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a b s t r a c t

In this paper, we design a time-domain finite element (FETD) algorithm for solving
Maxwell’s equations in third-order nonlinear media. The Cardano’s method is used
to solve the nonlinear constitutive equation. At the same time, we also establish the
continuous stability of the third-order nonlinear model and the numerical stability of
the FETD scheme. In order to reduce the wave reflection from the truncated domain
boundary, the anisotropic perfectly matched layer model is developed and solved.
Extensive numerical simulations are carried out and they demonstrate that bistable
transmission switches depending on the incident wave’s intensity can be obtained if
a number of rods made of Kerr-type nonlinear materials are inserted around the bend
of the linear bent photonic crystal waveguides.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Metamaterials are a type of artificial nanomaterials obtained by combining different types of materials. This type
f materials can control the effective permittivity and permeability and in the same time achieve some nice features
equired in many applications. Similar to metamaterials, photonic crystals (PCs) are artificial materials obtained by
eriodically arranging dielectrics with different permittivities. Since Yablonovitch [1] and John [2] respectively proposed
he photonic band gap (PBG) structure (photonic crystals) in 1987, PCs have attracted the interest of many researchers
cf. monograph [3] and references cited therein), due to their PBG characteristics. The structural characteristics of PCs
nd metamaterials are very similar, and both of them are new artificial materials, but there are some differences
etween them [4,5]. Because diffraction phenomena should not occur in metamaterials, the unit cells that make up the
etamaterials should be much smaller than the wavelength. Therefore, the effective permittivity and permeability of
etamaterials can be obtained through the effective medium theory. PBG is the most important characteristic of PCs,
nd comes from the diffraction effect. This requires the unit cells of PCs to be close to the wavelength. Because of their
eriodic structures, the parameters of the materials comprising PCs will change periodically, and so will the refractive
ndex inside the photonic crystal. Therefore, there are PBGs in PCs that are similar to electronic bands in semiconductor
aterials. PBG is a certain frequency range in which electromagnetic waves cannot pass through the photonic crystal. Due

o this characteristic, PCs can be applied in many fields with good prospects. Some researchers change the local properties
f PCs by inserting point defects or line defects inside PCs, and the line defects in PCs form a photonic crystal waveguide
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(PCWG) [6,7]. Research [8] shows that the electromagnetic waves can pass through the sharp bends of PCWGs with high
transmission efficiency.

Since the advent of PCs, there have been many efficient numerical methods developed to simulate the propagation
of electromagnetic waves in PCs, such as finite-difference time-domain (FDTD) method [9], and finite element method
(FEM) [10–13] etc. Currently, numerical simulations of wave propagation in PCs are mostly based on the FDTD method or
commercial software [7] for frequency-domain simulation. While in practice, most of PCs are composed of nonrectangular
cell units. Therefore, a numerical algorithm, such as FEM which has an advantage in handling complex geometries, is a
better choice. Considering that researches based on the finite element time-domain (FETD) method for wave propagation
in PCs are few, in this paper we propose and study an FETD method to simulate the propagation of electromagnetic waves
in PCWGs.

Since the PBG of the photonic crystal is affected by the permittivity of the dielectric materials that compose the
photonic crystal and the geometry (include arrangement and the sizes of lattices) of the photonic crystal, therefore, the
change of the permittivity will affect the propagation of waves in the PCWG. The permittivity of the nonlinear material
is related to the electric field. With this principle, we can insert several cells made of nonlinear dielectric material into
linear PCWG to affect the transmission of electromagnetic waves. We only consider third-order nonlinear media. Kerr-type
and Raman-type media are two relatively common third-order nonlinear media. The time-domain numerical methods for
simulating Kerr media mainly include FDTD [9,14,15] and FETD methods [16–20]. At present, though there are many
published papers on the FETD methods for Maxwell’s equations in various media (e.g., [21–28]), there are relatively few
articles using the FETD method to simulate PCs containing Kerr media and Raman media.

In this paper, we propose an FETD algorithm to solve the third-order nonlinear Maxwell’s equations, and use the
Cardano’s method to solve the third-order nonlinear constitutive equation to avoid the iteration error and improve the
efficiency of calculation. The numerical stability of the FETD scheme solving the Kerr-type nonlinear Maxwell’s equations is
proved. In addition, we apply the anisotropic perfect matched layer (APML) technology to our FETD algorithm to reduce the
reflection at the boundary. In the numerical experiments, several bent nonlinear PCWGs have been designed by inserting
nonlinear dielectric rods at the bend of the linear waveguides, which are based on square and triangular unit cells. The
propagation of sine waves with different frequencies and intensities passing through the linear and nonlinear PCWGs are
simulated. The Kerr-type nonlinear PCWG becomes a bistable transmission optical switch related to the wave’s intensity.

The content of this paper is organized as follows. In Section 2, we develop the third-order nonlinear time-dependent
Maxwell’s equations, and prove the continuous stability of the Kerr–Maxwell’s equations. In Section 3, we design a FETD
scheme to solve the Maxwell’s equations in the third-order nonlinear materials, and use a non-iterative the Cardano’s
method, to solve the nonlinear constitutive equation. The numerical stability of the FETD scheme of the Kerr–Maxwell’s
equations is also proved. In Section 4, we obtain the APML-FETD method by extending our FETD method to the anisotropic
perfectly matched layer (APML) developed for the nonlinear Maxwell’s equation. In the numerical experiments, several
nonlinear PCWGs are designed, and we simulate the propagation of the sine waves in the nonlinear PCWGs by using our
APML-FETD scheme. The results show that we can obtain a bistable transmission optical switch related to the wave’s
intensity by inserting several rods with the Kerr-type nonlinearity at the bend of the linear PCWGs.

