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Abstract

Electrochemical CO2 capture technologies have been found to consume less

energy than the industry standard of thermal separations, but their real-world

applicability requires that they also operate at comparable rates. Optimizing

for both low energy demands and high capture rates is complicated by trade-

o�s between the two objectives and the many manipulable solution chemistry

variables, including species type and concentration. Here, we computationally

identi�ed the solution chemistries that are most likely to outperform thermal

separations in both energy demand and capture rate for electrochemical cap-

ture driven by proton-coupled electron transfer reactions by using an adaptive

sampling contour estimation method. This approach provided high con�dence

inferences with few simulation runs by selecting the most informative conditions

to test. We found that moderately basic pKa values of the reduced form of the

redox-active compound were the most important variables for low energy and

high rate CO2 capture.
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Abbreviations

CV Ii Classi�er variable importance of the ith variable
DIC Dissolved inorganic carbon
EFF Expected feasibility function
GP Gaussian process
MEA Monoethanolamine
PCET Proton-coupled electron transfer
SUR Stepwise uncertainty reduction
SVM Support vector machine
wIMSE Weighted integrated mean square error

1. Introduction

Carbon capture technologies must become less expensive to achieve inter-

national climate goals [1, 2, 3, 4, 5]. Currently, carbon dioxide is captured at

a limited number of industrial plants using the monoethanolamine (MEA) pro-

cess, in which temperature swings control CO2 absorption into and desorption5

from aqueous solution [6]. More widespread use of the MEA process is tech-

nologically limited by the large energy demand required for heating and cool-

ing sorbent solutions [7, 8, 9, 10]. Theoretically, electrochemical CO2 capture

technologies can be designed to operate with lower energy requirements than
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temperature-swing CO2 capture technologies because they are not bound by10

the Carnot cycle [11, 12, 13]. However, most experimental electrochemical CO2

capture systems have not yet achieved substantially lower energy demands than

the MEA benchmark after accounting for typical thermal-to-electrical energy

conversions [14, 15, 16, 17, 18, 19, 20, 21], and capture rates for electrochemical

CO2 capture are rarely measured using conditions that allow direct comparison15

to other CO2 capture methods due to reactor design and operation di�erences

[17, 19, 22, 23, 24]. Given that capture rates a�ect absorber size and therefore

capital cost [5, 21, 25], we see a need to study the trade-o�s that exist between

minimizing energy demands and maximizing the capture rates. In this study, we

focus on optimizing the solution chemistry composition for low energy demands20

and high capture rates because the solution composition places physical limits

on what is achievable by changing, for instance, the thermodynamic minimum

energy and sorbent availability [11, 12].

Identifying optimal solution compositions for electrochemical CO2 capture

can be prohibitively time-consuming for two reasons. First, a large number25

of manipulatable variables exists, including the concentration and species of

each constituent present in solution. For electrochemical CO2 capture technolo-

gies with many candidate compounds, the scale of these experimental designs

can usually only be achieved at reasonable timescales with simulation studies.

Second, we are simultaneously considering two performance metrics: energy de-30

mands and CO2 capture rates [26, 27]. The existence of multiple objectives

means there is no singular optimum, but rather there is a set of potential trade-

o�s between those objectives called the Pareto front [28, 29, 30, 31]. Each

point on the Pareto front can be thought of as its own single-objective problem,

leading to experiment designs with many conditions to test.35

While various adaptive sampling methods for �nding Pareto fronts have been
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designed to reduce the number of tested experiment conditions, they assume a

well-de�ned input space in which all possible input con�gurations are known

[32, 33, 34, 35, 36, 37, 38, 39]. When optimizing a solution composition, know-

ing all possible input con�gurations would mean that almost all candidate com-40

pounds and their relevant properties are known a priori. Unfortunately, this is

not the case for electrochemical CO2 capture systems. Our literature survey re-

vealed that the number of candidate compounds with both electrochemical and

CO2 capture data is on the order of 10
2, so relying solely on this data to identify

the Pareto front would only reveal the best solution composition among those45

likely already reported in the literature. This case di�ers from literature exam-

ples of applying adaptive sampling methods for Pareto front estimation in other

materials problems, which identify promising candidates from databases con-

taining >104 species [40, 41, 42]. Additionally, conclusions obtained from large

datasets (>105 entries) have been shown to still be susceptible to database bi-50

ases [43], putting into further question the validity of any Pareto front obtained

from ≈102 candidates using any of these adaptive sampling methods.

One way to address multi-objective solution composition optimization prob-

lems when only a small fraction of candidate compounds have su�cient data is

to treat each solution property as a continuous variable, then search for com-55

binations of solution properties that produce outcomes that are su�cienciently

close to the Pareto front. Treating each solution property as a continuous vari-

able accounts for potential candidate compounds that lack measured data, and

accepting results within some proximity of the Pareto front increases the like-

lihood that a yet-unreported compound may have a combination of properties60

that falls within that domain. Reframing the problem in this way changes it

from a multi-objective optimization problem to a binary classi�cation prob-

lem in which one searches for conditions that would be acceptably close to the
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proposed Pareto front. While a binary classi�er could be trained solely using

randomly sampled conditions, the classi�er is most likely to make errors in the65

region close to the boundary between "acceptable" and "unacceptable" CO2

capture energies and rates, and thus the dataset should prioritize that bound-

ary through a process called contour estimation. Like searching for a Pareto

front, contour estimation is often intractable and frequently addressed through

adaptive sampling [39, 44].70

Conceptually, adaptive sampling algorithms for contour estimation seek to

sample the point on the current estimate of the boundary that is farthest from

any previous sample [45]. More sophisticated and e�cient algorithms, such as

the expected feasibility function (EFF) [46, 47] and the weighted integrated

mean square error (wIMSE) acquisition function [48], use uncertainty estimates75

from Gaussian processes to account for the fact that changes in one variable

may be more impactful than equivalent changes in another. Importantly, none

of the contour estimation methods described here were initially designed for

nor tested with boundaries that describe multiple criteria like our study, which

considers both energy demands and capture rates. Because each criterion would80

produce its own boundary, the combined boundary describing solution chem-

istry conditions that meet both criteria is likely to be a piecewise function, and,

to the best of our knowledge, there is no established method in the literature

for estimating this piecewise boundary more e�ciently than solving each crite-

rion's boundary independently, e�ectively doubling the computation time for a85

two-criteria contour estimation problem. As the number of relevant criteria in-

creases, this process becomes increasingly expensive. To address this knowledge

gap, we developed our own adaptive sampling method that generalizes features

of the wIMSE and EFF methods to re�ne the estimate of a boundary de�ned

by a multi-objective problem. We use the resulting sampled dataset to produce90
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a classi�er that gives the probability of meeting both criteria, and we show that

the classi�er becomes more accurate with each sampling iteration.

After initial validation of our approach with mathematical test scenarios,

we applied the method to search for the optimal solution chemistry properties

for CO2 capture by pH swings generated from proton-coupled electron transfer95

(PCET) electrochemical reactions [11, 23, 49]. In this reaction scheme, a redox-

active molecule will be electrochemically reduced and protonated; for this study,

we focus on the reduction of a quinone, Q, to a hydroquinone, QH2):

Q+ 2H++ 2e� ⇀↽ QH2 (1)

Because the total dissolved CO2 concentration (i.e., [H2CO3] + [HCO �
3 ] +100

[CO 2�
3 ]) is pH-dependent, raising the pH via electrochemical reduction cap-

tures CO2, and lowering the pH via electrochemical oxidation releases CO2.

While many other electrochemical CO2 capture methods have been reported in

the literature [15, 16, 17, 18, 19, 22, 24, 50, 51, 52, 53, 54], we chose PCET-

driven pH swings as a starting point because a computational model for this105

system had been previously reported by Jin et al. [11], providing us with a

benchmark for model validation. Additionally, this electrochemical approach

depends on only four variables and takes less than one minute to calculate both

energy demand and capture rate, in contrast to, for instance, the computa-

tional model for the electrochemically mediated amine regeneration mechanism110

[12, 55], which depends on at least nine variables for a complete description of

the process and takes substantially longer to solve numerically. While Jin et

al.'s model omitted the (de)protonation reactions of the reduced hydroquinone

for simplicity [11], we included these reactions in our model because recent

work on a di�erent pH-controlled CO2 capture process indicated that the low-115

est energy demands occurred at a moderately basic pKa value, making these
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reactions relevant under typical CO2 capture pH conditions [13]. This optimum

occurred when maximizing the overlap between the bu�er regime of the sorbent

species and the operating pH of the process, thereby maximizing the di�erence

in aqueous phase CO2 capacity between the capture and release stages. Based120

on similarities between these two capture mechanisms, we hypothesized that

the pKa values of the reduced species in the PCET-driven pH swing capture

process would have a high impact on energy demands.

In addition to studying energy demands, we used the average �ux of CO2 in

the absorber as a proxy for the rate of CO2 capture because this is typically the125

rate-limiting step [20]. In the electrochemical CO2 capture literature, the rate

of capture is either omitted from study or reported from measurements that are

sensitive to the reactor con�guration and operation [17, 19, 22, 23, 24], making

it di�cult to make comparisons among studies. For our study, we applied the

widely-used van Kevelen and Hoftijzer model of gas absorption with chemical130

reaction enhancement to obtain an upper-bound for the CO2 �ux across the

vapor-liquid interface [20, 56, 57, 58, 59, 60, 61, 62]. Based on this model, we

hypothesized that the rates will be higher not only at higher concentrations, but

also at higher hydroquinone pKa values because the maximum operating pH

increases with pKa [11], thereby increasing the e�ective sorbent concentration.135

We describe here validation studies of our computational approach and its

application to CO2 capture by PCET-driven pH swings. We �rst introduce our

computational approach, including the mathematical bi-objective test scenar-

ios, the possible de�nitions of region "close to the Pareto front," and the test

metrics we used when evaluating our adaptive sampling method (Section 2). We140

also detail our framework for interpreting the results based on partial variable

dependence [63, 64] and variable importance [65, 66, 67]. Overall, we found that

our adaptive sampling approach produced a more accurate classi�er compared
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to an equivalent number of solely random samples, particularly as the test sce-

nario became more complex (Section 3). Next, we describe how we applied this145

method to our CO2 capture model to search for the solution composition that

would produce energy demands and CO2 capture rates competitive with that

of the MEA-based temperature-swing benchmark (Section 4). We found that

while this electrochemical process can be competitive with the MEA benchmark,

particularly in achieving lower energy demands, the range of potential energy150

demands and rates was large, with a substantial fraction of possible solution

compositions failing to capture CO2 at all (Section 5). Based on our results,

we provided suggested domains for the hydroquinone pKa values, total quinone

concentration, and magnitude of any pH correction to aid in implementation of

this process. Finally, we applied our model to literature data of substituted hy-155

droquinones to identify trends in how the functional group substitutions a�ect

predicted performance.

2. Computational Approach

2.1. Overview

We describe here a method to identify the domain of conditions whose out-160

comes were "su�ciently close" to the Pareto front. This method �rst produces

an estimate of the Pareto front using an established process [68], then applies

our new contour estimation method to �nd a speci�c contour of interest rela-

tive to that Pareto front estimate. We estimated both the Pareto front and the

contour of interest using the same basic procedure: (1 ) collect an initial set of165

data, (2 ) use the sampled data to �t a surrogate model that is easier to evaluate

than the objective functions (Section 2.2), (3 ) apply an acquisition function to

the surrogate model to determine the point that would improve the estimate of

the Pareto front or contour the most (Section 2.3), (4 ) evaluate the objective
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functions at this point, and (5 ) repeat steps 2-4 until a prede�ned convergence170

is met or a maximum number of samples were collected. For Pareto front es-

timation, the initial set of data combined a grid search with random sampling,

and for contour estimation, the initial set of data was the dataset after Pareto

front estimation.

