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Electrochemical CO2 capture technologies have been found to consume less energy than the industry
standard of thermal separations, but their real-world applicability requires that they also operate at com-
parable rates. Optimizing for both low energy demands and high capture rates is complicated by trade-
offs between the two objectives and the many manipulable solution chemistry variables, including spe-
cies type and concentration. Here, we computationally identified the solution chemistries that are most
likely to outperform thermal separations in both energy demand and capture rate for electrochemical
capture driven by proton-coupled electron transfer reactions by using an adaptive sampling contour esti-
mation method. This approach provided high confidence inferences with few simulation runs by select-
ing the most informative conditions to test. We found that moderately basic pKa values of the reduced
form of the redox-active compound were the most important variables for low energy and high rate
CO2 capture.
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1. Introduction

Carbon capture technologies must become less expensive to
achieve international climate goals (Stocker et al., 2013; Hoegh-
Guldberg et al., 2018; Kriegler et al., 2018; National Academies of
Sciences Engineering and Medicine, 2019; Keith et al., 2018). Cur-
rently, carbon dioxide is captured at a limited number of industrial
plants using the monoethanolamine (MEA) process, in which tem-
perature swings control CO2 absorption into and desorption from
aqueous solution (Global CCS Institute, 2020). More widespread
use of the MEA process is technologically limited by the large
energy demand required for heating and cooling sorbent solutions
(Tobiesen et al., 2005; Zhao et al., 2013; Markewitz et al., 2012;
Matuszewski et al., 2011). Theoretically, electrochemical CO2 cap-
ture technologies can be designed to operate with lower energy
requirements than temperature-swing CO2 capture technologies
because they are not bound by the Carnot cycle (Jin et al., 2020;
Shaw and Hatton, 2020; Boualavong and Gorski, 2021). However,
most experimental electrochemical CO2 capture systems have not
yet achieved substantially lower energy demands than the MEA
benchmark after accounting for typical thermal-to-electrical
energy conversions (Millet, 2015; Gurkan et al., 2015; Legrand
et al., 2018; Wang et al., 2018; Rahimi et al., 2020; Rahimi et al.,
2020; Wilcox, 2012; Li et al., 2016), and capture rates for electro-
chemical CO2 capture are rarely measured using conditions that
allow direct comparison to other CO2 capture methods due to reac-
tor design and operation differences (Wang et al., 2018; Rahimi
et al., 2020; Eisaman et al., 2011; Huang et al., 2019; Liu et al.,
2017). Given that capture rates affect absorber size and therefore
capital cost (Keith et al., 2018; Li et al., 2016; House et al., 2011),
we see a need to study the trade-offs that exist between minimiz-
ing energy demands and maximizing the capture rates. In this
study, we focus on optimizing the solution chemistry composition
for low energy demands and high capture rates because the solu-
tion composition places physical limits on what is achievable by
changing, for instance, the thermodynamic minimum energy and
sorbent availability (Jin et al., 2020; Shaw and Hatton, 2020).

Identifying optimal solution compositions for electrochemical
CO2 capture can be prohibitively time-consuming for two reasons.
First, a large number of manipulatable variables exists, including
the concentration and species of each constituent present in solu-
tion. For electrochemical CO2 capture technologies with many can-
didate compounds, the scale of these experimental designs can
usually only be achieved at reasonable timescales with simulation
studies. Second, we are simultaneously considering two perfor-
mance metrics: energy demands and CO2 capture rates (Renfrew
et al., 2020; Sharifian et al., 2021). The existence of multiple objec-
tives means there is no singular optimum, but rather there is a set
of potential trade-offs between those objectives called the Pareto
front (Gharari et al., 2016; Yang et al., 2017; Singh and Minsker,
2008; Mantoglou and Kourakos, 2007). Each point on the Pareto
front can be thought of as its own single-objective problem, lead-
ing to experiment designs with many conditions to test.

While various adaptive sampling methods for finding Pareto
fronts have been designed to reduce the number of tested experi-
ment conditions, they assume a well-defined input space in which
all possible input configurations are known (Bect et al., 2012;
Picheny, 2015; Marler and Arora, 2010; Das and Dennis, 1998;
Kim and De Weck, 2006; Messac et al., 2003; Zitzler et al., 2000;
Russo et al., 2018). When optimizing a solution composition,
knowing all possible input configurations would mean that almost
all candidate compounds and their relevant properties are known a
priori. Unfortunately, this is not the case for electrochemical CO2

capture systems. Our literature survey revealed that the number
of candidate compounds with both electrochemical and CO2 cap-
2

ture data is on the order of 102, so relying solely on this data to
identify the Pareto front would only reveal the best solution com-
position among those likely already reported in the literature. This
case differs from literature examples of applying adaptive sam-
pling methods for Pareto front estimation in other materials prob-
lems, which identify promising candidates from databases
containing >104 species (Seko et al., 2015; Ju et al., 2017;
Negoescu et al., 2011). Additionally, conclusions obtained from
large datasets (>105 entries) have been shown to still be suscepti-
ble to database biases (Moosavi et al., 2020), putting into further
question the validity of any Pareto front obtained from �102 can-
didates using any of these adaptive sampling methods.

One way to address multi-objective solution composition opti-
mization problems when only a small fraction of candidate com-
pounds have sufficient data is to treat each solution property as
a continuous variable, then search for combinations of solution
properties that produce outcomes that are sufficienciently close
to the Pareto front. Treating each solution property as a continuous
variable accounts for potential candidate compounds that lack
measured data, and accepting results within some proximity of
the Pareto front increases the likelihood that a yet-unreported
compound may have a combination of properties that falls within
that domain. Reframing the problem in this way changes it from a
multi-objective optimization problem to a binary classification
problem in which one searches for conditions that would be
acceptably close to the proposed Pareto front. While a binary clas-
sifier could be trained solely using randomly sampled conditions,
the classifier is most likely to make errors in the region close to
the boundary between ‘‘acceptable” and ‘‘unacceptable” CO2 cap-
ture energies and rates, and thus the dataset should prioritize that
boundary through a process called contour estimation. Like search-
ing for a Pareto front, contour estimation is often intractable and
frequently addressed through adaptive sampling (Russo et al.,
2018; Gramacy and Ludkovski, 2015).

Conceptually, adaptive sampling algorithms for contour estima-
tion seek to sample the point on the current estimate of the bound-
ary that is farthest from any previous sample (Arenbeck et al.,
2010). More sophisticated and efficient algorithms, such as the
expected feasibility function (EFF) (Ranjan et al., 2008; Bichon
et al., 2008) and the weighted integrated mean square error
(wIMSE) acquisition function (Picheny et al., 2010), use uncertainty
estimates from Gaussian processes to account for the fact that
changes in one variable may be more impactful than equivalent
changes in another. Importantly, none of the contour estimation
methods described here were initially designed for nor tested with
boundaries that describe multiple criteria like our study, which
considers both energy demands and capture rates. Because each
criterion would produce its own boundary, the combined bound-
ary describing solution chemistry conditions that meet both crite-
ria is likely to be a piecewise function, and, to the best of our
knowledge, there is no established method in the literature for
estimating this piecewise boundary more efficiently than solving
each criterion’s boundary independently, effectively doubling the
computation time for a two-criteria contour estimation problem.
As the number of relevant criteria increases, this process becomes
increasingly expensive. To address this knowledge gap, we devel-
oped our own adaptive sampling method that generalizes features
of the wIMSE and EFF methods to refine the estimate of a boundary
defined by a multi-objective problem. We use the resulting sam-
pled dataset to produce a classifier that gives the probability of
meeting both criteria, and we show that the classifier becomes
more accurate with each sampling iteration.

After initial validation of our approach with mathematical test
scenarios, we applied the method to search for the optimal solu-
tion chemistry properties for CO2 capture by pH swings generated
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from proton-coupled electron transfer (PCET) electrochemical
reactions (Jin et al., 2020; Huang et al., 2019; Watkins et al.,
2015). In this reaction scheme, a redox-active molecule will be
electrochemically reduced and protonated; for this study, we focus
on the reduction of a quinone, Q, to a hydroquinone, QH2):

Q þ 2Hþ þ 2e��QH2 ð1Þ

Because the total dissolved CO2 concentration (i.e.,
½H2CO3� þ ½HCO�

3 � þ ½CO2�
3 �) is pH-dependent, raising the pH via elec-

trochemical reduction captures CO2, and lowering the pH via elec-
trochemical oxidation releases CO2. While many other
electrochemical CO2 capture methods have been reported in the lit-
erature (Gurkan et al., 2015; Legrand et al., 2018; Wang et al., 2018;
Rahimi et al., 2020; Rahimi et al., 2020; Eisaman et al., 2011; Liu
et al., 2017; Bae et al., July 2018; Datta et al., 2013; Appel et al.,
2005; Newell et al., 2005; Ranjan et al., 2015), we chose PCET-
driven pH swings as a starting point because a computational model
for this system had been previously reported by Jin et al. (2020),
providing us with a benchmark for model validation. Additionally,
this electrochemical approach depends on only four variables and
takes less than one minute to calculate both energy demand and
capture rate, in contrast to, for instance, the computational model
for the electrochemically mediated amine regeneration mechanism
(Shaw and Hatton, 2020; Stern et al., 2013), which depends on at
least nine variables for a complete description of the process and
takes substantially longer to solve numerically. While Jin et al.’s
model omitted the (de)protonation reactions of the reduced hydro-
quinone for simplicity (Jin et al., 2020), we included these reactions
in our model because recent work on a different pH-controlled CO2

capture process indicated that the lowest energy demands occurred
at a moderately basic pKa value, making these reactions relevant
under typical CO2 capture pH conditions (Boualavong and Gorski,
2021). This optimum occurred when maximizing the overlap
between the buffer regime of the sorbent species and the operating
pH of the process, thereby maximizing the difference in aqueous
phase CO2 capacity between the capture and release stages. Based
on similarities between these two capture mechanisms, we hypoth-
esized that the pKa values of the reduced species in the PCET-driven
pH swing capture process would have a high impact on energy
demands.

In addition to studying energy demands, we used the average
flux of CO2 in the absorber as a proxy for the rate of CO2 capture
because this is typically the rate-limiting step (Wilcox, 2012). In
the electrochemical CO2 capture literature, the rate of capture is
either omitted from study or reported from measurements that
are sensitive to the reactor configuration and operation (Wang
et al., 2018; Rahimi et al., 2020; Eisaman et al., 2011; Huang
et al., 2019; Liu et al., 2017), making it difficult to make compar-
isons among studies. For our study, we applied the widely-used
van Kevelen and Hoftijzer model of gas absorption with chemical
reaction enhancement to obtain an upper-bound for the CO2 flux
across the vapor–liquid interface (Wilcox, 2012; Astarita, 1966;
van Krevelen and Hoftijzer, 1948; Kim et al., 2012; van Holst
et al., 2009; Xiao and Li, 1997; Zeman, 2007; Bishnoi and
Rochelle, 2000). Based on this model, we hypothesized that the
rates will be higher not only at higher concentrations, but also at
higher hydroquinone pKa values because the maximum operating
pH increases with pKa (Jin et al., 2020), thereby increasing the
effective sorbent concentration.

