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Abstract

Electrochemical CO, capture technologies have been found to consume less
energy than the industry standard of thermal separations, but their real-world
applicability requires that they also operate at comparable rates. Optimizing
for both low energy demands and high capture rates is complicated by trade-
offs between the two objectives and the many manipulable solution chemistry
variables, including species type and concentration. Here, we computationally
identified the solution chemistries that are most likely to outperform thermal
separations in both energy demand and capture rate for electrochemical cap-
ture driven by proton-coupled electron transfer reactions by using an adaptive
sampling contour estimation method. This approach provided high confidence
inferences with few simulation runs by selecting the most informative conditions
to test. We found that moderately basic pK, values of the reduced form of the
redox-active compound were the most important variables for low energy and

high rate CO, capture.
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Abbreviations
CV1I; Classifier variable importance of the i*! variable
DIC Dissolved inorganic carbon
EFF Expected feasibility function
GP Gaussian process

MEA Monoethanolamine

PCET  Proton-coupled electron transfer

SUR Stepwise uncertainty reduction

SVM Support vector machine

wIMSE  Weighted integrated mean square error

1. Introduction

Carbon capture technologies must become less expensive to achieve inter-
national climate goals [1, 2, 3, 4, 5]. Currently, carbon dioxide is captured at
a limited number of industrial plants using the monoethanolamine (MEA) pro-
cess, in which temperature swings control CO, absorption into and desorption
from aqueous solution [6]. More widespread use of the MEA process is tech-
nologically limited by the large energy demand required for heating and cool-
ing sorbent solutions [7, 8, 9, 10]. Theoretically, electrochemical CO, capture

technologies can be designed to operate with lower energy requirements than
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temperature-swing CO, capture technologies because they are not bound by
the Carnot cycle [11, 12, 13]. However, most experimental electrochemical CO,
capture systems have not yet achieved substantially lower energy demands than
the MEA benchmark after accounting for typical thermal-to-electrical energy
conversions [14, 15, 16, 17, 18, 19, 20, 21], and capture rates for electrochemical
CO, capture are rarely measured using conditions that allow direct comparison
to other CO, capture methods due to reactor design and operation differences
[17, 19, 22, 23, 24]. Given that capture rates affect absorber size and therefore
capital cost [5, 21, 25], we see a need to study the trade-offs that exist between
minimizing energy demands and maximizing the capture rates. In this study, we
focus on optimizing the solution chemistry composition for low energy demands
and high capture rates because the solution composition places physical limits
on what is achievable by changing, for instance, the thermodynamic minimum
energy and sorbent availability [11, 12].

Identifying optimal solution compositions for electrochemical CO, capture
can be prohibitively time-consuming for two reasons. First, a large number
of manipulatable variables exists, including the concentration and species of
each constituent present in solution. For electrochemical CO, capture technolo-
gies with many candidate compounds, the scale of these experimental designs
can usually only be achieved at reasonable timescales with simulation studies.
Second, we are simultaneously considering two performance metrics: energy de-
mands and CO, capture rates [26, 27]. The existence of multiple objectives
means there is no singular optimum, but rather there is a set of potential trade-
offs between those objectives called the Pareto front [28, 29, 30, 31]. Each
point on the Pareto front can be thought of as its own single-objective problem,
leading to experiment designs with many conditions to test.

While various adaptive sampling methods for finding Pareto fronts have been
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designed to reduce the number of tested experiment conditions, they assume a
well-defined input space in which all possible input configurations are known
[32, 33, 34, 35, 36, 37, 38, 39]. When optimizing a solution composition, know-
ing all possible input configurations would mean that almost all candidate com-
pounds and their relevant properties are known a priori. Unfortunately, this is
not the case for electrochemical CO, capture systems. Our literature survey re-
vealed that the number of candidate compounds with both electrochemical and
CO, capture data is on the order of 102, so relying solely on this data to identify
the Pareto front would only reveal the best solution composition among those
likely already reported in the literature. This case differs from literature exam-
ples of applying adaptive sampling methods for Pareto front estimation in other
materials problems, which identify promising candidates from databases con-
taining >10* species [40, 41, 42]. Additionally, conclusions obtained from large
datasets (>10° entries) have been shown to still be susceptible to database bi-
ases [43], putting into further question the validity of any Pareto front obtained
from ~210? candidates using any of these adaptive sampling methods.

One way to address multi-objective solution composition optimization prob-
lems when only a small fraction of candidate compounds have sufficient data is
to treat each solution property as a continuous variable, then search for com-
binations of solution properties that produce outcomes that are sufficienciently
close to the Pareto front. Treating each solution property as a continuous vari-
able accounts for potential candidate compounds that lack measured data, and
accepting results within some proximity of the Pareto front increases the like-
lihood that a yet-unreported compound may have a combination of properties
that falls within that domain. Reframing the problem in this way changes it
from a multi-objective optimization problem to a binary classification prob-

lem in which one searches for conditions that would be acceptably close to the
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proposed Pareto front. While a binary classifier could be trained solely using
randomly sampled conditions, the classifier is most likely to make errors in the
region close to the boundary between "acceptable" and "unacceptable" CO,
capture energies and rates, and thus the dataset should prioritize that bound-
ary through a process called contour estimation. Like searching for a Pareto
front, contour estimation is often intractable and frequently addressed through
adaptive sampling [39, 44].

Conceptually, adaptive sampling algorithms for contour estimation seek to
sample the point on the current estimate of the boundary that is farthest from
any previous sample [45]. More sophisticated and efficient algorithms, such as
the expected feasibility function (EFF) [46, 47] and the weighted integrated
mean square error (wIMSE) acquisition function [48], use uncertainty estimates
from Gaussian processes to account for the fact that changes in one variable
may be more impactful than equivalent changes in another. Importantly, none
of the contour estimation methods described here were initially designed for
nor tested with boundaries that describe multiple criteria like our study, which
considers both energy demands and capture rates. Because each criterion would
produce its own boundary, the combined boundary describing solution chem-
istry conditions that meet both criteria is likely to be a piecewise function, and,
to the best of our knowledge, there is no established method in the literature
for estimating this piecewise boundary more efficiently than solving each crite-
rion’s boundary independently, effectively doubling the computation time for a
two-criteria contour estimation problem. As the number of relevant criteria in-
creases, this process becomes increasingly expensive. To address this knowledge
gap, we developed our own adaptive sampling method that generalizes features
of the wIMSE and EFF methods to refine the estimate of a boundary defined

by a multi-objective problem. We use the resulting sampled dataset to produce
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a classifier that gives the probability of meeting both criteria, and we show that
the classifier becomes more accurate with each sampling iteration.

After initial validation of our approach with mathematical test scenarios,
we applied the method to search for the optimal solution chemistry properties
for CO, capture by pH swings generated from proton-coupled electron transfer
(PCET) electrochemical reactions [11, 23, 49]. In this reaction scheme, a redox-
active molecule will be electrochemically reduced and protonated; for this study,

we focus on the reduction of a quinone, Q, to a hydroquinone, QH,):

Q+2H" +2¢ = QH, (1)

Because the total dissolved CO, concentration (i.e., [H,COs] + [HCO5] +
[CO{]) is pH-dependent, raising the pH via electrochemical reduction cap-
tures CO,, and lowering the pH via electrochemical oxidation releases COs,.
While many other electrochemical CO, capture methods have been reported in
the literature [15, 16, 17, 18, 19, 22, 24, 50, 51, 52, 53, 54], we chose PCET-
driven pH swings as a starting point because a computational model for this
system had been previously reported by Jin et al. [11], providing us with a
benchmark for model validation. Additionally, this electrochemical approach
depends on only four variables and takes less than one minute to calculate both
energy demand and capture rate, in contrast to, for instance, the computa-
tional model for the electrochemically mediated amine regeneration mechanism
[12, 55], which depends on at least nine variables for a complete description of
the process and takes substantially longer to solve numerically. While Jin et
al.’s model omitted the (de)protonation reactions of the reduced hydroquinone
for simplicity [11], we included these reactions in our model because recent
work on a different pH-controlled CO, capture process indicated that the low-

est energy demands occurred at a moderately basic pK, value, making these
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reactions relevant under typical CO, capture pH conditions [13]. This optimum
occurred when maximizing the overlap between the buffer regime of the sorbent
species and the operating pH of the process, thereby maximizing the difference
in aqueous phase CO, capacity between the capture and release stages. Based
on similarities between these two capture mechanisms, we hypothesized that
the pK, values of the reduced species in the PCET-driven pH swing capture
process would have a high impact on energy demands.

In addition to studying energy demands, we used the average flux of CO, in
the absorber as a proxy for the rate of CO, capture because this is typically the
rate-limiting step [20]. In the electrochemical CO, capture literature, the rate
of capture is either omitted from study or reported from measurements that are
sensitive to the reactor configuration and operation [17, 19, 22, 23, 24|, making
it difficult to make comparisons among studies. For our study, we applied the
widely-used van Kevelen and Hoftijzer model of gas absorption with chemical
reaction enhancement to obtain an upper-bound for the CO, flux across the
vapor-liquid interface [20, 56, 57, 58, 59, 60, 61, 62]. Based on this model, we
hypothesized that the rates will be higher not only at higher concentrations, but
also at higher hydroquinone pK, values because the maximum operating pH
increases with pK, [11], thereby increasing the effective sorbent concentration.

We describe here validation studies of our computational approach and its
application to CO, capture by PCET-driven pH swings. We first introduce our
computational approach, including the mathematical bi-objective test scenar-
ios, the possible definitions of region "close to the Pareto front," and the test
metrics we used when evaluating our adaptive sampling method (Section 2). We
also detail our framework for interpreting the results based on partial variable
dependence [63, 64| and variable importance [65, 66, 67]. Overall, we found that

our adaptive sampling approach produced a more accurate classifier compared
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to an equivalent number of solely random samples, particularly as the test sce-
nario became more complex (Section 3). Next, we describe how we applied this
method to our CO, capture model to search for the solution composition that
would produce energy demands and CO, capture rates competitive with that
of the MEA-based temperature-swing benchmark (Section 4). We found that
while this electrochemical process can be competitive with the MEA benchmark,
particularly in achieving lower energy demands, the range of potential energy
demands and rates was large, with a substantial fraction of possible solution
compositions failing to capture CO, at all (Section 5). Based on our results,
we provided suggested domains for the hydroquinone pK, values, total quinone
concentration, and magnitude of any pH correction to aid in implementation of
this process. Finally, we applied our model to literature data of substituted hy-
droquinones to identify trends in how the functional group substitutions affect

predicted performance.

