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Abstract. This article offers various mathematical contributions to the behavior of
thin films. The common thread is to view thin film behavior as the variational limit of
a three-dimensional domain with a related behavior when the thickness of that domain
vanishes. After a short review in Section 1 of the various regimes that can arise when
such an asymptotic process is performed in the classical elastic case, giving rise to various
well-known models in plate theory (membrane, bending, Von Karmann, etc. .. ), the other
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2 J.-F. BABADJIAN ET AL.

sections address various extensions of those initial results. Section 2 adds brittleness and
delamination and investigates the brittle membrane regime. Sections 4 and 5 focus on
micromagnetics, rather than elasticity, this once again in the membrane regime and
discuss magnetic skyrmions and domain walls, respectively. Finally, Section 3 revisits
the classical setting in a non-Euclidean setting induced by the presence of a pre-strain
in the model.
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1. The mathematics of thin structures — an introduction (by G. Francfort
and I. Fonseca).

1.1. Introduction. This collection of articles attempts to provide a wide ranging, while
not encompassing view of the current mathematical investigations into thin structures.
Rather than enumerate and detail the various topics that have been either included or
excluded from this volume, we prefer to describe briefly the main historical steps that
have led to the kind of pursuit which is described in the following presentations. The
precursor to this document was a thematic session of ONEPAS and the recordings of all
of the talks associated with the document are available for free on the ONEPAS youtube
channel with the corresponding link:

https://youtube.com/playlist?list=PLz0clytdgPLVIgLqCg7ihn4G5qaRbgj7L.

The original concern was a simple one: What happens to a thin three-dimensional
elastic body when its thickness vanishes asymptotically? In other words, consider a
domain of the form Qf := w x (—¢/2,¢/2) with w C R? open, bounded, Lipschitz domain,
and € > 0 (see Figure 1).

Fic. 1. The thin domain

That domain is occupied by an elastic material with W : R3*3 — R as elastic energy
density, so that the internal energy of the body is

E5(UF) := ) W(VU?) da,
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THE MATHEMATICS OF THIN STRUCTURES 3

where U* is the elastic minimizer of the associated potential energy.! What is the stored
energy in the limit two-dimensional body w as € \, 07

It was realized early on that the limit stored energy critically depends on the order
of FE¢ in g, giving rise to a great variety of asymptotic behaviors. Given a thin domain
and a set of boundary conditions and loads, there is no natural way to guess what the
relevant order is, so the classification is not so useful from a practical standpoint, except
maybe for the potential corrections that the obtained asymptotic models suggest vis a
vis the classical models used by engineers. Nevertheless, this is where the mathematical
effort has concentrated, and our goal in this short introduction is to review the classical
tenet of the theory precisely in terms of the e-order of the internal energy.

In the sequel and unless otherwise stated, we assume the following on the elastic energy
W, as was first posited in [17],

W R3*3 — Rt is continuous

W(F) = oo if det F' < O(preservation of orientation + non interpenetration)
W(RF) = W(F) for all R € SO(3)(frame indifference)

W (Id) = 0(no pre-stress)

W is C? near Id

W(F) > ¢ dist*>(F,SO(3)) = ¢|VFTF — Id|? for somec > 0

(linear behavior near the identity),

(1.1)

which are the classical features of a so-called hyperelastic energy. In (1.1), Id is the
identity matrix.

REMARK 1.1. Note that the last property in (1.1) implies that OW/OF (Id) = 0, and
that the quadratic form

Pw . .
Q3(M) = W(Id)M - M, M symmetric 3 x 3 matrix (1.2)
satisfies Q3(M) > ctr MT M. Further,
W(Id+ hA) > Qs(hA) — o(|hA|?).

The first step in the analysis is always the same. One should rescale the problem so as
to deal with a fixed domain Q = w x (—1/2,1/2). The associated rescaling is x5 — x3/¢,
resulting in

B (UF) = e/QW(VEu‘E) de, (1.3)

5}
where u®(zq,23) := U®(2q,€23) and V© 1= (V/’l/g(??)’ V' denoting the in-plane
3
partial derivatives 0/0z1,0/0s.

n this presentation, as well as in those of the various contributors, a variational attitude is adopted.
It consists in assuming that elastic equilibrium is achieved through minimization of the potential energy
for the relevant boundary conditions and loads. Of course, while this is strictly equivalent to assuming
equilibrium in a linearized context, it is not so in a non-linear framework and much remains to be done
on that front.
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4 J.-F. BABADJIAN ET AL.

We define
E(v) = / W(V*v) dz
Q

so that E¢(U®) = e&°(u®).
The goal is then to investigate the asymptotic behavior of E¢/e®. In mathematical
terms, this amounts to a study of
e The compactness of (approximate) minimizers u® of £¢/ e8! under the assump-
tion that

sup £ (uf) /P! < oo; (1.4)

e The I'-convergence, in the topology for which compactness is attained as per the
previous item, of £ /871,

It is clear from (1.3) that the first order for which a non-trivial limit may be obtained
is f# = 1. This will give rise to the so-called membrane regime detailed in Subsection
1.2.1. Then, the regimes 5 > 1 will produce a variety of different models that conform
more or less to classical engineering models, as described in Subsections 1.2.3, 1.2.4 and
1.2.5. All results pertaining to regimes for which § > 1 heavily hinge on an approximate
rigidity theorem established in [92]. Subsection 1.2.2 will detail that result and the way
it is used in establishing the relevant I'-limits in Subsections 1.2.3, 1.2.4 and 1.2.5.

Each of the following subsections in Section 1.2 is short (and even very short), and
essentially reduces to a mere statement of the most important results pertaining to the
relevant scaling, together with a rapid sketch of some of the underlying mathematical
arguments. The focus is almost exclusively on the derivation of a lower bound for the
I" — liminf which, hopefully, will be optimal. In all that follows, we assume familiarity
with the notion of T'(X)-convergence, X being a metrizable topological space (see [55]).

Finally, in Section 1.3, we address a few of the problems or concerns that can be raised
as to the significance of the models described in Section 1.2 in the hope that some of
those will provide motivation for future research.

Notationwise, if M is a 3 x 3 matrix, we denote by |M| its Frobenius norm, that is
(tr M7 M)'/? (associated to the Frobenius inner product M - N := tr M7 N), and we use
7’ to denote the planar coordinates x1,x2. The rest of the notation is standard.

1.2. The various regimes. In this section, we quickly describe the main regimes that
can be obtained when [ varies.

REMARK 1.2. In Section 3, Marta Lewicka will offer a similar analysis with the ad-
ditional non-trivial feature that hers is a non-Euclidean setting induced by the pres-
ence of a pre-strain in the model. In that framework, F(U¢) is modified and becomes
fQE W(VUsg’l/ 2) dz where g is the smooth Riemannian metric associated with the
pre-strain of the thin domain.

1.2.1. Membranes (8 = 1 Le Dret-Raoult). The scaling = 1 is historically the first
one to be addressed in [138]. Unfortunately, the analysis in that paper does not allow
for an energy satisfying (1.1). Instead, one should have, for some C' > 0,

1
W : R¥3R is continuous, and 6|F|p —C<W(F)<C(FP+1),1<p<oo, (L5)

which of course goes against the requirement that W(F) / oo as det F' — 0F.
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THE MATHEMATICS OF THIN STRUCTURES 5

In such a setting, coercivity immediately implies that a sequence {u®} satisfying (1.4)
will have a weak-LP(; R3*3)-converging subsequence of gradients with, as limit the
gradient of an z3-independent function u = u(z’). With this in mind, a first result is as
follows:

THEOREM 1.3. Under assumption (1.5)
e For a subsequence (still indexed by ¢), if u satisfies (1.4), then u® — f, udx — u
weakly in W1P(Q;R3), with u a function of 2’ solely;
o ET(LP(£2;R?))-converges to
£ (1) [, QW (V'u)da’,u € WP (Q,R?), u independent of a3
m\U) =
o0, else,
where, for F' € R3*2 W (F) := inf,cgs W (F, 2), and QW is the 3 x 2-quasiconvex
envelope of W, that is

QW (F) := inf {][ W(E+V'p):pe CSO(A;R3)}
® A
for some (any) bounded open set A € R? with £2(9A) = 0.

REMARK 1.4. Note that, if W satisfies frame indifference (see (1.1)), then so does QW.
Also, if F' € R3*2 is such that |F|? < 1, then QW (F) = 0. Indeed, in such a case, the
singular values vy, v of F' are both in [0, 1]. The affine deformation u = (vi21, vox2,0)7 is
such that V'u?'V'u = FTF and thus, because of frame indifference, QW (F) = QW (V'u).
But the sequence {u.} given by u := (viz1 + €61 (71/€), vaza + e02(x2/€),0)T with

0i(t) = (1—w)t if0<t<(1+uv)/2,
4 = _(]_+Ui)(t—1) if(1+vi)/2§t§1,

converges strongly to u in L?({;R3), while its reduced gradient V'u® only takes the

values
+1 0
Jrr =0 =1
0 0

Since QW (Jx +) < W(Jx ), and by (1.1) W(Jry) = W(Id) = 0, we deduce that
QW (V'uf) = 0 and, in turn, by lower semicontinuity we conclude that QW (V'u) = 0.

This shows that the membrane regime does not react to compression, and forces us
to go beyond that scaling in the next subsections.

The previous theorem result, in spite of its intrinsic defect with regard to orientation
preservation and non-interpenetration, spurred a plethora of investigations in a variety of
fields ranging from micro-magnetics, optimal design, fracture, to homogenization among
others. We will not dwell upon those here, pointing instead to Section 2 by Jean-Francois
Babadjian on brittle membranes and to both Section 4 by Giovanni Di Fratta and Section
5 by Cyrill Muratov on micromagnetics in this article. In Section 2 an additional energy
is added to the elastic energy to account for delamination of the membrane from its
substrate and/or fracture within the membrane, and the author analyzes the competition
between those two processes. In Section 4 elasticity is replaced by magnetism while the
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6 J.-F. BABADJIAN ET AL.

membrane is not a flat one, but a curved one (w is replaced by a smooth surface embedded
in R?) and the author investigates the appearance of magnetic skyrmions. In Section
5, the emphasis is on the study of magnetic domains in thin films (those regions with
aligned magnetic spins) and on the transition layers between the domains (the magnetic
walls).

The handling of conditions (1.1) has been a hard fought one. First, references [51],
[208] investigated the incompressible case, that is what happens when the energy is
infinite if det F # 1 and satisfies (1.5). In that case, the limit model is exactly that
obtained in the previous theorem and incompressibility is lost in the limit. Then, the full
result was finally attained in [11] after a slew of difficult papers by the same authors.

Finally, let us emphasize that one could refine the results of Theorem 1.3 in a variety
of ways. As an example, one could also impose that, in the search for a I'-limit, one
also require that, for a converging sequence {w?}, the weak LP(£2;R?)-limit of the term
1/e0w® /O3 be given (and not only that of the strong LP(£2;R?)-limit of w®). In that
case, the results are much more intricate and the limit behavior is most likely non-local.
We refer the reader to [28] for details.

1.2.2. Rigidity (Friesecke-James-Miiller). Say that u € W12(Q;R") is such that
Vu(z) = R(z) € SO(n), for a.e. = € Q. Then, since divcof Vu = 0, we get 0 =
div cof R = div R = Awu, and u is harmonic. Hence, we may consider derivatives of u of
any order, and because |R|? = 1, we have

0= AR = A(IVul?) = [Vul?,

(V2u is the Hessian matrix of each component of u), and thus Vu is a constant rotation.
This is a classical exact rigidity result a la Liouville. The approximate rigidity result
uncovered in [92] states a similar result, provided that Vu is L?-close to a rotation,
namely,

THEOREM 1.5. Let Q C R",n > 2, be a bounded Lipschitz domain. Then there exists
C(Q), invariant by translation and dilation, such that, for all v € W12(Q,R"), there
exists R € SO(n) with

IVu = R 2 @prnxny < C(Q)] dist(Vu, SO(n)| r2(0)-

This result has proved a milestone in many fields. For our part, we apply it to the
setting at hand, recalling the bound from below on W(F) in (1.1). We obtain that, for
e small, there exists R® € SO(3) such that

/ Vou — R da < © / dist(V*u, S0(3))* de,
Sa.e Sa.e

where S, . == (a + (—¢/2,¢/2))?) x (=1/2,1/2),a € €Z? and C is independent of a,e.
Provided that (1.4) holds, the previous estimate gives rise to a piecewise constant rotation
field R®(2’) such that

/ |Veus — R°|)? dx < CP~1 (1.6)
wx(—1/2,1/2)

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



THE MATHEMATICS OF THIN STRUCTURES 7

and, with a little bit of work, it is not hard to show that, for some C’ > 0,
2
/ |RE(/ + 2) — RE(a")|? da’ < C'eP (E} n 1) . (1.7)
If 8 > 3, from (1.7), we immediately infer that
limsupsup ||R*(- + 2) — R*(*)[|L2(.rs) = 0
z—0 €
so that, by the Fréchet-Kolmogorov theorem,
2/.3X3y
B VR Rewlt(w, 50(3))
and thus, with (1.6),

2/0).m3X3Y _
veus and RE VR R e Wh2(w, SO(3)). (1.8)
In particular, we get that
2 R3X3
veus PO (g ) with b(@') = 2L () A 2L (@), (1.9)
0x1 0xo

If 8 < 3, the only information we derive from (1.6) is that

(2R**?)

in L2
Veufand RE VMY MK (V'u,b) with |V'u|? < 1. (1.10)

In such a case, u is called a short map.

1.2.3. In between (1 < 8 < 3; Conti-Maggi). Strangely enough, not much is known
about the regime 1 < 8 < 3 in addition to (1.10). In [53], it is proved that, when 8 < 8/3
the T'(L?)-limit of £/e°~! is 0 for short maps and oo else while, for 8/3 < 3 < 3, the
I'(L?)-limit has not been characterized as of yet.

The difficulty in this case lies in the construction of a recovery sequence. This re-
lies upon the possibility of approaching uniformly a W°°(Q;R3)-short map u by C*-
isometries wug, that is such that, for some by, (Vug,br) € SO(3); this is the famous
Nash-Kuiper theorem.

In [53], the authors relate their results to Origami constructions and, further, to paper
crumpling, an association which may or may not be relevant because of the irreversibility
of the folding process.

1.2.4. Bending (8 = 3; Friesecke-James-Miiller). If § = 3, then from (1.6) we imme-
diately conclude that, up to a subsequence,

. 2 33
weakly mi (R%*%)

G* :=1/e((R*)TVeu® — Id) (1.11)

and thus that, since, by frame indifference, W(Veu®) = W (Id + ¢G*), we get, thanks to
Remark 1.1,

E°(uf)/e? > 1/2/ Q3(G*) dxr — o(1),
Q
where Q3 was defined in (1.2). Hence

liminf £°(u®)/e? > 1/2/ Q2(G") dz, (1.12)
€ Q

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



8 J.-F. BABADJIAN ET AL.

where, for any M € R?*2,

. . M =z
Q2(M) o z,z’E%RI}"f,'Z”ER Q3 ((2/ Z”)) ) (113)

In (1.12) we use the notation F”’ to denote the 2 x 2 matrix with entries Fj;, 1 <1i,j <2,
while F” will later stand for the 3 x 2 matrix with entries F; ;, 1 <:<3,1<j <2.
It remains to identify G” in (1.12). To that effect, recalling that b = b(z’) is the strong
L2(Q;R3)-limit of {1/c0u®/dz3}, we have
1 (%72 gus 1 L2 (2;R?)

=) o dz = S—Z(ug(x’,;v;; +2) —uf (2, z3))  —> b,

hence

LGV g+ 2) = (G (& 29) =

1,,€( Aal _ 15,€ (! . —1/0).3%X3
1 [(Vu (z', 234+ 2z) — V'us(z ,:1&3))] HH (@R )V’b(x/).
z €
Consequently, from (1.8), (1.11),
JEE =t G(xm))]’ v,
z
and, letting z \, 0, [R@G / 33@3]/ = V'b, from which simple algebra leads to
aG 1
{—] = (V'u(2"))'V'b(2"), (1.14)

8x3

which is thus an x3-independent quantity. Finally we conclude that

G//($/7$3) — G”(.’L'I,O) +.’L'3 |:8_G:| (CE/)
0:53

and so, recalling (1.12), (1.14),
hHlEiIlf(‘:E(us)/E2Z 1/2/ QQ(GH(‘T,vO)) dx + 1/24/ Q2 ((V’U(I/))Tvlb(l‘/)) dx’

>1/24 / Q2 (V'u(2")'V'b(z)) da'.
N (1.15)
Inequality (1.15) actually provides the correct I'-limit, as could be checked by construct-
ing a recovery sequence roughly of the form U¢ := i(z') + exsb(a’) + eaxd(z'), where i is

an isometry, b := 9a/dx, AOi/Ox2, and d is such that Q3(RT (V'b,d)) = Qo((V'a)TV'D),
with R := (V'@ b).

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



THE MATHEMATICS OF THIN STRUCTURES 9

So we obtain the following:

THEOREM 1.6. Under assumption (1.1)

e For a subsequence (still indexed by €), if u® satisfies (1.4), then Veu® — (V'u, b)
strongly in L2(£; R3*3), where (V'u,b) € WH2(Q; SO(3)) and is a function of 2’
solely;

o £°/e2T(L?(2;R?))-converges to

1/24 [ Qa2((V'v)'V'e)da!, if (V'v,¢) satisfies (V'v,¢) € W12(Q; SO(3))
Ep(v) = and is a function of x’ solely

o0, else,

where @2 was defined in (1.13).