The adaptively sampled dataset was then used to train a classi�er, which175

predicted whether an input vector would produce an outcome su�ciently close

to the Pareto front or not. We could then analyze this classi�er to infer infor-

mation about the original objective functions with reduced computational cost

compared to evaluating the objective functions directly. The utility of these

inferences depended on the accuracy of the classi�er, which itself depended on180

the quality and quantity of sampled data used to train it. Therefore, to con�rm

that our adaptive sampling method for contour estimation was bene�cial to the

accuracy of the classi�er, we applied our methods to two simple mathematical

test scenarios and three possible de�nitions of the region "close to the Pareto

front." We compared the accuracy of classi�ers trained on adaptively sampled185

data to the accuracy of the same classi�er trained on an equivalent number of

solely random samples, with the expectation that the more informative adaptive

sampling procedure would produce more accurate classi�ers. Finally, we devel-

oped methods for interpreting those classi�ers in ways that would be useful for

our goal of optimizing solution compositions for electrochemical CO2 capture.190

2.2. Gaussian Process Surrogate Model Construction

We used Gaussian processes (GP) as the surrogate model for estimating

both the Pareto front and the contour of interest because our data were de-

rived from deterministic models. While many potential alternative surrogate

models, such as general linear models or random forests [69, 70, 71, 72], rely195

on minimization of the di�erences between the model prediction and sampled
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data to �nd generalized trends, GP can use Bayes' rule to �nd the posterior

distribution conditioned on the sampled data, assuming a Gaussian prior [73].

As a result, at a sampled datapoint (x̄n, f(x̄n)) from a deterministic function

with high precision (i.e., (x̄n) << |f(x̄n)|), the GP surrogate model intersects200

the sampled data points with similarly high precision. In other words, errors in

the surrogate model were predominantly due to surrogate model inaccuracies,

not measurement imprecision as could be assumed in least-squares regression

surrogate models [46]. This feature also ensured that in the proximity of a

sampled point, the model uncertainty was small, but the domain far from any205

samples had larger uncertainty based on that distance. Thus, a GP surrogate

gives information on both exploration of new areas and exploitation of known

information for the adaptive sampling algorithm.

The �tted GP surrogate model (g(x̄)) predicts both the mean (µ(x̄)) and

variance (σ2(x̄)) of the output given an input vector (x̄) (Eq. 2).210

g(x̄) ∼ N(µ(x̄), σ2(x̄)) (2)

Further details on �tting the mean and variance to data have previously

been reported in the literature [33, 74, 75], and implementation packages in

various programming languages are available [76, 77]. Brie�y, after selecting a

covariance function, the most probable GP surrogate model's mean and variance215

can be calculated by �tting to the sampled data [74]. For this study, we did not

notice a substantial di�erence among di�erent covariance functions and chose

the 5/2 Matern covariance function due to its comparatively faster �tting of

preliminary test data.
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2.3. Bi-Objective Problem Acquisition Functions220

To estimate the Pareto front, we used the stepwise uncertainty reduction

(SUR) acquisition function [32] generalized to multi-objective problems [33],

as implemented in the GPareto package (v.1.1.4.1) in R (v.4.0.3) [68]. In this

method, the two objective functions were assumed to be uncorrelated minimiza-

tion problems and thus produced two independent GP surrogates [68, 78]. While225

the independence assumption may not apply to all bi-objective problems, the

outputs of our chemical model showed little correlation (Pearson's |r| < 0.01).

At each iteration, GP surrogates models for each objective were queried to �nd

the next candidate point that would o�er the greatest expected increase in the

2-dimensional area behind the bi-objective Pareto front estimate. If the point230

would be less optimal than the estimated Pareto front, this area would be un-

changed; if the candidate was more optimal than any points on the estimated

Pareto front, the area would increase. Maximizing this expectation value ac-

counted for both the means and variances of the two GP predictions, favoring

regions that are both promising in their means and comparatively unexplored as235

noted by high uncertainty. The SUR method speci�cally aimed to pick samples

that will maximize Shannon information entropy in order to minimize uncer-

tainty of the Pareto front estimate [33].

To improve our estimate of the contour that de�nes points that are su�-

ciently close to the Pareto front, we developed an adaptive sampling method240

that sampled the regions that are both highly uncertain and close to the classi-

�cation boundary of interest by generalizing features of the expected feasibility

function (EFF) and the weighted integrated mean square error (wIMSE) meth-

ods [46, 47, 48]. Instead of using a binary inequality of a single GP surrogate

like the EFF and wIMSE methods, we converted the continuous outputs of245

the relevant GP surrogates into a single probabilistic classi�er that gives the
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joint probability of meeting all speci�ed selection criteria conditioned on the

input vector (P |x̄). The boundary can then be de�ned as the domain where

the probability is 0.5, described mathematically as maximizing (P |x̄)(1− P |x̄).

To calculate the joint probability of meeting all criteria, we assumed all surro-250

gate model outputs were independent, similar to the estimation of the Pareto

front, so for multiple selection criteria, the joint probability was the product of

the probabilities of meeting each separate criterion. Each individual criterion

probability could be calculated from a normal distribution using the GP sur-

rogate's mean and variance. Note that for this contour estimation process, the255

GP surrogates gave predictions of the outputs most closely related to the con-

tour de�nition, which may not be the same as the original objective functions.

For instance, if the contour of interest was de�ned by the sum and product of

the original objective functions, the GP surrogate models would be trained on

the sum and products themselves to eliminate the need to propagate the surro-260

gate model uncertainties, particularly if the transformation would convert the

output from a Gaussian into another type of probability distribution. We specif-

ically chose the sets of selection criteria to limit their covariance and ensure our

independence assumption remained valid.

The uncertainties of the multiple independent GP were combined into a265

single metric to account for potential di�erences in uncertainty among the sur-

rogate models for each selection criterion. For this work, we used the variance

of the product of the selection criteria estimated using the Taylor series approx-

imation as an initial estimate of the total uncertainty (σ2
T (x̄)) (Eq. 3 for the

2-criteria case [79]). While more sophisticated measures of total uncertainty270

are possible, we picked this form for its generalizability and ease of calculation.

Similarly, while integrating the uncertainty measure over the whole input space

would provide a more accurate estimate of the improvement than a sample could
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provide, the reduction in total variance was expected to be localized [47, 48], so

we used the variance at the candidate point to reduce the computational cost275

of each iteration.

(
σT (x̄)

µ1(x̄)µ2(x̄)

)2

=

(
σ1(x̄)

µ1(x̄)

)2

+

(
σ2(x̄)

µ2(x̄)

)2

(3)

The most useful next sampling point, and therefore the target of the adap-

tive sampling method, would maximize the acquisition function, U(x̄) (Eq. 4).

Conceptually, like the EFF and wIMSE acquisition functions, this acquisition280

function is the product of the uncertainty and the proximity to the boundary:

U(x̄) = σ2
T (x̄) ((P |x̄)(1− P |x̄) + ϵ), ϵ ≥ 0 (4)

We introduced the constant ϵ in this work as a user-de�ned tuning parameter

to adjust the relative weight of exploration and exploitation, similar to the β

term in some Bayesian optimization literature [80, 81]. When ϵ = 0, points that285

the GP surrogate models con�dently estimated on one side of the boundary

(P |x̄ ≈ 0 or P |x̄ ≈ 1) would have U ≈ 0 independent of σ2
T (x̄), so maximizing

U prioritized points on the boundary and favored exploitation of known infor-

mation. As ϵ increases, points on the classi�cation boundary and points farther

from the boundary have more similar evaluations of (P |x̄)(1− P |x̄), leading to290

a prioritization of exploration by favoring points with higher total uncertainty.

We found tuning ϵ to be important for objective functions whose dynamics were

harder to capture with a GP trained on limited data, particularly those with

multiple local extrema or rapid changes in the slope. In general, we started our

sampling with a large value of ϵ (≈ 10−2) and decreased this value to a minimum295

of 10-4 as we collected more samples.
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For all problems, we �rst sampled the input space composed of d indepen-

dent variables with a coarse grid (3d points) and an additional 3 points from300

each hypercube created by the coarse grid ((3)2d points) to ensure adequate

sample coverage. We then applied the SUR algorithm to estimate the Pareto

front, allowing up to as many samples as the initial design. This dataset with

the re�ned Pareto front estimate was used as the starting dataset for the con-

tour estimation function, with each sampled point from the contour estimation305

method also updating the Pareto front as appropriate
✿✿✿✿✿✿✿
(Figure

✿✿
1). For the test

scenarios, the adaptive sampling step was limited to between 10d and 20d sam-

ples due to the simplicity of these functions; for the PCET optimization problem
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this increased to 25d to improve con�dence in our conclusions (Section 4).

2.4. Variable E�ects and Feature Importance310

The utility of this adaptive sampling procedure was in its ability to produce

accurate classi�er models despite being trained on a limited number of samples.

We were speci�cally interested in interpreting the classi�er for the impact of

each individual variable and what values those variables should take in order to

be close to the Pareto front. We calculated the impact of each variable on the315

classi�er by marginalization of the joint probability (Eq. 5),

P |xi =

∫
X−i

(P |xi, x̄−i)p(x̄−i)dx̄−i (5)

where xi was the value of the ith input variable, x̄−i the input vector of all

variables except the ith input variable, X−i the set of possible x̄−i, and p(x̄−i)

the probability density function of input space X−i evaluated at x̄−i. P |xi rep-320

resented the probability that the result would satisfy all selection criteria if only

information about xi was known, analogous to the partial dependence plots used

in regression analyses [63, 64]. This integral was approximated by calculating

P |xi, x̄−i for 1,500 Monte Carlo samples from x̄|xi, which, by the law of large

numbers, converges to the expectation value (Eq. 6). The entire marginal was325

estimated from a set of 50 evenly spaced xi values. For the test scenarios, we de-

�ned the inputs as independent variables with uniform distributions to simplify

this expectation value to an unweighted average.

P |xi ≈
1

N

N∑
x̄−i∼X−i

P |xi, x̄−i (6)

The set of Monte Carlo samples from each evaluation of P |xi (Eq. 6) pro-330

vided the additional bene�t of indicating the distribution about that expectation

value. The variance among the set of P |xi, x̄−i at constant xi indicated how
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changing the other variables in x̄−i a�ected the probability that the result met

the selection criteria. If the variance was small, the other variables x̄−i did

not have substantial impact on the classi�er compared to xi; at the other ex-335

treme, if the variance was large, at least one other variable had a much larger

impact compared to xi. However, this variance measure only described a single

instance when xi was set to a constant. A more useful importance measure of

the variable xi should also consider how this variance changes as xi changes.

We de�ned this marginals-based classi�er variable importance of the ith variable340

(CV Ii) as the ratio of the range of P |xi divided by the average of the standard

deviations (Eq. 7). By having the numerator be the range of P |xi, we ensured

that input variables that caused large changes in the probability of acceptance

were evaluated as more important.

CV Ii =
max(P |xi)−min(P |xi)

Exi
[V arx−i

[P |xi, x̄−i]]0.5
(7)345

2.5. Validation Test Scenarios

To validate our adaptive sampling and classi�er variable importance meth-

ods, we applied this approach to two bi-objective problems from the literature,

adapted to address particular questions we had about the suggested contour

estimation approach. Both problems were selected due to their simplicity and,350

after modi�cation, presence of both a global optimum and at least one other

local optimum. The simplicity allowed us to evaluate the objective functions

quickly in order to obtain measures of accuracy and accelerate algorithm tuning.

The presence of multiple local optima was important for testing robustness to

regions of acceptance that were not simply a radius around the single optimum,355

which could be possible as the number of variables increases in future studies

of other electrochemical CO2 capture chemistries.

