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Abstract

Context Climate change is driving phenological
shifts across landscapes, but uncoordinated shifts
might cause a potential “phenological mismatch.”
There has been little consensus on the existence and
magnitude of such a mismatch. The lack of agreement
among studies can be attributed to the wide variety of
definitions for the term “phenological mismatch,” as
well as the methods used to measure it. The lack of
comparability among measures of phenological mis-
match creates a challenge for conservation.

Objectives We proposed a novel theoretical frame-
work to generalize existing measures of phenologi-
cal mismatch and an approach to quantify the decou-
pling between phenology and the environment using
the loss in predictive skill over time. We aimed to

Supplementary Information The online version
contains supplementary material available at https://doi.
org/10.1007/s10980-023-01595-0.

Y. Song - K. Zhu
Department of Environmental Studies, University
of California, Santa Cruz, CA, USA

S. B. Munch
Department of Applied Mathematics, University
of California, Santa Cruz, CA, USA

K. Zhu (<)

Institute for Global Change Biology and School
for Environment and Sustainability, University
of Michigan, Ann Arbor, MI, USA

e-mail: zhukai@umich.edu

estimate the magnitude of phenological mismatch on
large spatial scales and test the proposed predictive
approach’s ability to detect multiple types of pheno-
logical mismatch.

Methods We modeled historical climate-phenology
coupling and quantified phenological mismatch as the
deviation between observed and predicted phenology
under climate change. First, we used two large empir-
ical spatiotemporal datasets to estimate phenological
mismatch in plant flowering phenology in the east-
ern United States and bird reproductive phenology in
Finland. Historical climate-phenology coupling was
modeled with spatial linear regression. Second, we
conducted four simulation experiments representing
different types of mismatch during climate change.
We recovered simulated phenological mismatch by
fitting a data-driven nonlinear model (Gaussian Pro-
cess Empirical Dynamic Modeling) and predicting
phenology.

Results In the eastern US, we found that advanc-
ing plant flowering phenology generally matched
spring warming from 1895 to 2015, with seven out
of the 19 species studied having significant pheno-
logical mismatches, with observed flowering time
earlier than predictions even considering warming.
A similar phenological mismatch was found in birds
in Finland from 1975 to 2017, with the bird breeding
season advancing more than expected in 21 out of the
36 species studied. In four simulation experiments,
we were able to accurately recover the simulated phe-
nological mismatches in the timing of events, pace
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of development, and intensity of activities, although
with greater challenges in quantifying a mismatch in
life history.

Conclusions Overall, these case studies show that
our prediction-based measure effectively quantifies
multiple types of phenological mismatch, providing a
more generalizable and comparable measure of phe-
nological mismatch across study systems and scales.
This study will enable the investigation of phenologi-
cal mismatch at large scales, improving understand-
ing of the patterns and consequences of climate-
change-induced phenological changes.

Keywords Anthropocene - Asynchrony - Climate
change - Empirical dynamic modeling - Phenology -
Synchrony

Introduction

Since Cushing (1969) proposed the match-mismatch
hypothesis, ecologists have been increasingly con-
cerned with whether climate change induces a “phe-
nological mismatch.” Phenological mismatch can
lead to negative ecological consequences on multiple
scales of ecology: from species interactions (Rafferty
et al. 2015; Renner and Zohner 2018) to the persis-
tence of populations (Nicola et al. 2011; Visser et al.
2012), and ecosystem functioning (Beard et al. 2019).
Meta-analysis shows that the relative timing of key
life cycle events in aquatic and terrestrial ecosys-
tems in 1951-2013 has changed significantly since
the early 1980s (Kharouba et al. 2018). For example,
advancing spring conditions have driven cascading
trophic mismatch in the food web from vegetation,
insects, birds, to polar bears in the Arctic (Rockwell
et al. 2011; Reneerkens et al. 2016). Understanding
and mitigating phenological mismatch become par-
ticularly crucial given the rapid climate change and
human modifications of the landscapes.

Phenological mismatches have been observed
either between species and climate or between inter-
acting species. On the one hand, phenological shifts
do not always change in concordance with climate
change. In a global meta-analysis (Parmesan and
Yohe 2003), while 423 out of 484 species changed
in their phenology as predicted given the climate
change, 61 changed opposite to the prediction. Some
phenological mismatches may be the results of
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anthropogenic activities. For example, in the Midwest
US, although warming spring temperatures poten-
tially allowed earlier crop emergence, the remotely-
sensed start of season was delayed, due to the replace-
ment of wheat and oat by corn and soybean (Zhang
et al. 2019). On the other hand, the widespread phe-
nological mismatch between interacting species under
climate change received more attention. For example,
the temporal shift in the arriving and hatching of sev-
eral migratory bird species have been insufficient to
match the rapid advancement of spring greenup at
their destinations (Visser et al. 1998; Both and Visser
2001; Gaston et al. 2009; Clausen and Clausen 2013;
Mayor et al. 2017).

Although phenological mismatch is well studied,
our understanding of its magnitude, impacts, and how
it changes across scales remains limited. For exam-
ple, there have been inconsistent findings on whether
there are community-level phenological mismatches
(Edwards and Richardson 2004; Donnelly et al. 2011;
Burthe et al. 2012; Ovaskainen et al. 2013). Part of
these inconsistencies arises from the different defini-
tions and methods used to quantify phenological mis-
match. Ecologists have realized the difficulty to define
a baseline for “matching phenology” (Kharouba and
Wolkovich 2020), particularly under global change,
as we do not always know how much a species should
be shifting to match the change in its environment
(Visser and Both 2005). In addition, recent develop-
ment in phenological mismatch on the community
level (Edwards and Richardson 2004; Renner and
Zohner 2018) and from a spatial perspective (Post
et al. 2008; Vitasse et al. 2018; Aikens et al. 2020)
have highlighted the need to expand the concept of
phenological mismatch, which traditionally focuses
on the population level and a single site. The lack of
a coherent and generalizable theoretical framework
creates a challenge for understanding and interpret-
ing phenological mismatch across landscapes under
climate change.

In this study, we first review the different measures
used to quantify phenological mismatch, classifying
them into a descriptive approach and a model-com-
parison approach. After reviewing their advantages
and drawbacks, we propose a novel theoretical frame-
work to define a generalized phenological mismatch
and measure it with a predictive approach. Last, we
conduct three case studies with empirical and simu-
lated data to demonstrate the power and limits of our
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new predictive approach in detecting and quantifying
phenological mismatch.

Measures of phenological mismatch

The earliest and most common approach to evalu-
ating phenological mismatch is timing-based, i.e.,
focusing on the relative timing of phenological events
(Fig. 1a). One example is the difference in the tim-
ing of phytoplankton blooms and fish breeding
(Cushing 1969). The main assumption is that there
is an optimal time lag between a pair of phenologi-
cal events (Satterthwaite et al. 2014), and deviations
from this time lag indicate a phenological mismatch.