2. The modeling equation and stability analysis

Let Ω ∈ R3 be a bounded, simply connected domain with a connected boundary ∂Ω and unit outward normal n. Let
Ωt = Ω × (0, T ], where T is the end time. Consider the Maxwell’s equations in non-magnetic and lossless media:

∂tD = ∇ × H, (x, t) ∈ Ωt , (1)
∂tH = −µ−1

0 ∇ × E, (x, t) ∈ Ωt , (2)

where µ0 denotes the permeability in vacuum, E , H and D are the electric field, magnetic field and electric flux density,
respectively. The constitutive relation between D and E is

D = ε1E + P, (3)

where ε1 = ε0ε∞, ε0 denotes the permittivity in vacuum, ε∞ is a positive constant and denotes the relative permittivity
at infinite frequency. In third-order nonlinear media, the relation between the induced polarization P and electric field E
is

P = ε2 · (g(t) ∗ |E|
2)E, (4)

where ε2 = ε0χ
(3), the positive constant χ (3) denotes the third-order nonlinear optical susceptibility [29], and the response

function g(t) is given by [14, Sec. C]:

g(t) = αδ(t) + (1 − α)gR(t), α ∈ [0, 1],

where

gR(t) = Ã exp(−t/τ2) sin(t/τ1)u(t), Ã =
τ 2
1 + τ 2

2
2 .
τ1τ2

2
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Here u(t) denotes the unit step function, and τ1 and τ2 are some positive time constants.
Letting G = G(x, t) = g(t) ∗ |E|

2, we can rewrite (4) as

P = ε2 · (α|E|
2
+ (1 − α)G)E. (5)

hen α = 0 (only Raman-type nonlinearity), by using Fourier-transform, we can show that G satisfies the constitutive
quation (cf. [14, Sec. C])

a1∂ttG + a2∂tG + a3G = |E|
2, (6)

here constants a1 =
τ1
Ã
, a2 =

2τ1
Ãτ2

, a3 = 1. When α = 1 (a Kerr-type medium), we have g(t) = δ(t), which leads to

G = |E|
2. This can still be written in the form of (6) with a1 = a2 = 0 and a3 = 1.

Therefore, substituting Eqs. (3) and (5) into Eq. (1), we obtain the time-domain Maxwell’s equations in the third-order
nonlinear material written as

ε1∂tE + ε2 · (α∂t (|E|
2E) + (1 − α)∂t (GE)) − ∇ × H = 0, (7)

µ0∂tH + ∇ × E = 0, (8)
a1∂ttG + a2∂tG + a3G = |E|

2, (9)

for any (x, t) ∈ Ωt .
To complete the model (7)–(9), we assume that a perfect magnetic conductor (PMC) boundary condition is imposed

on ∂Ω:

n × H = 0, on ∂Ω × (0, T ], (10)

here n denotes the unit outward normal on ∂Ω . In addition, the initial conditions are

E(x; 0) = E0(x), H(x; 0) = H0(x),

G(x, 0) = G0(x), ∂tG(x, 0) = G0
1(x), ∀x ∈ Ω, (11)

here E0(x),H0(x),G0(x) and G0
1(x) are some given proper functions.

Assuming the existence of a sufficiently smooth solution to (7)–(11), a weak formulation can be obtained as follows.
ultiplying (7)–(9) by ϕ ∈ (L2(Ω))3, ψ ∈ H0(curl; Ω) and φ ∈ L2(Ω), respectively, and integrating the results over Ω ,

hen using the vector form of Green’s theorem and PMC boundary condition (10), we can obtain the weak formulation of
roblem (7)–(11) as follows: Find the solution (E,H,G) satisfies

(ε1∂tE + ε2α∂t (|E|
2E) + ε2(1 − α)∂t (GE),ϕ) = (∇ × H,ϕ), ∀ϕ ∈ (L2(Ω))3, (12)

(µ0∂tH,ψ) = −(∇ × ψ, E), ∀ψ ∈ H0(curl; Ω), (13)
(a1∂ttG + a2∂tG + a3G, φ) = (|E|

2, φ), ∀φ ∈ L2(Ω), (14)

for any t ∈ (0, T ] subject to the initial conditions (11).
In the rest of the paper, we denote the L2 norm ∥u∥

2
0 =

∫
Ω

|u|
2dΩ .

Theorem 2.1. Let

E ∈ C1(0, T ; (L2(Ω))3) ∩ C(0, T ; (L4(Ω))3),

H ∈ C1(0, T ; (L2(Ω))3) ∩ C(0, T ;H0(curl; Ω)),

G ∈ C2(0, T ; L2(Ω)),

(15)

satisfy (12)–(14), (10) and (11), and G(x, t) ≥ 0 on Ω t . Then (E,H,G) satisfies the energy identity:

d
dt

[
µ0∥H∥

2
0 + ε1∥E∥

2
0 +

3ε2α
2

∥ |E|
2
∥
2
0 + ε2(1 − α)

(
∥G

1
2 E∥

2
0 +

a1
2

∥∂tG∥
2
0 +

a3
2

∥G∥
2
0

)]
+ ε2(1 − α)a2∥∂tG∥

2
0 = 0.

and the stability[
µ0∥H∥

2
0 + ε1∥E∥

2
0 +

3ε2α
2

∥ |E|
2
∥
2
0 +

ε2(1 − α)
2

(2∥G
1
2 E∥

2
0 + a1∥∂tG∥

2
0 + a3∥G∥

2
0)
]
(t)

⩽

[
µ0∥H∥

2
0 + ε1∥E∥

2
0 +

3ε2α
2

∥ |E|
2
∥
2
0 +

ε2(1 − α)
2

(2∥G
1
2 E∥

2
0 + a1∥∂tG∥

2
0 + a3∥G∥

2
0)
]
(0),

for any t ∈ [0, T ].
3
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Proof. Taking ψ = H,ϕ = E, φ = ∂tG(t) in (12)–(14), respectively, and adding (13) and (12) together, we obtain the
ollowing equations:

ε1(∂tE, E) + ε2α(∂t (|E|
2E), E) + ε2(1 − α)(G∂tE + (∂tG)E, E) + (µ0∂tH,H) = 0, (16)

(a1∂ttG + a2∂tG + a3G, ∂tG) = (|E|
2, ∂tG). (17)

Substituting the following identities

(∂t (|E|
2E), E) = (∂t |E|

2E + |E|
2∂tE, E)

