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DEVELOPING AND ANALYZING AN EXPLICIT UNCONDITIONALLY STABLE
FINITE ELEMENT SCHEME FOR AN EQUIVALENT BÉRENGER’S PML

MODEL

Yunqing Huang1, Jichun Li2,* and Xin Liu1

Abstract. The original Bérenger’s perfectly matched layer (PML) was quite effective in simulating
wave propagation problem in unbounded domains. But its stability is very challenging to prove. Later,
some equivalent PML models were developed by Bécache and Joly [ESAIM: M2AN 36 (2002) 87–119]
and their stabilities were established. Hence studying and developing efficicent numerical methods for
solving those equivalent PML models are needed and interesting. Here we propose a novel explicit
unconditionally stable finite element scheme to solve an equivalent Bérenger’s PML model. Both the
stability and convergence analysis are proved for the proposed scheme. Numerical results justifying the
theoretical analysis are presented. We also demonstrate the effectiveness of this PML in simulating
wave propagation in the free space. To our best knowledge, this is the first explicit unconditionally
stable finite element scheme developed for this PML model.

Mathematics Subject Classification. 65N30, 35L15, 78-08.

Received May 31, 2022. Accepted October 3, 2022.

1. Introduction

In 1994, Bérenger [7] introduced the perfectly matched layer (PML) techqniue to develop efficient numerical
absorbing boundary conditions for solving the time-dependent Maxwell’s equations in unbounded domains. This
PML technique has been shown to be very effective and can absorb all impinging waves over a wide frequency
range. Since 1994, many different PML models have been developed and applied to solve Maxwell’s equations
in both time-domain [1, 11, 15, 21, 25, 26, 32] and frequency domain [3, 9, 16]. More details and references can
be found in the classic computational electromagnetic book [30], a review paper on PMLs [31], and our recent
book on metamaterials ([22], Chap. 8). Furthermore, the PML technique has been extended to solve other wave
propagation problems in different media, such as acoustics, elastodynamics [2, 14], elasticity [20], anisotropic
dispersive media [6] and metamaterials [5,12,13]. Due to many potential applications of metamaterials such as
design of invisibility cloaks, recently there has been a growing interest in the study of the Maxwell’s equations
involving metamaterials (e.g., [8, 23,24,33]).
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Even though the original splitted Bérenger PML works very well in practical numerical simulations, the
mathematical analysis of its energy stability for the general variable damping function case is still an open
problem. Until 2002, Bécache and Joly [4] managed to establish a stability result for an equivalent Bérenger
PML model. Inspired by their work, recently we [17, 18] proposed and analyzed some finite diffence and finite
element methods for solving those equivalent PML models. Those schemes we proposed so far are explicit and has
a time step constraint. In 2021, we [19] discovered a novel technique in constructing an explicit unconditionally
finite element method for solving Maxwell’s equations in the free space and in Drude metamaterials. One major
contribution of this paper is that we successfully extend that technique to construct and prove an explicit
unconditionally stable scheme for solving this complicated equivalent Bérenger’s PML model. This new scheme
is not only easy in implementation but also very efficient like other explicit leapfrog type schemes. To the best
of our knowledge, this is the first explicit unconditionally stable finite element scheme constructed and analyzed
for this PML model.

The rest of the paper is organized as follows. In Section 2, we first present the PML model equations and
construct a semi-discrete scheme for the PML model. This semi-discrete scheme is a small perturbation of the
usual leapfrog scheme for this PML model. This small pertubation plays the magic for the construction of an
explicit unconditionally stable scheme. In Section 3, we first develop our fully-discrete finite element scheme.
Then we prove the unconditional stability and the optimal error estimate for this scheme. In Section 4, we
present some numerical results to confirm our theoretical analysis and further apply our scheme to simulate
some practical wave propagation problem to show the long stability of the scheme and the effective wave
absorbing property of this equivalent PML model. We conclude the paper in Section 5.

2. The model equations and construction of a semi-discrete scheme

By following the idea of [4], we derived the governing equations of an equivalent Bérenger’s PML model for
the Transverse Electric (TEz) mode given as follows ([17], Eqs. (32)–(36)): for any (𝑥, 𝑡) ∈ Ω × (0, 𝑇 ],

𝜀0∂𝑡𝐸 + Σ**𝐸 = ∇×𝐻 := (∂𝑦𝐻,−∂𝑥𝐻)′, (1a)

𝜀0∂𝑡
̃︀𝐸 = 𝜀0∂𝑡𝐸 + Σ**𝐸, (1b)

𝜇0∂𝑡𝐻
* = −∇× ̃︀𝐸 := −(∂𝑥𝐸̃𝑦 − ∂𝑦𝐸̃𝑥), (1c)

∂𝑡
̃︀𝐻 = 𝐻, (1d)

∂𝑡𝐻 + 𝜀−1
0 (𝜎𝑥 + 𝜎𝑦)𝐻 + 𝜀−2

0 𝜎𝑥𝜎𝑦
̃︀𝐻 = ∂𝑡𝐻

*, (1e)

where 𝜀0 and 𝜇0 are the permittivity and permeability in free space, 𝐸 = (𝐸𝑥, 𝐸𝑦)′ and 𝐻 are the electric field
and magnetic field, ̃︀𝐸 = ( ̃︀𝐸𝑥, ̃︀𝐸𝑦)′, ̃︀𝐻 and 𝐻* are auxiliary variables, and

Σ** = diag(𝜎𝑦, 𝜎𝑥), Σ** = diag(𝜎𝑥, 𝜎𝑦).

Moreover 𝜎𝑥(𝑥), 𝜎𝑦(𝑦) are nonnegative damping functions in the 𝑥, 𝑦 directions, respectively. Here, we assume
that Ω is an open bounded Lipschitz polygon in ℛ2 with boundary ∂Ω and outward unit normal vector 𝑛. To
complete the model problem (1a)–(1e), we further assume that it satisfies the perfect electric conductive (PEC)
boundary condition:

𝑛× 𝐸 = 0 on ∂Ω, (2)

and the initial conditions:

𝐸(𝑥, 0) = 𝐸0(𝑥), ̃︀𝐸(𝑥, 0) = ̃︀𝐸0(𝑥), 𝐻(𝑥, 0) = 𝐻0(𝑥), 𝐻*(𝑥, 0) = 𝐻*
0 (𝑥), ̃︀𝐻(𝑥, 0) = ̃︀𝐻0(𝑥), ∀ 𝑥 ∈ Ω, (3)

where 𝐸0, ̃︀𝐸0, 𝐻0, 𝐻
*
0 and ̃︀𝐻0 are some given functions.

First, let us partition the time interval [0, 𝑇 ] uniformly by points 𝑡𝑖 = 𝑖𝜏, 𝑖 = 0, · · · , 𝑁𝑡, where 𝜏 = 𝑇
𝑁𝑡

denotes the time step size. Denote 𝐸𝑛 := 𝐸(·, 𝑡𝑛). Similar notations are used for other unknowns. Before we
derive an explicit unconditionally stable scheme, we first consider a two step scheme of (1a)–(1e):
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Step 1.

𝜀0𝐸
𝑛+ 3

2 = 𝜀0𝐸
𝑛+1 − 𝜏

2
Σ**𝐸𝑛+1 +

𝜏

2
∇×𝐻𝑛+1 (4)

𝜀0 ̃︀𝐸𝑛+ 3
2 = 𝜀0 ̃︀𝐸𝑛+1 + 𝜀0

(︁
𝐸𝑛+ 3

2 − 𝐸𝑛+1
)︁

+
𝜏

2
Σ**𝐸

𝑛+1 (5)

𝜇0𝐻
*,𝑛+ 3

2 = 𝜇0𝐻
*,𝑛+1 − 𝜏

2
∇× ̃︀𝐸𝑛+1 (6)

̃︀𝐻𝑛+ 3
2 = ̃︀𝐻𝑛+1 +

𝜏

2
𝐻𝑛+ 3

2 (7)

𝐻𝑛+ 3
2 = 𝐻𝑛+1 − 𝜏

2
𝜀−1
0 (𝜎𝑥 + 𝜎𝑦)𝐻𝑛+ 3

2 − 𝜏

2
𝜀−2
0 𝜎𝑥𝜎𝑦

̃︀𝐻𝑛+ 3
2 +

(︁
𝐻*,𝑛+ 3

2 −𝐻*,𝑛+1
)︁
. (8)

Step 2.

𝜀0𝐸
𝑛+1 = 𝜀0𝐸

𝑛+ 1
2 − 𝜏

2
Σ**𝐸𝑛+1 +

𝜏

2
∇×𝐻𝑛+1 (9)

𝜀0 ̃︀𝐸𝑛+1 = 𝜀0 ̃︀𝐸𝑛+ 1
2 + 𝜀0

(︁
𝐸𝑛+1 − 𝐸𝑛+ 1

2

)︁
+
𝜏

2
Σ**𝐸

𝑛+1 (10)

𝜇0𝐻
*,𝑛+1 = 𝜇0𝐻

*,𝑛+ 1
2 − 𝜏

2
∇× ̃︀𝐸𝑛+1 (11)

̃︀𝐻𝑛+1 = ̃︀𝐻𝑛+ 1
2 +

𝜏

2
𝐻𝑛+ 1

2 (12)

𝐻𝑛+1 = 𝐻𝑛+ 1
2 − 𝜏

2
𝜀−1
0 (𝜎𝑥 + 𝜎𝑦)𝐻𝑛+ 1

2 − 𝜏

2
𝜀−2
0 𝜎𝑥𝜎𝑦

̃︀𝐻𝑛+ 1
2 +

(︁
𝐻*,𝑛+1 −𝐻*,𝑛+ 1

2

)︁
. (13)

Reducing all 𝑛’s in (4) by 1, adding the result with (9), and denoting 𝐸
𝑛+ 1

2 := 𝐸𝑛+1+𝐸𝑛

2 , we have

𝜀0𝐸
𝑛+1 = 𝜀0𝐸

𝑛 − 𝜏Σ**𝐸
𝑛+ 1

2 +
𝜏

2
∇×

(︀
𝐻𝑛 +𝐻𝑛+1

)︀
. (14)

Reducing all 𝑛’s in (6) and (8) by 1, and subtracting the result from (11) and (13), respectively, we have

𝜇0

(︁
𝐻*,𝑛+1 +𝐻*,𝑛 − 2𝐻*,𝑛+ 1

2

)︁
= −𝜏

2
∇×

(︁ ̃︀𝐸𝑛+1 − ̃︀𝐸𝑛
)︁
, (15)

and
𝐻𝑛+1 +𝐻𝑛 − 2𝐻𝑛+ 1

2 = 𝐻*,𝑛+1 +𝐻*,𝑛 − 2𝐻*,𝑛+ 1
2 . (16)

Then substituting (15) and (16) into (14), we have

𝜀0𝐸
𝑛+1 = 𝜀0𝐸

𝑛 − 𝜏Σ**𝐸
𝑛+ 1

2 +
𝜏

2
∇×

(︂
2𝐻𝑛+ 1

2 − 𝜏

2𝜇0
∇×

(︁ ̃︀𝐸𝑛+1 − ̃︀𝐸𝑛
)︁)︂

. (17)

Reducing all 𝑛′𝑠 of (5) by 1, and adding the result with (10), we obtain

𝜀0 ̃︀𝐸𝑛+1 = 𝜀0 ̃︀𝐸𝑛 + 𝜀0
(︀
𝐸𝑛+1 − 𝐸𝑛

)︀
+ 𝜏Σ**𝐸

𝑛+ 1
2 . (18)

Adding (6) and (11) together, adding (7) and (12) together, and adding (8) and (13) together, we have

𝜇0𝐻
*,𝑛+ 3

2 = 𝜇0𝐻
*,𝑛+ 1

2 − 𝜏∇× ̃︀𝐸𝑛+1, (19)̃︀𝐻𝑛+ 3
2 − ̃︀𝐻𝑛+ 1

2 =
𝜏

2

(︁
𝐻𝑛+ 3

2 +𝐻𝑛+ 1
2

)︁
, (20)
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and

𝐻𝑛+ 3
2 = 𝐻𝑛+ 1

2 − 𝜏

2
𝜀−1
0 (𝜎𝑥 + 𝜎𝑦)

(︁
𝐻𝑛+ 3

2 +𝐻𝑛+ 1
2

)︁
− 𝜏

2
𝜀−2
0 𝜎𝑥𝜎𝑦

(︁ ̃︀𝐻𝑛+ 3
2 + ̃︀𝐻𝑛+ 1

2

)︁
+
(︁
𝐻*,𝑛+ 3

2 −𝐻*,𝑛+ 1
2

)︁
. (21)

Using the following average operator and central difference operator in time:

𝑢𝑛+1 =
1
2

(︁
𝑢𝑛+ 3

2 + 𝑢𝑛+ 1
2

)︁
, 𝛿𝜏𝑢

𝑛+1 =
1
𝜏

(︁
𝑢𝑛+ 3

2 − 𝑢𝑛+ 1
2

)︁
,

we can be rewrite (17)–(21) as follows:

𝜀0𝛿𝜏𝐸𝑛+ 1
2 + Σ**𝐸

𝑛+ 1
2 = ∇×𝐻𝑛+ 1

2 − 𝜏2

4𝜇0
∇×∇× 𝛿𝜏 ̃︀𝐸𝑛+ 1

2 , (22a)

𝜀0𝛿𝜏 ̃︀𝐸𝑛+ 1
2 = 𝜀0𝛿𝜏𝐸𝑛+ 1

2 + Σ**𝐸
𝑛+ 1

2 , (22b)

𝜇0𝛿𝜏𝐻
*𝑛+1 = −∇× ̃︀𝐸𝑛+1, (22c)

𝛿𝜏 ̃︀𝐻𝑛+1 = 𝐻
𝑛+1

, (22d)

𝛿𝜏𝐻
𝑛+1 + 𝜀−1

0 (𝜎𝑥 + 𝜎𝑦)𝐻
𝑛+1

+ 𝜀−2
0 𝜎𝑥𝜎𝑦

̃︀𝐻𝑛+1

= 𝛿𝜏𝐻
*,𝑛+1. (22e)

Remark 1. It is interesting to remark that the semi-discrete scheme (22a)–(22e) can be seen as a small per-
turbation of a standard explicit leapfrog scheme for solving (1a)–(1e) with the first equation added by the last
𝑂(𝜏2) term. With this extra term, we can develop and prove an explicit unconditionally stable scheme out of
(22a)–(22e) in the next section.