We describe here validation studies of our computational
approach and its application to CO2 capture by PCET-driven pH
swings. We first introduce our computational approach, including
the mathematical bi-objective test scenarios, the possible defini-
tions of region ‘‘close to the Pareto front,” and the test metrics
we used when evaluating our adaptive sampling method (Sec-
3

tion 2). We also detail our framework for interpreting the results
based on partial variable dependence (Friedman, 2001; Zhao and
Hastie, 2019) and variable importance (Shapley, 1952; Strumbelj
and Kononenko, 2014; Sobol, 2001). Overall, we found that our
adaptive sampling approach produced a more accurate classifier
compared to an equivalent number of solely random samples, par-
ticularly as the test scenario became more complex (Section 3).
Next, we describe how we applied this method to our CO2 capture
model to search for the solution composition that would produce
energy demands and CO2 capture rates competitive with that of
the MEA-based temperature-swing benchmark (Section 4). We
found that while this electrochemical process can be competitive
with the MEA benchmark, particularly in achieving lower energy
demands, the range of potential energy demands and rates was
large, with a substantial fraction of possible solution compositions
failing to capture CO2 at all (Section 5). Based on our results, we
provided suggested domains for the hydroquinone pKa values, total
quinone concentration, and magnitude of any pH correction to aid
in implementation of this process. Finally, we applied our model to
literature data of substituted hydroquinones to identify trends in
how the functional group substitutions affect predicted
performance.
2. Computational approach

2.1. Overview

We describe here a method to identify the domain of conditions
whose outcomes were ‘‘sufficiently close” to the Pareto front. This
method first produces an estimate of the Pareto front using an
established process (Binois and Picheny, 2019), then applies our
new contour estimation method to find a specific contour of inter-
est relative to that Pareto front estimate. We estimated both the
Pareto front and the contour of interest using the same basic pro-
cedure: (1) collect an initial set of data, (2) use the sampled data to
fit a surrogate model that is easier to evaluate than the objective
functions (Section 2.2), (3) apply an acquisition function to the sur-
rogate model to determine the point that would improve the esti-
mate of the Pareto front or contour the most (Section 2.3), (4)
evaluate the objective functions at this point, and (5) repeat steps
2–4 until a predefined convergence is met or a maximum number
of samples were collected. For Pareto front estimation, the initial
set of data combined a grid search with random sampling, and
for contour estimation, the initial set of data was the dataset after
Pareto front estimation.

The adaptively sampled dataset was then used to train a classi-
fier, which predicted whether an input vector would produce an
outcome sufficiently close to the Pareto front or not. We could then
analyze this classifier to infer information about the original objec-
tive functions with reduced computational cost compared to eval-
uating the objective functions directly. The utility of these
inferences depended on the accuracy of the classifier, which itself
depended on the quality and quantity of sampled data used to train
it. Therefore, to confirm that our adaptive sampling method for
contour estimation was beneficial to the accuracy of the classifier,
we applied our methods to two simple mathematical test scenarios
and three possible definitions of the region ‘‘close to the Pareto
front.” We compared the accuracy of classifiers trained on adap-
tively sampled data to the accuracy of the same classifier trained
on an equivalent number of solely random samples, with the
expectation that the more informative adaptive sampling proce-
dure would produce more accurate classifiers. Finally, we devel-
oped methods for interpreting those classifiers in ways that
would be useful for our goal of optimizing solution compositions
for electrochemical CO2 capture.
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2.2. Gaussian process surrogate model construction

We used Gaussian processes (GP) as the surrogate model for
estimating both the Pareto front and the contour of interest
because our data were derived from deterministic models. While
many potential alternative surrogate models, such as general linear
models or random forests (Bezerra et al., 2008; Akçay and Anagün,
2013; Abooali et al., 2020; Butler et al., 2018), rely on minimization
of the differences between the model prediction and sampled data
to find generalized trends, GP can use Bayes’ rule to find the poste-
rior distribution conditioned on the sampled data, assuming a
Gaussian prior (Frazier, 2018). As a result, at a sampled datapoint
(�xn; f ð�xnÞ) from a deterministic function with high precision (i.e.,
(�xnÞ � jf ð�xnÞj), the GP surrogate model intersects the sampled data
points with similarly high precision. In other words, errors in the
surrogate model were predominantly due to surrogate model inac-
curacies, not measurement imprecision as could be assumed in
least-squares regression surrogate models (Ranjan et al., 2008).
This feature also ensured that in the proximity of a sampled point,
the model uncertainty was small, but the domain far from any
samples had larger uncertainty based on that distance. Thus, a
GP surrogate gives information on both exploration of new areas
and exploitation of known information for the adaptive sampling
algorithm.

The fitted GP surrogate model (gð�xÞ) predicts both the mean
(lð�xÞ) and variance (r2ð�xÞ) of the output given an input vector
(�x) (Eq. (2)).

gð�xÞ � Nðlð�xÞ;r2ð�xÞÞ ð2Þ
Further details on fitting the mean and variance to data have

previously been reported in the literature (Picheny, 2015;
Rasmussen and Williams, 2006; Frazier and Wang, 2016), and
implementation packages in various programming languages are
available (Roustant et al., 2012; Pedregosa et al., 2011). Briefly,
after selecting a covariance function, the most probable GP surro-
gate model’s mean and variance can be calculated by fitting to
the sampled data (Rasmussen and Williams, 2006). For this study,
we did not notice a substantial difference among different covari-
ance functions and chose the 5/2 Matérn covariance function due
to its comparatively faster fitting of preliminary test data.
2.3. Bi-objective problem acquisition functions

To estimate the Pareto front, we used the stepwise uncertainty
reduction (SUR) acquisition function (Bect et al., 2012) generalized
to multi-objective problems (Picheny, 2015), as implemented in
the GPareto package (v.1.1.4.1) in R (v.4.0.3) (Binois and Picheny,
2019). In this method, the two objective functions were assumed
to be uncorrelated minimization problems and thus produced
two independent GP surrogates (Binois and Picheny, 2019; Wada
and Hino, 2019). While the independence assumption may not
apply to all bi-objective problems, the outputs of our chemical
model showed little correlation (Pearson’s jrj < 0:01). At each iter-
ation, GP surrogates models for each objective were queried to find
the next candidate point that would offer the greatest expected
increase in the 2-dimensional area behind the bi-objective Pareto
front estimate. If the point would be less optimal than the esti-
mated Pareto front, this area would be unchanged; if the candidate
was more optimal than any points on the estimated Pareto front,
the area would increase. Maximizing this expectation value
accounted for both the means and variances of the two GP predic-
tions, favoring regions that are both promising in their means and
comparatively unexplored as noted by high uncertainty. The SUR
method specifically aimed to pick samples that will maximize
4

Shannon information entropy in order to minimize uncertainty of
the Pareto front estimate (Picheny, 2015).

To improve our estimate of the contour that defines points that
are sufficiently close to the Pareto front, we developed an adaptive
sampling method that sampled the regions that are both highly
uncertain and close to the classification boundary of interest by
generalizing features of the expected feasibility function (EFF)
and the weighted integrated mean square error (wIMSE) methods
(Ranjan et al., 2008; Bichon et al., 2008; Picheny et al., 2010).
Instead of using a binary inequality of a single GP surrogate like
the EFF and wIMSE methods, we converted the continuous outputs
of the relevant GP surrogates into a single probabilistic classifier
that gives the joint probability of meeting all specified selection
criteria conditioned on the input vector (Pj�x). The boundary can
then be defined as the domain where the probability is 0.5,
described mathematically as maximizing ðPj�xÞð1� Pj�xÞ. To calcu-
late the joint probability of meeting all criteria, we assumed all sur-
rogate model outputs were independent, similar to the estimation
of the Pareto front, so for multiple selection criteria, the joint prob-
ability was the product of the probabilities of meeting each sepa-
rate criterion. Each individual criterion probability could be
calculated from a normal distribution using the GP surrogate’s
mean and variance. Note that for this contour estimation process,
the GP surrogates gave predictions of the outputs most closely
related to the contour definition, which may not be the same as
the original objective functions. For instance, if the contour of
interest was defined by the sum and product of the original objec-
tive functions, the GP surrogate models would be trained on the
sum and products themselves to eliminate the need to propagate
the surrogate model uncertainties, particularly if the transforma-
tion would convert the output from a Gaussian into another type
of probability distribution. We specifically chose the sets of selec-
tion criteria to limit their covariance and ensure our independence
assumption remained valid.

The uncertainties of the multiple independent GP were com-
bined into a single metric to account for potential differences in
uncertainty among the surrogate models for each selection crite-
rion. For this work, we used the variance of the product of the
selection criteria estimated using the Taylor series approximation
as an initial estimate of the total uncertainty (r2

Tð�xÞ) (Eq. (3) for
the 2-criteria case (King and Mody, 2010)). While more sophisti-
cated measures of total uncertainty are possible, we picked this
form for its generalizability and ease of calculation. Similarly, while
integrating the uncertainty measure over the whole input space
would provide a more accurate estimate of the improvement than
a sample could provide, the reduction in total variance was
expected to be localized (Bichon et al., 2008; Picheny et al.,
2010), so we used the variance at the candidate point to reduce
the computational cost of each iteration.

rTð�xÞ
l1ð�xÞl2ð�xÞ

� �2

¼ r1ð�xÞ
l1ð�xÞ

� �2

þ r2ð�xÞ
l2ð�xÞ

� �2

ð3Þ

The most useful next sampling point, and therefore the target of
the adaptive sampling method, would maximize the acquisition
function, Uð�xÞ (Eq. (4)). Conceptually, like the EFF and wIMSE
acquisition functions, this acquisition function is the product of
the uncertainty and the proximity to the boundary:

Uð�xÞ ¼ r2
Tð�xÞ ððPj�xÞð1� Pj�xÞ þ �Þ; �P 0 ð4Þ

We introduced the constant � in this work as a user-defined tuning
parameter to adjust the relative weight of exploration and exploita-
tion, similar to the b term in some Bayesian optimization literature
(Attia et al., 2020; Hoffman et al., 2014). When � ¼ 0, points that the
GP surrogate models confidently estimated on one side of the
boundary (Pj�x � 0 or Pj�x � 1) would have U � 0 independent of
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r2
Tð�xÞ, so maximizing U prioritized points on the boundary and

favored exploitation of known information. As � increases, points
on the classification boundary and points farther from the boundary
have more similar evaluations of ðPj�xÞð1� Pj�xÞ, leading to a prioriti-
zation of exploration by favoring points with higher total uncer-
tainty. We found tuning � to be important for objective functions
whose dynamics were harder to capture with a GP trained on lim-
ited data, particularly those with multiple local extrema or rapid
changes in the slope. In general, we started our sampling with a
large value of � (� 10�2) and decreased this value to a minimum
of 10�4 as we collected more samples. We stopped collecting addi-
tional samples either when a pre-defined maximum number of
samples were collected or if the value fo U after an iteration was
less than one-tenth that of the first iteration.

For all problems, we first sampled the input space composed of
d independent variables with a coarse grid (3d points) and an addi-
tional 3 points from each hypercube created by the coarse grid ((3)
2d points) to ensure adequate sample coverage. We then applied
the SUR algorithm to estimate the Pareto front, allowing up to as
many samples as the initial design. This dataset with the refined
Pareto front estimate was used as the starting dataset for the con-
tour estimation function, with each sampled point from the con-
tour estimation method also updating the Pareto front as
appropriate (Fig. 1). For the test scenarios, the adaptive sampling
step was limited to between 10d and 20d samples due to the sim-
plicity of these functions; for the PCET optimization problem this
Fig. 1. Flow chart of the computational approach, with d

5

increased to 25d to improve confidence in our conclusions
(Section 4).