The above regime is usually referred to as that of non-linear bending.

0 0
REMARK 1.7. Note that (V'v,c) € SO(3), therefore c- o =
6{E1 81:2

ating these equations with respect to z1 and to zq, shows that the term (V'v)TV’c can
be equivalently written as (V’)?v - ¢ (the reduced Hessian of w).

1.2.5. von Kdrman like (B > 3; Friesecke-James-Miiller). First we remark that, when
B > 3, then (1.7) implies that R is a constant. Then, because of frame indifference, we
may as well assume that R = Id. The argument for deriving a I'-liminf roughly follows
those expounded in the previous subsection, but with S-dependent scalings; for example
the quantity G¢ in (1.11) is now

= 0. Differenti-

G =7 ((RS)TVEWE — Id).

We refer the interested reader to [93, Theorems 2,3] and only detail somewhat the result
in the true von Karman case, that is that when g = 5.
In the setting of Subsection 1.2.2, we define

ya = (RE)TUE _ 657

where R¢ is a constant e-dependent rotation obtained from R® defined in (1.6) and ¢ is
a suitable constant so that [, (y* — (2’,ex3)) dz = 0 (see [93, Lemma 1] for details). We
further define the averaged in-plane and out-of-plane displacements

1/2
Sy = 1/e / (5 5 — 212) das,
172 (1.16)

1/2
v° = 1/5/ Y5 dxs.
—1/2

Then it is easily obtained that

Be W2 (w;R?)

V& Wigw) V.

P, (1.17)

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



10 J.-F. BABADJIAN ET AL.

The I'-convergence theorem is as follows:

THEOREM 1.8. Under assumption (1.1)
e For a subsequence (still indexed by ¢), if u® satisfies (1.4), then {h®}, {v°} con-
structed through (1.16) from u® satisfy convergences (1.17);
o &¢/eT-converges (for the topology associated with the convergences (1.17)) to

Eur(h,v) = 1/2/ Q2(1/2[V'h+ (VW) + Vv @ V'v) da’ + 1/24/ Q2((V)*v) dz,
where @2 was defined in (1.13).

The von Karman model has always been contentious. While widely used by engineers,
it has been criticized by many famous scientists, not least among them Clifford Truesdell.?
At worst the above theorem demonstrates that such a model is compatible with the
variational view of non-linear elasticity under appropriate rescaling.

REMARK 1.9. For 3 < 8 < 5, the obtained regime sits between the non-linear bending
and the von Karman regimes, while for 5 > 5 we recover in the limit the setting of linear
Kirchhoff-Love plate theory which can also be obtained through 3d to 2d dimensional
reduction starting from linear elasticity as first established in [47].

1.3. Boundary conditions, forces and other considerations. From a mathematical
standpoint, the regime S = 1 distinguishes itself from all others on two grounds. On
the one hand, as already explained, it does not allow for energies satisfying (1.1). But,
on the other hand, it gives rise to a model which is local in the sense that the I'-limit
can be localized to any open subdomain A of w and remains the same (just replace Q
by A x (=1/2,1/2) in the definition of £¢). This is so because, as a function of A,
the integration domain in the plane, that I'-limit is a measure, as can be established
through what is sometimes called the fundamental estimate (see e.g. [32, Chapter 11]).
In particular, that estimate implies that the obtained membrane model (or, equivalently
the I-limit) is impervious to the kind of boundary conditions that are imposed on the
converging sequences. As such, it is a bona fide constitutive model for thin plates.

Not so for the other regimes where the I'-convergence process cannot be localized, and
where the only kind of boundary conditions that can be imposed are enslaved by the
limit kinematics. For example, in the non-linear bending regime (8 = 3), those must be
of the form

Wowx (—1/2,1/2) = Wx") + z38b(2’),
where @& € W22(w; R®) is such that (V'd,b) € SO(3) a.e. in Q.

If, however, the domain is laterally clamped (uEL Bwx(—1/2,1/2) = 0), the resulting model
(called Foppl-von Kdrman) is completely different for all scalings 1 < # < 5 as demon-
strated in [54].

For this reason, one could possibly wonder whether the obtained I'-limits are truly
constitutive models, and not only classes of asymptotic solutions to specific boundary
value problems.

2¢An analyst may regard that theory as handed down by some higher power (a Hungarian wizard,
say) and study it as a matter of pure analysis. To do so for the von Kdrmén theory is particularly
tempting because nobody can make sense out of the ‘derivations’. 7 [209, Page 601].
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THE MATHEMATICS OF THIN STRUCTURES 11

In this respect, a related issue is that of forces. Indeed, in most works on dimen-
sional reduction, the relevant scaling, which cannot, as we just saw, be connected to the
boundary conditions except in the membrane regime, is dictated by the scaling of the
forces; this is, for example, the adopted classification in [93]. Now, the volume forces that
allow such a hierarchy generate an additional contribution to the energy in the unscaled
domain of the form

— | f°-Vda, (1.18)

Qs

the relevant scaling becoming dependent on how f¢ varies with . Those kinds of forces
are referred to as dead forces. However, a contribution to the potential energy of the form
(1.18) is rather useless when contemplating an equilibrium problem in finite elasticity.
As a matter of fact, from an engineering standpoint, the only dead force is gravity, hardly
an e-dependent load! All other applied forces, be they the representation of volume or
surface loads, are active forces and generate a contribution to the potential energy that
includes non-linear terms involving the gradient of the deformation. For example, an
hydrostatic pressure p applied to the boundary of the domain generates an additional
contribution of the form

p/ det VV dx,
SE

a term which is of the same order of non-linearity as the elastic energy itself.

Furthermore, as already alluded to in the introduction, if confronted with a bound-
ary value problem for a thin domain of thickness € and a set of boundary conditions
and loads, how is one to decide what the appropriate e-scaling is for such loads (and
boundary conditions). This conundrum would be resolved if one could somehow estab-
lish quantitative error estimates for, e.g., u* — u, u° being a minimizer for the e-rescaled
problem. Unfortunately, no such results are available.

2. Fracture versus delamination of thin films (by J.F. Babadjian).

2.1. Introduction.

2.1.1. Motivation. Thin films can essentially experience two different fracture modes:
either transverse cracks which split the body into several pieces, or planar cracks leading
to debonding effects and delaminated surfaces. These phenomena can be observed in real
life as, e.g. the stickers identifying research labs at the Ecole Polytechnique in Palaiseau,
France, which was the starting place of this project. A thin vinyl sticker is bonded
to a metal panel and exposed to atmospheric conditions. Among others, the variation
of temperature generates inelastic mismatch strains leading to transverse cracking and
possibly debonding. A few panels relative to numbers in the range “401”—“408”, all of the
same material and subject to similar loading conditions, show recurring crack patterns
(see Figure 2).

Many works have attempted to explain these types of phenomena from mechanical,
mathematical or numerical points of view. A comprehensive review of common fracture
patterns may be found in [163,216].

From a mathematical standpoint, static fractures in (non-linearly elastic) thin films
have been investigated by means of a I'-convergence analysis that allows the identification
of an effective reduced 2D model (see [14,27,31]). In [13] a quasi-static evolution model
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12 J.-F. BABADJIAN ET AL.

F1a. 2. Cracked lettering at Ecole Polytechnique, Palaiseau, France

of cracks in thin films is studied, proving the convergence of the full three-dimensional
evolution to the reduced two-dimensional one (see also [90] in the case of linear elasticity
with topological restrictions on the admissible cracks). The dimension reduction of a
bilayer thin film allowing for debonding at the interface has been investigated in [23],
debonding being penalized by a phenomenological interfacial energy paying for the jump
of the deformation at the interface. The limit models are discussed according to the
weight of interfacial energy. Rigorous derivations of decohesion-type energies have been
given in [9,10] by means of a homogenization procedure. In these works the interfacial
energy appears as the limit of a Neumann sieve, debonding being regarded as the effect
of the interaction of two thin films through a suitably periodically distributed contact
zone.

More recently, [57,88,162] have also derived similar cohesive fracture models by means
of a phase field Ambrosio-Tortorelli approximation involving an internal damage variable.
Finally, several works have focused on the quasi-static evolution of debonding problems
with a prescribed debonding zone. In particular, [195] modeled the debonding phenom-
enon through an internal variable representing the volume fraction of adhesive contact
between the layers. However, none of these works is able to rigorously justify the mod-
els used by the engineering fracture mechanics community to model the cracks of thin
film /substrate systems [163].

In [164], a two-dimensional model of a thin film bonded on a thin substrate has
been introduced and studied. In this model, transverse cracks I' and debonded regions
A are respectively one-dimensional and two-dimensional subsets of a given reference
configuration w C R2. The kinematic unknown is the planar displacement u : w — R?
and its associated elastic strain is given by the symmetric part of its gradient e(u) =
(Vu + Vu®)/2. For external loadings given by an inelastic deformation in the film
eo 1 w — MZX2 (the set of 2 x 2 symmetric matrices) and a prescribed displacement
up : w — R? in the substrate, the total energy associated to the triple (I', A, u) is given
by

E, A u) =P, A, u)+ ST, A),
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where

PT,Au) =

N~

1
/w\F A(e(u) —eg) : (e(u) — eg) dx + 5 / K(u—wup) - (u—wup)de

w\A

is the potential energy, and
ST, A) =H'() + L*(A)

is the fracture energy of transverse cracks I' and delaminated surfaces A. In the previous
expressions, the elastic term is interpreted as the energy of a brittle membrane subject
to inelastic strains eg lying on a brittle elastic foundation of stiffness K, whereas in the
surface term, transverse cracks I' and debonded regions A are penalized by a Griffith-
type surface energy proportional to their length (through the one-dimensional Hausdorff
measure H!) and area (through the two-dimensional Lebesgue measure £?), respectively.
The contribution of the elastic foundation is extended only to the bonded portion of the
film w \ A.

The object of this note is to show that it is possible to rigorously derive the previ-
ous phenomenological model introduced in [164], starting from three-dimensional brittle
fracture in the context of linear elasticity, by letting the thickness of the film tend to
zero. It corresponds to joint works in collaboration with Blaise Bourdin, Duvan Henao,
Andres Leon Baldelli and Corrado Maurini (see [16,165]).

2.1.2. Description of the problem. Let us consider a system

0F = Q5 U Q5 UQS

made of a thin film Q% = w x (0,¢) (w C R? is a smooth bounded open set) deposited
on an infinite substrate Qf = w X (—o0, —¢) through a bonding layer Qf = w x [—¢,0].
We assume that Q° stands for the reference configuration of an isotropic linearly elastic
body allowing for cracks. This body is subjected to two types of planar loadings:
e a prescribed (smooth) planar displacement ug : w — R? in the substrate (identi-
fied with a function ug : Q5 — R?® with zero last component);
e a (smooth) inelastic strain eg = w — M2%2 (identified with a function eq :

Sym
QU0 — Mf;ig with zero entries on the tli,ird row and the third column).
According to the variational approach to fracture (see [29,89,103]), for a given crack
I ¢ QO of finite area and a given displacement v : Q° \ T' — R3 satisfying v = wg in
Q%, we define the Griffith energy as the sum of the elastic energy (computed outside the

crack) and the surface energy (penalizing the presence of cracks) by

(v,T) — 1 Af(e(v) —ep) : (e(v) —eg) dx + / K& dH?.
Qe\T r

In the previous expression, A¢ stands for Hooke’s law and k¢ is the toughness, which

are e-dependent material parameters possibly depending on the spatial variable. The

notation H* stands for the k-dimensional Hausdorff measure which coincides with the

usual notion of surface (for k& = 2) or length (for k£ = 1) for smooth enough geometrical

objects.
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14 J.-F. BABADJIAN ET AL.

Of course, the dependence of A® and k¢ on € can lead to many different limit theories.
In this work, we focus on the following scaling

A€ = Af]_Q; +52Ab1Qi, KE = /gf]_Q; —l—&‘lib].gg,

where Ay and A, are the (isotropic) Hooke’s law of the film and the bonding layer,
respectively, and k¢ > 0, K, > 0 are the toughnesses of the film and the bonding layer,
respectively.

The first difficulty is to define a convenient mathematical framework. Since the dis-
placement v might jump across the crack I' and following the seminal idea of the Italian
school of De Giorgi for free discontinuity problems, we can identify I to the jump set of
v. The previous energy turns out to be well defined in the space SBD?(QF) of special
functions of bounded deformation, i.e. integrable vector fields v such that the distribu-
tional symmetric gradient Ev = (Dv + Dv")/2 is a bounded M%3-valued measure of
the form

Ev=e()L3+ (v —v7)0v,H2LJ,
(see [8,15,204,207]). In the previous expression, e(v) € L?(Q%;M2%3) is the absolutely

sym
continuous part of Ev with respect to the Lebesgue measure £3. The jump set J, is
a countably H2-rectifiable set with H#2(J,) < oo, on which it is possible to define a
generalized unit normal v, and one-sided traces v* according to this orientation.

In this context, we define the energy J(g) : SBD?(Q°) — RT by

J(e)(v) = l/QE\J Af(e(v) —eg) : (e(v) —eg)dx —|—/ kS dH?

2 T

1
_ 5/ Ap(e(v) — eo) : (e(v) — eo) da + kpH2(J, N Q5)
2\,
2
+ % . Aye(v) —eg) : (e(v) — eo) dx + erpyH2(J, N QF).
O\ Ty

Note that there is no energetic contribution of the substrate since the displacement is
prescribed and smooth in there. However, cracks are allowed to touch the interface
{x3 = —¢} between the bonding layer and the substrate.

Our objective is to understand the asymptotic behavior of the previous energy func-
tional as ¢ — 0 in the sense of I'-convergence which will give information on the asymp-
totic behavior of minimizers and the minimal value of J(e).

REMARK 2.1. In order to simplify the presentation, we will henceforth assume that
eg = 0 and ug = 0.

2.1.3. Rescaling. As usual in dimension reduction problems, we reformulate the prob-
lem on a fixed domain independent of e. Contrary to non-linear elasticity where one
only rescales the variable, we rescale here both the variables and the components of the
displacement, as commonly done in linear elasticity (see [46]).

To this aim, we set Q = Q' Qp = Q}, U = Q) and Q, = Q. For x = (21,22, 23) =
(2, z3) € Q, with 2’ = (x1,22), we define for a = 1,2,

ua (', 23) = vo (2 e23), uz(2’,x3) = evs(2/, exs).
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Then, for all u € SBD?*(Q) with u = 0 in Q (recall Remark 2.1), we define

Je(u) = e J(e)(v) = I (u) + 2 (w),

where
1
Jsf(u) = —/ Afe€(u) cef(u)dx + Hf/ |((Vu)/’€*1(Vu)3)| d’Hz’
2 Qp\Ju JuNQy
2
Jf(u) _ = Ape(u) @ ef(u)dx + I<Lb€/ ’((Vu)/, 5—1(yu)3)| d’H2’
2 Ja,\J. JuMSy
and
e11(u) e12(u) e teiz(u)
e (u) := e12(u) exn(u) e teag(u)

e leis(u) e leas(u) e 2es3(u)
is the rescaled elastic strain.

2.2. Dimension reduction in linear elasticity. In this first part, we focus on the energy
in the thin film in the absence of cracks. The problem can be straightforwardly formulated
in the framework of Sobolev space owing to Korn’s inequality: for u € H'(2y;R?), we
only consider the elastic energy

J (u) = 3/, Aget(u) : ef(u)de.

Denoting by Ay and py the Lamé coefficients of the film (which satisfy the usual ellipticity
conditions p1y > 0 and 3y +2pu¢ > 0) and recalling the isotropy hypothesis, the previous
energy can be expressed as

Jsf(u) = /Q [%eaa(u)em(u) + ufeag(u)eag(u)] dx
+e72 /Q {)\feaa(u)e%(u) + preag(u)eag(u)} dzx

_ Ar+2
+e 4/ %633@)633(“) dz,
Q.f

where, from now on, we use Einstein’s summation convention over repeating indexes.
The diverging coefficients in front of both last integrals imply that if u. € H'(Qy;R?)
is such that u. — u in L?(Q;R3) and J/ (ue) < C, the limit admissible displacement u
must satisfy e;3(u) = 0 for ¢ = 1,2,3, which means that

ug(z’,x3) = uz(2"), un(2',23) = Un(z") + (% — :E3) Oatig(z’) for a=1,2.

Such displacements are called Kirchhoff-Love displacements and the space of all Kirchhoff-
Love displacements is denoted by K L(€y).
The following I'-convergence result can be found e.g. in [30] (see also [46]).
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16 J.-F. BABADJIAN ET AL.
THEOREM 2.2. The functional Jsf I’-convergence in Hl(Qf;R?’), with respect to the

strong L2(Q; R?) topology, to the functional JJ : H(Q;R?) — [0, 00] given by

>\f+2ﬂf ao

00 otherwise.

Me Wennlu o (et de ifu
J (w) = /Qf{ (w)esp(u) + preas(u)eas( )}d fue KL(y),

Using the Kirchhoff-Love structure of the displacement u, the previous functional
decouples into

T ) = [ [ canl@ens @) + nreas(@eas )] da’

Af+ 20
1 A
+ E {ﬁeaa(vag)egg(Vﬂ;g) + ﬂfeag(Vﬂg)eag(Vﬂg)} dx’.

