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Abstract
Mountain treelines are thought to be sensitive to climate change. However, how cli-
mate impacts mountain treelines is not yet fully understood as treelines may also be 
affected by other human activities. Here, we focus on “closed-loop” mountain tree-
lines (CLMT) that completely encircle a mountain and are less likely to have been influ-
enced by human land-use change. We detect a total length of ~916,425 km of CLMT 
across 243 mountain ranges globally and reveal a bimodal latitudinal distribution of 
treeline elevations with higher treeline elevations occurring at greater distances from 
the coast. Spatially, we find that temperature is the main climatic driver of treeline 
elevation in boreal and tropical regions, whereas precipitation drives CLMT position 
in temperate zones. Temporally, we show that 70% of CLMT have moved upward, 
with a mean shift rate of 1.2 m/year over the first decade of the 21st century. CLMT 
are shifting fastest in the tropics (mean of 3.1 m/year), but with greater variability. 
Our work provides a new mountain treeline database that isolates climate impacts 
from other anthropogenic pressures, and has important implications for biodiversity, 
natural resources, and ecosystem adaptation in a changing climate.
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1  |  INTRODUC TION

The mountain treeline is the upper altitudinal limit of tree growth 
toward the top of mountains, a transitional zone from forests to 
treeless alpine vegetation (Körner & Paulsen, 2004). Treeline eco-
tones play important environmental roles, including as habitats for 
endemic species and by contributing to water supply (Grace, 1989). 
Mountain treelines are important indicators of the impact of cli-
mate change on upland ecosystems (Lu et al.,  2021; Verrall & 
Pickering, 2020) as they are strongly associated with growing season 
lengths and minimum daily temperatures (Paulsen & Körner, 2014). 
Consequently, as a response to global warming, mountain treelines 
are expected to shift upward as high elevations become more favor-
able for tree establishment under a changing climate (Du et al., 2018; 
Holtmeier & Broll,  2005). Furthermore, treeline shifts give rise to 
novel high-elevation vegetation patterns and could redefine hab-
itable area for forest-dependent species in a warmer future world 
(Bolton et al., 2018; Mohapatra et al., 2019). However, the treelines 
in many mountain regions have been heavily altered by land-use 
change and land-use management (Ameztegui et al., 2016; Gehrig-
Fasel et al., 2007). Such land-use-driven treelines are generally lower 
than the elevation of the local theoretical climatic treelines, making 
it difficult to isolate potential influences of climate on treeline posi-
tion and obscuring the impact of climate change on treeline shifts. 
Therefore, accurate and reproducible detection of natural mountain 
treelines and their shifts are of great importance to understanding 
global climate change and the associated response of vegetation dy-
namics in alpine areas in natural systems.

Previous studies reporting local treeline sites have mainly relied 
on field investigation (Elliott & Cowell, 2015; Liang et al., 2014; Sigdel 
et al., 2018; Wardle & Coleman, 1992). While such studies have en-
hanced our understanding of treeline patterns, a key limitation of 
field-based studies is sparse geographic coverage. Remote sensing 
can overcome such a limitation by providing globally consistent cov-
erage, but the determination of treeline positions only through visu-
ally interpreting satellite imagery (Irl et al., 2016; Karger et al., 2019; 
Paulsen & Körner,  2014) is time-consuming and labor-intensive at 
large spatial scales. Recently, regional attempts to combine remote 
sensing data with automated image processing techniques have 
emerged (Birre et al., 2023; Wang et al., 2022; Wei et al., 2020; Xu 
et al.,  2020), but inconsistent analytical approaches and treeline 
definitions complicate regional comparisons and make it difficult 
to generalize global patterns. Early assessment at the global scale 
suggested that low temperatures limited tree growth at treelines 
(Körner & Paulsen, 2004), but there is also regional evidence that 
tree growth at the treeline does not increase under global warming 
due to moisture limitations (Camarero et al., 2021; Liang et al., 2014; 
Lyu et al., 2019). A generalizable pattern of the climatic limiting fac-
tors of global treelines is still lacking.