2.4. Variable effects and feature importance

The utility of this adaptive sampling procedure was in its ability
to produce accurate classifier models despite being trained on a
limited number of samples. We were specifically interested in
interpreting the classifier for the impact of each individual variable
and what values those variables should take in order to be close to
the Pareto front. We calculated the impact of each variable on the
classifier by marginalization of the joint probability (Eq. (5)),

Pjxi ¼
Z
X�i

ðPjxi; �x�iÞpð�x�iÞd�x�i ð5Þ

where xi was the value of the ith input variable, �x�i the input vector
of all variables except the ith input variable, X�i the set of possible
�x�i, and pð�x�iÞ the probability density function of input space X�i

evaluated at �x�i. Pjxi represented the probability that the result
would satisfy all selection criteria if only information about xi was
known, analogous to the partial dependence plots used in regres-
sion analyses (Friedman, 2001; Zhao and Hastie, 2019). This integral
was approximated by calculating Pjxi; �x�i for 1,500 Monte Carlo
samples from �xjxi, which, by the law of large numbers, converges
to the expectation value (Eq. (6)). The entire marginal was esti-
mated from a set of 50 evenly spaced xi values. For the test scenar-
etails provided of our contour estimation procedure.
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ios, we defined the inputs as independent variables with uniform
distributions to simplify this expectation value to an unweighted
average.

Pjxi � 1
N

XN
�x�i�X�i

Pjxi; �x�i ð6Þ

The set of Monte Carlo samples from each evaluation of Pjxi (Eq.
(6)) provided the additional benefit of indicating the distribution
about that expectation value. The variance among the set of
Pjxi; �x�i at constant xi indicated how changing the other variables
in �x�i affected the probability that the result met the selection cri-
teria. If the variance was small, the other variables �x�i did not have
substantial impact on the classifier compared to xi; at the other
extreme, if the variance was large, at least one other variable had
a much larger impact compared to xi. However, this variance mea-
sure only described a single instance when xi was set to a constant.
A more useful importance measure of the variable xi should also
consider how this variance changes as xi changes. We defined this
marginals-based classifier variable importance of the ith variable
(CVIi) as the ratio of the range of Pjxi divided by the average of
the standard deviations (Eq. (7)). By having the numerator be the
range of Pjxi, we ensured that input variables that caused large
changes in the probability of acceptance were evaluated as more
important.

CVIi ¼ maxðPjxiÞ �minðPjxiÞ
Exi ½Varx�i

½Pjxi; �x�i��0:5
ð7Þ
2.5. Validation test scenarios

To validate our adaptive sampling and classifier variable impor-
tance methods, we applied this approach to two bi-objective prob-
lems from the literature, adapted to address particular questions
we had about the suggested contour estimation approach. Both
problems were selected due to their simplicity and, after modifica-
tion, presence of both a global optimum and at least one other local
optimum. The simplicity allowed us to evaluate the objective func-
tions quickly in order to obtain measures of accuracy and acceler-
ate algorithm tuning. The presence of multiple local optima was
important for testing robustness to regions of acceptance that were
not simply a radius around the single optimum, which could be
possible as the number of variables increases in future studies of
other electrochemical CO2 capture chemistries.

The first test scenario was a modified version of the 2-input set
of quadratic polynomials from Marler and Arora (2010), adjusted
so that the objectives were quartic with respect to the second input
variable and slightly rotated by h ¼ �p

24 radians in the second objec-

tive by left multiplying the input vector ½x1; x2�T by the rotation
matrix Rðh ¼ �p

24Þ (Eq. (8)). The higher order polynomial terms did
not substantially affect the location of the Pareto front nor the
vicinity local to the Pareto front (Fig.S1a), but led to a secondary
local optimum. The rotation applied to the second objective func-
tion ensured that the two local optima did not perfectly overlap
at the same value of x1, and therefore gave x1 multiple local optima
without needing to increase it to a quartic polynomial as well.

f 1ðx1;x2Þ ¼20ðx1�0:75Þ2þ190þ11:58x42�115:85x32þ383:13x22�463:5x2
½x01;x02�T ¼Rð�p24Þ½x1;x2�T

f 2ðx01;x02Þ ¼ ðx01�2:5Þ2þ80þ1:778x042 �20x032 þ78:573x022 �124:664x02
xi 2 ½0;5�8i

ð8Þ
The second test scenario was based on the ZDT4 function (Eq.

(9)) (Zitzler et al., 2000), modified in the second objective to have
a lower frequency such that the gradients were more similar to
6

preliminary calculations of the PCET system (Figs.S1b–S1c). The
lower frequency guaranteed that in all selection criteria that we
tested, the set of accepted points was discontinuous around the
three prominent local minima in f 2. While the ZDT4 function has
been used with up to six input variables, we performed tests with
only three inputs to serve as a transition from the two-input quar-
tic polynomial and the four-input PCET system.

f 1ðx1; x2; x3Þ ¼ x1

hðx2; x3Þ ¼ 21þ
X3
i¼2

ð0:5xi � 0:25Þ2 � 2:5 cosðð5xi � 2:5ÞpÞ

f 2ðx1; x2; x3Þ ¼ hðx2; x3Þ 1�
ffiffiffiffiffiffiffiffiffiffiffiffi

x1
hðx2 ;x3Þ

q� �
þ 10

X3
i¼2

ðxi � 0:5Þ2

xi 2 ½0;1�8i
ð9Þ

Three types of selection criteria were tested as definitions for
results close to the Pareto front: normalized distance from the Par-
eto front (‘‘Pareto distance”), two independent thresholds for f 1
and f 2 (‘‘Threshold cutoff”), and normalized distance to a ‘‘utopia
point” criterion while prioritizing one objective more than the
other (‘‘Utopia distance”) (Fig. 2a). We used the standard normal-
ization convention of ðf 1; f 2Þ to ðf �1; f �2Þ where the normalized
single-objective optima are located at (0,1) and (1,0). This defines
the point (0,0) as the utopia point, the purely theoretical point at
which all objectives were optimized simultaneously (Das and
Dennis, 1998; Kim and De Weck, 2006; Messac et al., 2003;
Lewis et al., 2008; Motta et al., 2012). For the Pareto distance crite-
ria, the normalized distance to the Pareto front was defined as the
Euclidean distance (d) between the suboptimal normalized point
and the point on the Pareto front estimate with the same f �1 : f �2
ratio, linearly interpolating the Pareto front estimate as needed.
This definition of the selection criteria reduced the two objective
functions into a single criterion to search for points that were
nearly Pareto optimal, accepting points with d less than some cut-
off distance d0. For the Threshold cutoff criteria, points were
accepted if each objective met a predefined independent inequal-
ity, i.e., f 1 < f 01 and f 2 < f 02. The Threshold cutoff criteria is the sim-
plest selection criteria and most likely to be applied in practice
because design targets, such as monetary or regulatory constraints,
are often defined in this way (Gharari et al., 2016; Yang et al., 2017;
Singh and Minsker, 2008; Mantoglou and Kourakos, 2007). The
Utopia distance criteria accepted points that were both within a
specified normalized distance of the utopia point and satisfied
the inequality tan�1ðf �2=f �1Þ > h0. These criteria sought points that
approached the utopia point as closely as possible, ignoring the
shape of the Pareto front, and also rejected outcomes that favored
minimizing f 2 too heavily over f 1, simulating a pre-defined priori-
tization preference between the two objectives. For all three selec-
tion criteria, we set the cutoff values of each criterion such that
they accepted similar percentages of the input domains. For both
test scenarios, the domains that met the Pareto distance and
Threshold cutoff criteria were nearly identical. As a result, compar-
ing the performance of these two selection criteria allowed us to
determine whether reducing the number of GP surrogate models
used in the contour estimation procedure, and thus reducing the
computation time, had any measurable effect on accuracy.

We tested all combinations of the two test scenarios and the
three selection criteria by comparing the results of a classifier
trained on the adaptively sampled data to the results of the actual
objective functions by direct evaluation. In the case of a classifier
like the GP surrogates where the output is the probability of accep-
tance and not a direct class assignment, the accuracy assumes ran-
dom assignment based on that resultant probability. We compared



Fig. 2. (a) Visual depiction of the three selection criteria. (b) Misclassification error rates, presented as a percentage of the error rate with zero additional samples beyond the
starting dataset, for Gaussian process (GP) or support vector machine (SVM) models with a polynomial or radial kernel function trained on data from the modified ZDT4 test
scenario. The shaded region represents the 95% confidence interval of possible solely randomly sampled training datasets, with points depicting the median (n = 1,000).
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this accuracy to that of the classifier trained on the starting dataset
prior to adaptive sampling (i.e., after the Pareto front search), as
well as to classifiers trained on the starting dataset combined with
an equivalent number of solely random samples. These two com-
parisons gave insight into whether the misclassification errors
improved due to adaptive sampling or the increase in training
dataset size. We additionally calculated false positive and false
negative error rates and single variable marginals of the classifiers
to diagnose whether the misclassification errors were due to
accepted regions that were too big, too small, or skewed.

For this study, we tested the accuracy of using the GP surrogate
as a probabilistic classifier and benchmarked it against two sup-
port vector machines (SVM), one with a 3rd order polynomial ker-
nel and one with a radial kernel, due to our unconventional use of
GP surrogates as classifiers. SVM with a sigmoidal or linear kernel
were initially included in the study, but showed worse accuracy
than random classification assignment and were subsequently
excluded. This comparison of different classifier models was
intended to test (a) whether the GP was at least as good as a typical
classifier model like SVM, reducing the computation time by using
the model we already trained during adaptive sampling, and (b)
whether the contour estimation adaptive sampling procedure
would improve classifier accuracy for surrogate models besides
the GP used in the sampling procedure. We specifically chose
SVM due to comparatively fast fitting relative to GP in preliminary
tests, particularly for larger training datasets.

To validate our proposed marginals-based contour variable
importance method, we compared our metric to the Shapley values
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and the total-effect Sobol indices as alternatives metrics (Strumbelj
and Kononenko, 2014; Sobol, 2001), both of which were calculated
by Monte Carlo estimation (n = 1,500). All three metrics quantify
the importance of a variable in determining the outcome, in this
case defined as the classification result, although they define
importance differently. Shapley values describe the impact that
changes to a single variable will have on the outcome relative to
a reference point, while total-effect Sobol indices describe the con-
tribution that a variable has to the variance of the output. Both
Shapley values and total-effect Sobol indices were calculated 50
times to obtain an average and standard error for each input vari-
able, and thus were determined from the same number of surro-
gate function evaluations as our marginals-based CVIi metric.
Uncertainties for the CVIi metric were calculated by propagation
of the standard errors of each component in Eq. (7) to obtain the
standard error of the mean. Because all three metrics define impor-
tance differently, we only compared the relative ranking of the
variable importance and compared that ordinal ranking to our
expectation based on the true objective functions; ideally, all three
methods would agree in the ordinal ranking of the variables,
although the magnitude of the differences among variables may
differ.
3. Validation of adaptive sampling method

Given the relative simplicity of the 2-input quartic polynomial
test scenario, we only report here the results for the more complex
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3-input modified ZDT4 test scenario. Results for the polynomial
test scenario generally corroborated the conclusions we reached
using the ZDT4 test scenario (Supplemental Information B). For
the modified ZDT4 tests, we designed the selection criteria to only
accept a small (5–10%) fraction of the input domain to be consis-
tent with our intended application of optimization, contrasting
with approximately 40% for the 2-input polynomial test scenario.
This equated to accepting points that (a) had a normalized distance
less than 0.5 from the Pareto front (‘‘Pareto distance” criteria), (b)
had normalized coordinates within the square defined by the uto-
pia point and (1, 1) (‘‘Threshold cutoff” criteria), or (c) were within
a normalized distance of 1 from the utopia point and satisfied the
inequality tan�1ðf �2=f �1Þ P 0:1 radians (‘‘Utopia distance” criteria).