2. Computational Approach

2.1. Overview

We describe here a method to identify the domain of conditions whose out-
comes were "sufficiently close" to the Pareto front. This method first produces
an estimate of the Pareto front using an established process [68], then applies
our new contour estimation method to find a specific contour of interest rela-
tive to that Pareto front estimate. We estimated both the Pareto front and the
contour of interest using the same basic procedure: (1) collect an initial set of
data, (2) use the sampled data to fit a surrogate model that is easier to evaluate
than the objective functions (Section 2.2), (&) apply an acquisition function to
the surrogate model to determine the point that would improve the estimate of

the Pareto front or contour the most (Section 2.3), (/) evaluate the objective
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functions at this point, and (5) repeat steps 2-4 until a predefined convergence
is met or a maximum number of samples were collected. For Pareto front es-
timation, the initial set of data combined a grid search with random sampling,
and for contour estimation, the initial set of data was the dataset after Pareto
front estimation.

The adaptively sampled dataset was then used to train a classifier, which
predicted whether an input vector would produce an outcome sufficiently close
to the Pareto front or not. We could then analyze this classifier to infer infor-
mation about the original objective functions with reduced computational cost
compared to evaluating the objective functions directly. The utility of these
inferences depended on the accuracy of the classifier, which itself depended on
the quality and quantity of sampled data used to train it. Therefore, to confirm
that our adaptive sampling method for contour estimation was beneficial to the
accuracy of the classifier, we applied our methods to two simple mathematical
test scenarios and three possible definitions of the region "close to the Pareto
front." We compared the accuracy of classifiers trained on adaptively sampled
data to the accuracy of the same classifier trained on an equivalent number of
solely random samples, with the expectation that the more informative adaptive
sampling procedure would produce more accurate classifiers. Finally, we devel-
oped methods for interpreting those classifiers in ways that would be useful for

our goal of optimizing solution compositions for electrochemical CO, capture.

2.2. Gaussian Process Surrogate Model Construction

We used Gaussian processes (GP) as the surrogate model for estimating
both the Pareto front and the contour of interest because our data were de-
rived from deterministic models. While many potential alternative surrogate
models, such as general linear models or random forests [69, 70, 71, 72|, rely

on minimization of the differences between the model prediction and sampled
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data to find generalized trends, GP can use Bayes’ rule to find the posterior
distribution conditioned on the sampled data, assuming a Gaussian prior [73].
As a result, at a sampled datapoint (Z,,, f(Z,)) from a deterministic function
with high precision (i.e., (Z) << |f(Zn)|), the GP surrogate model intersects
the sampled data points with similarly high precision. In other words, errors in
the surrogate model were predominantly due to surrogate model inaccuracies,
not measurement imprecision as could be assumed in least-squares regression
surrogate models [46]. This feature also ensured that in the proximity of a
sampled point, the model uncertainty was small, but the domain far from any
samples had larger uncertainty based on that distance. Thus, a GP surrogate
gives information on both exploration of new areas and exploitation of known
information for the adaptive sampling algorithm.

The fitted GP surrogate model (¢(Z)) predicts both the mean (u(z)) and

variance (02(Z)) of the output given an input vector (z) (Eq. 2).

9(7) ~ N(u(z),0%(7)) (2)

Further details on fitting the mean and variance to data have previously
been reported in the literature [33, 74, 75], and implementation packages in
various programming languages are available [76, 77]. Briefly, after selecting a
covariance function, the most probable GP surrogate model’s mean and variance
can be calculated by fitting to the sampled data [74]. For this study, we did not
notice a substantial difference among different covariance functions and chose
the 5/2 Matern covariance function due to its comparatively faster fitting of

preliminary test data.

10
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2.8. Bi-Objective Problem Acquisition Functions

To estimate the Pareto front, we used the stepwise uncertainty reduction
(SUR) acquisition function [32] generalized to multi-objective problems [33],
as implemented in the GPareto package (v.1.1.4.1) in R (v.4.0.3) [68]. In this
method, the two objective functions were assumed to be uncorrelated minimiza-
tion problems and thus produced two independent GP surrogates [68, 78]. While
the independence assumption may not apply to all bi-objective problems, the
outputs of our chemical model showed little correlation (Pearson’s |r| < 0.01).
At each iteration, GP surrogates models for each objective were queried to find
the next candidate point that would offer the greatest expected increase in the
2-dimensional area behind the bi-objective Pareto front estimate. If the point
would be less optimal than the estimated Pareto front, this area would be un-
changed; if the candidate was more optimal than any points on the estimated
Pareto front, the area would increase. Maximizing this expectation value ac-
counted for both the means and variances of the two GP predictions, favoring
regions that are both promising in their means and comparatively unexplored as
noted by high uncertainty. The SUR method specifically aimed to pick samples
that will maximize Shannon information entropy in order to minimize uncer-
tainty of the Pareto front estimate [33].

To improve our estimate of the contour that defines points that are suffi-
ciently close to the Pareto front, we developed an adaptive sampling method
that sampled the regions that are both highly uncertain and close to the classi-
fication boundary of interest by generalizing features of the expected feasibility
function (EFF) and the weighted integrated mean square error (wIMSE) meth-
ods [46, 47, 48]. Instead of using a binary inequality of a single GP surrogate
like the EFF and wIMSE methods, we converted the continuous outputs of

the relevant GP surrogates into a single probabilistic classifier that gives the

11
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joint probability of meeting all specified selection criteria conditioned on the
input vector (P|z). The boundary can then be defined as the domain where
the probability is 0.5, described mathematically as maximizing (P|z)(1 — P|Z).
To calculate the joint probability of meeting all criteria, we assumed all surro-
gate model outputs were independent, similar to the estimation of the Pareto
front, so for multiple selection criteria, the joint probability was the product of
the probabilities of meeting each separate criterion. Each individual criterion
probability could be calculated from a normal distribution using the GP sur-
rogate’s mean and variance. Note that for this contour estimation process, the
GP surrogates gave predictions of the outputs most closely related to the con-
tour definition, which may not be the same as the original objective functions.
For instance, if the contour of interest was defined by the sum and product of
the original objective functions, the GP surrogate models would be trained on
the sum and products themselves to eliminate the need to propagate the surro-
gate model uncertainties, particularly if the transformation would convert the
output from a Gaussian into another type of probability distribution. We specif-
ically chose the sets of selection criteria to limit their covariance and ensure our
independence assumption remained valid.

The uncertainties of the multiple independent GP were combined into a
single metric to account for potential differences in uncertainty among the sur-
rogate models for each selection criterion. For this work, we used the variance
of the product of the selection criteria estimated using the Taylor series approx-
imation as an initial estimate of the total uncertainty (c4(z)) (Eq. 3 for the
2-criteria case [79]). While more sophisticated measures of total uncertainty
are possible, we picked this form for its generalizability and ease of calculation.
Similarly, while integrating the uncertainty measure over the whole input space

would provide a more accurate estimate of the improvement than a sample could

12
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provide, the reduction in total variance was expected to be localized [47, 48], so
we used the variance at the candidate point to reduce the computational cost

of each iteration.

(o) - (29 + (o) o

The most useful next sampling point, and therefore the target of the adap-
tive sampling method, would maximize the acquisition function, U(Z) (Eq. 4).
Conceptually, like the EFF and wIMSE acquisition functions, this acquisition

function is the product of the uncertainty and the proximity to the boundary:
U(z) = 07(z) (P|2)(1 = P|z) +€),e > 0 (4)

We introduced the constant € in this work as a user-defined tuning parameter
to adjust the relative weight of exploration and exploitation, similar to the
term in some Bayesian optimization literature [80, 81]. When ¢ = 0, points that
the GP surrogate models confidently estimated on one side of the boundary
(P|z ~ 0 or P|Z ~ 1) would have U =~ 0 independent of 02 (Z), so maximizing
U prioritized points on the boundary and favored exploitation of known infor-
mation. As e increases, points on the classification boundary and points farther
from the boundary have more similar evaluations of (P|z)(1 — P|z), leading to
a prioritization of exploration by favoring points with higher total uncertainty.
We found tuning e to be important for objective functions whose dynamics were
harder to capture with a GP trained on limited data, particularly those with
multiple local extrema or rapid changes in the slope. In general, we started our

sampling with a large value of € (=~ 1072) and decreased this value to a minimum

of 10* as we collected more samples. We stopped collecting additional samples
either when a pre-defined maximum number of samples were collected or if the

13
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Figure 1: Flow chart of the computational approach, with details provided of our contour
estimation procedure.

For all problems, we first sampled the input space composed of d indepen-
dent variables with a coarse grid (3¢ points) and an additional 3 points from
each hypercube created by the coarse grid ((3)2¢ points) to ensure adequate
sample coverage. We then applied the SUR algorithm to estimate the Pareto
front, allowing up to as many samples as the initial design. This dataset with
the refined Pareto front estimate was used as the starting dataset for the con-
tour estimation function, with each sampled point from the contour estimation
method also updating the Pareto front as appropriate (Figure 1). For the test
scenarios, the adaptive sampling step was limited to between 10d and 20d sam-

ples due to the simplicity of these functions; for the PCET optimization problem

14
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this increased to 25d to improve confidence in our conclusions (Section 4).

2.4. Variable Effects and Feature Importance

The utility of this adaptive sampling procedure was in its ability to produce
accurate classifier models despite being trained on a limited number of samples.
We were specifically interested in interpreting the classifier for the impact of
each individual variable and what values those variables should take in order to
be close to the Pareto front. We calculated the impact of each variable on the

classifier by marginalization of the joint probability (Eq. 5),

Pla; = /X (Plai,a)p(r-i)dr (5)

where x; was the value of the ¢th

input variable, Z_; the input vector of all
variables except the i*® input variable, X _; the set of possible Z_;, and p(Z_;)
the probability density function of input space X_; evaluated at Z_;. P|z; rep-
resented the probability that the result would satisfy all selection criteria if only
information about x; was known, analogous to the partial dependence plots used
in regression analyses [63, 64]. This integral was approximated by calculating
Pl|z;,7_; for 1,500 Monte Carlo samples from Z|z;, which, by the law of large
numbers, converges to the expectation value (Eq. 6). The entire marginal was
estimated from a set of 50 evenly spaced x; values. For the test scenarios, we de-

fined the inputs as independent variables with uniform distributions to simplify

this expectation value to an unweighted average.