These measures can be further divided into two sub-
categories. Most studies that use a timing-based
approach focus on discrete phenological events, such
as peak abundance (Blondel et al. 1993; Reed et al.
2013; Doiron et al. 2015) or emergence (Tikkanen
and Julkunen-Tiitto 2003; Satterthwaite et al. 2014)
(Fig. 1a[1]). Timing-based approaches are often used
on the phenologies of species with trophic interac-
tions. In Kudo and Ida (2013), phenological mis-
match was measured by the delay in initial bee activ-
ity from flowering onset. Reed et al. (2013) defined
the phenological mismatch as the difference between
the laying date of the first clutch of great tits and the
date of peak food abundance, plus 30 days, where
both positive or negative mismatch leads to lower
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Fig.1 Conceptual diagrams of five main methods of meas-
uring phenological mismatch. a Timing-based methods focus
on the relative timing of phenological events or periods. b
Impact-based methods focus on the consequences of changes
in the relative timing of a focal species and its environment.
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fitness. Other timing-based studies treat phenology as
a continuous event, such as the continued presence of
a species or an environmental condition, and calcu-
late the overlap in timing (McKinnon et al. 2012; Iler
et al. 2013) (Fig. 1a[2]). Estimation of timing-based
mismatch usually requires knowledge of the time lag
or overlap that optimizes fitness or population size
(Durant et al. 2005). Such knowledge may be gained
from empirical data (Reed et al. 2013; Plard et al.
2014; Satterthwaite et al. 2014; Doiron et al. 2015) or
models (Jonzén Tikkanen and Julkunen-Tiitto 2003;
Niclas et al. 2007). However, more often, there is no
visible ecological consequence of varying time lag
(Pearce-Higgins et al. 2010; Dunn et al. 2011; Dunn
and Mgller 2014), and assumptions are used based on
expert knowledge.

Impact-based methods focus on the consequences
of changes in the relative timing of a focal species
and its environment (Fig. 1b). The consequences may
be on the state of resource availability, environmen-
tal conditions, or other variables that affect fitness.
A classic example is the quantification of mismatch
between the coat color change of snow hares and the
presence of snow (Zimova et al. 2014, 2016). The
researchers defined a hare to be mismatched when
the contrast between its coat color and background
exceeded 60%. Another index based on impact is
“thermal delay,” which measures the increase in accu-
mulated degree-days when migratory birds arrive at
their breeding grounds (Saino Nicola et al. 2011). The
abundance (Durant et al. 2005; Hipfner 2008; Burger
et al. 2012) or diversity (Post and Forchhammer 2008;
Post et al. 2008) of a group of prey in predator(s)’ diet
has been used as a proxy for temporal overlap. Simi-
larly, Rafferty and Ives (2011) and Petanidou et al.
(2014) measured the level of pollination during flow-
ering. The impact-based measures are closely linked
to ecological consequences. Nevertheless, similar to
timing-based measures, sufficient knowledge has to
be obtained to determine the optimal state of environ-
mental conditions for the focal species.

Change-based methods de-emphasize the relative
timing and instead focuses on its change (Fig. lc).
Unlike the previous timing-based method that can be
used to evaluate phenological mismatch given a pair
of timing in a single year and site based on optimal
relative timing, the change-based methods detect
changes in relative timing with multiple pairs of tim-
ing observed over space or time. This approach has
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been increasingly popular in recent years because of
rapid global change and widespread phenological
shifts. One method is to compare the rate of change in
the timing of phenological events over time, where a
non-parallel shift is considered to indicate a mismatch
(Fig. Ic[1]). This method has been used to suggest
several mismatches between the reproductive phenol-
ogy of animals (often birds and ungulates) and envi-
ronmental cues such as climatic events (Van Noord-
wijk et al. 1995; Sanz et al. 2003; Gaston et al. 2009;
Jones and Cresswell 2010; Clausen and Clausen
2013) and peak food abundance (Visser et al. 1998;
Gaston et al. 2009; Plard et al. 2014). The mismatch
is less supported in some tightly coupled relation-
ships, such as between flowering and pollinator activ-
ities (Bartomeus et al. 2011; McKinney et al. 2012).
Notably, this method allows the comparison of more
than two species on the community level. Meta-anal-
yses involving multiple taxa suggested differential
phenological change among trophic levels (Edwards
and Richardson 2004; Both et al. 2009; Thackeray
et al. 2010; Burthe et al. 2012; Ovaskainen et al.
2013). The other change-based method is to compare
the response in the timing of phenological events to
an environmental change, i.e., comparing the sen-
sitivity or slope of the regression line (Fig. 1c[2]).
Species that change their phenology differently com-
pared to their interacting species in response to envi-
ronmental change are considered to face the risk of
mismatch (Evans et al. 2013). Observations are often
made in experimental settings (Liu et al. 2011; Paull
and Johnson 2014) or along environmental gradients
(Mjaaseth et al. 2005; Forrest and Thomson 2011;
Evans et al. 2013; Iler et al. 2013). Change-based
methods have been argued to provide an unbiased
measure because it considers species that show little
phenological change, which may be under-reported
otherwise (Thackeray et al. 2010). However, the
result may be sensitive to the time period and area
studied. It should also be noted that historical starting
points may not benchmark matching phenology due
to maladaptation (Blondel et al. 1993) or anthropo-
genic impacts.

Correlation-based methods are occasionally used,
examining the strength of the coupling between the
timing of a pair of phenological events or between
phenology and environmental conditions (Fig. 1d),
with a high correlation coefficient representing a
greater degree of “matching.” By comparing the
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timing of shrimp hatching and spring phytoplankton
bloom at various latitudes, Koeller et al. (2009) con-
cluded that the shrimp hatching phenology generally
matches food availability in the North Atlantic basin.
Bloom timing of plankton has been correlated with
sea bottom temperature (Koeller et al. 2009) and ice-
retreat timing (Ji et al. 2013). In a North Sea pelagic
food web, the lack of significant correlations among
species phenologies and with sea surface temperature
were used as evidence of a trophic mismatch (Burthe
et al. 2012). This method requires the assumption of a
relatively tight linear coupling between variables.

Very few studies use synchrony-based methods,
examining the synchrony of time series of biotic or
abiotic variables (Fig. le). Synchrony usually refers
to coordination among processes (Ravignani 2017).
Although synchrony can be tested statistically (e.g.,
with time-lagged correlation), visual inspection is
employed more often in practice, limited by the
amount of data. For example, the life cycles of fast-
growing spring plankton advanced synchronously
following earlier spring climatic events, whereas
slow-growing summer zooplankton displayed no
such synchrony, suggesting a higher risk of phe-
nological mismatch (Adrian et al. 2006). The syn-
chrony between the hatching curves of a pest and the
bud burst curve of birch was disrupted in cold years
but maintained in warmer years (Jepsen et al. 2011).
Synchrony-based methods do not require identify-
ing key phenological events but flexibly consider the
continuous changes in processes (Yang and Rudolf
2010). They are also less dependent on knowledge
of the underlying mechanism, compared to the other
methods, because much information can be learned
through past temporal dynamics (Nakazawa and
Doi 2012). However, whether asynchrony is indeed
an accurate reflection of phenological mismatch
deserves further research, as asynchrony may reflect
adaptive strategies (Visser et al. 2012) and represent
a stable state in the absence of climate change (Singer
and Parmesan 2010).

