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Abstract 
Context  Climate change is driving phenological 
shifts across landscapes, but uncoordinated shifts 
might cause a potential “phenological mismatch.” 
There has been little consensus on the existence and 
magnitude of such a mismatch. The lack of agreement 
among studies can be attributed to the wide variety of 
definitions for the term “phenological mismatch,” as 
well as the methods used to measure it. The lack of 
comparability among measures of phenological mis-
match creates a challenge for conservation.
Objectives  We proposed a novel theoretical frame-
work to generalize existing measures of phenologi-
cal mismatch and an approach to quantify the decou-
pling between phenology and the environment using 
the loss in predictive skill over time. We aimed to 

estimate the magnitude of phenological mismatch on 
large spatial scales and test the proposed predictive 
approach’s ability to detect multiple types of pheno-
logical mismatch.
Methods  We modeled historical climate-phenology 
coupling and quantified phenological mismatch as the 
deviation between observed and predicted phenology 
under climate change. First, we used two large empir-
ical spatiotemporal datasets to estimate phenological 
mismatch in plant flowering phenology in the east-
ern United States and bird reproductive phenology in 
Finland. Historical climate-phenology coupling was 
modeled with spatial linear regression. Second, we 
conducted four simulation experiments representing 
different types of mismatch during climate change. 
We recovered simulated phenological mismatch by 
fitting a data-driven nonlinear model (Gaussian Pro-
cess Empirical Dynamic Modeling) and predicting 
phenology.
Results  In the eastern US, we found that advanc-
ing plant flowering phenology generally matched 
spring warming from 1895 to 2015, with seven out 
of the 19 species studied having significant pheno-
logical mismatches, with observed flowering time 
earlier than predictions even considering warming. 
A similar phenological mismatch was found in birds 
in Finland from 1975 to 2017, with the bird breeding 
season advancing more than expected in 21 out of the 
36 species studied. In four simulation experiments, 
we were able to accurately recover the simulated phe-
nological mismatches in the timing of events, pace 
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of development, and intensity of activities, although 
with greater challenges in quantifying a mismatch in 
life history.
Conclusions  Overall, these case studies show that 
our prediction-based measure effectively quantifies 
multiple types of phenological mismatch, providing a 
more generalizable and comparable measure of phe-
nological mismatch across study systems and scales. 
This study will enable the investigation of phenologi-
cal mismatch at large scales, improving understand-
ing of the patterns and consequences of climate-
change-induced phenological changes.

Keywords  Anthropocene · Asynchrony · Climate 
change · Empirical dynamic modeling · Phenology · 
Synchrony

Introduction

Since Cushing (1969) proposed the match-mismatch 
hypothesis, ecologists have been increasingly con-
cerned with whether climate change induces a “phe-
nological mismatch.” Phenological mismatch can 
lead to negative ecological consequences on multiple 
scales of ecology: from species interactions (Rafferty 
et  al. 2015; Renner and Zohner 2018) to the persis-
tence of populations (Nicola et al. 2011; Visser et al. 
2012), and ecosystem functioning (Beard et al. 2019). 
Meta-analysis shows that the relative timing of key 
life cycle events in aquatic and terrestrial ecosys-
tems in 1951–2013 has changed significantly since 
the early 1980s (Kharouba et al. 2018). For example, 
advancing spring conditions have driven cascading 
trophic mismatch in the food web from vegetation, 
insects, birds, to polar bears in the Arctic (Rockwell 
et  al. 2011; Reneerkens et  al. 2016). Understanding 
and mitigating phenological mismatch become par-
ticularly crucial given the rapid climate change and 
human modifications of the landscapes.

Phenological mismatches have been observed 
either between species and climate or between inter-
acting species. On the one hand, phenological shifts 
do not always change in concordance with climate 
change. In a global meta-analysis (Parmesan and 
Yohe 2003), while 423 out of 484 species changed 
in their phenology as predicted given the climate 
change, 61 changed opposite to the prediction. Some 
phenological mismatches may be the results of 

anthropogenic activities. For example, in the Midwest 
US, although warming spring temperatures poten-
tially allowed earlier crop emergence, the remotely-
sensed start of season was delayed, due to the replace-
ment of wheat and oat by corn and soybean (Zhang 
et al. 2019). On the other hand, the widespread phe-
nological mismatch between interacting species under 
climate change received more attention. For example, 
the temporal shift in the arriving and hatching of sev-
eral migratory bird species have been insufficient to 
match the rapid advancement of spring greenup at 
their destinations (Visser et al. 1998; Both and Visser 
2001; Gaston et al. 2009; Clausen and Clausen 2013; 
Mayor et al. 2017).

Although phenological mismatch is well studied, 
our understanding of its magnitude, impacts, and how 
it changes across scales remains limited. For exam-
ple, there have been inconsistent findings on whether 
there are community-level phenological mismatches 
(Edwards and Richardson 2004; Donnelly et al. 2011; 
Burthe et  al. 2012; Ovaskainen et  al. 2013). Part of 
these inconsistencies arises from the different defini-
tions and methods used to quantify phenological mis-
match. Ecologists have realized the difficulty to define 
a baseline for “matching phenology” (Kharouba and 
Wolkovich 2020), particularly under global change, 
as we do not always know how much a species should 
be shifting to match the change in its environment 
(Visser and Both 2005). In addition, recent develop-
ment in phenological mismatch on the community 
level (Edwards and Richardson 2004; Renner and 
Zohner 2018) and from a spatial perspective (Post 
et  al. 2008; Vitasse et  al. 2018; Aikens et  al. 2020) 
have highlighted the need to expand the concept of 
phenological mismatch, which traditionally focuses 
on the population level and a single site. The lack of 
a coherent and generalizable theoretical framework 
creates a challenge for understanding and interpret-
ing phenological mismatch across landscapes under 
climate change.

In this study, we first review the different measures 
used to quantify phenological mismatch, classifying 
them into a descriptive approach and a model-com-
parison approach. After reviewing their advantages 
and drawbacks, we propose a novel theoretical frame-
work to define a generalized phenological mismatch 
and measure it with a predictive approach. Last, we 
conduct three case studies with empirical and simu-
lated data to demonstrate the power and limits of our 
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new predictive approach in detecting and quantifying 
phenological mismatch.

Measures of phenological mismatch

The earliest and most common approach to evalu-
ating phenological mismatch is timing-based, i.e., 
focusing on the relative timing of phenological events 
(Fig.  1a). One example is the difference in the tim-
ing of phytoplankton blooms and fish breeding 
(Cushing 1969). The main assumption is that there 
is an optimal time lag between a pair of phenologi-
cal events (Satterthwaite et al. 2014), and deviations 
from this time lag indicate a phenological mismatch. 