1 N
Plz; ~ + > Pl (6)

T_;i~X_y
The set of Monte Carlo samples from each evaluation of P|z; (Eq. 6) pro-
vided the additional benefit of indicating the distribution about that expectation

value. The variance among the set of P|z;,Z_; at constant x; indicated how

15
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changing the other variables in Z_; affected the probability that the result met
the selection criteria. If the variance was small, the other variables z_; did
not have substantial impact on the classifier compared to x;; at the other ex-
treme, if the variance was large, at least one other variable had a much larger
impact compared to z;. However, this variance measure only described a single
instance when x; was set to a constant. A more useful importance measure of
the variable z; should also consider how this variance changes as z; changes.
We defined this marginals-based classifier variable importance of the i*" variable
(CV1;) as the ratio of the range of P|z; divided by the average of the standard
deviations (Eq. 7). By having the numerator be the range of P|z;, we ensured
that input variables that caused large changes in the probability of acceptance

were evaluated as more important.

max(P|z;) — min(P|x;)
E.. [Vary ,[Plz, T_;]]°®

i 7

CVI; =

2.5. Validation Test Scenarios

To validate our adaptive sampling and classifier variable importance meth-
ods, we applied this approach to two bi-objective problems from the literature,
adapted to address particular questions we had about the suggested contour
estimation approach. Both problems were selected due to their simplicity and,
after modification, presence of both a global optimum and at least one other
local optimum. The simplicity allowed us to evaluate the objective functions
quickly in order to obtain measures of accuracy and accelerate algorithm tuning.
The presence of multiple local optima was important for testing robustness to
regions of acceptance that were not simply a radius around the single optimum,
which could be possible as the number of variables increases in future studies
of other electrochemical CO, capture chemistries.

The first test scenario was a modified version of the 2-input set of quadratic

16
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polynomials from Marler & Arora [34], adjusted so that the objectives were

quartic with respect to the second input variable and slightly rotated by 6 = 57
radians in the second objective by left multiplying the input vector [z1, 2] by
the rotation matrix R(6 = 57 ) (Eq. 8). The higher order polynomial terms did
not substantially affect the location of the Pareto front nor the vicinity local
to the Pareto front (Figure Sla), but led to a secondary local optimum. The
rotation applied to the second objective function ensured that the two local
optima did not perfectly overlap at the same value of z1, and therefore gave x;

multiple local optima without needing to increase it to a quartic polynomial as

well.

fi(zy,22) = 20(2y — 0.75)% 4+ 190 + 11.58z3 — 115.8525 + 383.1323 — 463.525

—T
2t 2" = R(5 ) [, 22l

fo(z), ah) = () — 2.5)% + 80 + 1.778z4! — 20z + 78.573x — 124.664),
XTi € [0,5]VZ
(8)

The second test scenario was based on the ZDT4 function (Eq. 9) [38],
modified in the second objective to have a lower frequency such that the gradi-
ents were more similar to preliminary calculations of the PCET system (Figure
S1b-Sic). The lower frequency guaranteed that in all selection criteria that we
tested, the set of accepted points was discontinuous around the three prominent
local minima in fo. While the ZDT4 function has been used with up to six in-
put variables, we performed tests with only three inputs to serve as a transition

from the two-input quartic polynomial and the four-input PCET system.
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fi(x1, 20, 23) = 21

3
h(wg,x3) =21+ Y _(0.52; — 0.25)> — 2.5 cos((5z; — 2.5)7)

= (9)
3
= X2, X 4 /7‘%1 x; — U. 2
fQ(ZL'l,,fCQ,Cﬂg) —h( s 3) (1 h(x27$3)> +10;( 05)
z; € [0,1)Vi

Three types of selection criteria were tested as definitions for results close to
the Pareto front: normalized distance from the Pareto front ("Pareto distance"),
two independent thresholds for fi and fo ("Threshold cutoff"), and normalized
distance to a "utopia point" criterion while prioritizing one objective more than
the other ("Utopia distance") (Figure 2a). We used the standard normalization
convention of (f1, f2) to (ff, f5) where the normalized single-objective optima
are located at (0,1) and (1,0). This defines the point (0,0) as the utopia point,
the purely theoretical point at which all objectives were optimized simulta-
neously [35, 36, 37, 82, 83]. For the Pareto distance criteria, the normalized
distance to the Pareto front was defined as the Euclidean distance () between
the suboptimal normalized point and the point on the Pareto front estimate
with the same f : f5 ratio, linearly interpolating the Pareto front estimate as
needed. This definition of the selection criteria reduced the two objective func-
tions into a single criterion to search for points that were nearly Pareto optimal,
accepting points with § less than some cutoff distance ¢’. For the Threshold
cutoff criteria, points were accepted if each objective met a predefined inde-
pendent inequality, i.e., f1 < f{ and fo < fi. The Threshold cutoff criteria is
the simplest selection criteria and most likely to be applied in practice because
design targets, such as monetary or regulatory constraints, are often defined in

this way [28, 29, 30, 31]. The Utopia distance criteria accepted points that were
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both within a specified normalized distance of the utopia point and satisfied the
inequality tan—t(f5/f;) > 0. These criteria sought points that approached the
utopia point as closely as possible, ignoring the shape of the Pareto front, and
also rejected outcomes that favored minimizing fs too heavily over f;, simulat-
ing a pre-defined prioritization preference between the two objectives. For all
three selection criteria, we set the cutoff values of each criterion such that they
accepted similar percentages of the input domains. For both test scenarios, the
domains that met the Pareto distance and Threshold cutoff criteria were nearly
identical. As a result, comparing the performance of these two selection criteria
allowed us to determine whether reducing the number of GP surrogate models
used in the contour estimation procedure, and thus reducing the computation
time, had any measurable effect on accuracy.

We tested all combinations of the two test scenarios and the three selection
criteria by comparing the results of a classifier trained on the adaptively sam-
pled data to the results of the actual objective functions by direct evaluation. In
the case of a classifier like the GP surrogates where the output is the probability
of acceptance and not a direct class assignment, the accuracy assumes random
assignment based on that resultant probability. We compared this accuracy
to that of the classifier trained on the starting dataset prior to adaptive sam-
pling (i.e., after the Pareto front search), as well as to classifiers trained on the
starting dataset combined with an equivalent number of solely random samples.
These two comparisons gave insight into whether the misclassification errors
improved due to adaptive sampling or the increase in training dataset size. We
additionally calculated false positive and false negative error rates and single
variable marginals of the classifiers to diagnose whether the misclassification
errors were due to accepted regions that were too big, too small, or skewed.

For this study, we tested the accuracy of using the GP surrogate as a prob-
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abilistic classifier and benchmarked it against two support vector machines
(SVM), one with a 3™ order polynomial kernel and one with a radial kernel, due
to our unconventional use of GP surrogates as classifiers. SVM with a sigmoidal
or linear kernel were initially included in the study, but showed worse accuracy
than random classification assignment and were subsequently excluded. This
comparison of different classifier models was intended to test (a) whether the
GP was at least as good as a typical classifier model like SVM, reducing the
computation time by using the model we already trained during adaptive sam-
pling, and (b) whether the contour estimation adaptive sampling procedure
would improve classifier accuracy for surrogate models besides the GP used
in the sampling procedure. We specifically chose SVM due to comparatively
fast fitting relative to GP in preliminary tests, particularly for larger training
datasets.

To validate our proposed marginals-based contour variable importance method,
we compared our metric to the Shapley values and the total-effect Sobol indices
as alternatives metrics [66, 67], both of which were calculated by Monte Carlo
estimation (n = 1,500). All three metrics quantify the importance of a variable
in determining the outcome, in this case defined as the classification result, al-
though they define importance differently. Shapley values describe the impact
that changes to a single variable will have on the outcome relative to a reference
point, while total-effect Sobol indices describe the contribution that a variable
has to the variance of the output. Both Shapley values and total-effect Sobol
indices were calculated 50 times to obtain an average and standard error for
each input variable, and thus were determined from the same number of sur-
rogate function evaluations as our marginals-based C'V I; metric. Uncertainties
for the CVI; metric were calculated by propagation of the standard errors of

each component in Eq. 7 to obtain the standard error of the mean. Because
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all three metrics define importance differently, we only compared the relative
ranking of the variable importance and compared that ordinal ranking to our
expectation based on the true objective functions; ideally, all three methods
would agree in the ordinal ranking of the variables, although the magnitude of

the differences among variables may differ.

3. Validation of Adaptive Sampling Method

Given the relative simplicity of the 2-input quartic polynomial test scenario,
we only report here the results for the more complex 3-input modified ZDT4
test scenario. Results for the polynomial test scenario generally corroborated the
conclusions we reached using the ZDT4 test scenario (Supplemental Information
B). For the modified ZDT4 tests, we designed the selection criteria to only
accept a small (5 - 10%) fraction of the input domain to be consistent with
our intended application of optimization, contrasting with approximately 40%
for the 2-input polynomial test scenario. This equated to accepting points that
(a) had a normalized distance less than 0.5 from the Pareto front ("Pareto
distance" criteria), (b) had normalized coordinates within the square defined
by the utopia point and (1, 1) ("Threshold cutoff" criteria), or (¢) were within
a normalized distance of 1 from the utopia point and satisfied the inequality
tan=1(f5/f) > 0.1 radians ("Utopia distance" criteria).

The misclassification errors highlight the benefits of our adaptive sampling
method for contour estimation on the resulting classifier (Figure 2b). For ease
of visualization, we present the misclassification errors relative to those of the
classifiers trained on the starting dataset without additional sampling due to
differences in the starting error rates; we include the absolute misclassification
error rates in the SI (Figure S2). For the GP classifier, training the models on

the adaptively sampled dataset led to lower error rates than training on >95%

21



a)

Normalized f,

c

GP SVM-pol SVM-rad
8 8 2001 2001 200+
o]
2 = % 1507 1501 1501
a 09 O
5 L5 o 100 100 100 {ee%88seseosenBels
® g 0 o
= ® 5 501 501 50+
o = 0
25 0 0+ 0
E=
= 21 c O &
2 S 2 200 200 200
- =
O ®ad O | | |
= fsf 20 5 150 150 150
S lmonaf,<f G5 2 1001 1oo-m 100
% % Oo| ) g% 8 ]
£ o o9 50 £ 501 50 501
o 29 F o 0 0
. -5 &
=)
o 2] o o
e =8 2 2007 2001 2001
0] - @
o 29 5 150, 1501 150
Ay r=sr o 0O
o S 3 100] 100+ 100 {Fecotcreaeriest
=2 | N -~ 2
o \ ° o
IS : S 501 501 501
5 ' 5
0 -y 020 obr—r—r—+ ob—nr- 04
0 1 2 0 20 40 0 20 40 0 20 40
Normalized f; # Samples (after Pareto front search)

Sampling Method: < Adaptive <+ Solely Random

Figure 2: (a) Visual depiction of the three selection criteria. (b) Misclassification error rates,
presented as a percentage of the error rate with zero additional samples beyond the starting
dataset, for Gaussian process (GP) or support vector machine (SVM) models with a poly-
nomial or radial kernel function trained on data from the modified ZDT4 test scenario. The
shaded region represents the 95% confidence interval of possible solely randomly sampled
training datasets, with points depicting the median (n = 1,000).

of the possible solely randomly sampled datasets, and this accuracy benefit
became larger as the number of samples increased. For the SVM classifiers with
polynomial kernels, the error rate stayed nearly constant with adaptive sampling
unless some specific points were sampled, leading to a rapid decrease in the
error rates. However, the error rate was unstable, where additional adaptive

samples could potentially lead to an increase in error rates, as evident for the

Pareto distance criteria. SVM with a radial kernel trained on adaptively sampled
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datasets were better than >90% of solely randomly sampled datasets for two
of the three selection criteria. For the Pareto distance criterion, this classifier
trained on an adaptive sampled dataset was roughly equivalent to the median
among the possible solely randomly sampled datasets.