We broadly classified the five methods into two
main approaches (Fig. 2). The first approach focuses
on describing key characteristics of phenological time
series (timing of key events, temporal overlap, and
impact at a specific time) and comparing the descrip-
tive measure to an optimal measure informed by eco-
logical knowledge (Fig. 1a, b). The second approach
focuses on fitting models to phenological metrics

and compares model parameters (Fig. lc, d, e). In
the change-based method, linear models are fitted for
the relationship between phenological metrics and
time (year) or environmental variables, and the slopes
are compared. In the correlation-based method, the
error of models is compared. In the synchrony-based
method, the phases of wave functions are compared.
The common idea of methods with the model com-
parison is that matching phenology is represented by
some optimal model parameters.

These two approaches have their limitations. For
the descriptive approach, the key descriptive measure
cannot always be specified, especially for activities
with weak or irregular seasonality (e.g., tropical forest
phenology) (Wu et al. 2017). The optimal descriptive
measure that represents matching phenology requires
accurate ecological knowledge, which is not always
available. For the model-comparison approach, the
models used for phenological metrics are often over-
simplistic (usually linear) (Keenan et al. 2020) and
lack flexibility.

Crucially, using different methods to study the
same system can lead to divergent conclusions. For
example, despite the differential response of flower-
ing and syrphid phenology, environmental changes
resulted in more days of temporal overlap between the
flower-syrphid community through early snow melt
(Iler et al. 2013). Different interpretations may even
arise from similar methods and results, as there is
often no clear distinction between “match” and “mis-
match,” such as when the shifts in phenology are only
partially consistent in a complex community (Burthe
et al. 2012; Ovaskainen et al. 2013). Such mixed mes-
sages on phenological mismatch arise from the dif-
ferent definitions of phenological mismatch, from
the divergence in the research protocol, and from the
intrinsic complexity of the climate-phenology system.
We argue that a new approach is needed in defining
and measuring phenological mismatch that is compat-
ible with the diverse phenological response to climate
change and can be similarly applied to all levels of
the organization.

A new framework based on prediction

We first seek to define a generalizable baseline for
“matching phenology” with minimal assumptions
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Fig. 2 Conceptual diagram (Time series
of two existing approaches of ecological
(descriptive and model- variables)

comparison) approach and
our proposed approach
(predictive) for quantify- /
ing phenological mismatch

using time series of ecologi-

cal variables

Descriptive approach

Model-fitting approach

Time of year

Predictive approach

on the key feature of phenological time series and
the structure of phenology models. To generalize
the commonly-used definitions, we consider pheno-
logical mismatch to take place when the temporal
dynamics of individuals, populations, species, com-
ponents of the ecosystem, or patches in a landscape
do not maintain a stable relationship during climate
change. Motivated by complex systems theory, we
consider phenological mismatch to be the conse-
quence of a loss of “generalized synchronization”
(GS), which describes if a (static) functional rela-
tion exists between the states of the systems of
interest (Kocarev and Parlitz 1995; Rulkov et al.
1995; Abarbanel et al. 1996; Brown and Kocarev
2000; Boccaletti et al. 2002).
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Definition Generalized synchronization in the phe-
nology-environment coupling system occurs when
there is a function, @, such that.

Y, =oX,,) 1)

where @ is a nonlinear function describing the rela-
tionships between focal phenology (Y) and the envi-
ronment (X), including the phenology of interacting
individuals/populations/communities and  abiotic
conditions. All variables are indexed by space (s) and
time (#), which encourages an explicit definition of
the spatiotemporal scale of the synchronization. The
same functional relationship (&) may be found to be
consistent on one scale but not another. For example,
the relationship may be consistent within a spatial
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range of d (the distance between s, and s,) or only
at the same location (d=0). The indices are omitted
from here onwards for simplicity.

This definition then leads to a natural method for
quantifying phenological mismatch, i.e., predict-
ing phenology assuming a static relationship with
other phenological and environmental variables, and
assessing the discrepancies from observed phenology.
This notion of quantifying the extent of GS based on
the predictability of time series has been applied in
previous studies of simulated chaotic systems and
neuroscience (Schiff et al. 1996; Wiesenfeldt et al.
2001). A loss of GS can be detected from a loss in the
predictive power of the model (Fig. 2).

The evaluation of phenological change and mis-
match starts with a baseline of phenology (Y) and
phenology-environment coupling (@) (Fig. 3).

Y = d(X) 2

If @ remains the same with changes in the environ-
ment (X,,,,), we consider there to be no phenological

mismatch. This can be expressed as

Yoo = @(X,,,,) = PX) + [@(X,

pot new )

- ®X)| =Y +AY,,

3)
where we refer to the model-predicted phenology
given X, as the potential phenology (Y,,,), and its

ot

Change in X Yoot
Y no GS
yact

Fig. 3 With the change in the environmental factors (X),
the baseline phenology (Y) is expected to change to potential
phenology (Y,,,) under generalized synchronization (GS) in
the ideal case; in reality, however, it is observed to change to

difference from Y as potential phenological change
(4Y,,y), reflecting the ideal adaptation in focal phenol-
ogy without any constraint.

Realistically, there may be changes in the phenol-
ogy-environment coupling ().
Yy =9 (X

wew) = PX) + [ (X,,,,,) — PX)| =Y +AY,,,

“
Here we refer to the observed phenology given X,,,,,
as the actual phenology (Y,.,), and its difference from
P as the actual phenological change (4Y,,). The phe-
nological mismatch (Y, is then defined as the dif-
ference between Y., and Y,,,,. Its magnitude is related
to the loss of synchronization, i.e., the extent to which

@’ deviates from @.

new)

—AY,

Ymis = Yact - Yput =AY, pot 5)

act

Estimating phenological mismatch on large spatial
scales with empirical data

Data
Herbarium and climate data
In order to examine possible mismatch between plant

phenology and climate change, we used a published
crowdsourced dataset of plant reproductive phenology

actual phenology (Y,.). The deviations from Y are referred to
as potential and actual phenological change (4Y,, and 4Y,,),
respectively. The difference between potential and actual phe-

nology is defined as phenological mismatch (Y,,,;,)
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from herbarium specimens across the eastern continen-
tal United States spanning from 1895 to 2015 (Park et al.
2018) (Fig. 4a). Park et al. (2018) crowdsourced pheno-
logical data online from over 7,000 herbarium specimens
representing 30 flowering plant species. Crowdsourcers
classified the specimens into flowering and fruiting and
each was given a reliability score. For specimens with-
out accurate coordinates, they used county of specimen
collection for locality information. Park et al. (2018) also
retrieved auxiliary climatic data (monthly temperature
and precipitation) from the PRISM dataset at 4 km reso-
lution (PRISM Climate Group 2019). In this case study,
we focused on the match between the flowering time
(FT) (day of year) and spring mean temperature (SMT)
(°C) defined as the mean of March, April, and May tem-
peratures. We filtered out crowdsourcing records that
were unreliable (reliability score=0) and only kept one
record for each specimen. We split the dataset into an
early (prior to 1950) and a late (on or after 1950) period,
and selected for species with no fewer than 30 records in
both periods, leaving 19 species in our analysis.