3. The fully discrete scheme and its analysis

To solve the problem (1a)–(1e) by a finite element method, we partition the physical domain Ω by a family
of regular triangular mesh 𝑇ℎ with maximum mesh size ℎ, and adopt the 𝑙-th (𝑙 ≥ 1) order Raviart–Thomas–
Nédélec (RTN) mixed finite element spaces 𝑉 ℎ and 𝑈ℎ [27–29]: For any 𝑙 ≥ 1,

𝑉 ℎ =
{︀
𝑣ℎ ∈ 𝐿2(Ω) : 𝑣ℎ|𝐾 ∈ 𝑝𝑙−1, ∀ 𝐾 ∈ 𝑇ℎ

}︀
,

𝑈ℎ =
{︀
𝑢ℎ ∈ 𝐻(curl; Ω) : 𝑢ℎ|𝐾 ∈ (𝑝𝑙−1)2 ⊕ 𝑆𝑙, ∀ 𝐾 ∈ 𝑇ℎ

}︀
, 𝑆𝑙 =

{︀
𝑝 ∈ (𝑝𝑙)2,𝑥 · 𝑝 = 0

}︀
,

where 𝑝𝑙 denotes the space of homogeneous polynomials of degree 𝑙, and 𝑝𝑙 denotes the space of polynomials
of degree less than or equal to 𝑙 in variables 𝑥, 𝑦, respectively. To impose the PEC boundary condition (2), we
denote the subspace 𝑈0

ℎ = {𝑢 ∈ 𝑈ℎ : 𝑢× 𝑛 = 0 on ∂Ω}.
Now we construct the following leapfrog type scheme for (1a)–(1e): given initial approximations

𝐸0
ℎ,
̃︀𝐸0

ℎ, 𝐻
1
2
ℎ , 𝐻

* 1
2

ℎ , 𝐻̃
1
2
ℎ , for any 𝑛 ≥ 0, find 𝐸𝑛+1

ℎ , ̃︀𝐸𝑛+1
ℎ ∈ 𝑈0

ℎ , 𝐻
𝑛+ 3

2
ℎ , 𝐻

*𝑛+ 3
2

ℎ , ̃︀𝐻𝑛+ 3
2

ℎ ∈ 𝑉ℎ such that

𝜀0

(︂
𝛿𝜏𝐸

𝑛+ 1
2

ℎ ,𝜑ℎ

)︂
+

(︂
Σ**𝐸

𝑛+ 1
2

ℎ ,𝜑ℎ

)︂
=

(︂
𝐻

𝑛+ 1
2

ℎ ,∇× 𝜑ℎ
)︂

− 𝜏2

4𝜇0

(︂
∇× 𝛿𝜏

̃︀𝐸𝑛+ 1
2

ℎ ,∇× 𝜑ℎ
)︂
, ∀𝜑ℎ ∈ 𝑈0

ℎ , (23a)

𝜀0

(︂
𝛿𝜏
̃︀𝐸𝑛+ 1

2
ℎ , ̃︀𝜑ℎ

)︂
= 𝜀0

(︂
𝛿𝜏𝐸

𝑛+ 1
2

ℎ , ̃︀𝜑ℎ

)︂
+

(︂
Σ**𝐸

𝑛+ 1
2

ℎ , ̃︀𝜑ℎ

)︂
, ∀ ̃︀𝜑ℎ ∈ 𝑈0

ℎ , (23b)

𝜇0

(︀
𝛿𝜏𝐻

*𝑛+1
ℎ , 𝜓ℎ

)︀
= −
(︁
∇× ̃︀𝐸𝑛+1

ℎ , 𝜓ℎ

)︁
, ∀𝜓ℎ ∈ 𝑉ℎ, (23c)

(︁
𝛿𝜏
̃︀𝐻𝑛+1

ℎ , 𝜎𝑥𝜎𝑦
̃︀𝜓ℎ

)︁
=
(︁
𝐻

𝑛+1
ℎ , 𝜎𝑥𝜎𝑦

̃︀𝜓ℎ

)︁
, ∀ ̃︀𝜓ℎ ∈ 𝑉ℎ, (23d)

(︁
𝛿𝜏𝐻

𝑛+1
ℎ , ̂︀𝜓ℎ

)︁
+ 𝜀−1

0

(︁
(𝜎𝑥 + 𝜎𝑦)𝐻

𝑛+1
ℎ , ̂︀𝜓ℎ

)︁
+ 𝜀−2

0

(︂
𝜎𝑥𝜎𝑦

̃︀𝐻
𝑛+1

ℎ , ̂︀𝜓ℎ

)︂
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=
(︁
𝛿𝜏𝐻

*𝑛+1
ℎ , ̂︀𝜓ℎ

)︁
, ∀ ̂︀𝜓ℎ ∈ 𝑉ℎ. (23e)

Note that for theoretical analysis purpose, we multiplied 𝜎𝑥𝜎𝑦 to both sides of (23d).

The initial approximations 𝐸0
ℎ,
̃︀𝐸0

ℎ can be simply obtained by the Nédélec interpolation, while 𝐻
1
2
ℎ , 𝐻

* 1
2

ℎ , 𝐻̃
1
2
ℎ

and be done by a Taylor expansion followed by a standard 𝐿2 projections. More specifically, we have the following
approximations:

𝐸0
ℎ(𝑥) = Π𝑐𝐸0(𝑥), ̃︀𝐸0

ℎ(𝑥) = Π𝑐
̃︀𝐸0(𝑥), (24a)

𝐻
1
2
ℎ (𝑥) = 𝑃ℎ

(︁
𝐻0(𝑥) +

𝜏

2
∂𝑡𝐻(𝑥)

)︁
= 𝑃ℎ

[︃
𝐻0 −

𝜏

2

(︁
𝜇−1

0 ∇× ̃︀𝐸0 + 𝜀−1
0 (𝜎𝑥 + 𝜎𝑦)𝐻0 + 𝜀−2

0 𝜎𝑥𝜎𝑦
̃︀𝐻0

)︁]︃
, (24b)

𝐻
*, 1

2
ℎ (𝑥) = 𝑃ℎ

(︁
𝐻*

0 (𝑥) +
𝜏

2
∂𝑡𝐻

*(𝑥)
)︁

= 𝑃ℎ

(︂
𝐻*

0 −
𝜏𝜇−1

0

2
∇× ̃︀𝐸0

)︂
, (24c)

𝐻̃
1
2
ℎ (𝑥) = 𝑃ℎ

(︁
𝐻̃0(𝑥) +

𝜏

2
∂𝑡𝐻̃(𝑥)

)︁
= 𝑃ℎ

(︁
𝐻̃0 +

𝜏

2
𝐻0

)︁
, (24d)

where Π𝑐𝐸0 ∈ 𝑈ℎ denotes the Nédélec interpolation operator, and 𝑃ℎ denotes the standard 𝐿2 projection
operator into the space 𝑉ℎ .

It is known that the following interpolation and projection error estimates hold true [27]:

‖𝐸 − Π𝑐𝐸‖ + ‖∇ × (𝐸 − Π𝑐𝐸)‖ ≤ 𝐶ℎ𝑙‖𝐸‖𝐻𝑙(curl,Ω), ∀𝐸 ∈ 𝐻 𝑙(curl,Ω), 𝑙 ≥ 1, (25)

‖𝐻 − 𝑃ℎ𝐻‖ ≤ 𝐶ℎ𝑙‖𝐻‖𝐻𝑙(Ω), ∀𝐻 ∈ 𝐻 𝑙(Ω), 𝑙 ≥ 1. (26)

Here and in the rest of the paper, we denote ‖·‖ for the 𝐿2 norm on Ω.

3.1. The unconditional stability analysis

This subsection is devoted to the unconditional stability analysis of our scheme (23a)–(23e).

Theorem 1. Denote the discrete energy at time 𝑡𝑚 as:

ℰdisc
𝑡𝑒 (𝑡𝑚) := 𝜀0

(︂⃦⃦⃦ ̃︀𝐸𝑚
ℎ

⃦⃦⃦2

+
⃦⃦⃦ ̃︀𝐸𝑚

ℎ − 𝐸𝑚
ℎ

⃦⃦⃦2
)︂

+
⃦⃦⃦⃦
𝜇

1
2
0 𝐻

𝑚+ 1
2

ℎ +
𝜏

2
√
𝜇0

∇× ̃︀𝐸𝑚
ℎ

⃦⃦⃦⃦2

+ 𝜀−2
0 𝜇0

⃦⃦⃦
(𝜎𝑥𝜎𝑦)

1
2 ̃︀𝐻𝑚+ 1

2
ℎ

⃦⃦⃦2

.

Then under the time step constraint
𝜏 ≤ 𝜀0

3
(︀
‖𝜎𝑥‖∞ + ‖𝜎𝑦‖∞

)︀ , (27)

we have the following stability for the scheme (23a)–(23e): for any 𝑚 ≥ 0,

ℰdisc
𝑡𝑒 (𝑡𝑚) ≤ exp

[︀
4
(︀
‖𝜎𝑥‖∞ + ‖𝜎𝑦‖∞

)︀
𝜀−1
0 (𝑚𝜏)

]︀
· ℰdisc

𝑡𝑒 (𝑡0). (28)

Remark 2. We want to remark that the stability (28) is unconditionally stable, since the time step constraint
(27) is independent of mesh size ℎ. Furthermore, the stability (28) has exactly the same form as the following
continuous stability established in our previous work ([18], Thm. 1):

ℰ𝑡𝑒(𝑡) ≤ exp
[︀
4
(︀
‖𝜎𝑥‖∞ + ‖𝜎𝑦‖∞

)︀
𝜀−1
0 𝑡
]︀
· ℰ𝑡𝑒(𝑡0),

where the energy is denoted as:

ℰ𝑡𝑒(𝑡) :=

[︃
𝜀0

(︂⃦⃦⃦ ̃︀𝐸⃦⃦⃦2

+
⃦⃦⃦ ̃︀𝐸 − 𝐸

⃦⃦⃦2
)︂

+
⃦⃦⃦⃦
𝜇

1
2
0 𝐻 +

𝜏

2
√
𝜇0

∇× ̃︀𝐸 ⃦⃦⃦⃦2

+ 𝜀−2
0 𝜇0

⃦⃦⃦
(𝜎𝑥𝜎𝑦)

1
2 ̃︀𝐻 ⃦⃦⃦2

]︃
(𝑡).
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Proof. Choosing 𝜑ℎ = ̃︀𝐸𝑛+ 1
2

ℎ in (23a) and 𝜓ℎ = 𝐻
𝑛+1

ℎ in (23c), and adding the results, we obtain:

𝜀0

(︂
𝛿𝜏𝐸

𝑛+ 1
2

ℎ , ̃︀𝐸𝑛+ 1
2

ℎ

)︂
+
(︂

Σ**𝐸
𝑛+ 1

2
ℎ , ̃︀𝐸𝑛+ 1

2

ℎ

)︂
+ 𝜇0

(︁
𝛿𝜏𝐻

*,𝑛+1
ℎ , 𝐻

𝑛+1

ℎ

)︁
=
(︂
𝐻

𝑛+ 1
2

ℎ ,∇× ̃︀𝐸𝑛+ 1
2

ℎ

)︂
−
(︁
∇× ̃︀𝐸𝑛+1

ℎ , 𝐻
𝑛+1

ℎ

)︁
− 𝜏

8𝜇0

(︂⃦⃦⃦
∇× ̃︀𝐸𝑛+1

ℎ

⃦⃦⃦2

−
⃦⃦⃦
∇× ̃︀𝐸𝑛

ℎ

⃦⃦⃦2
)︂

=
1
2

[︁(︁
𝐻

𝑛+ 1
2

ℎ ,∇× ̃︀𝐸𝑛
ℎ

)︁
−
(︁
𝐻

𝑛+ 3
2

ℎ ,∇× ̃︀𝐸𝑛+1
ℎ

)︁]︁
− 𝜏

8𝜇0

(︂⃦⃦⃦
∇× ̃︀𝐸𝑛+1

ℎ

⃦⃦⃦2

−
⃦⃦⃦
∇× ̃︀𝐸𝑛

ℎ

⃦⃦⃦2
)︂
. (29)

Choosing ̃︀𝜑ℎ = ̃︀𝐸𝑛+ 1
2

ℎ in (23b) and ̂︀𝜓ℎ = 𝜇0𝐻
𝑛+1

ℎ in (23e), respectively, we have

𝜀0
2𝜏

(︂⃦⃦⃦ ̃︀𝐸𝑛+1
ℎ

⃦⃦⃦2

−
⃦⃦⃦ ̃︀𝐸𝑛

ℎ

⃦⃦⃦2
)︂

= 𝜀0

(︂
𝛿𝜏𝐸

𝑛+ 1
2

ℎ , ̃︀𝐸𝑛+ 1
2

ℎ

)︂
+
(︂

Σ**𝐸
𝑛+ 1

2
ℎ , ̃︀𝐸𝑛+ 1

2

ℎ

)︂
, (30)

and

𝜇0

2𝜏

(︂⃦⃦⃦
𝐻

𝑛+ 3
2

ℎ

⃦⃦⃦2

−
⃦⃦⃦
𝐻

𝑛+ 1
2

ℎ

⃦⃦⃦2
)︂

+ 𝜀−1
0 𝜇0

⃦⃦⃦
(𝜎𝑥 + 𝜎𝑦)

1
2𝐻

𝑛+1

ℎ

⃦⃦⃦2

+ 𝜀−2
0 𝜇0

(︂
𝜎𝑥𝜎𝑦

̃︀𝐻𝑛+1

ℎ , 𝐻
𝑛+1

ℎ

)︂
= 𝜇0

(︁
𝛿𝜏𝐻

*,𝑛+1
ℎ , 𝐻

𝑛+1

ℎ

)︁
. (31)

Adding (29)–(31), we attain

𝜀0
2𝜏

(︂⃦⃦⃦ ̃︀𝐸𝑛+1
ℎ

⃦⃦⃦2

−
⃦⃦⃦ ̃︀𝐸𝑛

ℎ

⃦⃦⃦2
)︂

+
𝜇0

2𝜏

(︂⃦⃦⃦
𝐻

𝑛+ 3
2

ℎ

⃦⃦⃦2

−
⃦⃦⃦
𝐻

𝑛+ 1
2

ℎ

⃦⃦⃦2
)︂

+ 𝜀−1
0 𝜇0

⃦⃦⃦
(𝜎𝑥 + 𝜎𝑦)

1
2𝐻

𝑛+1

ℎ

⃦⃦⃦2

+ 𝜀−2
0 𝜇0

(︂
𝜎𝑥𝜎𝑦

̃︀𝐻𝑛+1

ℎ , 𝐻
𝑛+1

ℎ

)︂
+

𝜏

8𝜇0

(︂⃦⃦⃦
∇× ̃︀𝐸𝑛+1

ℎ

⃦⃦⃦2

−
⃦⃦⃦
∇× ̃︀𝐸𝑛

ℎ

⃦⃦⃦2
)︂

=
(︂

(Σ** − Σ**)𝐸
𝑛+ 1

2
ℎ , ̃︀𝐸𝑛+ 1

2

ℎ

)︂
+

1
2

[︁(︁
𝐻

𝑛+ 1
2

ℎ ,∇× ̃︀𝐸𝑛
ℎ

)︁
−
(︁
𝐻

𝑛+ 3
2

ℎ ,∇× ̃︀𝐸𝑛+1
ℎ

)︁]︁
. (32)

Choosing ̃︀𝜓ℎ = 𝜀−2
0 𝜇0

̃︀𝐻𝑛+1

ℎ in (23d), and using it to replace the fourth term in (32), we have

𝜀0
2𝜏

(︂⃦⃦⃦ ̃︀𝐸𝑛+1
ℎ

⃦⃦⃦2

−
⃦⃦⃦ ̃︀𝐸𝑛

ℎ

⃦⃦⃦2
)︂

+
𝜇0

2𝜏

(︂⃦⃦⃦
𝐻

𝑛+ 3
2

ℎ

⃦⃦⃦2

−
⃦⃦⃦
𝐻

𝑛+ 1
2

ℎ

⃦⃦⃦2
)︂

+ 𝜀−1
0 𝜇0

⃦⃦⃦
(𝜎𝑥 + 𝜎𝑦)

1
2𝐻

𝑛+1

ℎ

⃦⃦⃦2

+
𝜀−2
0 𝜇0

2𝜏

(︂⃦⃦⃦
(𝜎𝑥𝜎𝑦)

1
2 ̃︀𝐻𝑛+ 3

2
ℎ

⃦⃦⃦2

−
⃦⃦⃦

(𝜎𝑥𝜎𝑦)
1
2 ̃︀𝐻𝑛+ 1

2
ℎ

⃦⃦⃦2
)︂

+
𝜏

8𝜇0

(︂⃦⃦⃦
∇× ̃︀𝐸𝑛+1

ℎ

⃦⃦⃦2

−
⃦⃦⃦
∇× ̃︀𝐸𝑛

ℎ

⃦⃦⃦2
)︂

=
(︂

(Σ** − Σ**)𝐸
𝑛+ 1

2
ℎ , ̃︀𝐸𝑛+ 1

2

ℎ

)︂
+

1
2

[︁(︁
𝐻

𝑛+ 1
2

ℎ ,∇× ̃︀𝐸𝑛
ℎ

)︁
−
(︁
𝐻

𝑛+ 3
2

ℎ ,∇× ̃︀𝐸𝑛+1
ℎ

)︁]︁
. (33)

Choosing ̃︀𝜑ℎ = ̃︀𝐸𝑛+ 1
2

ℎ − 𝐸
𝑛+ 1

2
ℎ in (23b), we obtain

𝜀0
2𝜏

(︂⃦⃦⃦ ̃︀𝐸𝑛+1
ℎ − 𝐸𝑛+1

ℎ

⃦⃦⃦2

−
⃦⃦⃦ ̃︀𝐸𝑛

ℎ − 𝐸𝑛
ℎ

⃦⃦⃦2
)︂

=
(︂

Σ**𝐸
𝑛+ 1

2
ℎ , ̃︀𝐸𝑛+ 1

2

ℎ − 𝐸
𝑛+ 1

2
ℎ

)︂
. (34)

Adding (33) and (34) together, then summing up from 𝑛 = 0 to 𝑚, we obtain

𝜀0
2

(︂⃦⃦⃦ ̃︀𝐸𝑚+1
ℎ

⃦⃦⃦2

−
⃦⃦⃦ ̃︀𝐸0

ℎ

⃦⃦⃦)︂
+
𝜇0

2

(︂⃦⃦⃦
𝐻

𝑚+ 3
2

ℎ

⃦⃦⃦2

−
⃦⃦⃦
𝐻

1
2
ℎ

⃦⃦⃦2
)︂

+ 𝜏𝜀−1
0 𝜇0

𝑚∑︁
𝑛=0

⃦⃦⃦
(𝜎𝑥 + 𝜎𝑦)