The first term is a membrane energy term which accounts for stretching effect, while the
second one stands for a bending energy term involving higher order derivatives. From
the point of view the Euler-Lagrange equation, this last term leads to the biharmonic
equation of plates.

2.3. Winkler elastic foundation. We now enrich the previous analysis by adding the
information on the bonding layer and the substrate, but still assuming the absence of
cracks. In this framework, the space of all kinematically admissible displacements is
given by

A:={ve H (R :v=0in Q,},
where we recall that Q = QU Q, UQg. For u € H'(Q;R3), the total energy is given by

1 2
~ = Aset(u):e(u)dr + = Ape(u) 1 ef(u)de  fueA,
Jg(u) = 2 Qf 2 Qp

o0 otherwise,

or still, using the isotropy hypothesis and denoting by A\, and p;, the Lamé coefficients of
the bonding layer (which again satisfy the ellipticity conditions pp > 0 and 3\ +2p; > 0),
for u € A,

Totw) = [ [ eantiensln) + nseastueasw)] do
+ E—Z/Q [)\feaa(u)egg(u) + 2,ufea3(u)ea3(u)} dx

_ A+ 2
+e 4/ fT'uf(i?,g(U)eg;g(u) dx
Q

+2 [ [Fean(ensln) + peas(u)ens(w)] da
+/Q [/\beaa(u)%s(u) + 2Mb€a3(u)ea3(u)} dr

Ap +2
+ 572/ bT'ubtigg(u)e;;g(u) dzx.
Q
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According to the analysis of the previous section, if u. € A satisfies u. — u in L*(Q; R3)
and L(ua) < C, the limit admissible displacement © must at least be of Kirchhoff-Love
type. Using further the condition u. = 0 in €24 in the substrate as well as, from the third
and last terms of the energy,

/ |83(u5)3\2dx:/ less(u)|? dx ~ €2,
QfUQb

QfUQb

we infer that v must also satisfy ug = 0. Inserting this information in the Kirchhoff-Love
structure yields w(z’, z3) = (a(z’),0) which means that u is a planar displacement. As a
consequence all flexural terms appearing in Jg (in Theorem 2.2) cancel and there only
remain the membrane terms

/w [%eaa(wew(u) + tigeas () eas ()] da’.

The bonding layer does not only contribute to specifying limit admissible displacements,

but also to an additional energetic term which arises from the only first order term in
the bonding layer,

2,ub/ eas(Ue)eqs(us) de.
Qp

In the e — 0 limit, this term leads to a cohesive type energy of the form

@/ a2 da’
2 w

penalizing the mismatch between the prescribed displacement in the substrate (recall
that from Remark 2.1 we assume uy = 0) and the displacement in the film.

In summary, the following I'-convergence result holds (see [16]) corresponding to the
derivation of a Winkler foundation (see [214]).

THEOREM 2.3. The functional js I'-convergence in H'(Q;R3), with respect to the strong
L%(Qy; R3) topology, to the functional Jy : H*(Q;R?) — [0, 00] given by

Jo(u) =

Ar+2uy a € H'(w;R?),

o8 otherwise.

[ Ao @ens o) + peas(@east@)] s’ + 2 [ fafao’ it {“:("_"0)’

2.4. Transerve cracks. We next introduce cracks into the model. We first focus on the
energy in the film £ which allows for cracks, without taking care of the bonding layer
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18 J.-F. BABADJIAN ET AL.

and the substrate. For all u € SBD?({;), the (Griffith) energy is defined by

J (w) = %/ﬂf\Ju Agef(u):ef(u)de + Hf/ () e Hvu)s)| dH?

JuNSy

= /Qf\Ju [%eaa(u)egg(u) + ufeaﬁ(u)eag(u)} dx

ye? /Q " [)\ fean(t)ess(u) + 2Mfea3(u)ea3(u)] dz

) A+ 2 -
44 / fTMeBz%(u)egg)(u) dr + Ky / ’((Vu)/a € 1(Vu)3)‘ dH2.
Qp\Ju JuNQy

In order to guess what kind of limit admissible displacement one should expect, let
us consider a sequence of displacements {u.} in SBD?(f) such that Jl ) < C.
Assuming further the uniform bound |luc[lc < C, we can apply a compactness and
lower semicontinuity result in SBD (see [20]) which ensures that, up to a subsquence,
there exists u € SBD?(€f) such that u. — u in L*(Qs;R?), e(u.) — e(u) weakly in
L2(Qp; M253) and H?(J,) < liminf. H?(J,,.). Using the energy bound, we infer that
ei3(u) =01in Qy and ()3 = 0 on J,,. These last conditions ensure that Dyuz = Essu =
O3uz L3 + (ug — uz ) (vy)3H?L J, = 0. Unfortunately, the full displacement u might fail

to be of Kirchhoff-Love type as in the case of pure elasticity (see Theorem 2.2) because

+_ —
Bt = W%%Ju £0, a=1,2

However, it has been established in [16], that such displacements enjoy a Kirchhoff-Love
type structure “outside the jump set” in the sense that uz € SBV?(w), the approximate
gradient of ug, denoted by Vus = (d1us, dauz) € SBD(w), u = fol(u1(~,s),uz(~,s)) ds €
SBD(w) and

U (T) = U (x') + (% — ac3> Opuz(x'),  Jy = (JgU Jus UJgu,) X (0,1).

Thus, the jump set (which is assimilated to the crack) associated with an admissible limit
displacement is transverse in the sense that it is invariant with respect to the vertical
direction.

The following I'-convergence result has been proved in [16].

THEOREM 2.4. Under a uniform bound assumption, the functional i_f T’-converges in
SBD?(), with respect to the strong L?(2f;R3) topology, to the functional

Jo : SBD?(€2;) — [0, 0]
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defined by

/\fo 2
eaa(w)egs(u) + preqas(u)eqs(u) | de + krH(Jy

A
/ e f;z 30 0]

12 A+ 2
+ kRN (Ja U Juy U Ty, ),

1 A
+ —/ [fiufeaa(Vu?,)em(Vug) + ufeag(Vu;;)eag(Vug)} dx
UJ\JV

if
us € SBV(w), Vus € SBD(w),
U= fol(u1(~,ac3),ug(-,xg))dxg € SBD(w),
U () = () + (% - {E3)aa’LL3(.’II/) for a =1, 2,
Jy = (Ja U Jyy U Jyy,) X (0,1)

and Jo(u) = oo otherwise.

REMARK 2.5. The uniform bound assumption means that we work inside a fixed
“box”, i.e. admissible displacements are required to satisfy ||ul|.c < M for some fixed
M > 0. This condition is necessary to apply the compactness result of [20]. Although this
condition is meaningful from a mechanical point of view (we can suppose without loss of
generality to work in a e.g. 1000 km neighborhood of the earth), it has no mathematical
justification at present. Lately, this condition has been dropped in [4] at the expense of
working in a larger and more sophisticated space called GSBD?((2) introduced in [56].

2.5. Fracture, debonding and delamination. We now arrive to our final goal of identi-
fying the T-limit of the family of functionals, defined for u € SBD?(Q2), by

Jo(u) = %/Qf\Ju Agef(u) : e (u) de + kg /Jurmf ’((yu)’,g—l(yu)g)‘ dH?,

52

+ 5 Abei(u) : eE(u) dx—l—libe/ ’((yu)”g*l(yu)gﬂ dH2.
Qp\Ju JuNS,

Unfortunately, the understanding of the limit behavior of this functional is still an open
question at present in such a generality. We thus simplify the problem by considering a
scalar version of this problem where, now, u € SBV?(Q) is scalar valued, and the energy
associated with u is given by

I.(u) := ﬂ/ (IV'uf? + e2|95u|?) dz + /-@f/ |((va)' e (va)3) | dH2,
2 Jap. JunSy

+ % (€2|V'ul? + |03ul?) dz + Kb/ I(e(v), (V)3)| dH?.
Qb\Ju JuﬂQb

The scalar nature of this new problem makes the analysis more tractable and we are able
to identify the I-limit of the family {I.}. This is the object of the following result which
has been proved in [165].
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THEOREM 2.6. The functional I. T-converges in SBV?2(2), with respect to the strong

L%(Qy) topology, to the functional Iy : SBVZ(Q¢) — [0, 00] defined by

ﬂ/ IV'ul? do + k1 (Ju) + %/ lul?da’ + ko L2(Ay)  if u € SBV?(w),
w\Jy

Ip(u) = ¢ 2 W\Ay
o0 otherwise,

where A, := {Ju| > \/2kp/pp} is the delamination set.

As expected, this result shows the interplay between transverse cracks characterized by
the jump set J,, (which is still invariant with respect to the vertical direction) and delam-
ination surfaces corresponding to the set A,. There is a threshold criterion stipulating
that, as long as the displacement is small (less than the material constant /2kp /1), it
is energetically favorable to pay a cohesive energy penalizing the mismatch between the
prescribed displacement in the substrate and the displacement in the film, while if the
displacement overpasses this threshold, it is preferable to create a discontinuity surface
leading a delamination zone.

The generalization of this result to the full vectorial case is still not entirely understood.
However, we expect the following result to be true.

CONJECTURE 2.1. Under a uniform bound assumption, the functional J. I'-converges
in SBD?*(Q), with respect to the strong L?(£2;;R?) topology, to the functional Jy :
SBD?*(Qy) — [0,00] defined by

Jo(u) = /w . [%ew(u)ew(u)+Mfeaﬂ(u)ea3(u) da’

1 / AfbLy /
+ = ———eaa(Vus)egs(Vus) + preas(Vus)eqs(Vus) | de
12 W\ Iy [)\f—l-Z,uf f B }

+ Hle(Ja U Jyy U dvu,) + % /\A jal* da’ + k5 L2(A),
if
uz € SBV(w), Vus € SBD(w),
= fol(U1('7.’L'3),’LL2(',CE3)) dzs € SBD(w),
Ua(T) = U (z') + (% — :Cg,)aaug(;v’),
Ju = (Ja U Juy Udvug) x (0,1),
Ay = {lul > 26/} U{us # 0},

and Jy(u) = oo otherwise.

Right now, this conjecture is not proved. However, in [16] the validity of the upper
bound is established while some insight into the proof of the lower bound is provided.

3. Geometry and morphogenesis of thin films (by Marta Lewicka). In this
section, we present the author’s choice of topics and results motivated by the mathemati-
cal study of curvature-driven morphogenesis. For brevity, we only include state-of-the-art
analytical results concerning the dimension reduction for prestrained materials, while we
refer the reader to [142] for a larger scope review and a list of open problems which are
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ripe for exploration through methods of Differential Equations, Mathematical Analysis
and Geometry.

Prestrained materials arise in science and technology from a range of causes: inhomo-
geneous growth, plastic deformation, swelling or shrinkage by solvent absorption. In all
these situations, the resulting shape is a consequence of the heterogeneous incompatibil-
ity of strains that leads to local elastic stresses. One approach towards understanding
the coupling between residual stress and the ultimate shape of the body relies on the
model of non-Euclidean elasticity, introduced below.

3.1. The set-up of non-Euclidean elasticity. Let g be a smooth Riemannian metric,
given on an open, bounded domain 2 C R3. Since g(z) is symmetric and positive definite,
it possesses a unique symmetric, positive definite square root A(z) = g(:c)l/ 2. Define:

S(u):/gw((vu)/rl) dr  VYue HY(Q,R?), (3.1)

where the energy density W : R3*3 — [0,00] obeys the principles of material frame
invariance (with respect to the special orthogonal group SO(3)), normalisation, non-
degeneracy, and material consistency, valid for all F € R3*3, R € SO(3):

W(RF)=W(F), W(Ids)=0, W(F)>ec dist*(F,SO(3)),

3.2
W(F) — 400 as det FF -0+, and: VdetF <0 W(F)=+o0c. (3:2)

The model (3.2) postulates that the body €2 seeks to realize a configuration with a pre-
scribed metric g by means of an orientation preserving isometric immersion v :  — R3:

(Vu)I'Vu=yg and detVu>0 inw.

Although any ¢ always has a Lipschitz « satisfying the first condition above, one can
show that any such immersion changes its orientation in any neighbourhood of a point
where the Riemann curvature [Rj; gl jki=1..3 of ¢ is not zero. Excluding such non-
physical deformations leads to the energy £ in (3.1), that quantifies the total pointwise
deviation of the deformation gradient Vu from g'/2
of £ in absence of forces or boundary conditions is then indeed strictly positive for a
non-Euclidean g:

, modulo rotations. The infimum

THEOREM 3.1 ([153)). If [Ryj ] # 0 in Q, then inf {E(u); u € H'(Q,R?)} > 0.

The above statement points to the dichotomy: either g and £ are, by a smooth change
of variable equivalent to the scenario with g = I'd; and min € = 0, or otherwise the zero
energy level cannot be achieved even in the limit of weakly regular H' deformations.
The latter case points to existence of residual stress at free equilibria.

3.2. Thin prestrained films. Consider now a family (Q°,u®, g, A, E%)c~o (or more gen-
erally (QF,u®, g, A%, £%)>0) given in function of the thickness parameter ¢ in:

e € €
QF =w x ( ~ 3 5)
The open, bounded set w C R? with Lipschitz boundary is viewed as the midplate of the
thin film ¢, on which we pose the energy of elastic deformations:
1

E(uf) = . /Q W((Vu)A " dz  Vu® € H'(Q°,R?). (3.3)
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The main objective of study is now to predict the scaling of inf £ as e — 0 and to analyze
the asymptotic behaviour of minimizing deformations u° in relation to the curvatures of
the prestrain A = ¢'/2. Similarly as in Theorem 3.1 there is a connection between
inf £¢ and existence of isometric immersions, which is now more subtle. In the context
of dimension reduction, this connection relies on the isometric immersions of the metric
g(+,0)2x2 on w into R3, corresponding to parametrised surfaces y : w — R? satisfying:

(V)" Vy =g(-,0)2x2 inw. (3.4)

The following result was proved first for ¢ = g(2’) in [153] and was further generalized
to the abstract setting of Riemannian manifolds in [132]:

THEOREM 3.2 ([24]). Let {u® € H'(Q,R3)}._,0 satisfy £5(uf) < Ce2. Then we have:
(i) (Compactness). There exist {¢° € R3 R € SO(3)}._0 such that the rescaled
deformations {y®(z’, z3) = R°u® (a2, ex3) — ¢ }e—0 converge up to a subsequence
in H'(Q', R3), to some y € H?(Q!,R3) depending only on z’ and satisfying (3.4).
(ii) (Liminf inequality). There holds the lower bound:

lim inf iga( N>Toyg =51 / Qs (2, (Vy) )'Vb - —539( 0)2x2) da’, (3.5)

em0 g2

where Qo (2’,-) are non-negative quadratic forms derived from D?W (Id3), and
where b satisfies: [O1y, 823/,5] € SO(3)g(-,0)/2. Equwaulently7 b is the Cosserat
vector comprising the non-zero shear, in addition to N that is normal to y(w):

dt — —
} el g N — 01y X Oay

\/detggxg ’ B |81y X 82y| ’

b= (V)grs [ - (3.6)

g23

Moreover, there holds:
(iii) (Limsup inequality). If y € H?(w,R3) satisfies (3.4), then convergence as in (i)
holds for some {u® € H'(Q°,R3)}. o with ¢. = 0, R® = Id3, and:
1
tim 65 (0F) = T, (1)
Theorem 3.2 may be restated as the following I'-convergence:
Tra(y) ify € H*(w,R?) and it satisfies (3.4)
400 otherwise,

r

=& (y(a', exs)) — {

with respect to convergence in H'(2},R3). Consequently, there is a one-to-one corre-
spondence between (global) approximate minimizers of £° and (global) minimizers of
T4, provided that g(-,0)2x2 has a H%-regular isometric immersion from w to R3. We
remark that, in general, one cannot expect £° to have a minimizer. The lowersemiconti-
nuity of £ in (3.1) is tied to the quasiconvexity of the energy density, whereas it is known
that the prototypical density F + dist?(F, SO(3)) is not even rank-one convex [218].

From Theorem 3.2, one can also deduce a counterpart of Theorem 3.1, in the context
of thin prestrain films, stating equivalence of existence of a H? isometric immersion of a
two-dimensional metric g in R, with the energy scaling inf £5 < Ce? for some smooth
(equivalently, for any) metric g on Q! such that g(-,0)2x2 = g.
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3.3. Other energy scalings. A separate energy bound may be obtained by constructing
deformations u” through the Kirchhoff-Love extension of isometric immersions of regu-
larity C1'*. Existence of such is guaranteed by techniques of convex integration [61] for
all & < 1/5, and this threshold implies the particular energy scaling bound in:

THEOREM 3.3 ([142]). If w C R? is simply connected with C!:!-regular boundary, then:

inf€° < Cef VB < ;
Not much is known about the asymptotic behaviour of deformations with the energy
scaling £5(uf) < Ce? for B < 2. We refer the reader to the list of available results in
[142], where we also point out the connection of the analytical results to experiments.
On the other hand, in the opposite regime where 8 > 2, the complete information is
available.
We start by observing that in view of Theorem 3.2, there holds:

1
lim - inf€° =0
e—0 ¢

iff there exists y € H2(w,R?) and b in (3.6), with:

1
(Vo)TVy = g(-,0)axo  and  sym ((Vy)?'Vb) = 5539(-70)%2 in w. (3.7)

The above compatibility of tensors g(+,0)2x2 and d5g(+,0)2x2 is proved in [24,141,156] to
be equivalent to the satisfaction of the Gauss-Codazzi-Mainardi equations for the first and
second fundamental forms: I = (Vy)TVy, IT = (Vy)TVN = /¢33 (sym((Vy)TVb) —
%83g(-, 0)2><2) - ﬁ [F?j(-, 0)]2,0.:1“.2. These turn out to be precisely expressed by:

Ri212(-,0) = R12,13(-,0) = Ri2,23(-,0) =0 in w. (3.8)

Moreover, if (3.8) holds, then KerZ, ; = {Ryo + ¢; R € SO(3), c € R3} where yo : @ —
R3 is the unique “compatible” smooth isometric immersion satisfying (3.7) together with
its corresponding Cosserat vector b=b,. Further, by a direct construction: inf £5 < Ce?.