The �rst test scenario was a modi�ed version of the 2-input set of quadratic
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polynomials from Marler & Arora [34], adjusted so that the objectives were

quartic with respect to the second input variable and slightly rotated by θ = −π
24360

radians in the second objective by left multiplying the input vector [x1, x2]
T by

the rotation matrix R(θ = −π
24 ) (Eq. 8). The higher order polynomial terms did

not substantially a�ect the location of the Pareto front nor the vicinity local

to the Pareto front (Figure S1a), but led to a secondary local optimum. The

rotation applied to the second objective function ensured that the two local365

optima did not perfectly overlap at the same value of x1, and therefore gave x1

multiple local optima without needing to increase it to a quartic polynomial as

well.

f1(x1, x2) = 20(x1 − 0.75)2 + 190 + 11.58x4
2 − 115.85x3

2 + 383.13x2
2 − 463.5x2

[x′
1, x

′
2]

T = R(
−π

24
)[x1, x2]

T

f2(x
′
1, x

′
2) = (x′

1 − 2.5)2 + 80 + 1.778x′4
2 − 20x′3

2 + 78.573x′2
2 − 124.664x′

2

xi ∈ [0, 5]∀i

(8)

The second test scenario was based on the ZDT4 function (Eq. 9) [38],370

modi�ed in the second objective to have a lower frequency such that the gradi-

ents were more similar to preliminary calculations of the PCET system (Figure

S1b-S1c). The lower frequency guaranteed that in all selection criteria that we

tested, the set of accepted points was discontinuous around the three prominent

local minima in f2. While the ZDT4 function has been used with up to six in-375

put variables, we performed tests with only three inputs to serve as a transition

from the two-input quartic polynomial and the four-input PCET system.
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f1(x1, x2, x3) = x1

h(x2, x3) = 21 +
3∑

i=2

(0.5xi − 0.25)2 − 2.5 cos((5xi − 2.5)π)

f2(x1, x2, x3) = h(x2, x3)

(
1−

√
x1

h(x2, x3)

)
+ 10

3∑
i=2

(xi − 0.5)2

xi ∈ [0, 1]∀i

(9)

Three types of selection criteria were tested as de�nitions for results close to

the Pareto front: normalized distance from the Pareto front ("Pareto distance"),380

two independent thresholds for f1 and f2 ("Threshold cuto�"), and normalized

distance to a "utopia point" criterion while prioritizing one objective more than

the other ("Utopia distance") (Figure 2a). We used the standard normalization

convention of (f1, f2) to (f∗
1 , f

∗
2 ) where the normalized single-objective optima

are located at (0,1) and (1,0). This de�nes the point (0,0) as the utopia point,385

the purely theoretical point at which all objectives were optimized simulta-

neously [35, 36, 37, 82, 83]. For the Pareto distance criteria, the normalized

distance to the Pareto front was de�ned as the Euclidean distance (δ) between

the suboptimal normalized point and the point on the Pareto front estimate

with the same f∗
1 : f∗

2 ratio, linearly interpolating the Pareto front estimate as390

needed. This de�nition of the selection criteria reduced the two objective func-

tions into a single criterion to search for points that were nearly Pareto optimal,

accepting points with δ less than some cuto� distance δ′. For the Threshold

cuto� criteria, points were accepted if each objective met a prede�ned inde-

pendent inequality, i.e., f1 < f ′
1 and f2 < f ′

2. The Threshold cuto� criteria is395

the simplest selection criteria and most likely to be applied in practice because

design targets, such as monetary or regulatory constraints, are often de�ned in

this way [28, 29, 30, 31]. The Utopia distance criteria accepted points that were
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both within a speci�ed normalized distance of the utopia point and satis�ed the

inequality tan−1(f∗
2 /f

∗
1 ) > θ′. These criteria sought points that approached the400

utopia point as closely as possible, ignoring the shape of the Pareto front, and

also rejected outcomes that favored minimizing f2 too heavily over f1, simulat-

ing a pre-de�ned prioritization preference between the two objectives. For all

three selection criteria, we set the cuto� values of each criterion such that they

accepted similar percentages of the input domains. For both test scenarios, the405

domains that met the Pareto distance and Threshold cuto� criteria were nearly

identical. As a result, comparing the performance of these two selection criteria

allowed us to determine whether reducing the number of GP surrogate models

used in the contour estimation procedure, and thus reducing the computation

time, had any measurable e�ect on accuracy.410

We tested all combinations of the two test scenarios and the three selection

criteria by comparing the results of a classi�er trained on the adaptively sam-

pled data to the results of the actual objective functions by direct evaluation. In

the case of a classi�er like the GP surrogates where the output is the probability

of acceptance and not a direct class assignment, the accuracy assumes random415

assignment based on that resultant probability. We compared this accuracy

to that of the classi�er trained on the starting dataset prior to adaptive sam-

pling (i.e., after the Pareto front search), as well as to classi�ers trained on the

starting dataset combined with an equivalent number of solely random samples.

These two comparisons gave insight into whether the misclassi�cation errors420

improved due to adaptive sampling or the increase in training dataset size. We

additionally calculated false positive and false negative error rates and single

variable marginals of the classi�ers to diagnose whether the misclassi�cation

errors were due to accepted regions that were too big, too small, or skewed.

For this study, we tested the accuracy of using the GP surrogate as a prob-425
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abilistic classi�er and benchmarked it against two support vector machines

(SVM), one with a 3rd order polynomial kernel and one with a radial kernel, due

to our unconventional use of GP surrogates as classi�ers. SVM with a sigmoidal

or linear kernel were initially included in the study, but showed worse accuracy

than random classi�cation assignment and were subsequently excluded. This430

comparison of di�erent classi�er models was intended to test (a) whether the

GP was at least as good as a typical classi�er model like SVM, reducing the

computation time by using the model we already trained during adaptive sam-

pling, and (b) whether the contour estimation adaptive sampling procedure

would improve classi�er accuracy for surrogate models besides the GP used435

in the sampling procedure. We speci�cally chose SVM due to comparatively

fast �tting relative to GP in preliminary tests, particularly for larger training

datasets.

To validate our proposed marginals-based contour variable importance method,

we compared our metric to the Shapley values and the total-e�ect Sobol indices440

as alternatives metrics [66, 67], both of which were calculated by Monte Carlo

estimation (n = 1,500). All three metrics quantify the importance of a variable

in determining the outcome, in this case de�ned as the classi�cation result, al-

though they de�ne importance di�erently. Shapley values describe the impact

that changes to a single variable will have on the outcome relative to a reference445

point, while total-e�ect Sobol indices describe the contribution that a variable

has to the variance of the output. Both Shapley values and total-e�ect Sobol

indices were calculated 50 times to obtain an average and standard error for

each input variable, and thus were determined from the same number of sur-

rogate function evaluations as our marginals-based CV Ii metric. Uncertainties450

for the CV Ii metric were calculated by propagation of the standard errors of

each component in Eq. 7 to obtain the standard error of the mean. Because
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all three metrics de�ne importance di�erently, we only compared the relative

ranking of the variable importance and compared that ordinal ranking to our

expectation based on the true objective functions; ideally, all three methods455

would agree in the ordinal ranking of the variables, although the magnitude of

the di�erences among variables may di�er.

3. Validation of Adaptive Sampling Method

Given the relative simplicity of the 2-input quartic polynomial test scenario,

we only report here the results for the more complex 3-input modi�ed ZDT4460

test scenario. Results for the polynomial test scenario generally corroborated the

conclusions we reached using the ZDT4 test scenario (Supplemental Information

B). For the modi�ed ZDT4 tests, we designed the selection criteria to only

accept a small (5 - 10%) fraction of the input domain to be consistent with

our intended application of optimization, contrasting with approximately 40%465

for the 2-input polynomial test scenario. This equated to accepting points that

(a) had a normalized distance less than 0.5 from the Pareto front ("Pareto

distance" criteria), (b) had normalized coordinates within the square de�ned

by the utopia point and (1, 1) ("Threshold cuto�" criteria), or (c) were within

a normalized distance of 1 from the utopia point and satis�ed the inequality470

tan−1(f∗
2 /f

∗
1 ) ≥ 0.1 radians ("Utopia distance" criteria).

The misclassi�cation errors highlight the bene�ts of our adaptive sampling

method for contour estimation on the resulting classi�er (Figure 2b). For ease

of visualization, we present the misclassi�cation errors relative to those of the

classi�ers trained on the starting dataset without additional sampling due to475

di�erences in the starting error rates; we include the absolute misclassi�cation

error rates in the SI (Figure S2). For the GP classi�er, training the models on

the adaptively sampled dataset led to lower error rates than training on >95%
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Figure 2: (a) Visual depiction of the three selection criteria. (b) Misclassi�cation error rates,
presented as a percentage of the error rate with zero additional samples beyond the starting
dataset, for Gaussian process (GP) or support vector machine (SVM) models with a poly-
nomial or radial kernel function trained on data from the modi�ed ZDT4 test scenario. The
shaded region represents the 95% con�dence interval of possible solely randomly sampled
training datasets, with points depicting the median (n = 1,000).

of the possible solely randomly sampled datasets, and this accuracy bene�t

became larger as the number of samples increased. For the SVM classi�ers with480

polynomial kernels, the error rate stayed nearly constant with adaptive sampling

unless some speci�c points were sampled, leading to a rapid decrease in the

error rates. However, the error rate was unstable, where additional adaptive

samples could potentially lead to an increase in error rates, as evident for the

Pareto distance criteria. SVM with a radial kernel trained on adaptively sampled485
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datasets were better than >90% of solely randomly sampled datasets for two

of the three selection criteria. For the Pareto distance criterion, this classi�er

trained on an adaptive sampled dataset was roughly equivalent to the median

among the possible solely randomly sampled datasets.

We attribute the stronger bene�t of adaptive sampling for the GP classi�er490

to the fact that the adaptive sampling process used the same GP surrogate to

inform the sampling process. As a result, the "most informative" next point was

based on the GP's uncertainty and contour estimate, and, based on the large

di�erence in GP and SVM classi�er accuracies, this would likely be di�erent than

the uncertainty and contour estimate from a SVM given the stark di�erences in495

error rates (Figure S2). Therefore, if intending to use another type of classi�er as

the �nal surrogate model, we suggest modifying the adaptive sampling procedure

to rely on information related to that same type of classi�er. Using a di�erent

surrogate model for sampling may still improve accuracy of the �nal surrogate

model, as evident in the improvement to the accuracy of SVM classi�ers with500

radial kernels for certain selection criteria, but the bene�t is likely to be smaller.

Across all selection criteria and sampling methods, the error rate for the

GP classi�er was always less than 10%, dropping to under 4% after 50 adaptive

samples beyond the starting dataset (Figure S2). In contrast, the SVM mod-

els were inconsistent, with error rates of about 50% for most conditions tested505

regardless of training dataset size. Only SVM with a polynomial kernel were

able to achieve error rates similar to the GP classi�er, and only reliably for the

Threshold cuto� condition. For the other two criteria, the error rate did drop

below 10% after su�cient adaptive samples were collected, but the low error

rate was unstable and rebounded back to 80% when greater than 40 adaptive510

samples were collected for the Pareto distance criterion. For all conditions, the

misclassi�cation errors were due to a high false positive rate (Figure S3), which
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tended to be relatively high (>50%) and followed a similar trend as the total

error rates when additional samples were collected. False negatives were un-

common for all conditions (<1.5%), likely a re�ection of the small fraction of515

the input domain that met the acceptance criteria (Figure S4). Notably, adap-

tive sampling did not substantially improve the false negative rates compared to

solely random sampling, but given the small false negative rates, reducing the

false negative rate was low priority to minimize overall misclassi�cation errors.

The single variable marginals corroborate the results of the misclassi�cation520

error, showing the improvement to the GP classi�ers' accuracies after adap-

tive sampling and the better accuracy of the GP classi�ers compared to the

SVM classi�ers (Figure S5). While the misclassi�cation error rates were similar

among the models for the Threshold cuto� criteria after 50 adaptive samples,

the (aggregated) single variable marginals for the SVM classi�ers did not match525

expected pro�les (R2 < 0.1), particularly compared to the GP classi�ers af-

ter adaptive sampling (R2 > 0.85). This appeared to be largely due to poor

marginalization on x2 and x3, which have distinct peaks that the SVM classi�ers

did not capture (Figure S6).

Given the low coe�cients of determination for the SVM classi�ers, we did530

not perform calculations for the importance ranking with these models, instead

only comparing our method of assessing the marginals-based classi�er variable

importance to alternative importance measures for the GP classi�ers (Figure

3). Our marginals-based method gave the expected ordering of the three input

variables: x2 ≈ x3 > x1 across all selection criteria. The proximity of x2 and x3535

was particularly important given that in the ZDT4 function, these two variables

were treated identically, and thus should have the same importance. Addition-

ally, in the ZDT4 function, x1 only a�ected the relative balance of f1 to f2,

but had little impact on proximity to the Pareto front [38], so we expected it
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Figure 3: Normalized importance ranking for the modi�ed ZDT4 test scenario using the
marginals-based classi�er variable importance, the mean Shapley values, or the total-e�ect
Sobol index. Error bars are the standard error based on 50 independent simulations.

to have a lower importance compared to x2 and x3. While the Shapley value540

averages matched the expected order, they were poorly reproducible, leading to

a large standard error that masked interpretability; in contrast, the standard er-

rors for our marginals-based method were negligible. Total-e�ect Sobol indices

produced more reliable results than Shapley values, but they rank x1 as the

most important variable instead. This highlights the key di�erence between the545

Sobol indices and our marginals-based method. The total-e�ect Sobol indices

rank variables by their contribution to the output variance normalized by the

total output variance, but our marginals-based metric is the probabilistic output

range normalized by the variance of other variables. While the di�erence in the
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denominators is only likely to a�ect resolution, the di�erence between variance550

and range of the probability in the numerator can cause a reversal in the order.

