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We investigate the reconfigurability and tunability of the tessellation of Tachi-Miura Polyhedron (TMP), an
origami-based cellular structure composed of bellows-like unit cells. Lattice-based three-dimensional mechanical
metamaterials have recently received significant scientific interest due to their superior and unique mechanical
performance compared to conventional materials. However, it is often challenging to achieve tunability
and reconfigurability from these metamaterials, since their geometry and functionality tend to be pre-
determined in the design and fabrication stage. Here, we utilize TMP’s highly versatile phase-transforming and
tessellating capabilities to design reconfigurable metamaterial architecture with tunable mechanical properties.
The theoretical analyses and experiments with heat processing discover the wide range of the in-situ tunability of
the metamaterial - specifically orders of magnitude change in effective density, Young’s modulus, and Poisson’s
ratio — after its fabrication within the elastic deformation regime. We also witness a rather unique behavior of
the inverse correlation between effective density and stiffness. This mechanical platform paves the way to design

the metamaterial that can actively adapt to various external environments.

1. Introduction

Mechanical metamaterials offer unprecedented mechanical proper-
ties and rich functionalities due to the plentiful design freedom avail-
able within their architecture [1-3]. Among a variety of approaches to
constructing metamaterials with such unique properties, lattice-based
mechanical metamaterials are emerging concepts [4-6]. Their volumi-
nous nature and extreme mechanical properties have the possibility to
work as three-dimensional constructional elements of the mechanical
system while achieving superior performance compared to conventional
materials. Examples include metamaterial with negative elastic constant
[4], labyrinthine acoustic metamaterials to slow down sound propa-
gation [5], and 3D-printed lattices with both lightness and stiffness
in an extreme range [6]. While their unique properties can be lever-
aged in multiple fields, such as mechanical, aerospace, and biomedical
engineering, these metamaterials have challenges in terms of cost of
manufacturing and post-fabrication tunability due to their complicated
and unadjustable architecture.

To overcome these obstacles, various designs have been introduced
in the realm of flexible mechanical metamaterials [7] and origami-
inspired structures [8]. Examples include programmable flexible me-
chanical metamaterials with adjustable Poisson’s ratio, Young’s mod-
ulus, or negative thermal expansion coefficient [9-11], origami tes-
sellation by Resch-pattern [12,13], reprogrammable origami mechan-
ical metamaterials [14], stiff yet reconfigurable origami tubes [15],
shape-changing prismatic architected materials [16], and multistable
origami at metre scale [17]. However, these studies also present sev-
eral limitations. First, certain designs are not suitable for constructing
three-dimensional, space-filling, and voluminous metamaterials due to
their planar configuration [10,12-14]. Second, mechanisms reliant on
surface-contact locking, non-rigid panel assumptions, or discrete mor-
phing stages make it difficult to achieve an accurate prediction and
continuous tuning of mechanical properties [9,13-17]. To tackle these
issues, we aim to develop an engineering platform with the following
features: (i) extensive and continuous design space, and post-fabrication
tunability for three key mechanical properties — effective density,
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Fig. 1. A unit cell of Tachi-Miura Polyhedron. a, the definition of crease patterns and geometrical parameters of two flat-foldable sheets composing the TMP. Red
and blue lines represent the main (horizontal) and sub (inclined) crease lines, respectively. Grey-colored areas represent the bonding region to construct a unit cell.
b, a unit cell of Tachi-Miura Polyhedron composed of two origami sheets. Dimensions B, W, and H correspond to the width, breadth, and height of the structure,
respectively. The inset in b is a Miura-folding unit cell that corresponds to the gray area in b. ¢, folding process of a TMP unit cell. Each picture corresponds to

folding angles 6,, =0°, 6,, = 30°, ,, = 60°, and 6,, =90°, from left to right.
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Poisson’s ratio, and Young’s modulus, (ii) the ability to easily predict
these properties through analytical methods, and (iii) an efficient and
straightforward fabrication of multi-cell 3D structures by simply joining
layers, eliminating the need for cell-by-cell assembly.