These statements may be generalized beyond 5 = 4: the only viable scalings of inf £¢ ~
€8 in the regime 8 > 2 are the even powers 3 = 2n. Namely, we have:

THEOREM 3.4 ([140]). For every n > 2, if lim. ;¢ = inf £ = 0 then inf £° < Ce2(nt1),

=2n
Moreover, the following three statements are equivaalent:
(i) inf &5 < O,
(ll) R12712(',0) = R12713(',0) = R12,23(',0) = 0 and 6§k)Ri37j3(-,0) =0in w, for all
k=0...n—2andallé,j=1...2.
(iii) There exist smooth fields yo, {gk}Zii : w — R3, frames By = [81y0, 0290, 51],
m
{Bk = [815]“ 825k, Ek+1] }Z:I W — R3><3’ such that: Z( )BgBm_k —
k=0

m

k
8§m)g(-,0) =0forallm=0...n.
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Equivalently: (i Z—%BOT(i Z—%BO =g(a',23) + O(e™™) on QF as e —
k=0 k=0

0. The field yo is the unique smooth isometric immersion of g(-,0)2x2 into R3
for which Z 4(yo) = 0.

We note that if R(-,0) = 0 and 8§m) [Risjs(, O)L’jzl..Q =0onwforallm=0...n-2,

but 8§"_1) [Ris,js (-, 0”@;‘:1...2 # 0, then: 2"t < inf £5 < C=2(™*+D for some ¢, C' > 0.
The conformal metrics g(z’, x3) = e2?(#3) [ ds provide a class of examples for the viability
of all scalings: inf £ ~ 2" by choosing ¢®)(0) =0 for k =1...n — 1 and ¢(™(0) # 0.

A crucial ingredient in proving compactness of sequences of deformations that satisfy
an energy bound in Theorem 3.4(i) is the following approximation result:

THEOREM 3.5 ([140,156]). Assume any of the equivalent conditions in Theorem 3.4, for
some n > 1. Then, given {u® € H'(Q%,R?)}. o such that £5(u®) < Ce2(™t | there
exists { R € H'(w, SO(3))}e—0 with:

no_k
l/ |Vu® — R° Z x—‘?kadx < Ce2tY and / |VR(2")|* da’ < Ce®".
€ Jqe = k! w

When n = 0, the above bounds are deduced from the celebrated geometric rigidity
estimate in [92], which is the non-linear version of Korn’s inequality. Dependence of the
optimal constants in these inequalities on the various geometric features of the domains
where they are posed has been addressed for example in [107,150,151,217].

3.4. The infinite hierarchy of T'-limits. To derive a counterpart of Theorem 3.2 for
higher energy scalings, one observes the following compactness properties under the as-
sumption £°(uf) < Ce2("+1), First [140], there exist {c* € R3, R® € SO(3)}._,0 with:

12 " zk
Ve(r') = —][ (R (u (2!, 23) — ) — (yo(;p’) + Z _3bk(:z:’)) dxs

n
€ —e/2 b1

converging as ¢ — 0 in H'(w,R?), to a limit V that is an infinitesimal isometry:
VeV, ={VeH*w,R?; sym ((Vy)"VV) =0}.
In particular, there exists p € H'(w, R®) with sym (B{'[VV, p]) = 0. Second, the strains:
1 T
Zsym ((Vyo) VVE)
converge as £ — 0, weakly in L?(w,R?*2) to a limiting S in the finite strain space:
S € 8y, = closurerz { sym((Vyo)"' Vw); w € H' (w,R?)}.

The space Sy, can be identified, in particular, in the following two cases on w simply
connected. When yo = ida, then Sy, = {S € L*(w,R%2); curlcurlS = 0}. When

Gauss’s curvature ((Vyo)" Vo) = £(g(+,0)2x2) > 0 in @, then Sy, = L*(w, R2x?2)
[148].
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We further have I'-convergence with respect to the above compactness statements:

THEOREM 3.6 ([140,141]). In the energy (3.3) scaling regimes in Theorem 3.4, there
holds: (i) For the von Kérmén-like regime, we have for all V- € V,, and S € Sy,:

1. r
6_45 — 14 4(V,S) =

1 1 1 _- - 1
3 /WQQ (m',S(w’) +§VV(.’L'/)TVV(.’L'/) —l—ﬂVbl(x’)TVbl (2) —Eaggg(a:’, 0)ax2 )dx'

stretching
1 —
+ ﬂ/ Qs (x’,VyO(x’)TVﬁ(x') + VV(x')TVbl(x/)) dx’
© bending
1 Riz13 Rizos /
+ Q ('I/7 |: ’ ' ) de? :
1440 /w 2 Ri323 Ras 23

curvature

When g = Ids then Zy 14,(V,S) reduces to the classical von Kérmén functional, given
in terms of the out-of-plane scalar displacement v in V = (az’ + 8,v) for which § =
(=Vv,0), and the in-plane displacement w in S = sym Vw:

1 1 1
Ty(v,w) = 5/ Qy(sym Vw + §V’U ® Vv) dz’ + ﬂ/ Q,(V?v) da’. (3.9)

(ii) For all n > 2 (which is the case parallel to linear elasticity), we have for all V € V,:

1 r
£2(n+1) & — Iz(nJFl)ag(V)
1 = 7 n—1
=% ; Qs (:CZ (Vyo) ' Vi + (VV)IVb + [&E, )RiS,jZS]Z-’j:l_”Q) da’

bending

+6n/ Q2 (iﬂ/,PsyiO([a“gnil)Ris,jS}i,j=1..42)) da’

+’Yn/ Q2 (x/’IPSyo([a‘gnil)RiBJg}i,j:l..AZ)) da’.

Above, Ps,, IP’S;O denote orthogonal projections onto Sy, and onto its L?-orthogonal

complement Sjo . Coefficients «a,, B, v > 0 are given explicitly and «,, # 0 iff n is even.
For g = Ids, each Zy(,,41),14, Teduces then to the classical linear elasticity:

1
IQ(?L+1)(U) = ﬂ/ QQ (v2’U) dx'. (310)

The functional Z, , consists of stretching and bending (with respect to the unique
isometric immersion yo that gives the zero energy in the prior I'-limit (3.5)) plus a
new term, which quantifies the remaining three Riemann curvatures. In the present
geometric context, the bending term (Vyo)? Vi+ (VV)TVgl in Zy(n41),g is of order e"x3
and it interacts with the curvature [8;”71)}21'3,]»3(-, 0)], j—1...2 Which is of order x5t The
interaction occurs iff the two terms have the same pa’rity”ivn 3, namely at even n. The
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two remaining terms measure the L? norm of [8§"71)Ri37j3(~,0)}

J.-F. BABADJIAN ET AL.

=12 with distinct

weights assigned to S,, and (Syo)l projections, according to the parity of n.

COROLLARY 3.7. In the context of Theorem 3.6, there holds:

. —1
glf Totnt1),g ~ || [Q?En )RiB,jB('a 0)] i7j:1m2||%2(w)'
Yo

We gather the findings about the infinite hierarchy of limiting models in Figure 3.

asymptotic . . c .
. constraint / regularit limiting energy Z,
A expansion / reg Y g ey Lg,g
) y(2’) yew?? cll(Vy)TVE — Lasg(a’,0)2x2(13,
{8d: y(a')+esb(a") } (Vy)T'Vy = g(a’,0)2x2 [03y, 29, 8] € SO(3)g(a’,0)1/2
Ri2,12, R12,13, R12,23(¢',0) = 0 €1 H%(VV)TVV +S+ i(vgnTvgl
A yo(a') + eV (') (V) TVV) 0 =0, —250339(2", 0)2x2[I%,
+e2w (') ((Vyo)Tth)sym =S +ez|(Vyo) TVE+ (VV)TVhi |3,
Ve W22(w,R), wf € Wh2(w,R3) | Tesll[Rizza(@ 0] I3,
6 e2l|(Vyo)TVE+ (VV)T Vb1 + o [83R] |3,

yo(a') + 2V (a')

Rap,ca(z',0) =0

(Vyo)TVvV), =0,V ew??

sym

+esllPsy [9sR]IG, + calPs,, [0R] G,

ko
2n |{3d: yo+3p2} B (a')

+en v (2))

e layp(a’) }

yo(z') + "1V (2')

Rap,ca(z',0) =0
[68) R] (2/,0) = OVk <n —3
(Vyo)TVV), ~=0,Vew2?

sym

2ll(Vy0)TVE + (VV)T VB + a[0" 2 R %,
(n-2)
+03HIPsyAO (85" 7 R]IIB,

—2
+eal|Ps,, [05" P R] |13,

F1G. 3. The infinite hierarchy of I'-limits for prestrained films (8 > 2)

3.5. The weak prestrain. Assume now that the given prestrain A° = (¢°)'/2 on QF is
incompatible only through smooth perturbations S, B : & — Rg’;ﬁ; of higher order in:

AS (2 x3) = Ids + &7 S(2') + 7?23 B(x").

(3.11)

The correlation of stretching and bending exponents +y, v/2 may be relaxed [122]. In this
context, the counterpart of Theorem 3.2 is as follows:

THEOREM 3.8 ([152]). Assume that a family deformation {u® € H'(Q°,R3)}._,, satisfies
the energy bound: £°(u®) < Ce?*2, for some 7 € (1,2). Then we have:
(i) (Compactness). There exist {R° € SO(3),c® € R3}._, such that for {y*(z', z3)

= Reus(a',ex3) — c*}.—0 the following holds.
1

H(QY R3). Second, the fields {Ve(2') =
in H'(w,R3), up to a subsequence, to some V of the form V = (0,0,v)T, and

satisfying:
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v € H*(w,R),

det Vv = —curl curl Says.

First, {y°} converge to z’ in
f1/2 y© (¢’ t)—a" dt}—0 converge

ev/2 J-1/2

(3.12)
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(ii) (T-convergence). If w is simply connected with C*! boundary, then we have:

1
ert2?

1
£ (u") - g p(v) = E/ Qo (', V20 + Bays) da. (3.13)

As before, one can further deduce that the Monge-Ampére problem (3.12) has a H?-
regular solution iff inf £2 < Ce¥*+2. Moreover, ce?t2 < inf £5 < Ce"*2 for some ¢,C > 0
is equivalent to the solvability of (3.12) and the simultaneous non-vanishing of the lowest
order terms (i.e. terms of order v and 7, respectively) in curvatures Ris12(-,0) and
[R12,i3(+,0)]i=1,2. This last condition is equivalent to:

curlcurl Soyo +det Boxo Z0  or curl Boxo 20  in w.

We mention that a parallel analysis of the weak prestrain as in (3.11), but imposed on
a shell rather than a plate Q°, has been carried out in [145]. When the mid-surface
curvature is of order given by a power of £ and hence compete with the order of the
prestrain, the resulting I'-limit involves a further Monge-Ampére-type constraint.

Construction of the recovery sequence in the proof of Theorem 3.8 suggests to view
the Monge-Ampére equation det V2v = f through its very weak form, well defined for
all v € HL (w,R), in the sense of distributions:

1
Det Vv = —3 curlcurl(Vo @ Vo) = f in w. (3.14)

An application of techniques of convex integration [61,155] assures that for any smooth
f:@— Rand a < %, the set of C*(@) solutions to (3.14) is dense in C°(@). One
consequence of this result is that the operator DetV? is weakly discontinuous everywhere
in H'(w). By an explicit construction, there follows a counterpart of Lemma 3.3:

THEOREM 3.9 ([122]). Assume that w C R? is simply connected with C'! boundary.
Then:
inf £5 < CeP for all v € [2 2} and 8 < §”y—|—2
- 7’ 3 3’
2
inf&° < e forallye (0,7).

We point out [105], that one can consider the generalization of (3.14) to problems
posed on higher-dimensional domains w C R, in the context of dimension reduction
and isometry matching. The set {sym Vw; H'(w,R")} can be shown to coincide with
the kernel of the operator Curl®, where

CurlQ(A) = [CurlQ(A)ab,Cd]a,bvcvdzlmN,

defined for A € L?(w,RY*N), is given as the application of two exterior derivatives in:

Curl® (A)ab,ca = [0a0cAva + 060aAne — 0a0aAve — 0p0cAad) o ury -

Then: Rupca(Idn + 6%A) = —% CurlQ(A)amCd + 0(6%). Taking A = Vv ® Vu, one can
see that a scalar displacement field v on w can be matched by a higher order perturbation
vector field w, so that defining ¢°(z') = 2’ + (e2w(a), 51}(:1:’))T :w — RY| the metric is

matched in (V§)TV¢ = Idy + €2 A+ O(e*) iff [det(V?0)ap,c] wbed = —Curl®(A).
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3.6. Classical non-linear elasticity: case of no prestrain. We now list results concern-
ing the dimension reduction of thin elastic shells, where instead of the imposed prestrain,
the stored energy is due to the presence of external loads. Consider a family {S®}._,o of
thin shells around an oriented 2d midsurface S with the unit normal vector 7:

S¢ ={x+ti(z); x €S, —¢/2 <t <e/2} CR

The elastic energy (with density W that satisfies (1.1)) of deformations and the total
energy in presence of the applied force f¢ € L?(S¢,R?) are given, respectively, by:

1 1

Ef(uf) = - W(Vu®), J(u')=E(u®)— -

Vus € Wh2(5e, R?).
€ Jse S

fEuE
ge
It has been shown [93] that if {f€}._,¢ scale like %, then £%(u®) at approximate mini-
mizers u® of J¢ scale like e?, with 8 = a for 0 < a < 2 and 8 = 2a — 2 for a > 2. The
dimension reduction question in this context consists thus of identifying the I'-limits Zg s
of the rescaled energies {5%55 }e—o. Contrary to the curvature-driven shape formation,
there is no energy quantization and any scaling exponent 8 > 0 is viable.

In case of S C R? i.e. when {S°}. ¢ is a family of thin plates, such I'-convergence
was first established for 8 = 0 [137], and later [93] for all § > 2. This last regime
corresponds to a rigid behavior since the limiting deformations are isometries if 5 = 2 (in
accordance with the general result in Theorem 3.2), or infinitesimal isometries if 5 > 2
(see the compactness analysis in Section 3.4). One particular case is 8 = 4, where the
derivation yields the von Kdrman theory (3.9), then 8 > 4 with the I'-limit as in (3.10),
and 8 € (2,4) where the result is effectively included in Theorem 3.8. We gather these
results in Figure 4, which should be compared with Figure 3.

asymptotic
expansion of
minimizing uj,

constraint
/ regularity

scaling

exponent 3 I' — limit Zg,s

B =2 ’y(:l?/) RS W272(M7R3) c||(Vy)TVJ\7H2
: Q
Kirchhoff {3d: y(;c’)#»acgﬁ(x')} (Vy)TVy = Id2 :
v € W22(w,R)
% < B'<c;lK' Hhoff x + Eﬁ/Q_IU(.T/)a?g ) C||V2UH2Q2
inearised Kirchho det V20 = 0
B=4 z' + ev(z’)zs v € W»?(w,R) || 3Vo®? + (V) sym || B,

von Karmén

+e2w(z’)

w € W2 (w,R?)

+e2|[ V20,

B>4
linear elasticity

o' + P/ (e

v € W% (w,R)

ol V*ollg,

F1G. 4. The finite hierarchy of I-limits for plates (3 > 2)
3.7. The infinite hierarchy of shell theories and the matching properties. The first

result for the case when S is a surface of arbitrary geometry was given in [137] as the
membrane theory (8 = 0) where the limit Zy g depends only on the stretching and
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shearing. The case § = 2 was analyzed in [91] and proved to reduce to the flexural shell
model, i.e. a geometrically non-linear pure bending, constrained to isometric immersions
of S. The energy 7» s depends then on the change of curvature as in Theorem 3.2.

For § = 4 the I'-limit Z, g, as shown in [146-148], acts on the first order isometries:

VeV =V, = {V e H*(S,R%); symVV =0}
i.e. displacements of S whose covariant derivative is skew-symmetric, and finite strains:
B € S = 8,4, = closures2 {sym Vw; w € H*(S,R?)}

(compare the definitions of V,,, Sy, in Section 3.4). The limiting energy consists of two
terms corresponding to the stretching (second order change in metric) and bending (first
order change in the second fundamental form IT7 = VN on S) of a family of deformations:

{¢"=id+nV + n2w”}n_>0

of S, induced by displacements V € V; and w" satisfying lim,_,o symVw"” = B. The
out-of-plane displacements v present in (3.9) are therefore replaced by the vector fields
in V1, preserving the metric on S up to first order. For 8 > 4 the limiting energy consists
[146,147] only of the bending term and it coincides with the linear elasticity.

