /t (PoH™ = H(s))ds, ¥ x B, )

72 —=n+3 1 [tn+3 ~ ~ n
- (VX5 M.E"2,V x By, )+ 7/ U (E(s)—HCE"“)d H
o t

1

2 ~
(Hv x E;;7+1H - Hv < B,
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6
= Z ES‘Ei, (56)
i=1

—n-+1

where we use the L? projection property (- H ot s Hy,, ) =0, and the identity
J

71 =nt n 1 n n
( +3 V X E 2) (V X E}Tf:l,Hh;_l) — §|:( +3 V % Ehn) _ (H}L:2 V X E;L;-l):|

Hl—‘r*

Choosing q,’)h = E;, in (50) and zzh = MOFZ;H in (53), respectively, we have

~ 2 el =Nt —ptl =nt3 el =Nt
(HEn+1H - ||z, ) _go((sth;z,Ehn ) - (ZEE ) +go(5TE;z,E,m )
~n+4++ 7n+% 1 tnt1 —n+1 ﬂ+%
. (&EE : By, ) + (/ . (H E'E E(s))ds,Ehn ) .= Esty + Ests, (57)
T tn

and

(HH""‘z

_ 1 bntg —n-+1 —n-+1
— e ;/ H(ow o) (Hs) - BH™)ds T,

tn+%

lih

_ 1—=n+1]|? =l g « +1
>+501M0H(UI+UH)2HZW H +eo M0<UnyHh7, ,HZn )_M0(57Hh;7"+1 an )

1 t..3 _~ —n+1 n
+ EJQ/L() ;/ o O30y (H(S) — PLH )ds Hh:l := Estg + Estqg, (58)

tn+%

where we dropped the following two zero terms by the L? projection property:
+1 * +1
o (6T, o (001 = 0.

—n+1

Choosing 1y, = €0 MOth in (52), we have

1 ~nt+d
- H(Urgy)ZHZn ’

€y Ho 1 nt s
-0 7 M2
27 <H(Uzay) hn

—2 T+l = —2 1 [t} " =t
= &0 1o CSTH5 0oy Hp, | — € o ;/ (H(s) —P,H" )ds 0z0yHy,
t

n+%
= EStll + EStlz. (59)

Adding (56)—(59) together, we have

2
13 ~TL +
(1Bl - JEnf) 5 (Hﬂﬁﬁ

~ 3
) (H (oo EHE

i

_ —n+1
) +¢€g 1#0”(01 + Uy)thn H

1 ~ntd
- H(Uwgy)2HiTan ’

2 2 ~
= ) )+(HV><E;L"+1H ~||v = B,

8o

)

7n+l N _ 3 N 12
_ <(z** — S E} By, ) i KHZ:Q,V X E}jn) - (th*z,v X E,ﬁ;lﬂ +3 Esti.  (60)
1=3
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=t gl .
Choosing ¢ = E,, —E,, " in (50), we obtain

2 ~
+1 “+1 n n
(I [~ 2, m,

2 nt 1 —n+2 el
) (2**Eh,7+2 E,, Eh:2>
~ntl ntl, =tz
:eo((sT(EE : E'"),E,, -E, )
1 [to Y —=nti
+ (/ E**(HCE 2 —E(s))ds,E,m ~E| 2) .= Estys + Estyy. (61)
T tn

Adding (60) and (61) together, then summing up the result from n = 0 to m, we obtain

5 ~ 2 gm 3 2 3 m
(s e A R (e ) +reitin 3w o 7

—2 2 2 2
Eg Mo 1 ~m+3 m =~
+ o (Hwy)zﬂhnz )+ (HWE i _HvXEgnH)

1
3
|,

~ 1

- H(Jway)%H

n

2

h

5 (JBwe o)
hn hn hn

—n+i 1 ~ m
—TZ< ) Eh+2,Ehn2) +%[(H,§WV><E,2,,) (th+2 VXEWHI)}
1 ~n+% il m 14
+TZ<Z**E ‘. E,, -E,, 2> +73 ) Est,. (62)
n=0 {=3