Speci�cally, while the ranges of P |x2 and P |x3 were roughly double that of P |x1

(Figure S6), because P |x2 and P |x3 were mostly �at with three relatively sharp

and narrow peaks, the variance contribution of x2 and x3 is smaller than x1.

If these peaks were to maintain the same amplitude but have narrower nonzero555

domains, we would suggest constraining these two variables to the domain of

those peaks with even higher priority, but their total-e�ect Sobol indices would

decrease. In other words, here, the total-e�ect Sobol index can underestimate

the importance of variables that have small subdomains of interest, leading to a

di�erent ordinal ranking compared to the other two metrics. Based on other ex-560

periments in the literature [13], we hypothesized that the equilibrium constants

in the CO2 capture system will have clearly de�ned optima at moderate values,

for which the total-e�ect Sobol indices could underestimate their importance,

so we used our marginals-based contour variable importance metric.

Collectively, these results indicated that the GP probabilistic classi�er be-565

comes signi�cantly more accurate with adaptive sampling, reducing the number

of queries of the original objective functions to achieve a surrogate model of

comparable accuracy, and a GP classi�er was more accurate than the tested

SVM. From the tests of di�erent selection criteria, we determined that selection

based on cuto� values of the two objectives was most consistently accurate for570

the two test scenarios. Based on these results, we applied these methods to

our analysis of the PCET-based CO2 capture system to determine the solution

chemistry properties that would be competitive with the industry benchmark:

capture by temperature-swing of MEA solutions.
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4. CO2 Capture Model575

4.1. Solution Chemistry Model

While CO2 capture by PCET-driven pH swings is controlled externally by

the redox reaction (Eq. 1), a complete understanding of the process includes

vapor-liquid equilibrium and (de)protonation reactions (Eq. 10-15). We note

that while deprotonated hydroquinones have been reported to coordinate with580

CO2 directly by acting as a nucleophile, this has only been observed in aprotic

solvents, so we did not include this species in our aqueous solution chemistry

model [15, 84, 85, 86]. Additionally, based on data of quinone reduction poten-

tials [87], we ignored all reactions involving singly-reduced semiquinone inter-

mediate because for the expected pH window of operation, the second reduction585

potential was energetically downhill after the �rst electron has been accepted for

the majority of species. While we expect realistic implementation would include

high ionic strength to reduce the solution resistance, we simpli�ed the calcula-

tions by ignoring ionic strength e�ects and assuming activity coe�cients of 1.

This assumption likely changed the estimates of the optimal solution chemistry590

properties, but we expect the di�erence to be small relative to the breadth of

the input suggestion domains [88]. Due to limitations on the available equi-

librium constant data, we calculated CO2 capture thermodynamics assuming a

constant temperature of 298 K even though absorption often occurs at 313 K.

We do not expect the temperature to substantially change results because ex-595

periments of electrochemical CO2 capture at both temperatures indicated that

the decrease in captured CO2 was counteracted by a decrease in electrical energy

consumption, leading to similar energy demands per mass of CO2 captured [18].
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Vapor-liquid reactions

CO2(g)+H2O(l)
KH↼−−−−⇁ H2CO3(aq) (10)

(de)Protonation reactions

H2CO3(aq)
Kca,1−−−⇀↽−−− H+(aq)+HCO �

3 (aq) (11)

HCO �
3 (aq)

Kca,2−−−⇀↽−−− H+(aq)+ CO 2�
3 (aq) (12)

QH2(aq)
Ka,1

↼−−−−−−⇁ QH�(aq)+H+(aq) (13)

QH�(aq)
Ka,2

↼−−−−−−⇁ Q2�(aq)+H+(aq) (14)

H2O(l)
Kw↼−−−−⇁ H+(aq)+OH�(aq) (15)

The extent of the electrochemical reaction was de�ned in terms of yr, the

fraction of quinone that was in any of its reduced hydroquinone forms (Eq. 16).600

We assumed that the solution would contain excess generic background elec-

trolyte salt MaXb, and thus as the electrochemical reaction proceeded and yr

changed, electrochemical migration between the anode and cathode would be

dominated by the background electrolyte and not any of the species listed in

the (de)protonation reactions. Given that the species of background electrolyte605

should be inert and therefore not participate in any processes besides this trans-

port, we assumed the valence of both the background anion and cation (a and

b, respectively) to be 1 for simplicity. Assuming that the solution started in

the oxidized state due to the oxidizing conditions of ambient air, we related

the concentration di�erence between the background cation and anion to yr,610

the total quinone concentration [Q]tot, and the amount of acid (as generic acid

HX) or base (as generic base MOH) that was initially added to the solution by

assuming maintenance of a charge balance (Eq. 17). For the purposes of the
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model, only the di�erence between the cation and anion concentrations and that

between the additional base and acid mattered, not their individual values.615

yr =
[QH2] + [QH�] + [Q2�]

[Qtot]
(16)

[M+]− [X�] = [MOH]− [HX] + 2yr[Qtot] (17)

Using only knowledge of the total concentrations of all species, the frac-

tion of reduced quinone, and either the CO2 partial pressure (PCO2
) or the

total dissolved inorganic carbon concentration (DIC), we solved the set of mass620

balance, charge balance, and chemical equilibrium equations to �nd the concen-

trations of the species of interest throughout the CO2 capture process. Based

on this model, the relevant solution chemistry variables that should be opti-

mized were the pKa,1 and pKa,2 of the hydroquinone, the total concentration

of quinone, and the net amount of acid or base to be added. Because pH is a625

log scale, the concentrations needed high resolution over multiple orders of mag-

nitude. For our optimization, we used log units of concentration to maintain

an experimentally-relevant resolution throughout the entire domain, and as a

result, created two di�erent models for net acid and net base addition because

net acid addition is represented as a negative number. We adaptively sampled630

for the Pareto front and contour estimation of these two conditions in parallel,

then combined the datasets for interpretation by adding another variable for

the direction of the pH correction.

4.2. Process Stages

The simulated process consisted of 4 stages: oxidative acidi�cation, CO2635

degassing, reductive regeneration, and CO2 capture (Figure 4). While previous

calculations have found that process intensi�cation to a 2-stage process by com-
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Figure 4: Representative cycles in the 4-stage CO2 capture process by PCET-driven pH
swings. (left) Changes in bulk solution pH and fraction of quinone (Q) in the reduced state
compared to the reduced state's pKa values. (right) Partial pressure of CO2 that would be at
equilibrium with the solution as the total dissolved inorganic carbon concentration changes.
Outlet partial pressure: 0.99 atm CO2. Feed gas partial pressure: 0.15 atm CO2.

bining oxidation with degassing and reduction with capture led to lower energy

demands [11, 12], this result relies on the assumption that CO2 mass transfer

across the vapor-liquid interface was fast compared to the electrochemical re-640

actions, which cannot always be assumed to be true. Combined with the fact

that the 4-stage process would give more conservative results for the energy

demands, we opted for simulating the process as 4 stages in series.

The oxidative acidi�cation stage simulation began at yr = 0.975, the fully

reduced extreme, at equilibrium with the inlet �ue gas of 0.15 atm, solving645

for the pH and total dissolved inorganic carbon by solving the set of chemical

equilibrium, mass balance, and charge balance equations described in Section

4.1. The proton concentration was solved numerically as the sole positive real

root, and thus only valid pH, of the resulting �fth order polynomial using the

Jenkins-Traub algorithm [89]. The DIC was determined using the now-solved650

pH and known PCO2
to solve the relevant chemical equilibrium equations (Eq.

10-15). We simulated the remainder of the oxidative acidi�cation process using

150 additional equally spaced steps along yr ∈ [0.975, 0.025], holding DIC con-

stant and solving for pH and PCO2
. While the electrochemical process did not
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depend on PCO2
directly, its knowledge at each step was used as a check that the655

pH, which was solved iteratively due to its nonlinear relationship with DIC and

yr, remained within realistic bounds. This calculation implicitly assumed that

the (de)protonation reactions and the mixing between the electrode surface and

the bulk were fast relative to the electrochemical reaction. The former can be

assumed to be true due to the abundance of water molecules and its rapid pro-660

ton exchange, while the latter should be valid in a well-designed electrochemical

cell that minimizes mass transfer resistances.

The CO2 degassing stage simulation started with the pH, PCO2
, yr, and

DIC conditions of the �nal step of the oxidative acidi�cation stage, and then

it solved for pH and DIC as PCO2
linearly decreased to the target outlet of 1665

atm at a constant yr using the same equation and algorithm as the �rst step

of the oxidative acidi�cation stage. Reductive regeneration was simulated using

the same procedure as the oxidative acidi�cation stage, but started at yr =

0.025 and PCO2
= 0.99 atm and proceeded at constant DIC until yr = 0.975.

Likewise, the CO2 capture stage was simulated using the same procedure as670

the CO2 degassing stage, instead ending with a PCO2
= 0.15 atm, the assumed

partial pressure of the in�uent �ue gas.

4.3. Minimum Energy Demand

To simplify the energy demand calculation, we rede�ned the electrochemical

reaction (Eq. 1) to its form under strongly basic conditions (Eq. 18), recognizing675

that the electrochemical potential was the same for the entire solution, and

therefore all electrochemical reactions should be at equilibrium with each other

due out assumption of fast proton exchange.

Q+ 2e� ⇀↽ Q2� (18)
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The electrical potential of the anode or cathode, Eh, over the course of the680

electrochemical stages were calculated using the Nernst equation (Eq. 19).

Eh = E0
h
′′
+

RT

2F
ln

[Q]

[Q2�]
(19)

where E0
h
′′
is the standard reduction potential for the doubly-deprotonated re-

action in Eq. 18, R is the ideal gas constant, T is the absolute temperature,

and F is Faraday's constant. Combining Eq. 19 with the identity of yr (Eq.685

16) and the chemical reactions in Eq. 13-14 produced the Nernst equation in

terms of the process variables solved in Section 4.2 (Eq. 20).

Eh = E0
h
′′
+

RT

2F
ln

1− yr
yr

Ka,1Ka,2 +Ka,1[H
+] + [H+]2

Ka,1Ka,2
(20)

The thermodynamic minimum for the electrochemical work per complete cy-

cle per volume of solution (Wcyc) was calculated using the equation for electrical690

work from the total (positive) charge passed per solution volume (q) and cell

voltage (Eh,anode − Eh,cathode) (Eq. 21). By Faraday's law of electrolysis, the

charge passed was proportional to the change in the fraction of reduced quinone

(Eq. 22), simplifying the electrochemical work to an integral over yr (Eq. 23),

which we solved by trapezoidal Reimann sum over the 151 steps of each of the695

two electrochemical stages.

Wcyc =

∫ q=qmax

q=0

(Eh,anode − Eh,cathode)dq (21)

q = −zF [Q]totyr (22)

Wcyc = −zF [Q]tot

∫ yr=0.975

yr=0.025

(Eh,anode − Eh,cathode)dyr (23)

The total work per mole of CO2 captured (WCO2
) was estimated as the
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work per cycle per volume divided by the net change in DIC over the course of

the CO2 capture stage (Eq. 24). This approximation assumed that the pump

work was small compared to the electrochemical work based on estimates of the700

pump work for capture with a MEA solution (< 0.5 kJe/mol C) [20] compared

to preliminary calculations of the energy (≥ 8 kJe/mol C).

WCO2
≈ Wcyc

∆DIC
(24)

Because the energy demand should decrease as less CO2 is removed, we

added an additional scaling factor, w, to penalize the predicted minimum energy705

demand if less than 90% removal occurs to keep results in line with the US

Department of Energy's target [10]. Doing so prevented the Pareto front search

from expending computational resources �nding parts of the Pareto front that

would have low energy demand simply because the process captured little to no

CO2. This scaling factor was based on the minimum work of separation (Wmin)710

to split the feed gas into a 99% pure outlet and a lean gas of known CO2 partial

pressure (Eq. 25).