The aforementioned challenges and limitations associated with 
delineating treelines and determining climatic influences on treeline 
positions have hindered our understanding of the global impact of 
climate on treelines in natural systems. To address this issue, we 

focused on “closed-loop” mountain treelines (CLMT)—treelines with 
a continuous band of tree cover around a mountain. Such systems 
are less likely to have been influenced by land-use change. By focus-
ing on this subset of treelines, we are better able to exclude treelines 
that may be impacted by topographic constraints or anthropogenic 
land use in order to isolate the effects of climate on mountain 
treelines in natural systems. An advance over previous studies that 
only provide a handful of data points for each treeline is a complete 
depiction of treeline at 30 m resolution. Our approach allows us to 
calculate the treeline elevation around the entire treeline, provid-
ing unprecedented detail on the variability of treeline elevation at 
the local scale. More importantly, using CLMT as a proxy for natu-
ral treelines with little influence from land-use change allows us to 
make a new and more robust assessment of how natural treelines 
are responding to changes in climate.

Here, we map closed-loop treelines in mountain regions globally 
in 2000 based on remote sensing, via integrating a high-resolution 
tree cover map (Hansen et al., 2013) with a digital elevation model at 
the same spatial resolution (Tachikawa et al., 2011). For this purpose, 
we develop a novel automatic detection algorithm that can produce 
consistent characterizations of CLMT across space. Our detection of 
mountain treeline is based on tree cover data that consider trees as 
any vegetation taller than 5 m (Hansen et al., 2013), using a 5% tree 
cover threshold to delineate forested and non-forested areas. The 
algorithm starts from the highest elevation point for each mountain 
range and generates a forest boundary map from which we extract 
the closed-loop treelines. To further ensure that our CLMT are nat-
ural treelines that are not impacted by anthropogenic disturbances, 
we conduct a manual inspection of high-resolution imagery to re-
move treelines with any indication of anthropogenic land use and 
restrict our analysis to regions where the human footprint is low 
(Mu et al.,  2022). To understand which bioclimatic factors con-
trol the position of natural mountain treelines from global to local 
scales, we use the gradient boosting decision trees (GBDT) model 
(Friedman, 2001) to calculate the feature importance of each tem-
perature or precipitation variable. Furthermore, we map the new 
natural treeline positions in 2010 using the same algorithm above 
and the amount of tree cover in 2010 (Hansen et al., 2013) to explore 
the shifting of mountain treelines in natural systems.

2  |  METHODS

2.1  |  Tree canopy cover data

We used a high-resolution remote sensing global map of tree canopy 
cover for the year 2000 (Hansen et al., 2013) to delineate forested 
and non-forested areas. The dataset was produced at a 30 m reso-
lution based on multiple types of forest sample data and spectral 
curves of Landsat time series using a decision tree method (Hansen 
et al., 2013). To test which tree cover threshold is suitable for treeline 
mapping, we undertook a sensitivity analysis with different thresh-
olds in mountains, finding there is little difference among different 
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thresholds from 0% to 10% (examples refer to Figures S1–S3). Thus, 
we took the mean value of 0%–10%, namely 5%, as the tree cover 
threshold, and define the treeline to be the transition zone above 
which tree cover is ≤5% and below which tree cover is >5%. We then 
binary-classified the tree canopy cover data using the threshold, as-
signing a value of 1 for the alpine land zone (the area above treeline) 
with tree cover ≤5% (non-forested area) and 0 for pixels with greater 
than 5% tree cover (forested area).