Now we need to bound those right hand side terms of (62). First, similar to (36) and (37) in the stability
analysis, respectively, we have
)

1 m

** n+3 =" — 350 ~ 2 ~n

TZ( =B B ) < e (ol + o) Yo 5 (180 + B,
n=0

b e

)
b e

Moving the second right hand side term of (62) to combine with some left hand side terms, we have

€0 n+1 n-+1 2 n n
T

and

nti =" +% —n+i _ - n =n
TZ(E**E : E,, -E, ) < reg (loalle + loyll) Z[ <HE o 7
n=0

n=0

c ~ 2 ~
SR R

2

2 T m+ a1 7'2 ml m+3 m—+1
+2(th2VxE+)+8—MOHV><E+ 5| v, 2+2—vXE+

Now we need to estimate the rest right hand side items in (62). Using the arithmetic-geometric mean inequality

1
(a,) < dllal> + bl V6 >0, (66)
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the inequality H “TH’HQ < %(Ha”2 + [15]1?), Lemma 1 and the interpolation error estimate, we have

tnt1 1 1 1 n+

TZEStg = TZ(( /t E(s)ds— E"t2 + E"t2 — HCE""'z) E**E,m 2)
<3 (loal + ol s B 4
— %) Ylloo 253

n=0

S d3 rn+1 2 n
<Y (lowll +llolle) | 5 ([ Br]| + ||

n=0

—n +2
Ehn

1 [ten .
- / E(s)ds — E"t2
tn

: )
)

Hl(curl; Q))] (67)

Let us introduce the wave propagation speed notation C, = ﬁ Using the fact that

2
n+%
+ HE,E

1 /73 [tahr 9l
+(/ 100 E||> dt + Ch HE”+2
tn

26

—n+i
(PhH"+2 H" 3V x E,, 2) =0,

integration by parts and Lemma 1, we have

m m 1 tny 1 —n+3
Ty Esti=7y. (T/ (H”JFE - H(s))ds, V x By, >
n=0 tn
m 1 tn+1 +l ﬂ—‘-%
—TZ<T/t V x (H“ 5 —H(s))ds,Ehn >

n

m —n+1 3 tn+1
<70y Yy l5054 E,, " + %0 . TZ/ |V x Oy HI|? dt
n=0 tn
" 5480 ~n 2 ~ 3 bt 2
<0,y [2(”Eh77+1H + HE}; ) + E : Z/t IV x O H|? dt|. (68)
n=0 n

Using integration by parts, Lemma 1 and the interpolation error estimate, we obtain

m 7_3 m . =n+3
TZES‘%:—% (annEvaEhn )
= n=0
30?2 m ~ .1 ~ .1 =n+3 ~ 1 =nts
SR a|(re (@t n B ) v B - (1o B B
n=0
mooq 202 2 rtag - ~\ (12 m —=n+3 2
S (T0) [ o« (5 n)fa S w2,
n=0 "0 tn n=0
m 1 202 2 e 112 m —n+i 2
+Z4(5 (74”> / Eo’&VxVxEH dtJrTZJseo Ehn2
n=0 5 tn n=0
m 404 tn1 ~112
< v Ch=D| % EH |V x v xaE| )a
- nz::o 32(55 /t" EO( . H!(curl,Q) + x ¢

