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1. Introduction

Metamaterials are a type of artificial nanomaterials obtained by combining different types of materials. This type
of materials can control the effective permittivity and permeability and in the same time achieve some nice features
required in many applications. Similar to metamaterials, photonic crystals (PCs) are artificial materials obtained by
periodically arranging dielectrics with different permittivities. Since Yablonovitch [1] and John [2] respectively proposed
the photonic band gap (PBG) structure (photonic crystals) in 1987, PCs have attracted the interest of many researchers
(cf. monograph [3] and references cited therein), due to their PBG characteristics. The structural characteristics of PCs
and metamaterials are very similar, and both of them are new artificial materials, but there are some differences
between them [4,5]. Because diffraction phenomena should not occur in metamaterials, the unit cells that make up the
metamaterials should be much smaller than the wavelength. Therefore, the effective permittivity and permeability of
metamaterials can be obtained through the effective medium theory. PBG is the most important characteristic of PCs,
and comes from the diffraction effect. This requires the unit cells of PCs to be close to the wavelength. Because of their
periodic structures, the parameters of the materials comprising PCs will change periodically, and so will the refractive
index inside the photonic crystal. Therefore, there are PBGs in PCs that are similar to electronic bands in semiconductor
materials. PBG is a certain frequency range in which electromagnetic waves cannot pass through the photonic crystal. Due
to this characteristic, PCs can be applied in many fields with good prospects. Some researchers change the local properties
of PCs by inserting point defects or line defects inside PCs, and the line defects in PCs form a photonic crystal waveguide
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(PCWG) [6,7]. Research [8] shows that the electromagnetic waves can pass through the sharp bends of PCWGs with high
transmission efficiency.

Since the advent of PCs, there have been many efficient numerical methods developed to simulate the propagation
of electromagnetic waves in PCs, such as finite-difference time-domain (FDTD) method [9], and finite element method
(FEM) [10-13] etc. Currently, numerical simulations of wave propagation in PCs are mostly based on the FDTD method or
commercial software [7] for frequency-domain simulation. While in practice, most of PCs are composed of nonrectangular
cell units. Therefore, a numerical algorithm, such as FEM which has an advantage in handling complex geometries, is a
better choice. Considering that researches based on the finite element time-domain (FETD) method for wave propagation
in PCs are few, in this paper we propose and study an FETD method to simulate the propagation of electromagnetic waves
in PCWGs.

Since the PBG of the photonic crystal is affected by the permittivity of the dielectric materials that compose the
photonic crystal and the geometry (include arrangement and the sizes of lattices) of the photonic crystal, therefore, the
change of the permittivity will affect the propagation of waves in the PCWG. The permittivity of the nonlinear material
is related to the electric field. With this principle, we can insert several cells made of nonlinear dielectric material into
linear PCWG to affect the transmission of electromagnetic waves. We only consider third-order nonlinear media. Kerr-type
and Raman-type media are two relatively common third-order nonlinear media. The time-domain numerical methods for
simulating Kerr media mainly include FDTD [9,14,15] and FETD methods [16-20]. At present, though there are many
published papers on the FETD methods for Maxwell’s equations in various media (e.g., [21-28]), there are relatively few
articles using the FETD method to simulate PCs containing Kerr media and Raman media.

In this paper, we propose an FETD algorithm to solve the third-order nonlinear Maxwell’s equations, and use the
Cardano’s method to solve the third-order nonlinear constitutive equation to avoid the iteration error and improve the
efficiency of calculation. The numerical stability of the FETD scheme solving the Kerr-type nonlinear Maxwell’s equations is
proved. In addition, we apply the anisotropic perfect matched layer (APML) technology to our FETD algorithm to reduce the
reflection at the boundary. In the numerical experiments, several bent nonlinear PCWGs have been designed by inserting
nonlinear dielectric rods at the bend of the linear waveguides, which are based on square and triangular unit cells. The
propagation of sine waves with different frequencies and intensities passing through the linear and nonlinear PCWGs are
simulated. The Kerr-type nonlinear PCWG becomes a bistable transmission optical switch related to the wave’s intensity.

The content of this paper is organized as follows. In Section 2, we develop the third-order nonlinear time-dependent
Maxwell’s equations, and prove the continuous stability of the Kerr-Maxwell’s equations. In Section 3, we design a FETD
scheme to solve the Maxwell’s equations in the third-order nonlinear materials, and use a non-iterative the Cardano’s
method, to solve the nonlinear constitutive equation. The numerical stability of the FETD scheme of the Kerr-Maxwell’s
equations is also proved. In Section 4, we obtain the APML-FETD method by extending our FETD method to the anisotropic
perfectly matched layer (APML) developed for the nonlinear Maxwell’s equation. In the numerical experiments, several
nonlinear PCWGs are designed, and we simulate the propagation of the sine waves in the nonlinear PCWGs by using our
APML-FETD scheme. The results show that we can obtain a bistable transmission optical switch related to the wave’s
intensity by inserting several rods with the Kerr-type nonlinearity at the bend of the linear PCWGs.