The misclassification errors highlight the benefits of our adap-
tive sampling method for contour estimation on the resulting clas-
sifier (Fig. 2b). For ease of visualization, we present the
misclassification errors relative to those of the classifiers trained
on the starting dataset without additional sampling due to differ-
ences in the starting error rates; we include the absolute misclas-
sification error rates in the SI (Fig.S2). For the GP classifier, training
the models on the adaptively sampled dataset led to lower error
rates than training on >95% of the possible solely randomly sam-
pled datasets, and this accuracy benefit became larger as the num-
ber of samples increased. For the SVM classifiers with polynomial
kernels, the error rate stayed nearly constant with adaptive sam-
pling unless some specific points were sampled, leading to a rapid
decrease in the error rates. However, the error rate was unstable,
where additional adaptive samples could potentially lead to an
increase in error rates, as evident for the Pareto distance criteria.
SVM with a radial kernel trained on adaptively sampled datasets
were better than >90% of solely randomly sampled datasets for
two of the three selection criteria. For the Pareto distance criterion,
this classifier trained on an adaptive sampled dataset was roughly
equivalent to the median among the possible solely randomly sam-
pled datasets.

We attribute the stronger benefit of adaptive sampling for the
GP classifier to the fact that the adaptive sampling process used
the same GP surrogate to inform the sampling process. As a result,
the ‘‘most informative” next point was based on the GP’s uncer-
tainty and contour estimate, and, based on the large difference in
GP and SVM classifier accuracies, this would likely be different
than the uncertainty and contour estimate from a SVM given the
stark differences in error rates (Fig.S2). Therefore, if intending to
use another type of classifier as the final surrogate model, we sug-
gest modifying the adaptive sampling procedure to rely on infor-
mation related to that same type of classifier. Using a different
surrogate model for sampling may still improve accuracy of the
final surrogate model, as evident in the improvement to the accu-
racy of SVM classifiers with radial kernels for certain selection cri-
teria, but the benefit is likely to be smaller.

Across all selection criteria and sampling methods, the error
rate for the GP classifier was always less than 10%, dropping to
under 4% after 50 adaptive samples beyond the starting dataset
(Fig.S2). In contrast, the SVM models were inconsistent, with error
rates of about 50% for most conditions tested regardless of training
dataset size. Only SVM with a polynomial kernel were able to
achieve error rates similar to the GP classifier, and only reliably
for the Threshold cutoff condition. For the other two criteria, the
error rate did drop below 10% after sufficient adaptive samples
were collected, but the low error rate was unstable and rebounded
back to 80% when greater than 40 adaptive samples were collected
for the Pareto distance criterion. For all conditions, the misclassifi-
cation errors were due to a high false positive rate (Fig.S3), which
tended to be relatively high (>50%) and followed a similar trend as
the total error rates when additional samples were collected. False
8

negatives were uncommon for all conditions (<1.5%), likely a
reflection of the small fraction of the input domain that met the
acceptance criteria (Fig.S4). Notably, adaptive sampling did not
substantially improve the false negative rates compared to solely
random sampling, but given the small false negative rates, reduc-
ing the false negative rate was low priority to minimize overall
misclassification errors.

The single variable marginals corroborate the results of the mis-
classification error, showing the improvement to the GP classifiers’
accuracies after adaptive sampling and the better accuracy of the
GP classifiers compared to the SVM classifiers (Fig.S5). While the
misclassification error rates were similar among the models for
the Threshold cutoff criteria after 50 adaptive samples, the (aggre-
gated) single variable marginals for the SVM classifiers did not
match expected profiles (R2 < 0:1), particularly compared to the
GP classifiers after adaptive sampling (R2 > 0:85). This appeared
to be largely due to poor marginalization on x2 and x3, which have
distinct peaks that the SVM classifiers did not capture (Fig.S6).

Given the low coefficients of determination for the SVM classi-
fiers, we did not perform calculations for the importance ranking
with these models, instead only comparing our method of assess-
ing the marginals-based classifier variable importance to alterna-
tive importance measures for the GP classifiers (Fig. 3). Our
marginals-based method gave the expected ordering of the three
input variables: x2 � x3 > x1 across all selection criteria. The prox-
imity of x2 and x3 was particularly important given that in the ZDT4
function, these two variables were treated identically, and thus
should have the same importance. Additionally, in the ZDT4 func-
tion, x1 only affected the relative balance of f 1 to f 2, but had little
impact on proximity to the Pareto front (Zitzler et al., 2000), so we
expected it to have a lower importance compared to x2 and x3.
While the Shapley value averages matched the expected order,
they were poorly reproducible, leading to a large standard error
that masked interpretability; in contrast, the standard errors for
our marginals-based method were negligible. Total-effect Sobol
indices produced more reliable results than Shapley values, but
they rank x1 as the most important variable instead. This highlights
the key difference between the Sobol indices and our marginals-
based method. The total-effect Sobol indices rank variables by their
contribution to the output variance normalized by the total output
variance, but our marginals-based metric is the probabilistic out-
put range normalized by the variance of other variables. While
the difference in the denominators is only likely to affect resolu-
tion, the difference between variance and range of the probability
in the numerator can cause a reversal in the order. Specifically,
while the ranges of Pjx2 and Pjx3 were roughly double that of
Pjx1 (Fig.S6), because Pjx2 and Pjx3 were mostly flat with three rel-
atively sharp and narrow peaks, the variance contribution of x2 and
x3 is smaller than x1. If these peaks were to maintain the same
amplitude but have narrower nonzero domains, we would suggest
constraining these two variables to the domain of those peaks with
even higher priority, but their total-effect Sobol indices would
decrease. In other words, here, the total-effect Sobol index can
underestimate the importance of variables that have small subdo-
mains of interest, leading to a different ordinal ranking compared
to the other two metrics. Based on other experiments in the liter-
ature (Boualavong and Gorski, 2021), we hypothesized that the
equilibrium constants in the CO2 capture system will have clearly
defined optima at moderate values, for which the total-effect Sobol
indices could underestimate their importance, so we used our
marginals-based contour variable importance metric.

Collectively, these results indicated that the GP probabilistic
classifier becomes significantly more accurate with adaptive sam-
pling, reducing the number of queries of the original objective
functions to achieve a surrogate model of comparable accuracy,



Fig. 3. Normalized importance ranking for the modified ZDT4 test scenario using the marginals-based classifier variable importance, the mean Shapley values, or the total-
effect Sobol index. Error bars are the standard error based on 50 independent simulations.
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and a GP classifier was more accurate than the tested SVM. From
the tests of different selection criteria, we determined that selec-
tion based on cutoff values of the two objectives was most consis-
tently accurate for the two test scenarios. Based on these results,
we applied these methods to our analysis of the PCET-based CO2

capture system to determine the solution chemistry properties
that would be competitive with the industry benchmark: capture
by temperature-swing of MEA solutions.
4. CO2 capture model
4.1. Solution chemistry model

While CO2 capture by PCET-driven pH swings is controlled
externally by the redox reaction (Eq. (1)), a complete understand-
ing of the process includes vapor–liquid equilibrium and (de)pro-
tonation reactions (Eqs. (10)–(15)). We note that while
deprotonated hydroquinones have been reported to coordinate
with CO2 directly by acting as a nucleophile, this has only been
observed in aprotic solvents, so we did not include this species in
our aqueous solution chemistry model (Gurkan et al., 2015;
Simpson and Durand, 1990; Liu et al., 2020; Scovazzo et al.,
9

2003). Additionally, based on data of quinone reduction potentials
(Huynh et al., 2016), we ignored all reactions involving singly-
reduced semiquinone intermediate because for the expected pH
window of operation, the second reduction potential was energet-
ically downhill after the first electron has been accepted for the
majority of species. While we expect realistic implementation
would include high ionic strength to reduce the solution resistance,
we simplified the calculations by ignoring ionic strength effects
and assuming activity coefficients of 1. This assumption likely
changed the estimates of the optimal solution chemistry proper-
ties, but we expect the difference to be small relative to the
breadth of the input suggestion domains (Puxty and Maeder,
2013). Due to limitations on the available equilibrium constant
data, we calculated CO2 capture thermodynamics assuming a con-
stant temperature of 298 K even though absorption often occurs at
313 K. We do not expect the temperature to substantially change
results because experiments of electrochemical CO2 capture at
both temperatures indicated that the decrease in captured CO2

was counteracted by a decrease in electrical energy consumption,
leading to similar energy demands per mass of CO2 captured
(Rahimi et al., 2020).

Vapor–liquid reactions

CO2ðgÞ þH2OðlÞ�
KH

H2CO3ðaqÞ ð10Þ
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(de)Protonation reactions

H2CO3ðaqÞ �
Kca;1

HþðaqÞ þHCO�
3 ðaqÞ ð11Þ

HCO�
3 ðaqÞ �

Kca;2
HþðaqÞ þ CO2�

3 ðaqÞ ð12Þ

QH2ðaqÞ �
Ka;1

QH�ðaqÞ þHþðaqÞ ð13Þ

QH�ðaqÞ �Ka;2
Q2�ðaqÞ þHþðaqÞ ð14Þ

H2OðlÞ�
Kw

HþðaqÞ þ OH�ðaqÞ ð15Þ
The extent of the electrochemical reaction was defined in terms

of yr , the fraction of quinone that was in any of its reduced hydro-
quinone forms (Eq. (16)). We assumed that the solution would con-
tain excess generic background electrolyte salt MaXb, and thus as
the electrochemical reaction proceeded and yr changed, electro-
chemical migration between the anode and cathode would be
dominated by the background electrolyte and not any of the spe-
cies listed in the (de)protonation reactions. Given that the species
of background electrolyte should be inert and therefore not partic-
ipate in any processes besides this transport, we assumed the
valence of both the background anion and cation (a and b, respec-
tively) to be 1 for simplicity. Assuming that the solution started in
the oxidized state due to the oxidizing conditions of ambient air,
we related the concentration difference between the background
cation and anion to yr , the total quinone concentration [Q]tot, and
the amount of acid (as generic acid HX) or base (as generic base
MOH) that was initially added to the solution by assuming mainte-
nance of a charge balance (Eq. (17)). For the purposes of the model,
only the difference between the cation and anion concentrations
and that between the additional base and acid mattered, not their
individual values.

yr ¼
½QH2� þ ½QH�� þ ½Q2��

½Qtot�
ð16Þ

½Mþ� � ½X�� ¼ ½MOH� � ½HX� þ 2yr ½Qtot� ð17Þ
Using only knowledge of the total concentrations of all species,

the fraction of reduced quinone, and either the CO2 partial pressure
(PCO2 ) or the total dissolved inorganic carbon concentration (DIC),
we solved the set of mass balance, charge balance, and chemical
equilibrium equations to find the concentrations of the species of
interest throughout the CO2 capture process. Based on this model,
the relevant solution chemistry variables that should be optimized
were the pKa,1 and pKa,2 of the hydroquinone, the total concentra-
tion of quinone, and the net amount of acid or base to be added.
Because pH is a log scale, the concentrations needed high resolu-
tion over multiple orders of magnitude. For our optimization, we
used log units of concentration to maintain an experimentally-
relevant resolution throughout the entire domain, and as a result,
created two different models for net acid and net base addition
because net acid addition is represented as a negative number.
We adaptively sampled for the Pareto front and contour estimation
of these two conditions in parallel, then combined the datasets for
interpretation by adding another variable for the direction of the
pH correction.