) (69)

erichs 03 (|8 |
n=0
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T’ﬂ*f’l —=n i
where in the last step we used the standard inverse estimate ([22], Chap. 3): ||V x E,, Il < Cinh ' Ey,, ‘.
Similarly, we have

m m 1 tn+% ~ ~ —n+1
Ty Esto=7Y ;/t Vv x (E(s)fHCE )ds JZ
n=0 n=0 ntid

2
+3 ~ i1 41 rn+1 n+1
<rC, Z 5 T/t e (E(s) = B )ds +V x (B~ TLE™) |+ pod|| T3, H
2
<rC, Z —/ " HE”“H +7C, 5GZuOHH"“H . (70)
266 4 t H'(curl;2)
2
By Lemma 1 and the interpolation error estimate, we have
n+i ”*2
TZES‘W—TZ&J((SE 2, )
d7¢0 1 =~ 2 tm+1
< By H HE” —/ hQZHa H at. 71
- Tnz::o <H + b + 4(57 H!(curl,Q) ( )
Similar to the analysis of Ests, we easily obtain
m m 1 tnt1 et —n—i— 1 TTH—%
TZEstSZTZ</ [(H 5 _E ) (E 5 _E(s))}ds,2**15,”7 >
T Jt
n=0 n=0 n
i ~ 2
<> (ol + oy [ (HE”“H +||B%, )
n=0
1 3 tnt1 9 el 2
— (= OuE| dt + Ch? | B . 72
+ 205 < /t” ” t H + H'(curl;Q2) ( )
Similarly, we can obtain
bntd —n —n+1
TZEstngZEO Ho ; (Um—i-ay)(H(s)—PhH )ds Hy,
tn+1
€0 —n
< T O 1o ZH oz +0y) éHh:?rlH
2
1 _ i 1 t"+§ —n+1 —n —n+1
+§T(||0f6”oo+”0y”oo)50 1“02 f/ H(s)ds— H + (H — P,H )
n=0 T tn+%
-1 m
TEG Mo n+1
Sy
n+1
(02 llo0 + oyl 0 MOZ [ / . Hllow H| at + o[ HHI(Q)], (73)
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and
m

tn+% ~ —n+1 —n
T Z Estig =7 Z gy 210 . / O50y (H(s) — PH )ds,H}Jl

tn+%

< lloallselloy 5022 10110 | T

L Mo T‘”’/t“
260\ 4 /i,

n+1H

“dt+ ChQZHH”“H . (74)
1 ()

By Lemma 1 and the projection error estimate, we have
m m ) ~ . —n+1
T Z Estiy =7 Z €0 Mo <67HglJr y0z0yH )
n=0 n=0

m 5 B
<reitio 3 5 (Jlowon 817

* H (020y)% SH

)

hn
—2 2l
b el alorl gy [ [ et o, o (75)
Similar to Estqg, we obtain
bt d —n —n+1
T Z Estio =17 Z €0 2o - /t (H(s) - P,H" )ds ozoyHy,
n=0 n+%

m
1) 1~ 312
—2 12 1 ~n4
SEIIE S (CERLE
n=0

il
+ H(Ufay)%H;LjZ

)

_ 1 &K |73 [l n41
+Tsoz||ax||w||ay||oo%uzl4 / " o0 b+ Ch2 o[ Hm(m]' (76)
n=0 n+%

Finally, by Lemma 1 and the interpolation error estimate, we have
- n+ n4 3 n+2 —n+i
TZEStlg, TZEO 2—E 2) Ehn _Ehn2
n=0
< Z %0 (|1 gt _ prot|* 4 | Bp — Ep
=7 9 hn hn hn hn
n=0

I 2!
- n2l . ‘
* 4013 / =0

)
0. (E — E)H2 dt, (77)

H'(curl,Q2)

and
—n+ %

m m 1 tne1 —n—i—l — —n—i—l
Ty Estu=7Y (T/t S (HCE 2 E(s))ds, E,, —En )
n=0 n=0

n

- 614 n n 2 n n
(o2l + oy ll0) D 2(HEM“ -7+ | Br, - B

n=0

)
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1 3 tnt1 .
(74 / ||0ttE\|2dt+Ch2lHE"+
2%

12
— 2 . 78
* 2514 H%curl;Q))] ( )

Substituting the estimates (63)—(78) into (62), and combining many like terms, we obtain