These measures can be further divided into two sub-
categories. Most studies that use a timing-based 
approach focus on discrete phenological events, such 
as peak abundance (Blondel et  al. 1993; Reed et  al. 
2013; Doiron et  al. 2015) or emergence (Tikkanen 
and Julkunen-Tiitto 2003; Satterthwaite et  al. 2014) 
(Fig. 1a[1]). Timing-based approaches are often used 
on the phenologies of species with trophic interac-
tions. In Kudo and Ida (2013), phenological mis-
match was measured by the delay in initial bee activ-
ity from flowering onset. Reed et  al. (2013) defined 
the phenological mismatch as the difference between 
the laying date of the first clutch of great tits and the 
date of peak food abundance, plus 30  days, where 
both positive or negative mismatch leads to lower 

Fig. 1   Conceptual diagrams of five main methods of meas-
uring phenological mismatch. a Timing-based methods focus 
on the relative timing of phenological events or periods. b 
Impact-based methods focus on the consequences of changes 
in the relative timing of a focal species and its environment. 

c Change-based methods focus on the change of phenologi-
cal events over time or in response to environmental change. d 
Correlation-based methods focus on the strength of linear cou-
pling between variables. e Synchrony-based methods focus on 
the coordination among processes
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fitness. Other timing-based studies treat phenology as 
a continuous event, such as the continued presence of 
a species or an environmental condition, and calcu-
late the overlap in timing (McKinnon et al. 2012; Iler 
et  al. 2013) (Fig. 1a[2]). Estimation of timing-based 
mismatch usually requires knowledge of the time lag 
or overlap that optimizes fitness or population size 
(Durant et al. 2005). Such knowledge may be gained 
from empirical data (Reed et  al. 2013; Plard et  al. 
2014; Satterthwaite et al. 2014; Doiron et al. 2015) or 
models (Jonzén Tikkanen and Julkunen-Tiitto 2003; 
Niclas et al. 2007). However, more often, there is no 
visible ecological consequence of varying time lag 
(Pearce-Higgins et al. 2010; Dunn et al. 2011; Dunn 
and Møller 2014), and assumptions are used based on 
expert knowledge.

Impact-based methods focus on the consequences 
of changes in the relative timing of a focal species 
and its environment (Fig. 1b). The consequences may 
be on the state of resource availability, environmen-
tal conditions, or other variables that affect fitness. 
A classic example is the quantification of mismatch 
between the coat color change of snow hares and the 
presence of snow (Zimova et  al. 2014, 2016). The 
researchers defined a hare to be mismatched when 
the contrast between its coat color and background 
exceeded 60%. Another index based on impact is 
“thermal delay,” which measures the increase in accu-
mulated degree-days when migratory birds arrive at 
their breeding grounds (Saino Nicola et al. 2011). The 
abundance (Durant et al. 2005; Hipfner 2008; Burger 
et al. 2012) or diversity (Post and Forchhammer 2008; 
Post et al. 2008) of a group of prey in predator(s)’ diet 
has been used as a proxy for temporal overlap. Simi-
larly, Rafferty and Ives (2011) and Petanidou et  al. 
(2014) measured the level of pollination during flow-
ering. The impact-based measures are closely linked 
to ecological consequences. Nevertheless, similar to 
timing-based measures, sufficient knowledge has to 
be obtained to determine the optimal state of environ-
mental conditions for the focal species.

Change-based methods de-emphasize the relative 
timing and instead focuses on its change (Fig.  1c). 
Unlike the previous timing-based method that can be 
used to evaluate phenological mismatch given a pair 
of timing in a single year and site based on optimal 
relative timing, the change-based methods detect 
changes in relative timing with multiple pairs of tim-
ing observed over space or time. This approach has 

been increasingly popular in recent years because of 
rapid global change and widespread phenological 
shifts. One method is to compare the rate of change in 
the timing of phenological events over time, where a 
non-parallel shift is considered to indicate a mismatch 
(Fig.  1c[1]). This method has been used to suggest 
several mismatches between the reproductive phenol-
ogy of animals (often birds and ungulates) and envi-
ronmental cues such as climatic events (Van Noord-
wijk et al. 1995; Sanz et al. 2003; Gaston et al. 2009; 
Jones and Cresswell 2010; Clausen and Clausen 
2013) and peak food abundance (Visser et  al. 1998; 
Gaston et al. 2009; Plard et al. 2014). The mismatch 
is less supported in some tightly coupled relation-
ships, such as between flowering and pollinator activ-
ities (Bartomeus et al. 2011; McKinney et al. 2012). 
Notably, this method allows the comparison of more 
than two species on the community level. Meta-anal-
yses involving multiple taxa suggested differential 
phenological change among trophic levels (Edwards 
and Richardson 2004; Both et  al. 2009; Thackeray 
et  al. 2010; Burthe et  al. 2012; Ovaskainen et  al. 
2013). The other change-based method is to compare 
the response in the timing of phenological events to 
an environmental change, i.e., comparing the sen-
sitivity or slope of the regression line (Fig.  1c[2]). 
Species that change their phenology differently com-
pared to their interacting species in response to envi-
ronmental change are considered to face the risk of 
mismatch (Evans et al. 2013). Observations are often 
made in experimental settings (Liu et al. 2011; Paull 
and Johnson 2014) or along environmental gradients 
(Mjaaseth et  al. 2005; Forrest and Thomson 2011; 
Evans et  al. 2013; Iler et  al. 2013). Change-based 
methods have been argued to provide an unbiased 
measure because it considers species that show little 
phenological change, which may be under-reported 
otherwise (Thackeray et  al. 2010). However, the 
result may be sensitive to the time period and area 
studied. It should also be noted that historical starting 
points may not benchmark matching phenology due 
to maladaptation (Blondel et  al. 1993) or anthropo-
genic impacts.

Correlation-based methods are occasionally used, 
examining the strength of the coupling between the 
timing of a pair of phenological events or between 
phenology and environmental conditions (Fig.  1d), 
with a high correlation coefficient representing a 
greater degree of “matching.” By comparing the 
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timing of shrimp hatching and spring phytoplankton 
bloom at various latitudes, Koeller et al. (2009) con-
cluded that the shrimp hatching phenology generally 
matches food availability in the North Atlantic basin. 
Bloom timing of plankton has been correlated with 
sea bottom temperature (Koeller et al. 2009) and ice-
retreat timing (Ji et al. 2013). In a North Sea pelagic 
food web, the lack of significant correlations among 
species phenologies and with sea surface temperature 
were used as evidence of a trophic mismatch (Burthe 
et al. 2012). This method requires the assumption of a 
relatively tight linear coupling between variables.

Very few studies use synchrony-based methods, 
examining the synchrony of time series of biotic or 
abiotic variables (Fig.  1e). Synchrony usually refers 
to coordination among processes (Ravignani 2017). 
Although synchrony can be tested statistically (e.g., 
with time-lagged correlation), visual inspection is 
employed more often in practice, limited by the 
amount of data. For example, the life cycles of fast-
growing spring plankton advanced synchronously 
following earlier spring climatic events, whereas 
slow-growing summer zooplankton displayed no 
such synchrony, suggesting a higher risk of phe-
nological mismatch (Adrian et  al. 2006). The syn-
chrony between the hatching curves of a pest and the 
bud burst curve of birch was disrupted in cold years 
but maintained in warmer years (Jepsen et al. 2011). 
Synchrony-based methods do not require identify-
ing key phenological events but flexibly consider the 
continuous changes in processes (Yang and Rudolf 
2010). They are also less dependent on knowledge 
of the underlying mechanism, compared to the other 
methods, because much information can be learned 
through past temporal dynamics (Nakazawa and 
Doi 2012). However, whether asynchrony is indeed 
an accurate reflection of phenological mismatch 
deserves further research, as asynchrony may reflect 
adaptive strategies (Visser et al. 2012) and represent 
a stable state in the absence of climate change (Singer 
and Parmesan 2010).