4.2. Process stages

The simulated process consisted of 4 stages: oxidative acidifica-
tion, CO2 degassing, reductive regeneration, and CO2 capture
(Fig. 4). While previous calculations have found that process inten-
sification to a 2-stage process by combining oxidation with degas-
sing and reduction with capture led to lower energy demands (Jin
et al., 2020; Shaw and Hatton, 2020), this result relies on the
assumption that CO2mass transfer across the vapor–liquid interface
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was fast compared to the electrochemical reactions, which cannot
always be assumed to be true. Combined with the fact that the 4-
stage process would give more conservative results for the energy
demands, we opted for simulating the process as 4 stages in series.

The oxidative acidification stage simulation began at yr ¼ 0:975,
the fully reduced extreme, at equilibrium with the inlet flue gas of
0.15 atm, solving for the pH and total dissolved inorganic carbon
by solving the set of chemical equilibrium, mass balance, and
charge balance equations described in Section 4.1. The proton con-
centration was solved numerically as the sole positive real root,
and thus only valid pH, of the resulting fifth order polynomial
using the Jenkins-Traub algorithm (Jenkins and Traub, 1972). The
DIC was determined using the now-solved pH and known PCO2 to
solve the relevant chemical equilibrium equations (Eqs. (10)–
(15)). We simulated the remainder of the oxidative acidification
process using 150 additional equally spaced steps along
yr 2 ½0:975;0:025�, holding DIC constant and solving for pH and
PCO2 . While the electrochemical process did not depend on PCO2

directly, its knowledge at each step was used as a check that the
pH, which was solved iteratively due to its nonlinear relationship
with DIC and yr , remained within realistic bounds. This calculation
implicitly assumed that the (de)protonation reactions and the mix-
ing between the electrode surface and the bulk were fast relative to
the electrochemical reaction. The former can be assumed to be true
due to the abundance of water molecules and its rapid proton
exchange, while the latter should be valid in a well-designed elec-
trochemical cell that minimizes mass transfer resistances.

The CO2 degassing stage simulation started with the pH, PCO2 ; yr ,
and DIC conditions of the final step of the oxidative acidification
stage, and then it solved for pH and DIC as PCO2 linearly decreased
to the target outlet of 1 atm at a constant yr using the same equa-
tion and algorithm as the first step of the oxidative acidification
stage. Reductive regeneration was simulated using the same proce-
dure as the oxidative acidification stage, but started at yr ¼ 0:025
and PCO2 ¼ 0:99 atm and proceeded at constant DIC until
yr ¼ 0:975. Likewise, the CO2 capture stage was simulated using
the same procedure as the CO2 degassing stage, instead ending
with a PCO2 ¼ 0:15 atm, the assumed partial pressure of the influent
flue gas.

4.3. Minimum energy demand

To simplify the energy demand calculation, we redefined the
electrochemical reaction (Eq. (1)) to its form under strongly basic
conditions (Eq. (18)), recognizing that the electrochemical poten-
tial was the same for the entire solution, and therefore all electro-
chemical reactions should be at equilibrium with each other due
out assumption of fast proton exchange.

Q þ 2e��Q2� ð18Þ
The electrical potential of the anode or cathode, Eh, over the course
of the electrochemical stages were calculated using the Nernst
equation (Eq. (19)).

Eh ¼ E000
h þ RT

2F
ln

½Q �
½Q2�� ð19Þ

where E000
h is the standard reduction potential for the doubly-

deprotonated reaction in Eq. (18), R is the ideal gas constant, T is
the absolute temperature, and F is Faraday’s constant. Combining
Eq. (19) with the identity of yr (Eq. (16)) and the chemical reactions
in Eqs. (13) and (14) produced the Nernst equation in terms of the
process variables solved in Section 4.2 (Eq. (20)).

Eh ¼ E000
h þ RT

2F
ln

1� yr
yr

Ka;1Ka;2 þ Ka;1½Hþ� þ ½Hþ�2
Ka;1Ka;2

ð20Þ



Fig. 4. Representative cycles in the 4-stage CO2 capture process by PCET-driven pH swings. (left) Changes in bulk solution pH and fraction of quinone (Q) in the reduced state
compared to the reduced state’s pKa values. (right) Partial pressure of CO2 that would be at equilibriumwith the solution as the total dissolved inorganic carbon concentration
changes. Outlet partial pressure: 0.99 atm CO2. Feed gas partial pressure: 0.15 atm CO2.
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The thermodynamic minimum for the electrochemical work per
complete cycle per volume of solution (Wcyc) was calculated using
the equation for electrical work from the total (positive) charge
passed per solution volume (q) and cell voltage
(Eh;anode � Eh;cathode) (Eq. (21)). By Faraday’s law of electrolysis, the
charge passed was proportional to the change in the fraction of
reduced quinone (Eq. (22)), simplifying the electrochemical work
to an integral over yr (Eq. (23)), which we solved by trapezoidal
Reimann sum over the 151 steps of each of the two electrochemi-
cal stages.

Wcyc ¼
Z q¼qmax

q¼0
ðEh;anode � Eh;cathodeÞdq ð21Þ

q ¼ �zF½Q �totyr ð22Þ

Wcyc ¼ �zF½Q �tot
Z yr¼0:975

yr¼0:025
ðEh;anode � Eh;cathodeÞdyr ð23Þ

The total work per mole of CO2 captured (WCO2 ) was estimated
as the work per cycle per volume divided by the net change in DIC
over the course of the CO2 capture stage (Eq. (24)). This approxima-
tion assumed that the pump work was small compared to the elec-
trochemical work based on estimates of the pump work for capture
with a MEA solution (< 0.5 kJe/mol C) (Wilcox, 2012) compared to
preliminary calculations of the energy (P8 kJe/mol C).

WCO2 � Wcyc

DDIC
ð24Þ

Because the energy demand should decrease as less CO2 is
removed, we added an additional scaling factor, w, to penalize
the predicted minimum energy demand if less than 90% removal
occurs to keep results in line with the US Department of Energy’s
target (Matuszewski et al., 2011). Doing so prevented the Pareto
front search from expending computational resources finding parts
of the Pareto front that would have low energy demand simply
because the process captured little to no CO2. This scaling factor
was based on the minimum work of separation (Wmin) to split
the feed gas into a 99% pure outlet and a lean gas of known CO2

partial pressure (Eq. (25)).

WminðPlean
CO2

Þ ¼ RTð�nfeed
CO2

lnðPfeed
CO2

Þ þ nout
CO2

lnðPout
CO2

Þ þ nlean
CO2

	 lnðPlean
CO2

Þ � nfeed
�CO2

lnðPfeed
�CO2

Þ þ nout
�CO2

lnðPout
�CO2

Þ
þ nlean

�CO2
lnðPlean

�CO2
ÞÞ ð25Þ
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In this equation, ni
CO2

and Pi
CO2

were the molar flow rate and the par-
tial pressure of CO2 in the ith gas stream (feed gas, lean gas, or pure
outlet), while ni

�CO2
and Pi

�CO2
represented the molar flow rate and

partial pressure of all other gasses in the ith gas stream. For simplic-
ity, we assumed a feed gas of 1 mol of total gas per unit time and a
CO2 mole fraction of 0.15, then imposed a mass balance to deter-
mine the molar flow rates of the other gas streams. For simplicity,
we assumed the total pressure of each stream (Pi

CO2
þ Pi

�CO2
) was

set to 1 atm, and thus had different volumetric flow rates.
The unadjusted scaling factor, w0, was set as the quotient of the

minimum work required for 90% capture divided by the minimum
work to achieve the minimum lean gas partial pressure, which was
the partial pressure at the final step in the reductive regeneration
stage (Eq. (26)). Using this ratio was particularly important for

cases when Plean
CO2

> Pfeed
CO2

, which represented conditions where the
pure outlet was being consumed instead of generated, because this
condition typically estimatedWCO2 < 0, i.e. energy generation from
mixing of two gas streams. A scaling factor based on the minimum
work of separation appropriately changed the result to be positive,
preventing these conditions from appearing on the Pareto front.

w0ðPlean
CO2

Þ ¼ Wminð0:1Pfeed
CO2

Þ
WminðPlean

CO2
Þ

ð26Þ

To obtain the complete scaling factor, we used a logistic func-
tion whose parameters were empirically tuned such that w � 1

when Plean
CO2

< 0:1Pfeed
CO2

, but w � 25w0, its maximum value, when

Plean
CO2

> Pfeed
CO2

(Eq. (27)). We set the maximum as 25w0 to ensure that
conditions that failed to capture any CO2 would not appear on the
Pareto front, but conditions that captured some CO2 yet did not
meet the typical industry target of 90% capture

(0:1Pfeed
CO2

< Plean
CO2

< Pfeed
CO2

) were only adjusted slightly, reflecting the
US DoE’s caveat that conditions that do not achieve 90% capture
may still be viable if the energy consumption is sufficiently low
(Matuszewski et al., 2011).

wðPlean
CO2

Þ ¼ 25w0ðPlean
CO2

Þ
1þ exp½�267ðPlean

CO2
� 0:071Þ�

þ 1 ð27Þ

All energies, therefore, represent the penalized energy demand
of capture, W�

CO2
(Eq. (28)). When producing a GP surrogate model

forW�
CO2

, we fit the model to log10W
�
CO2

because the values forW�
CO2
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spanned multiple orders of magnitude, and fitting to untrans-
formed W�

CO2
overfit to the highest energy demands, leading to

overall worse accuracy.

W�
CO2

¼ wðPlean
CO2

Þ Wcyc

DDIC
ð28Þ
4.4. Maximum CO2 flux

The CO2 flux was estimated using the van Kevelen and Hoftijzer
model of gas absorption with chemical reaction enhancement
(Wilcox, 2012; Astarita, 1966; van Krevelen and Hoftijzer, 1948;
Dutcher et al., 2015). To use this model as a proxy for the total
CO2 capture rate, we assumed that the capture kinetics are limited
by absorption kinetics, which has been the general consensus in
the CO2 capture literature because the homogeneous reactions
related to CO2 capture tend to be fast relative to the heterogeneous
reactions (Caplow, 1968), and the heterogeneous redox reaction at
the electrode can be controlled by changing the current density
and electrode area. In this model, the average CO2 flux throughout
the absorber (J) was defined as the product of: the CO2 concentra-
tion difference between the vapor–liquid interface at the gas inlet
and the bulk aqueous concentration at the liquid inlet
(½CO2ðaqÞ�V�L � ½CO2ðaqÞ�1); the reactor’s liquid mass transfer coef-
ficient (kL); and a unitless enhancement factor (E), attributed to the
reaction converting CO2 into another species and increasing the
effective concentration gradient at the interface. We write the
equation here in terms of carbonic acid instead of the aqueous
phase of CO2 to be consistent with our chemical model (Eq. (29)).