~ 2 2
31w - o) o o= - ot 7w <
n 2\/7 hn \/* hn
m - ~mi 3 2 1 ~1 (2
+ Tsalﬂo ZH(JI + Uy)lﬁlrzl:l” + % (H Uxoy)thn"‘ _ H(azay)éH}fn >

5’(\\”"“ w2 - e )
{ (loell.c +|ay||m)(1+53;58)+;(cv<s4+a7) 2 (G 1) 55}. i (HEMH -,
)

—1 m
n+1 TE n+1
{(c e0d + 25 02l 7y s 10) - 75 MOEjHH |+ 2 S (o + o) | }
n=0

)

1 014 013 % En+1 EnJrl Em En

+ le0 (loalloo + lloyllo) 1+7 T 'TZEO hn o~ g |||y — Eag
0

n=

2

)

1 1 1 fmot1 9 Copo [T+ 2
+ 72 (||o—$|oo+||o—y|oo)<85 + — %, +8514>/ 0w B dt + ; |V x Oy H||* dt

1664
i :gi /t . (Ch2l v <o,

e 1 ~nt3 1
o)y g‘“’(H(awaythf +||@ao) 7
n=0

H'(curl,©2)

Cyp ['m+3 g0 (llozllo + o o2 llozllollo bm+ 3
PG [ o] (o ) ol )
806 Jy, 4 8012 ¢
2

1
2

—92 t m+1
4 S0 U’””””ay”m/ o HattHH dt S 4 on? / ool B H dt
8510 ] 57 H!(curl,Q)

1
2

~ 112
+HV><antEH )dt

A IR W SRR

11 1 ) C,
<3 ((oalls + 1ol (5 + 5 ) + 50 JIB B~ o + 52

2

V x EH
L (0,T;H!(curl,Q2))

i La| L ]t 7

! - 5ol | a2 "

+< "‘5 )H HL (0,T;HL(Q2)) +510 L°°(QT;H’(Q))+511 t ¢ HY(Q) ( )
2

Now first choosing those J; small enough, then choosing 7 small enough (but independent of mesh size h),

dropping term Tey ' po Somey || (04 + ay)%ﬁ;z: ' %, and using the discrete Gronwall inequality and the fact that
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(m+ 1)7 < T, we have

€0 [HEWJH + HE’Z:]H _ E,%Ll } H\ﬁHmﬂ + Fv x Byt _|_ €0 "Ho Mo H 0,0,) 7ﬁhn+%
. > €o Ho 1~1 2
<C HEhnH + HEhn EhnH t3 Vo, + \ﬁv x EY, + 5 H(U"cay)thn
+ Ch” +Ort <O +77)2, (80)

where in the last step, we used the initial approximations (24a)—(24d). Then by the triangular inequality, and
the interpolation and projection error estimates, we immediately have

~m+1 ~m-—+1 m a3 T ~m—+1 _ 1 1~ma 8

S e IR N~ AL R R
<C(h+7?), (81)
which completes the proof of (55). O

4. NUMERICAL RESULTS

In this section, we present some numerical results to demonstrate the performance of our proposed leapfrog
scheme. For simplity, we only implement the lowest order RTN mixed finite element spaces (I = 1) on triangular

elements:
\= {T/)h € L*(Q): ¥p| Kk = constant, VK € Th}7

U, = {¢h € H(curl; Q) : ¢h|K = span{)\iV/\j — )\JV)\l},VK € Th},

where \; are the barycentric coordinate functions.

Example 1. This example is used to justify the convergence rate of our scheme. For this example, we choose
the physical domain Q = [0,1]? and

eo=po =1, o0x(z)=n(1+sin(rz)), o,(y)=n(1+sin(my)).