2. The modeling equation and stability analysis
Let £2 € R? be a bounded, simply connected domain with a connected boundary 92 and unit outward normal n. Let
2 = £2 x (0, T], where T is the end time. Consider the Maxwell’s equations in non-magnetic and lossless media:
D=V xH, (xt)e, (1)
%H=—pg'VxE,  (x1)e, (2)

where 1o denotes the permeability in vacuum, E, H and D are the electric field, magnetic field and electric flux density,
respectively. The constitutive relation between D and E is

D=¢&E+P, (3)

where g1 = o€, €0 denotes the permittivity in vacuum, €., is a positive constant and denotes the relative permittivity
at infinite frequency. In third-order nonlinear media, the relation between the induced polarization P and electric field E
is

P =&, - (g(t)* |[E[*)E, (4)

where &, = g9 x®, the positive constant x 3 denotes the third-order nonlinear optical susceptibility [29], and the response
function g(t) is given by [14, Sec. C]:

g(t) = ad(t) + (1 —a)gr(t), « €[0,1],

where
- . - 4T
gr(t) = Aexp(—t/t)sin(t/T)u(t), A= .
1%



F. Liu, W. Yang and J. Li Journal of Computational and Applied Mathematics 424 (2023) 115005
Here u(t) denotes the unit step function, and 7; and 7, are some positive time constants.
Letting G = G(x, t) = g(t) % |E|*, we can rewrite (4) as
P =¢ - («lE* + (1 - a)G)E. (5)

When o« = 0 (only Raman-type nonlinearity), by using Fourier-transform, we can show that G satisfies the constitutive
equation (cf. [14, Sec. C])

194G + a3,G + asG = |E|?, (6)

where constants a; = %, a, = %‘, as; = 1. When o = 1 (a Kerr-type medium), we have g(t) = 4(t), which leads to
2

G = |E|%. This can still be written in the form of (6) with a; = a, = 0 and a5 = 1.
Therefore, substituting Egs. (3) and (5) into Eq. (1), we obtain the time-domain Maxwell’s equations in the third-order
nonlinear material written as

e10E + &5 - (ad;(|E]*E) + (1 — )3 (GE)) — V x H = 0, (7)
odH +V x E =0, (8)
104G + 020G + a3G = |E|2, (9)

for any (x,t) € £2;.
To complete the model (7)-(9), we assume that a perfect magnetic conductor (PMC) boundary condition is imposed
on a52:

nxH=0, on 082 x(0,T], (10)
where n denotes the unit outward normal on 9£2. In addition, the initial conditions are
E(x;0) = E°(x), H(x;0)=H"(x),
G(x,0) = G%(x), 3G(x,0) = Gi(x), Vxe £, (11)
where E°(x), H%(x), G°(x) and G?(x) are some given proper functions.
Assuming the existence of a sufficiently smooth solution to (7)-(11), a weak formulation can be obtained as follows.
Multiplying (7)-(9) by @ € (L*(£2))3, ¥ € Hy(curl; 2) and ¢ € L%(£2), respectively, and integrating the results over £2,

then using the vector form of Green’s theorem and PMC boundary condition (10), we can obtain the weak formulation of
problem (7)-(11) as follows: Find the solution (E, H, G) satisfies

(e10E + &2 ([EI’E) + &2(1 — @)3(GE), ) = (V x H, @), Vg € (I*(22))%, (12)
(Moava l[,) = _(v X '/’, E)! Vw [S HO(Curlv ‘Q)r (13)
(013G + a9,G + a3G, ¢) = ([EI*, ), Vo € [*(R), (14)

for any t € (0, T] subject to the initial conditions (11).
In the rest of the paper, we denote the L* norm [[ul|3 = [, |u|*ds2.

Theorem 2.1. Let
E € C'(0.T: (1*(2))’) N C(0, T: (LX(£2))*).
H < C'(0, T; (I*(£2))*) N C(0, T; Ho(curl; £2)), (15)
G e CX(0, T; [3(2)),

satisfy (12)-(14), (10) and (11), and G(x, t) > 0 on £2;. Then (E, H, G) satisfies the energy identity:

3820{
2

dt
+ &2(1 - @)az|3,Gl§ = 0.
and the stability

d 1 aq as
- [MollHll(z) + elEI} + = | P IE + 21— o) (IG2EIF + 519G + 5||G||§)]

3e00 &(1—a) 1
|:Mo||H||%+81||E||(2)+ 3 I |E|2||5+#(ZIIGZEH%+01||3[G||S+a3IIGIIS) (t)
2 2, 380 22, 201 —a) N 2 2
< | wollHllg + &1llEllg + 3 Il IE| ||0+#(ZHGZEHO+a1||8[G||0+a3||G||0) (0),

forany t € [0, T].