The form of Zg g for any 8 > 2 and arbitrary S has been conjectured in [154]. Namely,
1s,s acts on the space of k-th order infinitesimal isometries V},, where & is such that:

B € [Bk+1,Bk) where S, =24+2/n foralln>1.

The space Vy consists of k-tuples (Vi,..., V) of displacements V; : S — R?, such that
the deformations {¢"7 = idg + Zle n"Vi}y—o preserve the metric on S up to order 7",
ie. (Vo) TV —Idy = O(nF*1). Further, setting n = £%/2~1, we have:

(1) When 8 = Bry1 then I 5 =~ [¢ Qo (x,0r411s) + [g Qa2 (x,0111s), where dpy115
is the change of metric on S of the order n**1, generated by the family of defor-
mations {¢"}, o and 6111 is the first order (i.e. order n) change in the second
fundamental form IIg of S.

(2) When 8 € (Bry1,Br) then Ig g = [ Qo (x,61115).

(3) The constraint of k-th order isometry Vi may be relaxed to that of V,,,, m < k,
if S has the following m +— k matching property. For every (V4,...V,,) € V,,
there exist sequences of corrections V! lreees V,!, equibounded in 7, such that:
" =id + 3" 0V + Zf:m_H 7'V, preserve the metric on S up to order n*.

The above is supported by all the rigorously derived models. In particular, plates
enjoy the 2 — oo matching property [93], i.e. every W1 N H? element of V5 may be
matched to an exact isometry in the sense of (iii) above. Hence all theories for 8 € (2,4)
collapse to a single theory (linearized Kirchhoff model, see Figure 4). Further, elliptic
(i.e. strictly convex up to the boundary) surfaces enjoy [148] a matching property of
1 + oo, which is stronger than that in case of plates. Namely, on S elliptic and C*©,
every V € V1 NC>* possesses a sequence {wy, },0, equibounded in C%%(S,R3), and such
that ¢7 = idg +nV + 772“’77 is an (exact) isometry for all < 1. As a consequence,
for elliptic surfaces with sufficient regularity the I'-limit of the non-linear elastic energies
e7BE&# for any scaling regime 8 > 2 is given by the bending functional constrained to the
first order isometries, as in the case 5 > 4.
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In [112] a further matching property of isometries on developable surfaces without
affine regions has been proved. Namely, on such S of regularity C?*!, every V € V; N
C?=11 enjoys 1 + k matching property. The implication for elasticity of thin shells
with smooth developable mid-surface is that, again, the only small slope theory is the
linear theory; a developable shell transitions directly from the linear regime to fully non-
linear bending if the applied forces are adequately increased. While the von Karmén
theory describes buckling of thin plates, the equivalent variationally correct theory for
developable shells is the purely non-linear bending.

3.8. Remarks. The related problem of dynamical viscoelasticity in presence of pre-
strain has not been satisfactorily addressed, to date. To understand how growth patterns
change in response to shape, one must turn to experiments. The simple developmental
feedback from shape to growth has been studied in [149], where we initiated this analysis
by showing the local and global in time existence of the classical solutions to a gen-
eral class of stress-assisted diffusion systems. As a follow-up, it would be interesting to
tackle the questions of stability of viscoelastic prestrained shock profiles, using the Evans
function-based analysis as in [18]. The inverse design problems in morphogenesis require
a separate attention, for a handful of simple analytical observations see [3]. Finally, we
point out a plethora of parallel discrete problems (e.g. origami, kirigami) both in the
static description as well as in the shape evolution through singular prestrain.

4. Micromagnetics of curved thin films (by Giovanni Di Fratta). The anal-
ysis of micromagnetic thin films is a subject with a long history. It dates back to the
seminal papers [41,102], where the authors show that in planar thin films, the effect of
the demagnetizing field operator drops down to an easy-surface anisotropy term. In the
last decade, magnetic systems with the shape of a curved thin film have been subject
to extensive experimental and theoretical research (nanotubes, 3d helices, thin spheri-
cal shells). The wide range of magnetic properties emerging in curved geometries makes
them well-suited for spintronic applications, from racetrack memory devices to spin-wave
filters (see [205,206] for topical reviews). The embedding of two-dimensional structures
in the three-dimensional space permits altering the system’s magnetic properties by tai-
loring its local curvature. It turns out that even in the absence of Dzyaloshinskii-Moriya
interaction (DMI) [82,176], curved geometries can induce an effective antisymmetric
interaction that supports the emergence of magnetic skyrmions, i.e., of topologically
protected states to which a topological degree can be assigned.

In the next section, we define magnetic skyrmions in the mathematical framework
of the variational theory of micromagnetism, which is also quickly recalled in the same
section. After a brief review of magnetic thin films in planar structures, we present
the recent developments about curved thin films, which are the geometric structures
where magnetic skyrmions naturally emerge. For that, we focus on the general setting
of a bounded C2-surface S C R3. Then, we concentrate on the analysis of magnetic
skyrmions in spherical thin films (S = S?), and we describe the challenges still open.
We conclude with a section on the analysis of magnetic skyrmions in cylindrical surfaces
that highlights how simpler geometries can be the source of valuable techniques for the
analysis of more complex scenarios.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



THE MATHEMATICS OF THIN STRUCTURES 31

4.1. Magnetic skyrmions in curved geometries. Skyrmions are a class of solitons, topo-
logically stable and with quasiparticle properties: they behave like particles, but they are
inherently more complex structures due to their collective nature. They owe their name
to the nuclear physicist Tony Skyrme, who, in 1962, proposed a description of elementary
subatomic particles as geometric twists in a continuous quantum field [200].

From the mathematical perspective, magnetic skyrmions emerge as topologically pro-
tected magnetization textures that carry a specific topological charge, referred to as the
skyrmion number. If M is a compact and smooth hypersurface of R"*!, and m : M — S™
is a sufficiently smooth vector field on M, the skyrmion number of m is defined by the
Kronecker integral [191]

1
Ngk (m) := |S_”| /M m*w,, (4.1)

with wy(z) = 37, (1) tayday AL A dz; A ...Adz, the volume form on S", and
m*w, the pull-back of w, by m on M. According to Hadamard, Ny (m) is always
an integer number and coincides with the topological degree of m. Also, by Hopf’s
theorem [172], skyrmions with different topological charges belong to different homo-
topy classes; therefore, from the physical point of view, skyrmions are expected to be
topologically protected against external perturbations and thermal fluctuations.

Since their discovery, magnetic skyrmions have been the object of intense research
work in condensed matter physics. Their stability, reduced size, and the small current
densities sufficient to control them make magnetic skyrmions extremely attractive for
applications in modern spintronics [86]. An in-depth understanding of their rich structure
(e.g., chirality, topological charge, stability) leads to challenging problems in a subject
area where geometry and continuum mechanics meet topology and analysis, and this has
raised interest in magnetic skyrmions also from a mathematical perspective [12,22,58,
73,75,77,83,84,116,118,133,157,158,167,170,171,180].

4.2. The variational theory of micromagnetism. The appropriate theoretical model
for magnetic phenomena depends on the length scale of interest. Models at the level
of individual atoms are necessarily quantum mechanical. However, for length scales
down to tens of nanometers, there is a well-established continuum theory of micromag-
netism [35,114], which dates back to the seminal work of Landau-Lifshitz on fine fer-
romagnetic particles [135]. In this theory, the observable states of a rigid ferromagnetic
particle, occupying a region 0 C R3, are described by its magnetization M, a vector field
verifying the fundamental constraint of micromagnetism: there is a material-dependent
constant M such that |[M| = M, in Q. The spontaneous magnetization My = M(T)
depends only on the temperature T and vanishes above a critical value T, characteristic
of each crystal type, known as the Curie temperature. When the specimen is at a fixed
temperature well below 7., the function M, is constant in €2, and the magnetization
takes the form M := M,m, where m : Q — S? is a vector field with values in the unit
sphere of R? (cf. [35,76,114]).

Although the length of m is constant in space, this is generally not the case for its
direction. For single crystal ferromagnets (cf. [1, 5, 58]), the observable states of the
magnetization are the local minimizers of the micromagnetic energy functional which,
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Fi1G. 5. Below the Curie temperature (T" < T.), the modulus of
M = Msm is constant in © (but not the direction). The direction
of M can be modified/controlled by an external magnetic field h,.

after normalization, reads as

Fo (m) :=%/Q|vm\2+/9wan (m>+;/ Ihg [mxo]| /h ‘m (42)

=:£q(m) =:Aq(m) =:Wgq (m) =:Zq(m)

Here, m € H'(Q,S?), and mygq is the extension by zero of m to R3. The exchange
energy Eq penalizes non-uniformities in the orientation of the magnetization. The mag-
netocrystalline anisotropy energy Agq accounts to the existence of preferred directions
of the magnetization: its energy density @., : S* — R vanishes only on a finite set
of directions (the so-called easy directions). The magnetostatic self-energy Wq is the
energy due to the demagnetizing field hy generated by m. From the mathematical point
of view, for every m € L?(R? R3), hy[m] is the unique solution in L?(R3, R?) of the
Maxwell-Ampére equations of magnetostatics:

curlhy =0, divb=0, b=po(hy+m). (4.3)

Here, b denotes the magnetic flux density, and pg is the magnetic permeability of the
vacuum. The Zeeman energy Zq models the tendency of a specimen to have the magneti-
zation aligned with the applied field h, (cf. Figure 5). The energy contributions Aq and
Zq are of fundamental importance in ferromagnetism. However, from the variational
point of view, they typically behave like continuous perturbations, and their analysis
is usually straightforward. To streamline the presentation, we will often neglect these
terms.

The variational problem (4.2) is non-convex, non-local, and contains multiple length
scales. The four terms in the energy functional (4.2) consider effects originating from
different spatial scales, such as short-range exchange forces and long-range magnetostatic
interactions. The competition among the four contributions in (4.2) explains most of the
striking pictures of the magnetization observable in ferromagnetic materials; in particu-
lar, the domain structure suggested by Weiss, i.e., regions of uniform or slowly varying
magnetization (magnetic domains) separated by thin transition layers (domain walls)
(see, e.g., [63,64,119-121,175,189], and the references therein).

Recent advances in nanotechnology have led to the fabrication of ultrathin films
(and multilayers) with a thickness down to several atomic layers and a lateral extent
down to tens of nanometers. These structures often display unusual magnetic prop-
erties connected to a prominent influence of interfacial effects; first and foremost, the
emergence of magnetic skyrmions originating from the Dzyaloshinskii-Moriya interaction
(DMI) [82,176]. In thin films, DMI is closely related to reflection symmetry breaking,
whereas a lack of inversion symmetry is the primary cause in bulk magnetic materials.
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The bulk DMI corresponds to the trace of the chirality tensor, which leads to the energy
contribution
Dq (m) := 'y/ curlm - m. (4.4)
Q
The normalized constant v € R is the bulk DMI constant, and its sign affects the chirality
of the ferromagnetic system [26,182].

However, the main interest in curved geometry relies on the observation that they
can host magnetic skyrmions even when no spin-orbit coupling mechanism (in the guise
of DMI) is considered (cf. [95,131]). The evidence of these spontaneous states sheds
light on the role of the geometry in magnetism: chiral spin-textures can be stabilized by
curvature effects only, in contrast to the planar case where DMI is required [82,176]. For
that reason, from now on, we will focus on the micromagnetic energy functional

Go (m) = 5 [ 1Vl 5 [ halmxall*+ [ oo am). (4.5)

and we will be interested in the asymptotic regime of curved thin films.

REMARK 4.1. Although we will focus on the variational theory of micromagnetism,
we will need to refer to magnetization dynamics from time to time. We recall that the
motion of non-equilibrium magnetizations is governed by the Landau-Lifshitz—Gilbert
(LLG) equation [100, 135]

om Om .
W —am X W = —Im X heff [m] m Q X RJ’_ (46)
The LLG equation is driven by the effective field heg [m] := —0mGq (m) and includes

both conservative precessional and dissipative contributions; the constant « is the so-
called Gilbert damping constant.

4.3. The planar thin-film regime. Let w be a smooth domain in R2. For any ¢ > 0 the
tubular neighborhood €. is defined by (cf. Figure 6)

QE:={$€R31$:§+€63,§EM}.

The micromagnetic energy functional on H!(f2.,S?) reads as (cf. (4.5))

1 1
. (mo) = [ ¥m = § [ hafmoe ] oms [ punm). @)

Here, w is the planar surface generating the cylindrical surface Q. = w x (0,¢), and
es = (0,0,1) is the normal to the planar surface w (cf. Figure 6 ). The existence for any
£ > 0 of at least a minimizer for G. in H'(Q.,S?) is easily obtained by the direct method
of the calculus of variations. The interest is in the asymptotic behavior of the energies
(e71G.) as € — 0, i.e., on the identification of the empty slots in the following typical
I'-convergence diagram

argmin ¢ G, (m,) =0 argmin . (4.8)

m.€H'(Q.,S?) O

For planar thin films, it is well-known that the demagnetizing field behaves like the
projection of the magnetization onto the plane of the film. The first mathematical
justification of this observation in micromagnetics is in the work of Gioia and James [102],
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|R3

Fi1Gc. 6. The thin shell . is generated by extruding, along the e3
axis, a planar surface w C R? x {0}.

where it is shown that the role of the demagnetizing field operator reduces to an easy-
surface anisotropy term. Their theory generalizes Stoner and Wohlfarth’s results for flat
ellipsoids [203] to arbitrary-shaped planar thin films. In the language of the scheme in
(4.8), they proved that

1
argmin -G, (m,) =9 argmin Gy (m), (4.9)
m.eH(Q.,5?)¢ meH ! (w,8?)

with

Go (m) := %/MIVmIQJr%/w(m-eg)QJr/w%n (m). (4.10)

Note that when the magnetocrystalline anisotropy is in-plane, i.e., when ., (£) = 0 for
every £ € St x {0}, every constant and in-plane magnetization minimizes Gy. However,
it is understandable from the Maxwell-Ampére equations of magnetostatics (4.3) that
when ¢ is sufficiently small, not every constant in-plane configuration is equally favored.
In fact, the direction of the limiting minimizer will depend on the shape anisotropy of dw.
In order to get mathematical evidence of this fact, one can use the methods of potential
theory to obtain higher-order correctors in the energy expansion. This has been done by
Carbou in [41], where it is shown that

mine 'G. = minGy — %alnamin Gy + o(elne)
with
6(©)= [ (€-vP ces'x o)

Here, v is the normal to Ow, and the result has the following interpretation. When the
magnetocrystalline anisotropy is in-plane, among all constant and in-plane magnetization
¢ € S x {0} that minimize Gp, the limiting magnetization tends to align along the
direction that minimizes G (£). The same result can be obtained using harmonic analysis,
and we refer the reader to [125], which also considers other attractive geometric regimes.
Finally, we mention the results in [59], where the contribution of DMI is taken into
account, again in the geometric setting of planar thin films. It is shown that, in the
limiting thin-film model, part of the DMI behaves like the projection of the magnetic
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Fi1G. 7. The thin shell €. is generated by extruding, along the normal
direction n, a surface S embedded in R3.

moment onto the normal to the film, contributing this way to an increase in the shape
anisotropy arising from the magnetostatic self-energy.

4.4. The curved thin film regime. To discuss results about curved thin films, we need to
introduce the proper setup. Let S be a smooth surface admitting a tubular neighborhood
of thickness 6 > 0. For any ¢ € Is := (0,9) the tubular neighborhood 2. is defined
by Q. = {zeR¥:z=¢+en(£),£ € S}, where n(§) denotes the normal at { € S
(cf. Figure 7) .

The micromagnetic energy functional defined on H'(Q.,S?) reads as (cf. (4.5))

1 1
G-(m,.) := 5/9 \Vms|2—§/9 hg [m. xo.] - m.. (4.11)

The existence of at least a minimizer for G. in H!(Q.,S?) is easily obtained by the direct
method of the calculus of variations.
For every € € I5 := (0, d) we denote by . the diffeomorphism of M := .5 x (0, 1) onto
Q. given by
Ve : (€,8) e M= E+esn(€) € Q..

For every £ € S the symbols 7(), 72(§) denote an orthonormal basis of T¢.S made by
its principal directions, i.e., an orthonormal basis consisting of eigenvectors of the shape
operator of S (cf. [80]). We then write x1(£), k2(§) for the principal curvatures at £ € S.
Note that, for any « € s the trihedron

(11(§), 72(£),n(¢))  with & :=m(z) (4.12)

constitutes an orthonormal basis of T (,){2s that depends only on S. Also, we denote by
\/8c the metric factor which relates the volume form on €2, to the volume form on M,
by b1, b2, the metric coefficients which link the gradient on €. to the gradient on M.
A direct computation shows that (cf., e.g., [183])

1

ga(fa 5) = |1 + QESH(f) + (53)2G(€)| ) bz}a(&? S) = HTfﬁz(f)

(i=1,2).

where H(£) and G(&) are the mean and Gaussian curvature at & € S. Also, we denote
by H'(M,R?) the Sobolev space of vector-valued functions defined on M and endowed
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with the norm
[allZ vy = /M lu(¢, s)|*déds + /M IViu(g, s)” 4 |0su(, s)[*déds. (4.13)

Here, Viu is the tangential gradient of u on S, and we write HY(M,S?) for the subset
of H*(M,R3) consisting of vector-valued functions with values in S2.