We attribute the stronger benefit of adaptive sampling for the GP classifier
to the fact that the adaptive sampling process used the same GP surrogate to
inform the sampling process. As a result, the "most informative" next point was
based on the GP’s uncertainty and contour estimate, and, based on the large
difference in GP and SVM classifier accuracies, this would likely be different than
the uncertainty and contour estimate from a SVM given the stark differences in
error rates (Figure S2). Therefore, if intending to use another type of classifier as
the final surrogate model, we suggest modifying the adaptive sampling procedure
to rely on information related to that same type of classifier. Using a different
surrogate model for sampling may still improve accuracy of the final surrogate
model, as evident in the improvement to the accuracy of SVM classifiers with
radial kernels for certain selection criteria, but the benefit is likely to be smaller.

Across all selection criteria and sampling methods, the error rate for the
GP classifier was always less than 10%, dropping to under 4% after 50 adaptive
samples beyond the starting dataset (Figure S2). In contrast, the SVM mod-
els were inconsistent, with error rates of about 50% for most conditions tested
regardless of training dataset size. Only SVM with a polynomial kernel were
able to achieve error rates similar to the GP classifier, and only reliably for the
Threshold cutoff condition. For the other two criteria, the error rate did drop
below 10% after sufficient adaptive samples were collected, but the low error
rate was unstable and rebounded back to 80% when greater than 40 adaptive
samples were collected for the Pareto distance criterion. For all conditions, the

misclassification errors were due to a high false positive rate (Figure S3), which

23



520

530

535

tended to be relatively high (>50%) and followed a similar trend as the total
error rates when additional samples were collected. False negatives were un-
common for all conditions (<1.5%), likely a reflection of the small fraction of
the input domain that met the acceptance criteria (Figure S4). Notably, adap-
tive sampling did not substantially improve the false negative rates compared to
solely random sampling, but given the small false negative rates, reducing the
false negative rate was low priority to minimize overall misclassification errors.

The single variable marginals corroborate the results of the misclassification
error, showing the improvement to the GP classifiers’ accuracies after adap-
tive sampling and the better accuracy of the GP classifiers compared to the
SVM classifiers (Figure S5). While the misclassification error rates were similar
among the models for the Threshold cutoff criteria after 50 adaptive samples,
the (aggregated) single variable marginals for the SVM classifiers did not match
expected profiles (R? < 0.1), particularly compared to the GP classifiers af-
ter adaptive sampling (R? > 0.85). This appeared to be largely due to poor
marginalization on x5 and z3, which have distinct peaks that the SVM classifiers
did not capture (Figure S6).

Given the low coefficients of determination for the SVM classifiers, we did
not perform calculations for the importance ranking with these models, instead
only comparing our method of assessing the marginals-based classifier variable
importance to alternative importance measures for the GP classifiers (Figure
3). Our marginals-based method gave the expected ordering of the three input
variables: xo &~ x3 > w7 across all selection criteria. The proximity of x5 and x3
was particularly important given that in the ZDT4 function, these two variables
were treated identically, and thus should have the same importance. Addition-
ally, in the ZDT4 function, x; only affected the relative balance of f; to fs,

but had little impact on proximity to the Pareto front [38], so we expected it
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Figure 3: Normalized importance ranking for the modified ZDT4 test scenario using the
marginals-based classifier variable importance, the mean Shapley values, or the total-effect
Sobol index. Error bars are the standard error based on 50 independent simulations.

to have a lower importance compared to zo and x3. While the Shapley value
averages matched the expected order, they were poorly reproducible, leading to
a large standard error that masked interpretability; in contrast, the standard er-
rors for our marginals-based method were negligible. Total-effect Sobol indices
produced more reliable results than Shapley values, but they rank z; as the
most important variable instead. This highlights the key difference between the
Sobol indices and our marginals-based method. The total-effect Sobol indices
rank variables by their contribution to the output variance normalized by the
total output variance, but our marginals-based metric is the probabilistic output

range normalized by the variance of other variables. While the difference in the

25



560

570

denominators is only likely to affect resolution, the difference between variance
and range of the probability in the numerator can cause a reversal in the order.
Specifically, while the ranges of P|zo and P|x3 were roughly double that of P|z;
(Figure S6), because P|zy and P|xs were mostly flat with three relatively sharp
and narrow peaks, the variance contribution of xo and z3 is smaller than z.
If these peaks were to maintain the same amplitude but have narrower nonzero
domains, we would suggest constraining these two variables to the domain of
those peaks with even higher priority, but their total-effect Sobol indices would
decrease. In other words, here, the total-effect Sobol index can underestimate
the importance of variables that have small subdomains of interest, leading to a
different ordinal ranking compared to the other two metrics. Based on other ex-
periments in the literature [13], we hypothesized that the equilibrium constants
in the CO, capture system will have clearly defined optima at moderate values,
for which the total-effect Sobol indices could underestimate their importance,
so we used our marginals-based contour variable importance metric.
Collectively, these results indicated that the GP probabilistic classifier be-
comes significantly more accurate with adaptive sampling, reducing the number
of queries of the original objective functions to achieve a surrogate model of
comparable accuracy, and a GP classifier was more accurate than the tested
SVM. From the tests of different selection criteria, we determined that selection
based on cutoff values of the two objectives was most consistently accurate for
the two test scenarios. Based on these results, we applied these methods to
our analysis of the PCET-based CO, capture system to determine the solution
chemistry properties that would be competitive with the industry benchmark:

capture by temperature-swing of MEA solutions.
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4. CO, Capture Model

4.1. Solution Chemistry Model

While CO, capture by PCET-driven pH swings is controlled externally by
the redox reaction (Eq. 1), a complete understanding of the process includes
vapor-liquid equilibrium and (de)protonation reactions (Eq. 10-15). We note
that while deprotonated hydroquinones have been reported to coordinate with
CO, directly by acting as a nucleophile, this has only been observed in aprotic
solvents, so we did not include this species in our aqueous solution chemistry
model [15, 84, 85, 86]. Additionally, based on data of quinone reduction poten-
tials [87], we ignored all reactions involving singly-reduced semiquinone inter-
mediate because for the expected pH window of operation, the second reduction
potential was energetically downhill after the first electron has been accepted for
the majority of species. While we expect realistic implementation would include
high ionic strength to reduce the solution resistance, we simplified the calcula-
tions by ignoring ionic strength effects and assuming activity coefficients of 1.
This assumption likely changed the estimates of the optimal solution chemistry
properties, but we expect the difference to be small relative to the breadth of
the input suggestion domains [88]. Due to limitations on the available equi-
librium constant data, we calculated CO, capture thermodynamics assuming a
constant temperature of 298 K even though absorption often occurs at 313 K.
We do not expect the temperature to substantially change results because ex-
periments of electrochemical CO, capture at both temperatures indicated that
the decrease in captured CO, was counteracted by a decrease in electrical energy

consumption, leading to similar energy demands per mass of CO, captured [18].
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Vapor-liquid reactions

CO,(g) + H,0(1) 2% H,C04(aq) (10)

(de)Protonation reactions

H,COy(aq) = H (aq) + HCOy (aq) (11)
HCO; (aq) =2 H' (aq) + COZ (aq) (12)
QHy(aq) = QH (aq) + H' (aq) (13)
QH (aq) =2 Q% (aq) + H' (aq) (14)
H,0(l) £ H' (aq) + OH (aq) (15)

The extent of the electrochemical reaction was defined in terms of y,, the
fraction of quinone that was in any of its reduced hydroquinone forms (Eq. 16).
We assumed that the solution would contain excess generic background elec-
trolyte salt M,Xj,, and thus as the electrochemical reaction proceeded and y,
changed, electrochemical migration between the anode and cathode would be
dominated by the background electrolyte and not any of the species listed in
the (de)protonation reactions. Given that the species of background electrolyte
should be inert and therefore not participate in any processes besides this trans-
port, we assumed the valence of both the background anion and cation (a and
b, respectively) to be 1 for simplicity. Assuming that the solution started in
the oxidized state due to the oxidizing conditions of ambient air, we related
the concentration difference between the background cation and anion to y,,
the total quinone concentration [QJtot, and the amount of acid (as generic acid
HX) or base (as generic base MOH) that was initially added to the solution by

assuming maintenance of a charge balance (Eq. 17). For the purposes of the
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model, only the difference between the cation and anion concentrations and that
between the additional base and acid mattered, not their individual values.
[QH,] + [QH ] + [Q*]

b = Quod 16

[M] — [X7] = [MOH] — [HX] + 2y, [Qy6¢] (17)

Using only knowledge of the total concentrations of all species, the frac-
tion of reduced quinone, and either the CO, partial pressure (Pco,) or the
total dissolved inorganic carbon concentration (DIC), we solved the set of mass
balance, charge balance, and chemical equilibrium equations to find the concen-
trations of the species of interest throughout the CO, capture process. Based
on this model, the relevant solution chemistry variables that should be opti-
mized were the pK, 1 and pK,» of the hydroquinone, the total concentration
of quinone, and the net amount of acid or base to be added. Because pH is a
log scale, the concentrations needed high resolution over multiple orders of mag-
nitude. For our optimization, we used log units of concentration to maintain
an experimentally-relevant resolution throughout the entire domain, and as a
result, created two different models for net acid and net base addition because
net acid addition is represented as a negative number. We adaptively sampled
for the Pareto front and contour estimation of these two conditions in parallel,
then combined the datasets for interpretation by adding another variable for

the direction of the pH correction.