We introduce the Tachi-Miura Polyhedron (TMP) as a promising
platform to achieve tunability in three-dimensional mechanical meta-
materials after the fabrication phase. TMP is an origami-based mechani-
cal metamaterial characterized by bellows-like 3D unit cells originating
from 2D Miura-folding sheets, and TMP can be tessellated to provide
load-bearing capacity [18-21]. By employing rigid panels and torsional
springs along the crease lines in TMP unit cells [22], the analysis of
mechanical properties and design space within the elastic deformation
regime, where mechanical properties are tunable, is greatly simplified.
Furthermore, the design space can be broadened due to the adjustable
Poisson’s ratio spanning both positive and negative ranges [22-24].
Our analysis is substantiated through experiments on a prototype fabri-
cated using an efficient method inspired by honeycomb structures. This
yields approximately 60-time and 10-time variations in Young’s modu-
lus and effective density, respectively. We also visualize the tunability
of the TMP in an Ashby chart [25] and report unique features such as
anisotropic positive/negative Poisson’s ratios and an increase in stiff-
ness correlated with a decrease in effective density. These features are
represented in three-dimensional extended Ashby charts.

2. Methods and materials
2.1. Prototype fabrication

2.1.1. Construction of a TMP unit cell

A TMP unit cell is composed of two flat-foldable origami sheets,
featuring four adjustable geometric design parameters (/,m, d, a) as illus-
trated in Fig. 1(a). By assigning appropriate folding directions (moun-
tain or valley) to these origami sheets and combining them, a unit cell
can be formed, as seen in Fig. 1(b). The dimensions of a unit cell, such
as breadth, height, and width, can be defined and calculated in terms of
the aforementioned geometrical parameters under the rigid foldability
assumption [22]. Additionally, folding angles 6,,, 6,, and 6, as indicated
in the Miura-ori subset (see the inset of Fig. 1(b)) can be established to
describe the folding state (posture) of TMP. Owing to the nature of the
origami sheet components, a TMP unit cell can exhibit two flat-folded
states (6,, = 0° and 6,, = 90°) and a wide range of dimensional variations

in a transient state, as demonstrated in Fig. 1(c). Detailed kinematic
analysis of a TMP unit cell can be found in Supplementary Note A.

2.1.2. Strategies to construct a TMP tessellation

In this section, we explore approaches to manufacturing a proto-
type of a TMP tessellation. Prior research on TMP tessellation employs
a cell-by-cell manufacturing technique, in which each fabricated unit
cell is combined to form a tessellation [18], as depicted schematically
in Fig. 2(a). This method has its own merits, such as the modular con-
struction of the structure. However, it necessitates the production of
multiple TMP unit cells and results in increased manufacturing time and
redundant materials at the interfacial walls between the cells. Thus, to
attain manufacturing efficiency, we adopt a method inspired by the fab-
rication process of honeycomb structures, where corrugated sheets are
connected [26]. Previous work on honeycomb-inspired origami struc-
tures demonstrates its efficiency in terms of manufacturing [27,28].
In this study, we expand the concept of honeycomb-inspired origami
structures for the efficient fabrication of TMP-based mechanical meta-
materials.

To this end, it is preferable to fabricate large portions of the origami
structure, corrugate, and assemble them collectively. Fig. 2(b) presents
schematic illustrations of a layer-by-layer manufacturing process. In
Fig. 2(b), two long origami sheets are attached, forming a lateral layer
of a tessellation. Subsequently, multiple lateral layers are combined
to create a tessellation. Theoretically, both cell-by-cell (Fig. 2(a)) and
layer-by-layer (Fig. 2(b)) construction techniques can yield a tessella-
tion with the same configuration (Fig. 2(c)). However, these two con-
figurations will differ in terms of the materials consumed. For example,
all interfacial walls in cell-by-cell construction would require double
layers, while only horizontal walls will be double-layered in the layer-
by-layer construction. We will account for such geometrical features
when we analyze the TMP tessellations mathematically in Section 2.2.