Wmin(P
lean
CO2

) = RT (−nfeed
CO2

ln(P feed
CO2

) + nout
CO2

ln(P out
CO2

) + nlean
CO2

ln(P lean
CO2

)

− nfeed
−CO2

ln(P feed
−CO2

) + nout
−CO2

ln(P out
−CO2

) + nlean
−CO2

ln(P lean
−CO2

)) (25)

In this equation, ni
CO2

and P i
CO2

were the molar �ow rate and the partial pressure

of CO2 in the i
th gas stream (feed gas, lean gas, or pure outlet), while ni

−CO2
and

P i
−CO2

represented the molar �ow rate and partial pressure of all other gasses715

in the ith gas stream. For simplicity, we assumed a feed gas of 1 mole of total

gas per unit time and a CO2 mole fraction of 0.15, then imposed a mass balance

to determine the molar �ow rates of the other gas streams. For simplicity, we
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assumed the total pressure of each stream (P i
CO2

+ P i
−CO2

) was set to 1 atm,

and thus had di�erent volumetric �ow rates.720

The unadjusted scaling factor, w0, was set as the quotient of the minimum

work required for 90% capture divided by the minimum work to achieve the

minimum lean gas partial pressure, which was the partial pressure at the �nal

step in the reductive regeneration stage (Eq. 26). Using this ratio was partic-

ularly important for cases when P lean
CO2

> P feed
CO2

, which represented conditions725

where the pure outlet was being consumed instead of generated, because this

condition typically estimated WCO2
< 0, i.e. energy generation from mixing of

two gas streams. A scaling factor based on the minimum work of separation ap-

propriately changed the result to be positive, preventing these conditions from

appearing on the Pareto front.730

w0(P
lean
CO2

) =
Wmin(0.1P

feed
CO2

)

Wmin(P lean
CO2

)
(26)

To obtain the complete scaling factor, we used a logistic function whose

parameters were empirically tuned such that w ≈ 1 when P lean
CO2

< 0.1P feed
CO2

,

but w ≈ 25w0, its maximum value, when P lean
CO2

> P feed
CO2

(Eq. 27). We set

the maximum as 25w0 to ensure that conditions that failed to capture any735

CO2 would not appear on the Pareto front, but conditions that captured some

CO2 yet did not meet the typical industry target of 90% capture (0.1P feed
CO2

<

P lean
CO2

< P feed
CO2

) were only adjusted slightly, re�ecting the US DoE's caveat that

conditions that do not achieve 90% capture may still be viable if the energy

consumption is su�ciently low [10].740

w(P lean
CO2

) =
25w0(P

lean
CO2

)

1 + exp[−267(P lean
CO2

− 0.071)]
+ 1 (27)

All energies, therefore, represent the penalized energy demand of capture,
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W ∗
CO2

(Eq. 28). When producing a GP surrogate model for W ∗
CO2

, we �t the

model to log10 W
∗
CO2

because the values for W ∗
CO2

spanned multiple orders of

magnitude, and �tting to untransformed W ∗
CO2

over�t to the highest energy745

demands, leading to overall worse accuracy.

W ∗
CO2

= w(P lean
CO2

)
Wcyc

∆DIC
(28)

4.4. Maximum CO2 Flux

The CO2 �ux was estimated using the van Kevelen and Hoftijzer model of

gas absorption with chemical reaction enhancement [20, 56, 57, 90]. To use750

this model as a proxy for the total CO2 capture rate, we assumed that the

capture kinetics are limited by absorption kinetics, which has been the general

consensus in the CO2 capture literature because the homogeneous reactions

related to CO2 capture tend to be fast relative to the heterogeneous reactions

[91], and the heterogeneous redox reaction at the electrode can be controlled755

by changing the current density and electrode area. In this model, the average

CO2 �ux throughout the absorber (J) was de�ned as the product of: the CO2

concentration di�erence between the vapor-liquid interface at the gas inlet and

the bulk aqueous concentration at the liquid inlet ([CO2(aq)]V-L− [CO2(aq)]∞);

the reactor's liquid mass transfer coe�cient (kL); and a unitless enhancement760

factor (E), attributed to the reaction converting CO2 into another species and

increasing the e�ective concentration gradient at the interface. We write the

equation here in terms of carbonic acid instead of the aqueous phase of CO2 to

be consistent with our chemical model (Eq. 29).

J = ([H2CO3]V-L − [H2CO3]∞)kLE (29)765

For this calculation, the concentration of H2CO3 in the bulk was the concen-
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tration of H2CO3 at the end of reductive regeneration, while the concentration

of H2CO3 at the vapor-liquid interface was at equilibrium with the assumed �ue

gas partial pressure (0.15 atm). We assumed a reactor mass transfer coe�cient

of 0.1 cm/s based on the range of typical gas absorbers reported in the litera-770

ture [20]; we do not expect the selection of this constant to substantially change

the solution chemistry parameters that produce optimal CO2 capture perfor-

mance because any over- or underestimation would be applied universally. The

enhancement factor was calculated from the Hatta number (Ha) (Eq. 30):

Ha =

√
DCO2

k2[s]

kL

Ei = 1 +
Ds[s]

DCO2
[H2CO3]V-L

A =
Ei − E

Ei − 1

E =
Ha

√
A

tanh(Ha
√
A)

(30)775

where DCO2
was the di�usion coe�cient of CO2 in water (0.5*10-5cm2/s [20]),

k2 the second order reaction rate constant of CO2 absorption, [s] the concen-

tration of the sorbent in the bulk solution at the start of CO2 absorption, Ds

the di�usion coe�cient of the sorbent in water, and Ei the maximum enhance-

ment factor if the reaction was instantaneous. For this calculation, we assumed780

the sorbent to be OH� due to its much faster reaction rate compared to H2O

[20, 92], giving an estimated Ds = 5.2∗10−5 cm2/s [93] and k2 = 8300 (Ms)-1

[20, 61, 94, 95]. Due to the rapid exchange of protons between water and hy-

droquinone, we assumed the concentration of sorbent in solution was better

described by the sum of all proton acceptors ([OH�] +[QH�] +2[Q2�]). While785

this assumption of the total sorbent concentration likely led to an overestimated

�ux, our intention with these calculations was to estimate an idealized upper

bound rate in the same way that our energy calculations were an idealized lower
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bound. With this in mind, we deliberately overestimated the �ux because to use

only the concentration of OH� would likely represent a slight underestimation.790

The calculation of the enhancement factor was simpli�ed under speci�c limiting

conditions according to the following rules:

Ha > 10Ei : E = Ei

Ha < 0.5Ei : E =
Ha

tanh(Ha)

Ha > 0.5Ei and Ha > 3 : E = Ha

(31)

If none of these conditions were satis�ed, the enhancement factor was calcu-

lated by converting Eq. 30 into a nonlinear root �nding problem and solving it795

iteratively using a numerical Newton's method.

4.5. CO2 Capture Constraints and Targets

The goal of the CO2 capture model was to relate the solution chemistry prop-

erties to CO2 capture performance, de�ned as the simultaneous maximization

of CO2 �ux and minimization of energy demand per mole of CO2 captured. We800

speci�cally restricted our search to the parameter space occupied by quinones, a

class of molecule that undergoes a 2e�:2H+ PCET process, due to previous the-

oretical [11] and experimental [23, 49] demonstrations, as well as su�cient data

on the acid dissociation constants of the reduced forms of substituted quinones

to restrict our search to realistic domains [87]. Quinones in this dataset whose805

reduction potentials were within the electrochemical window of water had pKa,1

values in the domain of [-8.33 - 13.41] and pKa,2 values in the domain of [-6.64

- 15.34]. Given that the lowest pH that can be achieved in solution was not

likely to be much lower than the pKa of carbonic acid (6.33), we limited both

pKa values to a minimum of 2 as a conservative constraint; all compounds with810

pKa values below this should behave identically. Due to the strong correlation
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between the two pKa values (Pearson's r = 0.875), in order to sample only

realistic combinations of pKa values, we sampled the two equilibrium constants

by selecting the pKa of the �rst deprotonation event and the di�erence be-

tween the two pKa values, which fell within the domain [0 - 5.5] for 99% of815

the dataset. While this transformation occasionally led to pKa,2 values outside

of the reported domain, we found that applying this additional restriction in-

creased the computational cost without substantially changing the Pareto front.

The total concentration of quinone was bounded between 10 mM and 3 M. The

lower bound was estimated based on the lower bound concentration of redox820

species in previous electrochemical CO2 capture studies [13], while the upper

bound was set at 50% greater than the highest reported quinone solubility we

found in the literature [23] to accommodate possible future improvements. The

concentration of acid or base was capped at 15 M for practical safety should the

results be implemented, and concentrations below 10 nM were assumed to be825

e�ectively 0 due to the comparatively higher concentrations of quinone.

We were speci�cally interested in what speci�c solution chemistry proper-

ties led to performance that was comparable to or better than the �ux and

energy demands of CO2 capture from coal power plant �ue gas (15v% CO2) by

temperature-swings using 30wt% MEA in water. Experimental measurements830

of state-of-the-art pilot plants estimated that the energy demand for regenerat-

ing the MEA sorbent was approximately 110 kJ of thermal energy per mole CO2

[96]; assuming an average 35% thermal-to-electrical e�ciency of a coal power

plant [20, 21], this is approximately 38 kJe/mol C. Using the same assumptions

and model as Section 4.4 and reported constants for MEA in the literature [20],835

we estimated the �ux of CO2 capture as 22 mmol/m2s. Due to the relative

importance of energy compared to rate in the CO2 capture literature and the

fact that our energy demand calculations do not account for any resistive losses,
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we de�ned Competitive performance as having an energy demand lower than

that of capture by the MEA process while also having a �ux greater than 10%840

of that of the MEA process. We selected 10% of the �ux as the cuto� because

alternative sorbents used in industry, such as AMP, have roughly 5 to 10 times

slower second order rate constants [97, 98].

We de�ned two additional selection criteria based on single objective op-

timization: Minimum energy and Maximum �ux. Minimizing the energy was845

bounded by the same cuto� value for �ux as Competitive performance, but it

de�ned the energy demand cuto� as 22 kJe/mol C based on the target set by the

US Department of Energy [10, 51]. Maximizing the �ux searched for conditions

that had a �ux greater than that of the MEA benchmark with energy demands

<45 kJe/mol C, the maximum energy demand on the estimated Pareto front.850

To obtain our adaptively sampled dataset, we �rst obtained an initial sample

design using a coarse grid with additional random sampling (n = 52), searched

for the Pareto front (n = 100), adaptively sampled for conditions that capture

CO2 in �ue gas rather than release CO2 into it (n = 100), adaptively sampled

for the Competitive performance criteria (n = 100), then alternatingly adap-855

tively sampled for Maximum �ux and Minimum energy criteria (n = 50 each).

In this study, while it was possible to conduct the contour estimations prior to

Pareto front estimation, we �rst searched for the Pareto front to identify if any

points could meet the selection criteria we de�ned. We conducted the search

for conditions that captured CO2 instead of releasing it after searching for the860

Pareto front to discern if the sample domain could be constrained to reduce the

likelihood of sampling conditions that would rarely capture any CO2. The adap-

tive sampling procedures were repeated for both the basic and acidic conditions

separately, then the results aggregated together for analysis.
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5. Application to CO2 Capture865

The sampled data from the CO2 capture model showed a broad distribution

of possible energy and �ux results among di�erent chemical property combi-

nations (Figure 5); we have highlighted three representative points for later

analysis. We note that Figure 5 only represents 48% of the samples and a

fraction of the breadth of possible outcomes to maintain useful resolution: of870

the 904 total samples, 444 points were omitted from the �gure for insu�cient

capture (negative �ux), while 35 points were omitted for su�cient capture but

prohibitive energy demand (> 100 kJe/mol C). The range of sampled penalized

energy demands was 6.6 to 107 kJe/mol C, while the range of CO2 �uxes was

-104 to 30 mmol/m2s. Using a GP classi�er, we estimated that a solely random875

solution composition has a 76% chance of capturing some CO2 from �ue gas but

only a 27% chance to be competitive with the MEA benchmark with respect to

both energy and rate. Using the GP as a regressor, the median penalized energy

demand was 73 kJe/mol C, and the median CO2 �ux was 4.8 mmol/m2s, indi-

cating that capture would be likely, but the energy demand would be too high880

for practical implementation (Figure S7). We note that the median estimate for

the energy demand has a large uncertainty because it is far from the high den-

sity of samples near the contours of interest. From the estimated Pareto front,

it was clear that the minimum energy demand of CO2 capture by PCET-driven

pH swings can be substantially lower than that of capture by temperature-swing885

of MEA solutions [20, 96], and potentially lower than the DoE target [10, 51],

even when accounting for reported energy e�ciencies of electrochemical CO2

capture [14, 15, 16, 17, 18, 19].