4.2. Process Stages

The simulated process consisted of 4 stages: oxidative acidification, CO,
degassing, reductive regeneration, and CO, capture (Figure 4). While previous

calculations have found that process intensification to a 2-stage process by com-
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Figure 4: Representative cycles in the 4-stage CO, capture process by PCET-driven pH
swings. (left) Changes in bulk solution pH and fraction of quinone (Q) in the reduced state
compared to the reduced state’s pK, values. (right) Partial pressure of CO5 that would be at
equilibrium with the solution as the total dissolved inorganic carbon concentration changes.
Outlet partial pressure: 0.99 atm CO,. Feed gas partial pressure: 0.15 atm CO,.

bining oxidation with degassing and reduction with capture led to lower energy
demands [11, 12], this result relies on the assumption that CO, mass transfer
across the vapor-liquid interface was fast compared to the electrochemical re-
actions, which cannot always be assumed to be true. Combined with the fact
that the 4-stage process would give more conservative results for the energy
demands, we opted for simulating the process as 4 stages in series.

The oxidative acidification stage simulation began at y, = 0.975, the fully
reduced extreme, at equilibrium with the inlet flue gas of 0.15 atm, solving
for the pH and total dissolved inorganic carbon by solving the set of chemical
equilibrium, mass balance, and charge balance equations described in Section
4.1. The proton concentration was solved numerically as the sole positive real
root, and thus only valid pH, of the resulting fifth order polynomial using the
Jenkins-Traub algorithm [89]. The DIC was determined using the now-solved
pH and known Pco, to solve the relevant chemical equilibrium equations (Eq.
10-15). We simulated the remainder of the oxidative acidification process using
150 additional equally spaced steps along y, € [0.975,0.025], holding DIC' con-

stant and solving for pH and Pgo,. While the electrochemical process did not
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depend on Pgo, directly, its knowledge at each step was used as a check that the
pH, which was solved iteratively due to its nonlinear relationship with DIC' and
Y-, remained within realistic bounds. This calculation implicitly assumed that
the (de)protonation reactions and the mixing between the electrode surface and
the bulk were fast relative to the electrochemical reaction. The former can be
assumed to be true due to the abundance of water molecules and its rapid pro-
ton exchange, while the latter should be valid in a well-designed electrochemical
cell that minimizes mass transfer resistances.

The CO, degassing stage simulation started with the pH, Pco,, yr, and
DIC conditions of the final step of the oxidative acidification stage, and then
it solved for pH and DIC as Pco, linearly decreased to the target outlet of 1
atm at a constant y, using the same equation and algorithm as the first step
of the oxidative acidification stage. Reductive regeneration was simulated using
the same procedure as the oxidative acidification stage, but started at y,. =
0.025 and Pgo, = 0.99 atm and proceeded at constant DIC until y, = 0.975.
Likewise, the CO, capture stage was simulated using the same procedure as
the CO, degassing stage, instead ending with a Pco, = 0.15 atm, the assumed

partial pressure of the influent flue gas.

4.8. Minimum Energy Demand

To simplify the energy demand calculation, we redefined the electrochemical
reaction (Eq. 1) to its form under strongly basic conditions (Eq. 18), recognizing
that the electrochemical potential was the same for the entire solution, and
therefore all electrochemical reactions should be at equilibrium with each other

due out assumption of fast proton exchange.

Q+2 =QF (18)
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eso The electrical potential of the anode or cathode, Ej, over the course of the
electrochemical stages were calculated using the Nernst equation (Eq. 19).
o’ RT [Q]

B, =F" + 2 qp L
"2F Q7]

(19)

where E,?” is the standard reduction potential for the doubly-deprotonated re-

action in Eq. 18, R is the ideal gas constant, T is the absolute temperature,

ess and F is Faraday’s constant. Combining Eq. 19 with the identity of y, (Eq.

16) and the chemical reactions in Eq. 13-14 produced the Nernst equation in
terms of the process variables solved in Section 4.2 (Eq. 20).

RT 1—vy, Ko1Kap+ Ko [H']+ [H]?

E,=EY + "

20
2F Yr Ka,lKa,Q ( )

The thermodynamic minimum for the electrochemical work per complete cy-

90 cle per volume of solution (W¢,.) was calculated using the equation for electrical
work from the total (positive) charge passed per solution volume (¢) and cell
voltage (Ep anode — Eh cathode) (Eq. 21). By Faraday’s law of electrolysis, the
charge passed was proportional to the change in the fraction of reduced quinone
(Eq. 22), simplifying the electrochemical work to an integral over y,. (Eq. 23),

eos which we solved by trapezoidal Reimann sum over the 151 steps of each of the

two electrochemical stages.

d=(Qmax
chc = / (Eh,anode - Eh,cathode)dq (21)
q=0
q= _ZF[Q]totyr (22)
¥r=0.975
chc = _ZF[Q]tot / (Eh,anode - Eh,cathode)dyr (23)
¥r=0.025

The total work per mole of CO, captured (Wco,) was estimated as the
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work per cycle per volume divided by the net change in DIC over the course of
the CO, capture stage (Eq. 24). This approximation assumed that the pump
work was small compared to the electrochemical work based on estimates of the
pump work for capture with a MEA solution (< 0.5 kJe/mol C) [20] compared

to preliminary calculations of the energy (> 8 kJo/mol C).

chc
ADIC

Weo, ~ (24)

Because the energy demand should decrease as less CO, is removed, we
added an additional scaling factor, w, to penalize the predicted minimum energy
demand if less than 90% removal occurs to keep results in line with the US
Department of Energy’s target [10]. Doing so prevented the Pareto front search
from expending computational resources finding parts of the Pareto front that
would have low energy demand simply because the process captured little to no
CO,. This scaling factor was based on the minimum work of separation (W,,;,)
to split the feed gas into a 99% pure outlet and a lean gas of known CO, partial

pressure (Eq. 25).

Winin(PES)) = RT(—n{igy (PEG) +ngd, n(PES,) + néE; n(PESY)
—nl G, m(PIES )+ no, (P8, ) + n'“Eh, In(PEE,)) - (25)
In this equation, nf and Pl were the molar flow rate and the partial pressure
of CO, in the it" gas stream (feed gas, lean gas, or pure outlet), while nicoz and
P’ ¢, represented the molar flow rate and partial pressure of all other gasses
in the i¢th gas stream. For simplicity, we assumed a feed gas of 1 mole of total
gas per unit time and a CO, mole fraction of 0.15, then imposed a mass balance

to determine the molar flow rates of the other gas streams. For simplicity, we
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assumed the total pressure of each stream (P(ijO2 + PiCOQ) was set to 1 atm,
and thus had different volumetric flow rates.

The unadjusted scaling factor, wg, was set as the quotient of the minimum
work required for 90% capture divided by the minimum work to achieve the
minimum lean gas partial pressure, which was the partial pressure at the final
step in the reductive regeneration stage (Eq. 26). Using this ratio was partic-
ularly important for cases when Pé%’;’ > P(J;eozd, which represented conditions
where the pure outlet was being consumed instead of generated, because this
condition typically estimated W¢o, < 0, i.e. energy generation from mixing of
two gas streams. A scaling factor based on the minimum work of separation ap-
propriately changed the result to be positive, preventing these conditions from
appearing on the Pareto front.

eed
Winin (0.1PLEY)

wo (Plean) _
CO, szn(P(ljeélg)

(26)

To obtain the complete scaling factor, we used a logistic function whose

parameters were empirically tuned such that w ~ 1 when PK5" < 0.1Pége2d,

but w = 25wy, its maximum value, when Péeg: > Pégzd (Eq. 27). We set
the maximum as 25w to ensure that conditions that failed to capture any
CO5 would not appear on the Pareto front, but conditions that captured some
CO, yet did not meet the typical industry target of 90% capture (0.1Pcfg€2d <
Péeoag < Pégezd) were only adjusted slightly, reflecting the US DoE’s caveat that

conditions that do not achieve 90% capture may still be viable if the energy

consumption is sufficiently low [10].

25w (PLean
w(PES™) = (Feo,) +1 (27)

1+ exp[—267(PLgr — 0.071)]

All energies, therefore, represent the penalized energy demand of capture,
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Wéo, (Eq. 28). When producing a GP surrogate model for Wi, we fit the
model to log;, W¢,,, because the values for W¢o, spanned multiple orders of
magnitude, and fitting to untransformed W¢,,, overfit to the highest energy

demands, leading to overall worse accuracy.

chc
ADIC

Wéo, = w(PESY)

4.4. Mazimum COgy Flux

The CO, flux was estimated using the van Kevelen and Hoftijzer model of
gas absorption with chemical reaction enhancement [20, 56, 57, 90]. To use
this model as a proxy for the total CO, capture rate, we assumed that the
capture kinetics are limited by absorption kinetics, which has been the general
consensus in the CO, capture literature because the homogeneous reactions
related to CO, capture tend to be fast relative to the heterogeneous reactions
[91], and the heterogeneous redox reaction at the electrode can be controlled
by changing the current density and electrode area. In this model, the average
CO, flux throughout the absorber (J) was defined as the product of: the CO,
concentration difference between the vapor-liquid interface at the gas inlet and
the bulk aqueous concentration at the liquid inlet ([COy(aq)]v- — [CO5(aq)]oo);
the reactor’s liquid mass transfer coefficient (k1 ); and a unitless enhancement
factor (F), attributed to the reaction converting CO, into another species and
increasing the effective concentration gradient at the interface. We write the
equation here in terms of carbonic acid instead of the aqueous phase of CO, to

be consistent with our chemical model (Eq. 29).
J = ([HzCOg]V_L - [HQCOg}OO)kLE (29)

For this calculation, the concentration of HyCO; in the bulk was the concen-
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tration of H,CO3 at the end of reductive regeneration, while the concentration
of H,COg at the vapor-liquid interface was at equilibrium with the assumed flue
gas partial pressure (0.15 atm). We assumed a reactor mass transfer coeflicient
of 0.1 cm/s based on the range of typical gas absorbers reported in the litera-
ture [20]; we do not expect the selection of this constant to substantially change
the solution chemistry parameters that produce optimal CO, capture perfor-
mance because any over- or underestimation would be applied universally. The

enhancement factor was calculated from the Hatta number (Ha) (Eq. 30):

Ha — 1/ Dcozk‘g [S]
kr
Ds|s]
DCOQ[H2COB}V—L
E,—E
A=
_ Ha\/Z
 tanh(HaV/A)

Ei=1+

where Do, was the diffusion coefficient of CO, in water (0.5*¥10-5cm? /s [20]),
ko the second order reaction rate constant of CO, absorption, [s] the concen-
tration of the sorbent in the bulk solution at the start of CO, absorption, D
the diffusion coefficient of the sorbent in water, and F; the maximum enhance-
ment factor if the reaction was instantaneous. For this calculation, we assumed
the sorbent to be OH™ due to its much faster reaction rate compared to H,O
[20, 92], giving an estimated Dy = 5.2*107° c¢cm?/s [93] and ke = 8300 (Ms)™!
[20, 61, 94, 95]. Due to the rapid exchange of protons between water and hy-
droquinone, we assumed the concentration of sorbent in solution was better
described by the sum of all proton acceptors ([OH | +[QH ] +2[Q*]). While
this assumption of the total sorbent concentration likely led to an overestimated
flux, our intention with these calculations was to estimate an idealized upper

bound rate in the same way that our energy calculations were an idealized lower
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bound. With this in mind, we deliberately overestimated the flux because to use
only the concentration of OH™ would likely represent a slight underestimation.
The calculation of the enhancement factor was simplified under specific limiting

conditions according to the following rules:

Ha>10FE; : E=E;
Ha

H SE,: E=—1—
@<05 tanh(Ha)

(31)

Ha > 0.5FE; and Ha >3: E = Ha

If none of these conditions were satisfied, the enhancement factor was calcu-
lated by converting Eq. 30 into a nonlinear root finding problem and solving it

iteratively using a numerical Newton’s method.