2.1.3. Manufacturing of a TMP tessellation

Building upon the previously mentioned layer-based fabrication of
a TMP tessellation, we propose an efficient manufacturing method
for constructing a tessellation using polyethylene terephthalate (PET)
sheets. PET sheets maintain crease lines effectively and exhibit greater
resistance to moisture and fatigue effects compared to paper. Fig. 3(a)
displays a sample origami sheet employed to construct a TMP tessella-
tion. The PET sheets are cut using a laser cutting machine (Universal
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Fig. 2. A tessellation of Tachi-Miura Polyhedron. a, a schematic illustration of a cell-by-cell construction of a TMP tessellation. b, a schematic illustration of a
layer-by-layer construction of a TMP tessellation. ¢, a TMP tessellation. Dimensions B, W, and H correspond to the width, breadth, and height of the structure,
respectively. Also, axis numbers 1, 2, and 3 have the same direction as width, breadth, and height, respectively. N and Ny, represent the number of unit cells in
the direction of breadth and width, respectively. The inset of ¢ shows the lateral view of the tessellation in the 1-3 plane. N, represents the number of layers of the
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Fig. 3. Manufactured prototype of a TMP tessellation. a, a TMP tessellation made of six PET sheets. Red and blue lines represent the PET sheets bent downwards
and upwards, respectively. The inset of a shows a PET origami sheet manufactured by a laser cutter. b, the folding process of a TMP tessellation. Each picture
corresponds to a set of images of a 3D rendering and a manufactured sample with folding angles 6,, = 20°, 6,, =40°, 6,, = 60°, and 6,, = 80° from top left to bottom
right, respectively. The folding process is also shown in the animation in Supplementary Video 1.

Laser Systems) and assembled with instant adhesive (Loctite 431). As
a result of the manufacturing process discussed in the prior section,
Fig. 3(a) presents a TMP tessellation comprising six origami sheets.
These long sheets form a tessellation containing eight unit cells.

In Fig. 3(a), red and blue lines represent PET sheets bent down-
wards and upwards, respectively. As noted earlier, the horizontal facets
in the tessellation exhibit double wall thickness due to PET sheet at-
tachment, while the slanted ones maintain a single thickness of the
material. Such a variation in the wall thickness implies the differ-

ence in the torsional stiffness of the creases. The mathematical model
developed in Section 2.3 accounts for such TMP tessellation configura-
tions.

Analogous to a unit cell, a TMP tessellation also demonstrates con-
siderable shape variation by altering the folding angle, as illustrated in
Fig. 3(b). Each image in Fig. 3(b) corresponds to a specific folding an-
gle 6,,, as labeled in each panel (see Fig. 1(b) for the definition of 6,,).
The folding process is further displayed in the animation provided in
Supplementary Video 1.
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2.2. Kinematic modeling of TMP tessellation

2.2.1. Dimensions and Poisson’s ratio of TMP tessellation

We start with the analysis of the TMP tessellation in terms of the di-
mensions of the structure. We expand the result of the analysis of a unit
cell [22] into a space-filling tessellation as shown in Fig. 2(c), where
we define the breadth (B), height (H), and width (W) of the TMP tes-
sellation (see the red markers for the exact boundaries). The analytical
expression of these dimensions is as follows (see Supplementary Note A
for more details).