1
2𝐻

𝑛+1

ℎ

⃦⃦⃦2
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+
𝜀−2
0 𝜇0

2

(︂⃦⃦⃦
(𝜎𝑥𝜎𝑦)

1
2 ̃︀𝐻𝑚+ 3

2
ℎ

⃦⃦⃦2

−
⃦⃦⃦

(𝜎𝑥𝜎𝑦)
1
2 ̃︀𝐻 1

2
ℎ

⃦⃦⃦2
)︂

+
𝜏2

8𝜇0

(︂⃦⃦⃦
∇× ̃︀𝐸𝑚+1

ℎ

⃦⃦⃦2

−
⃦⃦⃦
∇× ̃︀𝐸0

ℎ

⃦⃦⃦2
)︂

+
𝜀0
2

(︂⃦⃦⃦ ̃︀𝐸𝑚+1
ℎ − 𝐸𝑚+1

ℎ

⃦⃦⃦2

−
⃦⃦⃦ ̃︀𝐸0

ℎ − 𝐸0
ℎ

⃦⃦⃦2
)︂

= 𝜏
𝑚∑︁

𝑛=0

(︂
(Σ** − Σ**)𝐸

𝑛+ 1
2

ℎ , ̃︀𝐸𝑛+ 1
2

ℎ

)︂
+
𝜏

2

[︁(︁
𝐻

1
2
ℎ ,∇× ̃︀𝐸0

ℎ

)︁
−
(︁
𝐻

𝑚+ 3
2

ℎ ,∇× ̃︀𝐸𝑚+1
ℎ

)︁]︁
+ 𝜏

𝑚∑︁
𝑛=0

(︂
Σ**𝐸

𝑛+ 1
2

ℎ , ̃︀𝐸𝑛+ 1
2

ℎ − 𝐸
𝑛+ 1

2
ℎ

)︂
:=

3∑︁
𝑖=1

Err𝑖. (35)

Using inequalities
⃒⃒
𝑎+𝑏
2

⃒⃒2 ≤ 1
2 (𝑎2 + 𝑏2) and |𝑎|2 = |𝑎− 𝑏+ 𝑏|2 ≤ 2(|𝑎− 𝑏|2 + 𝑏2), we have

𝜏

(︂
(Σ** − Σ**)𝐸

𝑛+ 1
2

ℎ , ̃︀𝐸𝑛+ 1
2

ℎ

)︂
≤
𝜏𝜀−1

0 ‖𝜎𝑥 − 𝜎𝑦‖∞
2

[︃
𝜀0

⃦⃦⃦
𝐸

𝑛+ 1
2

ℎ

⃦⃦⃦2

+ 𝜀0

⃦⃦⃦⃦ ̃︀𝐸𝑛+ 1
2

ℎ

⃦⃦⃦⃦2
]︃

=
𝜏𝜀−1

0 ‖𝜎𝑥 − 𝜎𝑦‖∞
2

[︃
𝜀0

⃦⃦⃦⃦
𝐸

𝑛+ 1
2

ℎ − ̃︀𝐸𝑛+ 1
2

ℎ + ̃︀𝐸𝑛+ 1
2

ℎ

⃦⃦⃦⃦2

+ 𝜀0

⃦⃦⃦⃦ ̃︀𝐸𝑛+ 1
2

ℎ

⃦⃦⃦⃦2
]︃

≤ 𝜏𝜀−1
0 ‖𝜎𝑥 − 𝜎𝑦‖∞

[︃
𝜀0

⃦⃦⃦⃦
𝐸

𝑛+ 1
2

ℎ − ̃︀𝐸𝑛+ 1
2

ℎ

⃦⃦⃦⃦2

+
3
2
𝜀0

⃦⃦⃦⃦ ̃︀𝐸𝑛+ 1
2

ℎ

⃦⃦⃦⃦2
]︃

≤ 𝜏𝜀−1
0 ‖𝜎𝑥 − 𝜎𝑦‖∞

[︂
𝜀0
2

(︂⃦⃦⃦
𝐸𝑛+1

ℎ − ̃︀𝐸𝑛+1
ℎ

⃦⃦⃦2

+
⃦⃦⃦
𝐸𝑛

ℎ − ̃︀𝐸𝑛
ℎ

⃦⃦⃦2
)︂

+
3𝜀0
4

(︂⃦⃦⃦ ̃︀𝐸𝑛+1
ℎ

⃦⃦⃦2

+
⃦⃦⃦ ̃︀𝐸𝑛

ℎ

⃦⃦⃦2
)︂]︂
. (36)

Similarly, we can obtain

𝜏

(︂
Σ**𝐸

𝑛+ 1
2

ℎ , ̃︀𝐸𝑛+ 1
2

ℎ − 𝐸
𝑛+ 1

2
ℎ

)︂
= 𝜏

(︂
Σ**

(︂
𝐸

𝑛+ 1
2

ℎ − ̃︀𝐸𝑛+ 1
2

ℎ

)︂
+ Σ** ̃︀𝐸𝑛+ 1

2

ℎ , ̃︀𝐸𝑛+ 1
2

ℎ − 𝐸
𝑛+ 1

2
ℎ

)︂
≤ 𝜏𝜀−1

0 max
(︀
‖𝜎𝑥‖∞, ‖𝜎𝑦‖∞

)︀[︃𝜀0
2

⃦⃦⃦⃦ ̃︀𝐸𝑛+ 1
2

ℎ

⃦⃦⃦⃦2

+
𝜀0
2

⃦⃦⃦⃦ ̃︀𝐸𝑛+ 1
2

ℎ − 𝐸
𝑛+ 1

2
ℎ

⃦⃦⃦⃦2
]︃

≤ 𝜏𝜀−1
0 max

(︀
‖𝜎𝑥‖∞, ‖𝜎𝑦‖∞

)︀[︂𝜀0
4

(︂⃦⃦⃦ ̃︀𝐸𝑛+1
ℎ

⃦⃦⃦2

+
⃦⃦⃦ ̃︀𝐸𝑛

ℎ

⃦⃦⃦2
)︂

+
𝜀0
4

(︂⃦⃦⃦ ̃︀𝐸𝑛+1
ℎ − 𝐸𝑛+1

ℎ

⃦⃦⃦2

+
⃦⃦⃦ ̃︀𝐸𝑛

ℎ − 𝐸𝑛
ℎ

⃦⃦⃦2
)︂]︂

(37)

where we used the estimate (︂
Σ**

(︂
𝐸

𝑛+ 1
2

ℎ − ̃︀𝐸𝑛+ 1
2

ℎ

)︂
, ̃︀𝐸𝑛+ 1

2

ℎ − 𝐸
𝑛+ 1

2
ℎ

)︂
≤ 0

to obtain the first inequality.
It is easy to check that the following identity holds true:⃦⃦⃦⃦

√
𝜇0𝐻

𝑚+ 3
2

ℎ +
𝜏

2
√
𝜇0

∇× ̃︀𝐸𝑚+1
ℎ

⃦⃦⃦⃦2

= 𝜇0

⃦⃦⃦
𝐻

𝑚+ 3
2

ℎ

⃦⃦⃦2

+ 𝜏
(︁
𝐻

𝑚+ 3
2

ℎ ,∇× ̃︀𝐸𝑚+1
ℎ

)︁
+

𝜏2

4𝜇0

⃦⃦⃦
∇× ̃︀𝐸𝑚+1

ℎ

⃦⃦⃦2

. (38)

Substituting the above estimates (36)–(38) into (35), we have

𝜀0
2

(︂⃦⃦⃦ ̃︀𝐸𝑚+1
ℎ

⃦⃦⃦2

−
⃦⃦⃦ ̃︀𝐸0

ℎ

⃦⃦⃦2
)︂

+
1
2

⃦⃦⃦⃦
√
𝜇0𝐻

𝑚+ 3
2

ℎ +
𝜏

2
√
𝜇0

∇× ̃︀𝐸𝑚+1
ℎ

⃦⃦⃦⃦2

+ 𝜏𝜀−1
0 𝜇0

𝑚∑︁
𝑛=0

⃦⃦⃦
(𝜎𝑥 + 𝜎𝑦)

1
2𝐻

𝑛+1

ℎ

⃦⃦⃦2
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+
𝜀−2
0 𝜇0

2

(︂⃦⃦⃦
(𝜎𝑥𝜎𝑦)

1
2 ̃︀𝐻𝑚+ 1

2
ℎ

⃦⃦⃦2

−
⃦⃦⃦

(𝜎𝑥𝜎𝑦)
1
2 ̃︀𝐻 1

2
ℎ

⃦⃦⃦2
)︂

+
𝜀0
2

(︂⃦⃦⃦ ̃︀𝐸𝑚+1
ℎ − 𝐸𝑚+1

ℎ

⃦⃦⃦2

−
⃦⃦⃦ ̃︀𝐸0

ℎ − 𝐸0
ℎ

⃦⃦⃦2
)︂

≤ 𝜏𝜀−1
0 ‖𝜎𝑥 − 𝜎𝑦‖∞

[︂
𝜀0
2

⃦⃦⃦
𝐸𝑚+1

ℎ − ̃︀𝐸𝑚+1
ℎ

⃦⃦⃦2

+
3𝜀0
4

⃦⃦⃦ ̃︀𝐸𝑚+1
ℎ

⃦⃦⃦2
]︂

+ 𝜏𝜀−1
0 ‖𝜎𝑥 − 𝜎𝑦‖∞

𝑚∑︁
𝑛=0

[︂
𝜀0

⃦⃦⃦
𝐸𝑛

ℎ − ̃︀𝐸𝑛
ℎ

⃦⃦⃦2

+
3𝜀0
2

⃦⃦⃦ ̃︀𝐸𝑛
ℎ

⃦⃦⃦2
]︂

+ 𝜏𝜀−1
0 max(‖𝜎𝑥‖∞, ‖𝜎𝑦‖∞)

(︂
𝜀0
4

⃦⃦⃦ ̃︀𝐸𝑚+1
ℎ

⃦⃦⃦2

+
𝜀0
4

⃦⃦⃦ ̃︀𝐸𝑚+1
ℎ − 𝐸𝑚+1

ℎ

⃦⃦⃦2
)︂

+ 𝜏𝜀−1
0 max(‖𝜎𝑥‖∞, ‖𝜎𝑦‖∞)

𝑚∑︁
𝑛=0

[︂
𝜀0
2

⃦⃦⃦ ̃︀𝐸𝑛
ℎ

⃦⃦⃦2

+
𝜀0
2

⃦⃦⃦ ̃︀𝐸𝑛
ℎ − 𝐸𝑛

ℎ

⃦⃦⃦2
]︂

+
1
2

⃦⃦⃦⃦
√
𝜇0𝐻

1
2
ℎ +

𝜏

2
√
𝜇0

∇× ̃︀𝐸0
ℎ

⃦⃦⃦⃦2

. (39)

To get a nice stability result, now we relax the bound for those coefficients on the right hand side of (39) by
the following simple estimates:

‖𝜎𝑥 − 𝜎𝑦‖∞ ≤ ‖𝜎𝑥‖∞ + ‖𝜎𝑦‖∞, max
(︀
‖𝜎𝑥‖∞, ‖𝜎𝑦‖∞

)︀
≤ ‖𝜎𝑥‖∞ + ‖𝜎𝑦‖∞.

Using the following time step constraints (equivalent to (27)):

𝜏𝜀−1
0

(︀
‖𝜎𝑥‖∞ + ‖𝜎𝑦‖∞

)︀
≤ 1

3
,

dropping the nonnegative term of the left hand side of (39), then using the discrete Gronwall inequality, we
have

𝜀0

⃦⃦⃦ ̃︀𝐸𝑚+1
ℎ

⃦⃦⃦2

+
⃦⃦⃦⃦
𝜇

1
2
0 𝐻

𝑚+ 3
2

ℎ +
𝜏

2
√
𝜇0

∇× ̃︀𝐸𝑚+1
ℎ

⃦⃦⃦⃦2

+ 𝜀−2
0 𝜇0

⃦⃦⃦
(𝜎𝑥𝜎𝑦)

1
2 ̃︀𝐻𝑚+ 3

2
ℎ

⃦⃦⃦2

+ 𝜀0

⃦⃦⃦ ̃︀𝐸𝑚+1
ℎ − 𝐸𝑚+1

ℎ

⃦⃦⃦2

≤ exp
[︀
4
(︀
‖𝜎𝑥‖∞ + ‖𝜎𝑦‖∞

)︀
𝜀−1
0 (𝑚+ 1)𝜏

]︀
·

{︃
𝜀0

(︂⃦⃦⃦ ̃︀𝐸0
ℎ

⃦⃦⃦2

+
⃦⃦⃦ ̃︀𝐸0

ℎ − 𝐸0
ℎ

⃦⃦⃦2
)︂

+
⃦⃦⃦⃦
√
𝜇0𝐻

1
2
ℎ +

𝜏

2
√
𝜇0

∇× ̃︀𝐸0
ℎ

⃦⃦⃦⃦2

+ 𝜀−2
0 𝜇0

⃦⃦⃦
(𝜎𝑥𝜎𝑦)

1
2 ̃︀𝐻 1

2
ℎ

⃦⃦⃦2
}︃
, (40)

which completes the proof of (28). �

3.2. The convergence analysis

In this subsection, we will carry out the convergence analysis of our scheme (23a)–(23d). To accomplish that,
we need the following lemma.

Lemma 1 ([22], Chap. 3). Denote 𝑢𝑛 := 𝑢(·, 𝑡𝑛). We have

(i)
⃦⃦⃦
𝛿𝜏𝑢

𝑛+ 1
2

⃦⃦⃦2

=
⃦⃦⃦⃦
𝑢𝑛+1 − 𝑢𝑛

𝜏

⃦⃦⃦⃦2

≤ 1
𝜏

∫︁ 𝑡𝑛+1

𝑡𝑛

‖∂𝑡𝑢(𝑡)‖2 d𝑡, ∀𝑢 ∈ 𝐻1(0, 𝑇 ;𝐿2(Ω)), (41)

(ii)
⃦⃦⃦⃦
𝑢𝑛+ 1

2 − 1
𝜏

∫︁ 𝑡𝑛+1

𝑡𝑛

𝑢(𝑡) d𝑡
⃦⃦⃦⃦2

≤ 𝜏3

4

∫︁ 𝑡𝑛+1

𝑡𝑛

‖∂𝑡𝑡𝑢(𝑡)‖2 d𝑡, ∀𝑢 ∈ 𝐻2(0, 𝑇 ;𝐿2(Ω)), (42)

(iii)
⃦⃦⃦⃦
𝑢𝑛+ 1

2 − 1
𝜏

∫︁ 𝑡𝑛+1

𝑡𝑛

𝑢(𝑡) d𝑡
⃦⃦⃦⃦2

≤ 𝜏3

4

∫︁ 𝑡𝑛+1

𝑡𝑛

‖∂𝑡𝑡𝑢(𝑡)‖2 d𝑡, ∀𝑢 ∈ 𝐻2(0, 𝑇 ;𝐿2(Ω)). (43)

To simplify the analysis, let us introduce the solution errors:

ℰ𝑛 = 𝐸(𝑡𝑛) − 𝐸𝑛
ℎ = (𝐸(𝑡𝑛) − Π𝑐𝐸

𝑛) + (Π𝑐𝐸
𝑛 − 𝐸𝑛

ℎ ) := 𝐸𝑛
𝜉 − 𝐸𝑛

ℎ𝜂
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̃︀ℰ𝑛
= ̃︀𝐸(𝑡𝑛) − ̃︀𝐸𝑛

ℎ =
(︁ ̃︀𝐸(𝑡𝑛) − Π𝑐

̃︀𝐸𝑛
)︁

+
(︁

Π𝑐
̃︀𝐸𝑛 − ̃︀𝐸𝑛

ℎ

)︁
:= ̃︀𝐸𝑛

𝜉 − ̃︀𝐸𝑛
ℎ𝜂

ℋ𝑛+ 1
2 = 𝐻

(︁
𝑡𝑛+ 1

2

)︁
−𝐻

𝑛+ 1
2

ℎ =
(︁
𝐻
(︁
𝑡𝑛+ 1

2

)︁
− 𝑃ℎ𝐻

𝑛+ 1
2

)︁
+
(︁
𝑃ℎ𝐻

𝑛+ 1
2 −𝐻

𝑛+ 1
2

ℎ

)︁
:= 𝐻

𝑛+ 1
2

𝜉 −𝐻
𝑛+ 1

2
ℎ𝜂

ℋ*,𝑛+ 1
2 = 𝐻*

(︁
𝑡𝑛+ 1

2

)︁
−𝐻

*,𝑛+ 1
2

ℎ =
(︁
𝐻*
(︁
𝑡𝑛+ 1

2

)︁
− 𝑃ℎ𝐻

*,𝑛+ 1
2

)︁
+
(︁
𝑃ℎ𝐻

*,𝑛+ 1
2 −𝐻

*,𝑛+ 1
2

ℎ

)︁
:= 𝐻

*,𝑛+ 1
2

𝜉 −𝐻
*,𝑛+ 1

2
ℎ𝜂̃︀ℋ𝑛+ 1

2 = ̃︀𝐻(︁𝑡𝑛+ 1
2

)︁
− ̃︀𝐻𝑛+ 1

2
ℎ =

(︁ ̃︀𝐻(︁𝑡𝑛+ 1
2

)︁
− 𝑃ℎ

̃︀𝐻𝑛+ 1
2

)︁
+
(︁
𝑃ℎ
̃︀𝐻𝑛+ 1

2 − ̃︀𝐻𝑛+ 1
2

ℎ

)︁
:= ̃︀𝐻𝑛+ 1

2
𝜉 − ̃︀𝐻𝑛+ 1

2
ℎ𝜂 ,

where Π𝑐𝐸 and Π𝑐
̃︀𝐸 ∈ 𝑈ℎ denote the Nédélec interpolations, 𝑃ℎ𝐻,𝑃ℎ𝐻

*, and 𝑃ℎ
̃︀𝐻 ∈ 𝑉ℎ denote the standard

𝐿2 projections.
To establish the error estimate for scheme (23a)–(23e), we first derive the error equations.
Integrating (1a), (1b) from 𝑡𝑛 to 𝑡𝑛+1 and integrating (1c)–(1e) from 𝑡𝑛+ 1

2
to 𝑡𝑛+ 3

2
, and multiplying the

corresponding results by 1
𝜏 𝜑ℎ,

1
𝜏
̃︀𝜑ℎ,

1
𝜏 𝜓ℎ,

1
𝜏 𝜎𝑥𝜎𝑦

̃︀𝜓ℎ, ̂︀𝜓ℎ, respectively, and integrating over Ω, we obtain

𝜀0

(︁
𝛿𝜏𝐸𝑛+ 1

2 ,𝜑ℎ

)︁
+
(︂

1
𝜏

∫︁ 𝑡𝑛+1

𝑡𝑛

Σ**𝐸(𝑠) d𝑠,𝜑ℎ

)︂
=
(︂

1
𝜏

∫︁ 𝑡𝑛+1

𝑡𝑛

𝐻(𝑠) d𝑠,∇× 𝜑ℎ

)︂
, (44)

𝜀0

(︁
𝛿𝜏 ̃︀𝐸𝑛+ 1

2 , ̃︀𝜑ℎ

)︁
= 𝜀0

(︁
𝛿𝜏𝐸𝑛+ 1

2 , ̃︀𝜑ℎ

)︁
+
(︂

1
𝜏

∫︁ 𝑡𝑛+1

𝑡𝑛

Σ**𝐸(𝑠) d𝑠, ̃︀𝜑ℎ

)︂
, (45)

𝜇0

(︀
𝛿𝜏𝐻

*,𝑛+1, 𝜓ℎ

)︀
= −

⎛⎝1
𝜏

∫︁ 𝑡
𝑛+ 3

2

𝑡
𝑛+ 1

2

∇× ̃︀𝐸(𝑠) d𝑠, 𝜓ℎ

⎞⎠, (46)

(︁
𝛿𝜏 ̃︀𝐻𝑛+1, 𝜎𝑥𝜎𝑦

̃︀𝜓ℎ

)︁
=

⎛⎝1
𝜏

∫︁ 𝑡
𝑛+ 3

2

𝑡
𝑛+ 1

2

𝐻(𝑠) d𝑠, 𝜎𝑥𝜎𝑦
̃︀𝜓ℎ

⎞⎠, (47)

(︁
𝛿𝜏𝐻

𝑛+1, ̂︀𝜓ℎ

)︁
+ 𝜀−1

0

⎛⎝1
𝜏

∫︁ 𝑡
𝑛+ 3

2

𝑡
𝑛+ 1

2

(𝜎𝑥 + 𝜎𝑦)𝐻(𝑠) d𝑠, ̂︀𝜓ℎ

⎞⎠+ 𝜀−2
0

⎛⎝1
𝜏

∫︁ 𝑡
𝑛+ 3

2

𝑡
𝑛+ 1

2

𝜎𝑥𝜎𝑦
̃︀𝐻(𝑠) d𝑠, ̂︀𝜓ℎ

⎞⎠
=
(︁
𝛿𝜏𝐻

*,𝑛+1, ̂︀𝜓ℎ

)︁
. (48)

Subtracting (44) from (23a), we obtain the first error equation:

𝜀0

(︁
𝛿𝜏𝐸

𝑛+ 1
2

ℎ𝜂 ,𝜑ℎ

)︁
+
(︁

Σ**𝐸
𝑛+ 1

2
ℎ𝜂 ,𝜑ℎ

)︁
−
(︁
𝐻

𝑛+ 1
2

ℎ𝜂 ,∇× 𝜑ℎ

)︁
+

𝜏2

4𝜇0

(︁
∇× 𝛿𝜏 ̃︀𝐸𝑛+ 1

2
ℎ𝜂 ,∇× 𝜑ℎ

)︁
= 𝜀0

(︁
𝛿𝜏𝐸

𝑛+ 1
2

𝜉 ,𝜑ℎ

)︁
+
(︂

1
𝜏

∫︁ 𝑡𝑛+1

𝑡𝑛

Σ**𝐸(𝑠) d𝑠− Σ**Π𝑐𝐸
𝑛+ 1

2 ,𝜑ℎ

)︂
+
(︂
𝑃ℎ𝐻

𝑛+ 1
2 − 1

𝜏

∫︁ 𝑡𝑛+1

𝑡𝑛

𝐻(𝑠) d𝑠,∇× 𝜑ℎ

)︂
− 𝜏2

4𝜇0

(︁
∇× 𝛿𝜏 Π𝑐

̃︀𝐸𝑛+ 1
2 ,∇× 𝜑ℎ

)︁
. (49)

Subtracting (45) from (23b), we have the 2nd error equation:

𝜀0

(︁
𝛿𝜏 ̃︀𝐸𝑛+ 1

2
ℎ𝜂 , ̃︀𝜑ℎ

)︁
− 𝜀0

(︁
𝛿𝜏𝐸

𝑛+ 1
2

ℎ𝜂 , ̃︀𝜑ℎ

)︁
−
(︁

Σ**𝐸
𝑛+ 1

2
ℎ𝜂 , ̃︀𝜑ℎ

)︁
= 𝜀0

(︁
𝛿𝜏 ̃︀𝐸𝑛+ 1

2
𝜉 , ̃︀𝜑ℎ

)︁
− 𝜀0

(︁
𝛿𝜏𝐸

𝑛+ 1
2

𝜉 , ̃︀𝜑ℎ

)︁
+
(︂

Σ**Π𝑐𝐸
𝑛+ 1

2 − 1
𝜏

∫︁ 𝑡𝑛+1

𝑡𝑛

Σ**𝐸(𝑠) d𝑠, ̃︀𝜑ℎ

)︂
. (50)

Similarly, subtracting (46) from (23c), we obtain the 3rd error equation:

𝜇0

(︁
𝛿𝜏𝐻

*,𝑛+1
ℎ𝜂 , 𝜓ℎ

)︁
+
(︁
∇× ̃︀𝐸𝑛+1

ℎ𝜂 , 𝜓ℎ

)︁
= 𝜇0

(︁
𝛿𝜏𝐻

*,𝑛+1
𝜉 , 𝜓ℎ

)︁
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+

⎛⎝1
𝜏

∫︁ 𝑡
𝑛+ 3

2

𝑡
𝑛+ 1

2

(︁
∇× ̃︀𝐸(𝑠) −∇× Π𝑐

̃︀𝐸𝑛+1
)︁

d𝑠, 𝜓ℎ

⎞⎠. (51)

Subtracting (47) from (23d), we obtain the 4th error equation:

(︁
𝛿𝜏 ̃︀𝐻𝑛+1

ℎ𝜂 , 𝜎𝑥𝜎𝑦
̃︀𝜓ℎ

)︁
−
(︁
𝐻

𝑛+1

ℎ𝜂 , 𝜎𝑥𝜎𝑦
̃︀𝜓ℎ

)︁
=
(︁
𝛿𝜏 ̃︀𝐻𝑛+1

𝜉 , 𝜎𝑥𝜎𝑦
̃︀𝜓ℎ

)︁
+

⎛⎝𝑃ℎ𝐻
𝑛+1 − 1

𝜏

∫︁ 𝑡
𝑛+ 3

2

𝑡
𝑛+ 1

2

𝐻(𝑠) d𝑠, 𝜎𝑥𝜎𝑦
̃︀𝜓ℎ

⎞⎠. (52)

Subtracting (48) from (23e), we obtain the 5th error equation:(︁
𝛿𝜏𝐻

𝑛+1
ℎ𝜂 , ̂︀𝜓ℎ

)︁
+ 𝜀−1

0

(︁
(𝜎𝑥 + 𝜎𝑦)𝐻

𝑛+1

ℎ𝜂 , ̂︀𝜓ℎ

)︁
+ 𝜀−2

0

(︂
𝜎𝑥𝜎𝑦

̃︀𝐻𝑛+1

ℎ𝜂 , ̂︀𝜓ℎ

)︂
−
(︁
𝛿𝜏𝐻

*,𝑛+1
ℎ𝜂 , ̂︀𝜓ℎ

)︁
=
(︁
𝛿𝜏𝐻

𝑛+1
𝜉 , ̂︀𝜓ℎ

)︁
+ 𝜀−1

0

⎛⎝1
𝜏

∫︁ 𝑡
𝑛+ 3

2

𝑡
𝑛+ 1

2

(𝜎𝑥 + 𝜎𝑦)
(︁
𝐻(𝑠) − 𝑃ℎ𝐻

𝑛+1
)︁

d𝑠, ̂︀𝜓ℎ

⎞⎠
+ 𝜀−2

0

⎛⎝1
𝜏

∫︁ 𝑡
𝑛+ 3

2

𝑡
𝑛+ 1

2

𝜎𝑥𝜎𝑦

(︂ ̃︀𝐻(𝑠) − 𝑃ℎ
̃︀𝐻𝑛+1

)︂
d𝑠, ̂︀𝜓ℎ

⎞⎠−
(︁
𝛿𝜏𝐻

*,𝑛+1
𝜉 , ̂︀𝜓ℎ

)︁
. (53)

With the above preparations, we can prove the following optimal error estimate for the scheme (23a)–(23e).

Theorem 2. Under the following regularity assumptions:

𝐸, ̃︀𝐸, ∇× ̃︀𝐸 ∈ 𝐿∞(0, 𝑇 ;𝐻 𝑙(curl,Ω)), 𝐻, ̃︀𝐻 ∈ 𝐿∞(0, 𝑇 ;𝐻 𝑙(Ω)), (54a)

∂𝑡𝑡𝐸, ∇× ∂𝑡𝑡
̃︀𝐸, ∂𝑡𝑡𝐻, ∇× ∂𝑡𝑡𝐻, ∂𝑡𝑡

̃︀𝐻 ∈ 𝐿2(0, 𝑇 ;𝐿2(Ω)), (54b)

∂𝑡𝐸, ∂𝑡
̃︀𝐸, ∇× ∂𝑡

̃︀𝐸 ∈ 𝐿2(0, 𝑇 ;𝐻 𝑙(curl,Ω)), ∂𝑡
̃︀𝐻 ∈ 𝐿2(0, 𝑇 ;𝐻 𝑙(Ω)), (54c)

then we have: for any 0 ≤ 𝑚 ≤ 𝑁𝑡 − 2,

𝜀
1
2
0

[︁⃦⃦⃦̃︀ℰ𝑚+1
⃦⃦⃦

+
⃦⃦⃦̃︀ℰ𝑚+1

− ℰ𝑚+1
⃦⃦⃦]︁

+
⃦⃦⃦⃦
√
𝜇0ℋ𝑚+ 3

2 +
𝜏

2
√
𝜇0

∇× ̃︀ℰ𝑚+1
⃦⃦⃦⃦

+ 𝜀−1
0 𝜇

1
2
0

⃦⃦⃦
(𝜎𝑥𝜎𝑦)

1
2 ̃︀ℋ𝑚+ 3

2

⃦⃦⃦
≤ 𝐶

(︀
ℎ𝑙 + 𝜏2

)︀
, (55)

where the constant 𝐶 > 0 is independent of ℎ and 𝜏 .

Proof. Choosing 𝜑ℎ = ̃︀𝐸𝑛+ 1
2

ℎ𝜂 in (49) and 𝜓ℎ = 𝐻
𝑛+1

ℎ𝜂 in (51), then adding the results together, we have

𝜀0

(︂
𝛿𝜏𝐸

𝑛+ 1
2

ℎ𝜂 , ̃︀𝐸𝑛+ 1
2

ℎ𝜂

)︂
+
(︂

Σ**𝐸
𝑛+ 1

2
ℎ𝜂 , ̃︀𝐸𝑛+ 1

2

ℎ𝜂

)︂
+ 𝜇0

(︁
𝛿𝜏𝐻

*,𝑛+1
ℎ𝜂 , 𝐻

𝑛+1

ℎ𝜂

)︁
− 𝜀0

(︂
𝛿𝜏𝐸

𝑛+ 1
2

𝜉 , ̃︀𝐸𝑛+ 1
2

ℎ𝜂

)︂
=

1
2

[︁(︁
𝐻

𝑛+ 1
2

ℎ𝜂 ,∇× ̃︀𝐸𝑛
ℎ𝜂

)︁
−
(︁
𝐻

𝑛+ 3
2

ℎ𝜂 ,∇× ̃︀𝐸𝑛+1
ℎ𝜂

)︁]︁
− 𝜏

8𝜇0

(︂⃦⃦⃦
∇× ̃︀𝐸𝑛+1

ℎ𝜂

⃦⃦⃦2

−
⃦⃦⃦
∇× ̃︀𝐸𝑛

ℎ𝜂

⃦⃦⃦2
)︂

+
(︂

1
𝜏

∫︁ 𝑡𝑛+1

𝑡𝑛

Σ**
(︁
𝐸(𝑠) − Π𝑐𝐸

𝑛+ 1
2
)︁

d𝑠, ̃︀𝐸𝑛+ 1
2

ℎ𝜂

)︂
+
(︂

1
𝜏

∫︁ 𝑡𝑛+1

𝑡𝑛

(︁
𝑃ℎ𝐻

𝑛+ 1
2 −𝐻(𝑠)

)︁
d𝑠,∇× ̃︀𝐸𝑛+ 1

2

ℎ𝜂

)︂

− 𝜏2

4𝜇0

(︂
∇× 𝛿𝜏 Π𝑐

̃︀𝐸𝑛+ 1
2 ,∇× ̃︀𝐸𝑛+ 1

2

ℎ𝜂

)︂
+

⎛⎝1
𝜏

∫︁ 𝑡
𝑛+ 3

2

𝑡
𝑛+ 1

2

∇×
(︁ ̃︀𝐸(𝑠) − Π𝑐

̃︀𝐸𝑛+1
)︁

d𝑠,𝐻
𝑛+1

ℎ𝜂

⎞⎠
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:=
6∑︁

𝑖=1

Est𝑖, (56)

where we use the 𝐿2 projection property
(︁
𝛿𝜏𝐻

*,𝑛+1
𝜉 , 𝐻

𝑛+1

ℎ𝜂

)︁
= 0, and the identity(︂

𝐻
𝑛+ 1

2
ℎ𝜂 ,∇× ̃︀𝐸𝑛+ 1

2

ℎ𝜂

)︂
−
(︁
∇× ̃︀𝐸𝑛+1

ℎ𝜂 , 𝐻
𝑛+1

ℎ𝜂

)︁
=

1
2

[︁(︁
𝐻

𝑛+ 1
2

ℎ𝜂 ,∇× ̃︀𝐸𝑛
ℎ𝜂

)︁
−
(︁
𝐻

𝑛+ 3
2

ℎ𝜂 ,∇× ̃︀𝐸𝑛+1
ℎ𝜂

)︁]︁
.