F. Liu, W. Yang and J. Li Journal of Computational and Applied Mathematics 424 (2023) 115005
Proof. Taking y = H,¢ = E, ¢ = 9,G(t) in (12)-(14), respectively, and adding (13) and (12) together, we obtain the
following equations:
e1(%E, E) + £20(3([EI’E), E) + £2(1 — a)(GOE + (8,G)E, E) + (100 H, H) = 0, (16)
(a104G + a20,G + a3G, 9;G) = ([E|*, 8,G). (17)
Substituting the following identities
(3 (|E’E), E) = (3 |E’E + |E|*3E, E)

1
=/ |E|23r|E|2d9+*/ |E|* |E|*ds$2

/ |E|*3; |E[*ds2 = || EI? |13,

4 dt
1
(GHE + (0:)E, E) = - [ Go|E|*d2 + f (%G)E*ds2
2 2

1] d 1
=— | —|G2E|? E|*ds2
2[dtncz ||0+/Q(atc)| 2 ]

E|lg,
2dt” [l

%H,H)= ——|H|3,
(1odH, H) = 2dtll [k

£1(0E, E) =

into (16), we have

dt
From (17), we have

d d
- (Mollﬂllﬁ +ellENG + 2) +e(1—a) (EIIG%Ellg + / (a[G)|E|2dQ> =0. (18)
2

/(atG)lElzd.Q :/ 0:G[a104G + a20;G + a3G] d§2
2

_"2‘ 3:(8:G )2d9+a2f9(atc)2d:2+ ai/gat(cz)dg (19)
_o d 10:Gll§ + a2119:Gllg + IIGIIO
T 24t 2 dt
Therefore, substituting (19) into (18), we obtain
d 2
i (MOHHIIO + &1 |E5 + )
d 1
+ &(1—a) [dtIIGZEIIo + EEIIBtGIIO + a[|3; Gl +2 2 i IIGIIO} =

Furthermore, we have

d 1 aq as
@ <Mo|lH||o +&1lENG + o+ &1 —a)IG2E(F + 5”&6”3 + EIIGII§)>

= — ape5(1 — )] 3;Gll§ < O
Integrating (20) with respect to t from t = 0 to any t € (0, T] completes our proof. O

(20)

3. The fully discrete schemes and their stability analysis
3.1. The three dimensional FETD scheme and its stability

We divide §2 into a number of tetrahedra whose maximum mesh size is h. Let T, be the set of these tetrahedra. In any
tetrahedron, we introduce two space as follows [30]:
={u:u=a+bxxabecR3,
Di={u:u=a+bx,acR>®beR).
Consider the finite element spaces

= {vy, € H(curl; 2) : vyle € Ry, Ve € Ty},
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4 3.
Up = {up € (L°(£2))° : uple € Dy, Ve € Ty},
V)={vyeVy:vxn=0, on 3£}

In order to obtain the fully discrete FETD scheme, we divide the time interval [0,T] into N uniform subintervals
[(k — 1)t, kt] by points t;, = kt, where the time step T = % and k =0,1,2,...,N. We denote E,"1 for the approximate

. . k+3 . . .
solution E at time t;, and H, * for the approximate solution of H at time b1
. . . . 2
First, we give several identities

O (|E?) = 8(E2 + EZ + E2) = 2E" ,E,

%(|E’E) = 8([E|*)E + |E|*%E = 2(E" 3;E)E + |E|*E

(21)
= 2E(E"8.E) + |[E|*8.E = 2(EE ")3.E + |E|*3,E.
Using the following approximations
EMFIERTINT L ER(ERT
EET|r7(k+l)r ~ (E*"") +E(E") ’
—(k+ 1 )
) IEMT Y
L
Ek+1 _ gk
Wl ¥ T
to discrete (21), we have
+1 k k+1,2 k2 pkt1 k
—E E E*| E —E
8t(|E|ZE)|[:(k+l)r ~ (Ek+1(El<+1)T +El€(Ek)T) + | | 2+| | ] (22)
T
Now we can develop a leap- frog type scheme to solve the weak formulatgon problem (12)-(14) and (11) with o = 1.
Given initial approximations E?, H,f, fork=0,1,2,... find E"“ ceUy H h+2 € V9 such that
k+1, pk+1 Ext' — E’ri
e2(EfTIERTHT + Eﬁ(E’;)T)%, @n
(23)
Ek+12+Ek2 Ek+1 _ EK il
+<<8]+82| : |2 = : T L, o Z(VXHh+27(oh)’
k+3 k1
H, ?—-H,?
po————"— 9, | = —(E}".V x 9y), (24)

T
hold true for any ¢, € U, and ¥, € V).