=

∫
Ω

|E|
2∂t |E|

2dΩ +
1
2

∫
Ω

|E|
2∂t |E|

2dΩ

=
3
2

∫
Ω

|E|
2∂t |E|

2dΩ =
3
4

d
dt

∥ |E|
2
∥
2
0,

(G∂tE + (∂tG)E, E) =
1
2

∫
Ω

G∂t |E|
2dΩ +

∫
Ω

(∂tG)|E|
2dΩ

=
1
2

[
d
dt

∥G
1
2 E∥

2
0 +

∫
Ω

(∂tG)|E|
2dΩ

]
,

ε1(∂tE, E) =
ε1

2
d
dt

∥E∥
2
0,

(µ0∂tH,H) =
µ0

2
d
dt

∥H∥
2
0,

into (16), we have

d
dt

(
µ0∥H∥

2
0 + ε1∥E∥

2
0 +

3ε2α
2

∥ |E|
2
∥
2
0

)
+ ε2(1 − α)

(
d
dt

∥G
1
2 E∥

2
0 +

∫
Ω

(∂tG)|E|
2dΩ

)
= 0. (18)

From (17), we have∫
Ω

(∂tG)|E|
2dΩ =

∫
Ω

∂tG [a1∂ttG + a2∂tG + a3G] dΩ

=
a1
2

∫
Ω

∂t (∂tG)2dΩ + a2

∫
Ω

(∂tG)2dΩ +
a3
2

∫
Ω

∂t (G2)dΩ

=
a1
2

d
dt

∥∂tG∥
2
0 + a2∥∂tG∥

2
0 +

a3
2

d
dt

∥G∥
2
0.

(19)

Therefore, substituting (19) into (18), we obtain

d
dt

(
µ0∥H∥

2
0 + ε1∥E∥

2
0 +

3ε2α
2

∥ |E|
2
∥
2
0

)
+ ε2(1 − α)

[
d
dt

∥G
1
2 E∥

2
0 +

a1
2

d
dt

∥∂tG∥
2
0 + a2∥∂tG∥

2
0 +

a3
2

d
dt

∥G∥
2
0

]
= 0.

urthermore, we have
d
dt

(
µ0∥H∥

2
0 + ε1∥E∥

2
0 +

3ε2α
2

∥ |E|
2
∥
2
0 + ε2(1 − α)(∥G

1
2 E∥

2
0 +

a1
2

∥∂tG∥
2
0 +

a3
2

∥G∥
2
0)
)

= − a2ε2(1 − α)∥∂tG∥
2
0 ⩽ 0.

(20)

Integrating (20) with respect to t from t = 0 to any t ∈ (0, T ] completes our proof. □

3. The fully discrete schemes and their stability analysis

3.1. The three dimensional FETD scheme and its stability

We divide Ω into a number of tetrahedra whose maximum mesh size is h. Let Th be the set of these tetrahedra. In any
tetrahedron, we introduce two space as follows [30]:

R1 = {u : u = a + b × x, a, b ∈ R3
},

D1 = {u : u = a + bx, a ∈ R3, b ∈ R}.

Consider the finite element spaces

V = {v ∈ H(curl; Ω) : v | ∈ R , ∀e ∈ T },
h h h e 1 h

4
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U h = {uh ∈ (L4(Ω))3 : uh|e ∈ D1, ∀e ∈ Th},
V 0

h = {vh ∈ V h : vh × n = 0, on ∂Ω}.

In order to obtain the fully discrete FETD scheme, we divide the time interval [0,T] into N uniform subintervals
[(k − 1)τ , kτ ] by points tk = kτ , where the time step τ =

T
N , and k = 0, 1, 2, . . . ,N . We denote Ek

h for the approximate

olution E at time tk, and H
k+ 1

2
h for the approximate solution of H at time tk+ 1

2
.

First, we give several identities

∂t (|E|
2) = ∂t (E2

x + E2
y + E2

z ) = 2E⊤∂tE,

∂t (|E|
2E) = ∂t (|E|

2)E + |E|
2∂tE = 2(E⊤∂tE)E + |E|

2∂tE
= 2E(E⊤∂tE) + |E|

2∂tE = 2(EE⊤)∂tE + |E|
2∂tE.

(21)

Using the following approximations

EE⊤
|t=(k+ 1

2 )τ
≈

Ek+1(Ek+1)⊤ + Ek(Ek)⊤

2
,

|E|
2
|t=(k+ 1

2 )τ
≈

|Ek+1
|
2
+ |Ek

|
2

2
,

∂tE|t=(k+ 1
2 )τ

≈
Ek+1

− Ek

τ
,

to discrete (21), we have

∂t (|E|
2E)|t=(k+ 1

2 )τ
≈ (Ek+1(Ek+1)⊤ + Ek(Ek)⊤)

Ek+1
− Ek

τ
+

|Ek+1
|
2
+ |Ek

|
2

2
Ek+1

− Ek

τ
. (22)

Now we can develop a leap-frog type scheme to solve the weak formulation problem (12)–(14) and (11) with α = 1.

Given initial approximations E0
h , H

1
2
h , for k = 0, 1, 2, . . ., find Ek+1

h ∈ U h, H
k+ 3

2
h ∈ V 0

h such that(
ε2(Ek+1

h (Ek+1
h )⊤ + Ek

h(E
k
h)

⊤)
Ek+1
h − Ek

h

τ
,ϕh

)

+

((
ε1 + ε2

|Ek+1
h |

2
+ |Ek

h|
2

2

)
Ek+1
h − Ek

h

τ
,ϕh

)
= (∇ × H

k+ 1
2

h ,ϕh),

(23)

⎛⎝µ0
H

k+ 3
2

h − H
k+ 1

2
h

τ
,ψh

⎞⎠ = −(Ek+1
h , ∇ × ψh), (24)

old true for any ϕh ∈ U h and ψh ∈ V 0
h .

heorem 3.1. Let Cv = 1/
√

ε0µ0 be the speed of light in vacuum, and Cinv denotes the constant from the standard inverse
stimate [31]

∥∇ × ψh∥0 ⩽ Cinvh−1
∥ψh∥0, ∀ψh ∈ V h. (25)

hen under the time step constraint τ ⩽
h
√

ε∞

CinvCv
, the solutions of (23)–(24) satisfy the following stability:

ε1∥En
h∥

2
0 +

3ε2
2

∥ |En
h|

2
∥
2
0 + µ0∥H

n+ 1
2

h ∥
2
0 ⩽ 3

(
ε1∥E0

h∥
2
0 +

3ε2
2

∥ |E0
h|

2
∥
2
0 + µ0∥H

1
2
h ∥

2
0

)
.

roof. Choosing ϕh = τ (Ek+1
h + Ek

h) in (23), ψh = τ (H
k+ 3

2
h + H

k+ 1
2

h ) in (24), we can obtain the following:

ε2

(
(Ek+1

h (Ek+1
h )⊤ + Ek

h(E
k
h)

⊤) E
k+1
h −Ek

h
τ

, τ (Ek+1
h + Ek

h)
)

+

((
ε1 + ε2

|Ek+1
h |

2
+|Ek

h|
2

2

)
Ek+1
h −Ek

h
τ

, τ (Ek+1
h + Ek

h)
)

= (∇ × H
k+ 1

2
h , τ (Ek+1

h + Ek
h)),

(26)

µ0(∥H
k+ 3

2
h ∥

2
0 − ∥H

k+ 1
2

h ∥
2
0) = −τ (Ek+1

h , ∇ × (H
k+ 3

2
h + H

k+ 1
2

h )). (27)
5
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w

Using the following identities((
Ek+1
h (Ek+1

h )⊤ + Ek
h(E

k
h)

⊤
) Ek+1

h −Ek
h

τ
, τ (Ek+1

h + Ek
h)
)

=
(
Ek+1
h (Ek+1

h )⊤Ek+1
h − Ek

h(E
k
h)

⊤Ek
h

+ Ek
h(E

k
h)

⊤Ek+1
h − Ek+1

h (Ek+1
h )⊤Ek

h, E
k+1
h + Ek

h

)
=

(
|Ek+1

h |
2Ek+1

h − |Ek
h|

2Ek
h + (Ek

h − Ek+1
h )(Ek+1

h )⊤Ek
h, E

k+1
h + Ek

h

)
= ∥ |Ek+1

h |
2
∥
2
0 − ∥ |Ek

h|
2
∥
2
0 +

(
(Ek+1

h )⊤Ek
h, |E

k+1
h |

2
− |Ek

h|
2
)

+

(
(Ek+1

h )⊤Ek
h, |E

k
h|

2
− |Ek+1

h |
2
)

= ∥ |Ek+1
h |

2
∥
2
0 − ∥ |Ek

h|
2
∥
2
0,(

|Ek+1
h |

2
+|Ek

h|
2

2
Ek+1
h −Ek

h
τ

, τ (Ek+1
h + Ek

h)
)

=
1
2

(
∥ |Ek+1

h |
2
∥
2
0 − ∥ |Ek

h|
2
∥
2
0

)
,

we can rewrite (26) as

ε1(∥Ek+1
h ∥

2
0 − ∥Ek

h∥
2
0) +

3ε2
2

(∥ |Ek+1
h |

2
∥
2
0 − ∥ |Ek

h|
2
∥
2
0) = τ (∇ × H

k+ 1
2

h , Ek+1
h + Ek

h). (28)

Adding Eqs. (27) and (28), and using the following identity

τ (∇ × H
k+ 1

2
h , Ek+1

h + Ek
h) − τ (Ek+1

h , ∇ × (H
k+ 3

2
h + H

k+ 1
2

h ))

=τ (∇ × H
k+ 1

2
h , Ek

h) − τ (Ek+1
h , ∇ × H

k+ 3
2

h ),

we can obtain:

ε1(∥Ek+1
h ∥

2
0 − ∥Ek

h∥
2
0) +

3ε2
2

(∥ |Ek+1
h |

2
∥
2
0 − ∥ |Ek

h|
2
∥
2
0) + µ0(∥H

k+ 3
2

h ∥
2
0 − ∥H

n+ 1
2

h ∥
2
0)

= τ (∇ × H
k+ 1

2
h , Ek

h) − τ (Ek+1
h , ∇ × H

k+ 3
2

h ).
(29)

Summing (29) from k = 0 to k = n − 1, we obtain

ε1(∥En
h∥

2
0 − ∥E0

h∥
2
0) +

3ε2
2

(∥ |En
h|

2
∥
2
0 − ∥ |E0

h|
2
∥
2
0) + µ0(∥H

n+ 1
2

h ∥
2
0 − ∥H

1
2
h ∥

2
0)

= τ (∇ × H
1
2
h , E0

h) − τ (En
h, ∇ × H

n+ 1
2

h ).
(30)

Using the Cauchy–Schwarz inequality and the standard inverse estimate (25), we have

τ (En
h, ∇ × H

n+ 1
2

h ) ⩽ τ · ∥En
h∥0 · ∥∇ × H

n+ 1
2

h ∥0

⩽ τ · Cinvh−1
∥En

h∥0 · ∥H
n+ 1

2
h ∥0

= τ · Cinvh−1
· Cv

√
ε0∥En

h∥0 ·
√

µ0∥H
n+ 1

2
h ∥0

⩽
δ1

2
ε0∥En

h∥
2
0 +

1
2δ1

(
τCinvh−1Cv

)2
µ0∥H

n+ 1
2

h ∥
2
0.

(31)

Letting n = 0 in (31), we have

τ (E0
h, ∇ × H

1
2
h ) ⩽

δ1

2
ε0∥E0

h∥
2
0 +

1
2δ1

(
τCinvh−1Cv

)2
µ0∥H

1
2
h ∥

2
0. (32)

Substituting (31) and (32) into (30), we obtain

ε1(∥En
h∥

2
0 − ∥E0

h∥
2
0) +

3ε2
2

(∥ |En
h|

2
∥
2
0 − ∥ |E0

h|
2
∥
2
0) + µ0(∥H

n+ 1
2

h ∥
2
0 − ∥H

1
2
h ∥

2
0)

⩽
δ1

2
ε0∥En

h∥
2
0 +

1
2δ1

(
τCinvh−1Cv

)2
µ0∥H

n+ 1
2

h ∥
2
0

+
δ1

2
ε0∥E0

h∥
2
0 +

1
2δ1

(
τCinvh−1Cv

)2
µ0∥H

1
2
h ∥

2
0.