Choosing ̃︀𝜑ℎ = ̃︀𝐸𝑛+ 1
2

ℎ𝜂 in (50) and ̂︀𝜓ℎ = 𝜇0𝐻
𝑛+1

ℎ𝜂 in (53), respectively, we have

𝜀0
2𝜏

(︂⃦⃦⃦ ̃︀𝐸𝑛+1
ℎ𝜂

⃦⃦⃦2

−
⃦⃦⃦ ̃︀𝐸𝑛

ℎ𝜂

⃦⃦⃦2
)︂
− 𝜀0

(︂
𝛿𝜏𝐸

𝑛+ 1
2

ℎ𝜂 , ̃︀𝐸𝑛+ 1
2

ℎ𝜂

)︂
−
(︂

Σ**𝐸
𝑛+ 1

2
ℎ𝜂 , ̃︀𝐸𝑛+ 1

2

ℎ𝜂

)︂
+ 𝜀0

(︂
𝛿𝜏𝐸

𝑛+ 1
2

𝜉 , ̃︀𝐸𝑛+ 1
2

ℎ𝜂

)︂
= 𝜀0

(︂
𝛿𝜏 ̃︀𝐸𝑛+ 1

2
𝜉 , ̃︀𝐸𝑛+ 1

2

ℎ𝜂

)︂
+
(︂

1
𝜏

∫︁ 𝑡𝑛+1

𝑡𝑛

Σ**

(︁
Π𝑐𝐸

𝑛+ 1
2 − 𝐸(𝑠)

)︁
d𝑠, ̃︀𝐸𝑛+ 1

2

ℎ𝜂

)︂
:= Est7 + Est8, (57)

and

𝜇0

2𝜏

(︂⃦⃦⃦
𝐻

𝑛+ 3
2

ℎ𝜂

⃦⃦⃦2

−
⃦⃦⃦
𝐻

𝑛+ 1
2

ℎ𝜂

⃦⃦⃦2
)︂

+ 𝜀−1
0 𝜇0

⃦⃦⃦
(𝜎𝑥 + 𝜎𝑦)

1
2𝐻

𝑛+1

ℎ𝜂

⃦⃦⃦2

+ 𝜀−2
0 𝜇0

(︂
𝜎𝑥𝜎𝑦

̃︀𝐻𝑛+1

ℎ𝜂 , 𝐻
𝑛+1

ℎ𝜂

)︂
− 𝜇0

(︁
𝛿𝜏𝐻

*,𝑛+1
ℎ𝜂 , 𝐻

𝑛+1

ℎ𝜂

)︁
= 𝜀−1

0 𝜇0

⎛⎝1
𝜏

∫︁ 𝑡
𝑛+ 3

2

𝑡
𝑛+ 1

2

(𝜎𝑥 + 𝜎𝑦)
(︁
𝐻(𝑠) − 𝑃ℎ𝐻

𝑛+1
)︁

d𝑠,𝐻
𝑛+1

ℎ𝜂

⎞⎠
+ 𝜀−2

0 𝜇0

⎛⎝1
𝜏

∫︁ 𝑡
𝑛+ 3

2

𝑡
𝑛+ 1

2

𝜎𝑥𝜎𝑦

(︂ ̃︀𝐻(𝑠) − 𝑃ℎ
̃︀𝐻𝑛+1

)︂
d𝑠,𝐻

𝑛+1

ℎ𝜂

⎞⎠ := Est9 + Est10, (58)

where we dropped the following two zero terms by the 𝐿2 projection property:

𝜇0

(︁
𝛿𝜏𝐻

𝑛+1
𝜉 , 𝐻

𝑛+1

ℎ𝜂

)︁
, 𝜇0

(︁
𝛿𝜏𝐻

*,𝑛+1
𝜉 , 𝐻

𝑛+1

ℎ𝜂

)︁
= 0.

Choosing ̃︀𝜓ℎ = 𝜀−2
0 𝜇0

̃︀𝐻𝑛+1

ℎ𝜂 in (52), we have

𝜀−2
0 𝜇0

2𝜏

(︂⃦⃦⃦
(𝜎𝑥𝜎𝑦)

1
2 ̃︀𝐻𝑛+ 3

2
ℎ𝜂

⃦⃦⃦2

−
⃦⃦⃦

(𝜎𝑥𝜎𝑦)
1
2 ̃︀𝐻𝑛+ 1

2
ℎ𝜂

⃦⃦⃦2
)︂
− 𝜀−2

0 𝜇0

(︂
𝐻

𝑛+1

ℎ𝜂 , 𝜎𝑥𝜎𝑦
̃︀𝐻𝑛+1

ℎ𝜂

)︂

= 𝜀−2
0 𝜇0

(︂
𝛿𝜏 ̃︀𝐻𝑛+1

𝜉 , 𝜎𝑥𝜎𝑦
̃︀𝐻𝑛+1

ℎ𝜂

)︂
− 𝜀−2

0 𝜇0

⎛⎝1
𝜏

∫︁ 𝑡
𝑛+ 3

2

𝑡
𝑛+ 1

2

(︁
𝐻(𝑠) − 𝑃ℎ𝐻

𝑛+1
)︁

d𝑠, 𝜎𝑥𝜎𝑦
̃︀𝐻𝑛+1

ℎ𝜂

⎞⎠
:= Est11 + Est12. (59)

Adding (56)–(59) together, we have

𝜀0
2𝜏

(︂⃦⃦⃦ ̃︀𝐸𝑛+1
ℎ𝜂

⃦⃦⃦2

−
⃦⃦⃦ ̃︀𝐸𝑛

ℎ𝜂

⃦⃦⃦2
)︂

+
𝜇0

2𝜏

(︂⃦⃦⃦
𝐻

𝑛+ 3
2

ℎ𝜂

⃦⃦⃦2

−
⃦⃦⃦
𝐻

𝑛+ 1
2

ℎ𝜂

⃦⃦⃦2
)︂

+ 𝜀−1
0 𝜇0

⃦⃦⃦
(𝜎𝑥 + 𝜎𝑦)

1
2𝐻

𝑛+1

ℎ𝜂

⃦⃦⃦2

+
𝜀−2
0 𝜇0

2𝜏

(︂⃦⃦⃦
(𝜎𝑥𝜎𝑦)

1
2 ̃︀𝐻𝑛+ 3

2
ℎ𝜂

⃦⃦⃦2

−
⃦⃦⃦

(𝜎𝑥𝜎𝑦)
1
2 ̃︀𝐻𝑛+ 1

2
ℎ𝜂

⃦⃦⃦2
)︂

+
𝜏

8𝜇0

(︂⃦⃦⃦
∇× ̃︀𝐸𝑛+1

ℎ𝜂

⃦⃦⃦2

−
⃦⃦⃦
∇× ̃︀𝐸𝑛

ℎ𝜂

⃦⃦⃦2
)︂

=
(︂

(Σ** − Σ**)𝐸
𝑛+ 1

2
ℎ𝜂 , ̃︀𝐸𝑛+ 1

2

ℎ𝜂

)︂
+

1
2

[︁(︁
𝐻

𝑛+ 1
2

ℎ𝜂 ,∇× ̃︀𝐸𝑛
ℎ𝜂

)︁
−
(︁
𝐻

𝑛+ 3
2

ℎ𝜂 ,∇× ̃︀𝐸𝑛+1
ℎ𝜂

)︁]︁
+

12∑︁
𝑖=3

Est𝑖. (60)
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Choosing ̃︀𝜑 = ̃︀𝐸𝑛+ 1
2

ℎ𝜂 − 𝐸
𝑛+ 1

2
ℎ𝜂 in (50), we obtain

𝜀0
2𝜏

(︂⃦⃦⃦ ̃︀𝐸𝑛+1
ℎ𝜂 − 𝐸𝑛+1

ℎ𝜂

⃦⃦⃦2

−
⃦⃦⃦ ̃︀𝐸𝑛

ℎ𝜂 − 𝐸𝑛
ℎ𝜂

⃦⃦⃦2
)︂
−
(︂

Σ**𝐸
𝑛+ 1

2
ℎ𝜂 , ̃︀𝐸𝑛+ 1

2

ℎ𝜂 − 𝐸
𝑛+ 1

2
ℎ𝜂

)︂
= 𝜀0

(︂
𝛿𝜏 ( ̃︀𝐸𝑛+ 1

2
𝜉 − 𝐸

𝑛+ 1
2

𝜉 ), ̃︀𝐸𝑛+ 1
2

ℎ𝜂 − 𝐸
𝑛+ 1

2
ℎ𝜂

)︂
+
(︂

1
𝜏

∫︁ 𝑡𝑛+1

𝑡𝑛

Σ**

(︁
Π𝑐𝐸

𝑛+ 1
2 − 𝐸(𝑠)

)︁
d𝑠, ̃︀𝐸𝑛+ 1

2

ℎ𝜂 − 𝐸
𝑛+ 1

2
ℎ𝜂

)︂
:= Est13 + Est14. (61)

Adding (60) and (61) together, then summing up the result from 𝑛 = 0 to 𝑚, we obtain

𝜀0
2

(︂⃦⃦⃦ ̃︀𝐸𝑚+1
ℎ𝜂

⃦⃦⃦2

−
⃦⃦⃦ ̃︀𝐸0

ℎ𝜂

⃦⃦⃦2
)︂

+
𝜇0

2

(︂⃦⃦⃦
𝐻

𝑚+ 3
2

ℎ𝜂

⃦⃦⃦2

−
⃦⃦⃦
𝐻

1
2
ℎ𝜂

⃦⃦⃦2
)︂

+ 𝜏𝜀−1
0 𝜇0

𝑚∑︁
𝑛=0

⃦⃦⃦
(𝜎𝑥 + 𝜎𝑦)

1
2𝐻

𝑛+1

ℎ𝜂

⃦⃦⃦2

+
𝜀−2
0 𝜇0

2

(︂⃦⃦⃦
(𝜎𝑥𝜎𝑦)

1
2 ̃︀𝐻𝑚+ 3

2
ℎ𝜂

⃦⃦⃦2

−
⃦⃦⃦

(𝜎𝑥𝜎𝑦)
1
2 ̃︀𝐻 1

2
ℎ𝜂

⃦⃦⃦2
)︂

+
𝜏2

8𝜇0

(︂⃦⃦⃦
∇× ̃︀𝐸𝑚+1

ℎ𝜂

⃦⃦⃦2

−
⃦⃦⃦
∇× ̃︀𝐸0

ℎ𝜂

⃦⃦⃦2
)︂

+
𝜀0
2

(︂⃦⃦⃦ ̃︀𝐸𝑚+1
ℎ𝜂 − 𝐸𝑚+1

ℎ𝜂

⃦⃦⃦2

−
⃦⃦⃦ ̃︀𝐸0

ℎ𝜂 − 𝐸0
ℎ𝜂

⃦⃦⃦2
)︂

= 𝜏

𝑚∑︁
𝑛=0

(︂
(Σ** − Σ**)𝐸

𝑛+ 1
2

ℎ𝜂 , ̃︀𝐸𝑛+ 1
2

ℎ𝜂

)︂
+
𝜏

2

[︁(︁
𝐻

1
2
ℎ𝜂,∇× ̃︀𝐸0

ℎ𝜂

)︁
−
(︁
𝐻

𝑚+ 3
2

ℎ𝜂 ,∇× ̃︀𝐸𝑚+1
ℎ𝜂

)︁]︁
+ 𝜏

𝑚∑︁
𝑛=0

(︂
Σ**𝐸

𝑛+ 1
2

ℎ𝜂 , ̃︀𝐸𝑛+ 1
2

ℎ𝜂 − 𝐸
𝑛+ 1

2
ℎ𝜂

)︂
+ 𝜏

𝑚∑︁
𝑛=0

14∑︁
𝑖=3

Est𝑖. (62)

Now we need to bound those right hand side terms of (62). First, similar to (36) and (37) in the stability
analysis, respectively, we have

𝜏
𝑚∑︁

𝑛=0

(︂
(Σ** − Σ**)𝐸

𝑛+ 1
2

ℎ𝜂 , ̃︀𝐸𝑛+ 1
2

ℎ𝜂

)︂
≤ 𝜏𝜀−1

0

(︀
‖𝜎𝑥‖∞ + ‖𝜎𝑦‖∞

)︀ 𝑚∑︁
𝑛=0

[︂
3𝜀0
4

(︂⃦⃦⃦ ̃︀𝐸𝑛+1
ℎ𝜂

⃦⃦⃦2

+
⃦⃦⃦ ̃︀𝐸𝑛

ℎ𝜂

⃦⃦⃦2
)︂

+
𝜀0
2

(︂⃦⃦⃦
𝐸𝑛+1

ℎ𝜂 − ̃︀𝐸𝑛+1
ℎ𝜂

⃦⃦⃦2

+
⃦⃦⃦
𝐸𝑛

ℎ𝜂 − ̃︀𝐸𝑛
ℎ𝜂

⃦⃦⃦2
)︂]︂
, (63)

and

𝜏
𝑚∑︁

𝑛=0

(︂
Σ**𝐸

𝑛+ 1
2

ℎ𝜂 , ̃︀𝐸𝑛+ 1
2

ℎ𝜂 − 𝐸
𝑛+ 1

2
ℎ𝜂

)︂
≤ 𝜏𝜀−1

0

(︀
‖𝜎𝑥‖∞ + ‖𝜎𝑦‖∞

)︀ 𝑚∑︁
𝑛=0

[︂
𝜀0
4

(︂⃦⃦⃦ ̃︀𝐸𝑛+1
ℎ𝜂

⃦⃦⃦2

+
⃦⃦⃦ ̃︀𝐸𝑛

ℎ𝜂

⃦⃦⃦2
)︂

+
𝜀0
4

(︂⃦⃦⃦ ̃︀𝐸𝑛+1
ℎ𝜂 − 𝐸𝑛+1

ℎ

⃦⃦⃦2

+
⃦⃦⃦ ̃︀𝐸𝑛

ℎ𝜂 − 𝐸𝑛
ℎ𝜂

⃦⃦⃦2
)︂]︂
. (64)

Moving the second right hand side term of (62) to combine with some left hand side terms, we have

𝜇0

2

⃦⃦⃦
𝐻

𝑚+ 3
2

ℎ𝜂

⃦⃦⃦2

+
𝜏

2

(︁
𝐻

𝑚+ 3
2

ℎ𝜂 ,∇× ̃︀𝐸𝑚+1
ℎ𝜂

)︁
+

𝜏2

8𝜇0

⃦⃦⃦
∇× ̃︀𝐸𝑚+1

ℎ𝜂

⃦⃦⃦2

=
1
2

⃦⃦⃦⃦
√
𝜇0𝐻

𝑚+ 3
2

ℎ𝜂 +
𝜏

2
√
𝜇0

∇× ̃︀𝐸𝑚+1
ℎ𝜂

⃦⃦⃦⃦2

. (65)

Now we need to estimate the rest right hand side items in (62). Using the arithmetic-geometric mean inequality

(𝑎, 𝑏) ≤ 𝛿‖𝑎‖2 +
1
4𝛿
‖𝑏‖2

, ∀ 𝛿 > 0, (66)
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the inequality
⃦⃦

𝑎+𝑏
2

⃦⃦2 ≤ 1
2 (‖𝑎‖2 + ‖𝑏‖2), Lemma 1 and the interpolation error estimate, we have

𝜏
𝑚∑︁

𝑛=0

Est3 = 𝜏
𝑚∑︁

𝑛=0

(︂(︂
1
𝜏

∫︁ 𝑡𝑛+1

𝑡𝑛

𝐸(𝑠)d𝑠− 𝐸𝑛+ 1
2 + 𝐸𝑛+ 1

2 − Π𝑐𝐸
𝑛+ 1

2

)︂
,Σ** ̃︀𝐸𝑛+ 1

2

ℎ𝜂

)︂

≤ 𝜏
𝑚∑︁

𝑛=0

(︀
‖𝜎𝑥‖∞ + ‖𝜎𝑦‖∞

)︀[︃
𝛿3

⃦⃦⃦⃦ ̃︀𝐸𝑛+ 1
2

ℎ𝜂

⃦⃦⃦⃦2

+
1

2𝛿3

(︃⃦⃦⃦⃦
1
𝜏

∫︁ 𝑡𝑛+1

𝑡𝑛

𝐸(𝑠)d𝑠− 𝐸𝑛+ 1
2

⃦⃦⃦⃦2

+
⃦⃦⃦
𝐸

𝑛+ 1
2

𝜉

⃦⃦⃦2
)︃]︃

≤ 𝜏
𝑚∑︁

𝑛=0

(︀
‖𝜎𝑥‖∞ + ‖𝜎𝑦‖∞

)︀[︃𝛿3
2

(︂⃦⃦⃦ ̃︀𝐸𝑛+1
ℎ𝜂

⃦⃦⃦2

+
⃦⃦⃦ ̃︀𝐸𝑛

ℎ𝜂

⃦⃦⃦2
)︂

+
1

2𝛿3

(︂
𝜏3

4

∫︁ 𝑡𝑛+1

𝑡𝑛

‖∂𝑡𝑡𝐸‖2 d𝑡+ 𝐶ℎ2𝑙
⃦⃦⃦
𝐸𝑛+ 1

2

⃦⃦⃦2

𝐻𝑙(curl;Ω)