Theorem 3.1. Let C, = 1/./eoo be the speed of light in vacuum, and Gy, denotes the constant from the standard inverse
estimate [31]

IV % ¥yllo < Cinh™ M 1¥hllo, V¥, € V. (25)

Then under the time step constraint t < ’éﬁ the solutions of (23)—(24) satisfy the following stability:

382 2 1
e1l ERlIg + 7” ERP 12 + pollHy I|§ <3 (81||52||§ + 7” [ERI1I5 + 1ol H ||§> -

<+2

Proof. Choosing ¢, = T(Ek+1 + Ek) in (23), ¥, = ©(H, k+2 +H, ?)in (24), we can obtain the following:

phH1_gk
(Eﬁ+1(El’:+1)T +E§(E;;)T) h - h7 .L—(E;;+1 +Eﬁ)>

k12 £k 2 k+1_gk 1 (26)
n ((5] T |E); \2+\Eh\ ) E, Eh7 .C(El’:+l +Eﬁ)> =(V x Hl,;+2, .L,(El}:+l +Eﬁ)),

T

k+3 k+3 k+3 ket
ro(llH,, 2113 — IH, 2113) = —<(Ef*, V x (H, * +H, %)) (27)

5
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Using the following identities
Ek+1_gk
(B + D) B et )

B (E£+;(Eg+])TI<E£H _kE’ﬁ(EE )\ Ei Kk k
+ Eh(Eh)TEh-H _ Eh+1(Eh+l)TEh7Eh(+] +Eh)
2 2
_ (|E§“| EX — |EXCEX + (BX — BB TER, Bl +E’,§)

2 2 2
= IIEKT P13 — BRI + (BKTER B — IEL)
+ ((Ek+1)TEk, |Ek| _ |EI’:+1|2)
= IIEKT I3 — 1 B3,

[EKT1 4+ EK|” EKTT—E) k1, gk 1 k1,2 k2
(%%’“,T(Elf +E) ) = 5(” IE;™'713 — 1| |EF II?)),

we can rewrite (26) as

ket
e(IlIET I3 — IEXIIS )+—(|| ESPI2 = ) EXP12) = o(V x Hy 2 BT 4+ EX),

Adding Eqgs. (27) and (28), and using the following identity

k+1 k+3 k+1
©(V xH, 2 EX' L EN — ¢(EX, V< (H, ” +H, ?)

),

)
1
=7(V x H, "2 EK) - 1(E¥, v x H"+2

we can obtain:

382 2 n+l
e(IEFTIE — ||E§||é)+7(|| EE P12 = 1 IEEPI2) + ro(IH) 2 ||0— IH, 2113

)

1 3
=1(V x th<+2 JEX) — T(EFT, Vv x Hl;+2).
Summing (29) from k = 0 to k = n — 1, we obtain

3¢, 2 2 n+1 1
e1(lER 11§ — ||E§3||3)+7(|| IERZ 112 — || IEQI12) 4 wo(IlH,, 2112 — |HZ [12)

1
=1(V x H?  E?) — T(E}, V x H,fZ)

Using the Cauchy-Schwarz inequality and the standard inverse estimate (25), we have

ntd n+d
“(E}, V x H, )< T E}jllo- IV x Hy 2 lg
—1,gn "+%
< T Cimoh™ |IEpllo - IIH, *llo
_ n+l
=17 Cnoh™" - Cu/E0llE}llo - /ol Hy 2 llo
81 ntl
< S eollEqllg + o5 (rCnh™ 1C,)" mollHy 2 2.
Letting n = 0 in (31), we have

1
268,

-1 2 3 2
E(rCmvh Co)” mollHZ 115

Substituting (31) and (32) into (30), we obtain

18
T(E), V x H?) < Eeonb‘ﬁn% +

nt+l 1
e1(IER NG — IIERIIG )+—(|| EZ 212 — 1| E2P12) + reo(IHy, 2112 — [1HZ(12)

8] 1 _ n+—
<580||EZ||(2)+E(TCinuh 1C,)° pollHy, 13
81 02 —1, )2 32
+ —eollEgllo + = (Tcinvh Cv) wollH |-
2 251
By choosing §; = ¢, and 7 < Zﬁ we have
n nty 0 3
erllERIIS + 7|I R + mollHy 2112 < 3 (e lERIZ + 7” |Ep B 15 + 3uol HZ G ) .

which concludes the proof. O

(28)

(29)

(30)

(31)

(32)
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3.2. The two dimensional FETD scheme

Next, we consider the two-dimensional form of problem (7)-(11). In this case, we assume that £2 is a bounded, simply
connected domain in R?, and $2 is divided into a number of triangles with maximum mesh size h. Let T, be the set of
these triangles, and

H =[Hy,H]", V xH=3dH, — dH,,
E=E, VxE=[)E, —&E]".
We can directly write the two dimensional form of (12)-(14) as follows: Find the solution
E € C'(0, T; [*(£2)) N C(0, T; L*(£2)),
H € C'(0, T; (L*(£2))*) N C(O, T; Ho(curl; £2)), (33)
G € CX(0, T; [*(£2)),

satisfies
(e10cE + 3620 [E*)E + 5(1 — a)3:(GE), 9) = (V x H, ¢), Vo € [*(£2), (34)
(1L0dH, ¥) = —(V x ¥, E), V¢ € Ho(curl; 2), (35)
(010G + 429G + a3G, ¢) = ([E]*, ¢), V¢ € [X(£2), (36)

for any t € (0, T] with the initial conditions (11).
Consider the finite element spaces
Uy = {v € LY(82) : vn|e is a piecewise constant, e € Ty},
Vi = {vn € H(curl; 2) : vple = span{A;VA; — A;VA;} i, =1,2,3,e € Ty},

where A; denotes the standard linear Lagrange basis function at vertex i of triangle e.