With M = S x I, we introduce the following functionals on H'(M,S?). The exchange
energy on M is defined by

E(u Z/ 16:,:0-,¢yul® \/EdédS—k \8 ul?\/g-déds. (4.14)

The magnetostatic self-energy on M is defined by

u) = _% ; /M h.[u](,s) - u(€, s)\/a: (€, s)deds. (4.15)

Here, h.[u] € L?(M,R?) is the demagnetizing filed on M defined by h.[u](¢,s) =
hal(uxr) o 421 o ¥

It is imperative to observe that for any € € Is, the minimization problem for G. in
H1(Q,S?) is equivalent to the minimization in H'(M,S) of the functional F. defined
by

Fe(u) = Exy(w) + Wiy (u),

in the sense that the configuration m. € H*(£.,S?) minimizes G. if and only if u. :=
mo . € H'(M,S) minimizes eF..

We can now state a proper generalization of the results in [102] (cf. (4.9)) to the curved
setting.

THEOREM 4.2 ([41,73,76]). The family (F.) is equicoercive in the weak H'(M,S?) and
(Fo) LN F§ in the sense of I'-convergence, with F{ given by

Fh(u /|V§u\2d§+ /(u~n)2d£ (4.16)

if 9su =0, and Fj(u) = +oo otherwise. Here, Viu is the tangential gradient of u on S.
Also, by the fundamental theorem of I'-convergence

min e 'G. = min_F}+ o(e),
HY(Q. ,S?) HY(M,S?)
and if (u.):ey, is a minimizing family for (F;).cy,, there exists a subsequence of (u)cey,

which strongly converges in H'(M,S?) to a minimum point of .

REMARK 4.3. Theorem 4.2 applies to bounded surfaces that admit a tubular neigh-
borhood. The range of such surfaces is broad. Indeed, any compact and smooth surface
is orientable and admits a tubular neighborhood (of uniform thickness) [80]. In partic-
ular, the analysis holds for bounded convex surfaces (e.g., planar surfaces, the sphere,
the ellipsoid) and non-convex ones (e.g., the torus). Also, it covers the class of bounded
surfaces that are diffeomorphic to an open subset of a compact surface (e.g., the finite
cylinder or the graph of a C2-function).

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



THE MATHEMATICS OF THIN STRUCTURES 37

0

Y ¥

w

94!

-Dl

[R3

F1G. 8. e (Left) The thin shell Q. is generated by extruding, along
the normal direction v, a surface S whose closure is diffeomorphic
to the closed unit disk Dy of R2. e (Right) A pillow-like thin shell:
Qe = {(z,2) €w xR? 1 ev1(x) < 2z < ev2(x)} where w C R? is a
planar surface and ~1,y2 functions vanishing on the boundary of w.

Theorem 4.2 states that in the curved thin-film regime, the magnetostatic self-energy
tends to favor tangential vector fields. The first analysis of the curved thin-film limit is
addressed in Carbou [41], where Theorem 4.2 is established under the assumption that
the thin geometry is generated by a surface diffeomorphic to the closed unit disk of R?
(cf. Figure 8). Also, in [201], a I'-convergence analysis is performed on pillow-like shells,
i.e., on shells of small thickness ¢ > 0 having the form

Q. ={(z,2) cwxR:ey(z) <z <eya(z)}

with w C R? and 71, 72 functions vanishing on the boundary of w.

The inherent local character of the results in [41] and [201] does not cover significant
scenarios like the one of a spherical thin film [77,199,202]. After all, it is on compact
surfaces that topological protection can be exploited through the mathematical concept
of degree. The lack of mathematical justifications in this context motivated the results
in [76], where three distinct variational principles for the magnetostatic self-energy are
introduced. Through them and the explicit construction of suitable families of scalar
and vector potentials, one can circumvent the technical difficulties in [41], at least in
the stationary case. Indeed, the approach in [76], dealing with energy estimates rather
than with the asymptotic behavior of the demagnetizing field operator, is not suitable for
analyzing the time-dependent case governed by the LLG. The results in [73] hold in the
more general framework of smooth (C? is sufficient) and bounded orientable surfaces in
R? (in particular, they cover the class of compact surfaces). The proofs in [41] and [73]
cover both the stationary case, which is governed by the micromagnetic energy functional,
and the time-dependent case driven by the LLG. They are based on a characterization
of the limiting demagnetizing field operator on curved thin films, which states that the
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demagnetizing field behaves like the projection of the magnetization on the normal to the
film. In other words, one has strong L2-convergence of h.[u](¢, s) to [n(¢) ® n(¢)]u(€).
Strong convergence in L? is crucial for extending these results to the LLG equation
(see [73]).

In the curved setting, the problem of identifying higher-order correctors in the energy
expansion of the magnetostatic energy is still open. For a compact surface with boundary,
the question is whether the next order term in the expansion W5,(u) reduces to a shape
anisotropy term on the boundary of the surface (of the order (¢|Ing|)~! if € is the
thickness of the thin film). For compact surfaces without a boundary (e.g., S?), the
analysis should benefit from the absence of a lateral surface in the curved thin shell,
which is what contributes at the (¢|Ine|)~! order in the planar case; yet, even for S? the
question has not been investigated.

4.5. Topologically protected states in spherical thin films. Spherical thin films are cur-
rently of interest due to their capability to host spontaneous skyrmion solutions [95,131]
even when no spin-orbit coupling mechanism (DMI) is considered. In addition to fun-
damental reasons, the interest in these geometries is triggered by recent advances in the
fabrication of magnetic spherical hollow nanoparticles, which lead to artificial materials
with unexpected characteristics and numerous applications ranging from logic devices to
biomedicine (cf. [198]).

From Theorem 4.2, we know that for a spherical magnetic thin film, the energy func-
tional reads as:

Fro:me HY(S?,S?) — /S |vgm(§)|2 + & (m(€) -n(¢))* de. (4.17)

Here, n(§) = € and, as before, V¢ is the surface gradient at § € S2. The parameter £ € R
summarizes the contribution of crystal and shape anisotropy. The role of xk € R is easily
understood. Uniform states are the only local minimizers of F,, when x = 0. For k > 0,
tangential vector fields are energetically favored, and this corresponds to the case of in-
plane crystal anisotropy in planar thin films. When x < 0, energy minimization prefers
normal vector fields, which compares to the case of perpendicular crystal anisotropy in
planar thin films, or, to be more precise, to the situation where shape anisotropy prevails
over perpendicular crystal anisotropy.

An exact characterization of the minimizers of F, is a challenging task with far-
reaching consequences in modern storage technologies [199]. Recently, a partial answer
has been given for the case k < 0. In [77], the following result is proved.

PROPOSITION 1 ([77]). For every x € R, the normal vector fields +n(€) are stationary
points of the micromagnetic energy functional F,, on the space H'(S?,S?). Moreover,
they are strict local minimizers for every x < 0 and are unstable for k > 0. If K < —4,
the normal vector fields are the only global minimizers of Fj.

Also, in [171], it is shown that for k < 0, skyrmionic solutions topologically distinct
from the ground state emerge as excited states.

The interest in results of this type is in the topological remark that +n carry different
skyrmion numbers. Indeed, since deg(£n) = £1, by Hopf theorem, these two configura-
tions cannot be homotopically mapped one into the other and are, therefore, topologically
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protected against external perturbations and thermal fluctuations. These considerations
make the two ground states £n promising in view of novel spintronic devices [86].
REMARK 4.4. It is worth pointing out a correspondence between Proposition 1 and
Brown’s fundamental theorem on small ferromagnetic particles, which states the existence
of a critical value of the radius of a spherical particle below which all local minimizers
are constant in space [6,37,71,72]. Indeed, a simple scaling argument shows that the
constant x in (4.17) can also be interpreted as a measure of the size of the particle.
The proof of Proposition 1 is based on the derivation of sharp Poincaré inequalities

arising when the pointwise constraint m € S? is relaxed to the energy constraint

1 2
ey Im(&)[7d¢ = 1. (4.18)
Depending on the value of x, minimizers of the relaxed problem may turn out to be
minimizers of the original problem (i.e., S?-valued). This is indeed the case for the
normal vector fields +n when x < —4.

THEOREM 4.5 (Sharp Poincaré-type inequality on S?, [77]). Let x € R. For every
u € H'(S?,R3) the following inequality holds

[ IVeu©Pdg + 1l [ 1u©) x n(@)Pde > (el +900) [ ja@Pds, 419)
S S S
with best constant (k) given by
] r+2 if k< —4,
(k) { $((k+6)—Vr2+45+36) if &> —4

Moreover, for any k € R, the equality sign is reached if, and only if,

1
1 1 2
u(€) = coyo (&) + > mivi) + oy
j=—1
Here, yff)]
(cf. [19,77]) while the coefficients co, (n,0) := (n;,0;)j)<1 are defined as follows. If

are the vector spherical harmonics of degree n and order j, with |j| < n

Kk < —4 then ¢y = £v/4m, and n = ¢ = 0; in particular, +n are the unique minimizers.
If K > —4 then

—(k+2)+ VK?+ 4k + 36
VK2 + 4k + 36 '

=0, o= | =2n

If Kk = —4 then
2
o= \/7_77, 2c2 + 3|n|* = 8.

REMARK 4.6. Recall that, yf:; are normal vector fields, while yff; and yf’g are tan-
gential vector fields (cf. [19,77]). Also, note that for k — 0~ the minimizers tend to be
constant. A plot of vector fields u € H'(S?,R?) for which the equality sign is reached in
the Poincaré inequality (4.19) is reported in Figure 9.

For k > 0, the energy landscape of F, is hard to describe analytically and is still an
open question. Although tangential vector fields are energetically favored when x > 0,
topological obstructions (hairy ball theorem) prevent the existence of purely tangential
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Fic. 9. Examples of vector fields for which the equality sign is
reached in the Poincaré inequality (4.19). Minimizers for x negative.
o (Left) k = —8 o (Center) k = —4 o (Right) k = —2.

vector fields in H'(S?,S?). The primary interest here is in the study of energy minimizers
within prescribed homotopy classes. More specifically, on the characterizations of the
global minimizers of F,, in H*(S?,S?) under the constraint (cf. (4.1))

1

yrl) B

for some prescribed integer n, which uniquely identifies the homotopy class of m. Numer-

- (0r,m X Or,m) =n € Z, (4.20)

ics suggest that when x > 0, the energy F,, can exhibit magnetic states with skyrmion
number 0 or +£1 (cf. Figure 10, and [131, 199, 202]). Also, within the homotopy class
{Ng = 0}, the energy F, favors the so-called onion state if « is sufficiently small, and
the vorter state otherwise (cf. Figure 10). Moreover, in analogy with well-known results
for harmonic maps into spheres, the minimizers of F appear axially symmetric. How-
ever, to turn these observations into quantitative statements can be particularly tricky
because of the complete rotational symmetry of the underlying Euler-Lagrange equa-
tions, which requires capturing the emergence of breaking symmetry phenomena in the
energy minimizers.

4.6. Conclusions and further outlook. In the previous sections, we reviewed some of
the main results in the theory of magnetic curved thin films and stressed how these
achievements allow further investigations on the profile of energy minimizers in specific
geometries. We presented a characterization of the ground states in spherical thin films
when the anisotropy constant x is negative (see (4.17)), and we also pointed out that
the situation appears more involved when k > 0. However, careful consideration reveals
that similar symmetry-breaking phenomena already emerge in the analysis of the ground
states for a more tractable geometry like the one of a cylinder. This led to the devel-
opments in [74], where different strategies are introduced that seem promising to tackle
similar questions in more complex geometries.

Consider the circular cylinder C = I x St, I :=[—1,1] and the energy functional

&, (m) ::/C|V§m|2d§+oz2/c|m><n|2d§, m e H'(C,S?). (4.21)

First, it is possible to show that for any o? > 0, minimizers of the energy &, are z-

invariant, i.e., if m minimizes &, then m(z,{) = m(({) for every (z,{) € C. Actually,
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F1G. 10. Numerics suggest that when x > 0, the energy F, can
exhibit magnetic states with skyrmion number 0 or £1. Also, within
the homotopy class {Ngx = 0}, the energy F,. favors the so-called
onion state if k is sufficiently small and the vortex state otherwise.

z-invariance of the minimizers holds under the more general assumption of cylindrical
surfaces of the type C := I x I' where I := [~1,1] and I' C R? is the image of a smooth
Jordan curve ( : [0,27] — . Then, one realizes that when C = I x S, special attention
must be deserved to weakly axially symmetric configurations. These are defined by the
condition that

/ mj (z,7)dy=0 Vzel, (4.22)
St

where m | := m— (m - e3) eg. It is simple to prove that every axially symmetric configu-
ration satisfies (4.22). The relevant observation here is that every minimizer of £ in the
class of weakly axially symmetric competitors is, in fact, axially symmetric. The proof is
based on a symmetrization argument in conjunction with the classical Poincaré-Wirtinger
inequality for null average and periodic functions. We believe that these results can be
transposed to the context of spherical thin films to prove similar results for the energy
functional (4.17) in the unexplored regime s > 0.

One can further analyze global minimizers of the energy £ in the unrestricted class
H'(C,S?), i.e., when no weak axial symmetry is assumed on the competitors. Then, by
deriving a family of sharp Poincaré-type inequalities, one obtains that for a? > 3, the
normal vector fields £n are the only global minimizers of the energy functional £ in
H'(C,S?). Precisely, the following result holds.

PROPOSITION 2 (see [74]). For every value o > 0 of the anisotropy, the normal vector
fields £n are stationary points of the micromagnetic energy functional &,. If a? > 3,
the normal vector fields £n are the only global minimizers of the energy functional &,
in H'(C,S?). Also, they are locally stable for every a? > 1 and unstable for 0 < o? < 1.
Moreover, when o > 1, the normal vector fields £n are local minimizers of the energy

Ea.
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K2=0.25 =1 =295

F1G. 11. A plot of the vector fields minimizing the energy (4.21) in
H(S!,S'). There is a critical value k2 of the anisotropy parameter,
k2 = 2.31742, below which the global minimizers of (4.21) have
degree zero, and above which the only two global minimizers are the
normal vector fields £n (and have degree one). From left to right,
we plot the minimizers for k2 = 0.25, k2 = 1, and &2 = 2.25.

REMARK 4.7. It is simple to show that the constant vector fields +e3 are stationary
points of the micromagnetic energy functional and they are unstable for all kK > 0. De-
spite this, one can prove that they are stable in the class of axially symmetric minimizers.

Finally, motivated by their importance in numerical simulations, one is interested in
global minimizers of &, in the class of in-plane configurations. In [74] it is shown that if
m, € H*(S',S') is the profile of a minimizer of &, then either degm | = 0 or degm | =
1 (cf. Figure 11). Indeed, there exists a threshold value a? of the anisotropy parameter
such that the normal vector fields +n are the only two in-plane energy minimizers when
k? > k2 and the common minimum value of the energy is 27. Instead, when k2 < k2, the
minimal energy depends on k2. The precise minimal values and the analytic expressions
of the minimizers can be written in terms of elliptic integrals.

There are several analogies in the behavior of the minimizers of the micromagnetic
energy in cylindrical and spherical surfaces. However, there are also remarkable excep-
tions. Indeed, in both cases, the normal vector fields turn out to be the unique global
minimizers of the energy functional in a wide range of the parameters [77]. Nevertheless,
the topological implications are different. On the one hand, the normal vector fields to
S? carry a different skyrmion number because deg(+ng:) = +1, and, by Hopf’s theorem,
they cannot be homotopically mapped one into the other (this translates into the so-
called topological protection of the ground states). On the other hand, due to the odd
dimension, the two normal vector fields to S' have the same degree, and therefore, they
can be easily switched one to the other through suitable external perturbation.

5. One-dimensional domain walls in thin film ferromagnets: an overview
(by C. Muratov).

5.1. Introduction. Magnetism is a physical phenomenon that has been known to man-
kind for at least two millennia. In nature, it manifests itself in the ability of the naturally
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magnetized mineral magnetite to exert an attractive force on objects made of iron. Im-
portantly, this interaction represents one of the basic examples of actio ad distans, since
a piece of iron feels the force of a magnet separated from it by a macroscopically large
distance. The latter is due to the non-local character of the interaction that is mediated
by the magnetic field.

Despite its long history, magnetism remained a poorly understood phenomenon until
the early 20th century. The 1907 work of Weiss was the first to explain the macroscopic
alignment of the individual magnetic moments of atoms in a ferromagnet through the
concept of the molecular field [212]. Yet it took another 20 years with the works of Pauli,
Dirac and Heisenberg during the “golden age” of quantum mechanics to identify the
microscopic origin of ferromagnetism as a manifestation of the Pauli exclusion principle
and spin — a purely quantum-mechanical degree of freedom of a particle [78,79,109,110,
192]. The exclusion principle gives rise to the Heisenberg exchange interaction between
electrons, which, in turn, leads to the emergence of a macroscopic magnetic moment in
ferromagnets due to the alignment of the electron spins.