To construct an analytical solution, we add extra source terms to the model equations (la)—(1le). More
specifically, we solve the following governing equations:

eoOlE+YX"E =V x H+g, (82a)
e00E = €00, E + .. E, (82b)
pod H* = -V x E, (82¢)
O,H = H, (82d)
O H + ey (00 + 0,)H + 5 %0,0,H = 0, H* + f, (82¢)

with exact solutions given as follows:

B (Ex) _ ( e~ cos(mz) sin(my) ) & ( Ej;)Ez

E, —e "t sin(rx) cos(my) - o\g |
(1-2)m

~ 1 1 .
H = e ™ cos(nz)cos(ry), H=——H, H*_<20+09)H_
T goT
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TABLE 1. The L? errors obtained at T = 1 with 7 = 4h, 7 = 2h,7 = h,7 = %h and various
mesh sizes h.

T =4h T =2h
|E — E4|| Rate |H — Hy|| Rate |E — E4|| Rate |H — Hy|| Rate

L 1.7078E—03 1.8238E—-03 1.2047E—-03 1.0173E—-03

L 6.5253E—04 1.38800 6.1859E—04 1.55988 5.8366E—04 1.04554 4.8137TE—04 1.07954
% 2.9831E—-04 1.12923 2.5680E—04 1.26835 2.8946E—04 1.01175 2.3698E—04 1.02239
L 14555E—04 1.03534 1.2062E—04 1.09013 1.4443E—04 1.00297 1.1801E—04 1.00584
2 7.2318E—05 1.00904 5.9277E—05 1.02496 7.2179E—05 1.00075 5.8944E—05 1.00148

T=~nh T=3h

1.1648E—03 9.4594E—04 1.1613E—-03 9.4250E—04

L 5.7869E—04 1.00919 4.7179E—04 1.00360 5.7826E—04 1.00599 4.7136E—04 0.99968
% 2.8884E—04 1.00251 2.3575E—04 1.00092 2.8879E—04 1.00171 2.3569E—04 0.99992
L 14436E—04 1.00065 1.1785E—04 1.00023 1.4435E—04 1.00045 1.1785E—04 0.99998
7.2169E—05 1.00017 5.8925E—05 1.00006 7.2169E—05 1.00012 5.8924E—05 0.99999

While the corresponding source terms are given as

g= <gz> _ ( ((—7750 + 0y + e~ cos(mx) sin(my) )7

Gy —Teg + 0y + m)e” " sin(rx) cos(my)
xr xr 1 x
F = e~ cos(na) cos(ry) K L oetoy ) L (QW - +>}
€0 TEY o €0
In this case, we have the following leapfrog type scheme: given initial approximations Eg, E?L, H E H Z%, | é ,
~ 2 antd ~pi3
for any n > 0, find E;'"' Ept € U, HZJr?,Hh +2,HhJr2 € V}, such that
n4+ wx @t n43
co(5: By on) + (5B n) = (H7H 0 x )
2
_ ﬁ(v < EVxn) + (a7 on),  Ven €U, (83a)
0
~n+s 7\ n+i 7 —=n+3 T ~ 0
€0 57Eh ,@n) =€o 57Eh s Ph YuEy *dn), Voo, € Uy, (83b)
o (6 " ) = — (9 E;:“,wh), Vi € Vi, (83¢)
(5Tﬁ}?+17 U:L’Uy'(z;h) = (HZ+17JwO—th)7 v";h €W, (83d)
n -~ _ —=n+1l - _
(57Hh+171/)h> +€01(<0m+0y)Hh 7’1/}h) + &9 (Uzay awh)
= (6TH;:R+17'(Z/L) + (fn+1a {b\h)a v{ﬁh € ‘/}L' (838)

We implement this scheme with different time step sizes 7 = %h 7 = h,7 = 2h,7 = 4h and varying mesh
sizes h from ﬂ to @ The obtained convergence rates of the L? errors at final time 7' = 1 are presented in
Table 1, which shows that O(h) convergence can be obtained for both the electric field E and the magnetic

field H without satisfying the CFL constraint.
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TABLE 2. The L? errors obtained at T = 1 with 7 = v/h and various mesh sizes h.