To approximate the weak formulation (34)—$36) with initial conditions (11), we propose the following fully discrete

. - . 3 - . e+3
scheme: Given proper initial approximations HZ, EC and E; ', for k=0, 1, ..., find EX*', G**1 € Uy, H, ? € V? such that

2 k+1_pk
(e 2 (o0 167)) 505 )

(37)
k1 pk+1_ kg kel
+ (sz(l —MM, </>h> =(Vx Hh+2,<0h),
k42 k1
H >—-H, °*
po—t———"— ¥ | = —(B7, V x ), (38)
G’H—] _ 2Gk + Gk—] Gk+] _ Gk—] 5
(al o "— +a3Gy, ¢n | = (IER]", o), (39)
hold true for any gy, ¢n € Uy and ¥, € V2.
The initial conditions (11) are discretized as follows:
0 0 0 0 6111 — th 0
E, = ILE (), G, = ILG'(X), ———— = I[LL,G{(x),
2t (40)

1

Hji = M(H'() + S0H°(0) = M(H'®) = 15"V x E'(x))

where we used the governing Eqgs. (8) in the last step. Here IT, denotes the standard L? projection to space Uy, and 11,
denotes the standard Nédélec interpolation [31] to space V.
The implementation of the scheme (37)-(39) is quite simple. At each time step, we first solve (39) for G’;;H? then solve

1
(37) for E}’f“; finally, solve (38) for H:+2. When k = 0, we need to use the initial approximation to solve for G},. More
specifically, from (40) we have

G, ' =G — 2tILGS,

then substituting this into (39) with k = 0, we obtain

1
Gh= 5 [(2a1 — 12a3)G + 27(a; — 0.57a)[,G0 + 12|E,?|2] .
1

7
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Note that Eq. (37) is equivalent to

30 2 k+1
(81 + 72(|E,’;“| + |E,’;|2)) (S — EX) + £5(1 — a)(GETEN! — GREK) =tV x H, ' 2, (41)
in any element e € Ty, which can be written as a third order polynomial equation as follows:

biz> 4+ byz? + bsz + by =0, withz = Ef*! (42)

k+1
where by = 229 b, = —32%EK by — g 4 329(EF2 4 o5(1—a)GE T and by = TV x H,, 2 461X 4 222 (EX)3 65(1— )GREL.

To avoid the computational cost by using the standard iterative method to solve (42), we introduce the Cardano’s

o . bqb3—b2 bZbs—9b1byb3+2b3
method to solve it with an exact formula. Assuming b; # 0, letz =y — 3%21 =2 1322 2. q= 27b3ba 27;32 3+ 2 Eq. (42)
becomes as ! !
y*+py+q=0.

Let w = ’]%ﬁ’ and A = (2)> 4 (§)%. If A > 0, then the solutions y1, y,, y3 of Eq. (42) are

n=d-+var -1-va (43

nder the assumption that G(-,t) is nonnegative on £2, and our discrete scheme - is convergent (i.e.,
Under th ion that G(-, t) i i 2, and our d heme (37)~(39) (
IGFTT — G(x, e 1)l ooy < C7? for any § > 0), we have

360 360 360
3bibs — b5 =37~ (e1 + ——(ERY + e2(1 — )G — (B
44
3e00 ., 981620 98%0((]—0[) 1 (44)
=2 5 Ef) + 5 5 G,m >0,

for sufficiently small 7. In this case, the unique real solution of (42) is y; — 31’721 i.e,, in our implementation, we simply

choose E}j“ =y — 3[7721 as the solution of (42) to avoid the computational cost of an iterative method.

4. 2-D FETD scheme based on APML

In the rest of the paper, we focus on 2-D simulation. To simulate the propagation of electromagnetic waves in a bounded
domain, we choose the perfectly matched layer (PML) idea introduced by Berenger in 1994 [32]. Due to its effectiveness
in absorbing outgoing waves, various PMLs have been developed and applied to solve various wave propagation problems
(cf., [33-36] and references therein).

The anisotropic perfect matched layer (APML) was proposed by Gedney [37] for the FDTD method, and later was
adopted by Fujii and Russer [14] to solve Maxwell’s equations in 2-D Kerr-Raman-type nonlinear dispersive media. Due
to its proved effectiveness in solving nonlinear Maxwell’s equations, in this paper we will choose the APML method for
our simulation.