Bird nestling ringing and climate data

To examine possible mismatch between bird breed-
ing phenology and climate change, we used a pub-
lished spatiotemporal dataset of over 820,000 nestling
ringing records of 73 boreal bird species in Finland
spanning from 1975 to 2017 (Héllfors et al. 2020)
(Fig. 5a). As nestlings can only be ringed at a certain
size, ringing dates are highly correlated with egg-
laying dates, providing a high-quality indicator for the
nestling ringing time (NRT) (day of year). The loca-
tions of nests were recorded at 10 X 10 km resolu-
tion. For each species, we aggregated nest-level NRT
to the regional level by taking the median in 100 km
diameter hexagons (Fig. 5a) to reduce the noise in
data (Freeman et al. 2021). For each nest location, we
retrieved auxiliary climatic data, mean annual tempera-
ture (MAT) (°C) from the TerraClimate dataset at~4 km
(1/24th degree) resolution (Abatzoglou et al. 2018).
Similarly, we aggregated MAT by taking the median at
all possible nest locations for a species and year in each
hexagon. We removed hexagons with fewer than 50 nests
with NRT data, leaving 28,017 records (hexagon X year).
We split the dataset into an early (prior to 1995) and a
late (on or after 1995) period, and selected for species
with no fewer than 100 records in both periods, leaving
36 species in our analysis.
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Methods

We preliminarily visualized the relationships between
climatic and phenological data in the early and late
period (Figs. 4b, 5b) to inspect the consistency in the
climate-phenology functional relationship. We then
systematically applied our prediction-based approach
for each study system. We fitted a linear regression
model between climatic and phenological variables
(Eq. 6) to data in the early period only. In order to
account for spatial autocorrelation among data points,
we modeled spatial random effects with an exponen-
tial correlation function. We adopted a hierarchical
Bayesian approach to build and fit the model, using
the spBayes package in R (Finley et al. 2013).

Y(s) = fy+ 01 X(s) +w(s) + €

w(s) ~ N(O’K)Kij = azexp(—(p II's; + S; 1))
€ ~ N(O, 72)

B 0. .100 0
() ~MVNIC))-C o7 100 ©6)
62 ~1G2,2)

o 77(_1080.05) _ 10g(0.05)
¢~ U 1004 ° 0.01d )

2 ~ 1G(2,0.1)

where the response variable Y is the phenological var-
iable (FS in the plant case study and BS in the bird
case study) and the covariates X is the climatic vari-
able (SMT in the plant case study and MAT in the bird
case study). f, and S, are the coefficients for intercepts
and covariates; s is the location of observation (in lon-
gitude and latitude for the plant case study and east-
ing and northing in EPSG:3067 projection for the bird
case study); ¢ is the random error. The spatial random
effect, w, is determined by the spatial variance param-
eter ¢, the residual error variance 72, the spatial decay
parameter ¢, and the Euclidean distance between loca-
tions i and j. We empirically estimated d, the effective
range of spatial dependence (Finley et al. 2015), by
fitting an exponential function to the semivariograms
of the residuals of the corresponding nonspatial linear
regression models. We used common choices of dif-
fuse multivariate normal (MVN) priors on g, a dif-
fuse inverse gamma (IG) prios on 6, a tight IG prior
on 7, and a diffuse uniform (U) priors on ¢ (Finley
et al. 2013). We ran the Markov chain Monte Carlo
MCMC) sampler (10,000 samples for the flower-
ing case study and 1000 samples for the bird breeding
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Fig.4 a Geographical distribution of herbarium specimens
from 19 plant species in the eastern United States. Data were
originally published in Park et al. (2018). An example species,
Agquilegia canadensis, is highlighted in solid dots. b Relation-
ship between the flowering time (FT) and spring mean tem-
perature (SMT) of Aquilegia canadensis in the early (before
1950) and late (on or after 1950) periods, respectively. Fitted

case study) (Finley et al. 2013), discarding the first
half of the samples as burn-in.

We used the fitted model informed by data in the early
period (X and Y) to predict phenological data in the early
and late periods, respectively (Figs. 4c, 5c). Predictions

Deviation of observed flowering time
from predicted flowering time (day)

lines and 95% standard errors are shown for each period. ¢
Comparison between observed and predicted FT of Aquilegia
canadensis in the early and late periods, respectively. 1:1 lines
are shown in red. d Distribution of deviation of observed FT
from predicted FT for each species. Species with deviations
significantly different from zero are highlighted in solid

were compared to observations in the early period to
evaluate the model fit using the coefficient of determina-
tion (R?) and root mean square error (RMSE). We simi-
larly compared the predictions in the late period (Y,,)
with observations in the late period (Y,.,) to estimate
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«Fig. 5 a Geographical distribution of bird nestling ringing
events for an example species, Phoenicurus phoenicurus, out
of 38 boreal bird species in Finland in this study. Data were
originally published in Haillfors et al. (2020). Color of dots
show the nestling ringing time (NRT) on the nest level. Data
were aggregated to 100 km diameter hexagons for further anal-
ysis. b Relationship between NRT of Phoenicurus phoenicurus
and mean annual temperature (MAT) in the early (before 1995)
and late (on or after 1995) periods, respectively. Fitted lines
and 95% standard errors are shown for each period. ¢ Com-
parison between observed and predicted NRT of Phoenicurus
phoenicurus in the early and late periods, respectively. 1:1
lines are shown in red. d Distribution of deviation of observed
NRT from predicted NRT for each species. Species with devia-
tions significantly different from zero are highlighted in solid

possible phenological mismatch. Specifically, we calcu-
lated and summarised the deviation between observa-
tions from predictions (Y,,,;,). We performed one-sample
t-tests for each individual species to determine if the cal-
culated mismatch was significantly different from zero.
All calculations and statistical analyses were conducted
inRv.4.2.0 (R Core Team 2021).