The lowest among sampled energy demands was only 6.6 kJe/mol C, less

than half of the 16 kJe/mol C minimum that Jin et al. [11] calculated for the890

same exact system when only considering high hydroquinone pKa values, and
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Figure 5: The performance of PCET-based pH swings for CO2 capture due to changes in
hydroquinone pKa values, quinone concentration, and pH correction magnitude compared to
the three regions of interest. Purple line is the estimated Pareto front. Representative points
have been highlighted for later analysis.

this value approaches the limiting thermodynamic work of separation of 5.4

kJe/mol C. Given that this sample, and all samples on the Pareto front with

energy demands less than 10 kJe/mol C, had a �rst pKa less than 7 and a second

pKa less than 10, both deprotonated species should make up a substantial895

fraction of the hydroquinones at some point during the process. This highlights

the importance of including the entire set of reactions in the chemical model, as

the oft-ignored deprotonation reactions may have positive bene�ts like lowering

the energy requirement. In this case, the lower minimum energy demand was

due to the relationship between the electrode potential and the pH (Eq. 20).900

When the deprotonation reactions are included, the pH should be bu�ered,

leading to smaller di�erences between the anode and cathode potentials and

lower electrochemical work per cycle.

While the calculated energy demands were promising, few samples exceeded

the �ux of the MEA benchmark [20], although many were of a similar order of905
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magnitude. Notably, there was a sharp increase in the energy demand at nearly-

constant �ux at roughly the same �ux as MEA. Preliminary exploratory calcu-

lations indicated that this feature was caused by two factors: limited concentra-

tions and limited di�erences in the pKa values (Figure S8). The concentration of

quinone sorbent was bounded based on a literature search of quinone solubilities910

[11, 23, 49], and thus was capped at 3 M compared to the 30wt% MEA solutions

(approximately 5 M) of the temperature-swing benchmark. Other studies in the

literature showed that lower concentrations led to a lower pH at the onset of ab-

sorption and would limit the �uxes by reducing the total sorbent concentration

in the enhancement factor calculation (Eq. 30) [11]; calculations with higher915

concentrations generally shift the Pareto front towards higher �uxes. Similarly,

while we limited the di�erence between the two pKa values of the hydroquinone

to a maximum of 5.5 to capture 99% of the available dataset of measured hy-

droquinones [87], calculations that decreased the di�erence between the pKa

values shifted the near-vertical component of the Pareto front towards lower920

�uxes. Increasing the di�erence did not substantially change the location of

the Pareto front, suggesting asymptotic behavior, but �nding compounds with

greater di�erences in their pKa values would increase the fraction of the search

domain meeting the Maximum �ux criteria.

To understand what solution chemistry property combinations would pro-925

duce performance with low energy demands, high capture rates, or both, we �rst

calculated the marginals-based classi�er variable importance rankings from sin-

gle variable marginals (Figure 6). The Competitive performance and Minimum

energy criteria had the same ranking of variables, likely because conditions meet-

ing the Minimum energy criteria also met the Competitive performance criteria.930

In these two cases, the equilibrium constants were the most important, followed

by the concentrations, then the decision between adding acid or base. The equi-
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librium constant of the second deprotonation was more important than that of

the �rst deprotonation reaction, which had an importance that was similar to

the concentrations. When targeting higher �uxes, the quinone concentration be-935

came the most important variable, consistent with our preliminary exploratory

calculations (Figure S8). Apart from this shift in importance of the quinone

concentration, the Maximum �ux criteria ranked the variables identically to the

other criteria. These rankings were highly sensitive to the bounds that we set

for each variable in our search (Section 4.5). For instance, decreasing the lower940

bound of the concentration could have increased its relative importance by in-

cluding many points where capture was impossible, resulting in a lower average

variance of other variables and increasing its importance (Eq. 7). However,

the bounds that we set were based on available descriptions of real systems or

data of candidate compounds, and we do not believe these �ndings to be biased945

by any desire to in�ate the importance of any particular variable. In fact, by

setting the lower bound of the pKa values at 2 instead of the lower bounds from

the dataset of -8.33 and -6.64 for pKa,1 and pKa,2, respectively, we decreased

the importance of the pKa values, yet they were still highly ranked variables,

suggesting that our choices had limited impact on the ordinal rankings.950

To understand why the quinone concentration was more important for high

�uxes but less important for the other selection criteria, we analyzed the single

variable marginals. These marginals were calculated both over the full set of

other variable possibilities, X−i, as well as over a subset X∗
−i ∈ X−i where

all variables xj more important than variable xi were restricted to a suggested955

domain but all variables xk less important than variable xi retained their full

search domain (Eq. 32). We de�ne P ∗|xi as the marginalization over this

restricted subset X∗
−i and de�ne the suggested domain as the set xi values

for which P ∗|xi is greater than a 1:3 weighted average of the minimum and
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Figure 6: Importance ranking of solution composition variables for being (top) competitive
with the MEA benchmark with regards to both its �ux and energy demand, (middle) having
a faster �ux than the benchmark, or (bottom) meeting the DoE energy target. Logarithms
are all base 10. [Q] = concentration of quinone. log[HX] or log[MOH] = net concentration of
additional base or acid. +HX vs. +MOH = binary decision of net acid or base addition.

maximum P ∗|xi. By de�nition, for the most important variable xn, P ∗|xn960

is the same as P |xn, leading to a sequential determination of the suggested

domains for each variable in the order of their importance. We used a suggested

domain rather than simply constraining to the singular optimal values of more

important xj to account for both noise in the Monte Carlo estimate of P |xi

and the fact that it is unlikely that a compound exists with all the optimal965

properties exactly.

P ∗|x∗
j ≥ 0.25min(P ∗|xj) + 0.75max(P ∗|xj) (32)

For the Competitive performance (Figure 7) and Minimum energy (Figure

S9) criteria, the concentration of quinone had a minimum threshold value of

approximately 30 mM, below which the probability of meeting the criteria was970

nearly 0 with a low variance, but above which the probability was nearly con-

44



Table 1: Suggested solution chemistry property domain (and optimum) for PCET-based pH
swing CO2 capture, from most to least important the Competitive performance criteria.

Competitive performance Minimum energy Maximum �ux
pKa,2 9.12 - 11.88 9.12 - 11.65 14.64 - 19.00

(10.73) (10.27) (16.70)
pKa,1 4.85 - 9.20 4.71 - 9.05 10.55 - 12.67

(4.85) (4.92) (12.26)
Quinone 37 mM - 3.2 M 41 mM - 2.3 M 1.9 M - 3.2 M

concentration (420 mM) (260 mM) (2.9 M)
Acid or base 100 nM - 21 mM 78 nM - 9.9 mM 1.4 µM - 650 mM
concentration (810 µM) (710 µM) (55 mM)

stant with a moderate variance. For the Maximum �ux criteria (Figure S10),

this pro�le was the same shape, but the threshold concentration for nonzero

probability and nonzero variance increased to nearly 1 M, leading to a lower

average variance and greater importance. Regardless of the selection criteria,975

the peak in the probability was >100 mM (Table 1), although the shape of the

marginals suggests there was a negligible di�erence between this peak probabil-

ity and that of the upper bound concentration of 3 M. Restricting the integration

to only the suggested pKa domains rather than the full pKa domains only am-

pli�ed the di�erence between the zero and nonzero probabilities in the way that980

we would expect when we exclude low likelihood pKa values; it did not change

the concentration where the probability has the step increase.

Like the quinone concentration, both pKa marginals had a speci�ed value

below which the probability and variance were both negligible. Consistent with

our hypothesis based on other pH-swing driven systems [13], both pKa marginals985

showed an optimum that we believe to be the result of maximizing the use

of the pH bu�ering capacity. However, the marginals revealed an important

asymmetry to this peak, where pKa values that were greater than this optimal

value were more likely to produce desirable results than lower pKa values. This

was likely because increasing the pKa values led to a higher maximum solution990

pH, but the relationship between maximum solution pH and pKa appeared
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Figure 7: Single variable marginalizations of the four continuous solution chemistry properties
of interest. Marginals are conditioned on the full domain of less important variables and
either the full or optimal domain of the more important variables (rows are from most to least
important). Shaded region is the standard error of the mean (n = 1,500).

asymptotic [11], leading to a negligible di�erence in performance among the

highest pKa values.

The importance of the relative di�erence between the pKa values was high-

lighted in the change in the pKa,1 marginals before and after conditioning on995

suggested pKa,2 domain. The upper bound of the suggested domain for pKa,2

was lower than the full domain by multiple pH units (Table 1), and the peak

in the optimal pKa,1 decreases by a similar amount when conditioning on the

suggested pKa,2 domain. This was most notable for the Competitive perfor-

mance and Minimum energy criteria. For the Maximum �ux criteria, the upper1000
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bound of the suggested domain for pKa,2 was higher, so restricting the pKa,1

marginals over the suggested domain had less e�ect (Figure S10).

Concentrations of the additional acid or base generally show nonzero prob-

abilities for moderate concentrations, and high or low concentrations had low

likelihoods of meeting any selection criteria. The fact that the extremes of acid1005

or base addition led to a negligible likelihood indicated that large deviations

from an ideal operating pH in either direction led to worse performance. How-

ever, for the nonzero moderate concentrations, these marginals were relatively

�at, indicating that this variable was forgiving compared to the other variables

of interest. We note, however, that the suggested concentration for this species1010

is often in the µM to mM range (Table 1). Combined with its position as the

least important continuous variable, we interpret the amount of net acid or base

as a tuning parameter for the case when trade-o�s must be made among the

pKa values and solubilities during quinone selection.

Overall, the optima in the pKa and acid or base concentration marginals1015

indicated an optimal pH window of operation and suggested that the process

is not well described as a "pH swing" process. Describing the process as being

driven by pH swings suggests it would produce similar CO2 capture performance

for either the same change in pH (e.g., 4 to 7 versus 7 to 10) or the same change

in proton concentration (e.g., 1 to 2 mM versus 4 to 5 mM). Instead, the presence1020

of optima at intermediate values for these three variables suggested that the pH

window itself is of importance, and we argue that the process is therefore better

described by changing the pH bu�er capacity of the system [13].

A closer look at the binary decision of whether the pH adjustment should

be acidic or basic reveals a notable shortcoming to our methodology (Figure1025

S11). This variable not only had limited quantitative impact as noted by its

low importance ranking, but also the suggested domains for adding acid, base, or
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randomly assigning the pH adjustment direction di�ered by less than 5%, allow-

ing us to simplify our reporting of the suggested domains assuming a randomly

assigned pH adjustment direction (Table 1). Qualitatively, however, there was1030

a notable di�erence among adding acid or base for the Maximum �ux selection

criteria (Figure S10), despite its low relative importance. In other words, vari-

ables with low relative importance in the ranking could still have a noticeable

impact. While we could have included an uncorrelated reference variable to

determine if a variable has any quanti�able impact [99], there is no consensus1035

of how large of a di�erence in the importance metric is necessary to discern

whether two variables are similar in their impacts or if one is more important

than the other. This, however, is a common problem among many variable

importance measures, where decisions often come from user decisions of what

is "good enough" [100].1040

This shortcoming may explain the change to the variable importance rank-

ing when remapped onto relative variables: pKa,1, the pKa di�erence, the total

quinone concentration, and the ratio of HX or MOH concentration to quinone

concentration. This was the set of variables that we used during the sampling

process because it removed correlations between input variables, converting the1045

sample space to a hypercube. While our exploratory calculations suggested that

the di�erence in the pKa values impacted the predicted �ux, the importance

ranking indicated that the pKa di�erence was lowly ranked for all selection

criteria (Figure S12). As evident from the importance of the pH adjustment

direction, a low ordinal ranking is not equivalent to having no impact, although1050

its ranking less than the quinone concentration in all selection criteria suggests

a decrease in the importance of at least one pKa due to this transformation

of variables. At present, we are unaware of any research on how remapping or

transforming variables should be standardized for consistency in variable im-
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portance ranking. At a glance, we think this problem has the potential to be1055

abused to con�rm biases in a similar way to data dredging [101, 102], so we ad-

vise scrutiny when seeing and using importance rankings without transparency

of assumptions and motivations. Our approach to limiting bias was to de�ne

the variables as they would be measured or reported in practice, as those are

the most easily interpreted and used.1060

While the single variable marginals were useful in understanding how the

system behaved at a macro-level, they were not helpful in understanding why

the system performed better or worse under those conditions beyond specu-

lation. To glean this information, we selected 3 speci�c points for a closer

inspection of the entire process cycle (Figure 5): the peak predictions from the1065

Competitive performance ("Peak prediction") and Maximum �ux ("High �ux")

criteria (Table 1), and a point that had an intermediate energy demand but

low �ux ("Poor performance," pKa,1 = 4.92, pKa,2 = 9.49, {Q}tot = 23 mM,

{HX} = 6.6 mM). These three points represented the span of low, moderate,

and high energy demand and �ux but combined in a way such that we could1070

interpret e�ects on energy and �ux separately. We speci�cally looked at two

pairs of variables over the 4-stage cycle: (1 ) electrode potential and fraction

of reduced quinone and (2 ) solution pH and total DIC (Figure 8). The area

contained within the electrode potential-fraction of reduced quinone curves was

proportional to the electrochemical work required per cycle, while the solution1075

pH-DIC plots represented the driver and result of CO2 removal from the gas

phase, respectively.