We broadly classified the five methods into two 
main approaches (Fig. 2). The first approach focuses 
on describing key characteristics of phenological time 
series (timing of key events, temporal overlap, and 
impact at a specific time) and comparing the descrip-
tive measure to an optimal measure informed by eco-
logical knowledge (Fig. 1a, b). The second approach 
focuses on fitting models to phenological metrics 

and compares model parameters (Fig.  1c, d, e). In 
the change-based method, linear models are fitted for 
the relationship between phenological metrics and 
time (year) or environmental variables, and the slopes 
are compared. In the correlation-based method, the 
error of models is compared. In the synchrony-based 
method, the phases of wave functions are compared. 
The common idea of methods with the model com-
parison is that matching phenology is represented by 
some optimal model parameters.

These two approaches have their limitations. For 
the descriptive approach, the key descriptive measure 
cannot always be specified, especially for activities 
with weak or irregular seasonality (e.g., tropical forest 
phenology) (Wu et al. 2017). The optimal descriptive 
measure that represents matching phenology requires 
accurate ecological knowledge, which is not always 
available. For the model-comparison approach, the 
models used for phenological metrics are often over-
simplistic (usually linear) (Keenan et  al. 2020) and 
lack flexibility.

Crucially, using different methods to study the 
same system can lead to divergent conclusions. For 
example, despite the differential response of flower-
ing and syrphid phenology, environmental changes 
resulted in more days of temporal overlap between the 
flower-syrphid community through early snow melt 
(Iler et  al. 2013). Different interpretations may even 
arise from similar methods and results, as there is 
often no clear distinction between “match” and “mis-
match,” such as when the shifts in phenology are only 
partially consistent in a complex community (Burthe 
et al. 2012; Ovaskainen et al. 2013). Such mixed mes-
sages on phenological mismatch arise from the dif-
ferent definitions of phenological mismatch, from 
the divergence in the research protocol, and from the 
intrinsic complexity of the climate-phenology system. 
We argue that a new approach is needed in defining 
and measuring phenological mismatch that is compat-
ible with the diverse phenological response to climate 
change and can be similarly applied to all levels of 
the organization.

A new framework based on prediction

We first seek to define a generalizable baseline for 
“matching phenology” with minimal assumptions 



826	 Landsc Ecol (2023) 38:821–845

1 3
Vol:. (1234567890)

on the key feature of phenological time series and 
the structure of phenology models. To generalize 
the commonly-used definitions, we consider pheno-
logical mismatch to take place when the temporal 
dynamics of individuals, populations, species, com-
ponents of the ecosystem, or patches in a landscape 
do not maintain a stable relationship during climate 
change. Motivated by complex systems theory, we 
consider phenological mismatch to be the conse-
quence of a loss of “generalized synchronization” 
(GS), which describes if a (static) functional rela-
tion exists between the states of the systems of 
interest (Kocarev and Parlitz 1995; Rulkov et  al. 
1995; Abarbanel et  al. 1996; Brown and Kocarev 
2000; Boccaletti et al. 2002).

Definition  Generalized synchronization in the phe-
nology-environment coupling system occurs when 
there is a function, Φ, such that.

where Φ is a nonlinear function describing the rela-
tionships between focal phenology (Y) and the envi-
ronment (X), including the phenology of interacting 
individuals/populations/communities and abiotic 
conditions. All variables are indexed by space (s) and 
time (t), which encourages an explicit definition of 
the spatiotemporal scale of the synchronization. The 
same functional relationship (Φ) may be found to be 
consistent on one scale but not another. For example, 
the relationship may be consistent within a spatial 

(1)Ys,t = Φ(Xs,t)

Fig. 2   Conceptual diagram 
of two existing approaches 
(descriptive and model-
comparison) approach and 
our proposed approach 
(predictive) for quantify-
ing phenological mismatch 
using time series of ecologi-
cal variables
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range of d (the distance between s1 and s2) or only 
at the same location (d = 0). The indices are omitted 
from here onwards for simplicity.

This definition then leads to a natural method for 
quantifying phenological mismatch, i.e., predict-
ing phenology assuming a static relationship with 
other phenological and environmental variables, and 
assessing the discrepancies from observed phenology. 
This notion of quantifying the extent of GS based on 
the predictability of time series has been applied in 
previous studies of simulated chaotic systems and 
neuroscience (Schiff et  al. 1996; Wiesenfeldt et  al. 
2001). A loss of GS can be detected from a loss in the 
predictive power of the model (Fig. 2).

The evaluation of phenological change and mis-
match starts with a baseline of phenology (Y) and 
phenology-environment coupling (Φ) (Fig. 3).

If Φ remains the same with changes in the environ-
ment (Xnew), we consider there to be no phenological 
mismatch. This can be expressed as

where we refer to the model-predicted phenology 
given Xnew as the potential phenology (Ypot), and its 

(2)Y = Φ(X)

(3)
Ypot = Φ

(
Xnew

)
= Φ(X) +

[
Φ
(
Xnew

)
− Φ(X)

]
= Y + ΔYpot

difference from Y as potential phenological change 
(ΔYpot), reflecting the ideal adaptation in focal phenol-
ogy without any constraint.

Realistically, there may be changes in the phenol-
ogy-environment coupling (Φ’).

Here we refer to the observed phenology given Xnew 
as the actual phenology (Yact), and its difference from 
P as the actual phenological change (ΔYact). The phe-
nological mismatch (Ymis) is then defined as the dif-
ference between Yact and Ypot. Its magnitude is related 
to the loss of synchronization, i.e., the extent to which 
Φ’ deviates from Φ.