Results

Advancement in flowering matches or outpaces
spring warming in eastern US

Temperature niche (median SMT of all specimens)
of all 19 species ranged from 6.06 to 16.0 °C. Phe-
nological niche (median FT of all specimens) ranged
from 129 to 228 day of year. There were significant
correlations between FT and SMT in 17 out of 19
species, with FT being 2-5 days earlier with every
1 °C increase in temperature in these 17 species.
When fitting linear models between FT and SMT in
the early and late periods, respectively, the intercept
changed slightly by — 0.815 (95% interval: — 36.5,
33.9) days and the slope changed slightly by 0.0684

Fig. 6 Simulated tempera-
ture at five sites in a 20-year
time period

Temperature (°C)

(—3.39, 5.55) days/°C. Due to spatial bias in sam-
pling and the difficulty of interpreting these parame-
ter changes in linear models, we fitted spatial regres-
sion models to each species using data in the early
period. For the early period, the fitted data had an R?
of 0.465 (0.272, 0.819) and an RMSE of 21.0 (6.55,
49.2) days. For the late period, the predicted data had
an R? of 0.0791 (0.00407, 0.507) and an RMSE of
32.6 (12.0, 65.8) days. The considerable reduction
in model fit and increase in error for the late period
suggest the loss of predictive skills in the climate-
phenology model. The predicted FT in the later
period deviated from the observed FT significantly
in eight out of 19 species (Fig. 4d), with six species
having observed FT significantly earlier (p<0.05)
than predictions by 5.00 to 14.4 days and two species
significantly later by 1.84 to 10.9 days. The observa-
tions did not significantly differ from our predictions
for most species (11 out of 19). The median of the
residuals of all species was significantly lower than
zero (p <0.05), suggesting that this loss of predictive
skills was not only from the process of extrapolation
but also a possible change in the climate-phenology
coupling over time.

Advancement in bird breeding slightly outpaces
warming trends in most species in Finland

On the regional level (after aggregated to 100 km diam-
eter hexagons), temperature niche (median MAT of
all nests) of all 36 species ranged from 2.65 to 5.71 °C.
Phenological niche (median NRT from all nests) ranged
from 128 to 208 day of year. All 38 species experi-
enced significant warming in their habitats from 1975
to 2017, with an increase in MAT ranging from 0.0461
to 0.0496 °Clyear. In response to warming, 34 out of
38 species significantly advanced their NRT at a rate of

2030 2035 2040
Time (date)
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0.045-0.258 days/year. There were significant correla-
tions between NRT and MAT in all 38 species, with NRT
being 0.78 to 4.17 days earlier with every 1 °C increase
in temperature. When fitting linear models between NRT
and MAT in the early and late periods, respectively, the
intercept changed very slightly by 0.164 (-8.80, 8.44)
days and the slope too by —0.221 (—1.47, 1.69) days/°C.
We fitted spatial regression models to each species using
data in the early period. For the early period, the fitted
data had an R? of 0.188 (0.0601, 0.345) and an RMSE of
7.52 (4.89, 11.4) days. For the late period, the predicted
data had an R? of 0.100 (0.00375, 0.355) and an RMSE
of 7.55 (4.61, 12.9) days. The slight reduction in model
fit and increase in error for the late period suggest loss
in predictive skills similar to the previous case study,
although to a smaller extent. The predicted NRT in the
later period deviated from the observed NRT signifi-
cantly in 26 out of 38 species (Fig. 4d), with 20 species
having observed NRT significantly earlier than predic-
tions by 0.964-5.80 days and four species significantly
later by 0.665-3.20 days. For the remaining 12 species,
the observations did not significantly differ from the pre-
dictions. The overall significant negative residual among
all species (p<0.05) strongly suggests a change in the
climate-phenology coupling over time.

Recovering phenological mismatch with simulated
continuous phenology data

Methods
Simulate phenology during climate change

The two empirical case studies use empirical data on the
annual temporal scale, such as the timing of flowering
or hatching. Nevertheless, more characteristics in phe-
nology curves, such as the starting time, peaking time,
rate of change, and number of life cycles and their pos-
sible mismatch, can be examined using continuous data
on finer temporal scales. Due to the difficulty to retrieve
long-term continuous phenology data, we conducted four
sets of simulation experiments to test the power of the
proposed theoretical framework and methods in quanti-
fying more nuanced phenological mismatch.

We first simulated hypothetical daily temperature
curves at five sites in 20 years (January 1, 2021 to
December 31, 2040) with an overall increasing lin-
ear trend, seasonal cycles, interannual fluctuations
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(Remsberg and Deaver 2005), and random noise
(Eq. 7) (Fig. 6).

. 2.
X, = fo, + B, +Alsm(f(t+ o ))
. (2 2
+Agsin( 2 (14 ) ) + exex ~ NO.03)
Bos = 0.3 +0.2s, ; = 0.0001 (N
Ay =20, 4 =3650r366,; = —¢
Ay =12, 4; = 5% (3650r366), b = 0

Here X, stands for daily temperature, but it can be
generalized to represent other environmental vari-
ables, ¢ is time (day) since the start of the time period.
The five sites are indexed with s=1, ..., 5, with
increasing temperature from site 1 to 5. ; gives an
overall increasing trend of 0.0001 °C/day, which
is much faster than the recent observed warming of
0.08 °C/decade (Huang et al. 2017) in order to dem-
onstrate our approach within a short time period.

We simulated hypothetical daily phenology each
year as a double logistic curve, using a parameterization
adapted from Elmore et al. (2012) (Eq. 8). This curve is
commonly used to model ground-based and remotely-
sensed leafing phenology (Zhang et al. 2006). A change
was made to the original parameterization for this study
in order to allow multiple growing seasons in a year
(additional parameter mg for rescaling time depend-
ing on the number of life cycles per year).

) = _ ' 1 _ 1
y=m +(m2 m7d) <m3—d'> (m5—d’) + ¢,
I+exp I+exp

my mg

®)

Here y is a variable that quantifies daily phenology
(e.g., vegetation greenness, plankton abundance), d is
time in Julian days, and m, to mg are parameters that
determine the shape of the annual development curve
(Table 1).

We extended Eq. 7 with hypothetical logistic
relationships between the model parameters of year
i (m;) and a certain yearly summary (X, ;) of the
environmental variable X (e.g., mean temperature in
the first 90 days of a year) (Eq. 9).

m = Lupper - Llower
l 1+ eXp(_k(Xmmm,i - X()))

+ lewer (9)

With Eqns. 7-9, we simulated phenology in 20 years
under climate change assuming the same climate-phe-
nology relationship. In order to simulate phenological
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Table 1 Meanings of parameters in our adapted double logis-
tic phenology model

Parameter Meaning

m Average value in winter

m, Difference between summer and winter
ms Timing of spring onset

my Slope of curve in spring

ms Timing of fall offset

mg Slope of curve in fall

my Slope of curve in summer

mg Number of life cycles (without rounding)

mismatch, we manually changed the values of m to be
different from those generated by Eq. 9 in the second half
of the time period, representing a change in the climate-
phenology relationship. We generated phenology curves
using both the unmodified and modified m, representing
potential phenology (y,,) and actual phenology (y,.),
respectively.

To test the power of our approach in detecting multi-
ple types of phenological mismatch, we manipulated four
phenology model parameters: m; for mismatch in the
timing of events (Fig. 7a), m, for mismatch in the pace of
development (Fig. 7b), m, for mismatch in the intensity
of activities (Fig. 7c), and mg for mismatch in the number
of the life cycle (Fig. 7d).

Measure phenological mismatch

We first attempted to model the climate-phenology rela-
tionship using data from the first half of the time period.