2.2  |  Topography data

We combined global mountain polygons with a high-resolution 
digital elevation model to restrict the search area of mountain 
treelines. Mountain boundaries were collected from the Global 
Mountain Biodiversity Assessment (GMBA) inventory (version 1.2; 
Körner et al., 2017). The GMBA inventory delineated global moun-
tains into discrete regions (polygons) based on topographic rug-
gedness metrics and expert delineation (Körner et al.,  2017). The 
elevation information in mountains was provided by the Advanced 
Spaceborne Thermal Emission and Reflection Radiometer Global 
Digital Elevation Model (version 3; Tachikawa et al., 2011) at a spa-
tial resolution of 30 m.

2.3  |  Iterative mountain treeline 
extraction algorithm

We developed an algorithm to automatically detect CLMT 
(Figure S4). We first determined the coordinates of the highest peak 
within each mountain region. The algorithm starts at this peak point 
if it is within the alpine area that is non-forested, then expands out-
ward (i.e., downslope), and determines all other pixels of the image 
that are connected to the point and equivalent (marked as “1”). The 
eight neighborhood region of the pixel I(x, y) is expressed as:

where I, j are integers. In the collection of the eight neighborhood 
pixels, if I(x, y) = I(x + i, y + j), there are connected relationships. The 
connected domain generated by this method is the connected alpine 
area. Because the algorithm determines the starting search point, we 
marked only one connected domain (namely the treeline zone) after 
one iteration.

To accelerate the efficiency of the algorithm, we set search 
blocks to determine the full altitudinal range of treelines within 
mountain ranges (Figure  S4). Specifically, the first round of the 
search takes the highest point of the mountain as the center and the 
buffer zone with a side length of R as the search area for the treeline. 
After testing, the square area with 8000 rows/ranks (side length R 
about 240 km) covered most alpine areas of mountains. For some 
of the mountaintops larger than this range, we expanded the side 
length to ~720 km to ensure that all close-loop mountain treelines of 
the world's mountaintops were covered.

There may be multiple treelines within a mountain range be-
cause a mountain may have multiple peaks. To account for this, we 
next searched for the second highest starting point (i.e., the highest 
point of the unsearched part) and repeated the process until the se-
lected highest point was covered by forests (tree cover >5%).

After each iteration, the loops that were determined to be 
“open” were removed. Focusing only on closed treeline loops gen-
erated from the algorithm, we then visually inspected all loops using 
Google Earth (with spatial resolution ranging from 15 m to ~15 cm) 
to further exclude treelines with apparent signs of anthropogenic 
disturbances, such as roads, buildings, or croplands and removed the 
part of water bodies (i.e., pixels that were determined to be water). 
Last, we filled all the holes in the closed-loop polygons using the “im-
fill” function and extracted the edges of the binary images using the 
“bwperim” function in Matlab R2019a to obtain the CLMT positions.

To validate the robustness of the elevational distribution of 
CLMT derived from satellite images, at the pixel level, we used an in-
dependent validation dataset by manual interpretation using Google 
Earth's high-resolution images. We randomly produced 100 valida-
tion samples at a spatial resolution of 30 m. On a larger scale, we 
validated our CLMT database by comparison with in situ measures 
(n = 62; Table S1). For each treeline site, we corresponded it to the 
closest treeline loop detected in this study and compared its eleva-
tion with the range of the corresponding treeline loop.

2.4  |  Climate data

Considering the effect of climatic lag effects on treelines (Harsch 
et al., 2009), we used the climate data from WorldClim (version 2.1; 
Fick & Hijmans,  2017), which provided the average for the years 
1970–2000 at a resolution of 30 s (~1 km2), to understand which cli-
mate variables are important in controlling treeline elevations. We 
used bioclimatic variables, which were derived from monthly tem-
perature and precipitation. A total of eight temperature variables 
and eight precipitation variables were included, representing annual 
trends, seasonality, and extreme or limiting environmental factors. 
They are annual mean temperature (annual T), temperature sea-
sonality (T seasonality; calculated as the standard deviation of the 
monthly mean temperatures, then multiply by 100), the maximum 
temperature of the warmest month (maximum T), the minimum tem-
perature of the coldest month (minimum T), mean temperature of 
the wettest quarter (wet season T), mean temperature of the driest 
quarter (dry season T), mean temperature of the warmest quarter 
(warm season T), mean temperature of the coldest quarter (cold sea-
son T), annual precipitation (annual P), precipitation of the wettest 
month (maximum P), precipitation of the driest month (minimum P), 
precipitation seasonality (P seasonality; calculated as the coefficient 
of variation, which is the ratio of the standard deviation to the mean), 
precipitation of the wettest quarter (wet season P), precipitation of 
the driest quarter (dry season P), precipitation of the warmest quar-
ter (warm season P), and precipitation of the coldest quarter (cold 
season P). A “quarter” here refers to any consecutive 3 months. For 