The most obvious di�erence among these three points was in the energy

consumed per cycle: the High �ux prediction required the most energy per

cycle, followed by Peak prediction and Poor performance examples. This order1080

was slightly unexpected because the Poor performance example had a greater
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Figure 8: Process cycles of representative simulations. (top) Electrode potential changes as
quinone is reduced or oxidized. (bottom) Bulk solution pH as the concentration of dissolved
inorganic carbon changes. Quinone concentrations: High �ux = 2.7 M; Peak performance =
51 mM; Poor performance = 23 mM.

energy demand than the Peak prediction, but this can be explained by the low

CO2 captured per cycle: the Poor performance example only captured 9 mM

CO2 per cycle compared to the 2.5 M from the Peak prediction. As a result,

while the energy demand per cycle was lower for the Poor performance example,1085

its normalized energy demand per mole of CO2 was greater. While the High

�ux prediction captured even more CO2 per cycle at approximately 5 M, it

was insu�cient to counteract the increase in energy demand per cycle, resulting

in the highest energy demand among the three points. The small ∆DIC of

the Poor performance example can be attributed to the low concentration of1090
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quinone (23 mM).

The rationale for these energy demands per cycle can be explained using

Eq. 20 and the pH changes over the course of the process. Generally, the anode

and cathode potentials will be closer together, and thus the energy demand per

cycle lower, if the pH of the oxidation and reduction stages are similar. Without1095

any CO2 changes in the system, there should be no hysteresis, but the presence

or absence of acidity from carbonic acid caused the two electrode potentials to

di�er. Minimizing the pH change of a single half-cycle can be achieved if the

pH was near the hydroquinone pKa values and thus within the bu�er regime of

the hydroquinone. For the High �ux point, the hydroquinone pKa values were1100

comparatively high, helping drive the operating pH higher and increasing the

∆DIC. While this may appear to be bene�cial by reducing the number of cycles

to capture the same amount of CO2, this would also increase the acidi�cation

from CO2 and drive the pH of the oxidation stage down. Therefore, for the

High �ux prediction, due to both the decrease in pH and high DIC compared1105

to the total quinone concentration (3 M), while the reduction stage was largely

bu�ered by the QH2/QH
� reaction (pKa = 11.2), the oxidation stage was tran-

sitions from being bu�ered by the HCO �
3 /CO

2�
3 reaction (pKa = 10.33) to the

H2CO3/HCO
�
3 reaction (pKa = 6.33) as oxidation progressed. In contrast, the

Peak prediction and Poor performance example had a much smaller decrease in1110

pH after the CO2 absorption stage, keeping the anode and cathode pH closer

together. This rationalized our �nding that there was a peak in both pKa

marginals: there is an optimal domain of pKa values that represents the bal-

ance between having a su�ciently high pKa to capture large quantities of CO2,

but a low enough pKa that the pH can be bu�ered by hydroquinone during op-1115

eration. From our perspective of pH bu�ering, rather than simply pH swings, it

makes sense that the suggested domains of the pKa values are roughly centered
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around the pKa values of the H2CO3/HCO
�
3 (6.33) and HCO �

3 /CO
2�
3 (10.33)

reactions (Table 1). The similarity would mean that regardless of whether the

system has high or low DIC, the dominant bu�er in solution has a similar pKa1120

value, keeping the anode and cathode pH pro�les similar regardless of DIC.

Consistent with our marginalizations, the �ux was optimized by higher pKa

values and quinone concentrations, as these two variables contribute to higher

OH� concentrations and thus faster reaction rates. As previously reported in

the literature [11], both higher pKa values and higher concentrations led to1125

higher pHs at the start of CO2 absorption. While those authors interpreted

this in the context of maximizing CO2 capture per cycle, this will also increase

the sorbent (OH�) concentration, and thus capture rate (Eq. 30). Additionally,

these variables appeared to cause to a lower minimum P lean
CO2

: 10-13 atm for the

High �ux prediction compared to 10-5 and 10-2 for the Peak prediction and Poor1130

performance example, respectively. Consequently, the concentration gradient

term in Eq. 29 increased as well, leading to a slightly greater �ux. However,

because this term is a di�erence between the surface and bulk concentrations,

the e�ect is asymptotic, so the change in sorbent concentration is necessary for

a complete explanation of the increase in rate.1135

Having developed our understanding of the CO2 capture model, we used

the trained GP classi�er to screen a substituted hydroquinone pKa dataset for

quinones that would produce a process whose performance was competitive with

the MEA benchmark (Table SI) [87]. Few quinones in the dataset had reported

solubilities in water, and none had published solubilities for the highly conduc-1140

tive, high ionic strength solutions one would use in an electrochemical process,

so for this calculation, we marginalized over the limits of quinone and acid/base

concentrations that we applied in our search. As a result, these probabilities

are likely overestimates, and we only use them to provide insight into chemical
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trends. Of the 127 compounds, 84 were more likely to be competitive with the1145

MEA benchmark than not. We estimate that the most promising molecule,

2,3-bis(dimethylamino)-p-benzoquinone, could have lower energy demands and

greater �uxes than the MEA benchmark in 85% of solution compositions in the

search domain with its pKa values of 9.43 and 11.11.

Figure 9: Application of the adaptive-sampling re�ned GP classi�er to a dataset of substituted
hydroquinone pKa values [87]. Probabilities are after marginalization across the training
domain of concentrations due to lack of solubility information.

To determine if there were any patterns related to the properties of the1150

functional group substitutions, we labeled the probabilities with the quinone's

functional groups and ranked them according to their electronic substituent ef-

fects for aromatic systems from the most electron donating to most electron

withdrawing (Figure 9) [103]. As a �rst pass on this analysis, quinones with

multiple substitutions had their probabilities included for each substitution,1155

e.g., a quinone with two halide substitutions ( X) and an amine ( NH2) con-

tributes twice to the dataset of halides and once to the dataset of amines.
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In general, functional groups that were more electron donating had higher

probabilities of being competitive with the MEA benchmark. We believe this

was
✿✿✿✿✿✿✿
electron

✿✿✿✿✿✿✿✿
donating

✿✿✿✿✿✿
groups

✿✿✿✿✿✿✿
almost

✿✿✿✿✿✿
always

✿✿✿✿✿✿✿✿
predicted

✿✿✿✿
low

✿✿✿✿✿✿✿✿✿✿✿
energy-high

✿✿✿✿
rate

✿✿✿✿
CO21160

✿✿✿✿✿✿✿
capture

✿✿✿✿✿✿✿✿✿✿✿
performance,

✿✿✿✿✿✿✿✿
whereas

✿✿✿✿✿✿✿
electron

✿✿✿✿✿✿✿✿✿✿✿✿
withdrawing

✿✿✿✿✿✿
groups

✿✿✿✿
had

✿✿
a

✿✿✿✿
wide

✿✿✿✿✿✿✿✿
variance

✿✿
in

✿✿✿✿
their

✿✿✿✿✿✿✿✿✿
likelihood

✿✿
of

✿✿✿✿✿✿✿✿✿
predicting

✿✿✿✿✿
both

✿✿✿
low

✿✿✿✿✿✿✿
energy

✿✿✿✿✿✿✿✿
demands

✿✿✿
and

✿✿✿✿✿
high

✿✿✿✿✿✿✿
capture

✿✿✿✿✿
rates.

✿✿✿✿
This

✿✿✿✿✿
trend

✿✿✿✿✿✿✿✿
occurred

✿
because electron donating groups will increase the

✿✿✿✿
tend

✿✿
to

✿✿✿✿✿✿✿
increase

✿✿✿
the

✿✿✿✿✿
pKa✿✿✿✿✿✿

values
✿✿✿
by

✿✿✿✿✿✿✿✿✿
increasing

✿✿✿✿
the

✿
electron density around the oxygen

atomsof the hydroquinone, thereby increasing the attraction of the oxygen atom1165

to the proton, which would increase the
✿
,
✿✿✿✿✿✿✿✿
whereas

✿✿✿✿✿✿✿
electron

✿✿✿✿✿✿✿✿✿✿✿✿
withdrawing

✿✿✿✿✿✿
groups

✿✿
do

✿✿✿✿
the

✿✿✿✿✿✿✿✿
opposite.

✿✿✿✿✿✿✿
Given

✿✿✿✿
that

✿✿✿✿
the

✿✿✿✿✿
single

✿✿✿✿✿✿✿✿
variable

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
marginalization

✿✿✿✿
for

✿✿✿✿✿
both

✿✿✿✿
pKa

✿✿✿✿✿
values

✿✿✿✿✿
look

✿✿✿✿✿✿✿
roughly

✿✿✿✿
like

✿✿✿✿
step

✿✿✿✿✿✿✿✿✿
functions

✿✿✿✿✿
with

✿✿✿
an

✿✿✿✿✿✿✿✿✿
overshoot

✿✿✿
at

✿✿✿
the

✿✿✿✿✿
step

✿✿✿✿✿✿✿
(Figure

✿✿
7),

✿✿✿✿✿✿✿✿✿
variation

✿✿
in

✿✿✿
the

✿✿✿✿✿✿✿✿
strength

✿✿✿✿
and

✿✿✿✿✿✿✿✿
number

✿✿
of

✿✿✿✿✿✿✿
electron

✿✿✿✿✿✿✿✿✿
donating

✿✿✿✿✿✿✿
groups,

✿✿✿✿
and

✿✿✿✿
thus

✿✿✿✿✿✿✿✿
variation

✿✿
in

✿✿✿
its

✿✿✿✿✿✿
impact

✿✿✿
on

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿✿
magnitude

✿✿
of

✿✿✿
the

✿✿✿✿✿
pKa ✿✿✿✿✿✿✿✿

increase,
✿✿✿✿
was

✿✿✿
not

✿✿✿✿✿✿
likely

✿✿
to1170

✿✿✿✿
show

✿✿✿✿✿✿
much

✿✿✿✿✿✿✿✿
variance

✿✿
in

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿✿
probability,

✿✿✿✿✿✿✿✿✿✿✿
particularly

✿✿✿✿✿✿✿✿
because

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿✿
unsubstituted

✿
p
✿✿✿✿✿✿✿✿✿✿✿✿✿
-benzoquinone

✿✿✿
has

✿
pKa values ✿✿✿✿

close
✿✿
to

✿✿✿✿
the

✿✿✿✿✿✿✿✿
optimum

✿✿✿✿✿
(9.85

✿✿✿✿
and

✿✿✿✿✿
11.4). However,

✿✿✿✿✿✿✿✿
variation

✿✿
in

✿✿✿✿
the

✿✿✿✿✿✿✿✿
strength

✿✿✿✿
and

✿✿✿✿✿✿✿
number

✿✿✿
of

✿✿✿
the

✿
electron withdrawing groupswere

not necessarily a detriment, as there were compounds with electron withdrawing

groups that had high probabilities (> 0.80) of being competitive with the1175

MEA benchmark, as did unsubstituted p-benzoquinone. Additionally, electron

withdrawing groups were found to increase the reduction potentials of the

quinones (Figure S13), and thus these quinones would be more resistant to

oxidation in the presence of O2 gas, a factor that we did not include in the

CO2 capture model. A third objective function relating standard reduction1180

potential to stability would need to be included in order to discern how, if

at all, stability would a�ect the selection of the sorbent molecule,
✿✿✿✿
and

✿✿✿✿✿
thus

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿
magnitude

✿✿
of
✿✿
a
✿✿✿✿✿
pKa✿✿✿✿✿✿

value
✿✿✿✿✿✿✿✿
decrease,

✿✿✿✿✿✿
would

✿✿✿✿✿✿
cause

✿✿✿✿✿
large

✿✿✿✿✿✿✿✿✿✿
variations

✿✿
in

✿✿✿✿
the

✿✿✿✿✿✿✿✿
likelihood

✿✿✿
of

✿✿✿✿✿✿✿
meeting

✿✿✿✿✿
both

✿✿✿✿
the

✿✿✿✿✿✿
energy

✿✿✿✿
and

✿✿✿✿
rate

✿✿✿✿✿✿✿✿
criteria,

✿✿
as

✿✿✿
it

✿✿✿✿✿
would

✿✿✿✿✿
span

✿✿✿✿✿
from
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✿✿✿
this

✿✿✿✿✿✿✿✿
baseline

✿✿✿✿✿✿✿✿✿✿
probability

✿✿✿✿✿
near

✿✿✿
the

✿✿✿✿✿
peak

✿✿✿✿✿
down

✿✿✿
to

✿✿✿✿
zero.