Fig. 7 Four types of
phenological mismatch: a
timing of events, b pace of
development, ¢ intensity of
activities, and d number of
life cycle

In practice, we do not know the critical environmental
cues, the functional relationship between environmen-
tal cues and phenology model parameters, and even the
correct structure of the phenology model. Commonly
used phenology models often assume linear relation-
ships between the timing of events and “critical environ-
mental cues,” such as growing degree-days and chilling
units (Yun et al. 2017; Hufkens et al. 2018). However,
in order to model continuous phenology data and detect
mismatch in all parts of the life cycle, a more flexible
model is needed.

Therefore, we used a state-of-the-art data-driven
approach, empirical dynamic modeling (EDM), to model
the nonlinear climate-phenology relationship (Sugihara
and May 1990; Sugihara et al. 1994; Munch et al. 2017).
According to Takens’ theorem (Takens 1981), the time
series of each variable contains information about all
other variables in the same system. This theorem allows
us to reconstruct the behavior of dynamical systems by
taking the time-lag coordinates of the single variable as
proxies for the other variables. In this study, we build
on the Gaussian Process EDM (GP-EDM) algorithm
initially applied to forecasting fish population dynamics
(Munch et al. 2017). Operating with minimal assump-
tions, this approach holds the promise of revealing com-
plex causal relationships from time series and outper-
forms parametric alternatives in prediction.

The model was set up as follows.
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pOlg. X, &) ~N(g(X"), €)
pGgly) ~GP(f, ¥)
p(flo) ~ GP(h, 3,)
p(hl¢, 7*) ~ GP(0, Xy)

%, =ew (-2 -s]) Z.
Zop=ew (~8|a-a]") 2
ZX,ij =72 exp <—§|X’i —X'j'2>

r _—
X' = <Xi,—1:14’ Xi,—15:28’ "'Xi,—337:364)

logit(L7 ) ~ N(0,0.exp(— 2L ))

272—1e0

£—0.001

lOglt( 0.0615-0.001 )

~ N(0,0.5)

logit(—==2%L_y _ N(0.0625, 50)
SN S 0615—0.001 : ’ (10)

- 2
logit( 1_((11//333;2 ~ N(0,0.5)

U0y | N(0,0.5)

logit( (1/0.01)>—(1/100)

For each GP distribution, we assume that the pre-
dicted function values and observed data points (also
called basis) have a jointly multivariate normal dis-
tribution with a covariance matrix determined by the
similarity in predictors. The environmental predic-
tor X” for a specific site and time is a vector of time-
lagged X, consisting of 26 of 14-day averages in the
past 364 days. A baseline functional relationship &
between y and X’ is a GP parameterized by point-
wise-prior variance in the function 7> and lag-specific
length-scale parameters ¢,.,,. The functional relation-
ship is more similar at closer day of year (the degree
of similarity controlled by ®) and at closer sites (the
degree of similarity controlled by y). The process
variance is €. Informed priors were imposed on trans-
formed parameters, with §, indicating the temporal
distance of the k-th predictor to the data point.

We initialized five sets of random EDM param-
eters with the prior distribution. With training data
in the first ten years, we optimized these five sets
of EDM parameters with stochastic backpropaga-
tion (Riedmiller and Braun 1993), giving rise to a
model ensemble with five members. Using this model
ensemble, we predict the phenology in the whole time
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period, including the potential phenology under cli-
mate change in the late period (y,,,’). The estimated
phenological mismatch (y,;’) was calculated as the
difference between observed mismatched phenology
and predicted potential phenology in the late period.

! !

ymiszyaCf_ypol (11)

This estimate was compared to the simulated phe-
nological mismatch (y,,,), which was the difference
between observed mismatched phenology and simu-
lated potential phenology.

Ymis = Yact = Ypot (12)

We used normalized RMSE to summarize the overall
phenological mismatch. Here we normalized the RMSE
to a percentage of the range of training phenology data
(i.e., y in the first 10 years). This metric describes how
much the observed mismatched phenology deviates from
the potential phenology expected with the same climate-
phenology relationship.

/1 N
A/ _ N E?:l (ym't_ypot)

mis max(y)—min(y)

13)

A _ V # Z?:] (yac‘t_ypl?t)z

mis — max(y)—min(y)

To evaluate the goodness-of-fit of our GP-EDM,
we calculated the normalized RMSE between pre-
dicted phenology (y,,’) and simulated phenology
(Vpor)- This metric is also the difference between esti-
mated and simulated phenological mismatch.

1 n N2
_ \/NZ,‘:]()’_)’) (14)

Aerror - .
max(y) — min(y)

Results
Experiment 1: Timing of events

Shifts in the timing of spring phenological events,
such as migration and breeding, are widespread in
animals. A meta-analysis has shown an overall sig-
nificant advancement by 2.88 days per decade in
the timing of spring events since 1950 (Cohen et al.
2018), although delays have also been found in indi-
vidual studies (Cohen et al. 2018). It has been a con-
cern whether these phenological shifts in the timing
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of events can cause phenological mismatches among
interacting species and between the species and the
environment (Cohen et al. 2018). In this experiment,
we simulated breeding activities, with the timing of
spring onset increasing with the mean daily tempera-
ture of the last 90 days in the previous year (7 g,._;)
(Fig. 8a). We further assumed that the mismatched
phenology has later spring onset compared to the
expected timing (Fig. 8b).

Our data-driven model accurately character-
ized how temperature cue controls the timing of
spring onset of breeding activities (Fig. 8c, d). The
estimated mismatch was close to the simulated

mismatch and was larger in magnitude compared
to the model predictive error (Fig. 8e). In the late
period, the overall phenological mismatch was esti-
mated to be A, =0.108, comparable to the simu-
lated value A ;;=0.130, and larger than the model
predictive error A, .. =0.0500.

Experiment 2: Pace of development

In plant phenology literature, there has been a trend
to focus on not only discrete events but the continu-
ous development, such as the speed of vegetation leaf
development (Clark et al. 2011). Studies using remote
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Fig. 8 Measuring phenological mismatch in the timing of
events. a Functional relationship between the timing of spring
onset (m3) and the mean daily temperature of the last 90 days
in the previous year (T g._;). b Simulated and mismatched tim-
ing of spring onset (m;). ¢ The influence of mean daily tem-
perature of the last 90 days in the previous year (T y,. ;) on the
simulated and model-predicted breeding activity in a year. d

2034 2036 2038 2040
Time (date)

Time series of simulated breeding activity (blue), mismatched
breeding activity (red), and predicted breeding activity (black).
e Simulated phenological mismatch (purple) and estimated
phenological mismatch (dark red). The ribbons around pre-
dicted phenology in d and estimated mismatch in e indicate
estimated 95% confidence intervals
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sensing have found that spring green-up is acceler-
ated in years with higher temperature (Seyednasrollah
et al. 2018) or with faster spring warming (Qiu et al.
2020). The sensitivity of the speed of spring green-
up to temperature anomaly appeared to differ among
cold, normal, and hot years (Seyednasrollah et al.
2018), but it has not been assessed whether there
exists any phenological mismatch. In this experiment,
we simulated leaf development characterized by
enhanced vegetation index (EVI), with the speed of
spring green-up increasing with the mean daily tem-
perature of the first 14 days in the same year (7.,4)
(Fig. 9a). We further assumed that the mismatched

phenology has slower spring green-up compared to
the expected speed (Fig. 9b).