First, let us develop the APML modeling equations. Consider the 3-D frequency-domain Maxwell’s equations

V x H = joAD, (45)
V x € = —jwAB, (46)

where €, D, H and B are the frequency-domain forms of E, D, H and magnetic flux density B, respectively, j = +/—1,
and w is the wave frequency. Here the uniaxial anisotropic medium tensor A is given as:

=00
Sx
SxSz

A=|0 = o |

0 o0 =

'z
with
Oy oy o
Sx=Kx+——, Sy=ky+ ——, S;=k;+ -
Jwép Jwéo Jwéo
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| SpumL Qc | Spmr
{ w w \
xo xo

Fig. 1. The configuration of 1-D PML.

where ky, ky, k, are the piecewise polynomial functions of x,y and z, respectively, and oy, 0y, 0, are the damping
functions in the x-, y- and z-directions, respectively. Usually, we choose «;, 0;, (i = X,y,z) as piecewise polynomial
functions [15,32,37]. Taking «y, ox as an example, we choose

m
k() = =1+(K;nax—])(|x}x0|) , X € 2pur,
X

1, X € ¢,
x—xl \™
oo (59)", x € 2.
O‘X(X)= X d PML
0, x € £2¢,

where |x — xo| denotes the distance between x and Xy, constants «" and o™ satisfy «J'* > 1 and oJ"* > 0,
respectively, and d denotes the thickness of the PML. According to [31], to reach a reflection error goal R(0), we choose
o™ = —%‘)foc" In(R(0)). A sketch of the configuration of PML surrounding the original physical domain is shown in
Fig. 1.

Now we apply this APML method to the 2-D transverse magnetic model of (7)—(9). In this case, we have s, = x, = 1,

H, = E; =E, =0, and A becomes as

Y 0 0
Sx

A=1|0 3; 0 |. (47)
0 0 s

Substituting (47) into (45)-(46), we have

V x H = josysyFle1E + asE> + &5(1 — a)GE], (48)
Sy
V x €& = —jouo |:SX SX] H, (49)
Sy
where F[-] denotes the Fourier transform.
Denoting
D = s, FleiE + aeE> + £5(1 — «)GE], (50)
B = uo(K1 + (jweo) 'Qq) ', (51)

we can rewrite Egs. (48)-(49) as
V X H = jwsyD, (52)
V x € = —jo(K; + (joeo)'Q,)B, (53)
where K1 = diag(«y, ky), Ky = diag(ky, k), Q; = diag(oy, 0y), and Q, = diag(oy, ox).

Applying the inverse Fourier transform to Egs. (50)-(53), we obtain the coupled Maxwell’s equations in the third-order
nonlinear materials with its corresponding PML given as follows:

KD + ey 'oxD = V x H,
3D = (k3 + &5 '0y)e1E + aerE? + e2(1 — a)GE],
K3B+¢,'Q,B=—V xE,
K13:B+¢,'Q B = 1103:H.
The relation between G and E is the same as defined by Eq. (9).

_1 _1
Now we can present our APML-FETD scheme: Given proper initial approximations E,?, H,?, Dﬂ, B, Gg, G,;], find

k+1 k4l
E,’f“, D’,‘IH, Gﬁ“ € Uy, H;+2 , BhJr2 e VY forany k=0, 1, ..., such that
Dk+1 _ Dk o, DI<+1 + Dk kel
(Kxhl_hv o ) + ;x%v P | = (V X Hh ’ s (P1h> ’ (54)
0

9
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(1) square unit cell (2) triangular unit cell

Fig. 2. Square and triangular unit cells. The background material (blank) is air; the gray sectors are dielectric rods.

a | @Y\ 201\ 4, (31 @\ 4 (g2
<<§ + Z) G, + (‘13 - 7) Gy, + (? - ;) G, 790211) = <|Eh| Jﬂzh) , (55)
Dk+1 _ Dk Ek+1 _ Ek o Ek+] + Ek
(u,qoah =& | Kyt hoy 2Lk L an
T T ) 2
Ek+1 2 + Ek 2 Ek+1 _ Ek o Ek+1 3 + Ek 3
+ s 3Ky( h JHE)E, h +—y( n ) (E) > ¥3n (56)
2 T o 2
GRHIERH _ Gkpk o GkHIpkH 4 ckpk
+52(1_a)(Kyh h nehoy %y Zh Zh hog )
T &0 2
K+ k—1 K+ k—1
B *—-B ° B *+B °
KZ%, 'ﬁ]h + QZ#? wlh = _(Ellrf, v X w]h)s (57)
k1 k—1 k+1 k—1 k41 k—1
H 2—-H, 2 B ?2—B ? B 2+B ?
MO%,V’M = Kl%’lbzh + Q]#v'ﬁzh , (58)

hold true for any @1, @an, 30 € Uy and ¥y, ¥y, € VY.
At each step, the APML-FETD algorithm is implemented as follows:

1
Step 1. Excite the source wave at the electric field, and use (57) to solve for B];+2. When k = 0, we need to couple
1

1
2 2 1
(57) with an initial approximation % = IT.B(x, 0) to obtain B;;

1
Step 2. Use (58) to solve for HI,;+2 ;
Step 3. Use (54) to solve for Df™;
)

Step 4. Use (55) to update GF';
Step 5. Use (56) to obtain the coefficients by, b,, b3 and b4 of the cubic Eq. (42), and substitute them into (43) to obtain
E,’l‘“. Then go back to Step 1 and repeat Steps 1-5.