4.5. COy Capture Constraints and Targets

The goal of the CO, capture model was to relate the solution chemistry prop-
erties to CO, capture performance, defined as the simultaneous maximization
of CO, flux and minimization of energy demand per mole of CO, captured. We
specifically restricted our search to the parameter space occupied by quinones, a
class of molecule that undergoes a 2¢ :2H" PCET process, due to previous the-
oretical [11] and experimental [23, 49] demonstrations, as well as sufficient data
on the acid dissociation constants of the reduced forms of substituted quinones
to restrict our search to realistic domains [87]. Quinones in this dataset whose
reduction potentials were within the electrochemical window of water had pK, 1
values in the domain of [-8.33 - 13.41] and pK, » values in the domain of [-6.64
- 15.34]. Given that the lowest pH that can be achieved in solution was not
likely to be much lower than the pK, of carbonic acid (6.33), we limited both
pK . values to a minimum of 2 as a conservative constraint; all compounds with

pK, values below this should behave identically. Due to the strong correlation
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between the two pK, values (Pearson’s r = 0.875), in order to sample only
realistic combinations of pK, values, we sampled the two equilibrium constants
by selecting the pK, of the first deprotonation event and the difference be-
tween the two pK, values, which fell within the domain [0 - 5.5] for 99% of
the dataset. While this transformation occasionally led to pK, o values outside
of the reported domain, we found that applying this additional restriction in-
creased the computational cost without substantially changing the Pareto front.
The total concentration of quinone was bounded between 10 mM and 3 M. The
lower bound was estimated based on the lower bound concentration of redox
species in previous electrochemical CO, capture studies [13]|, while the upper
bound was set at 50% greater than the highest reported quinone solubility we
found in the literature [23] to accommodate possible future improvements. The
concentration of acid or base was capped at 15 M for practical safety should the
results be implemented, and concentrations below 10 nM were assumed to be
effectively 0 due to the comparatively higher concentrations of quinone.

We were specifically interested in what specific solution chemistry proper-
ties led to performance that was comparable to or better than the flux and
energy demands of CO, capture from coal power plant flue gas (15v% CO5) by
temperature-swings using 30wt% MEA in water. Experimental measurements
of state-of-the-art pilot plants estimated that the energy demand for regenerat-
ing the MEA sorbent was approximately 110 kJ of thermal energy per mole CO5
[96]; assuming an average 35% thermal-to-electrical efficiency of a coal power
plant [20, 21], this is approximately 38 kJ,/mol C. Using the same assumptions
and model as Section 4.4 and reported constants for MEA in the literature [20],
we estimated the flux of CO, capture as 22 mmol/m?s. Due to the relative
importance of energy compared to rate in the CO5 capture literature and the

fact that our energy demand calculations do not account for any resistive losses,
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we defined Competitive performance as having an energy demand lower than
that of capture by the MEA process while also having a flux greater than 10%
of that of the MEA process. We selected 10% of the flux as the cutoff because
alternative sorbents used in industry, such as AMP, have roughly 5 to 10 times
slower second order rate constants [97, 98].

We defined two additional selection criteria based on single objective op-
timization: Minimum energy and Maximum flux. Minimizing the energy was
bounded by the same cutoff value for flux as Competitive performance, but it
defined the energy demand cutoff as 22 kJ, /mol C based on the target set by the
US Department of Energy [10, 51]. Maximizing the flux searched for conditions
that had a flux greater than that of the MEA benchmark with energy demands
<45 kJ./mol C, the maximum energy demand on the estimated Pareto front.
To obtain our adaptively sampled dataset, we first obtained an initial sample
design using a coarse grid with additional random sampling (n = 52), searched
for the Pareto front (n = 100), adaptively sampled for conditions that capture
CO, in flue gas rather than release CO, into it (n = 100), adaptively sampled
for the Competitive performance criteria (n = 100), then alternatingly adap-
tively sampled for Maximum flux and Minimum energy criteria (n = 50 each).
In this study, while it was possible to conduct the contour estimations prior to
Pareto front estimation, we first searched for the Pareto front to identify if any
points could meet the selection criteria we defined. We conducted the search
for conditions that captured CO, instead of releasing it after searching for the
Pareto front to discern if the sample domain could be constrained to reduce the
likelihood of sampling conditions that would rarely capture any CO,. The adap-
tive sampling procedures were repeated for both the basic and acidic conditions

separately, then the results aggregated together for analysis.
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5. Application to CO, Capture

The sampled data from the CO, capture model showed a broad distribution
of possible energy and flux results among different chemical property combi-
nations (Figure 5); we have highlighted three representative points for later
analysis. We note that Figure 5 only represents 48% of the samples and a
fraction of the breadth of possible outcomes to maintain useful resolution: of
the 904 total samples, 444 points were omitted from the figure for insufficient
capture (negative flux), while 35 points were omitted for sufficient capture but
prohibitive energy demand (> 100 kJ,/mol C). The range of sampled penalized
energy demands was 6.6 to 107 kJ./mol C, while the range of CO, fluxes was
-10* to 30 mmol/m?s. Using a GP classifier, we estimated that a solely random
solution composition has a 76% chance of capturing some CO, from flue gas but
only a 27% chance to be competitive with the MEA benchmark with respect to
both energy and rate. Using the GP as a regressor, the median penalized energy
demand was 73 kJ,/mol C, and the median CO, flux was 4.8 mmol/m?s, indi-
cating that capture would be likely, but the energy demand would be too high
for practical implementation (Figure S7). We note that the median estimate for
the energy demand has a large uncertainty because it is far from the high den-
sity of samples near the contours of interest. From the estimated Pareto front,
it was clear that the minimum energy demand of CO, capture by PCET-driven
pH swings can be substantially lower than that of capture by temperature-swing
of MEA solutions [20, 96], and potentially lower than the DoE target [10, 51],
even when accounting for reported energy efficiencies of electrochemical CO
capture [14, 15, 16, 17, 18, 19].

The lowest among sampled energy demands was only 6.6 kJ./mol C, less
than half of the 16 kJo/mol C minimum that Jin et al. [11] calculated for the

same exact system when only considering high hydroquinone pK, values, and
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Figure 5: The performance of PCET-based pH swings for CO, capture due to changes in
hydroquinone pK, values, quinone concentration, and pH correction magnitude compared to
the three regions of interest. Purple line is the estimated Pareto front. Representative points
have been highlighted for later analysis.
this value approaches the limiting thermodynamic work of separation of 5.4
kJe/mol C. Given that this sample, and all samples on the Pareto front with
energy demands less than 10 kJ, /mol C, had a first pK, less than 7 and a second
pK, less than 10, both deprotonated species should make up a substantial
fraction of the hydroquinones at some point during the process. This highlights
the importance of including the entire set of reactions in the chemical model, as
the oft-ignored deprotonation reactions may have positive benefits like lowering
the energy requirement. In this case, the lower minimum energy demand was
due to the relationship between the electrode potential and the pH (Eq. 20).
When the deprotonation reactions are included, the pH should be buffered,
leading to smaller differences between the anode and cathode potentials and
lower electrochemical work per cycle.

While the calculated energy demands were promising, few samples exceeded

the flux of the MEA benchmark [20], although many were of a similar order of
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magnitude. Notably, there was a sharp increase in the energy demand at nearly-
constant flux at roughly the same flux as MEA. Preliminary exploratory calcu-
lations indicated that this feature was caused by two factors: limited concentra-
tions and limited differences in the pK, values (Figure S8). The concentration of
quinone sorbent was bounded based on a literature search of quinone solubilities
[11, 23, 49], and thus was capped at 3 M compared to the 30wt% MEA solutions
(approximately 5 M) of the temperature-swing benchmark. Other studies in the
literature showed that lower concentrations led to a lower pH at the onset of ab-
sorption and would limit the fluxes by reducing the total sorbent concentration
in the enhancement factor calculation (Eq. 30) [11]; calculations with higher
concentrations generally shift the Pareto front towards higher fluxes. Similarly,
while we limited the difference between the two pK, values of the hydroquinone
to a maximum of 5.5 to capture 99% of the available dataset of measured hy-
droquinones [87], calculations that decreased the difference between the pK,
values shifted the near-vertical component of the Pareto front towards lower
fluxes. Increasing the difference did not substantially change the location of
the Pareto front, suggesting asymptotic behavior, but finding compounds with
greater differences in their pK, values would increase the fraction of the search
domain meeting the Maximum flux criteria.

To understand what solution chemistry property combinations would pro-
duce performance with low energy demands, high capture rates, or both, we first
calculated the marginals-based classifier variable importance rankings from sin-
gle variable marginals (Figure 6). The Competitive performance and Minimum
energy criteria had the same ranking of variables, likely because conditions meet-
ing the Minimum energy criteria also met the Competitive performance criteria.
In these two cases, the equilibrium constants were the most important, followed

by the concentrations, then the decision between adding acid or base. The equi-
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librium constant of the second deprotonation was more important than that of
the first deprotonation reaction, which had an importance that was similar to
the concentrations. When targeting higher fluxes, the quinone concentration be-
came the most important variable, consistent with our preliminary exploratory
calculations (Figure S8). Apart from this shift in importance of the quinone
concentration, the Maximum flux criteria ranked the variables identically to the
other criteria. These rankings were highly sensitive to the bounds that we set
for each variable in our search (Section 4.5). For instance, decreasing the lower
bound of the concentration could have increased its relative importance by in-
cluding many points where capture was impossible, resulting in a lower average
variance of other variables and increasing its importance (Eq. 7). However,
the bounds that we set were based on available descriptions of real systems or
data of candidate compounds, and we do not believe these findings to be biased
by any desire to inflate the importance of any particular variable. In fact, by
setting the lower bound of the pK, values at 2 instead of the lower bounds from
the dataset of -8.33 and -6.64 for pK, 1 and pKj, », respectively, we decreased
the importance of the pK, values, yet they were still highly ranked variables,
suggesting that our choices had limited impact on the ordinal rankings.