✿✿✿✿✿
The

✿✿✿✿
lack

✿✿
of

✿✿
a
✿✿✿✿✿
clear

✿✿✿✿✿
trend1185

✿✿✿✿
with

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿
magnitude

✿✿
of

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿
substituent

✿✿✿✿✿✿
e�ect,

✿✿✿✿✿✿
where

✿✿✿✿✿✿✿
stronger

✿✿✿✿✿✿✿✿✿✿✿✿
withdrawing

✿✿✿✿✿✿
groups

✿✿
in

✿✿✿✿✿✿✿✿✿
particular

✿✿✿✿
still

✿✿✿✿✿✿✿
showed

✿✿✿✿
high

✿✿✿✿✿✿✿✿✿✿✿✿
probabilities,

✿✿✿✿
was

✿✿✿✿✿✿
largely

✿✿✿✿✿✿✿✿
because

✿✿
we

✿✿✿✿✿
only

✿✿✿✿✿✿
looked

✿✿
at

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
single-substituent

✿✿✿✿✿✿✿
e�ects,

✿✿✿✿
and

✿✿✿✿
thus

✿✿✿
do

✿✿✿✿
not

✿✿✿✿✿✿✿
include

✿✿✿✿✿✿✿✿✿
concerted

✿✿✿
or

✿✿✿✿✿✿✿✿✿✿
con�icting

✿✿✿✿✿
e�ects

✿✿✿
of

✿✿✿✿✿✿✿✿
multiple

✿✿✿✿✿✿✿✿✿✿
substituent

✿✿✿✿✿✿
groups.

While the dataset could be analyzed beyond single substitution e�ects, we1190

did not conduct further analyses because our conclusions were substantially bi-

ased by the small dataset size. For instance, a preliminary analysis of the num-

ber of substitutions indicated that as the number of substitutions increased,

the median probability of acceptance decreased, but there were approximately

three times as many compounds in the dataset with two substitutions than1195

compounds with any other number of substitutions. As a result, the median

probabilities of mono-, tri-, or tetra-substituted compounds could have been

arti�cially skewed by the selection of candidates in the dataset and may not

have been a true re�ection of the e�ect of the number of substitutions. We

also caution using the list of compounds (Table S1) as a de�nitive ranking of1200

feasibility due to the lack of solubility data in concentrated electrolytes, which

would substantially alter these probabilities if the solubility limit is close to the

threshold for CO2 capture. With a wider set of candidate compounds and dataon

solubility in concentrated electrolyte solutions
✿✿✿✿✿✿✿✿✿
additional

✿✿✿✿
data, we would be able

to make more concrete suggestions for solution compositions that could be com-1205

petitive with capture by temperature-swings of MEA solutions.
✿✿✿✿✿
These

✿✿✿✿✿
data

✿✿✿✿✿
could

✿✿✿✿✿✿✿
include,

✿✿✿
for

✿✿✿✿✿✿✿✿✿
instance,

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿✿
measurements

✿✿
of

✿✿✿✿
key

✿✿✿✿✿✿✿✿✿✿
properties,

✿✿✿✿
e.g.

✿✿✿✿✿✿✿✿
stability

✿✿
to

✿✿✿✿✿✿✿✿
common

✿✿✿✿✿✿✿✿
oxidants

✿✿✿✿✿
and

✿✿✿✿✿✿✿
solution

✿✿✿✿✿✿✿✿✿
viscosity,

✿✿✿
as

✿✿✿✿
well

✿✿✿
as

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿
inclusion

✿✿
of

✿✿✿✿✿
data

✿✿
on

✿✿✿✿✿✿✿✿✿✿✿
compounds

✿✿✿✿
with

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
solubility-enhancing

✿✿✿✿✿✿✿✿✿✿
substituent

✿✿✿✿✿✿✿
groups

✿✿✿✿✿
[104].

✿✿✿✿✿
We

✿✿✿✿✿✿
expect

✿✿✿✿✿✿✿
stability

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
considerations,

✿✿✿
for

✿✿✿✿✿✿✿✿✿
instance,

✿✿✿
to

✿✿✿✿
have

✿✿
a
✿✿✿✿✿✿
large

✿✿✿✿✿✿
impact

✿✿✿
on

✿✿✿✿
our

✿✿✿✿✿✿✿✿
analysis1210

✿✿✿✿✿
given

✿✿✿✿
that

✿✿✿✿✿✿✿✿
electron

✿✿✿✿✿✿✿✿✿
donating

✿✿✿✿✿✿
groups

✿✿✿✿✿
lead

✿✿✿
to

✿✿✿✿✿
more

✿✿✿✿✿✿✿✿✿
favorable

✿✿✿✿✿
pKa ✿✿✿✿✿✿

values
✿✿✿✿
but
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✿✿✿
also

✿✿✿✿✿✿
lower

✿✿✿✿✿✿✿✿✿
reduction

✿✿✿✿✿✿✿✿✿✿
potentials

✿✿✿✿✿✿✿
(Figure

✿✿✿✿✿
S13),

✿✿✿✿✿
and

✿✿✿✿
thus

✿✿✿✿✿✿✿
should

✿✿✿
be

✿✿✿✿
less

✿✿✿✿✿✿
stable

✿✿
in

✿✿✿
the

✿✿✿✿✿✿✿✿
presence

✿✿✿
of

✿✿✿✿
O2. ✿✿

A
✿✿✿✿✿
third

✿✿✿✿✿✿✿✿✿
objective

✿✿✿✿✿✿✿✿
function

✿✿✿✿✿✿✿
relating

✿✿✿✿✿✿✿✿✿
standard

✿✿✿✿✿✿✿✿✿
reduction

✿✿✿✿✿✿✿✿
potential

✿✿
to

✿✿✿✿✿✿✿✿
stability

✿✿✿✿✿✿
would

✿✿✿✿✿
need

✿✿
to

✿✿✿
be

✿✿✿✿✿✿✿✿
included

✿✿✿
in

✿✿✿✿✿
order

✿✿✿
to

✿✿✿✿✿✿✿
discern

✿✿✿✿
how,

✿✿
if
✿✿✿
at

✿✿✿
all,

✿✿✿✿✿✿✿✿
stability

✿✿✿✿✿✿
would

✿✿✿✿✿
a�ect

✿✿✿✿
the

✿✿✿✿✿✿✿✿
selection

✿✿
of

✿✿✿✿
the

✿✿✿✿✿✿✿
sorbent

✿✿✿✿✿✿✿✿✿
molecule.

✿✿✿✿✿
The

✿✿✿✿✿✿
power

✿✿
of1215

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿✿
multiobjective

✿✿✿✿✿✿✿✿
approach

✿✿✿✿✿✿✿✿✿
described

✿✿✿
in

✿✿✿✿
this

✿✿✿✿
work

✿✿
is
✿✿✿✿✿
that

✿✿
it

✿✿✿
can

✿✿✿✿✿✿✿✿✿✿✿✿✿
accommodate

✿✿✿✿
these

✿✿✿✿✿✿✿✿✿✿
additional

✿✿✿✿✿✿✿✿
objective

✿✿✿✿✿✿✿✿✿
functions

✿✿
by

✿✿✿✿✿✿✿✿✿✿
considering

✿✿✿
all

✿✿✿✿✿✿✿✿✿
objectives

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
simultaneously,

✿✿✿✿✿✿✿✿✿
preventing

✿✿✿✿
any

✿✿✿✿✿✿✿✿✿✿✿✿✿
overcorrection

✿✿✿✿✿✿
caused

✿✿✿
by

✿
a
✿✿✿✿✿✿
single

✿✿✿✿✿✿✿✿
objective

✿✿✿✿
and

✿✿✿✿✿✿✿✿✿
describing

✿✿✿✿✿✿
where

✿✿✿
and

✿✿✿✿
how

✿✿✿✿✿✿✿✿✿
trade-o�s

✿✿✿✿✿✿✿
among

✿✿✿✿✿✿✿✿✿
objectives

✿✿✿✿✿
arise.

✿

6. Broader Implications1220

This paper provided foundational work in two areas: (1 ) experiment designs

for supervised classi�er re�nement and (2 ) CO2 capture driven by PCET re-

actions. In the context of re�ning a supervised classi�er, our work described

a new adaptive sampling method that can improve binary classi�cation based

on a continuous output and a prede�ned threshold by sampling points that will1225

improve the precision of the boundary between the two classes. The sampling

process accomplished this by prioritizing points that had both a small distance

to the contour of interest and a high uncertainty in that estimate, balancing ex-

ploitation of known information with exploration of under-sampled regions of the

domain. Importantly, our approach was generalized to be able to handle classi-1230

�cation de�nitions based on multiple overlapping criteria, which often leads to a

piecewise contour. This can be applied to numerous engineering problems where

there are speci�c targets, such as designing for reliability, satisfying design con-

straints, or maintaining regulatory compliance [28, 29, 30, 31, 32, 45, 46, 47, 105].

In addition, we developed a framework for interpreting the classi�er to assist1235

engineering design by suggesting conditions that will achieve those targets with

the greatest estimated probability. In case the suggested conditions cannot be
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achieved due to trade-o�s between speci�c variables, we also developed a metric

for comparing the relative importance of each variable to indicate which should

be prioritized in the trade-o�.1240

In the context of CO2 capture driven by PCET electrochemical reactions, we

identi�ed that the hydroquinone pKa values are the most important variables

to consider when selecting a compound to have CO2 capture performance com-

petitive with the MEA benchmark. While quinone concentration, and by proxy

the quinone solubility limit, was important, the concentration must only be at1245

least 50 mM to be comparable to the MEA benchmark in terms of both energy

demand and CO2 capture rate; a high concentration is only necessary if seeking

to design a process with higher CO2 capture rates than the MEA benchmark.

The optima in the pKa marginals suggested that the conceptual mechanistic

model of CO2 capture should be framed in terms of changing the pH bu�er1250

capacity of the solution by transformation between the bu�ering hydroquinone

and non-bu�ering quinone forms rather than simply framing the mechanism as

a change in pH or proton concentration. This interpretation properly accounts

for how to balance the amount of CO2 captured per cycle and the energy de-

mand per cycle, which are both highly dependent on the exact operating pH1255

window, in order to minimize the energy per mole of CO2 captured. While

we constrained our training dataset and search domain based on existing data

on substituted p-benzoquinones, the suggested equilibrium constants and con-

centrations that we found in this study are likely to be applicable to other

compounds that undergo a 2-electron, 2-proton PCET reaction such as naph-1260

thoquinones, anthroquinones, and some �avins. When we applied our model

to reported pKa data of substituted p-benzoquinones, we found that electron

donating groups make the molecule more likely to perform competitively with

the MEA benchmark in both energy demand and capture rate, although the
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presence of an electron withdrawing group was not necessarily detrimental.1265

Beyond just PCET-based pH swings, this framework for analyzing an elec-

trochemical CO2 capture process could be applied to other electrochemical CO2

capture mechanisms such as the EMAR process [55]
✿✿✿✿✿✿✿✿✿✿✿
[55, 106, 107], ion selec-

tive membrane-based separations [22, 50, 51], or redox state-dependent sorbents

[52, 53, 54]. Doing so would not only optimize those solution compositions, but1270

it will also provide a means of comparing the thermodynamics and kinetics of the

di�erent electrochemical approaches based on their fundamental limits rather

than trying to compare them based on potentially incomparable experiment de-

signs. This would give engineers an indication of which speci�c electrochemical

approach would be best for their application and potentially accelerate elec-1275

trochemical CO2 capture's implementation into the market, ultimately helping

curb the e�ects of climate change.
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