Estimating phenological mismatch on large spatial 
scales with empirical data

Data

Herbarium and climate data

In order to examine possible mismatch between plant 
phenology and climate change, we used a published 
crowdsourced dataset of plant reproductive phenology 

(4)
Yact = Φ�

(
Xnew

)
= Φ(X) +

[
Φ�

(
Xnew

)
− Φ(X)

]
= Y + ΔYact

(5)Ymis = Yact − Ypot = ΔYact − ΔYpot

Fig. 3   With the change in the environmental factors (X), 
the baseline phenology (Y) is expected to change to potential 
phenology (Ypot) under generalized synchronization (GS) in 
the ideal case; in reality, however, it is observed to change to 

actual phenology (Yact). The deviations from Y are referred to 
as potential and actual phenological change (ΔYact and ΔYpot), 
respectively. The difference between potential and actual phe-
nology is defined as phenological mismatch (Ymis)
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from herbarium specimens across the eastern continen-
tal United States spanning from 1895 to 2015 (Park et al. 
2018) (Fig. 4a). Park et al. (2018) crowdsourced pheno-
logical data online from over 7,000 herbarium specimens 
representing 30 flowering plant species. Crowdsourcers 
classified the specimens into flowering and fruiting and 
each was given a reliability score. For specimens with-
out accurate coordinates, they used county of specimen 
collection for locality information. Park et al. (2018) also 
retrieved auxiliary climatic data (monthly temperature 
and precipitation) from the PRISM dataset at 4 km reso-
lution (PRISM Climate Group 2019). In this case study, 
we focused on the match between the flowering time 
(FT) (day of year) and spring mean temperature (SMT) 
(°C) defined as the mean of March, April, and May tem-
peratures. We filtered out crowdsourcing records that 
were unreliable (reliability score = 0) and only kept one 
record for each specimen. We split the dataset into an 
early (prior to 1950) and a late (on or after 1950) period, 
and selected for species with no fewer than 30 records in 
both periods, leaving 19 species in our analysis.

Bird nestling ringing and climate data

To examine possible mismatch between bird breed-
ing phenology and climate change, we used a pub-
lished spatiotemporal dataset of over 820,000 nestling 
ringing records of 73 boreal bird species in Finland 
spanning from 1975 to 2017 (Hällfors et  al. 2020) 
(Fig. 5a). As nestlings can only be ringed at a certain 
size, ringing dates are highly correlated with egg-
laying dates, providing a high-quality indicator for the 
nestling ringing time (NRT) (day of year). The loca-
tions of nests were recorded at 10 × 10  km resolu-
tion. For each species, we aggregated nest-level NRT 
to the regional level by taking the median in 100 km 
diameter hexagons (Fig.  5a) to reduce the noise in 
data (Freeman et  al. 2021). For each nest location, we 
retrieved auxiliary climatic data, mean annual tempera-
ture (MAT) (°C) from the TerraClimate dataset at ~ 4 km 
(1/24th degree) resolution (Abatzoglou et  al. 2018). 
Similarly, we aggregated MAT by taking the median at 
all possible nest locations for a species and year in each 
hexagon. We removed hexagons with fewer than 50 nests 
with NRT data, leaving 28,017 records (hexagon × year). 
We split the dataset into an early (prior to 1995) and a 
late (on or after 1995) period, and selected for species 
with no fewer than 100 records in both periods, leaving 
36 species in our analysis.

Methods

We preliminarily visualized the relationships between 
climatic and phenological data in the early and late 
period (Figs. 4b, 5b) to inspect the consistency in the 
climate-phenology functional relationship. We then 
systematically applied our prediction-based approach 
for each study system. We fitted a linear regression 
model between climatic and phenological variables 
(Eq.  6) to data in the early period only. In order to 
account for spatial autocorrelation among data points, 
we modeled spatial random effects with an exponen-
tial correlation function. We adopted a hierarchical 
Bayesian approach to build and fit the model, using 
the spBayes package in R (Finley et al. 2013).

where the response variable Y is the phenological var-
iable (FS in the plant case study and BS in the bird 
case study) and the covariates X is the climatic vari-
able (SMT in the plant case study and MAT in the bird 
case study). β0 and β1 are the coefficients for intercepts 
and covariates; s is the location of observation (in lon-
gitude and latitude for the plant case study and east-
ing and northing in EPSG:3067 projection for the bird 
case study); ε is the random error. The spatial random 
effect, w, is determined by the spatial variance param-
eter σ2, the residual error variance τ2, the spatial decay 
parameter φ, and the Euclidean distance between loca-
tions i and j. We empirically estimated d, the effective 
range of spatial dependence (Finley et  al. 2015), by 
fitting an exponential function to the semivariograms 
of the residuals of the corresponding nonspatial linear 
regression models. We used common choices of dif-
fuse multivariate normal (MVN) priors on β, a  dif-
fuse inverse gamma (IG) prios on σ2 , a tight IG prior 
on τ2, and a diffuse uniform (U) priors on φ (Finley 
et  al. 2013). We ran the Markov chain Monte Carlo 
(MCMC) sampler (10,000 samples  for the flower-
ing case study and 1000 samples for the bird breeding 

(6)

Y(s) = �0 + �1X(s) + w(s) + �

w(s) ∼ N(0,K)Kij = �2exp(−� ∥ si + sj ∥)

� ∼ N(0, �2)

(
�0
�1

) ∼ MVN[(
0

0
), (

100 0

0 100
)]

�2 ∼ lG(2, 2)

� ∼ U(−
log(0.05)

100d
,−

log(0.05)

0.01d
)

τ2 ∼ IG(2, 0.1)
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case study) (Finley et  al. 2013), discarding the first 
half of the samples as burn-in.

We used the fitted model informed by data in the early 
period (X and Y) to predict phenological data in the early 
and late periods, respectively (Figs. 4c, 5c). Predictions 

were compared to observations in the early period to 
evaluate the model fit using the coefficient of determina-
tion (R2) and root mean square error (RMSE). We simi-
larly compared the predictions in the late period (Ypot) 
with observations in the late period (Yact) to estimate 
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Fig. 4   a Geographical distribution of herbarium specimens 
from 19 plant species in the eastern United States. Data were 
originally published in Park et al. (2018). An example species, 
Aquilegia canadensis, is highlighted in solid dots. b Relation-
ship between the flowering time (FT) and spring mean tem-
perature (SMT) of Aquilegia canadensis in the early (before 
1950) and late (on or after 1950) periods, respectively. Fitted 

lines and 95% standard errors are shown for each period. c 
Comparison between observed and predicted FT of Aquilegia 
canadensis in the early and late periods, respectively. 1:1 lines 
are shown in red. d Distribution of deviation of observed FT 
from predicted FT for each species. Species with deviations 
significantly different from zero are highlighted in solid
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possible phenological mismatch. Specifically, we calcu-
lated and summarised the deviation between observa-
tions from predictions (Ymis). We performed one-sample 
t-tests for each individual species to determine if the cal-
culated mismatch was significantly different from zero. 
All calculations and statistical analyses were conducted 
in R v. 4.2.0 (R Core Team 2021).