)︂]︃
. (67)

Let us introduce the wave propagation speed notation 𝐶𝑣 = 1√
𝜀0𝜇0

. Using the fact that(︂
𝑃ℎ𝐻

𝑛+ 1
2 −𝐻𝑛+ 1

2 ,∇× ̃︀𝐸𝑛+ 1
2

ℎ𝜂

)︂
= 0,

integration by parts and Lemma 1, we have

𝜏
𝑚∑︁

𝑛=0

Est4 = 𝜏
𝑚∑︁

𝑛=0

(︂
1
𝜏

∫︁ 𝑡𝑛+1

𝑡𝑛

(︁
𝐻𝑛+ 1

2 −𝐻(𝑠)
)︁

d𝑠,∇× ̃︀𝐸𝑛+ 1
2

ℎ𝜂

)︂

= 𝜏

𝑚∑︁
𝑛=0

(︂
1
𝜏

∫︁ 𝑡𝑛+1

𝑡𝑛

∇×
(︁
𝐻𝑛+ 1

2 −𝐻(𝑠)
)︁

d𝑠, ̃︀𝐸𝑛+ 1
2

ℎ𝜂

)︂

≤ 𝜏𝐶𝑣

𝑚∑︁
𝑛=0

[︃
𝜀0𝛿4

⃦⃦⃦⃦ ̃︀𝐸𝑛+ 1
2

ℎ𝜂

⃦⃦⃦⃦2

+
𝜇0

4𝛿4
· 𝜏

3

4

∫︁ 𝑡𝑛+1

𝑡𝑛

‖∇ × ∂𝑡𝑡𝐻‖2 d𝑡

]︃

≤ 𝜏𝐶𝑣

𝑚∑︁
𝑛=0

[︂
𝛿4𝜀0

2

(︂⃦⃦⃦ ̃︀𝐸𝑛+1
ℎ𝜂

⃦⃦⃦2

+
⃦⃦⃦ ̃︀𝐸𝑛

ℎ𝜂

⃦⃦⃦2
)︂

+
𝜇0

4𝛿4
· 𝜏

3

4

∫︁ 𝑡𝑛+1

𝑡𝑛

‖∇ × ∂𝑡𝑡𝐻‖2 d𝑡
]︂
. (68)

Using integration by parts, Lemma 1 and the interpolation error estimate, we obtain

𝜏

𝑚∑︁
𝑛=0

Est5 = − 𝜏3

4𝜇0

𝑚∑︁
𝑛=0

(︂
∇× 𝛿𝜏 Π𝑐

̃︀𝐸𝑛+ 1
2 ,∇× ̃︀𝐸𝑛+ 1

2

ℎ𝜂

)︂

=
𝜏3𝐶2

𝑣

4

𝑚∑︁
𝑛=0

𝜀0

[︂(︂
𝛿𝜏∇×

(︁ ̃︀𝐸𝑛+ 1
2 − Π𝑐

̃︀𝐸𝑛+ 1
2

)︁
,∇× ̃︀𝐸𝑛+ 1

2

ℎ𝜂

)︂
−
(︂
𝛿𝜏∇×∇× ̃︀𝐸𝑛+ 1

2 , ̃︀𝐸𝑛+ 1
2

ℎ𝜂

)︂]︂

≤
𝑚∑︁

𝑛=0

1
4𝛿5

(︂
𝜏2𝐶2

𝑣

4

)︂2 ∫︁ 𝑡𝑛+1

𝑡𝑛

𝜀0ℎ
−2
⃦⃦⃦
∂𝑡∇×

(︁ ̃︀𝐸 − Π𝑐
̃︀𝐸)︁⃦⃦⃦2

d𝑡+ 𝜏
𝑚∑︁

𝑛=0

𝛿5𝜀0ℎ
2

⃦⃦⃦⃦
∇× ̃︀𝐸𝑛+ 1

2

ℎ𝜂

⃦⃦⃦⃦2

+
𝑚∑︁

𝑛=0

1
4𝛿5

(︂
𝜏2𝐶2

𝑣

4

)︂2 ∫︁ 𝑡𝑛+1

𝑡𝑛

𝜀0

⃦⃦⃦
∂𝑡∇×∇× ̃︀𝐸⃦⃦⃦2

d𝑡+ 𝜏
𝑚∑︁

𝑛=0

𝛿5𝜀0

⃦⃦⃦⃦ ̃︀𝐸𝑛+ 1
2

ℎ𝜂

⃦⃦⃦⃦2

≤
𝑚∑︁

𝑛=0

𝜏4𝐶4
𝑣

32𝛿5

∫︁ 𝑡𝑛+1

𝑡𝑛

𝜀0

(︂
𝐶ℎ2(𝑙−1)

⃦⃦⃦
∇× ∂𝑡

̃︀𝐸⃦⃦⃦2

𝐻𝑙(curl,Ω)
+
⃦⃦⃦
∇×∇× ∂𝑡

̃︀𝐸⃦⃦⃦2
)︂

d𝑡

+ 𝜏(𝐶2
inv + 1)

𝑚∑︁
𝑛=0

𝛿5𝜀0
2

(︂⃦⃦⃦ ̃︀𝐸𝑛+1
ℎ𝜂

⃦⃦⃦2

+
⃦⃦⃦ ̃︀𝐸𝑛

ℎ𝜂

⃦⃦⃦2
)︂
, (69)
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where in the last step we used the standard inverse estimate ([22], Chap. 3): ‖∇ × ̃︀𝐸𝑛+ 1
2

ℎ𝜂 ‖ ≤ 𝐶invℎ
−1‖ ̃︀𝐸𝑛+ 1

2

ℎ𝜂 ‖.
Similarly, we have

𝜏
𝑚∑︁

𝑛=0

Est6 = 𝜏
𝑚∑︁

𝑛=0

⎛⎝1
𝜏

∫︁ 𝑡
𝑛+ 3

2

𝑡
𝑛+ 1

2

∇×
(︁ ̃︀𝐸(𝑠) − Π𝑐

̃︀𝐸𝑛+1
)︁

d𝑠,𝐻
𝑛+1

ℎ𝜂

⎞⎠
≤ 𝜏𝐶𝑣

𝑚∑︁
𝑛=0

⎡⎢⎣ 𝜀0
4𝛿6

⃦⃦⃦⃦
⃦⃦1
𝜏

∫︁ 𝑡
𝑛+ 3

2

𝑡
𝑛+ 1

2

∇×
(︁ ̃︀𝐸(𝑠) − ̃︀𝐸𝑛+1

)︁
d𝑠+ ∇×

(︁ ̃︀𝐸𝑛+1 − Π𝑐
̃︀𝐸𝑛+1

)︁⃦⃦⃦⃦⃦⃦
2

+ 𝜇0𝛿6

⃦⃦⃦
𝐻

𝑛+1

ℎ𝜂

⃦⃦⃦2

⎤⎥⎦
≤ 𝜏𝐶𝑣

𝑚∑︁
𝑛=0

𝜀0
2𝛿6

⎛⎝𝜏3

4

∫︁ 𝑡
𝑛+ 3

2

𝑡
𝑛+ 1

2

⃦⃦⃦
∇× ∂𝑡𝑡

̃︀𝐸⃦⃦⃦2

d𝑡+ 𝐶ℎ2𝑙
⃦⃦⃦ ̃︀𝐸𝑛+1

⃦⃦⃦2

𝐻𝑙(curl;Ω)

⎞⎠+ 𝜏𝐶𝑣𝛿6

𝑚∑︁
𝑛=0

𝜇0

⃦⃦⃦
𝐻

𝑛+1

ℎ𝜂

⃦⃦⃦2

. (70)

By Lemma 1 and the interpolation error estimate, we have

𝜏

𝑚∑︁
𝑛=0

Est7 = 𝜏

𝑚∑︁
𝑛=0

𝜀0

(︂
𝛿𝜏 ̃︀𝐸𝑛+ 1

2
𝜉 , ̃︀𝐸𝑛+ 1

2

ℎ𝜂

)︂

≤ 𝜏
𝑚∑︁

𝑛=0

𝛿7𝜀0
2

(︂⃦⃦⃦ ̃︀𝐸𝑛+1
ℎ𝜂

⃦⃦⃦2

+
⃦⃦⃦ ̃︀𝐸𝑛

ℎ𝜂

⃦⃦⃦2
)︂

+
𝜀0
4𝛿7

∫︁ 𝑡𝑚+1

0

𝐶ℎ2𝑙
⃦⃦⃦
∂𝑡
̃︀𝐸⃦⃦⃦2

𝐻𝑙(curl,Ω)
d𝑡. (71)

Similar to the analysis of Est3, we easily obtain

𝜏
𝑚∑︁

𝑛=0

Est8 = 𝜏
𝑚∑︁

𝑛=0

(︂
1
𝜏

∫︁ 𝑡𝑛+1

𝑡𝑛

[︁(︁
Π𝑐𝐸

𝑛+ 1
2 − 𝐸

𝑛+ 1
2
)︁

+
(︁
𝐸

𝑛+ 1
2 − 𝐸(𝑠)

)︁]︁
d𝑠,Σ** ̃︀𝐸𝑛+ 1

2

ℎ𝜂

)︂

≤ 𝜏

𝑚∑︁
𝑛=0

(‖𝜎𝑥‖∞ + ‖𝜎𝑦‖∞)

[︃
𝛿8
2

(︂⃦⃦⃦ ̃︀𝐸𝑛+1
ℎ𝜂

⃦⃦⃦2

+
⃦⃦⃦ ̃︀𝐸𝑛

ℎ𝜂

⃦⃦⃦2
)︂

+
1

2𝛿8

(︂
𝜏3

4

∫︁ 𝑡𝑛+1

𝑡𝑛

‖∂𝑡𝑡𝐸‖2 d𝑡+ 𝐶ℎ2𝑙
⃦⃦⃦
𝐸

𝑛+ 1
2
⃦⃦⃦2

𝐻𝑙(curl;Ω)

)︂]︃
. (72)

Similarly, we can obtain

𝜏
𝑚∑︁

𝑛=0

Est9 = 𝜏
𝑚∑︁

𝑛=0

𝜀−1
0 𝜇0

⎛⎝1
𝜏

∫︁ 𝑡
𝑛+ 3

2

𝑡
𝑛+ 1

2

(𝜎𝑥 + 𝜎𝑦)
(︁
𝐻(𝑠) − 𝑃ℎ𝐻

𝑛+1
)︁

d𝑠,𝐻
𝑛+1

ℎ𝜂

⎞⎠
≤ 𝜏𝜀−1

0 𝜇0

2

𝑚∑︁
𝑛=0

⃦⃦⃦
(𝜎𝑥 + 𝜎𝑦)

1
2𝐻

𝑛+1

ℎ𝜂

⃦⃦⃦2

+
1
2
𝜏
(︀
‖𝜎𝑥‖∞ + ‖𝜎𝑦‖∞

)︀
𝜀−1
0 𝜇0

𝑚∑︁
𝑛=0

⃦⃦⃦⃦
⃦⃦
⎛⎝1
𝜏

∫︁ 𝑡
𝑛+ 3

2

𝑡
𝑛+ 1

2

𝐻(𝑠)d𝑠−𝐻
𝑛+1

⎞⎠+
(︁
𝐻

𝑛+1 − 𝑃ℎ𝐻
𝑛+1
)︁⃦⃦⃦⃦⃦⃦

2

≤ 𝜏𝜀−1
0 𝜇0

2

𝑚∑︁
𝑛=0

⃦⃦⃦
(𝜎𝑥 + 𝜎𝑦)

1
2𝐻

𝑛+1

ℎ𝜂

⃦⃦⃦2

+ 𝜏
(︀
‖𝜎𝑥‖∞ + ‖𝜎𝑦‖∞

)︀
𝜀−1
0 𝜇0

𝑚∑︁
𝑛=0

[︃
𝜏3

4

∫︁ 𝑡
𝑛+ 3

2

𝑡
𝑛+ 1

2

‖∂𝑡𝑡𝐻‖2 d𝑡+ 𝐶ℎ2𝑙
⃦⃦⃦
𝐻

𝑛+1
⃦⃦⃦2

𝐻𝑙(Ω)

]︃
, (73)
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and

𝜏
𝑚∑︁

𝑛=0

Est10 = 𝜏
𝑚∑︁

𝑛=0

𝜀−2
0 𝜇0

⎛⎝1
𝜏

∫︁ 𝑡
𝑛+ 3

2

𝑡
𝑛+ 1

2

𝜎𝑥𝜎𝑦

(︂ ̃︀𝐻(𝑠) − 𝑃ℎ
̃︀𝐻𝑛+1

)︂
d𝑠,𝐻

𝑛+1

ℎ𝜂

⎞⎠
≤ 𝜏‖𝜎𝑥‖∞‖𝜎𝑦‖∞𝜀

−2
0

𝑚∑︁
𝑛=0

⎡⎣𝛿10𝜇0

⃦⃦⃦
𝐻

𝑛+1

ℎ𝜂

⃦⃦⃦2

+
𝜇0

2𝛿10

⎛⎝𝜏3

4

∫︁ 𝑡
𝑛+ 3

2

𝑡
𝑛+ 1

2

⃦⃦⃦
∂𝑡𝑡
̃︀𝐻 ⃦⃦⃦2

d𝑡+ 𝐶ℎ2𝑙
⃦⃦⃦ ̃︀𝐻𝑛+1

⃦⃦⃦2

𝐻𝑙(Ω)

⎞⎠⎤⎦. (74)

By Lemma 1 and the projection error estimate, we have

𝜏
𝑚∑︁

𝑛=0

Est11 = 𝜏
𝑚∑︁

𝑛=0

𝜀−2
0 𝜇0

(︂
𝛿𝜏 ̃︀𝐻𝑛+1

𝜉 , 𝜎𝑥𝜎𝑦
̃︀𝐻𝑛+1

ℎ𝜂

)︂

≤ 𝜏𝜀−2
0 𝜇0

𝑚∑︁
𝑛=0

𝛿11
2

(︂⃦⃦⃦
(𝜎𝑥𝜎𝑦)

1
2 ̃︀𝐻𝑛+ 3

2
ℎ𝜂

⃦⃦⃦2

+
⃦⃦⃦

(𝜎𝑥𝜎𝑦)
1
2 ̃︀𝐻𝑛+ 1

2
ℎ𝜂

⃦⃦⃦2
)︂

+ 𝜀−2
0 ‖𝜎𝑥‖∞‖𝜎𝑦‖∞

1
4𝛿11

∫︁ 𝑡
𝑚+ 3

2

𝑡 1
2

𝐶ℎ2𝑙𝜇0

⃦⃦⃦
∂𝑡
̃︀𝐻 ⃦⃦⃦2

𝐻𝑙(Ω)
d𝑡. (75)

Similar to Est10, we obtain

𝜏
𝑚∑︁

𝑛=0

Est12 = 𝜏
𝑚∑︁

𝑛=0

𝜀−2
0 𝜇0

⎛⎝1
𝜏

∫︁ 𝑡
𝑛+ 3

2

𝑡
𝑛+ 1

2

(︁
𝐻(𝑠) − 𝑃ℎ𝐻

𝑛+1
)︁

d𝑠, 𝜎𝑥𝜎𝑦
̃︀𝐻𝑛+1

ℎ𝜂

⎞⎠
≤ 𝜏𝜀−2

0 𝜇0

𝑚∑︁
𝑛=0

𝛿12
2

(︂⃦⃦⃦
(𝜎𝑥𝜎𝑦)

1
2 ̃︀𝐻𝑛+ 3

2
ℎ𝜂

⃦⃦⃦2

+
⃦⃦⃦

(𝜎𝑥𝜎𝑦)
1
2 ̃︀𝐻𝑛+ 1

2
ℎ𝜂

⃦⃦⃦2
)︂

+ 𝜏𝜀−2
0 ‖𝜎𝑥‖∞‖𝜎𝑦‖∞

1
2𝛿12

𝑚∑︁
𝑛=0

[︃
𝜏3

4

∫︁ 𝑡
𝑛+ 3

2

𝑡
𝑛+ 1

2

𝜇0‖∂𝑡𝑡𝐻‖2 d𝑡+ 𝐶ℎ2𝑙𝜇0

⃦⃦⃦
𝐻

𝑛+1
⃦⃦⃦2

𝐻𝑙(Ω)