B=2Ngmsinf, +dcos0,,
H = Nydsing,

d &)
W =max| N, (21— )—ZN — Dmcos@,,2Ny, 1
ax< w P (Ny )ymcos ;. w

d
+ (Ny + 1)mcos 8, + m)

Here, for the TMP tessellation described in this manuscript, the geomet-
rical parameters are defined as (/,m,d,«) = (28 mm, 28 mm, 21 mm, 60°).
The parameter Ny = 4 represents the number of layers in the 3-
direction for the TMP structure (see Fig. 2(c)). Ny =3 and Ny, =3
represent the number of unit cells in the direction of breadth or width,
respectively. Here, we only consider Ny, to be odd-numbered for the
symmetry of the tessellation. Folding angles 6, 0, are defined in
Fig. 1(b), and they are 6,, € [0, z/2] and 0, €10,2a]. Based on the defini-
tion of the folding angle, the tessellation is flat-folded in the 1-3 plane
when 6,, = z/2 and in the 1-2 plane when 6,, = 0. Based on the analyti-
cal expressions of the dimensions above, we obtain the Poisson’s ratios
Vs Viw, and vy, defined as follows.

_ dB/B
YHBZ T UH/H
AW W
- 2
YEW =T HH @
AW W

VBW =T 7iB/B

2.2.2. Effective density

Based on the dimensions of the TMP tessellation, we can further
obtain the properties of the tessellation. The cross-sectional area A en-
closed by the tessellation is obtained as follows:

A=2N,,msind,, (2 + mcosb,) (3)

c

where N, = NgNy, — (Ny, — 1)/2 represents the number of the unit
cells within the tessellation (see Supplementary Note A for the details).
Moreover, we define the volume V' as the enclosed space by the outer
wall of the tessellation.

V= AH “

Here, to evaluate the density of the system due to the volume change
of the TMP tessellation, we define the effective density p of the tessel-
lation:

”
P=Pna 5)

where V,,,, and p,,,, are the volume and density of the material used to
construct the tessellation, respectively. In this work, we use PET for the
manufacturing of origami-based metamaterial, and the density of PET is
Pmar = 1.38 X 1073 g/mm?>. The volume of the material ¥, corresponds
to the total volume of the PET sheets, and it is formulated as follows:

d
Vit = NyNytd (61+4m+ m) (6)

where N, =2Nj is the number of origami sheets used to build the TMP
tessellation, and 7 = 0.25 mm is the thickness of PET.
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2.3. Force-displacement relationship of the TMP tessellation

Now we investigate the force-displacement relationship of the tes-
sellation. Due to the rigid foldability of TMP structures, we can adopt
the model of approximating the TMP tessellation with rigid panels for
facets and torsional springs along the crease lines [22]. We consider
the folding motion of the TMP tessellation under an axial force F; in
the direction of height. The axial force F; is expressed as follows (see
Supplementary Note B for details):

4 s

— . d .d pd pd
F3_—W(l;f(em,emn,k;,k;,k3)+lmf(am,am,,,kl,k k%)

2°%3
7
cos3(97g)sin0m 7

+1 f(0,,0,,5 k3, kS, k%))

cosasiné, r2 s

where /% and lffl are the lengths of the main (horizontal) crease line
with single and double sheet thickness, respectively, to take overlap-
ping sheets introduced during the fabrication into account. Length I,
is the length of sub (inclined) crease lines with single sheet thickness.
The function f(6,6,;k,, k,, ks;) represents the nonlinear spring function
defined as follows.

0,0,k ky k) =k (0 —0,)+ ky(0 — 0,)> + k3(0 — 0,)° (8)

Here, 0, denotes the natural folding angle of the folding process with
zero potential energy. The spring coefficients kj, k3, and kj are for
the single thickness sheets. Likewise, the spring coefficients k‘lf s k‘21, and
kg’ are for the double thickness sheets. These spring coefficients are
obtained by the bending tests on the crease lines (see Supplementary
Note C for the details).

Since we evaluate the mechanical property as a whole of the tessel-
lation, the effective stress and strain in this direction can be obtained as
follows:

F
0y = f

AH ©)
€& =——

H,

where A is the cross-sectional area defined in the previous section, H,,
is the initial height of the tessellation, and AH is the amount by which
the height of the tessellation changes. Furthermore, we derive Young’s
modulus E; of this metamaterial.

do
Ey= —

37 dey (10)

e3=0

Here, Young’s modulus is evaluated as the slope at the origin of the
stress-strain relationship, in other words, the stiffness right after starting
the compression.