To understand why the quinone concentration was more important for high
fluxes but less important for the other selection criteria, we analyzed the single
variable marginals. These marginals were calculated both over the full set of
other variable possibilities, X_;, as well as over a subset X*, € X_, where
all variables z; more important than variable z; were restricted to a suggested
domain but all variables zj less important than variable z; retained their full
search domain (Eq. 32). We define P*|x; as the marginalization over this
restricted subset X*, and define the suggested domain as the set z; values

for which P*|z; is greater than a 1:3 weighted average of the minimum and
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Figure 6: Importance ranking of solution composition variables for being (top) competitive
with the MEA benchmark with regards to both its flux and energy demand, (middle) having
a faster flux than the benchmark, or (bottom) meeting the DoE energy target. Logarithms
are all base 10. [Q] = concentration of quinone. log|HX] or log[MOH]| = net concentration of
additional base or acid. +HX vs. +MOH = binary decision of net acid or base addition.

maximum P*|z;. By definition, for the most important variable z,, P*|z,
is the same as P|z,, leading to a sequential determination of the suggested
domains for each variable in the order of their importance. We used a suggested
domain rather than simply constraining to the singular optimal values of more
important z; to account for both noise in the Monte Carlo estimate of P|z;

and the fact that it is unlikely that a compound exists with all the optimal

properties exactly.

Pz} > 0.25min(P*|z;) 4+ 0.75 max(P*|z;) (32)

For the Competitive performance (Figure 7) and Minimum energy (Figure
S9) criteria, the concentration of quinone had a minimum threshold value of
approximately 30 mM, below which the probability of meeting the criteria was

nearly 0 with a low variance, but above which the probability was nearly con-
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Table 1: Suggested solution chemistry property domain (and optimum) for PCET-based pH
swing CO4 capture, from most to least important the Competitive performance criteria.

Competitive performance | Minimum energy Maximum flux
PKap2 9.12 - 11.88 9.12 - 11.65 14.64 - 19.00
(10.73) (10.27) (16.70)
Pt 4.85 - 9.20 4.71 - 9.05 10.55 - 12.67
(4.85) (4.92) (12.26)
Quinone 37mM - 3.2 M 41 mM - 2.3 M 19M-32M
concentration (420 mM) (260 mM) (29 M)
Acid or base 100 nM - 21 mM 78 nM -9.9mM | 1.4 uM - 650 mM
concentration (810 uM) (710 uM) (55 mM)

975

985

9290

stant with a moderate variance. For the Maximum flux criteria (Figure S10),
this profile was the same shape, but the threshold concentration for nonzero
probability and nonzero variance increased to nearly 1 M, leading to a lower
average variance and greater importance. Regardless of the selection criteria,
the peak in the probability was >100 mM (Table 1), although the shape of the
marginals suggests there was a negligible difference between this peak probabil-
ity and that of the upper bound concentration of 3 M. Restricting the integration
to only the suggested pK, domains rather than the full pK, domains only am-
plified the difference between the zero and nonzero probabilities in the way that
we would expect when we exclude low likelihood pK, values; it did not change
the concentration where the probability has the step increase.

Like the quinone concentration, both pK, marginals had a specified value
below which the probability and variance were both negligible. Consistent with
our hypothesis based on other pH-swing driven systems [13], both p K, marginals
showed an optimum that we believe to be the result of maximizing the use
of the pH buffering capacity. However, the marginals revealed an important
asymmetry to this peak, where pK, values that were greater than this optimal
value were more likely to produce desirable results than lower pK, values. This
was likely because increasing the pK, values led to a higher maximum solution

pH, but the relationship between maximum solution pH and pK, appeared
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Figure 7: Single variable marginalizations of the four continuous solution chemistry properties
of interest. Marginals are conditioned on the full domain of less important variables and
either the full or optimal domain of the more important variables (rows are from most to least
important). Shaded region is the standard error of the mean (n = 1,500).
asymptotic [11], leading to a negligible difference in performance among the
highest pK, values.
The importance of the relative difference between the pK, values was high-
99s lighted in the change in the pK,; marginals before and after conditioning on
suggested pK, 2 domain. The upper bound of the suggested domain for pK, >
was lower than the full domain by multiple pH units (Table 1), and the peak
in the optimal pK,; decreases by a similar amount when conditioning on the

suggested pK, 2 domain. This was most notable for the Competitive perfor-

1000 mance and Minimum energy criteria. For the Maximum flux criteria, the upper
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bound of the suggested domain for pK, > was higher, so restricting the pK, 1
marginals over the suggested domain had less effect (Figure S10).

Concentrations of the additional acid or base generally show nonzero prob-
abilities for moderate concentrations, and high or low concentrations had low
likelihoods of meeting any selection criteria. The fact that the extremes of acid
or base addition led to a negligible likelihood indicated that large deviations
from an ideal operating pH in either direction led to worse performance. How-
ever, for the nonzero moderate concentrations, these marginals were relatively
flat, indicating that this variable was forgiving compared to the other variables
of interest. We note, however, that the suggested concentration for this species
is often in the uM to mM range (Table 1). Combined with its position as the
least important continuous variable, we interpret the amount of net acid or base
as a tuning parameter for the case when trade-offs must be made among the
pK, values and solubilities during quinone selection.

Overall, the optima in the pK, and acid or base concentration marginals
indicated an optimal pH window of operation and suggested that the process
is not well described as a "pH swing" process. Describing the process as being
driven by pH swings suggests it would produce similar CO, capture performance
for either the same change in pH (e.g., 4 to 7 versus 7 to 10) or the same change
in proton concentration (e.g., 1 to 2 mM versus 4 to 5 mM). Instead, the presence
of optima at intermediate values for these three variables suggested that the pH
window itself is of importance, and we argue that the process is therefore better
described by changing the pH buffer capacity of the system [13].

A closer look at the binary decision of whether the pH adjustment should
be acidic or basic reveals a notable shortcoming to our methodology (Figure
S11). This variable not only had limited quantitative impact as noted by its

low importance ranking, but also the suggested domains for adding acid, base, or
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randomly assigning the pH adjustment direction differed by less than 5%, allow-
ing us to simplify our reporting of the suggested domains assuming a randomly
assigned pH adjustment direction (Table 1). Qualitatively, however, there was
a notable difference among adding acid or base for the Maximum flux selection
criteria (Figure S10), despite its low relative importance. In other words, vari-
ables with low relative importance in the ranking could still have a noticeable
impact. While we could have included an uncorrelated reference variable to
determine if a variable has any quantifiable impact [99], there is no consensus
of how large of a difference in the importance metric is necessary to discern
whether two variables are similar in their impacts or if one is more important
than the other. This, however, is a common problem among many variable
importance measures, where decisions often come from user decisions of what
is "good enough" [100].

This shortcoming may explain the change to the variable importance rank-
ing when remapped onto relative variables: pKj, i1, the pK, difference, the total
quinone concentration, and the ratio of HX or MOH concentration to quinone
concentration. This was the set of variables that we used during the sampling
process because it removed correlations between input variables, converting the
sample space to a hypercube. While our exploratory calculations suggested that
the difference in the pK, values impacted the predicted flux, the importance
ranking indicated that the pK, difference was lowly ranked for all selection
criteria (Figure S12). As evident from the importance of the pH adjustment
direction, a low ordinal ranking is not equivalent to having no impact, although
its ranking less than the quinone concentration in all selection criteria suggests
a decrease in the importance of at least one pK, due to this transformation
of variables. At present, we are unaware of any research on how remapping or

transforming variables should be standardized for consistency in variable im-
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portance ranking. At a glance, we think this problem has the potential to be
abused to confirm biases in a similar way to data dredging [101, 102], so we ad-
vise scrutiny when seeing and using importance rankings without transparency
of assumptions and motivations. Our approach to limiting bias was to define
the variables as they would be measured or reported in practice, as those are
the most easily interpreted and used.

While the single variable marginals were useful in understanding how the
system behaved at a macro-level, they were not helpful in understanding why
the system performed better or worse under those conditions beyond specu-
lation. To glean this information, we selected 3 specific points for a closer
inspection of the entire process cycle (Figure 5): the peak predictions from the
Competitive performance ("Peak prediction") and Maximum flux ("High flux")
criteria (Table 1), and a point that had an intermediate energy demand but
low flux ("Poor performance," pK,1 = 4.92, pK,2 = 9.49, {Q}ior = 23 mM,
{HX} = 6.6 mM). These three points represented the span of low, moderate,
and high energy demand and flux but combined in a way such that we could
interpret effects on energy and flux separately. We specifically looked at two
pairs of variables over the 4-stage cycle: (1) electrode potential and fraction
of reduced quinone and (2) solution pH and total DIC (Figure 8). The area
contained within the electrode potential-fraction of reduced quinone curves was
proportional to the electrochemical work required per cycle, while the solution
pH-DIC plots represented the driver and result of CO, removal from the gas
phase, respectively.

The most obvious difference among these three points was in the energy
consumed per cycle: the High flux prediction required the most energy per
cycle, followed by Peak prediction and Poor performance examples. This order

was slightly unexpected because the Poor performance example had a greater
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Figure 8: Process cycles of representative simulations. (top) Electrode potential changes as
quinone is reduced or oxidized. (bottom) Bulk solution pH as the concentration of dissolved
inorganic carbon changes. Quinone concentrations: High flux = 2.7 M; Peak performance —
51 mM; Poor performance = 23 mM.
energy demand than the Peak prediction, but this can be explained by the low
CO, captured per cycle: the Poor performance example only captured 9 mM
CO, per cycle compared to the 2.5 M from the Peak prediction. As a result,
10ss  while the energy demand per cycle was lower for the Poor performance example,
its normalized energy demand per mole of CO, was greater. While the High
flux prediction captured even more CO, per cycle at approximately 5 M, it
was insufficient to counteract the increase in energy demand per cycle, resulting

in the highest energy demand among the three points. The small ADIC of

1000 the Poor performance example can be attributed to the low concentration of
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quinone (23 mM).