Results

Advancement in flowering matches or outpaces 
spring warming in eastern US

Temperature niche (median SMT of all specimens) 
of all 19 species ranged from 6.06 to 16.0 °C. Phe-
nological niche (median FT of all specimens) ranged 
from 129 to 228 day of year. There were significant 
correlations between FT and SMT in 17 out of 19 
species, with FT being 2–5  days earlier with every 
1  °C increase in temperature in these 17 species. 
When fitting linear models between FT and SMT in 
the early and late periods, respectively, the intercept 
changed slightly by −  0.815 (95% interval: −  36.5, 
33.9) days and the slope changed slightly by 0.0684 

(−3.39, 5.55) days/°C. Due to spatial bias in sam-
pling and the difficulty of interpreting these parame-
ter changes in linear models, we fitted spatial regres-
sion models to each species using data in the early 
period. For the early period, the fitted data had an R2 
of 0.465 (0.272, 0.819) and an RMSE of 21.0 (6.55, 
49.2) days. For the late period, the predicted data had 
an R2 of 0.0791 (0.00407, 0.507) and an RMSE of 
32.6 (12.0, 65.8) days. The considerable reduction 
in model fit and increase in error for the late period 
suggest the loss of predictive skills in the climate-
phenology model. The predicted FT in the later 
period deviated from the observed FT significantly 
in eight out of 19 species (Fig. 4d), with six species 
having observed FT significantly earlier (p < 0.05) 
than predictions by 5.00 to 14.4 days and two species 
significantly later by 1.84 to 10.9 days. The observa-
tions did not significantly differ from our predictions 
for most species (11 out of 19). The median of the 
residuals of all species was significantly lower than 
zero (p < 0.05), suggesting that this loss of predictive 
skills was not only from the process of extrapolation 
but also a possible change in the climate-phenology 
coupling over time.

Advancement in bird breeding slightly outpaces 
warming trends in most species in Finland

On the regional level (after aggregated to 100 km diam-
eter hexagons), temperature niche (median MAT of 
all nests) of all 36 species ranged from 2.65 to 5.71 °C. 
Phenological niche (median NRT from all nests) ranged 
from 128 to 208  day of year. All 38 species experi-
enced significant warming in their habitats from 1975 
to 2017, with an increase in MAT ranging from 0.0461 
to 0.0496  °C/year. In response to warming, 34 out of 
38 species significantly advanced their NRT at a rate of 

Fig. 5   a Geographical distribution of bird nestling ringing 
events for an example species, Phoenicurus phoenicurus, out 
of 38 boreal bird species in Finland in this study. Data were 
originally published in Hällfors et  al. (2020). Color of dots 
show the nestling ringing time (NRT) on the nest level. Data 
were aggregated to 100 km diameter hexagons for further anal-
ysis. b Relationship between NRT of Phoenicurus phoenicurus 
and mean annual temperature (MAT) in the early (before 1995) 
and late (on or after 1995) periods, respectively. Fitted lines 
and 95% standard errors are shown for each period. c Com-
parison between observed and predicted NRT of Phoenicurus 
phoenicurus in the early and late periods, respectively. 1:1 
lines are shown in red. d Distribution of deviation of observed 
NRT from predicted NRT for each species. Species with devia-
tions significantly different from zero are highlighted in solid

◂

Fig. 6   Simulated tempera-
ture at five sites in a 20-year 
time period
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0.045–0.258  days/year. There were significant correla-
tions between NRT and MAT in all 38 species, with NRT 
being 0.78 to 4.17 days earlier with every 1 °C increase 
in temperature. When fitting linear models between NRT 
and MAT in the early and late periods, respectively, the 
intercept changed very slightly by 0.164 (-8.80, 8.44) 
days and the slope too by −0.221 (−1.47, 1.69) days/°C. 
We fitted spatial regression models to each species using 
data in the early period. For the early period, the fitted 
data had an R2 of 0.188 (0.0601, 0.345) and an RMSE of 
7.52 (4.89, 11.4) days. For the late period, the predicted 
data had an R2 of 0.100 (0.00375, 0.355) and an RMSE 
of 7.55 (4.61, 12.9) days. The slight reduction in model 
fit and increase in error for the late period suggest loss 
in predictive skills similar to the previous case study, 
although to a smaller extent. The predicted NRT in the 
later period deviated from the observed NRT signifi-
cantly in 26 out of 38 species (Fig. 4d), with 20 species 
having observed NRT significantly earlier than predic-
tions by 0.964–5.80 days and four species significantly 
later by 0.665–3.20 days. For the remaining 12 species, 
the observations did not significantly differ from the pre-
dictions. The overall significant negative residual among 
all species (p < 0.05) strongly suggests a change in the 
climate-phenology coupling over time.

Recovering phenological mismatch with simulated 
continuous phenology data

Methods

Simulate phenology during climate change

The two empirical case studies use empirical data on the 
annual temporal scale, such as the timing of flowering 
or hatching. Nevertheless, more characteristics in phe-
nology curves, such as the starting time, peaking time, 
rate of change, and number of life cycles and their pos-
sible mismatch, can be examined using continuous data 
on finer temporal scales. Due to the difficulty to retrieve 
long-term continuous phenology data, we conducted four 
sets of simulation experiments to test the power of the 
proposed theoretical framework and methods in quanti-
fying more nuanced phenological mismatch.

We first simulated hypothetical daily temperature 
curves at five sites in 20  years (January 1, 2021 to 
December 31, 2040) with an overall increasing lin-
ear trend, seasonal cycles, interannual fluctuations 

(Remsberg and Deaver 2005), and random noise 
(Eq. 7) (Fig. 6).

Here Xs stands for daily temperature, but it can be 
generalized to represent other environmental vari-
ables, t is time (day) since the start of the time period. 
The five sites are indexed with s = 1, …, 5, with 
increasing temperature from site 1 to 5. β1 gives an 
overall increasing trend of 0.0001  °C/day, which 
is much faster than the recent observed warming of 
0.08 °C/decade (Huang et al. 2017) in order to dem-
onstrate our approach within a short time period.

We simulated hypothetical daily phenology each 
year as a double logistic curve, using a parameterization 
adapted from Elmore et al. (2012) (Eq. 8). This curve is 
commonly used to model ground-based and remotely-
sensed leafing phenology (Zhang et al. 2006). A change 
was made to the original parameterization for this study 
in order to allow multiple growing seasons in a year 
(additional parameter m8 for rescaling time depend-
ing on the number of life cycles per year).

Here y is a variable that quantifies daily phenology 
(e.g., vegetation greenness, plankton abundance), d is 
time in Julian days, and m1 to m8 are parameters that 
determine the shape of the annual development curve 
(Table 1).

We extended Eq.  7 with hypothetical logistic 
relationships between the model parameters of year 
i ( mi ) and a certain yearly summary ( Xsumm,i ) of the 
environmental variable X (e.g., mean temperature in 
the first 90 days of a year) (Eq. 9).

With Eqns. 7–9, we simulated phenology in 20 years 
under climate change assuming the same climate-phe-
nology relationship. In order to simulate phenological 
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mismatch, we manually changed the values of m to be 
different from those generated by Eq. 9 in the second half 
of the time period, representing a change in the climate-
phenology relationship. We generated phenology curves 
using both the unmodified and modified m, representing 
potential phenology (ypot) and actual phenology (yact), 
respectively.

To test the power of our approach in detecting multi-
ple types of phenological mismatch, we manipulated four 
phenology model parameters: m3 for mismatch in the 
timing of events (Fig. 7a), m4 for mismatch in the pace of 
development (Fig. 7b), m2 for mismatch in the intensity 
of activities (Fig. 7c), and m8 for mismatch in the number 
of the life cycle (Fig. 7d).

Measure phenological mismatch

We first attempted to model the climate-phenology rela-
tionship using data from the first half of the time period. 