5. Numerical results

In this section, we present our numerical simulations of wave propagation in photonic crystal waveguides formed by
arranging triangular and square unit cells periodically (See Fig. 2). We are interested in those nonlinear PCWGs with some
nonlinear dielectric rods inserted around the bends.

First, we set some conventions in the numerical experiments in this section. Figs. 3(a), 5(a), 7(a), 8(a), 9(a) and 10(a) are
the sketches of our model setups. Taking Fig. 3(a) as an example, the most outside empty region between two rectangles
is the PML region (having 10 mesh size thickness), the interested physical domain is surrounded by the PML, and has
dimensions [0, 14a] x [0, 8a], where a denotes the lattice constant and is equal to 1 wm, the green rods always denote the
linear dielectric materials with relative permittivity 11.56, the blank region between rods is air, the red arrow denotes the

10
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Fig. 3. Subfigure (1) is a L-shaped PCWG. In this experiment, we take A = 0.01 V/m, 200 V/m and frequencies in the range [0.28c/a, 0.4c/a], where
c is the speed of light in vacuum. Setting the black rods in Subfigure (1) as linear material rods and Kerr-type nonlinear material rods, the obtained
corresponding transmission coefficients are shown in Subfigures (2) and (3), respectively.

(NLL),Ez(5000A 1) oo (NLL),E2(5000A 1) -
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100
0.004
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0 0
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S Rk
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Fig. 4. The electric fields E, obtained at time t = 5000At for the Kerr-type nonlinear bent PCWG given in Fig. 3(a). The incoming waves are sine
waves whose frequencies are 0.33c/a, and intensities are 0.01 V/m (left) and 200 V/m (right), respectively. In this experiment, we consider the

triangle mesh, whose mesh size is h = 5, and the time step size 7 = é.

position and direction of incident waves, and points P; and P, denote the two observation points. If we do not emphasize,
the black rods represent the nonlinear materials such as the Kerr-type or Raman-type. In all our simulations, we fix the
parameter &4, of nonlinear material rods to be 7, the third-order nonlinear optical susceptibility x* = 0.001, and the
radius of the material rods R = 0.2a. We take sine wave Asin(2xft) as the incident wave imposed as E,, where f is the
wave frequency, and A is the magnitude of the wave.

. . . .. . . max |Ep, |
To make the expression more lucid, we define the transmission coefficient TC as 20 In( "2

max [Ep, ), where Ep, and Ep,
denote electric fields at P; and P,, respectively. If the value of the parameter « is not marked, it means that the
corresponding result is about the transmission coefficient in a bent linear waveguide. Since in the experiments of this
paper, the inside of PML is the background material (air), here we can take «™* = 1.

Below we will discuss the phenomena of wave passing through both linear and nonlinear bent PCWG comprised of

triangular and square unit cells.

5.1. Kerr-type nonlinear bent PCWG

First, we imitate the design of the bent waveguide given in [9], and plot our first nonlinear bend waveguide (See
Fig. 3(a)).

From Figs. 3(b), 5(b) and 7(b), it can be seen that low-intensity and high-intensity sine waves with different frequencies
can pass through the bent linear PCWG well. The transmission coefficients are almost unaffected by the intensities of the
waves. From Figs. 3(c), 5(c) and 7(c), it can be observed that the intensities and frequencies of the incident waves affect the
transmission coefficients when the incident waves pass through the bent Kerr-type nonlinear PCWG. In certain frequency
range (bistable frequency band), the transmission coefficients of high-intensity electromagnetic waves (The amplitudes of
electric fields are 200 V/m) are larger than that of low-intensity electromagnetic waves. When different intensity incoming
waves with frequency f = 0.33c/a pass throuth the waveguides shown in Fig. 3(a) and Fig.5(a), we obtain the electric
fields E, shown in Figs. 4 and 6, respectively. Therefore, we can conclude that the high-intensity electromagnetic waves

11
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Fig. 5. Subfigure (1) is a Z-shaped PCWG. In this experiment, we use the same incident waves as the experiments in Fig. 3. Setting the black rods
in Subfigure (1) as linear material rods and Kerr-type nonlinear material rods, the obtained corresponding transmission coefficients are shown in
Subfigures (2) and (3), respectively.
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Fig. 6. The electric fields E, obtained at time t = 6500At for the Kerr-type nonlinear bent PCWG given in Fig. 5(a). The incoming waves are sine
waves whose frequencies are 0.33c/a, and intensities are 0.01 V/m (left) and 200 V/m (right), respectively. In this experiment, we also consider the

triangle mesh, whose mesh size is h = {5, and the time step size r = .
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Fig. 7. Subfigure (1) is a L-shaped PCWG. In this experiment, we use the same incident waves as the experiment given in Fig. 3. Setting the black
rods in Subfigure (1) as linear material rods and Kerr-type nonlinear material rods, the obtained corresponding transmission coefficients are shown
in Subfigures (2) and (3), respectively.