]︃
. (76)

Finally, by Lemma 1 and the interpolation error estimate, we have

𝜏

𝑚∑︁
𝑛=0

𝐸𝑠𝑡13 = 𝜏

𝑚∑︁
𝑛=0

𝜀0

(︂
𝛿𝜏 ( ̃︀𝐸𝑛+ 1

2
𝜉 − 𝐸

𝑛+ 1
2

𝜉 ), ̃︀𝐸𝑛+ 1
2

ℎ𝜂 − 𝐸
𝑛+ 1

2
ℎ𝜂

)︂

≤ 𝜏
𝑚∑︁

𝑛=0

𝛿13𝜀0
2

(︂⃦⃦⃦ ̃︀𝐸𝑛+1
ℎ𝜂 − 𝐸𝑛+1

ℎ𝜂

⃦⃦⃦2

+
⃦⃦⃦ ̃︀𝐸𝑛

ℎ𝜂 − 𝐸𝑛
ℎ𝜂

⃦⃦⃦2
)︂

+
1

4𝛿13

∫︁ 𝑡𝑚+1

0

𝐶ℎ2𝑙 · 𝜀0
⃦⃦⃦
∂𝑡( ̃︀𝐸 − 𝐸)

⃦⃦⃦2

𝐻𝑙(curl,Ω)
d𝑡, (77)

and

𝜏

𝑚∑︁
𝑛=0

Est14 = 𝜏

𝑚∑︁
𝑛=0

(︂
1
𝜏

∫︁ 𝑡𝑛+1

𝑡𝑛

Σ**

(︁
Π𝑐𝐸

𝑛+ 1
2 − 𝐸(𝑠)

)︁
d𝑠, ̃︀𝐸𝑛+ 1

2

ℎ𝜂 − 𝐸
𝑛+ 1

2
ℎ𝜂

)︂

≤ 𝜏(‖𝜎𝑥‖∞ + ‖𝜎𝑦‖∞)
𝑚∑︁

𝑛=0

[︃
𝛿14
2

(︂⃦⃦⃦ ̃︀𝐸𝑛+1
ℎ𝜂 − 𝐸𝑛+1

ℎ𝜂

⃦⃦⃦2

+
⃦⃦⃦ ̃︀𝐸𝑛

ℎ𝜂 − 𝐸𝑛
ℎ𝜂

⃦⃦⃦2
)︂
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+
1

2𝛿14

(︂
𝜏3

4

∫︁ 𝑡𝑛+1

𝑡𝑛

‖∂𝑡𝑡𝐸‖2 d𝑡+ 𝐶ℎ2𝑙
⃦⃦⃦
𝐸

𝑛+ 1
2
⃦⃦⃦2

𝐻𝑙(curl;Ω)

)︂]︃
. (78)

Substituting the estimates (63)–(78) into (62), and combining many like terms, we obtain

𝜀0
2

(︂⃦⃦⃦ ̃︀𝐸𝑚+1
ℎ𝜂

⃦⃦⃦2

−
⃦⃦⃦ ̃︀𝐸0

ℎ𝜂

⃦⃦⃦2
)︂

+
1
2

(︃⃦⃦⃦⃦
√
𝜇0𝐻

𝑚+ 3
2

ℎ𝜂 +
𝜏

2
√
𝜇0

∇× ̃︀𝐸𝑚+1
ℎ𝜂

⃦⃦⃦⃦2

−
⃦⃦⃦⃦
√
𝜇0𝐻

1
2
ℎ𝜂 +

𝜏

2
√
𝜇0

∇× ̃︀𝐸0
ℎ𝜂

⃦⃦⃦⃦2
)︃

+ 𝜏𝜀−1
0 𝜇0

𝑚∑︁
𝑛=0

⃦⃦⃦
(𝜎𝑥 + 𝜎𝑦)

1
2𝐻

𝑛+1

ℎ𝜂

⃦⃦⃦2

+
𝜀−2
0 𝜇0

2

(︂⃦⃦⃦
(𝜎𝑥𝜎𝑦)

1
2 ̃︀𝐻𝑚+ 3

2
ℎ𝜂

⃦⃦⃦2

−
⃦⃦⃦

(𝜎𝑥𝜎𝑦)
1
2 ̃︀𝐻 1

2
ℎ𝜂

⃦⃦⃦2
)︂

+
𝜀0
2

(︂⃦⃦⃦ ̃︀𝐸𝑚+1
ℎ𝜂 − 𝐸𝑚+1

ℎ𝜂

⃦⃦⃦2

−
⃦⃦⃦ ̃︀𝐸0

ℎ𝜂 − 𝐸0
ℎ𝜂

⃦⃦⃦2
)︂

≤
[︂
𝜀−1
0

(︀
‖𝜎𝑥‖∞ + ‖𝜎𝑦‖∞

)︀(︂
1 +

𝛿3 + 𝛿8
2

)︂
+

1
2

(𝐶𝑣𝛿4 + 𝛿7) +
1
2
(︀
𝐶2

inv + 1
)︀
𝛿5

]︂
· 𝜏

𝑚∑︁
𝑛=0

𝜀0

(︂⃦⃦⃦ ̃︀𝐸𝑛+1
ℎ𝜂

⃦⃦⃦2

+
⃦⃦⃦ ̃︀𝐸𝑛

ℎ𝜂

⃦⃦⃦2
)︂

+
[︂
𝜀−1
0

(︀
‖𝜎𝑥‖∞ + ‖𝜎𝑦‖∞

)︀(︂
1 +

𝛿14
2

)︂
+
𝛿13
2

]︂
· 𝜏

𝑚∑︁
𝑛=0

𝜀0

(︂⃦⃦⃦
𝐸𝑛+1

ℎ𝜂 − ̃︀𝐸𝑛+1
ℎ𝜂

⃦⃦⃦2

+
⃦⃦⃦
𝐸𝑛

ℎ𝜂 − ̃︀𝐸𝑛
ℎ𝜂

⃦⃦⃦2
)︂

+

{︃(︀
𝐶𝑣𝜀0𝛿6 + 𝜀−1

0 ‖𝜎𝑥‖∞‖𝜎𝑦‖∞𝛿10
)︀
· 𝜏𝜀−1

0 𝜇0

𝑚∑︁
𝑛=0

⃦⃦⃦
𝐻

𝑛+1

ℎ𝜂

⃦⃦⃦2

+
𝜏𝜀−1

0 𝜇0

2

𝑚∑︁
𝑛=0

⃦⃦⃦
(𝜎𝑥 + 𝜎𝑦)

1
2𝐻

𝑛+1

ℎ𝜂

⃦⃦⃦2
}︃

+ (𝛿11 + 𝛿12)𝜏
𝑚∑︁

𝑛=0

𝜀−2
0 𝜇0

2

(︂⃦⃦⃦
(𝜎𝑥𝜎𝑦)

1
2 ̃︀𝐻𝑛+ 3

2
ℎ𝜂

⃦⃦⃦2

+
⃦⃦⃦

(𝜎𝑥𝜎𝑦)
1
2 ̃︀𝐻𝑛+ 1

2
ℎ𝜂

⃦⃦⃦2
)︂

+ 𝜏4

⎧⎨⎩(︀‖𝜎𝑥‖∞ + ‖𝜎𝑦‖∞
)︀(︂ 1

8𝛿3
+

1
8𝛿8

+
1

8𝛿14

)︂∫︁ 𝑡𝑚+1

0

‖∂𝑡𝑡𝐸‖2 d𝑡+
𝐶𝑣𝜇0

16𝛿4

∫︁ 𝑡𝑚+1

0

‖∇ × ∂𝑡𝑡𝐻‖2 d𝑡

+
𝐶4

𝑣

32𝛿5

∫︁ 𝑡𝑚+1

0

𝜀0

(︂
𝐶ℎ2(𝑙−1)

⃦⃦⃦
∇× ∂𝑡

̃︀𝐸⃦⃦⃦2

𝐻𝑙(curl,Ω)
+
⃦⃦⃦
∇×∇× ∂𝑡

̃︀𝐸⃦⃦⃦2
)︂

d𝑡

+
𝐶𝑣

8𝛿6

∫︁ 𝑡
𝑚+ 3

2

𝑡 1
2

𝜀0

⃦⃦⃦
∇× ∂𝑡𝑡

̃︀𝐸⃦⃦⃦2

d𝑡+

(︃
𝜀−1
0

(︀
‖𝜎𝑥‖∞ + ‖𝜎𝑦‖∞

)︀
4

+
𝜀−2
0 ‖𝜎𝑥‖∞‖𝜎𝑦‖∞

8𝛿12

)︃∫︁ 𝑡
𝑚+ 3

2

𝑡 1
2

𝜇0‖∂𝑡𝑡𝐻‖2 d𝑡

+
𝜀−2
0 ‖𝜎𝑥‖∞‖𝜎𝑦‖∞

8𝛿10

∫︁ 𝑡
𝑚+ 3

2

𝑡 1
2

𝜇0

⃦⃦⃦
∂𝑡𝑡
̃︀𝐻 ⃦⃦⃦2

d𝑡

⎫⎬⎭+ 𝐶ℎ2𝑙

{︂
1
𝛿7

∫︁ 𝑡𝑚+1

0

𝜀0

⃦⃦⃦
∂𝑡
̃︀𝐸⃦⃦⃦2

𝐻𝑙(curl,Ω)
d𝑡

+
1
𝛿13

∫︁ 𝑡𝑚+1

0

𝜀0

⃦⃦⃦
∂𝑡

(︁ ̃︀𝐸 − 𝐸
)︁⃦⃦⃦2

𝐻𝑙(curl,Ω)
d𝑡
}︂

+ 𝐶ℎ2𝑙(𝑚+ 1)𝜏

×

⎧⎨⎩
(︂(︀

‖𝜎𝑥‖∞ + ‖𝜎𝑦‖∞
)︀(︂ 1

𝛿3
+

1
𝛿8

)︂
+

1
𝛿14

)︂
‖𝐸‖2

𝐿∞(0,𝑇 ;𝐻𝑙(curl,Ω)) +
𝐶𝑣

𝛿6

⃦⃦⃦
∇× ̃︀𝐸⃦⃦⃦2

𝐿∞(0,𝑇 ;𝐻𝑙(curl,Ω))

+
(︂

1 +
1
𝛿12

)︂
‖𝐻‖2

𝐿∞(0,𝑇 ;𝐻𝑙(Ω)) +
1
𝛿10

⃦⃦⃦ ̃︀𝐻 ⃦⃦⃦2

𝐿∞(0,𝑇 ;𝐻𝑙(Ω))
+

1
𝛿11

∫︁ 𝑡
𝑚+ 3

2

𝑡 1
2

⃦⃦⃦
∂𝑡
̃︀𝐻 ⃦⃦⃦2

𝐻𝑙(Ω)
d𝑡

⎫⎬⎭. (79)

Now first choosing those 𝛿𝑖 small enough, then choosing 𝜏 small enough (but independent of mesh size ℎ),
dropping term 𝜏𝜀−1

0 𝜇0

∑︀𝑚
𝑛=0 ‖(𝜎𝑥 + 𝜎𝑦)

1
2𝐻

𝑛+1

ℎ𝜂 ‖2, and using the discrete Gronwall inequality and the fact that
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(𝑚+ 1)𝜏 ≤ 𝑇 , we have

𝜀0
2

[︂⃦⃦⃦ ̃︀𝐸𝑚+1
ℎ𝜂

⃦⃦⃦2

+
⃦⃦⃦ ̃︀𝐸𝑚+1

ℎ𝜂 − 𝐸𝑚+1
ℎ𝜂

⃦⃦⃦2
]︂

+
1
2

⃦⃦⃦⃦
√
𝜇0𝐻

𝑚+ 3
2

ℎ𝜂 +
𝜏

2
√
𝜇0

∇× ̃︀𝐸𝑚+1
ℎ𝜂

⃦⃦⃦⃦2

+
𝜀−2
0 𝜇0

2

⃦⃦⃦
(𝜎𝑥𝜎𝑦)

1
2 ̃︀𝐻𝑚+ 3

2
ℎ𝜂

⃦⃦⃦2

≤ 𝐶

{︃
𝜀0
2

[︂⃦⃦⃦ ̃︀𝐸0
ℎ𝜂

⃦⃦⃦2

+
⃦⃦⃦ ̃︀𝐸0

ℎ𝜂 − 𝐸0
ℎ𝜂

⃦⃦⃦2
]︂

+
1
2

⃦⃦⃦⃦
√
𝜇0𝐻

1
2
ℎ𝜂 +

𝜏

2
√
𝜇0

∇× ̃︀𝐸0
ℎ𝜂

⃦⃦⃦⃦2

+
𝜀−2
0 𝜇0

2

⃦⃦⃦
(𝜎𝑥𝜎𝑦)

1
2 ̃︀𝐻 1

2
ℎ𝜂

⃦⃦⃦2
}︃

+ 𝐶ℎ2𝑙 + 𝐶𝜏4 ≤ 𝐶(ℎ𝑙 + 𝜏2)2, (80)

where in the last step, we used the initial approximations (24a)–(24d). Then by the triangular inequality, and
the interpolation and projection error estimates, we immediately have

𝜀
1
2
0

[︁⃦⃦⃦̃︀ℰ𝑚+1
⃦⃦⃦

+
⃦⃦⃦̃︀ℰ𝑚+1

− ℰ𝑚+1
⃦⃦⃦]︁

+
⃦⃦⃦⃦
√
𝜇0ℋ𝑚+ 3

2 +
𝜏

2
√
𝜇0

∇× ̃︀ℰ𝑚+1
⃦⃦⃦⃦

+ 𝜀−1
0 𝜇

1
2
0

⃦⃦⃦
(𝜎𝑥𝜎𝑦)

1
2 ̃︀ℋ𝑚+ 3

2

⃦⃦⃦
≤ 𝐶

(︀
ℎ𝑙 + 𝜏2

)︀
, (81)

which completes the proof of (55). �

4. Numerical results

In this section, we present some numerical results to demonstrate the performance of our proposed leapfrog
scheme. For simplity, we only implement the lowest order RTN mixed finite element spaces (𝑙 = 1) on triangular
elements:

𝑉ℎ =
{︀
𝜓ℎ ∈ 𝐿2(Ω) : 𝜓ℎ|𝐾 = constant, ∀𝐾 ∈ 𝑇ℎ

}︀
,

𝑈ℎ = {𝜑ℎ ∈ 𝐻(curl; Ω) : 𝜑ℎ|𝐾 = span{𝜆𝑖∇𝜆𝑗 − 𝜆𝑗∇𝜆𝑖}, ∀𝐾 ∈ 𝑇ℎ},

where 𝜆𝑖 are the barycentric coordinate functions.

Example 1. This example is used to justify the convergence rate of our scheme. For this example, we choose
the physical domain Ω = [0, 1]2 and

𝜀0 = 𝜇0 = 1, 𝜎𝑥(𝑥) = 𝜋(1 + sin(𝜋𝑥)), 𝜎𝑦(𝑦) = 𝜋(1 + sin(𝜋𝑦)).

To construct an analytical solution, we add extra source terms to the model equations (1a)–(1e). More
specifically, we solve the following governing equations:

𝜀0∂𝑡𝐸 + Σ**𝐸 = ∇×𝐻 + 𝑔, (82a)

𝜀0∂𝑡
̃︀𝐸 = 𝜀0∂𝑡𝐸 + Σ**𝐸, (82b)

𝜇0∂𝑡𝐻
* = −∇× ̃︀𝐸, (82c)

∂𝑡
̃︀𝐻 = 𝐻, (82d)

∂𝑡𝐻 + 𝜀−1
0 (𝜎𝑥 + 𝜎𝑦)𝐻 + 𝜀−2

0 𝜎𝑥𝜎𝑦
̃︀𝐻 = ∂𝑡𝐻

* + 𝑓, (82e)

with exact solutions given as follows:

𝐸 =
(︂
𝐸𝑥

𝐸𝑦

)︂
=
(︂
𝑒−𝜋𝑡 cos(𝜋𝑥) sin(𝜋𝑦)
−𝑒−𝜋𝑡 sin(𝜋𝑥) cos(𝜋𝑦)

)︂
, ̃︀𝐸 =

⎛⎜⎝
(︁

1 − 𝜎𝑥

𝜀0𝜋

)︁
𝐸𝑥(︁

1 − 𝜎𝑦

𝜀0𝜋

)︁
𝐸𝑦

⎞⎟⎠,
𝐻 = 𝑒−𝜋𝑡 cos(𝜋𝑥) cos(𝜋𝑦), ̃︀𝐻 = − 1

𝜋
𝐻, 𝐻* = − 1

𝜇0

(︂
2 − 𝜎𝑥 + 𝜎𝑦

𝜀0𝜋

)︂
𝐻.
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Table 1. The 𝐿2 errors obtained at 𝑇 = 1 with 𝜏 = 4ℎ, 𝜏 = 2ℎ, 𝜏 = ℎ, 𝜏 = 1
2ℎ and various

mesh sizes ℎ.