By choosing δ1 = ε∞ and τ ≤
h
√

ε∞

CinvCv
, we have

ε1∥En
h∥

2
0 +

3ε2
2

∥ |En
h|

2
∥
2
0 + µ0∥H

n+ 1
2

h ∥
2
0 ⩽ 3

(
ε1∥E0

h∥
2
0 +

3ε2
2

∥ |E0
h|

2
∥
2
0 + 3µ0∥H

1
2
h ∥

2
0

)
,

hich concludes the proof. □
6
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3.2. The two dimensional FETD scheme

Next, we consider the two-dimensional form of problem (7)–(11). In this case, we assume that Ω is a bounded, simply
onnected domain in R2, and Ω is divided into a number of triangles with maximum mesh size h. Let Th be the set of
hese triangles, and

H = [Hx,Hy]
⊤, ∇ × H = ∂xHy − ∂yHx,

E = Ez, ∇ × E = [∂yE, −∂xE]
⊤.

We can directly write the two dimensional form of (12)–(14) as follows: Find the solution

E ∈ C1(0, T ; L2(Ω)) ∩ C(0, T ; L4(Ω)),

H ∈ C1(0, T ; (L2(Ω))2) ∩ C(0, T ;H0(curl; Ω)),

G ∈ C2(0, T ; L2(Ω)),

(33)

atisfies

(ε1∂tE + 3ε2α|E|
2∂tE + ε2(1 − α)∂t (GE), ϕ) = (∇ × H, ϕ), ∀ϕ ∈ L2(Ω), (34)

(µ0∂tH,ψ) = −(∇ × ψ, E), ∀ψ ∈ H0(curl; Ω), (35)
(a1∂ttG + a2∂tG + a3G, φ) = (|E|

2, φ), ∀φ ∈ L2(Ω), (36)

or any t ∈ (0, T ] with the initial conditions (11).
Consider the finite element spaces

Uh = {vh ∈ L4(Ω) : vh|e is a piecewise constant, e ∈ Th},
Vh = {vh ∈ H(curl; Ω) : vh|e = span{λi∇λj − λj∇λi}, i, j = 1, 2, 3, e ∈ Th},

here λi denotes the standard linear Lagrange basis function at vertex i of triangle e.
To approximate the weak formulation (34)–(36) with initial conditions (11), we propose the following fully discrete

cheme: Given proper initial approximations H
1
2
h , E

0
h and E−1

h , for k = 0, 1, . . ., find Ek+1
h ,Gk+1

h ∈ Uh, H
k+ 3

2
h ∈ V 0

h such that((
ε1 +

3ε2α

2

(
|Ek+1

h |
2
+ |Ek

h |
2
))

Ek+1
h −Ekh

τ
, ϕh

)
+

(
ε2(1 − α) G

k+1
h Ek+1

h −GkhE
k
h

τ
, ϕh

)
= (∇ × H

k+ 1
2

h , ϕh),
(37)

⎛⎝µ0
H

k+ 3
2

h − H
k+ 1

2
h

τ
,ψh

⎞⎠ = −(Ek+1
h , ∇ × ψh), (38)

(
a1

Gk+1
h − 2Gk

h + Gk−1
h

τ 2 + a2
Gk+1
h − Gk−1

h

2τ
+ a3Gk

h, φh

)
= (|Ek

h |
2
, φh), (39)

hold true for any ϕh, φh ∈ Uh and ψh ∈ V 0
h .

The initial conditions (11) are discretized as follows:

E0
h = Π2E0(x), G0

h = Π2G0(x),
G1
h − G−1

h

2τ
= Π2G0

1(x),

H
1
2
h = Πc(H0(x) +

τ

2
∂tH0(x)) = Πc(H0(x) −

τ

2
µ−1

0 ∇ × E0(x)),
(40)

here we used the governing Eqs. (8) in the last step. Here Π2 denotes the standard L2 projection to space Uh, and Πc
enotes the standard Nédélec interpolation [31] to space Vh.
The implementation of the scheme (37)–(39) is quite simple. At each time step, we first solve (39) for Gk+1

h ; then solve

37) for Ek+1
h ; finally, solve (38) for H

k+ 1
2

h . When k = 0, we need to use the initial approximation to solve for G1
h . More

specifically, from (40) we have

G−1
h = G1

h − 2τΠ2G0
1,

then substituting this into (39) with k = 0, we obtain

G1
h =

1 [
(2a1 − τ 2a3)G0

h + 2τ (a1 − 0.5τa2)Π2G0
1 + τ 2

|E0
h |

2
]
.

2a1
7
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Note that Eq. (37) is equivalent to(
ε1 +

3ε2α
2

(|Ek+1
h |

2
+ |Ek

h |
2
)
)
(Ek+1

h − Ek
h) + ε2(1 − α)(Gk+1

h Ek+1
h − Gk

hE
k
h) = τ∇ × H

k+ 1
2

h , (41)

n any element e ∈ Th, which can be written as a third order polynomial equation as follows:

b1z3 + b2z2 + b3z + b4 = 0, with z = Ek+1
h (42)

here b1 =
3ε2α

2 , b2 = −
3ε2α

2 Ek
h , b3 = ε1+

3ε2α

2 (Ek
h)

2
+ε2(1−α)Gk+1

h and b4 = τ∇×H
k+ 1

2
h +ε1Ek

h+
3ε2α

2 (Ek
h)

3
+ε2(1−α)Gk

hE
k
h .

To avoid the computational cost by using the standard iterative method to solve (42), we introduce the Cardano’s
method to solve it with an exact formula. Assuming b1 ̸= 0, let z = y −

b2
3b1

, p =
3b1b3−b22

3b21
, q =

27b21b4−9b1b2b3+2b32
27b31

, Eq. (42)
ecomes as

y3 + py + q = 0.