(1)R8 = {(x + i, y + j); i, j ∈ ( − 1, 1)},
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example, the coldest quarter consists of the 3 months that are colder 
than any other set of three consecutive months. For each pixel de-
termined to be on a CLMT, we extracted the values of all 16 climate 
variables.

2.5  |  GBDT model

We applied a GBDT method to model the treeline elevation as a 
function of climate factors. The GBDT model is a type of tree model 
with good interpretability for feature values (Friedman, 2001), which 
assembles and iterates over multiple regression trees, with the val-
ues of the negative gradient of the loss function in the model as an 
approximation of the residuals of the lifting tree algorithm in the 
regression problem (Ke et al., 2017). It is flexible in handling large 
amounts of data and often performs well in dealing with complex 
relationships in data (Ke et al., 2017). The GBDT initializes a weak 
learner, estimating a constant value of the loss of function minimiza-
tion, and then creates decision trees according to the datasets and 
performs iterative training on them. Next, it calculates the negative 
gradient for loss of function (residuals) corresponding to each tree, 
fits a regression tree to the residuals to obtain the leaf node region 
of the m-th tree, and minimizes loss of function by estimating the 
values of all leaf node regions using a linear search. Last, GBDT re-
peats the above steps until the target evaluation indicator is opti-
mal. Using this model, we calculated the feature importance of each 
variable and determined the dependent correlations for each fac-
tor after the model was built. The GBDT analysis was undertaken in 
Python 3.7 with the “sklearn.ensemble” module.

We carried out the GBDT analyses at global and local scales, 
as well as separately for different climatic belts (i.e., boreal, tem-
perate, and tropical regions). At the global and regional scales, we 
considered each treeline loop as a sample, namely, using the mean 
of treeline elevation in each loop for the analysis. A total of 1690 
samples (treeline loops) were used for the global model. At the local 
scale, we regarded one treeline pixel as a sample. Hence, in each 
treeline loop, the repeated GBDT model represents the local effect 
of climate factors on treeline positions.

2.6  |  Mountain treeline shift rate

We mapped the new treeline positions in 2010 based on the global 
2010 tree cover data (Hansen et al.,  2013; Potapov et al.,  2015), 
which is an update of the 2000 tree cover product. Using this data-
set, we reran the algorithm around treelines to detect the new 
closed-loop treelines in 2010. Starting from the highest elevation 
point we detected before, we expanded the rectangular area of the 
original treeline around by 10 km as the search area. Then, we manu-
ally checked the results from the 1690 treeline loops to (i) exclude 
treelines without closed loops; (ii) isolate examples of “broken tree-
line loops” and restrict them to corresponding areas in 2000 and 
2010 (Figure S5); and (iii) remove outliers (>95th percentile of both 

increasing and decreasing rates) to avoid the inclusion of any special 
cases with extremely steep changes. This filtering resulted in 1110 
treeline loops in 2010 (65.7% of all treelines initially assessed) being 
available for analysis of the treeline change. The main reason for 
the reduction in number of treeline loops between 2000 and 2010 
is that some of the closed-loop treelines detected in 2000 did not 
form closed loops in 2010. We then calculated the mean elevation 
of closed-loop treelines in 2010 and the corresponding treelines in 
2000 and used the difference to represent the treeline change over 
the 10-year period. The treeline shift rate (m/year) at each treeline 
loop was calculated as follows:

3  |  RESULTS

3.1  |  A map of global CLMT

We detected 27,468,662 CLMT positions (pixels at 30 m resolu-
tion) across 243 mountain ranges globally. The total length of CLMT 
we detected is ~916,425 km. Those treeline pixels form 1690 tree-
line loops covering all continents except Antarctica, ranging from 
64° N (Khrebet Polyarnyy) to 46° S (Princess Mountains), with 
mean elevations spanning from 489 ± 283 m on Khrebet Chayatyn 
to 4528 ± 104 m on Ruwenzori. The average length of these tree-
line loops  is 542 km, and the average alpine land area above them 
is 142 km2. To visualize global patterns of the elevation of CLMT, 
we calculated the mean elevation for each treeline loop and plot-
ted their locations using the mean latitude and longitude of treeline 
pixels at 30 m resolution in each loop (Figure 1a). The CLMT derived 
from satellite tree cover data are consistent with fine resolution 
remote sensing images available on Google Earth (Figure 1b–g). At 
the pixel level, the CLMT showed good agreement with manually 
interpreted data at 30 m resolution (R2 = .96; Figure S6). On a larger 
scale, the validity of our CLMT database was further supported by 
corroboration against in situ measures from previous studies (n = 62 
measurements; Table  S1), which fall within the elevation range of 
treeline loops (R2 = .98; Figure S7).

We found a bimodal pattern for the CLMT elevation along lat-
itude, with peaks at the equator and ~25° N (Figure 2a). Between 
0° and 10°N/S, the elevation of CLMT is symmetrical in the north-
ern and southern hemispheres, but beyond this range, treeline el-
evations in the northern hemisphere are higher than those in the 
southern hemisphere at equivalent latitudes (Figure 2a), which is 
attributed to the oceanic influence on a smaller southern landmass 
(Cieraad et al., 2014). Our global CLMT distribution is consistent 
with previous global assessments (Körner, 1998; Irl et al., 2016; 
Testolin et al., 2020), though there are some differences. In the 
tropics, the elevation of CLMT reaches up to 3500 m (Figure  2), 
a lower elevation than in a recent global assessment by Testolin 
et al.  (2020) that reported tropical treelines higher than 4000 m. 
This discrepancy may be due to our strict definition of trees, >5 m 
height, as well as the exclusion of some unilateral and non-closed 

(2)shift rate =
mean elevation 2010 −mean elevation 2000

10 years
.
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6  |    HE et al.

treelines in high mountains. At low latitude (especially at 0–20° N), 
there is large variation in the range of CLMT elevation (Figure 2a). 
Among different continents, South America has a large CLMT el-
evation range variation. At 50–60° N and 20–30° N, many moun-
tains in Asia and North America have similar treeline elevations, 
whereas there is a rather different behavior at 30–50° N where 
treelines in North America are higher than those in Europe and 
Asia (Figure  2a). To help understand what causes this behavior, 
we calculated the distance to the coast for each treeline. We 
found lower treelines in coastal mountains at the same latitude 
(Figure 2a) as has been suggested in the literature (Irl et al., 2016), 
which can be largely attributed to the thermodynamic effect of 
large high-elevation landmasses (Karger et al., 2019). At 30–60° N, 
mountains close to the coast have lower treelines than their lat-
itude might suggest (i.e., fall below the fitted curve; Figure  2a). 
Similarly, along with longitude decreasing from 150 to 100° W, 
treeline elevations in North America increase due to an increase in 
the distance to the coast (Figure 2b).