can pass the bent Kerr-type nonlinear PCWGs well in the bistable frequency band, but the low-intensity waves cannot.
Furthermore, when the electromagnetic wave, whose frequency is outside the bistable frequency band, passes through the
bent Kerr-type nonlinear PCWG, the transmission coefficient is almost unaffected by the intensity of the electromagnetic
wave. Therefore, by inserting several Kerr-type nonlinear material rods into the bend of linear PCWG, we can obtain a
bistable transmission optical switch that depends on the intensity of the incoming wave. The optical switches can filter
low-intensity waves, whose frequencies are in the bistable frequency band, which is related to the PBG of photonic crystal
and the parameters of the Kerr-type nonlinear material rods.

Next, we introduce the experimental results of the bent Kerr-type nonlinear PCWGs formed by the triangular unit cells.
The material parameters are the same as given above.

Figs. 9(b) and 10(b) show that in the waveguides composed of triangular unit cells, we can design a bistable
transmission optical switch which depends on the incoming waves’ intensities by using the same method.
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Fig. 8. Subfigure (1) is a U-shaped waveguide. In this experiment, we also use the same incident waves as the experiment given in Fig. 3. Setting
the black rods in Subfigure (1) as Kerr-type nonlinear material rods, the obtained corresponding transmission coefficients are shown in Subfigure

(2).
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Fig. 9. Subfigure (1) is a V-shaped waveguide formed by triangular unit cells, and the black rods are made of Kerr-type material. In this experiment,
we take A = 0.01 V/m, 200 V/m and frequencies in the range (0.32c/a, 0.44c/a]. Subfigure (2) shows the obtained transmission coefficient.
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Fig. 10. Subfigure (1) is a Z-shaped waveguide formed by triangular unit cells, and the black rods are made of Kerr-type material. In this experiment,
we take A =0.01 V/m, 100 V/m and frequencies in the range [0.345c/a, 0.425c/a]. Subfigure (2) shows the calculated transmission coefficient.
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Fig. 11. The transmission coefficients obtained for the sine waves passing through the bent Kerr-Raman-type nonlinear PCWGs showed in Fig. 3(a)

with « =0,0.3,0.7.
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Fig. 12. The transmission coefficients obtained for the sine waves passing through the bent Kerr-Raman-type nonlinear PCWGs showed in Fig. 5(a)

with « =0,0.3,0.7.
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Fig. 13. The transmission coefficients obtained for the sine waves passing through the bent Kerr-Raman-type nonlinear PCWGs showed in Fig. 9(a)

with « =0,0.3,0.7.

5.2. Kerr-Raman-type nonlinear PCWGs

Following [14,38], we take the function g(t) = «d(t) + (1 — a)gr(t), where

gr(t) = Aexp(—t/w)sin(t /T )u(t), A=-1—2,

with 7; = 12.2 femtosecond (fs) = 12.2- 107> s, , = 32 fs, and u(t) denotes the unit step function. In this case, the

Fourier transform [14] can be used to obtain Eq. (9) with a; = %, ==

At
to obtain the second-order difference Eq. (39). ?

1 a3 = 1, and the Z-transform [9] can be used

Taking the waveguides in Figs. 3(a) 5(a) and 9(a) as examples, we simulate the propagation of sine waves passing
through bent Kerr-Raman-type nonlinear PCWGs with « = 0, 0.3, 0.7, respectively, where the sine waves have the same
intensities and frequencies as those given in Figs. 3(c), 5(c) and 9(b). The obtained transmission coefficients are shown in

Figs. 11-13, respectively.
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From Figs. 11, 12, 13, 3(c), 5(c) and 9(b), we see that the bistable frequency band is related to «. When several rods
made of Kerr—-Raman-type, Raman-type or Kerr-type nonlinear materials are inserted into the bend waveguides, the bent
PCWGs behave as bistable transmission optical switches which depend on the incoming waves’ intensities.

6. Conclusion

In this paper, we prove the continuous stability of a kind of third-order nonlinear Maxwell’s equations. Then we
adopt the Cardano’s method with our time-domain finite element scheme to solve the third-order nonlinear constitutive
equation. We also prove the numerical stability of the FETD scheme for the Kerr-Maxwell's equations. Due to its
complexity, we did not pursue the numerical stability and convergence analysis for the general third-order nonlinear
Maxwell’s equations. We hope that they can be established by following our previous work [18]. In the numerical
experiment, we use the FETD scheme to simulate the propagation of sine waves through various bent waveguides. Our
results show that bistable transmission switches depending on the intensity of the incident wave can be constructed
by inserting some Kerr-Raman-type, Raman-type or Kerr-type nonlinear rods into the linear bend photonic crystal
waveguides.
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