The model accurately characterized how tempera-
ture cue controls the pace of spring greenup (Fig. 9c,
d). The estimated mismatch was close to the simu-
lated mismatch and was larger in magnitude com-
pared to the model predictive error (Fig. 9e). In the
late period, the overall phenological mismatch was
estimated to be A’ =0.104, comparable to the sim-
ulated value A_;;=0.101, and larger than the model
predictive error A,,..=0.0370.
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Fig. 9 Measuring phenological mismatch in the pace of devel-
opment. a Functional relationship between the slope of curve
in spring (m,) and the mean daily temperature of the first
14 days in the same year (T}.;,). b Simulated and mismatched
slope of curve in spring (m,). ¢ The influence of mean daily
temperature of the first 14 days in the same year (7}.,,) on the
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Experiment 3: Intensity of activities

On the ecosystem level, it has been shown that there
is a trade-off between length of the growing season
and peak net primary productivity (NPP) (Duve-
neck and Thompson 2017). In warmer years, there
are often longer growing seasons but lower summer
NPP. This trade-off has been well documented but
only described with simple statistical models. It is,
therefore, hard to determine if changes in produc-
tivity track climate change. Using our approach, we
consider the continuous change of NPP as phenology
on the ecosystem level and quantify the mismatch

Summer-winter difference

Summer-winter difference
o

with temperature. In this experiment, we simulated
NPP, with the peak NPP increasing with the mean
daily temperature of the first 90 days in the same year
(T).9p) (Fig. 10a). We further assumed that the mis-
matched phenology has a lower peak NPP compared
to the expected intensity (Fig. 10b).

The model accurately characterized how tempera-
ture cue controls the peak NPP (Fig. 10c and d). The
estimated mismatch was close to the simulated mis-
match and was larger in magnitude compared to the
model predictive error (Fig. 10e). In the late period,
the overall phenological mismatch was estimated to
be A, =0.0857, comparable to the simulated value
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Fig. 10 Measuring phenological mismatch in the intensity
of activities. a Functional relationship between the difference
between summer and winter (m,) and the mean daily tempera-
ture of the first 90 days in the same year (7'.9p). b Simulated
and mismatched difference between summer and winter (m,).
¢ The influence of mean daily temperature of the first 90 days
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NPP in a year. d Time series of simulated NPP (blue), mis-
matched NPP (red), and predicted NPP (black). e Simulated
phenological mismatch (purple) and estimated phenological
mismatch (dark red). The ribbons around predicted phenology
in d and estimated mismatch in e indicate estimated 95% con-
fidence intervals
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ALis=0.0740, and larger than the model predictive
error A, =0.0409.

error

Experiment 4: Life history

Climate change can cause more complex changes in
phenology, such as a change in life history. Several
insect taxa, such as Lepidoptera species and bark
beetles, have been found to complete more genera-
tions per year over time (from univoltine to bivolt-
ine or multivoltine life cycles). These changes have
been attributed to longer and warmer growing sea-
sons (Forrest 2016). Many of these changes are

economically important, especially when the insects
are pests or parasites (Jonsson et al. 2009). Previous
studies have taken a phenological perspective to study
the synchrony between plants, pests, and parasites,
leading to diverse findings on phenological mismatch
(Senior et al. 2020). Nevertheless, it has rarely been
assessed how changes in life history induce phenolog-
ical mismatch. In this experiment, we simulated insect
abundance, with the number of life cycles (without
rounding) increasing with the mean daily temperature
of all days in the same year (7).555) (Fig. 11a). We
further assumed that the mismatched phenology has a
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Fig. 11 Measuring phenological mismatch in life history.
a Functional relationship between the number of life cycles
(without rounding) (mg) and the mean daily temperature of all
days in the same year (T.345). b Simulated and mismatched
number of life cycles (without rounding) (mg). ¢ The influ-
ence of mean daily temperature of all days in the same year
(T).365) on the simulated and model-predicted insect abundance
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Time (date)

in a year. d Time series of simulated insect abundance (blue),
mismatched insect abundance (red), and predicted insect abun-
dance (black). e Simulated phenological mismatch (purple)
and estimated phenological mismatch (dark red). The ribbons
around predicted phenology in d and estimated mismatch in e
indicate estimated 95% confidence intervals
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lower number of life cycles compared to the expected
intensity (Fig. 11b).

The data-driven nonlinear model relatively accu-
rately characterized how increasing temperature
accelerates the pace of development thus increas-
ing the number of life cycles (Fig. 11c and d). The
estimated mismatch was close to the simulated mis-
match, and was larger in magnitude compared to the
model predictive error (Fig. 11e). In the late period,
the overall phenological mismatch was estimated to
be A, =0.136, comparable to the simulated value
ALis=0.172, and larger than the model predictive
error A,,,.,=0.0831.

error

Discussion

In this work, we sought to improve our understanding
of phenological mismatch by (1) reviewing and clas-
sifying existing methods used to quantify phenologi-
cal mismatch, (2) proposing a generalizable definition
of synchrony and a predictive approach for quantifi-
cation, and (3) quantifying phenological mismatch on
large spatial scales under climate change using empir-
ical and simulated data.

Despite the increasing research on phenologi-
cal research on large scales, we have not yet seen a
study that links phenological mismatch across multi-
ple scales. This may be because the concept of phe-
nological mismatch has been applied differently on
different levels of the organization. For example, the
population-level definition in the Cushing match-
mismatch hypothesis, i.e., any change to the relative
timing between the peak of the most energetically
demanding period of the consumer and the peak of
resource availability (Cushing 1969), can hardly be
applied to another level of the organization. Our more
general framework and approach may enable future
studies that compare or even scale phenological mis-
match across scales.

Compared to existing descriptive and model-com-
parison approaches, our predictive approach has the
following advantages. First, we allow very flexible
modeling of the baseline phenology-environment
coupling, such as linear relationship in the empirical
case studies and nonlinear relationship in the simu-
lated case studies. Multivariate models can be used
when phenology studied is controlled by complex
mechanisms (e.g., grasslands) (Shen et al. 2011). In

cases when asynchrony is a historical baseline prior
to climate change (Singer and Parmesan 2010; Visser
et al. 2012), models can be designed accordingly to
represent increased synchrony as a type of phenologi-
cal mismatch. Second, the resulting measure of phe-
nological mismatch has the same unit as the pheno-
logical data, and can be normalized to a percentage,
enabling easy interpretation and comparison across
scales. The magnitude of phenological mismatch can
therefore be quantitatively compared across scales.
Third, we allow the analysis of continuous pheno-
logical curves without identifying critical features of
phenological time series, making the approach gener-
alizable to diverse study systems. This is particularly
useful in systems with weak or cryptic seasonality
(e.g., evergreen forests) (Wu et al. 2017; Abernethy
et al. 2018), irregular periodicity (e.g., drought-con-
trolled forests) (Killmann and Thong 1995; Borchert
1996), or more than one cycle per year (e.g. crops and
insects) (Meza et al. 2008; Seifert and Lobell 2015;
Forrest 2016).