ℎ
𝜏 = 4ℎ 𝜏 = 2ℎ

‖𝐸 −𝐸ℎ‖ Rate ‖𝐻 −𝐻ℎ‖ Rate ‖𝐸 −𝐸ℎ‖ Rate ‖𝐻 −𝐻ℎ‖ Rate

1
24

1.7078E−03 1.8238E−03 1.2047E−03 1.0173E−03
1
48

6.5253E−04 1.38800 6.1859E−04 1.55988 5.8366E−04 1.04554 4.8137E−04 1.07954
1
96

2.9831E−04 1.12923 2.5680E−04 1.26835 2.8946E−04 1.01175 2.3698E−04 1.02239
1

192
1.4555E−04 1.03534 1.2062E−04 1.09013 1.4443E−04 1.00297 1.1801E−04 1.00584

1
384

7.2318E−05 1.00904 5.9277E−05 1.02496 7.2179E−05 1.00075 5.8944E−05 1.00148

𝜏 = ℎ 𝜏 = 1
2
ℎ

1
24

1.1648E−03 9.4594E−04 1.1613E−03 9.4250E−04
1
48

5.7869E−04 1.00919 4.7179E−04 1.00360 5.7826E−04 1.00599 4.7136E−04 0.99968
1
96

2.8884E−04 1.00251 2.3575E−04 1.00092 2.8879E−04 1.00171 2.3569E−04 0.99992
1

192
1.4436E−04 1.00065 1.1785E−04 1.00023 1.4435E−04 1.00045 1.1785E−04 0.99998

1
384

7.2169E−05 1.00017 5.8925E−05 1.00006 7.2169E−05 1.00012 5.8924E−05 0.99999

While the corresponding source terms are given as

𝑔 =
(︂
𝑔𝑥

𝑔𝑦

)︂
=
(︂

(−𝜋𝜀0 + 𝜎𝑦 + 𝜋)𝑒−𝜋𝑡 cos(𝜋𝑥) sin(𝜋𝑦)
−(−𝜋𝜀0 + 𝜎𝑥 + 𝜋)𝑒−𝜋𝑡 sin(𝜋𝑥) cos(𝜋𝑦)

)︂
,

𝑓 = 𝑒−𝜋𝑡 cos(𝜋𝑥) cos(𝜋𝑦)
[︂(︂

−𝜋 +
𝜎𝑥 + 𝜎𝑦

𝜀0
− 𝜎𝑥𝜎𝑦

𝜋𝜀20

)︂
− 1
𝜇0

(︂
2𝜋 − 𝜎𝑥 + 𝜎𝑦

𝜀0

)︂]︂
.

In this case, we have the following leapfrog type scheme: given initial approximations 𝐸0
ℎ,
̃︀𝐸0

ℎ, 𝐻
1
2
ℎ , 𝐻

* 1
2

ℎ , 𝐻̃
1
2
ℎ ,

for any 𝑛 ≥ 0, find 𝐸𝑛+1
ℎ , ̃︀𝐸𝑛+1

ℎ ∈ 𝑈0
ℎ , 𝐻

𝑛+ 3
2

ℎ , 𝐻
*𝑛+ 3

2
ℎ , ̃︀𝐻𝑛+ 3

2
ℎ ∈ 𝑉ℎ such that

𝜀0

(︁
𝛿𝜏𝐸

𝑛+ 1
2

ℎ ,𝜑ℎ

)︁
+
(︁

Σ**𝐸
𝑛+ 1

2
ℎ ,𝜑ℎ

)︁
=
(︁
𝐻

𝑛+ 1
2

ℎ ,∇× 𝜑ℎ

)︁
− 𝜏2

4𝜇0

(︁
∇× 𝛿𝜏 ̃︀𝐸𝑛+ 1

2
ℎ ,∇× 𝜑ℎ

)︁
+
(︁
𝑔𝑛+ 1

2 ,𝜑ℎ

)︁
, ∀𝜑ℎ ∈ 𝑈0

ℎ , (83a)

𝜀0

(︁
𝛿𝜏 ̃︀𝐸𝑛+ 1

2
ℎ , ̃︀𝜑ℎ

)︁
= 𝜀0

(︁
𝛿𝜏𝐸

𝑛+ 1
2

ℎ , ̃︀𝜑ℎ

)︁
+
(︁

Σ**𝐸
𝑛+ 1

2
ℎ , ̃︀𝜑ℎ

)︁
, ∀ ̃︀𝜑ℎ ∈ 𝑈0

ℎ , (83b)

𝜇0

(︀
𝛿𝜏𝐻

*𝑛+1
ℎ , 𝜓ℎ

)︀
= −

(︁
∇× ̃︀𝐸𝑛+1

ℎ , 𝜓ℎ

)︁
, ∀𝜓ℎ ∈ 𝑉ℎ, (83c)(︁

𝛿𝜏 ̃︀𝐻𝑛+1
ℎ , 𝜎𝑥𝜎𝑦

̃︀𝜓ℎ

)︁
=
(︁
𝐻

𝑛+1

ℎ , 𝜎𝑥𝜎𝑦
̃︀𝜓ℎ

)︁
, ∀ ̃︀𝜓ℎ ∈ 𝑉ℎ, (83d)(︁

𝛿𝜏𝐻
𝑛+1
ℎ , ̂︀𝜓ℎ

)︁
+ 𝜀−1

0

(︁
(𝜎𝑥 + 𝜎𝑦)𝐻

𝑛+1

ℎ , ̂︀𝜓ℎ

)︁
+ 𝜀−2

0

(︁
𝜎𝑥𝜎𝑦

̃︀𝐻𝑛+1
ℎ , ̂︀𝜓ℎ

)︁
=
(︁
𝛿𝜏𝐻

*𝑛+1
ℎ , ̂︀𝜓ℎ

)︁
+
(︁
𝑓𝑛+1, ̂︀𝜓ℎ

)︁
, ∀ ̂︀𝜓ℎ ∈ 𝑉ℎ. (83e)

We implement this scheme with different time step sizes 𝜏 = 1
2ℎ, 𝜏 = ℎ, 𝜏 = 2ℎ, 𝜏 = 4ℎ and varying mesh

sizes ℎ from 1
24 to 1

384 . The obtained convergence rates of the 𝐿2 errors at final time 𝑇 = 1 are presented in
Table 1, which shows that 𝒪(ℎ) convergence can be obtained for both the electric field 𝐸 and the magnetic
field 𝐻 without satisfying the CFL constraint.
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Table 2. The 𝐿2 errors obtained at 𝑇 = 1 with 𝜏 =
√
ℎ and various mesh sizes ℎ.

ℎ ‖𝐸 −𝐸ℎ‖ Rate ‖𝐻 −𝐻ℎ‖ Rate

1/4 2.7006E−02 8.3175E−02
1/16 3.4491E−03 1.48450 3.9255E−03 2.20259
1/64 8.0591E−04 1.04875 9.6349E−04 1.01327
1/256 1.9775E−04 1.01347 2.4668E−04 0.98281

To test the time convergence rate, we solve this example again by fixing 𝜏 =
√
ℎ and varying mesh sizes ℎ

from 1
4 to 1

256 . The convergence rates of 𝐿2 errors obtained at 𝑇 = 1 are presented in Table 2, which justifies
the theoretical convergence rate 𝑂(𝜏2 + ℎ) for the lowest order RTN spaces.

Example 2. This example is used to test the long time stability of our scheme and the wave absorb-
ing capability of this equivalent Bérenger’s PML model. For this example, we choose the physical domain
Ω = [0, 0.5] m×[0, 0.5] m, which is partitioned by a uniform triangular mesh with mesh size ℎ = 2.5 × 10−3 m.
We surround the physical domain by 20-layer PML cells with thickness 𝑑𝑑 = 20 h. In our simulation, the
damping function 𝜎𝑥 is chosen as a fourth-order polynomial function given as:

𝜎𝑥(𝑥) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜎max

(︂
𝑥− 0.5
𝑑𝑑

)︂4

if 𝑥 ≥ 0.5,

𝜎max

(︁ 𝑥
𝑑𝑑

)︁4

if 𝑥 ≤ 0,

0 otherwise,

where 𝜎max = − log(𝑒𝑟𝑟) * 5 * 𝜀0 * 𝐶𝑣/(2 * 𝑑𝑑) with 𝑒𝑟𝑟 = 10−7 and 𝐶𝑣 being the wave propagation speed in
vacuum. The damping function 𝜎𝑦 has exactly the same form but in 𝑦 variable.

This example is solved by the scheme (23a)–(23e) with zero initial fields and a point source wave located at
(0.25, 0.25), the center of the domain. The source wave is imposed on the 𝐻 field given as 𝐻 = 0.1 sin(2𝜋𝑓𝑡)
with frequency 𝑓 = 3 GHz.

Snapshots of the computed magnetic field 𝐻 obtained with time step size 𝜏 = 2.5× 10−12 s and up to 10 000
time steps are plotted in Figure 1, which shows a long time stability of the scheme without obvious reflection
from the surrounding PML cells.

To see more clearly the performance of the PML model, we solve this example again by stopping the source
wave after 200 time steps so that we can see how large the residual wave magnitude can be. Some snapshots
of the magnetic fields 𝐻 are plotted in Figure 2, which shows that the original source wave exits the domain
without obvious reflections. The magnitude of the residual wave after 1500 time steps is about 2 × 10−4, which
is basically the numerical scheme error.

Example 3. This example is used to show the wave absorbing performance of our equivalent Bérenger’s PML
model with a line source wave. For this example, we choose Ω = [0, 2] m×[0, 2] m, which is surrounded by 8-layer
PML cells with thickness 𝑑𝑑 = 8 h. The incident source is imposed on the 𝐻 field given as 𝐻 = sin(2𝜋𝑓𝑡) with
frequency 𝑓 = 1.5 GHz. To make a line source wave, the wave is placed on a line segment located at 𝑥 = 0.1 m
with 𝑦 ranging from 𝑦 = 0.5 m to 𝑦 = 1.5 m. We use ℎ = 0.02 m and 𝜏 = 10−12 s for this simulation.

Some snapshots of |𝐻| up to 20 000 time steps are presented in Figure 3, which shows that out scheme enjoys
a long stability and the wave propagates in the free space without obvious wave reflection from the truncated
PML layers.



640 Y. HUANG ET AL.

Figure 1. Magnetic field 𝐻 at various time steps: (top left) 300 steps; (top right) 400 steps;
(bottom left) 500 steps; (bottom right) 10 000 steps.

Figure 2. Snapshots of the magnetic field 𝐻: (top left) 200 steps; (top right) 500 steps; (bottom
left) 700 steps; (bottom right) 1500 steps.
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Figure 3. Snapshots of |𝐻| field obtained with 𝜏 = 10−12 s at 1000, 2000, 4000, 8000, 15 000,
20 000 time steps. (a) |𝐻| at time step 1000. (b) |𝐻| at time step 2000. (c) |𝐻| at time step
4000. (d) |𝐻| at time step 8000. (e) |𝐻| at time step 15 000. (f) |𝐻| at time step 20 000.

Example 4. This example is used to illustrate the dependence of the PML absorption capacity on the damping
functions, especially on the PML thickness. By adopting a popular numerical strategy (e.g., [34]), we impose
the same source wave given as Example 2 at the center of the physical domain Ω𝐿 = [0.125, 0.375]2 m, which is
discretized by a 100×100 cells. We surround the domain Ω𝐿 by the equivalent Berenger’s PML, whose damping
functions and related parameters are the same as Example 2.
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Table 3. The discrete 𝑙2 errors for 𝐻𝑧 of all points in Ω𝐿 obtained with different layers PML
at several time nodes.

TN
5-cell PML 10-cell PML 20-cell PML

ℎ ℎ/2
Rate

ℎ ℎ/2
Rate

ℎ ℎ/2
Rate

𝜏 = 𝜏0 𝜏 = 𝜏0/2 𝜏 = 𝜏0 𝜏 = 𝜏0/2 𝜏 = 𝜏0 𝜏 = 𝜏0/2

100 2.9873E−04 7.3744E−05 4.0509 2.6715E−05 5.6447E−06 4.7327 7.3547E−07 1.2557E−07 4.9777
105 3.8987E−04 9.9276E−05 3.9271 4.1648E−05 9.0136E−06 4.6205 1.3442E−06 2.7420E−07 4.9022
110 4.7247E−04 1.2282E−04 3.8469 5.7237E−05 1.2644E−05 4.5267 2.5325E−06 5.2451E−07 4.8283
115 5.5195E−04 1.4489E−04 3.8094 7.2170E−05 1.6214E−05 4.4511 4.1668E−06 8.7479E−07 4.7632
120 6.3073E−04 1.6659E−04 3.7862 8.6263E−05 1.9632E−05 4.3940 6.0986E−06 1.2955E−06 4.7077

Figure 4. Example 4: The global errors obtained on a 100×100 mesh with a point wave source.
(a) Illustration of domains Ω𝐺 and Ω𝐿. (b) The global errors obtained with three different PML
thicknesses.

To measure the PML absorption performance, we solve the same problem in a very larger domain Ω𝐺 =
[−0.125, 0.625]2 m, which is imposed by the PEC boundary condition and is discretized by a finite element mesh
with the same mesh size in Ω𝐿. Then we calculate the errors of magnetic field 𝐻 at element centers inside Ω𝐿

by subtracting the corresponding solutions from those obtained on Ω𝐺. The global error energy is defined by
the sum of the squares of those errors at element centers in Ω𝐿. To satisfy the CFL condition, we choose an
initial time step 𝜏0 = 6.25 × 10−13 s and denote one time node (shortened as TN in Tab. 3) as 10 steps of 𝜏0,
i.e., 1 time node = 10 𝜏 . We carried out three experiments with PML thicknesses of 𝑑𝑑 = 5 h, 10 h and 20 h to
observe the PML absorption capacity.

In Figure 4a, the whole domain plotted is Ω𝐺, while the central square subdomain marked by the red color is
Ω𝐿. The Figure 4b compares the global errors versus time for the 5-cell, 10-cell, and 20-cell PMLs. As shown in
Figure 4b, the global reflection error is decreasing with the increasing of the PML’s thickness, which is consistent
with the common performance of PML [34]. For each fixed PML thickness, we tested two different mesh sizes:
one with ℎ = 2.5× 10−3 m plotted by the solid line; and the other one with ℎ/2 = 1.25× 10−3 m plotted by the
dashed line in Figure 4b. Due to the dominance of the numerical error, we did not achieve the ideal reflection
error 10−7 as chosen in 𝜎max. But we did observe the convergence rate 𝑂(𝜏2 + ℎ2) in the discrete 𝑙2 norm in
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Table 3. The 𝑂(ℎ2) is a superconvergence phenomenon often happend for the lowest-order edge elements ([22],
Chap. 5).

5. Conclusion

In this paper, we developed a novel explicit unconditionally stable finite element scheme to solve an equivalent
Bérenger’s TEz PML model. We rigorously established both the stability and convergence analysis for the
proposed scheme. Numerical results are presented to justify the theoretical analysis. We also demonstrated the
effectiveness of this PML in simulating wave propagation in the free space. In the future, we will explore the
possibility of extending similar idea to develop other explicit unconditionally stable schemes for other PML
models [10].

Acknowledgements. The authors are very grateful to those two anonymous referees for their careful reading and insightful
comments on improving our paper. This work was partially supported by NSFC project 11971410 and NSF grant DMS-
2011943.
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[2] D. Appelö, T. Hagstrom and G. Kreiss, Perfectly matched layers for hyperbolic systems: general formulation, well-posedness,
and stability. SIAM J. Appl. Math. 67 (2006) 1–23.

[3] G. Bao, P. Li and H. Wu, An adaptive edge element method with perfectly matched absorbing layers for wave scattering by
biperiodic structures. Math. Comp. 79 (2010) 1–34.
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