Heisenberg exchange favors alignment of spins of the neighboring electrons in a ferro-
magnetic material, creating a non-zero magnetization that would ideally be uniform in
space. However, such a uniform magnetization generates a magnetic field that does not
always favor alignment of the spins at large distances. The competition of Heisenberg
exchange with the magnetostatic interaction gives rise to the notion of magnetic domains,
introduced in the 1926 book of Weiss and Foéx, whereby the magnetization in a ferro-
magnet consists of extended regions of space in which the spins are aligned, separated
by sharp transition regions [213]. These types of configurations can lower the magneto-
static interaction energy via fine scale oscillations of the magnetization between different
domains, which results in a vast variety of the observed magnetic domain patterns [113].

The theory of magnetic domains was put on a solid theoretical footing in 1935 through
the work of Landau and Lifshitz, who formulated what is now known as the micromag-
netic modeling framework [135]. Landau and Lifshitz interpreted the observed magneti-
zation patterns as the result of the minimization of the micromagnetic energy functional,
defined on three-dimensional vector fields of constant length. Their ideas were further
extended in the works of Néel, Kittel and Brown [34, 35,123,184, 185]. Furthermore, the
dynamics of the magnetization in response to external influences may be studied with the
help of the Landau-Lifshitz-Gilbert equation and its extensions [33,94,101,135]. Stochas-
tic effects may also be added to study the effect of thermal noise on the magnetization,
as pioneered by Brown [36]. Today these formulations find their implementations in
the form of efficient numerical algorithms that allow to explore the complexity of the
magnetic systems computationally [87,98,139,188].

From the mathematical point of view, micromagnetics pose a great number of challeng-
ing problems, from calculus of variations, to non-linear dynamics, to stochastic analysis.
This field caught the attention of mathematicians fairly recently, but has already gen-
erated a large and growing body of literature (for an excellent review from 2006, see
[69]). In the calculus of variations, one is faced with highly non-linear, non-local, often
topologically constrained minimization problems that involve multiple spatial scales. It
is only very recently that the basic ideas of the theories of magnetic domains began to
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receive rigorous mathematical treatment, with the methods of asymptotic analysis in the
calculus of variations playing a significant role (see, e.g., [44,45,50,67,126,127,190], this
list is certainly not exhaustive).

The basic ingredient in the analysis of the domain structure of ferromagnets is the
domain wall solution, which represents a one-dimensional transition layer profile that
connects different values of the magnetization at the opposite sides. This note aims at
giving a brief overview of the state of the art and some open questions in the modeling
and analysis of domain wall solutions in thin ferromagnetic films with the magnetization
lying mostly in the film plane.

5.2. Micromagnetic energy functional. The starting point of micromagnetic modeling
is the micromagnetic energy functional F(M) defined on a vector field M : Q — R? that
represents the magnetization vector, i.e., the vector-valued magnetic dipole moment per
unit volume, in a ferromagnetic body occupying a bounded three-dimensional domain 2
in free space. The length of the magnetization vector is fixed to be equal to the saturation
magnetization, i.e., |M(r)| = M, for all r = (z,y,2) € Q, but the direction of M(r) is
allowed to be arbitrary. If 2 is occupied by a bulk uniaxial ferromagnetic single crystal
with the easy axis along the y-axis, the micromagnetic energy takes the form (in the SI
units) [136]

A K
EM) = W/Q|VM|2d3r+W/Q(Mf+M§)d3r

. . /
— Mo/ M- -Hdr + Mo/ V-M(r) V. M) d3r d®r’. (5.1)
Q r3 JR3 8mlr — 1’|

Here M = (M;, M5, M3), and the terms, in order of appearance, are the exchange, the
magnetocrystalline anisotropy, the Zeeman and the magnetostatic energy, also referred
to as the stray field energy, respectively. The constants A, K, o are, respectively, the
exchange stiffness, the anisotropy constant and the permeability of vacuum, and H is the
applied external magnetic field. In the last term in (5.1), the magnetization vector M is
extended by zero outside Q2 and V - M is understood distributionally. In writing (5.1),
the effects of magnetostrsiction and other, more exotic interactions have been neglected
[136].

The exchange energy in (5.1) forces the magnetization to be spatially uniform, while
the anisotropy energy forces the magnetization to align with +y. The Zeeman term
favors alignment of the magnetization along the applied field H. The stray field energy,
in contrast, is a non-negative term that can be viewed as the Coulombic energy of the
“magnetic charges” with density p = —V - M and, therefore, forcing the distributional
divergence of the magnetization to be zero.

When © = R? and H = 0, the energy in (5.1) is explicitly minimized by M = £ M.y,
illustrating the fundamental bistability of the magnetization in a uniaxial ferromagnetic
crystal. It was quickly recognized, however, that in a large but finite sample Q C R? a
spatially uniform magnetization would result in a high stray field due to the jumps of the
magnetization to zero at 912, leading to a large magnetostatic energy term. Instead, the
energy is reduced by dividing §2 into subdomains in which M alternates between the two
preferred orientations, thus creating a domain structure. The first step in understanding
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the latter is to understand the structure of the transition layer between the two preferred
orientations of M.

5.3. Domain walls in bulk materials. Domain walls are the basic building blocks of the
magnetic domains. The concept of a domain wall as a narrow transition region separating
the two distinct orientations of the magnetization was first proposed by Bloch [25], but
within the micromagnetic modeling framework it was formulated by Landau and Lifshitz
[135] and further developed by Néel [186]. We can conveniently rewrite the stray field
energy with the help of the magnetostatic potential U solving

AU=V-M in D'(R% (5.2)

and vanishing at infinity. In the absence of the applied field the energy is then [34,76,136]
A 2 53 K 3 2 53

EM) = YE /Q [VM|* d Mz /(M1 + M2)dr + = / |VU|* d°r (5.3)

We next extend the above discussion to the case ) = R? and assume that M = M(z),
i.e., that M varies only along X. We further assume that M satisfies

hm M(z) = +M,y, (5.4)

r—+o0

and that the gradient of U vanishes as x — +oo. Then the energy per unit area in the
yz-plane is

> K Mo
BaM) = [ (SPGB s (59)
S

where we took into account that the solution of (5.2) in this case yields VU = M; X.

Landau and Lifshitz approached the problem of determining the domain wall profile
by assuming that M7 = 0 to make the stray field contribution to the energy vanish. This
ansatz then implies that we can write M = M, where

My = M;(0, cos b, sinf), (5.6)

for some rotation angle § = 6(z) to be determined. Assuming that M, from (5.6)
minimizes the energy in (5.5) among the profiles satisfying (5.4), one obtains

AR — K sinfcosf = 0, 0(—o0) = =+, 0(+00) =0, (5.7)
whose unique solution, up to translations, is

0 = +arccos(tanh(x/L)), (5.8)

where L = /K /A is the wall width [135]. This solution is referred to as the Bloch wall
solution. The corresponding wall energy per unit area is E1q(Mg) = 4v/AK. Thus, the
domain wall is expected to give a net contribution proportional to the domain wall area
to the energy of the magnetic domains.

One may wonder to which extent this logic is mathematically sound. At the level of the
one-dimensional energy FE14, why should the magnetization M admit the representation
n (5.6), and even if it does, why should it satisfy the conditions at infinity in (5.7),
namely, not exhibit winding, which would correspond to adding integer multiples of 27
to one of the limits? Going to higher dimensions, would the obtained profile also minimize
the energy in (5.3) when, say, Q = R x [0,1)2, for [ > 0, and periodicity in y and z? More
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broadly, is the obtained profile the unique, up to translations, critical point of E14 or F
among profiles with suitable behavior at infinity? What if Q = R3?

These questions bear a striking similarity with another problem arising in the context
of phase field models of phase transitions [104] that has received considerable attention in
the mathematical community under the name of the De Giorgi conjecture (for a review,
see [62]). In its canonical form, De Giorgi conjecture states that the only bounded
solutions u : R™ — R of the Euler-Lagrange equation

Au+u—u=0 (5.9)
associated with the Ginzburg-Landau energy
1 1
Fav(u) = / (—Vu|2 +-(1— u2)2> d"r (5.10)
o \2 4
for every 2 C R™ bounded, which are monotone in one spatial variable are one-dimen-
sional, i.e., u(zy,...,r,) = tanh(z;/v/2) after a rotation and a translation [60]. In the

physical dimensions, n = 2, 3, the conjecture was proved by Ghoussoub and Gui [99] and
Ambrosio and Cabré [7], respectively. A simpler version of this conjecture additionally
assumes that the solution approaches u = 1 along the direction of monotonicity, and
when this limit is uniform, the solution is known to be one-dimensional without the need
of a rotation or monotonicity assumption (see [62] and references therein). In particular,
the latter result applies when Q = R x [0,1)2, for any [ > 0, to any finite energy solution
of (5.9) connecting v = £1 as * — +o0.

The corresponding problem associated with (5.3) represents a vectorial and non-local
extension of the above problem, and is in general considerably more challenging, even
with additional assumptions on the behavior of the solution “at infinity”. One may
naturally ask whether, say, the solution given by (5.6) and (5.8) is the unique, up to
translations, minimizer of (5.3) satisfying (5.4) for Q = R x [0,1)? and periodic boundary
conditions, for any I > 0. The answer to this question may be rather easily seen to
be positive, but in fact it does not involve the solution of the very complicated Euler-
Lagrange equation associated with (5.3). Instead, one can proceed with the help of the
vectorial version of the Modica-Mortola trick [173], which is available for the problems
of micromagnetics [129]. For example, setting m = M/Mj, in one space dimension we
have (see also [97])

Era(M) > / (A|Vm|? + K (m] + m3))dx

R
[m5|? 2
> A K(1—- d
> [ (4 =) s
22\/AK/|m’2\dx
R

> 4VAK = E14(My), (5.11)

and, therefore, E(M) > I2E14(Mjy), with equality if and only if M = Mj in Q =
R x [0,1)%, up to a translation.

However, things get more complicated if one only requires that M be a local minimizer,
or even a critical point of E. Even in one dimension, the question as to whether My is
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the only critical point of E14 satisfying (5.4) would require solving a system of non-linear
ordinary differential equations associated with (5.5) and includes a possibility of winding
solutions. Things come to the next level of complexity in higher dimensions due to the
non-locality introduced by (5.2), and even further complexity arises due to severe lack of
compactness when Q = R3. In particular, in contrast to the scalar problem in (5.9) the
vectorial problem associated with (5.3) lacks rotational symmetry. Furthermore, simply
changing the orientation of the wall, e.g., taking M = Mj(y) immediately results in an
infinite wall energy per unit area, since the wall becomes charged and, therefore, the
magnetostatic potential U solving (5.2) exhibits an asymptotically linear behavior far
away from the wall.

5.4. Micromagnetics of thin films. We now turn to the situation in which €2 is a domain
in the form of an extended film, i.e., Q2 = R? x (0, d), where d is the film thickness. Notice
that in this case the uniform magnetization configurations M = +M,y do not produce
any stray field and, therefore, are still the global minimizers of the energy in (5.3) for
H = 0. At the same time, the one-dimensional domain wall profile given by (5.6) and
(5.8) is no longer a minimizer of (5.3) per unit length in the y-direction, since it generates
a stray field due to the jump of the magnetization at the top and bottom surfaces of the
film, z = 0 and z = d. For sufficiently thick films, this stray field modifies the wall
profile only in the small vicinity of the surfaces by creating the Néel caps [197], unless
the material is magnetically sufficiently soft [81,134]. At the same time, as was pointed
out in 1955 by Néel, as the thickness of the film becomes sufficiently small it becomes
energetically favorable for the magnetization to rotate in the film plane, giving rise to
a Néel wall [187]. This is due to the appearance of a shape anisotropy, whereby to the
leading order the stray field energy behaves as a local penalty term for the out-of-plane
component of the magnetization [102,215]. It can be most easily seen from the solution of
(5.2) for a spatially uniform magnetization, in which case VU = M3s2x o q4)(2), where here
and everywhere below x p denotes the characteristic function of the set D, generating an
additional anisotropy-like term in (5.3). When the film thickness decreases, a transition
from the Bloch to the Néel wall occurs [70,187,210].

For thin films, i.e., films whose thickness is smaller than the exchange length o, =

2A/(upM?2), which is the characteristic length scale at which the exchange and the
magnetostatic interactions balance each other, the magnetization vector becomes nearly
independent of z, and due to the strong shape anisotropy the magnetization is forced to lie
almost entirely in the film plane in magnetically soft materials. There are many possible
combinations of the material and geometric parameters that lead to a whole hierarchy of
thin film regimes [67,115,117,127,130,174,177,178] (this list is not meant to be exhaus-
tive). For Néel walls in extended films with moderate magnetocrystalline anisotropy, an
appropriate model that balances the exchange, anisotropy and the magnetostatic energy
as the film thickness vanishes was introduced in [178] (see also [40,66]). Assuming that
Q=D x (0,d) for some D C R? and that M(z,y,z) = M,(m(z,y)x(0,4)(2),0) for some
m : R? — S'U{0} with |[m| = xp, we can compute the energy of the magnetization con-
figuration explicitly (below we follow the presentation in [161]). Measuring the lengths
in the units of the Bloch wall width L = \/A/K, the energy in the units of 2Ad, and
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introducing the dimensionless thin film parameter

uoM?2d
v= zoﬁ’ (5.12)

we arrive at the following expression for the energy [96]:

E(m) = %/ (IVm|? + m? — 2h - m) d°r
D
+g/ Ks(Jr — ')V - m(r) V - m(r) d*r &7, (5.13)
R2 JR2

where

1 §+02 412 r2 r
K(;(r)—%{ln <+> - 1+5—2+5}, (5.14)

§ = d/L is the dimensionless film thickness, and we set H = K/(uoMs)(h,0) for h :
R? — R?, assuming that the applied field lies in the film plane.
Observe that when § is small, we have

Ks(r) ~ L and / Ks(Jr — /) dH (v)) ~ 2i Iné—t. (5.15)
oD ™

T Axr

Therefore, to the leading order as 6 — 0 we have E(m) ~ Es(m), where

Es(m) = %/D (|Vm|2 +m? —2h- m) d*r + 8% /D i v - m|(rr)_vr/'|m(r) d?r %'
v V -m(r)(m(r') -n(r')) o d2r ving~! m(r) - n(r))2dH (r
47T/D/8D — M () dPr + = /8D( (r)-n(r))*dH E;;G)

where n(r) denotes the outward unit normal at r € dD. As the last term in (5.16) forces
m - n = 0, in the limit we arrive at

Eo(m): 1/ (|Vm|2 +m%_2hm) d27”+8i// Vm(r)Vm(I‘) d2’l”d2’l"/7
D T JpJD

2 |r — 1’|
(5.17)

with admissible configurations m € H'(D;S!) satisfying Dirichlet boundary condition
m = st on 0D, where t is the positively oriented unit tangent vector to dD and s :
0D — {—1,1} is constant on each connected component of 9D.

The reduced thin film energy in (5.17) may be rigorously justified via a uniform T'-
expansion in the limit of vanishing film thickness [127], provided that the anisotropy
constant K and the applied field h scale as O(d?), which is appropriate for moderately
soft ferromagnetic materials of a few nanometer thickness [108,178]. Notice that it
represents a different regime from the thin film limits considered by Desimone, Kohn,
Miiller and Otto in [67], which are relevant to extremely soft ferromagnetic materials
such as permalloy and in which the magnetostatic energy dominates. The connection
of the energy in (5.17) with the latter is obtained by considering the regime of v > 1.
Similarly, the regime that leads to (5.17) is different from the one studied by Kohn and
Slastikov in [130], which corresponds to specimens of small lateral extent (see also [174]).
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Also notice that the energy in (5.16) does not support boundary vortices, which appear
in the regime studied by Moser [177].

5.5. Domain walls in thin films. The analysis of domain wall profiles in thin films re-
quires to extend (5.17) to the cases in which the film domain D is unbounded. Therefore,
we first modify the functional to make the energy of the ferromagnetic state zero in the
presence of the applied field h = (hq, ha) for either 0 < h; < 1 and hy =0, or by = 0 and
ho > 0, corresponding to two cases of interest, namely, the field applied in the direction
perpendicular to the easy axis and the field applied along the easy axis:

1
E(m) = 5/ (|Vm\2 + (ml — h1)2 + 2h2(1 — mg))dQT
R2
+1/ Vmn)Vom) pop (5.18)
8 R2 JR2 |r_r/‘

where we dropped the subscript zero from the energy to simplify notations. In the first
case, the ground states of the energy are m = (hy, +1/1 — h?), while in the second case
the ground state is m = (0, 1). The case of zero applied field is included in the first case,
and the case h; > 1 and ho = 0 is analogous to the second case.

We also need to derive a one-dimensional analog of the energy in (5.18). To that end,
we assume that m = m(¢), where £ = xcos 8 + ysin 3 for some § € [0, §], i.e., that m
varies only along the direction (cos 3, sin ) in the xy-plane. Writing m = (—sin 6, cos 6),
where 6 is the angle between the magnetization vector and the easy axis measured coun-
terclockwise, we then have that the energy per unit length normal to the (cos 3, sin )

direction is [161]

Es(8) = %/00 (|6'1> + (sin @ — hq)? + 2ha(1 — cos0)) dé
v [ [ (sin(0() — B) —sin(0(¢) — B))*
+ - /_OO /_OO €— ) dg deg'. (5.19)

The associated Euler-Lagrange equation is

2 d2

0 T

1/2
0 + hycos — (hg + cosf)sinf — %cos(@ -5 ( ) sin(0 — 8), (5.20)

a2

where

AN ) —ale)

and f denotes the principal value of the integral.