3.2  |  Climatic determinants of CLMT

We found that T seasonality, cold season P, and warm season T 
predict nearly 60% of the spatial distribution of CLMT globally 
(Figure 3a). We then assessed how the three leading factors modu-
lated the elevation of CLMT spatially. The results showed the abrupt 
transition of CLMT elevation occurring at the T seasonality thresh-
old of ~9°C, but attenuated transitions in areas where T seasonal-
ity exceeded 10°C (Figure S8a). Similarly, there is a CLMT elevation 
gradient that is spatially driven by cold season P, with abrupt transi-
tions occurring at the thresholds of 320 mm and 450 mm along the 
gradient of cold season P (Figure S8b). By contrast, we did not find 
such a dramatic transition of CLMT elevation along the warm season 
T gradient (Figure S8c).

Collectively, temperature-related factors (64%) are more im-
portant than precipitation-related factors for limiting CLMT ele-
vations on a global scale (Figure  3a). In different latitudinal belts, 
temperature-related factors are most important in boreal and tropi-
cal regions, especially the temperature of the warmest and the wet-
test quarters, respectively, while precipitation dominates the CLMT 
elevation in temperate regions (Figure 3b–d). We found that T sea-
sonality is the most important individual factor (30%) at global scale, 
whereas its importance is lower than 10% for boreal and tropical 
regions (Figure 3). These patterns may be because thermal limita-
tion to growth at treelines during the summer is most critical in the 
cold boreal regions, while in the tropics where temperature is high 
throughout the year, temperature of the wettest season plays a key 
role in limiting tree growth at treelines. Our results confirm the im-
portance of temperature during the warm part of the year in the bo-
real zone (Jobbágy & Jackson, 2000), but suggest that precipitation 
is more important than temperature in temperate regions. It agrees 
with climatic sensitivity of tree growth in the Norther Hemisphere 
(Gao et al.,  2022). Especially under dry environmental conditions, 
moisture availability is crucial to limiting tree growth in the treeline 
ecotone (Liang et al., 2014; Ren et al., 2018).

Our study provides vastly more data points for each treeline 
compared to previous global assessments (Jobbágy & Jackson, 2000; 
Körner & Paulsen,  2004), allowing us to explore for the first time 
what controls treeline position at a local scale. We found that tem-
perature remains the dominant explanation for the altitudinal vari-
ation of 76% of the treeline within a single treeline loop with similar 
climatic conditions (Figure S9).

3.3  |  Shifts in CLMT

Between 2000 and 2010, mountain treelines shifted upward at 
777 of the 1110 treeline loops (70%) and downward at 333 treeline 

F I G U R E  2  Global latitudinal (a) and longitudinal (b) variation of closed-loop mountain treeline (CLMT) elevation. Different symbols 
represent different regions and colors represent the distance to the coast. The data points show the mean elevation of all of the pixels in the 
CLMT. The error bar is the elevation range of the corresponding treeline loop.
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loops (Figure 4a). The mean global treeline shift rate was an upward 
shift of 1.2 m/year, which is consistent with case studies of treeline 
change, with rates >1 m/year reported in the literature (Table S2). 
A synthesis of treeline shift rates reported in the literature sug-
gests the rate was 0.67 m/year before 1970 compared to 4.36 m/
year after 1970 and 6.16 m/year after 2000 (Figure S10; Table S2). 
This provides evidence that the rate of change in treeline elevation 
is accelerating, possibly due to recent rapid climate change (Bolton 
et al., 2018). Treeline shift rates in the tropics (mean of 3.1 m/year) 
were higher than those in boreal and temperate regions (Figure 4b). 
The faster changes in the topics could be related to hydrothermal 
conditions: in the tropics, higher temperature and more abundant 
precipitation bring a longer growing season, which naturally favors 

the growth of seedlings and young trees. By contrast, there is a slight 
downward shift in temperate regions (an average of −0.5 m/year), 
where the position of the treeline is dominated by precipitation 
(Figure  3c). This could be due to decreasing precipitation in some 
mountain areas of the temperate zone, for example, in northern 
China (Piao et al., 2010).