Let ω =
−1+

√
3i

2 and ∆ = ( q2 )
2
+ ( p3 )

3. If ∆ ⩾ 0, then the solutions y1, y2, y3 of Eq. (42) are

y1 =
3

√
−

q
2

+
√

∆ +
3

√
−

q
2

−
√

∆, (43)

y2 = ω 3

√
−

q
2

+
√

∆ + ω2 3

√
−

q
2

−
√

∆,

y3 = ω2 3

√
−

q
2

+
√

∆ + ω 3

√
−

q
2

−
√

∆.

Under the assumption that G(·, t) is nonnegative on Ω t and our discrete scheme (37)–(39) is convergent (i.e.,
|Gk+1

h − G(x, tk+1)|L∞(Ω) ≤ Cτ δ for any δ > 0), we have

3b1b3 − b22 = 3
3ε2α
2

(ε1 +
3ε2α
2

(Ek
h)

2
+ ε2(1 − α)Gk+1

h ) − (
3ε2α
2

Ek
h)

2

= 2(
3ε2α
2

Ek
h)

2
+

9ε1ε2α
2

+
9ε2

2α(1 − α)
2

Gk+1
h ⩾ 0,

(44)

or sufficiently small τ . In this case, the unique real solution of (42) is y1 −
b2
3b1

, i.e., in our implementation, we simply
choose Ek+1

h = y1 −
b2
3b1

as the solution of (42) to avoid the computational cost of an iterative method.

4. 2-D FETD scheme based on APML

In the rest of the paper, we focus on 2-D simulation. To simulate the propagation of electromagnetic waves in a bounded
domain, we choose the perfectly matched layer (PML) idea introduced by Berenger in 1994 [32]. Due to its effectiveness
in absorbing outgoing waves, various PMLs have been developed and applied to solve various wave propagation problems
(cf., [33–36] and references therein).

The anisotropic perfect matched layer (APML) was proposed by Gedney [37] for the FDTD method, and later was
adopted by Fujii and Russer [14] to solve Maxwell’s equations in 2-D Kerr–Raman-type nonlinear dispersive media. Due
to its proved effectiveness in solving nonlinear Maxwell’s equations, in this paper we will choose the APML method for
our simulation.

First, let us develop the APML modeling equations. Consider the 3-D frequency-domain Maxwell’s equations

∇ × H = jωΛD, (45)
∇ × E = −jωΛB, (46)

here E,D,H and B are the frequency-domain forms of E , D, H and magnetic flux density B, respectively, j =
√

−1,
nd ω is the wave frequency. Here the uniaxial anisotropic medium tensor Λ is given as:

Λ =

⎡⎣ sysz
sx

0 0
0 sxsz

sy
0

0 0 sxsy
sz

⎤⎦ ,

ith

sx = κx +
σx

, sy = κy +
σy

, sz = κz +
σz

,

jωε0 jωε0 jωε0

8
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Fig. 1. The configuration of 1-D PML.

here κx, κy, κz are the piecewise polynomial functions of x, y and z, respectively, and σx, σy, σz are the damping
functions in the x-, y- and z-directions, respectively. Usually, we choose κi, σi, (i = x, y, z) as piecewise polynomial
functions [15,32,37]. Taking κx, σx as an example, we choose

κx(x) =

{
1 + (κmax

x − 1)
(

|x−x0|

d

)m
, x ∈ ΩPML,

1, x ∈ ΩC ,

σx(x) =

{
σmax
x

(
|x−x0|

d

)m
, x ∈ ΩPML,

0, x ∈ ΩC ,

where |x − x0| denotes the distance between x and x0, constants κmax
x and σmax

x satisfy κmax
x ⩾ 1 and σmax

x ⩾ 0,
respectively, and d denotes the thickness of the PML. According to [31], to reach a reflection error goal R(0), we choose
σmax
x = −

(m+1)ε0Cv

2d ln(R(0)). A sketch of the configuration of PML surrounding the original physical domain is shown in
Fig. 1.

Now we apply this APML method to the 2-D transverse magnetic model of (7)–(9). In this case, we have sz = κz = 1,
z = Ex = Ey = 0, and Λ becomes as

Λ =

⎡⎢⎣
sy
sx

0 0

0 sx
sy

0

0 0 sxsy

⎤⎥⎦ . (47)

Substituting (47) into (45)–(46), we have

∇ × H = jωsxsyF[ε1E + αε2E3
+ ε2(1 − α)GE], (48)

∇ × E = −jωµ0

[ sy
sx sx

sy

]
H, (49)

here F[·] denotes the Fourier transform.
Denoting

D = syF[ε1E + αε2E3
+ ε2(1 − α)GE], (50)

B = µ0(K 1 + (jωε0)−1Q 1)
−1H, (51)

e can rewrite Eqs. (48)–(49) as

∇ × H = jωsxD, (52)
∇ × E = −jω(K 2 + (jωε0)−1Q 2)B, (53)

where K 1 = diag(κx, κy), K 2 = diag(κy, κx), Q 1 = diag(σx, σy), and Q 2 = diag(σy, σx).
Applying the inverse Fourier transform to Eqs. (50)–(53), we obtain the coupled Maxwell’s equations in the third-order

nonlinear materials with its corresponding PML given as follows:

κx∂tD + ε−1
0 σxD = ∇ × H,

∂tD = (κy∂t + ε−1
0 σy)[ε1E + αε2E3

+ ε2(1 − α)GE],

K 2∂tB + ε−1
0 Q 2B = −∇ × E,

K 1∂tB + ε−1
0 Q 1B = µ0∂tH .

The relation between G and E is the same as defined by Eq. (9).

Now we can present our APML-FETD scheme: Given proper initial approximations E0
h , H

−
1
2

h , D0
h , B

−
1
2

h , G0
h , G

−1
h , find

k+1
h ,Dk+1

h ,Gk+1
h ∈ Uh, H

k+ 1
2

h ,B
k+ 1

2
h ∈ V 0

h for any k = 0, 1, . . ., such that(
κx

Dk+1
h − Dk

h

τ
, ϕ1h

)
+

(
σx

ε

Dk+1
h + Dk

h

2
, ϕ1h

)
=

(
∇ × H

k+ 1
2

h , ϕ1h

)
, (54)
0

9
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h

(

Fig. 2. Square and triangular unit cells. The background material (blank) is air; the gray sectors are dielectric rods.