Before discussing the results and open questions for solutions of (5.20), let us recall
what happens in the local case v = 0. In this case an elementary phase plane analysis
shows that the only solutions that connect distinct equilibria at infinity are those that
connect the adjacent minima of the potential energy term in (5.19). In particular, when
h1 = he = 0, we must have §(+00) — §(—o0) = +m, resulting in a 180-degree wall, while
for hy = 0 and he > 0 we must have 6(+o00) — 6(—o0) = £2, resulting in a 360-degree
wall. When hy = 0 and 0 < hy < 1, the solutions satisfy either (4o00) — 6(—o0) =
+(m — 2arcsinhy) or #(+00) — O(—oc0) = £(m + 2arcsinhy). These solutions remain
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the only monotone solutions connecting the respective equilibria, up to rotations, in two
space dimensions by the results of [99]. For Ay = 0 they are energy minimizing, and when
0 < h; < 1 the solution with the smaller variation is energy minimizing. Finally, their
profiles may be computed by an explicit integration, just like in the case of the Bloch
wall profile.

5.5.1. 180-degree uncharged walls. As soon as v > 0, the analysis of (5.20) becomes
much more complicated than in the case v = 0, as the problem becomes non-local and
its solution can no longer be written down in closed form. In fact, this gave rise to
a significant controversy about the structure of the 180-degree Néel wall profile in the
physics literature (for a discussion, see [2] and [113]). Note that the 180-degree Néel
walls are routinely observed experimentally in sufficiently thin, magnetically soft films
[21,113].

Early studies of 180-degree Néel walls relied on either ansatz-based, or numerical, or
perturbative minimizations of the analog of (5.19) with hy = he = 0 and 8 = 0 that
is obtained from (5.13) [49,70,96,97,194]. The first rigorous analysis of existence and
qualitative properties of the wall profiles, still in the context of (5.13), was carried out
by Melcher [169] (see also [40] for a discussion of (5.19)). A comprehensive study of
the energy minimizing profiles connecting distinct equilibria within the context of (5.19)
with 0 < hy <1, ho =0, and 8 = 0 was carried out by Chermisi and Muratov, in which
existence, monotonicity, asymptotic decay and uniqueness of minimizers connecting the
equilibrium 6 = arcsinh; with 6 = 7 — arcsin hy were established [42]. Furthermore,
uniqueness of monotone solutions connecting these equilibria was established by Muratov
and Yan, taking advantage of the hidden convexity of the one-dimensional energy [181].
Notice that such a result is non-trivial even in one space dimension, as in the non-
local setting it is not a priori clear whether the solutions of (5.20) must necessarily be
monotone. While it is known that the energy minimizing solution is monotone and vice
versa, it is not known whether non-monotone domain wall solutions to (5.20) with 8 =0
might also exist.

It would be interesting to see whether the monotone one-dimensional solutions to
(5.20) with 8 = 0 also remain the unique monotone critical points of (5.17) with D =
{(z,y) € R?: —1/2 <y < 1/2}, a strip with width [ > 0 and subject to periodicity in y.
The vectorial nature of the problem prevents the use of monotone rearrangements to show
that the minimizers are still monotone in this setting, contrary to the one-dimensional
case. The only available result concerning the one-dimensionality of the minimizers that
is currently available in this context is that of Desimone, Kniipfer and Otto, who studied
a similar problem on a strip, but with clamped magnetization away from the origin and
neglecting the magnetocrystalline anisotropy [65]. Introducing a small parameter in front
of the exchange term, they showed that as this parameter tends to zero, the domain wall
energy is asymptotically minimized by a one-dimensional profile. It is not known if the
asymptotic profile is, in fact, one-dimensional for small but finite value of the parameter,
nor is it known that the profile of the minimizer converges to a suitable discontinuous
one-dimensional profile.
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In connection with (5.18) and in the spirit of [65], one could also consider the following
version of the energy

1 1
E.(m) = —/ <5|Vm|2 + —mf) d*r
2 Jrx(=1/2,1/2) €

v V- -m(r) V- -m(r)

8T Jrx(=1/2,1/2) Jr2 r — /|

d*r d?r’, (5.22)

obtained by rescaling all lengths by €, as in the Modica-Mortola rescaling and fixing the
domain to be a strip after the rescaling. In one dimension the minimizer of this problem,
which is simply a rescaling of the minimizer of (5.19) with 8 = 0, clearly converges to
m(z) = sgn(z)y as ¢ — 0, after suitable translations. Whether the same conclusion holds
on the strip remains to be seen, even if it seems to be plausible, as the energy minimizing
magnetizations must converge to a function in BV (R x (—=1/2,1/2);R?) taking values
+¥ due to the Modica-Mortola estimate on the first two terms in the energy. Also, any
deviations of the jump set of the limit function from a vertical line would create large
stray field contributions that would be heavily penalized by the last term in (5.22). In
fact, if € is the width of the transition region between m = y and m = —y which makes
an angle « with the vertical, then the last term can be seen to yield a contribution of
order |Ine|sin® . Tt is then also natural to ask if one recovers the total variation of m;
as the I-limit of E. in (5.22) as ¢ — 0 if v is replaced by v. = v|Ing|~! for v > 0 fixed.
Surprisingly, the latter seems to be false, as the recovery sequence of the Modica-Mortola
theory would generate a strictly positive magnetostatic contribution on the parts of the
jump set where the distributional gradient of m; is not aligned with the z-axis. Lastly,
we would like to mention that studying a version of (5.22) defined on m = (—sin 6, cos )
as a functional of 0 is, in turn, more subtle, as the latter keeps track of the winding of
the magnetization, while the one in (5.22) does not. In particular, the energy in (5.22)
would not be able to capture 360-degree walls in the limit (see also Subsection 5.5.3).

5.5.2. 180-degree charged walls. The domain walls considered so far do not carry a
net “magnetic charge” [113]. More precisely, integrating the non-dimensionalized bulk
magnetic charge density p = —V -m per unit length over these profiles yields the jump of
the component of the magnetization along the wall, which is zero when g8 = 0. However,
for 8 # 0 the magnitude of the jump of the magnetization is equal to 2sin 8 # 0 when
m(+o0) = +y. This immediately makes the magnetostatic energy infinite:

/_0;/_0:0 (sin(e(f)—fgizi/r)lg@(ﬁ')— dg d¢’ >/ / Smﬁ v —#) d¢ d¢’

sin?(0(¢') — B) 5 d{’
[T s

(5 23)

where we assumed without loss of generality that § < 6(§) < S+ 7 for £ < 0 and

chose a sufficiently large R > 0 such that sin®(9(¢') — ) > %sin2 B >0 for all ¢ > R.
Thus, paradoxically there are no finite energy solutions to (5.20) for any 8 € (0, ].

Nevertheless, one may wonder if (5.20) does have solutions with 6(4oc0) = 0 and §(—o0) =
4, as is the case when v = 0. At present, this question is completely open.
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A closely related question was recently addressed by Lund, Muratov and Slastikov in a
slightly different context [161]. They considered the situation in which the ferromagnetic
film occupies a half-plane instead of the whole plane, and edge domain walls are expected
due to the boundary penalty term forcing the magnetization to be tangential to the
boundary [111,168,196,211]. These magnetization configurations would solve a Dirichlet
problem for (5.20) with & > 0 and the boundary condition 6(0) = f, provided that
sin(@ — B) is set to zero in the non-local term for £ < 0. Clearly, such a wall is bound to
be charged if 6(+00) € 7Z in order for the anisotropy energy to remain finite.

Lund, Muratov and Slastikov proved existence of solutions for the above problem
by minimizing the renormalized energy obtained from (5.19) by subtracting the leading
order divergent term at infinity from the non-local term. This leads to considering

> 102 )
Eﬁ(@)_/o <%|9'|2—|—lsin20+i ) sin (e—ﬂ)—SIH (n[g—ﬂ)) de

2 47 13
v [ [ (sin(0(§) — B) —sin(d(&) — B))? )
vl Gk dede
_ 8% /0 /O (sin(ng(§) — /2 - 21/1)12(77/3(6 )= 8)) dede’. (5.24)

where ng(€) is a fixed smooth non-increasing cutoff function such that ng(§) = g for
all £ < 0 and ng(¢) = 0 for all £ > 1, and the minimization is carried out over all
0 — B € H}(RT). Formally, it is not difficult to see that minimizers of (5.24) should
satisfy (5.20) for £ > 0.

In [161], it was shown that minimizers of (5.24) in the considered class indeed exist,
are sufficiently regular and solve (5.20) classically for each § € (0, 3] and each v > 0.
Minimizers approach a limit 8(+o00) € 7Z and satisfy [8'(0)| = sin 3, but develop a sin-
gularity in 6”(¢) as € — 0%, Not much else can be said a priori. In particular, minimizers
are not guaranteed to be monotone or not to exhibit winding. In fact, numerical solution
of the Dirichlet problem for (5.20) shows that both possibilities do occur. Also, minimiz-
ers do not have to be unique. Nevertheless, one can exclude winding when either v or
is sufficiently small, and there is uniqueness in the small 8 case. Whether the obtained
profiles are also minimizers for the two-dimensional problem is also not clear. However,
in a closely related setting such a symmetry result was recently established by the same
authors in [160].

To conclude this section, we would like to mention a recent paper by Kniipfer and Shi,
who considered a two-dimensional problem related to head-to-head domain walls that in
one dimension would correspond to the case of § = 7 [128]. They considered a Modica-
Mortola rescaling of the energy as in (5.22), except v is again replaced by v. = v|Ing|~*,
and considered clamped magnetization configurations as in [65]. However, as the stray
field energy would still be infinite on the considered class of magnetizations, they modify
the stray field term by subtracting a reference configuration from the magnetization. This
amounts to introducing an additional external magnetic field that precisely cancels the
divergence of the energy, thus modifying the nature of the problem in a rather significant
way. Nevertheless, Kniipfer and Shi were able to establish several asymptotic results for
the considered energy. In particular, for v below some threshold the limit energy is given
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by an anisotropic perimeter of the jump set of the limit magnetization configuration. We
conjecture that such a result should also hold for a suitably renormalized version of the
energy in (5.22) with the above choice of v = v.. It is also expected that while for small
enough values of « the minimizers are one-dimensional, for large enough values of v they
would develop a microstructure in the form of zig-zag walls [113].

5.5.3. 860-degree and other winding walls. A qualitatively different type of a domain
wall is the 360-degree wall. In contrast to the cases considered in the preceding sections,
this wall, in which the magnetization rotates exactly once over the unit circle, connects
the same limit magnetization on either side of the wall. Thus, a 360-degree wall repre-
sents an example of a topological defect, as such a wall is characterized by a non-trivial
topological degree:

deg(m) = % /R(mlml2 — mam))dé = %/RH/ dé = %(9(4—00) —0(—00)) = £1,
(5.25)

where, as before, m = (—sinf,cosf) for § = 6(£). The 360-degree walls are also fre-
quently observed in magnetically soft thin ferromagnetic films [43,85,113,193,211].

As was already mentioned, when v = 0 the 360-degree walls exist if and only if
hy = 0 and hy # 0. This is in contrast with the experimental observations, in which
these walls can be observed in the absence of any applied fields. In [179], Muratov and
Osipov carried out an ansatz-based minimization and a computational study of 360-
degree walls as a function of their orientation angle g for different » > 0. They found
numerically that the solutions of (5.20) in the form of 360-degree walls exist for all
B € (0, 3], while they cease to exist for 3 = 0. Also, the wall energy was found to depend
strongly on the wall orientation angle 8. The existence of solutions was explained by
the magnetostatic interaction between the two 180-degree cores inside a 360-degree wall,
which is logarithmically attractive for 8 # 0, as the cores carry opposite charges. At
the same time, for 8 = 0 the 180-degree cores only carry net dipole moments oriented
opposite to each other. This results in an algebraic repulsion between the cores (see also
[68]).

Ignat and Kniipfer studied the structure of 360-degree transition layers under clamping
away from the origin in a model in which the energy consists of only exchange and stray
field terms, and a small parameter balancing the two terms in the energy to yield a non-
trivial limit [117]. Although these are not 360-degree walls per se, they exhibit many of
the characteristics of the 360-degree wall solutions from [179]. In particular, Ignat and
Kniipfer show the asymptotic behavior of the energy of the 360-degree wall solutions
obtained in [179] for v > 1.

Ignat and Moser carried out an analysis of winding domain wall structures, which
include 360-degree walls, via minimization of (5.19) (or its natural modification for hy >
1) [121]. Only the case 8 = 0 and hy = 0 was considered (the value of v was also fixed,
which is less essential). They proved that for hy > 1 there is a minimizer for any value of
the degree. Note that in the case ¥ = 0 such an existence result could be obtained only
when deg(m) = +1. The existence of minimizers with degrees strictly greater than 1 may
be explained by the attractive interaction of the 360-degree cores, which are now dipoles
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with the same orientation along the line and, therefore, attract each other. They also
showed non-existence of minimizers with degree 1 for 5 = 0 and h; € [0,1), confirming
the numerics-based conclusion of [179]. Nevertheless, they also showed existence of a
domain wall with a non-trivial winding in a range of positive values of h;.

In the absence of the applied field, the analysis of existence of 360-degree walls for
general orientations was carried out by Capella, Kniipfer and Muratov [39]. They proved
existence of 360-degree walls for all v > 0 in the case 8 = 7, i.e., when the wall direction
is along the easy axis. The proof is enabled by a symmetric decreasing rearrangement of
mya, which lowers the energy and reduces the minimization to the analysis of monotone
profiles. In particular, the obtained wall profile is monotone and satisfies (5.20).

Capella, Kniipfer and Muratov also proved existence of minimizers of (5.19) for all
B € (0,%], provided the value of v is sufficiently small depending on 3 [39]. Here
the difficulty is due to the fact that one does not know any more if the wall profile is
monotone. Instead, the proof relies on a perturbative argument, by which the deviation
of the profile from the minimizer of the Modica-Mortola energy from the exchange and
anisotropy contributions is quantified. As a by-product, Capella, Kniipfer and Muratov
also characterize the width of the wall as a function of § and v and obtain the asymptotic
expression for the wall energy for either S or v small.

It would be interesting to see if the one-dimensional minimizers obtained for v > 0
and no applied field remain as minimizers in the two-dimensional setting. For example,
are minimizers of (5.19) for 8 = 7 with deg(m) = 1 still minimizers of (5.18) with
D = {(z,y) : —1/2 < x < 1/2} subject to periodicity and limit behavior at infinity?
Notice that the answer to this question could turn out to be negative, depending on how
the wall energy depends on its orientation angle. It is conceivable that tilting the wall
may result in an energy decrease due to the orientation dependence of the wall energy,
even if the length of the wall would otherwise increase. Further studies into this question
are definitely needed. A closely related question comes up in the study of the Modica-
Mortola rescaling of the energy given in (5.22), written in terms of the 6 variable to retain
the information about the magnetization winding. We conjecture that the I'-limit of the
latter energy should be given by an anisotropic perimeter type functional that takes into
account winding multiplicity. For zero applied field the situation is complicated by the
presence of 180-degree walls oriented along the easy axis, but those can be eliminated by
assuming hg > 0.

5.5.4. 90-degree and 180-degree walls in biazrial materials. We conclude by briefly men-
tioning a class of materials in which the magnetocrystalline anisotropy exhibits a four-fold
symmetry, which is common for materials with cubic crystalline structure [108,136]. The
corresponding energy analogous to (5.18) with the applied field set equal to zero reads

1 v V- m(r) V- -m(r)
E(m) = = ( 2 22>d2 —/ Erd®, (526
(m) 2 /]R;2 ‘Vm| * m1m2 rt 87T R2 JR2 r— I"| " " ( )
with the easy directions along either +X or +y. Thus, in addition to the usual types of
domain walls, a 90-degree wall is also possible.
Lund and Muratov studied existence of 90-degree and 180-degree domain wall solutions
by minimizing the one-dimensional version of (5.26) analogous to (5.19) [159]. They
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found existence of 90-degree walls for § = 7 (and all their possible § rotations). This
choice of f corresponds to the orientation that makes the wall charge-free for 8(+o00) =0
and 6(—o0) = 7. The analysis of this case follow the lines of that of 180-degree walls in
uniaxial materials [42], with similar conclusions. In contrast, existence of 180-degree wall
solutions was found for # = 0 (and all their possible 7 rotations), using the techniques
of the analysis of 360-degree walls in uniaxial materials for 3 = 7 [39]. The issue here
is to show that a 180-degree walls does not split into two 90-degree walls, and this does
not happen because the latter would be charged for #(4+00) = 0, 8(—oc0) = 7 and g = 0.

All the open questions that were discussed in the preceding sections are similarly
relevant to biaxial materials. However, these materials may possess a richer domain
structure due to the four possible equilibria of the magnetization, as well as a richer set
of charge-free domain walls.

5.6. Conclusion. In summary, in recent years there have been a number of develop-
ments in modeling and analysis of the domain walls arising in thin ferromagnetic films
in which the magnetization rotates in the film plane, pushing forward our understanding
of the classical questions in physics that began to be formulated in the 1920s. Some
of the domain wall solutions are by now fairly well understood in one space dimension.
Nevertheless, there are more open questions than answers, especially in two-dimensional
and vectorial settings, that will hopefully inspire the next generation of researchers in
the calculus of variations and analysis of PDEs to further advance this exciting area at

the intersection of mathematics and materials science.
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