Although the tropical CLMT have the fastest shift rates, 
their variability is the largest, ranging from −10.2 to 16.9 m/year 
(Figure 4b). In the tropics, treeline shift rates greater than 10 m/
year in the mountains of Malawi, Papua New Guinea, and Indonesia 
may reflect a more extreme trend in these tropical systems. In 
other regions, there are also some treelines that have shifted 
much more than expected (>10 m/year; Figure  4b): In boreal 

F I G U R E  3  Climate drivers controlling the variability in treeline elevation for the globe (a), boreal (≥50° N, b), temperate (23.5°–50° N/S, c) 
and tropical (23.5° N–23.5° S, d) regions.
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regions, these expectations are mainly in Russia and Canada; in 
temperate regions, they are geographically concentrated in East 
Asia (North Korea, Japan, and China). On the contrary, there are 
also cases of treelines receding at a high rate, possibly driven by 
fire in some areas, either through the physical destruction of trees 
that acts to lower the existing treelines, or through the destruc-
tion of seedlings established upslope that acts to prevent treeline 
advances (Kim & Lee, 2015). For example, treelines have signifi-
cantly receded in the western United States where climate and 
vegetation are favorable for fire (Seven Devils Mountains, Swan 
Range, etc.; Figure 4a).

In addition, independent analysis for the changes in annual max-
imum Normalized Difference Vegetation Index (NDVI) at CLMT 
that we identified for the year 2000 shows the NDVI has signifi-
cantly increased by 3.3% by 2020, at a rate of 0.0012 per year 
(p < .01; Figure S11a). There are significant positive trends in NDVI 
at treeline zones in boreal, temperate, and tropical regions during 
2000–2020 (p < .01), and tropical areas have the highest rate, ap-
proaching 0.0016 per year (Figure S11b). The increase in NDVI oc-
curred at most treeline zones (~90%; Figure  S11c). This greening 
at the treeline may also be conducive to upward movement of the 
treeline in the future.

4  |  DISCUSSION

4.1  |  Comparison of treeline datasets before and 
after considering human footprint

Although we have examined CLMT by manual interpretation to re-
move anthropogenic treelines, we further conduct a stricter assess-
ment of human pressures to check whether our results would still 
be impacted by human activity. We used a global Human Footprint 
dataset (Mu et al., 2022) and found 83% of our CLMT in wilderness 
(Human Footprint <1) or in highly intact areas (Human Footprint <4). 

We then removed those treelines with human footprint values ≥4, 
reran the analysis with the higher human footprint values excluded, 
and updated all the results above (Figures S12–S14). By comparing 
these new results with those using the whole dataset, we found a 
similar pattern along latitude and longitude gradients (Figure  2; 
Figure  S12). The results regarding climate dominants (Figure  3; 
Figure S13) and treeline shift rates (Figure 4b; Figure S14) were also 
consistent using either approach. Thus, the additional criterion to 
further focus our analysis on treelines with no human disturbance 
does not alter our overall results or conclusions, and further con-
firms that our CLMT product can well represent the change and pat-
tern of climatic treelines.

4.2  |  Implications of treeline shifts for carbon, 
biodiversity, and hydrology

Changing treeline position can affect the carbon cycle, biodiversity, 
and hydrological processes in mountain environments. Mountain tree-
lines moving upward to higher elevations increase woody biomass at 
and above the treeline, accumulating carbon and increasing their abil-
ity to act as carbon sinks (Lopatin et al., 2006; Tarnocai et al., 2009). 
However, such increases may be offset by increases in soil respira-
tion, leading to a net loss of ecosystem carbon (Hartley et al., 2012; 
Wilmking et al.,  2006). The ascent of mountain treelines also sub-
stantially influences biodiversity patterns at high elevations, with en-
hanced habitat loss of endemic alpine species within a narrow range of 
mountains (Wang et al., 2022) and potential expansion of habitat for 
forest-dependent species whose upper range limits coincide with the 
treeline ecotones (Elsen et al., 2017). For alpine species isolated at the 
top of mountains, upward treeline shifts could increase the risk of ex-
tinction, where there is not enough room for the alpine zone to move 
upward under future climate change (Dirnböck et al., 2011). In Siberia, 
for example, we show many treelines have shifted upward (Figure 4b), 
inevitably reducing the area of the tundra, which is rich in floristic and 