(( a1
τ 2 +

a2
2τ

)
Gk+1
h +

(
a3 −

2a1
τ 2

)
Gk
h +

( a1
τ 2 −

a2
2τ

)
Gk−1
h , ϕ2h

)
=

(
|Ek

h |
2
, ϕ2h

)
, (55)(

Dk+1
h − Dk

h

τ
, ϕ3h

)
= ε1

(
κy

Ek+1
h − Ek

h

τ
+

σy

ε0

Ek+1
h + Ek

h

2
, ϕ3h

)

+ ε2α

(
3κy

(Ek+1
h )2 + (Ek

h)
2

2
Ek+1
h − Ek

h

τ
+

σy

ε0

(Ek+1
h )3 + (Ek

h)
3

2
, ϕ3h

)
(56)

+ ε2(1 − α)

(
κy

Gk+1
h Ek+1

h − Gk
hE

k
h

τ
+

σy

ε0

Gk+1
h Ek+1

h + Gk
hE

k
h

2
, ϕ3h

)
,⎛⎝K 2

B
k+ 1

2
h − B

k− 1
2

h

τ
,ψ1h

⎞⎠+

⎛⎝Q 2
B
k+ 1

2
h + B

k− 1
2

h

2ε0
,ψ1h

⎞⎠ = −(Ek
h, ∇ × ψ1h), (57)

⎛⎝µ0
H

k+ 1
2

h − H
k− 1

2
h

τ
,ψ2h

⎞⎠ =

⎛⎝K 1
B
k+ 1

2
h − B

k− 1
2

h

τ
,ψ2h

⎞⎠+

⎛⎝Q 1
B
k+ 1

2
h + B

k− 1
2

h

2ε0
,ψ2h

⎞⎠ , (58)

old true for any ϕ1h, ϕ2h, ϕ3h ∈ Uh and ψ1h,ψ2h ∈ V 0
h .

At each step, the APML-FETD algorithm is implemented as follows:

Step 1. Excite the source wave at the electric field, and use (57) to solve for B
k+ 1

2
h . When k = 0, we need to couple

57) with an initial approximation B
1
2
h +B

−
1
2

h
2 = ΠcB(x, 0) to obtain B

1
2
h ;

Step 2. Use (58) to solve for H
k+ 1

2
h ;

Step 3. Use (54) to solve for Dk+1
h ;

Step 4. Use (55) to update Gk+1
h ;

Step 5. Use (56) to obtain the coefficients b1, b2, b3 and b4 of the cubic Eq. (42), and substitute them into (43) to obtain
Ek+1
h . Then go back to Step 1 and repeat Steps 1-5.

5. Numerical results

In this section, we present our numerical simulations of wave propagation in photonic crystal waveguides formed by
arranging triangular and square unit cells periodically (See Fig. 2). We are interested in those nonlinear PCWGs with some
nonlinear dielectric rods inserted around the bends.

First, we set some conventions in the numerical experiments in this section. Figs. 3(a), 5(a), 7(a), 8(a), 9(a) and 10(a) are
the sketches of our model setups. Taking Fig. 3(a) as an example, the most outside empty region between two rectangles
is the PML region (having 10 mesh size thickness), the interested physical domain is surrounded by the PML, and has
dimensions [0, 14a]×[0, 8a], where a denotes the lattice constant and is equal to 1 µm, the green rods always denote the
linear dielectric materials with relative permittivity 11.56, the blank region between rods is air, the red arrow denotes the
10
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w
t

Fig. 3. Subfigure (1) is a L-shaped PCWG. In this experiment, we take A = 0.01 V/m, 200 V/m and frequencies in the range [0.28c/a, 0.4c/a], where
c is the speed of light in vacuum. Setting the black rods in Subfigure (1) as linear material rods and Kerr-type nonlinear material rods, the obtained
corresponding transmission coefficients are shown in Subfigures (2) and (3), respectively.

Fig. 4. The electric fields Ez obtained at time t = 5000∆t for the Kerr-type nonlinear bent PCWG given in Fig. 3(a). The incoming waves are sine
aves whose frequencies are 0.33c/a, and intensities are 0.01 V/m (left) and 200 V/m (right), respectively. In this experiment, we consider the
riangle mesh, whose mesh size is h =

a
12 , and the time step size τ =

h
6c .

position and direction of incident waves, and points P1 and P2 denote the two observation points. If we do not emphasize,
the black rods represent the nonlinear materials such as the Kerr-type or Raman-type. In all our simulations, we fix the
parameter ε∞ of nonlinear material rods to be 7, the third-order nonlinear optical susceptibility χ (3)

= 0.001, and the
radius of the material rods R = 0.2a. We take sine wave A sin(2π ft) as the incident wave imposed as Ez , where f is the
wave frequency, and A is the magnitude of the wave.

To make the expression more lucid, we define the transmission coefficient TC as 20 ln(
max |EP2 |

max |EP1 |
), where EP1 and EP2

denote electric fields at P1 and P2, respectively. If the value of the parameter α is not marked, it means that the
corresponding result is about the transmission coefficient in a bent linear waveguide. Since in the experiments of this
paper, the inside of PML is the background material (air), here we can take κmax

= 1.
Below we will discuss the phenomena of wave passing through both linear and nonlinear bent PCWG comprised of

triangular and square unit cells.

5.1. Kerr-type nonlinear bent PCWG

First, we imitate the design of the bent waveguide given in [9], and plot our first nonlinear bend waveguide (See
Fig. 3(a)).

From Figs. 3(b), 5(b) and 7(b), it can be seen that low-intensity and high-intensity sine waves with different frequencies
can pass through the bent linear PCWG well. The transmission coefficients are almost unaffected by the intensities of the
waves. From Figs. 3(c), 5(c) and 7(c), it can be observed that the intensities and frequencies of the incident waves affect the
transmission coefficients when the incident waves pass through the bent Kerr-type nonlinear PCWG. In certain frequency
range (bistable frequency band), the transmission coefficients of high-intensity electromagnetic waves (The amplitudes of
electric fields are 200 V/m) are larger than that of low-intensity electromagnetic waves. When different intensity incoming
waves with frequency f = 0.33c/a pass throuth the waveguides shown in Fig. 3(a) and Fig.5(a), we obtain the electric
fields E shown in Figs. 4 and 6, respectively. Therefore, we can conclude that the high-intensity electromagnetic waves
z

11
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Fig. 5. Subfigure (1) is a Z-shaped PCWG. In this experiment, we use the same incident waves as the experiments in Fig. 3. Setting the black rods
n Subfigure (1) as linear material rods and Kerr-type nonlinear material rods, the obtained corresponding transmission coefficients are shown in
ubfigures (2) and (3), respectively.