The rationale for these energy demands per cycle can be explained using
Eq. 20 and the pH changes over the course of the process. Generally, the anode
and cathode potentials will be closer together, and thus the energy demand per
cycle lower, if the pH of the oxidation and reduction stages are similar. Without
any CO, changes in the system, there should be no hysteresis, but the presence
or absence of acidity from carbonic acid caused the two electrode potentials to
differ. Minimizing the pH change of a single half-cycle can be achieved if the
pH was near the hydroquinone pK, values and thus within the buffer regime of
the hydroquinone. For the High flux point, the hydroquinone pK, values were
comparatively high, helping drive the operating pH higher and increasing the
ADIC. While this may appear to be beneficial by reducing the number of cycles
to capture the same amount of CO,, this would also increase the acidification
from CO, and drive the pH of the oxidation stage down. Therefore, for the
High flux prediction, due to both the decrease in pH and high DIC compared
to the total quinone concentration (3 M), while the reduction stage was largely
buffered by the QH,/QH™ reaction (pK, = 11.2), the oxidation stage was tran-
sitions from being buffered by the HCO5; /CO5 reaction (pK, — 10.33) to the
H,CO3/HCO; reaction (pK, = 6.33) as oxidation progressed. In contrast, the
Peak prediction and Poor performance example had a much smaller decrease in
pH after the CO, absorption stage, keeping the anode and cathode pH closer
together. This rationalized our finding that there was a peak in both pK,
marginals: there is an optimal domain of pK, values that represents the bal-
ance between having a sufficiently high pK, to capture large quantities of CO,,
but a low enough pK, that the pH can be buffered by hydroquinone during op-
eration. From our perspective of pH buffering, rather than simply pH swings, it

makes sense that the suggested domains of the pK, values are roughly centered
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around the pK, values of the H,CO3/HCO;3 (6.33) and HCO; /CO5 (10.33)
reactions (Table 1). The similarity would mean that regardless of whether the
system has high or low DIC', the dominant buffer in solution has a similar pK,
value, keeping the anode and cathode pH profiles similar regardless of DIC.

Consistent with our marginalizations, the flux was optimized by higher p K,
values and quinone concentrations, as these two variables contribute to higher
OH"™ concentrations and thus faster reaction rates. As previously reported in
the literature [11], both higher pK, values and higher concentrations led to
higher pHs at the start of CO, absorption. While those authors interpreted
this in the context of maximizing CO, capture per cycle, this will also increase
the sorbent (OH") concentration, and thus capture rate (Eq. 30). Additionally,
these variables appeared to cause to a lower minimum Péeél:: 1073 atm for the
High flux prediction compared to 10°° and 102 for the Peak prediction and Poor
performance example, respectively. Consequently, the concentration gradient
term in Eq. 29 increased as well, leading to a slightly greater flux. However,
because this term is a difference between the surface and bulk concentrations,
the effect is asymptotic, so the change in sorbent concentration is necessary for
a complete explanation of the increase in rate.

Having developed our understanding of the CO, capture model, we used
the trained GP classifier to screen a substituted hydroquinone pK, dataset for
quinones that would produce a process whose performance was competitive with
the MEA benchmark (Table SI) [87]. Few quinones in the dataset had reported
solubilities in water, and none had published solubilities for the highly conduc-
tive, high ionic strength solutions one would use in an electrochemical process,
so for this calculation, we marginalized over the limits of quinone and acid/base
concentrations that we applied in our search. As a result, these probabilities

are likely overestimates, and we only use them to provide insight into chemical
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trends. Of the 127 compounds, 84 were more likely to be competitive with the
MEA benchmark than not. We estimate that the most promising molecule,
2,3-bis(dimethylamino)-p-benzoquinone, could have lower energy demands and
greater fluxes than the MEA benchmark in 85% of solution compositions in the
search domain with its pK, values of 9.43 and 11.11.
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Figure 9: Application of the adaptive-sampling refined GP classifier to a dataset of substituted
hydroquinone pK, values [87]. Probabilities are after marginalization across the training
domain of concentrations due to lack of solubility information.

To determine if there were any patterns related to the properties of the
functional group substitutions, we labeled the probabilities with the quinone’s
functional groups and ranked them according to their electronic substituent ef-
fects for aromatic systems from the most electron donating to most electron
withdrawing (Figure 9) [103]. As a first pass on this analysis, quinones with
multiple substitutions had their probabilities included for each substitution,
e.g., a quinone with two halide substitutions (—X) and an amine (—NH,) con-

tributes twice to the dataset of halides and once to the dataset of amines.
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was-electron donating groups almost always predicted low energy-high rate CO

capture performance, whereas electron withdrawing groups had a wide variance

in their likelihood of predicting both low energy demands and high capture rates.
This trend occurred because electron donating groups willinereasethe-tend to

increase the pK, values by increasing the electron density around the oxygen

to-the-proten;—which—would-inereasethe-, whereas electron withdrawing groups
do the opposite. Given that the single variable marginalization for both pKa

values look roughly like step functions with an overshoot at the step (Figure

7), variation in the strength and number of electron donating groups, and thus

variation in its impact on the magnitude of the pK, increase, was not likely to
show much variance in the probability, particularly because the unsubstituted
p-benzoquinone has pK, values close to the optimum (9.85 and 11.4). However,

variation in the strength and number of the electron withdrawing groupswere

at—ath—stability—would—affeet—the—seleetion—of theserbent—meleeule, _and thus
the magnitude of a pK, value decrease, would cause large variations in the
likelihood of meeting both the energy and rate criteria, as it would span from
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this baseline probability near the peak down to zero. The lack of a clear trend
with the magnitude of the substituent effect, where stronger withdrawing groups
in particular still showed high probabilities, was largely because we only looked
at_single-substituent _effects, and thus do not include concerted or conflicting

effects of multiple substituent groups.
While the dataset could be analyzed beyond single substitution effects, we

did not conduct further analyses because our conclusions were substantially bi-
ased by the small dataset size. For instance, a preliminary analysis of the num-
ber of substitutions indicated that as the number of substitutions increased,
the median probability of acceptance decreased, but there were approximately
three times as many compounds in the dataset with two substitutions than
compounds with any other number of substitutions. As a result, the median
probabilities of mono-, tri-, or tetra-substituted compounds could have been
artificially skewed by the selection of candidates in the dataset and may not
have been a true reflection of the effect of the number of substitutions. We
also caution using the list of compounds (Table S1) as a definitive ranking of
feasibility due to the lack of solubility data in concentrated electrolytes, which
would substantially alter these probabilities if the solubility limit is close to the

threshold for CO, capture. With a-widerset-efcandidatecompeounds-and-dataen

sadditional data, we would be able

to make more concrete suggestions for solution compositions that could be com-

petitive with capture by temperature-swings of MEA solutions. These data

could include, for instance, the measurements of key properties, e.g. stability
to common oxidants and solution viscosity, as well as the inclusion of data
on compounds with solubility-enhancing substituent groups [104]. We expect
stability considerations, for instance, to have a large impact on our analysis
given_that_electron donating groups lead to more favorable pK, values but
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also lower reduction potentials (Figure S13), and thus should be less stable

in_the presence of O,. A third objective function relating standard reduction
potential to stability would need to be included in order to discern how, if at
all, stability would affect the selection of the sorbent molecule, The power of
the multiobjective approach described in this work is that it can accommodate
these additional objective functions by considering all objectives simultaneously,
preventing any overcorrection caused by a single objective and describing where
and how trade-offs among objectives atise.

6. Broader Implications

This paper provided foundational work in two areas: (1) experiment designs
for supervised classifier refinement and (2) CO, capture driven by PCET re-
actions. In the context of refining a supervised classifier, our work described
a new adaptive sampling method that can improve binary classification based
on a continuous output and a predefined threshold by sampling points that will
improve the precision of the boundary between the two classes. The sampling
process accomplished this by prioritizing points that had both a small distance
to the contour of interest and a high uncertainty in that estimate, balancing ex-
ploitation of known information with exploration of under-sampled regions of the
domain. Importantly, our approach was generalized to be able to handle classi-
fication definitions based on multiple overlapping criteria, which often leads to a
piecewise contour. This can be applied to numerous engineering problems where
there are specific targets, such as designing for reliability, satisfying design con-
straints, or maintaining regulatory compliance [28, 29, 30, 31, 32, 45, 46, 47, 105].
In addition, we developed a framework for interpreting the classifier to assist
engineering design by suggesting conditions that will achieve those targets with

the greatest estimated probability. In case the suggested conditions cannot be
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achieved due to trade-offs between specific variables, we also developed a metric
for comparing the relative importance of each variable to indicate which should
be prioritized in the trade-off.

In the context of CO, capture driven by PCET electrochemical reactions, we
identified that the hydroquinone pK, values are the most important variables
to consider when selecting a compound to have CO, capture performance com-
petitive with the MEA benchmark. While quinone concentration, and by proxy
the quinone solubility limit, was important, the concentration must only be at
least 50 mM to be comparable to the MEA benchmark in terms of both energy
demand and CO, capture rate; a high concentration is only necessary if seeking
to design a process with higher CO, capture rates than the MEA benchmark.
The optima in the pK, marginals suggested that the conceptual mechanistic
model of CO, capture should be framed in terms of changing the pH buffer
capacity of the solution by transformation between the buffering hydroquinone
and non-buffering quinone forms rather than simply framing the mechanism as
a change in pH or proton concentration. This interpretation properly accounts
for how to balance the amount of CO, captured per cycle and the energy de-
mand per cycle, which are both highly dependent on the exact operating pH
window, in order to minimize the energy per mole of CO, captured. While
we constrained our training dataset and search domain based on existing data
on substituted p-benzoquinones, the suggested equilibrium constants and con-
centrations that we found in this study are likely to be applicable to other
compounds that undergo a 2-electron, 2-proton PCET reaction such as naph-
thoquinones, anthroquinones, and some flavins. When we applied our model
to reported pK, data of substituted p-benzoquinones, we found that electron
donating groups make the molecule more likely to perform competitively with

the MEA benchmark in both energy demand and capture rate, although the
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presence of an electron withdrawing group was not necessarily detrimental.
Beyond just PCET-based pH swings, this framework for analyzing an elec-
trochemical CO, capture process could be applied to other electrochemical CO4
capture mechanisms such as the EMAR process {55}[35, 106, 107], ion selec-
tive membrane-based separations [22, 50, 51|, or redox state-dependent sorbents
[52, 53, 54]. Doing so would not only optimize those solution compositions, but
it will also provide a means of comparing the thermodynamics and kinetics of the
different electrochemical approaches based on their fundamental limits rather
than trying to compare them based on potentially incomparable experiment de-
signs. This would give engineers an indication of which specific electrochemical
approach would be best for their application and potentially accelerate elec-
trochemical CO, capture’s implementation into the market, ultimately helping

curb the effects of climate change.
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