J ¼ ð½H2CO3�V�L � ½H2CO3�1ÞkLE ð29Þ
For this calculation, the concentration of H2CO3 in the bulk was

the concentration of H2CO3 at the end of reductive regeneration,
while the concentration of H2CO3 at the vapor–liquid interface
was at equilibrium with the assumed flue gas partial pressure
(0.15 atm). We assumed a reactor mass transfer coefficient of
0.1 cm/s based on the range of typical gas absorbers reported in
the literature (Wilcox, 2012); we do not expect the selection of this
constant to substantially change the solution chemistry parame-
ters that produce optimal CO2 capture performance because any
over- or underestimation would be applied universally. The
enhancement factor was calculated from the Hatta number (Ha)
(Eq. (30)):

Ha ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DCO2k2½s�

p
kL

Ei ¼ 1þ Ds½s�
DCO2 ½H2CO3�V�L

A ¼ Ei � E
Ei � 1

E ¼ Ha
ffiffiffi
A

p

tanhðHa
ffiffiffi
A

p
Þ

ð30Þ

where DCO2 was the diffusion coefficient of CO2 in water (0.5*10–
5 cm2/s (Wilcox, 2012)), k2 the second order reaction rate constant
of CO2 absorption, [s] the concentration of the sorbent in the bulk
solution at the start of CO2 absorption, Ds the diffusion coefficient
of the sorbent in water, and Ei the maximum enhancement factor
if the reaction was instantaneous. For this calculation, we assumed
the sorbent to be OH� due to its much faster reaction rate compared
to H2O (Wilcox, 2012; McCann et al., 2009), giving an estimated
Ds ¼ 5:2�10�5 cm2/s (Lvov, 2012) and k2 ¼ 8300 (Ms)�1 (Wilcox,
2012; Zeman, 2007; Pocker and Bjorkquist, 1977; Stolaroff et al.,
2008). Due to the rapid exchange of protons between water and
hydroquinone, we assumed the concentration of sorbent in solution
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was better described by the sum of all proton acceptors ([OH�]
+[QH�] +2[Q2�]). While this assumption of the total sorbent con-
centration likely led to an overestimated flux, our intention with
these calculations was to estimate an idealized upper bound rate
in the same way that our energy calculations were an idealized
lower bound. With this in mind, we deliberately overestimated
the flux because to use only the concentration of OH� would likely
represent a slight underestimation. The calculation of the enhance-
ment factor was simplified under specific limiting conditions
according to the following rules:

Ha > 10Ei : E ¼ Ei

Ha < 0:5Ei : E ¼ Ha
tanhðHaÞ

Ha > 0:5Ei and Ha > 3 : E ¼ Ha

ð31Þ

If none of these conditions were satisfied, the enhancement factor
was calculated by converting Eq. (30) into a nonlinear root finding
problem and solving it iteratively using a numerical Newton’s
method.

4.5. CO2 capture constraints and targets

The goal of the CO2 capture model was to relate the solution
chemistry properties to CO2 capture performance, defined as the
simultaneous maximization of CO2 flux and minimization of
energy demand per mole of CO2 captured. We specifically
restricted our search to the parameter space occupied by quinones,
a class of molecule that undergoes a 2e�:2H+ PCET process, due to
previous theoretical (Jin et al., 2020) and experimental (Huang
et al., 2019; Watkins et al., 2015) demonstrations, as well as suffi-
cient data on the acid dissociation constants of the reduced forms
of substituted quinones to restrict our search to realistic domains
(Huynh et al., 2016). Quinones in this dataset whose reduction
potentials were within the electrochemical window of water had
pKa,1 values in the domain of [-8.33–13.41] and pKa,2 values in
the domain of [-6.64–15.34]. Given that the lowest pH that can
be achieved in solution was not likely to be much lower than the
pKa of carbonic acid (6.33), we limited both pKa values to a mini-
mum of 2 as a conservative constraint; all compounds with pKa

values below this should behave identically. Due to the strong cor-
relation between the two pKa values (Pearson’s r ¼ 0:875), in order
to sample only realistic combinations of pKa values, we sampled
the two equilibrium constants by selecting the pKa of the first
deprotonation event and the difference between the two pKa val-
ues, which fell within the domain [0–5.5] for 99% of the dataset.
While this transformation occasionally led to pKa,2 values outside
of the reported domain, we found that applying this additional
restriction increased the computational cost without substantially
changing the Pareto front. The total concentration of quinone was
bounded between 10mM and 3M. The lower bound was estimated
based on the lower bound concentration of redox species in previ-
ous electrochemical CO2 capture studies (Boualavong and Gorski,
2021), while the upper bound was set at 50% greater than the high-
est reported quinone solubility we found in the literature (Huang
et al., 2019) to accommodate possible future improvements. The
concentration of acid or base was capped at 15 M for practical
safety should the results be implemented, and concentrations
below 10 nM were assumed to be effectively 0 due to the compar-
atively higher concentrations of quinone.

We were specifically interested in what specific solution chem-
istry properties led to performance that was comparable to or bet-
ter than the flux and energy demands of CO2 capture from coal
power plant flue gas (15v% CO2) by temperature-swings using
30wt% MEA in water. Experimental measurements of state-of-
the-art pilot plants estimated that the energy demand for regener-
ating the MEA sorbent was approximately 110 kJ of thermal energy



Fig. 5. The performance of PCET-based pH swings for CO2 capture due to changes in
hydroquinone pKa values, quinone concentration, and pH correction magnitude
compared to the three regions of interest. Purple line is the estimated Pareto front.
Representative points have been highlighted for later analysis.
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per mole CO2 (Lin et al., 2016); assuming an average 35% thermal-
to-electrical efficiency of a coal power plant (Wilcox, 2012; Li et al.,
2016), this is approximately 38 kJe/mol C. Using the same assump-
tions and model as Section 4.4 and reported constants for MEA in
the literature (Wilcox, 2012), we estimated the flux of CO2 capture
as 22 mmol/m2s. Due to the relative importance of energy com-
pared to rate in the CO2 capture literature and the fact that our
energy demand calculations do not account for any resistive losses,
we defined Competitive performance as having an energy demand
lower than that of capture by the MEA process while also having a
flux greater than 10% of that of the MEA process. We selected 10%
of the flux as the cutoff because alternative sorbents used in indus-
try, such as AMP, have roughly 5 to 10 times slower second order
rate constants (Blauwhoff et al., 1983; Saha et al., 1995).

We defined two additional selection criteria based on single
objective optimization: Minimum energy and Maximum flux. Min-
imizing the energy was bounded by the same cutoff value for flux
as Competitive performance, but it defined the energy demand cut-
off as 22 kJe/mol C based on the target set by the US Department of
Energy (Matuszewski et al., 2011; Datta et al., 2013). Maximizing
the flux searched for conditions that had a flux greater than that
of the MEA benchmark with energy demands <45 kJe/mol C, the
maximum energy demand on the estimated Pareto front. To obtain
our adaptively sampled dataset, we first obtained an initial sample
design using a coarse grid with additional random sampling (n =
52), searched for the Pareto front (n ¼ 100), adaptively sampled
for conditions that capture CO2 in flue gas rather than release
CO2 into it (n = 100), adaptively sampled for the Competitive per-
formance criteria (n = 100), then alternatingly adaptively sampled
for Maximum flux and Minimum energy criteria (n = 50 each). In
this study, while it was possible to conduct the contour estima-
tions prior to Pareto front estimation, we first searched for the Par-
eto front to identify if any points could meet the selection criteria
we defined. We conducted the search for conditions that captured
CO2 instead of releasing it after searching for the Pareto front to
discern if the sample domain could be constrained to reduce the
likelihood of sampling conditions that would rarely capture any
CO2. The adaptive sampling procedures were repeated for both
the basic and acidic conditions separately, then the results aggre-
gated together for analysis.
5. Application to CO2 capture

The sampled data from the CO2 capture model showed a broad
distribution of possible energy and flux results among different
chemical property combinations (Fig. 5); we have highlighted
three representative points for later analysis. We note that Fig. 5
only represents 48% of the samples and a fraction of the breadth
of possible outcomes to maintain useful resolution: of the 904 total
samples, 444 points were omitted from the figure for insufficient
capture (negative flux), while 35 points were omitted for sufficient
capture but prohibitive energy demand (> 100 kJe/mol C). The
range of sampled penalized energy demands was 6.6 to 107 kJe/mol
C, while the range of CO2 fluxes was �104 to 30 mmol/m2s. Using a
GP classifier, we estimated that a solely random solution composi-
tion has a 76% chance of capturing some CO2 from flue gas but only
a 27% chance to be competitive with the MEA benchmark with
respect to both energy and rate. Using the GP as a regressor, the
median penalized energy demand was 73 kJe/mol C, and the med-
ian CO2 flux was 4.8 mmol/m2s, indicating that capture would be
likely, but the energy demand would be too high for practical
implementation (Fig.S7). We note that the median estimate for
the energy demand has a large uncertainty because it is far from
the high density of samples near the contours of interest. From
the estimated Pareto front, it was clear that the minimum energy
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demand of CO2 capture by PCET-driven pH swings can be substan-
tially lower than that of capture by temperature-swing of MEA
solutions (Wilcox, 2012; Lin et al., 2016), and potentially lower
than the DoE target (Matuszewski et al., 2011; Datta et al., 2013),
even when accounting for reported energy efficiencies of electro-
chemical CO2 capture (Millet, 2015; Gurkan et al., 2015; Legrand
et al., 2018; Wang et al., 2018; Rahimi et al., 2020; Rahimi et al.,
2020).

The lowest among sampled energy demands was only 6.6 kJe/-
mol C, less than half of the 16 kJe/mol C minimum that Jin et al.
(2020) calculated for the same exact systemwhen only considering
high hydroquinone pKa values, and this value approaches the lim-
iting thermodynamic work of separation of 5.4 kJe/mol C. Given
that this sample, and all samples on the Pareto front with energy
demands less than 10 kJe/mol C, had a first pKa less than 7 and a
second pKa less than 10, both deprotonated species should make
up a substantial fraction of the hydroquinones at some point dur-
ing the process. This highlights the importance of including the
entire set of reactions in the chemical model, as the oft-ignored
deprotonation reactions may have positive benefits like lowering
the energy requirement. In this case, the lower minimum energy
demand was due to the relationship between the electrode poten-
tial and the pH (Eq. (20)). When the deprotonation reactions are
included, the pH should be buffered, leading to smaller differences
between the anode and cathode potentials and lower electrochem-
ical work per cycle.

While the calculated energy demands were promising, few
samples exceeded the flux of the MEA benchmark (Wilcox,
2012), although many were of a similar order of magnitude. Nota-
bly, there was a sharp increase in the energy demand at nearly-
constant flux at roughly the same flux as MEA. Preliminary
exploratory calculations indicated that this feature was caused
by two factors: limited concentrations and limited differences in
the pKa values (Fig.S8). The concentration of quinone sorbent
was bounded based on a literature search of quinone solubilities
(Jin et al., 2020; Huang et al., 2019; Watkins et al., 2015), and thus
was capped at 3 M compared to the 30wt% MEA solutions (approx-
imately 5 M) of the temperature-swing benchmark. Other studies
in the literature showed that lower concentrations led to a lower
pH at the onset of absorption and would limit the fluxes by reduc-
ing the total sorbent concentration in the enhancement factor cal-
culation (Eq. (30)) (Jin et al., 2020); calculations with higher
concentrations generally shift the Pareto front towards higher
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fluxes. Similarly, while we limited the difference between the two
pKa values of the hydroquinone to a maximum of 5.5 to capture
99% of the available dataset of measured hydroquinones (Huynh
et al., 2016), calculations that decreased the difference between
the pKa values shifted the near-vertical component of the Pareto
front towards lower fluxes. Increasing the difference did not sub-
stantially change the location of the Pareto front, suggesting
asymptotic behavior, but finding compounds with greater differ-
ences in their pKa values would increase the fraction of the search
domain meeting the Maximum flux criteria.