h |E — E4|| Rate |H — Hy|| Rate

1/4 2.7006E—02 8.3175E—-02

1/16 3.4491E-03 1.48450 3.9255E—-03 2.20259
1/64 8.0591E—04 1.04875 9.6349E—04 1.01327
1/256 1.9775E—04 1.01347 2.4668E—04 0.98281

To test the time convergence rate, we solve this example again by fixing 7 = vk and varying mesh sizes h
from i to ﬁ. The convergence rates of L? errors obtained at 7" = 1 are presented in Table 2, which justifies
the theoretical convergence rate O(72 + h) for the lowest order RTN spaces.

Example 2. This example is used to test the long time stability of our scheme and the wave absorb-
ing capability of this equivalent Bérenger’s PML model. For this example, we choose the physical domain
Q = [0,0.5] mx[0,0.5] m, which is partitioned by a uniform triangular mesh with mesh size h = 2.5 x 1073 m.
We surround the physical domain by 20-layer PML cells with thickness dd = 20h. In our simulation, the
damping function o, is chosen as a fourth-order polynomial function given as:

4
o (z - 0'5> if > 0.5,

dd
oz(T) = 4
(@) Umax(%) if z <0,
0 otherwise,
where omax = —log(err) * 5 % g9 * C,, /(2 * dd) with err = 107 and C,, being the wave propagation speed in

vacuum. The damping function o, has exactly the same form but in y variable.

This example is solved by the scheme (23a)—(23e) with zero initial fields and a point source wave located at
(0.25,0.25), the center of the domain. The source wave is imposed on the H field given as H = 0.1sin(27 ft)
with frequency f = 3 GHz.

Snapshots of the computed magnetic field H obtained with time step size 7 = 2.5 x 107'2s and up to 10000
time steps are plotted in Figure 1, which shows a long time stability of the scheme without obvious reflection
from the surrounding PML cells.

To see more clearly the performance of the PML model, we solve this example again by stopping the source
wave after 200 time steps so that we can see how large the residual wave magnitude can be. Some snapshots
of the magnetic fields H are plotted in Figure 2, which shows that the original source wave exits the domain
without obvious reflections. The magnitude of the residual wave after 1500 time steps is about 2 x 10~%, which
is basically the numerical scheme error.

Example 3. This example is used to show the wave absorbing performance of our equivalent Bérenger’s PML
model with a line source wave. For this example, we choose 2 = [0, 2] mx [0, 2] m, which is surrounded by 8-layer
PML cells with thickness dd = 8 h. The incident source is imposed on the H field given as H = sin(27 ft) with
frequency f = 1.5 GHz. To make a line source wave, the wave is placed on a line segment located at z = 0.1m
with y ranging from y = 0.5m to y = 1.5m. We use h = 0.02m and 7 = 102 for this simulation.

Some snapshots of |H| up to 20000 time steps are presented in Figure 3, which shows that out scheme enjoys
a long stability and the wave propagates in the free space without obvious wave reflection from the truncated
PML layers.
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FIGURE 1. Magnetic field H at various time steps: (top left) 300 steps; (top right) 400 steps;
(bottom left) 500 steps; (bottom right) 10000 steps.
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FIGURE 2. Snapshots of the magnetic field H: (top left) 200 steps; (top right) 500 steps; (bottom
left) 700 steps; (bottom right) 1500 steps.
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0 05 1 15 2

(b)
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FIGURE 3. Snapshots of |H| field obtained with 7 = 10725 at 1000, 2000, 4000, 8000, 15 000,
20000 time steps. (a) |H| at time step 1000. (b) |H| at time step 2000. (¢) |H| at time step
4000. (d) |H| at time step 8000. (e) |H| at time step 15000. (f) |H| at time step 20 000.