In practice, we do not know the critical environmental 
cues, the functional relationship between environmen-
tal cues and phenology model parameters, and even the 
correct structure of the phenology model. Commonly 
used phenology models often assume linear relation-
ships between the timing of events and “critical environ-
mental cues,” such as growing degree-days and chilling 
units (Yun et  al. 2017; Hufkens et  al. 2018). However, 
in order to model continuous phenology data and detect 
mismatch in all parts of the life cycle, a more flexible 
model is needed.

Therefore, we used a state-of-the-art data-driven 
approach, empirical dynamic modeling (EDM), to model 
the nonlinear climate-phenology relationship (Sugihara 
and May 1990; Sugihara et al. 1994; Munch et al. 2017). 
According to Takens’ theorem (Takens 1981), the time 
series of each variable contains information about all 
other variables in the same system. This theorem allows 
us to reconstruct the behavior of dynamical systems by 
taking the time-lag coordinates of the single variable as 
proxies for the other variables. In this study, we build 
on the Gaussian Process EDM (GP-EDM) algorithm 
initially applied to forecasting fish population dynamics 
(Munch et  al. 2017). Operating with minimal assump-
tions, this approach holds the promise of revealing com-
plex causal relationships from time series and outper-
forms parametric alternatives in prediction.

The model was set up as follows.

Table 1   Meanings of parameters in our adapted double logis-
tic phenology model

Parameter Meaning

m1 Average value in winter
m2 Difference between summer and winter
m3 Timing of spring onset
m4 Slope of curve in spring
m5 Timing of fall offset
m6 Slope of curve in fall
m7 Slope of curve in summer
m8 Number of life cycles (without rounding)

Fig. 7   Four types of 
phenological mismatch: a 
timing of events, b pace of 
development, c intensity of 
activities, and d number of 
life cycle
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For each GP distribution, we assume that the pre-
dicted function values and observed data points (also 
called basis) have a jointly multivariate normal dis-
tribution with a covariance matrix determined by the 
similarity in predictors. The environmental predic-
tor X’ for a specific site and time is a vector of time-
lagged X, consisting of 26 of 14-day averages in the 
past 364  days. A baseline functional relationship h 
between y and X’ is a GP parameterized by point-
wise-prior variance in the function τ2 and lag-specific 
length-scale parameters ϕ1:26. The functional relation-
ship is more similar at closer day of year (the degree 
of similarity controlled by ω) and at closer sites (the 
degree of similarity controlled by γ). The process 
variance is ε. Informed priors were imposed on trans-
formed parameters, with δk indicating the temporal 
distance of the k-th predictor to the data point.

We initialized five sets of random EDM param-
eters with the prior distribution. With training data 
in the first ten years, we optimized these five sets 
of EDM parameters with stochastic backpropaga-
tion (Riedmiller and Braun 1993), giving rise to a 
model ensemble with five members. Using this model 
ensemble, we predict the phenology in the whole time 
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period, including the potential phenology under cli-
mate change in the late period (ypot’). The estimated 
phenological mismatch (ymis’) was calculated as the 
difference between observed mismatched phenology 
and predicted potential phenology in the late period.

This estimate was compared to the simulated phe-
nological mismatch (ymis), which was the difference 
between observed mismatched phenology and simu-
lated potential phenology.

We used normalized RMSE to summarize the overall 
phenological mismatch. Here we normalized the RMSE 
to a percentage of the range of training phenology data 
(i.e., y in the first 10 years). This metric describes how 
much the observed mismatched phenology deviates from 
the potential phenology expected with the same climate-
phenology relationship.

To evaluate the goodness-of-fit of our GP-EDM, 
we calculated the normalized RMSE between pre-
dicted phenology (ypot’) and simulated phenology 
(ypot). This metric is also the difference between esti-
mated and simulated phenological mismatch.

Results

Experiment 1: Timing of events

Shifts in the timing of spring phenological events, 
such as migration and breeding, are widespread in 
animals. A meta-analysis has shown an overall sig-
nificant advancement by 2.88  days per decade in 
the timing of spring events since 1950 (Cohen et al. 
2018), although delays have also been found in indi-
vidual studies (Cohen et al. 2018). It has been a con-
cern whether these phenological shifts in the timing 
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of events can cause phenological mismatches among 
interacting species and between the species and the 
environment (Cohen et al. 2018). In this experiment, 
we simulated breeding activities, with the timing of 
spring onset increasing with the mean daily tempera-
ture of the last 90 days in the previous year (T-90:-1) 
(Fig.  8a). We further assumed that the mismatched 
phenology has later spring onset compared to the 
expected timing (Fig. 8b).

Our data-driven model accurately character-
ized how temperature cue controls the timing of 
spring onset of breeding activities (Fig. 8c, d). The 
estimated mismatch was close to the simulated 

mismatch and was larger in magnitude compared 
to the model predictive error (Fig.  8e). In the late 
period, the overall phenological mismatch was esti-
mated to be Δmis’ = 0.108, comparable to the simu-
lated value Δmis = 0.130, and larger than the model 
predictive error Δerror = 0.0500.

Experiment 2: Pace of development

In plant phenology literature, there has been a trend 
to focus on not only discrete events but the continu-
ous development, such as the speed of vegetation leaf 
development (Clark et al. 2011). Studies using remote 
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Fig. 8   Measuring phenological mismatch in the timing of 
events. a Functional relationship between the timing of spring 
onset (m3) and the mean daily temperature of the last 90 days 
in the previous year (T-90:-1). b Simulated and mismatched tim-
ing of spring onset (m3). c The influence of mean daily tem-
perature of the last 90 days in the previous year (T-90:-1) on the 
simulated and model-predicted breeding activity in a year. d 

Time series of simulated breeding activity (blue), mismatched 
breeding activity (red), and predicted breeding activity (black). 
e Simulated phenological mismatch (purple) and estimated 
phenological mismatch (dark red). The ribbons around pre-
dicted phenology in d and estimated mismatch in e indicate 
estimated 95% confidence intervals
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sensing have found that spring green-up is acceler-
ated in years with higher temperature (Seyednasrollah 
et al. 2018) or with faster spring warming (Qiu et al. 
2020). The sensitivity of the speed of spring green-
up to temperature anomaly appeared to differ among 
cold, normal, and hot years (Seyednasrollah et  al. 
2018), but it has not been assessed whether there 
exists any phenological mismatch. In this experiment, 
we simulated leaf development characterized by 
enhanced vegetation index (EVI), with the speed of 
spring green-up increasing with the mean daily tem-
perature of the first 14 days in the same year (T1:14) 
(Fig.  9a). We further assumed that the mismatched 

phenology has slower spring green-up compared to 
the expected speed (Fig. 9b).