2.4. Post-fabrication tuning of a TMP tessellation and experimental process

The force-displacement relationship depends not only on the design
parameters of the TMP tessellation but also on its natural posture (see
Eq. (8)). This natural posture is represented by the natural folding angle
0,,,, which is the dihedral angle between facets measured at a zero-
energy state (i.e., without external forces). Fig. 4(a) shows the same
TMP tessellation, but in two different zero-energy states, which tend
to show different force-displacement behavior (see Fig. 4(c)). To ex-
ploit this feature for tunability in TMP-based metamaterials, we employ
a heat-processing method using a convection heat oven to modify the
natural folding angle of the origami structure, as schematically depicted
in Fig. 4(b). Prior research has generally proposed two directions for
heat-processing techniques: active actuation of origami structures us-
ing heat-activated materials like polyvinyl chloride (PVC) films [18]
and shape memory composites [29], and passive control of mechanical
properties through heat annealing [30].

We extend the heat annealing method for tuning the properties of
origami mechanical metamaterials. We place the sample in a convec-
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Fig. 4. Schematic figures of the post-fabrication tuning of TMP tessellation. a, schematic illustration of the change of the zero-energy state of TMP tessellation with
two different natural folding angles. b, schematic illustration of the heat-processing method to change a natural folding angle of TMP structure. The inset in b
shows two heat-processed samples with different natural postures. The left sample has a height of 38 mm (6,,, = 26.9°), and the right sample has a height of 65 mm
(6,,, =50.7°). ¢, the schematic force-displacement relationship based on the two different natural folding angles (6,,, = 20° and 6,,, = 80°). The inset in ¢ shows the
experimental setup to measure the force-displacement relationship and elastic modulus of the manufactured sample.

tion oven (Despatch), secure it in the desired posture, heat the structure
to 80 °C for four hours, and allow it to cool to room temperature (see
Supplementary Node D for the setup). Fig. 4(b) displays examples of
heat-processed outcomes. The samples, manufactured with identical ge-
ometric parameters, exhibit different natural folding angles due to heat
processing. Owing to the nonlinearity of the TMP tessellation’s force-
displacement relationship, multiple responses can be achieved from one
tessellation, as illustrated in Fig. 4(c).

To investigate the broad range of Young’s modulus achievable
through compression tests with varying natural folding angles of the
TMP tessellations, we conduct compression tests on the manufactured
sample using the aforementioned tuning method. We construct an ex-
perimental setup with low-friction plates (Delrin®) and a linear stage
for axial compression tests to capture the force-displacement relation-
ship, as demonstrated in Fig. 4(c). We apply the heat process to a single
fabricated sample, stage by stage, allowing us to achieve multiple nat-
ural folding angles using just one structure. For each stage, we perform
a compression test to observe varying Young’s modulus from one struc-
ture (see Supplementary Note E for the details).

3. Results and discussion
3.1. Kinematic analysis and effective density

First, we examine the change in dimensions as a function of the
folding angle 6,,. We compress the structure using a transparent acrylic
plate and measure the dimensions (see Supplementary Note F for the
setup). Fig. 5(a) presents three dimensions (W, B, and H) of a TMP tes-
sellation, revealing a significant change in dimensions between the two
flat stages (6,, = 0°,90°). Based on these dimensions, we calculate the
tessellation’s volume, as shown in Fig. 5(b). Similarly, by incorporat-

ing the density, we estimate the effective density of the tessellation, as
demonstrated in Fig. 5(c). Both volume and density exhibit considerable
changes. However, since the analysis relies on the rigid origami assump-
tion, in which panel thickness is assumed to be zero, the analysis may
be invalid when the folding angle is close to 0° or 90°. To avoid unreal-
istic analysis, we restrict the range of the analysis to between 20° and
80°. Within this analysis range, we find that the experimental results
and the analysis are in good agreement, as illustrated in Fig. 5(a)-(c).