Two empirical case studies showcased how the
predictive approach can be applied to large spatiotem-
poral datasets to systematically quantify phenological
mismatch. In the eastern US, we found plant flower-
ing phenology to generally match or even outpace the
increase in spring temperature from 1895 to 2015.
This finding is consistent with a previous finding on
the rapid advancement of plant spring phenology out-
pacing the shift in the spring timing, defined as the
timing when temperature increases most rapidly in a
year (Ovaskainen et al. 2013). In a continental-scale
study using remote sensing data, land surface phenol-
ogy also outpaced changes in mean annual tempera-
ture in natural landscapes in the eastern US (Song
et al. 2021). These results suggest that plant flower-
ing phenology in many species responds sensitively
to warming and may even be mismatched in an unex-
pected direction. Advancing of spring phenology
beyond the extent of warming might expose plants to
extreme weather conditions such as frost (Richard-
son et al. 2018). There are several possible reasons
for such outpacing phenological mismatch. First, the
late period we defined in this case study (1950-2015)
has much overlap with the “global warming hiatus”
(Medhaug et al. 2017), such that the advancement in
plant phenology may appear to be overcompensating.
Second, although plant phenology responds to cli-
mate change through both phenotypic plasticity and
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adaptive evolution, directional selection may be more
dominant (Anderson et al. 2012), such that advanced
phenology may not respond rapidly to the slowdown
of warming. Third, although our case study spanned
around 120 years, it is still a limitation that climate
change has taken place during the early period that
we defined (1895-2014) (Masson-Delmotte 2018).
The baseline climate-phenology coupling we inferred
from this period may still not represent a status with-
out phenological mismatch. Last, phenology may be
more strongly controlled by extreme weather condi-
tions rather than mean temperatures (Crabbe et al.
2016). It is common that phenology shifts to match
some climatic conditions but not the others. For
example, tree swallows that advanced their egg lay-
ing in response to warming expose their offspring to
more harsh weather events which reduced food avail-
ability (Shipley et al. 2020). Therefore, better mech-
anistic understanding is needed to identify the most
ecologically relevant climate-phenology coupling for
the quantification of phenological mismatch.

We focused on phenological mismatch on higher
trophic levels in the bird breeding case study. We
found a very similar pattern to the plant flowering
case study in Finland, where the advancement of bird
breeding season slightly but significantly outpaced
warming. Although there have been many exam-
ples of bird reproductive phenology changing insuf-
ficiently in response to changes in climate or plant
phenology (Visser et al. 1998; Both and Visser 2001;
Gaston et al. 2009; Burger et al. 2012; Clausen and
Clausen 2013; Mayor et al. 2017; Descamps et al.
2019; MacKenzie et al. 2019; Merkel et al. 2019),
there are considerable variation among species (Dunn
and Mgller 2014) and study area. In this case study, it
is not completely surprising that bird breeding phe-
nology advanced more than expected given climate
change, given that bird breeding phenology is often
strongly coupled with spring vegetation greenness
(La Sorte and Graham 2020), and that Finland land
surface phenology seem to be outpacing warming in
the last three decades (Song et al. 2021). This find-
ing may be region-specific and therefore does not
support the general opinion that lagging phenological
mismatch is greater on higher trophic levels. A meta-
analysis involving various terrestrial, freshwater, and
marine taxa suggests differential phenological change
among trophic levels, with secondary consumers hav-
ing the slowest advancement in timing (Thackeray
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et al. 2010). The constraint of the phenological shift
in higher-level consumers, and thus growing pheno-
logical mismatch with their resources, has also been
suggested in terrestrial food webs (Both et al. 2009).
More long-term datasets on the phenological relation-
ship across trophic levels will help to examine these
claims more systematically.

The accuracy of the proposed measure requires
reasonable predictive power of the phenology model
and is, therefore, sensitive to model structure. The
better we can predict potential phenology during cli-
mate change, the better we can estimate phenologi-
cal mismatch. Our experiments with simulated data
demonstrated the accuracy of predicting phenological
response under climate change and quantifying vary-
ing types of phenological mismatch. Nevertheless,
the estimated phenological mismatch might be con-
founded by the loss of predictive skill that is expected
during extrapolation, due to the variance in data and
imperfect model fitting rather than a true phenologi-
cal mismatch. Although phenological mismatch was
shown to be a lot greater than model predictive error
to estimated mismatch in the simulated studies, it is
often not possible to assess the true predictive errors
in the hypothetical scenario without phenological
mismatch in empirical data. It is then helpful to con-
duct out-of-sample tests with a random subset of the
data to understand model performance (see supple-
mentary information). It is necessary to interpret the
estimated phenological mismatch with care, consider-
ing the following caveats.

(1) When high-quality continuous phenology data
are not available, there will not be sufficient infor-
mation to determine the environment-phenology
relationship, making it difficult to estimate phe-
nological mismatch based on model predictions.

(2) Without a reasonable model structure for the
environment-phenology relationship, the estimate
of phenological mismatch can be incorrect and
misleading. We here demonstrate that even using
a nonlinear data-driven model, the performance
when recovering highly complex climate-phenol-
ogy coupling could still be limited, as shown in
the simulation experiment 4 on life history. The
GPEDM we used also suffers from limitations
of modeling threshold effects or extrapolating to
extreme conditions. Therefore, we suggest con-
tinuous searching and improvement of predictive
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models, such as through integrating mechanistic
knowledge into data-driven models (Read et al.
2019).

(3) If climate change has driven the environmental
conditions out of the historical range, it is dif-
ficult to define what phenological response is
tracking and what is mismatched with the envi-
ronment. In our simulation experiments, we
apply a space-for-time substitution, using data
from sites with temperature differences to inform
phenology in a wide range of environmental con-
ditions in history. Alternatively, manipulative
experiments might inform the expected behavior
under unprecedented conditions.

(4) The estimated phenological mismatch is sub-
jective to the choice of time periods compared.
Although it would be ideal to set a baseline for
climate-phenology coupling using data prior
to anthropogenic climate change (Abram et al.
2016), such data are usually not available. Here
we demonstrated our approach in the empirical
studies by splitting a long-term dataset into an
early and a late period. We need to interpret the
estimated phenological mismatch relative to the
time scale of the dataset, acknowledging that a
comparison to the pre-industrial conditions may
not be fully achieved.

(5) At the current stage, it has not been experimen-
tally or empirically validated if our measure of
phenological mismatch is linked to fitness or
demographic consequences. Nevertheless, as it
can detect several individual types of phenologi-
cal mismatch that have verified consequences
(e.g., in timing of events), we are optimistic that
our proposed measure is ecologically meaning-
ful.
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