The model accurately characterized how tempera-
ture cue controls the pace of spring greenup (Fig. 9c, 
d). The estimated mismatch was close to the simu-
lated mismatch and was larger in magnitude com-
pared to the model predictive error (Fig.  9e). In the 
late period, the overall phenological mismatch was 
estimated to be Δmis’ = 0.104, comparable to the sim-
ulated value Δmis = 0.101, and larger than the model 
predictive error Δerror = 0.0370.
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Fig. 9   Measuring phenological mismatch in the pace of devel-
opment. a Functional relationship between the slope of curve 
in spring (m4) and the mean daily temperature of the first 
14 days in the same year (T1:14). b Simulated and mismatched 
slope of curve in spring (m4). c The influence of mean daily 
temperature of the first 14 days in the same year (T1:14) on the 

simulated and model-predicted EVI in a year. d Time series of 
simulated EVI (blue), mismatched EVI (red), and predicted 
EVI (black). e Simulated phenological mismatch (purple) 
and estimated phenological mismatch (dark red). The ribbons 
around predicted phenology in d and estimated mismatch in e 
indicate estimated 95% confidence intervals
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Experiment 3: Intensity of activities

On the ecosystem level, it has been shown that there 
is a trade-off between length of the growing season 
and peak net primary productivity (NPP) (Duve-
neck and Thompson 2017). In warmer years, there 
are often longer growing seasons but lower summer 
NPP. This trade-off has been well documented but 
only described with simple statistical models. It is, 
therefore, hard to determine if changes in produc-
tivity track climate change. Using our approach, we 
consider the continuous change of NPP as phenology 
on the ecosystem level and quantify the mismatch 

with temperature. In this experiment, we simulated 
NPP, with the peak NPP increasing with the mean 
daily temperature of the first 90 days in the same year 
(T1:90) (Fig.  10a). We further assumed that the mis-
matched phenology has a lower peak NPP compared 
to the expected intensity (Fig. 10b).

The model accurately characterized how tempera-
ture cue controls the peak NPP (Fig. 10c and d). The 
estimated mismatch was close to the simulated mis-
match and was larger in magnitude compared to the 
model predictive error (Fig. 10e). In the late period, 
the overall phenological mismatch was estimated to 
be Δmis’ = 0.0857, comparable to the simulated value 
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Fig. 10   Measuring phenological mismatch in the intensity 
of activities. a Functional relationship between the difference 
between summer and winter (m2) and the mean daily tempera-
ture of the first 90 days in the same year (T1:90). b Simulated 
and mismatched difference between summer and winter (m2). 
c The influence of mean daily temperature of the first 90 days 
in the same year (T1:90) on the simulated and model-predicted 

NPP in a year. d Time series of simulated NPP (blue), mis-
matched NPP (red), and predicted NPP (black). e Simulated 
phenological mismatch (purple) and estimated phenological 
mismatch (dark red). The ribbons around predicted phenology 
in d and estimated mismatch in e indicate estimated 95% con-
fidence intervals
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Δmis = 0.0740, and larger than the model predictive 
error Δerror = 0.0409.

Experiment 4: Life history

Climate change can cause more complex changes in 
phenology, such as a change in life history. Several 
insect taxa, such as Lepidoptera species and bark 
beetles, have been found to complete more genera-
tions per year over time (from univoltine to bivolt-
ine or multivoltine life cycles). These changes have 
been attributed to longer and warmer growing sea-
sons (Forrest 2016). Many of these changes are 

economically important, especially when the insects 
are pests or parasites (Jönsson et al. 2009). Previous 
studies have taken a phenological perspective to study 
the synchrony between plants, pests, and parasites, 
leading to diverse findings on phenological mismatch 
(Senior et al. 2020). Nevertheless, it has rarely been 
assessed how changes in life history induce phenolog-
ical mismatch. In this experiment, we simulated insect 
abundance, with the number of life cycles (without 
rounding) increasing with the mean daily temperature 
of all days in the same year (T1:365) (Fig.  11a). We 
further assumed that the mismatched phenology has a 
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Fig. 11   Measuring phenological mismatch in life history. 
a Functional relationship between the number of life cycles 
(without rounding) (m8) and the mean daily temperature of all 
days in the same year (T1:365). b Simulated and mismatched 
number of life cycles (without rounding) (m8). c The influ-
ence of mean daily temperature of all days in the same year 
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mismatched insect abundance (red), and predicted insect abun-
dance (black). e Simulated phenological mismatch (purple) 
and estimated phenological mismatch (dark red). The ribbons 
around predicted phenology in d and estimated mismatch in e 
indicate estimated 95% confidence intervals
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lower number of life cycles compared to the expected 
intensity (Fig. 11b).

The data-driven nonlinear model relatively accu-
rately characterized how increasing temperature 
accelerates the pace of development thus increas-
ing the number of life cycles (Fig.  11c and d). The 
estimated mismatch was close to the simulated mis-
match, and was larger in magnitude compared to the 
model predictive error (Fig. 11e). In the late period, 
the overall phenological mismatch was estimated to 
be Δmis’ = 0.136, comparable to the simulated value 
Δmis = 0.172, and larger than the model predictive 
error Δerror = 0.0831.

Discussion

In this work, we sought to improve our understanding 
of phenological mismatch by (1) reviewing and clas-
sifying existing methods used to quantify phenologi-
cal mismatch, (2) proposing a generalizable definition 
of synchrony and a predictive approach for quantifi-
cation, and (3) quantifying phenological mismatch on 
large spatial scales under climate change using empir-
ical and simulated data.

Despite the increasing research on phenologi-
cal research on large scales, we have not yet seen a 
study that links phenological mismatch across multi-
ple scales. This may be because the concept of phe-
nological mismatch has been applied differently on 
different levels of the organization. For example, the 
population-level definition in the Cushing match-
mismatch hypothesis, i.e., any change to the relative 
timing between the peak of the most energetically 
demanding period of the consumer and the peak of 
resource availability (Cushing 1969), can hardly be 
applied to another level of the organization. Our more 
general framework and approach may enable future 
studies that compare or even scale phenological mis-
match across scales.

Compared to existing descriptive and model-com-
parison approaches, our predictive approach has the 
following advantages. First, we allow very flexible 
modeling of the baseline phenology-environment 
coupling, such as linear relationship in the empirical 
case studies and nonlinear relationship in the simu-
lated case studies. Multivariate models can be used 
when phenology studied is controlled by complex 
mechanisms (e.g., grasslands) (Shen et  al. 2011). In 

cases when asynchrony is a historical baseline prior 
to climate change (Singer and Parmesan 2010; Visser 
et  al. 2012), models can be designed accordingly to 
represent increased synchrony as a type of phenologi-
cal mismatch. Second, the resulting measure of phe-
nological mismatch has the same unit as the pheno-
logical data, and can be normalized to a percentage, 
enabling easy interpretation and comparison across 
scales. The magnitude of phenological mismatch can 
therefore be quantitatively compared across scales. 
Third, we allow the analysis of continuous pheno-
logical curves without identifying critical features of 
phenological time series, making the approach gener-
alizable to diverse study systems. This is particularly 
useful in systems with weak or cryptic seasonality 
(e.g., evergreen forests) (Wu et  al. 2017; Abernethy 
et  al. 2018), irregular periodicity (e.g., drought-con-
trolled forests) (Killmann and Thong 1995; Borchert 
1996), or more than one cycle per year (e.g. crops and 
insects) (Meza et  al. 2008; Seifert and Lobell 2015; 
Forrest 2016).