Example 4. This example is used to illustrate the dependence of the PML absorption capacity on the damping
functions, especially on the PML thickness. By adopting a popular numerical strategy (e.g., [34]), we impose
the same source wave given as Example 2 at the center of the physical domain €y, = [0.125,0.375]? m, which is
discretized by a 100x 100 cells. We surround the domain €, by the equivalent Berenger’s PML, whose damping
functions and related parameters are the same as Example 2.
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TABLE 3. The discrete 2 errors for H, of all points in €2, obtained with different layers PML
at several time nodes.

5-cell PML 10-cell PML 20-cell PML
TNk h/2 Rate h h/2 Rate h h/2 Rate
=10 T=10/2 T=10 T="70/2 T=1p T=10/2

100 2.9873E—04 7.3744E—05 4.0509 2.6715E—05 5.6447TE—06 4.7327 7.3547TE—07 1.2557TE—-07 4.9777
105 3.8987TE—04 9.9276E—-05 3.9271 4.1648E—05 9.0136E—06 4.6205 1.3442E—06 2.7420E—07 4.9022
110 4.7247TE—-04 1.2282E—04 3.8469 5.7237TE—05 1.2644E—05 4.5267 2.5325E—06 5.2451E—-07 4.8283
115 5.5195E—04 1.4489E—04 3.8094 7.2170E—05 1.6214E—05 4.4511 4.1668E—06 8.7479E—07 4.7632
120 6.3073E—04 1.6659E—04 3.7862 8.6263E—05 1.9632E—05 4.3940 6.0986E—06 1.2955E—06 4.7077

20-cell PML

Global Error
3
3

10»25

1 0~30

103 . L . . . L . I .
0 20 40 60 80 100 120 140 160 180 200
Time Node

(a) (b)

F1GURE 4. Example 4: The global errors obtained on a 100 x 100 mesh with a point wave source.
(a) Hlustration of domains Q¢ and .. (b) The global errors obtained with three different PML
thicknesses.

To measure the PML absorption performance, we solve the same problem in a very larger domain Qg =
[—0.125,0.625)% m, which is imposed by the PEC boundary condition and is discretized by a finite element mesh
with the same mesh size in (27. Then we calculate the errors of magnetic field H at element centers inside Qf,
by subtracting the corresponding solutions from those obtained on Q. The global error energy is defined by
the sum of the squares of those errors at element centers in ;. To satisfy the CFL condition, we choose an
initial time step 79 = 6.25 x 10713 s and denote one time node (shortened as TN in Tab. 3) as 10 steps of 7o,
i.e., 1time node = 10 7. We carried out three experiments with PML thicknesses of dd = 5h, 10h and 20h to
observe the PML absorption capacity.

In Figure 4a, the whole domain plotted is ¢, while the central square subdomain marked by the red color is
Q. The Figure 4b compares the global errors versus time for the 5-cell, 10-cell, and 20-cell PMLs. As shown in
Figure 4b, the global reflection error is decreasing with the increasing of the PML’s thickness, which is consistent
with the common performance of PML [34]. For each fixed PML thickness, we tested two different mesh sizes:
one with h = 2.5 x 1073 m plotted by the solid line; and the other one with h/2 = 1.25 x 1073 m plotted by the
dashed line in Figure 4b. Due to the dominance of the numerical error, we did not achieve the ideal reflection
error 1077 as chosen in op,.x. But we did observe the convergence rate O(72 + h?) in the discrete [? norm in
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Table 3. The O(h?) is a superconvergence phenomenon often happend for the lowest-order edge elements ([22],
Chap. 5).

5. CONCLUSION

In this paper, we developed a novel explicit unconditionally stable finite element scheme to solve an equivalent
Bérenger’s TEz PML model. We rigorously established both the stability and convergence analysis for the
proposed scheme. Numerical results are presented to justify the theoretical analysis. We also demonstrated the
effectiveness of this PML in simulating wave propagation in the free space. In the future, we will explore the
possibility of extending similar idea to develop other explicit unconditionally stable schemes for other PML
models [10].
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