3.2. Poisson’s ratio

We examine the Poisson’s ratio of a TMP tessellation. Poisson’s ra-
tios are derived from three dimensions - height, breadth, and width -
and represented as vy p, vy, and vy based on Eq. (2), as depicted
in Fig. 6(a)-(c). Here, we present both analytical results derived from
Eq. (2) and experimental measurements of the dimensions, denoted by
blue solid lines and red circle symbols, respectively. Due to the non-
smooth change in width measurements, we observe discontinuity in
Poisson’s ratios vy, and vgy, (see Supplementary Notes A for details).

Poisson’s ratios exhibit anisotropy in each pair of dimensions. Pois-
son’s ratio vy p ranges from slightly negative values to highly positive
values. Poisson’s ratio vy, demonstrates negative values throughout
the folding process. Poisson’s ratio vgy displays a wide range in both
negative and positive regions. Here, around 6,, = 50° in Fig. 5(a), B
becomes insensitive to 6,, with showing the flat region in the graph.
Therefore, d B, the infinitesimal difference of B, reaches zero. This in-
troduces the singularity in vgy, where it becomes positive or negative
infinite. In the experimental verification process, we can confirm that
vpy ranges from -40 to 20 with this definition of Poisson’s ratio, as
shown in Fig. 6(c). These findings are consistent with Poisson’s ratios
of TMP unit cells reported in a previous study [22]. Furthermore, they
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areas for each color depict the mean values and standard deviation of the ex-

periments that are executed three times.

demonstrate the rich anisotropy and extensive range of Poisson’s ratio,
with a strong agreement between the analysis and experiment.

3.3. Elastic modulus

In this section, we examine the force-displacement relationship
and Young’s modulus of a TMP tessellation both theoretically and ex-
perimentally. Fig. 7 presents the theoretical and experimental force-
displacement relationships for three representative natural folding an-
gles: 6, =77.9° (H, =82 mm), 6, =49.6° (H, =64 mm), and 6,,, =
39.1° (Hy =53 mm). The analytical results are obtained using Eq. (7).

We observe a significant difference in the force-displacement relation-
ship depending on the natural folding angle, and the stiffness measured
at the origin in Fig. 7 varies considerably with the tuning of the natural
folding angle. Based on these findings, we calculate the effective stress
and strain of the TMP tessellation using Eq. (9) and subsequently de-
termine Young’s modulus of the tessellation as formulated in Eq. (10).
The change of Young’s modulus with respect to natural folding angles
is discussed in the next section. In addition to these three natural fold-
ing angles, we examine eight more natural folding angles and obtain
Young’s modulus for each angle (see Supplementary Note E for details).

3.4. Visualization and analysis of tunability via 3D Ashby chart

The analysis and experiments on effective density (Section 3.1),
Poisson’s ratio (Section 3.2), and Young’s modulus (Section 3.3) yields
three-dimensional Ashby charts, as shown in Fig. 8(a)-(c). The inset in
Fig. 8(a) displays a two-dimensional Ashby chart with effective density
and Young’s modulus. This 2D Ashby chart is common in Fig. 8(a)-(c)
since the only difference in Fig. 8(a)-(c) is Poisson’s ratio (v g, Vi »
and vgy,). These plots reveal the remarkable properties of this mechan-
ical metamaterial, with approximately a 60-time difference in Young’s
modulus and a 10-time difference in density. The wide range of Young’s
modulus, effective density, and positive/negative anisotropic Poisson’s
ratio highlights the tunability of TMP origami-based mechanical meta-
materials.