Two empirical case studies showcased how the 
predictive approach can be applied to large spatiotem-
poral datasets to systematically quantify phenological 
mismatch. In the eastern US, we found plant flower-
ing phenology to generally match or even outpace the 
increase in spring temperature from 1895 to 2015. 
This finding is consistent with a previous finding on 
the rapid advancement of plant spring phenology out-
pacing the shift in the spring timing, defined as the 
timing when temperature increases most rapidly in a 
year (Ovaskainen et al. 2013). In a continental-scale 
study using remote sensing data, land surface phenol-
ogy also outpaced changes in mean annual tempera-
ture in natural landscapes in the eastern US (Song 
et  al. 2021). These results suggest that plant flower-
ing phenology in many species responds sensitively 
to warming and may even be mismatched in an unex-
pected direction. Advancing of spring phenology 
beyond the extent of warming might expose plants to 
extreme weather conditions such as frost (Richard-
son et  al. 2018). There are several possible reasons 
for such outpacing phenological mismatch. First, the 
late period we defined in this case study (1950–2015) 
has much overlap with the “global warming hiatus” 
(Medhaug et al. 2017), such that the advancement in 
plant phenology may appear to be overcompensating. 
Second, although plant phenology responds to cli-
mate change through both phenotypic plasticity and 
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adaptive evolution, directional selection may be more 
dominant (Anderson et al. 2012), such that advanced 
phenology may not respond rapidly to the slowdown 
of warming. Third, although our case study spanned 
around 120  years, it is still a limitation that climate 
change has taken place during the early period that 
we defined (1895–2014) (Masson-Delmotte 2018). 
The baseline climate-phenology coupling we inferred 
from this period may still not represent a status with-
out phenological mismatch. Last, phenology may be 
more strongly controlled by extreme weather condi-
tions rather than mean temperatures (Crabbe et  al. 
2016). It is common that phenology shifts to match 
some climatic conditions but not the others. For 
example, tree swallows that advanced their egg lay-
ing in response to warming expose their offspring to 
more harsh weather events which reduced food avail-
ability (Shipley et al. 2020). Therefore, better mech-
anistic understanding is needed to identify the most 
ecologically relevant climate-phenology coupling for 
the quantification of phenological mismatch.

We focused on phenological mismatch on higher 
trophic levels in the bird breeding case study. We 
found a very similar pattern to the plant flowering 
case study in Finland, where the advancement of bird 
breeding season slightly but significantly outpaced 
warming. Although there have been many exam-
ples of bird reproductive phenology changing insuf-
ficiently in response to changes in climate or plant 
phenology (Visser et al. 1998; Both and Visser 2001; 
Gaston et  al. 2009; Burger et  al. 2012; Clausen and 
Clausen 2013; Mayor et  al. 2017; Descamps et  al. 
2019; MacKenzie et  al. 2019; Merkel et  al. 2019), 
there are considerable variation among species (Dunn 
and Møller 2014) and study area. In this case study, it 
is not completely surprising that bird breeding phe-
nology advanced more than expected given climate 
change, given that bird breeding phenology is often 
strongly coupled with spring vegetation greenness 
(La Sorte and Graham 2020), and that Finland land 
surface phenology seem to be outpacing warming in 
the last three decades (Song et  al. 2021). This find-
ing may be region-specific and therefore does not 
support the general opinion that lagging phenological 
mismatch is greater on higher trophic levels. A meta-
analysis involving various terrestrial, freshwater, and 
marine taxa suggests differential phenological change 
among trophic levels, with secondary consumers hav-
ing the slowest advancement in timing (Thackeray 

et al. 2010). The constraint of the phenological shift 
in higher-level consumers, and thus growing pheno-
logical mismatch with their resources, has also been 
suggested in terrestrial food webs (Both et al. 2009). 
More long-term datasets on the phenological relation-
ship across trophic levels will help to examine these 
claims more systematically.

The accuracy of the proposed measure requires 
reasonable predictive power of the phenology model 
and is, therefore, sensitive to model structure. The 
better we can predict potential phenology during cli-
mate change, the better we can estimate phenologi-
cal mismatch. Our experiments with simulated data 
demonstrated the accuracy of predicting phenological 
response under climate change and quantifying vary-
ing types of phenological mismatch. Nevertheless, 
the estimated phenological mismatch might be con-
founded by the loss of predictive skill that is expected 
during extrapolation, due to the variance in data and 
imperfect model fitting rather than a true phenologi-
cal mismatch. Although phenological mismatch was 
shown to be a lot greater than model predictive error 
to estimated mismatch in the simulated studies, it is 
often not possible to assess the true predictive errors 
in the hypothetical scenario without phenological 
mismatch in empirical data. It is then helpful to con-
duct out-of-sample tests with a random subset of the 
data to understand model performance (see supple-
mentary information). It is necessary to interpret the 
estimated phenological mismatch with care, consider-
ing the following caveats.

(1)	 When high-quality continuous phenology data 
are not available, there will not be sufficient infor-
mation to determine the environment-phenology 
relationship, making it difficult to estimate phe-
nological mismatch based on model predictions.

(2)	 Without a reasonable model structure for the 
environment-phenology relationship, the estimate 
of phenological mismatch can be incorrect and 
misleading. We here demonstrate that even using 
a nonlinear data-driven model, the performance 
when recovering highly complex climate-phenol-
ogy coupling could still be limited, as shown in 
the simulation experiment 4 on life history. The 
GPEDM we used also suffers from limitations 
of modeling threshold effects or extrapolating to 
extreme conditions. Therefore, we suggest con-
tinuous searching and improvement of predictive 
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models, such as through integrating mechanistic 
knowledge into data-driven models (Read et  al. 
2019).

(3)	 If climate change has driven the environmental 
conditions out of the historical range, it is dif-
ficult to define what phenological response is 
tracking and what is mismatched with the envi-
ronment. In our simulation experiments, we 
apply a space-for-time substitution, using data 
from sites with temperature differences to inform 
phenology in a wide range of environmental con-
ditions in history. Alternatively, manipulative 
experiments might inform the expected behavior 
under unprecedented conditions.

(4)	 The estimated phenological mismatch is sub-
jective to the choice of time periods compared. 
Although it would be ideal to set a baseline for 
climate-phenology coupling using data prior 
to anthropogenic climate change (Abram et  al. 
2016), such data are usually not available. Here 
we demonstrated our approach in the empirical 
studies by splitting a long-term dataset into an 
early and a late period. We need to interpret the 
estimated phenological mismatch relative to the 
time scale of the dataset, acknowledging that a 
comparison to the pre-industrial conditions may 
not be fully achieved.

(5)	 At the current stage, it has not been experimen-
tally or empirically validated if our measure of 
phenological mismatch is linked to fitness or 
demographic consequences. Nevertheless, as it 
can detect several individual types of phenologi-
cal mismatch that have verified consequences 
(e.g., in timing of events), we are optimistic that 
our proposed measure is ecologically meaning-
ful.
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