F I G U R E  4  Closed-loop mountain treeline (CLMT) shift rate during 2000–2010. (a) Spatial pattern of CLMT shift rate. (b) Box-plot showing 
CLMT shift rate in boreal (≥50° N), temperate (23.5°–50° N/S), and tropical (23.5° N–23.5° S) regions (central line: median; red dot: mean; 
box: 25th and 75th percentiles, respectively; error bar: maximum and minimum whisker values; +: maximum and minimum values). The black 
dashed line is the zero line. Numbers of the studied CLMT are shown above the boxes.
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species diversity and supports indigenous land use types. The expan-
sion of Siberian forests has been predicted to continue, thus causing 
huge losses of tundra in the future (Kruse & Herzschuh, 2022). While 
we focused here on treeline shifts in areas with minimal human impacts, 
treeline ascent in areas with pronounced human disturbance will fur-
ther hinder species' ability to track vegetation changes and likely lead 
to more pronounced population declines (Elsen et al., 2020; Feeley & 
Silman,  2010). There are many instances with high pressure in high-
elevation areas, especially from burning, grazing, and wood harvesting 
(Bader et al., 2008; Jiménez-García et al., 2021). The combined impact 
of shifting treelines and human disturbances may also affect local liveli-
hoods and act as a double-blow for sensitive alpine species. In addition, 
tree expansions into the formerly treeless area may alter downstream 
water supply. Recent advances of the treeline have decreased the area 
of alpine tundra, thereby affecting its critical role as a reservoir of fresh-
water resources and in water release (Barredo et al., 2020).

4.3  |  Uncertainties and caveats

To isolate the impacts of climate on treelines, our analysis identifies 
CLMT that completely encircle a mountain. However, focusing on 
this kind of treelines could omit some climate-related treelines as cli-
matic treelines may not be in a closed-loop shape in some cases. We 
acknowledge that our CLMT database does not include all climatic 
treelines, but is a subset of climatic treelines that specifically form 
a closed loop, because these enable us to analyze climatic determi-
nants with greater confidence. We also note that tree cover can in-
crease in various ways, either through new or existing trees growing 
above the 5 m height threshold, or existing trees having increased 
canopy cover. However, our analysis is based on the definition of 
treeline according to remotely sensed tree cover, and we used this 
definition to assess treeline position at two time periods and assess 
change. While our analysis period is short and errors will exist at a 
pixel scale, our global detection of a shifting treeline provides an 
early indication of climate-induced changes that need to be care-
fully monitored in the future. To reduce uncertainties and further 
advance our understanding of treeline dynamics, future studies re-
quire more high-resolution remote sensing products for a longer pe-
riod and more field data in alpine treeline zones for cross-validation.

5  |  CONCLUSION

Our study develops a novel remote sensing-based algorithm to 
map closed-loop treelines across global mountain regions, isolating 
the effects of climate on treeline position. Our approach provides 
a globally consistent way of detecting and monitoring closed-loop 
treelines around mountains, which are more likely to reflect natural 
systems with minimal impact of land-use change. Focusing on these 
closed-loop treelines as a proxy for natural treelines allows us to 
isolate the impacts of climate and climate change on the elevation 
distribution and change of treelines. We found temperature was the 

dominant control on natural treelines both at a global and local scale. 
Our results indicated an upward migration of treelines over the pe-
riod 2000–2010 in boreal and tropical regions but a slight downward 
shift in temperate zones. Our new findings and the global closed-
loop mountain treeline database produced in this study also provide 
a useful tool for biodiversity and carbon assessments, ecological 
modeling, and analyses of adaptation of species to future climate 
change.
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