To understand what solution chemistry property combinations
would produce performance with low energy demands, high cap-
ture rates, or both, we first calculated the marginals-based classi-
fier variable importance rankings from single variable marginals
(Fig. 6). The Competitive performance and Minimum energy crite-
ria had the same ranking of variables, likely because conditions
meeting the Minimum energy criteria also met the Competitive
performance criteria. In these two cases, the equilibrium constants
were the most important, followed by the concentrations, then the
decision between adding acid or base. The equilibrium constant of
the second deprotonation was more important than that of the first
deprotonation reaction, which had an importance that was similar
to the concentrations. When targeting higher fluxes, the quinone
concentration became the most important variable, consistent
with our preliminary exploratory calculations (Fig.S8). Apart from
this shift in importance of the quinone concentration, the Maxi-
mum flux criteria ranked the variables identically to the other cri-
teria. These rankings were highly sensitive to the bounds that we
set for each variable in our search (Section 4.5). For instance,
decreasing the lower bound of the concentration could have
increased its relative importance by including many points where
capture was impossible, resulting in a lower average variance of
other variables and increasing its importance (Eq. (7)). However,
the bounds that we set were based on available descriptions of real
systems or data of candidate compounds, and we do not believe
these findings to be biased by any desire to inflate the importance
of any particular variable. In fact, by setting the lower bound of the
pKa values at 2 instead of the lower bounds from the dataset of
�8.33 and �6.64 for pKa,1 and pKa,2, respectively, we decreased
the importance of the pKa values, yet they were still highly ranked
variables, suggesting that our choices had limited impact on the
ordinal rankings.
Fig. 6. Importance ranking of solution composition variables for being (top)
competitive with the MEA benchmark with regards to both its flux and energy
demand, (middle) having a faster flux than the benchmark, or (bottom) meeting the
DoE energy target. Logarithms are all base 10. [Q] = concentration of quinone.
log[HX] or log[MOH] = net concentration of additional base or acid. +HX vs. +MOH
= binary decision of net acid or base addition.
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To understand why the quinone concentration was more
important for high fluxes but less important for the other selection
criteria, we analyzed the single variable marginals. These margin-
als were calculated both over the full set of other variable possibil-
ities, X�i, as well as over a subset X�

�i 2 X�i where all variables xj
more important than variable xi were restricted to a suggested
domain but all variables xk less important than variable xi retained
their full search domain (Eq. (32)). We define P�jxi as the marginal-
ization over this restricted subset X�

�i and define the suggested
domain as the set xi values for which P�jxi is greater than a 1:3
weighted average of the minimum and maximum P�jxi. By defini-
tion, for the most important variable xn; P

�jxn is the same as Pjxn,
leading to a sequential determination of the suggested domains
for each variable in the order of their importance. We used a sug-
gested domain rather than simply constraining to the singular
optimal values of more important xj to account for both noise in
the Monte Carlo estimate of Pjxi and the fact that it is unlikely that
a compound exists with all the optimal properties exactly.

P�jx�j P 0:25minðP�jxjÞ þ 0:75maxðP�jxjÞ ð32Þ
For the Competitive performance (Fig. 7) and and Minimum

energy (Fig.S9) criteria, the concentration of quinone had a mini-
mum threshold value of approximately 30 mM, below which the
probability of meeting the criteria was nearly 0 with a low vari-
ance, but above which the probability was nearly constant with a
moderate variance. For the Maximum flux criteria (Fig.S10), this
profile was the same shape, but the threshold concentration for
nonzero probability and nonzero variance increased to nearly
1 M, leading to a lower average variance and greater importance.
Regardless of the selection criteria, the peak in the probability
was >100 mM (Table 1), although the shape of the marginals sug-
gests there was a negligible difference between this peak probabil-
ity and that of the upper bound concentration of 3 M. Restricting
the integration to only the suggested pKa domains rather than
the full pKa domains only amplified the difference between the
zero and nonzero probabilities in the way that we would expect
when we exclude low likelihood pKa values; it did not change
the concentration where the probability has the step increase.

Like the quinone concentration, both pKa marginals had a spec-
ified value below which the probability and variance were both
negligible. Consistent with our hypothesis based on other pH-
swing driven systems (Boualavong and Gorski, 2021), both pKa

marginals showed an optimum that we believe to be the result
of maximizing the use of the pH buffering capacity. However, the
marginals revealed an important asymmetry to this peak, where
pKa values that were greater than this optimal value were more
likely to produce desirable results than lower pKa values. This
was likely because increasing the pKa values led to a higher maxi-
mum solution pH, but the relationship betweenmaximum solution
pH and pKa appeared asymptotic (Jin et al., 2020), leading to a neg-
ligible difference in performance among the highest pKa values.

The importance of the relative difference between the pKa val-
ues was highlighted in the change in the pKa,1 marginals before
and after conditioning on suggested pKa,2 domain. The upper
bound of the suggested domain for pKa,2 was lower than the full
domain by multiple pH units (Table 1), and the peak in the optimal
pKa,1 decreases by a similar amount when conditioning on the sug-
gested pKa,2 domain. This was most notable for the Competitive
performance and Minimum energy criteria. For the Maximum flux
criteria, the upper bound of the suggested domain for pKa,2 was
higher, so restricting the pKa,1 marginals over the suggested
domain had less effect (Fig.S10).

Concentrations of the additional acid or base generally show
nonzero probabilities for moderate concentrations, and high or
low concentrations had low likelihoods of meeting any selection



Fig. 7. Single variable marginalizations of the four continuous solution chemistry properties of interest. Marginals are conditioned on the full domain of less important
variables and either the full or optimal domain of the more important variables (rows are from most to least important). Shaded region is the standard error of the mean (n =
1,500).

Table 1
Suggested solution chemistry property domain (and optimum) for PCET-based pH
swing CO2 capture, from most to least important for the Competitive performance
criteria.

Competitive
performance

Minimum
energy

Maximum flux

pKa,2 9.12–11.88 9.12–11.65 14.64–19.00
(10.73) (10.27) (16.70)

pKa,1 4.85–9.20 4.71–9.05 10.55–12.67
(4.85) (4.92) (12.26)

Quinone 37 mM–3.2 M 41 mM–2.3 M 1.9 M–3.2 M
concentration (420 mM) (260 mM) (2.9 M)
Acid or base 100 nM–21 mM 78 nM–9.9 mM 1.4 lM–650 mM
concentration (810 lM) (710 lM) (55 mM)
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criteria. The fact that the extremes of acid or base addition led to a
negligible likelihood indicated that large deviations from an ideal
operating pH in either direction led to worse performance. How-
ever, for the nonzero moderate concentrations, these marginals
were relatively flat, indicating that this variable was forgiving com-
pared to the other variables of interest. We note, however, that the
suggested concentration for this species is often in the lM to mM
range (Table 1). Combined with its position as the least important
continuous variable, we interpret the amount of net acid or base as
a tuning parameter for the case when trade-offs must be made
among the pKa values and solubilities during quinone selection.

Overall, the optima in the pKa and acid or base concentration
marginals indicated an optimal pH window of operation and sug-
gested that the process is not well described as a ‘‘pH swing” pro-
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cess. Describing the process as being driven by pH swings suggests
it would produce similar CO2 capture performance for either the
same change in pH (e.g., 4 to 7 versus 7 to 10) or the same change
in proton concentration (e.g., 1 to 2 mM versus 4 to 5 mM). Instead,
the presence of optima at intermediate values for these three vari-
ables suggested that the pH window itself is of importance, and we
argue that the process is therefore better described by changing
the pH buffer capacity of the system (Boualavong and Gorski,
2021).

A closer look at the binary decision of whether the pH adjust-
ment should be acidic or basic reveals a notable shortcoming to
our methodology (Fig.S11). This variable not only had limited
quantitative impact as noted by its low importance ranking, but
also the suggested domains for adding acid, base, or randomly
assigning the pH adjustment direction differed by less than 5%,
allowing us to simplify our reporting of the suggested domains
assuming a randomly assigned pH adjustment direction (Table 1).
Qualitatively, however, there was a notable difference among add-
ing acid or base for the Maximum flux selection criteria (Fig.S10),
despite its low relative importance. In other words, variables with
low relative importance in the ranking could still have a noticeable
impact. While we could have included an uncorrelated reference
variable to determine if a variable has any quantifiable impact
(Linkletter et al., 2006), there is no consensus of how large of a dif-
ference in the importance metric is necessary to discern whether
two variables are similar in their impacts or if one is more impor-
tant than the other. This, however, is a common problem among
many variable importance measures, where decisions often come
from user decisions of what is ‘‘good enough” (Fisher et al., 2019).
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This shortcoming may explain the change to the variable impor-
tance ranking when remapped onto relative variables: pKa,1, the
pKa difference, the total quinone concentration, and the ratio of
HX or MOH concentration to quinone concentration. This was the
set of variables that we used during the sampling process because
it removed correlations between input variables, converting the
sample space to a hypercube. While our exploratory calculations
suggested that the difference in the pKa values impacted the pre-
dicted flux, the importance ranking indicated that the pKa differ-
ence was lowly ranked for all selection criteria (Fig.S12). As
evident from the importance of the pH adjustment direction, a
low ordinal ranking is not equivalent to having no impact,
although its ranking less than the quinone concentration in all
selection criteria suggests a decrease in the importance of at least
one pKa due to this transformation of variables. At present, we are
unaware of any research on how remapping or transforming vari-
ables should be standardized for consistency in variable impor-
tance ranking. At a glance, we think this problem has the
potential to be abused to confirm biases in a similar way to data
dredging (Wasserstein and Lazar, 2016; Greenland et al., 2016),
so we advise scrutiny when seeing and using importance rankings
without transparency of assumptions and motivations. Our
approach to limiting bias was to define the variables as they would
be measured or reported in practice, as those are the most easily
interpreted and used.

While the single variable marginals were useful in understand-
ing how the system behaved at a macro-level, they were not help-
ful in understanding why the system performed better or worse
under those conditions beyond speculation. To glean this informa-
tion, we selected 3 specific points for a closer inspection of the
entire process cycle (Fig. 5): the peak predictions from the Compet-
itive performance (‘‘Peak prediction”) and Maximum flux (‘‘High
flux”) criteria (Table 1 point that had an intermediate energy
Fig. 8. Process cycles of representative simulations. (top) Electrode potential changes as
dissolved inorganic carbon changes. Quinone concentrations: High flux = 2.7 M; Peak p
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demand but low flux (‘‘Poor performance,” pKa,1 = 4.92, pKa,2 =
9.49, {Q}tot = 23 mM, {HX} = 6.6 mM). These three points repre-
sented the span of low, moderate, and high energy demand and
flux but combined in a way such that we could interpret effects
on energy and flux separately. We specifically looked at two pairs
of variables over the 4-stage cycle: (1) electrode potential and frac-
tion of reduced quinone and (2) solution pH and total DIC (Fig. 8).
The area contained within the electrode potential-fraction of
reduced quinone curves was proportional to the electrochemical
work required per cycle, while the solution pH-DIC plots repre-
sented the driver and result of CO2 removal from the gas phase,
respectively.

The most obvious difference among these three points was in
the energy consumed per cycle: the High flux prediction required
the most energy per cycle, followed by Peak prediction and Poor
performance examples. This order was slightly unexpected
because the Poor performance example had a greater energy
demand than the Peak prediction, but this can be explained by
the low CO2 captured per cycle: the Poor performance example
only captured 9 mM CO2 per cycle compared to the 2.5 M from
the Peak prediction. As a result, while the energy demand per cycle
was lower for the Poor performance example, its normalized
energy demand per mole of CO2 was greater. While the High flux
prediction captured even more CO2 per cycle at approximately
5 M, it was insufficient to counteract the increase in energy
demand per cycle, resulting in the highest energy demand among
the three points. The small DDIC of the Poor performance example
can be attributed to the low concentration of quinone (23 mM).