Moreover, we observe a unique behavior where the origami meta-
material’s effective density and Young’s modulus are inversely corre-
lated, which is uncommon in traditional materials. Conventional mate-
rials tend to show stiffer behavior as their density increases. However,
our TMP-based metamaterial can be designed to exhibit enhanced stiff-
ness even under a reduced effective density. This is a highly desirable
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Fig. 8. Three-dimensional Ashby chart of a TMP tessellation. a, three-dimensional Ashby chart with effective density, Young’s modulus, and Poisson’s ratio v .
The inset of a depicts the two-dimensional Ashby chart of effective density and Young’s modulus. b, three-dimensional Ashby chart with effective density, Young’s
modulus, and Poisson’s ratio vy, . ¢, three-dimensional Ashby chart with effective density, Young’s modulus, and Poisson’s ratio vy, . Red dots in a - ¢ represent the
mean values of the experiment. Red solid lines in a - ¢ depict polynomial fitting to the experiment data. Gray lines in a - ¢ represent the two-dimensional projections

of the three-dimensional curves.

characteristic for constructing lightweight yet stiff structures. Remark-
ably, this unique property is the outcome of rigid-foldable kinematics of
the TMP system, without relying on any plastic, self-locking, and/or ex-
ternal actuation mechanisms. The good agreement between the analysis
and experiment presents the ability to predict the mechanical properties
to design a tuning process to meet users’ requirements.

These three-dimensional Ashby charts indicate that TMP, a 3D vo-
luminous origami element, can serve as a building block for designing
mechanical metamaterials with desired mechanical properties in terms
of effective density, Young’s modulus, and positive/negative anisotropic
Poisson’s ratio. This is achieved through a simply-fabricated single sam-
ple by applying heat processing to control the natural folding angle. The
relationship between the mechanical properties behavior in a three-
dimensional Ashby chart and the natural folding angle tuned by heat
processing is further visualized in Supplementary Videos 2-4.

4. Conclusion

In this study, we showcase the extensive post-fabrication tunability
of the TMP tessellation through theoretical analysis and experimental
verification. Tailoring mechanical metamaterials after fabrication con-
cerning three representative mechanical properties—effective density,
Poisson’s ratio, and Young’s modulus—has been a long-standing and
challenging problem. To this end, we propose and construct a proto-
type of an origami-based mechanical metamaterial featuring the TMP
architecture. The rigid foldable nature of this TMP prototype enables an
accurate prediction of these fundamental mechanical properties based
on simple kinematic analysis. We employ the heat processing method
to control the natural posture of the tessellation, achieving the desired
properties.

The simplicity of modeling this metamaterial, assuming the struc-
ture consists of rigid panels and nonlinear torsional springs, enables us
to visualize its extensive design space. We adopt the Ashby chart con-

cept for visualization. Traditionally, the Ashby chart utilizes two mate-
rial properties; however, we extend this approach to three-dimensional
plots incorporating effective density, Young’s modulus, and Poisson’s
ratio. Moreover, we experimentally verify this design space using a
novel manufacturing scheme inspired by honeycomb structures. The
agreement between analysis and experimentation suggests abundant
opportunities to tailor these metamaterials according to users’ engineer-
ing requirements. Furthermore, we observe the unique behavior of this
origami-based metamaterial, where effective density decreases while
Young’s modulus increases.

In conclusion, the versatility of this origami-based metamaterial of-
fers significant potential for transforming and adapting its mechanical
properties to rapidly changing external environments after fabrication.
TMP-based metamaterials stand out from previous research on space-
filling mechanical metamaterials with lattice-based or origami-based
architectures in terms of their extensive tunability, flat foldability, aux-
eticity, the inverse correlation between effective density and Young’s
modulus. Although we have explored uniform homogeneous architec-
tures, we envision the possibility of locally tuning properties using the
same units, which constitutes one of our future tasks. The dimension-
less working principle of TMP metamaterial enables its application on
both large scales, such as space structures and automotive airbags, and
small scales, like the micro-structure of artificial bones (meta-implants
[31]). Furthermore, while we consider the linear-elastic region in this
manuscript, combining post-fabrication tuning, nonlinear finite element
analysis, and data-driven design of metamaterials [32,33] can unlock
the full potential of this metamaterial. The broad tunability of mechan-
ical properties offers further possibilities for employing this metamate-
rial as a highly adaptable engineering platform.
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