Fig. 6. The electric fields Ez obtained at time t = 6500∆t for the Kerr-type nonlinear bent PCWG given in Fig. 5(a). The incoming waves are sine
aves whose frequencies are 0.33c/a, and intensities are 0.01 V/m (left) and 200 V/m (right), respectively. In this experiment, we also consider the
riangle mesh, whose mesh size is h =

a
12 , and the time step size τ =

h
6c .

Fig. 7. Subfigure (1) is a L-shaped PCWG. In this experiment, we use the same incident waves as the experiment given in Fig. 3. Setting the black
ods in Subfigure (1) as linear material rods and Kerr-type nonlinear material rods, the obtained corresponding transmission coefficients are shown
n Subfigures (2) and (3), respectively.

an pass the bent Kerr-type nonlinear PCWGs well in the bistable frequency band, but the low-intensity waves cannot.
urthermore, when the electromagnetic wave, whose frequency is outside the bistable frequency band, passes through the
ent Kerr-type nonlinear PCWG, the transmission coefficient is almost unaffected by the intensity of the electromagnetic
ave. Therefore, by inserting several Kerr-type nonlinear material rods into the bend of linear PCWG, we can obtain a
istable transmission optical switch that depends on the intensity of the incoming wave. The optical switches can filter
ow-intensity waves, whose frequencies are in the bistable frequency band, which is related to the PBG of photonic crystal
nd the parameters of the Kerr-type nonlinear material rods.
Next, we introduce the experimental results of the bent Kerr-type nonlinear PCWGs formed by the triangular unit cells.

he material parameters are the same as given above.
Figs. 9(b) and 10(b) show that in the waveguides composed of triangular unit cells, we can design a bistable

ransmission optical switch which depends on the incoming waves’ intensities by using the same method.
12
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Fig. 8. Subfigure (1) is a U-shaped waveguide. In this experiment, we also use the same incident waves as the experiment given in Fig. 3. Setting
the black rods in Subfigure (1) as Kerr-type nonlinear material rods, the obtained corresponding transmission coefficients are shown in Subfigure
(2).

Fig. 9. Subfigure (1) is a V-shaped waveguide formed by triangular unit cells, and the black rods are made of Kerr-type material. In this experiment,
we take A = 0.01 V/m, 200 V/m and frequencies in the range (0.32c/a, 0.44c/a]. Subfigure (2) shows the obtained transmission coefficient.

Fig. 10. Subfigure (1) is a Z-shaped waveguide formed by triangular unit cells, and the black rods are made of Kerr-type material. In this experiment,
we take A = 0.01 V/m, 100 V/m and frequencies in the range [0.345c/a, 0.425c/a]. Subfigure (2) shows the calculated transmission coefficient.
13
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Fig. 11. The transmission coefficients obtained for the sine waves passing through the bent Kerr–Raman-type nonlinear PCWGs showed in Fig. 3(a)
ith α = 0, 0.3, 0.7.

Fig. 12. The transmission coefficients obtained for the sine waves passing through the bent Kerr–Raman-type nonlinear PCWGs showed in Fig. 5(a)
ith α = 0, 0.3, 0.7.

Fig. 13. The transmission coefficients obtained for the sine waves passing through the bent Kerr–Raman-type nonlinear PCWGs showed in Fig. 9(a)
ith α = 0, 0.3, 0.7.

.2. Kerr-Raman-type nonlinear PCWGs

Following [14,38], we take the function g(t) = αδ(t) + (1 − α)gR(t), where

gR(t) = Ã exp(−t/τ2) sin(t/τ1)u(t), Ã =
τ 2
1 + τ 2

2

τ1τ
2
2

,

ith τ1 = 12.2 femtosecond (fs) = 12.2 · 10−15 s, τ2 = 32 fs, and u(t) denotes the unit step function. In this case, the
Fourier transform [14] can be used to obtain Eq. (9) with a1 =

τ1
Ã
, a2 =

2τ1
Ãτ2

, a3 = 1, and the Z-transform [9] can be used
o obtain the second-order difference Eq. (39).

Taking the waveguides in Figs. 3(a) 5(a) and 9(a) as examples, we simulate the propagation of sine waves passing
hrough bent Kerr–Raman-type nonlinear PCWGs with α = 0, 0.3, 0.7, respectively, where the sine waves have the same
ntensities and frequencies as those given in Figs. 3(c), 5(c) and 9(b). The obtained transmission coefficients are shown in
igs. 11–13, respectively.
14
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From Figs. 11, 12, 13, 3(c), 5(c) and 9(b), we see that the bistable frequency band is related to α. When several rods
ade of Kerr–Raman-type, Raman-type or Kerr-type nonlinear materials are inserted into the bend waveguides, the bent
CWGs behave as bistable transmission optical switches which depend on the incoming waves’ intensities.

. Conclusion

In this paper, we prove the continuous stability of a kind of third-order nonlinear Maxwell’s equations. Then we
dopt the Cardano’s method with our time-domain finite element scheme to solve the third-order nonlinear constitutive
quation. We also prove the numerical stability of the FETD scheme for the Kerr–Maxwell’s equations. Due to its
omplexity, we did not pursue the numerical stability and convergence analysis for the general third-order nonlinear
axwell’s equations. We hope that they can be established by following our previous work [18]. In the numerical
xperiment, we use the FETD scheme to simulate the propagation of sine waves through various bent waveguides. Our
esults show that bistable transmission switches depending on the intensity of the incident wave can be constructed
y inserting some Kerr–Raman-type, Raman-type or Kerr-type nonlinear rods into the linear bend photonic crystal
aveguides.
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