The rationale for these energy demands per cycle can be
explained using Eq. (20) and the pH changes over the course of
the process. Generally, the anode and cathode potentials will be clo-
ser together, and thus the energy demand per cycle lower, if the pH
of the oxidation and reduction stages are similar. Without any CO2
quinone is reduced or oxidized. (bottom) Bulk solution pH as the concentration of
erformance = 51 mM; Poor performance = 23 mM.



Fig. 9. Application of the adaptive-sampling refined GP classifier to a dataset of
substituted hydroquinone pKa values (Huynh et al., 2016). Probabilities are after
marginalization across the training domain of concentrations due to lack of
solubility information.
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changes in the system, there should be no hysteresis, but the pres-
ence or absence of acidity from carbonic acid caused the two elec-
trode potentials to differ. Minimizing the pH change of a single half-
cycle can be achieved if the pH was near the hydroquinone pKa val-
ues and thus within the buffer regime of the hydroquinone. For the
High flux point, the hydroquinone pKa values were comparatively
high, helping drive the operating pH higher and increasing the
DDIC. While this may appear to be beneficial by reducing the num-
ber of cycles to capture the same amount of CO2, this would also
increase the acidification from CO2 and drive the pH of the oxida-
tion stage down. Therefore, for the High flux prediction, due to both
the decrease in pH and high DIC compared to the total quinone con-
centration (3 M), while the reduction stage was largely buffered by
the QH2/QH� reaction (pKa = 11.2), the oxidation stage was transi-
tions from being buffered by the HCO�

3 =CO
2�
3 reaction (pKa = 10.33)

to the H2CO3=HCO�
3 reaction (pKa = 6.33) as oxidation progressed. In

contrast, the Peak prediction and Poor performance example had a
much smaller decrease in pH after the CO2 absorption stage, keep-
ing the anode and cathode pH closer together. This rationalized our
finding that therewas a peak in both pKamarginals: there is an opti-
mal domain of pKa values that represents the balance between hav-
ing a sufficiently high pKa to capture large quantities of CO2, but a
low enough pKa that the pH can be buffered by hydroquinone dur-
ing operation. From our perspective of pH buffering, rather than
simply pH swings, it makes sense that the suggested domains of
the pKa values are roughly centered around the pKa values of the
H2CO3=HCO�

3 (6.33) and HCO�
3 =CO

2�
3 (10.33) reactions (Table 1).

The similarity would mean that regardless of whether the system
has high or low DIC, the dominant buffer in solution has a similar
pKa value, keeping the anode and cathode pH profiles similar
regardless of DIC.

Consistent with our marginalizations, the flux was optimized by
higher pKa values and quinone concentrations, as these two vari-
ables contribute to higher OH� concentrations and thus faster reac-
tion rates. As previously reported in the literature (Jin et al., 2020),
both higher pKa values and higher concentrations led to higher pHs
at the start of CO2 absorption. While those authors interpreted this
in the context of maximizing CO2 capture per cycle, this will also
increase the sorbent (OH�) concentration, and thus capture rate
(Eq. (30)). Additionally, these variables appeared to cause to a

lower minimum Plean
CO2

: 10�13 atm for the High flux prediction com-
pared to 10�5 and 10�2 for the Peak prediction and Poor perfor-
mance example, respectively. Consequently, the concentration
gradient term in Eq. (29) increased as well, leading to a slightly
greater flux. However, because this term is a difference between
the surface and bulk concentrations, the effect is asymptotic, so
the change in sorbent concentration is necessary for a complete
explanation of the increase in rate.

Having developed our understanding of the CO2 capture model,
we used the trained GP classifier to screen a substituted hydro-
quinone pKa dataset for quinones that would produce a process
whose performance was competitive with the MEA benchmark
(TableSI) (Huynh et al., 2016). Few quinones in the dataset had
reported solubilities in water, and none had published solubilities
for the highly conductive, high ionic strength solutions one would
use in an electrochemical process, so for this calculation, we
marginalized over the limits of quinone and acid/base concentra-
tions that we applied in our search. As a result, these probabilities
are likely overestimates, and we only use them to provide insight
into chemical trends. Of the 127 compounds, 84 were more likely
to be competitive with the MEA benchmark than not. We estimate
that the most promising molecule, 2,3-bis(dimethylamino)-p-
benzoquinone, could have lower energy demands and greater
fluxes than the MEA benchmark in 85% of solution compositions
in the search domain with its pKa values of 9.43 and 11.11.
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To determine if there were any patterns related to the proper-
ties of the functional group substitutions, we labeled the probabil-
ities with the quinone’s functional groups and ranked them
according to their electronic substituent effects for aromatic sys-
tems from the most electron donating to most electron withdraw-
ing (Fig. 9)) (Hunt, 2006). As a first pass on this analysis, quinones
with multiple substitutions had their probabilities included for
each substitution, e.g., a quinone with two halide substitutions
(–X) and an amine (–NH2) contributes twice to the dataset of
halides and once to the dataset of amines. In general, electron
donating groups almost always predicted low energy-high rate
CO2 capture performance, whereas electron withdrawing groups
had a wide variance in their likelihood of predicting both low
energy demands and high capture rates. This trend occurred
because electron donating groups tend to increase the pKa values
by increasing the electron density around the oxygen atoms,
whereas electron withdrawing groups do the opposite. Given that
the single variable marginalization for both pKa values look
roughly like step functions with an overshoot at the step (Fig. 7),
variation in the strength and number of electron donating groups,
and thus variation in its impact on the magnitude of the pKa

increase, was not likely to show much variance in the probability,
particularly because the unsubstituted p-benzoquinone has pKa

values close to the optimum (9.85 and 11.4). However, variation
in the strength and number of the electron withdrawing groups,
and thus the magnitude of a pKa value decrease, would cause large
variations in the likelihood of meeting both the energy and rate cri-
teria, as it would span from this baseline probability near the peak
down to zero. The lack of a clear trend with the magnitude of the
substituent effect, where stronger withdrawing groups in particu-
lar still showed high probabilities, was largely because we only
looked at single-substituent effects, and thus do not include con-
certed or conflicting effects of multiple substituent groups.

While the dataset could be analyzed beyond single substitution
effects, we did not conduct further analyses because our conclu-
sions were substantially biased by the small dataset size. For
instance, a preliminary analysis of the number of substitutions
indicated that as the number of substitutions increased, the med-
ian probability of acceptance decreased, but there were approxi-
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mately three times as many compounds in the dataset with two
substitutions than compounds with any other number of substitu-
tions. As a result, the median probabilities of mono-, tri-, or tetra-
substituted compounds could have been artificially skewed by the
selection of candidates in the dataset and may not have been a true
reflection of the effect of the number of substitutions. We also cau-
tion using the list of compounds (TableS1) as a definitive ranking
of feasibility due to the lack of solubility data in concentrated elec-
trolytes, which would substantially alter these probabilities if the
solubility limit is close to the threshold for CO2 capture. With addi-
tional data, we would be able to make more concrete suggestions
for solution compositions that could be competitive with capture
by temperature-swings of MEA solutions. These data could include,
for instance, the measurements of key properties, e.g. stability to
common oxidants and solution viscosity, as well as the inclusion
of data on compounds with solubility-enhancing substituent
groups (Jing et al., 2021). We expect stability considerations, for
instance, to have a large impact on our analysis given that electron
donating groups lead to more favorable pKa values but also lower
reduction potentials (Fig.S13), and thus should be less stable in
the presence of O2. A third objective function relating standard
reduction potential to stability would need to be included in order
to discern how, if at all, stability would affect the selection of the
sorbent molecule. The power of the multiobjective approach
described in this work is that it can accommodate these additional
objective functions by considering all objectives simultaneously,
preventing any overcorrection caused by a single objective and
describing where and how trade-offs among objectives arise.
6. Broader implications

This paper provided foundational work in two areas: (1) exper-
iment designs for supervised classifier refinement and (2) CO2 cap-
ture driven by PCET reactions. In the context of refining a
supervised classifier, our work described a new adaptive sampling
method that can improve binary classification based on a continu-
ous output and a predefined threshold by sampling points that will
improve the precision of the boundary between the two classes.
The sampling process accomplished this by prioritizing points that
had both a small distance to the contour of interest and a high
uncertainty in that estimate, balancing exploitation of known
information with exploration of under-sampled regions of the
domain. Importantly, our approach was generalized to be able to
handle classification definitions based on multiple overlapping cri-
teria, which often leads to a piecewise contour. This can be applied
to numerous engineering problems where there are specific tar-
gets, such as designing for reliability, satisfying design constraints,
or maintaining regulatory compliance (Gharari et al., 2016; Yang
et al., 2017; Singh and Minsker, 2008; Mantoglou and Kourakos,
2007; Bect et al., 2012; Arenbeck et al., 2010; Ranjan et al., 2008;
Bichon et al., 2008; Kuczera and Mourelatos, 2009). In addition,
we developed a framework for interpreting the classifier to assist
engineering design by suggesting conditions that will achieve
those targets with the greatest estimated probability. In case the
suggested conditions cannot be achieved due to trade-offs between
specific variables, we also developed a metric for comparing the
relative importance of each variable to indicate which should be
prioritized in the trade-off.

In the context of CO2 capture driven by PCET electrochemical
reactions, we identified that the hydroquinone pKa values are the
most important variables to consider when selecting a compound
to have CO2 capture performance competitive with the MEA
benchmark. While quinone concentration, and by proxy the qui-
none solubility limit, was important, the concentration must only
be at least 50 mM to be comparable to the MEA benchmark in
18
terms of both energy demand and CO2 capture rate; a high concen-
tration is only necessary if seeking to design a process with higher
CO2 capture rates than the MEA benchmark. The optima in the pKa

marginals suggested that the conceptual mechanistic model of CO2

capture should be framed in terms of changing the pH buffer
capacity of the solution by transformation between the buffering
hydroquinone and non-buffering quinone forms rather than simply
framing the mechanism as a change in pH or proton concentration.
This interpretation properly accounts for how to balance the
amount of CO2 captured per cycle and the energy demand per
cycle, which are both highly dependent on the exact operating
pH window, in order to minimize the energy per mole of CO2 cap-
tured. While we constrained our training dataset and search
domain based on existing data on substituted p-benzoquinones,
the suggested equilibrium constants and concentrations that we
found in this study are likely to be applicable to other compounds
that undergo a 2-electron, 2-proton PCET reaction such as naph-
thoquinones, anthroquinones, and some flavins. When we applied
our model to reported pKa data of substituted p-benzoquinones, we
found that electron donating groups make the molecule more
likely to perform competitively with the MEA benchmark in both
energy demand and capture rate, although the presence of an elec-
tron withdrawing group was not necessarily detrimental.

Beyond just PCET-based pH swings, this framework for analyz-
ing an electrochemical CO2 capture process could be applied to
other electrochemical CO2 capture mechanisms such as the EMAR
process (Stern et al., 2013; Wang et al., 2022; Wang et al., 2022),
ion selective membrane-based separations (Eisaman et al., 2011;
Bae et al., July 2018; Datta et al., 2013), or redox state-dependent
sorbents (Appel et al., 2005; Newell et al., 2005; Ranjan et al.,
2015). Doing so would not only optimize those solution composi-
tions, but it will also provide a means of comparing the thermody-
namics and kinetics of the different electrochemical approaches
based on their fundamental limits rather than trying to compare
them based on potentially incomparable experiment designs. This
would give engineers an indication of which specific electrochem-
ical approach would be best for their application and potentially
accelerate electrochemical CO2 capture’s implementation into the
market, ultimately helping curb the effects of climate change.
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