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Abstract

Mountain treelines are thought to be sensitive to climate change. However, how cli-
mate impacts mountain treelines is not yet fully understood as treelines may also be
affected by other human activities. Here, we focus on “closed-loop” mountain tree-
lines (CLMT) that completely encircle a mountain and are less likely to have been influ-
enced by human land-use change. We detect a total length of ~916,425km of CLMT
across 243 mountain ranges globally and reveal a bimodal latitudinal distribution of
treeline elevations with higher treeline elevations occurring at greater distances from
the coast. Spatially, we find that temperature is the main climatic driver of treeline
elevation in boreal and tropical regions, whereas precipitation drives CLMT position
in temperate zones. Temporally, we show that 70% of CLMT have moved upward,
with a mean shift rate of 1.2m/year over the first decade of the 21st century. CLMT
are shifting fastest in the tropics (mean of 3.1m/year), but with greater variability.
Our work provides a new mountain treeline database that isolates climate impacts
from other anthropogenic pressures, and has important implications for biodiversity,

natural resources, and ecosystem adaptation in a changing climate.
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1 | INTRODUCTION

The mountain treeline is the upper altitudinal limit of tree growth
toward the top of mountains, a transitional zone from forests to
treeless alpine vegetation (Kérner & Paulsen, 2004). Treeline eco-
tones play important environmental roles, including as habitats for
endemic species and by contributing to water supply (Grace, 1989).
Mountain treelines are important indicators of the impact of cli-
mate change on upland ecosystems (Lu et al., 2021; Verrall &
Pickering, 2020) as they are strongly associated with growing season
lengths and minimum daily temperatures (Paulsen & Kérner, 2014).
Consequently, as a response to global warming, mountain treelines
are expected to shift upward as high elevations become more favor-
able for tree establishment under a changing climate (Du et al., 2018;
Holtmeier & Broll, 2005). Furthermore, treeline shifts give rise to
novel high-elevation vegetation patterns and could redefine hab-
itable area for forest-dependent species in a warmer future world
(Bolton et al., 2018; Mohapatra et al., 2019). However, the treelines
in many mountain regions have been heavily altered by land-use
change and land-use management (Ameztegui et al., 2016; Gehrig-
Fasel et al., 2007). Such land-use-driven treelines are generally lower
than the elevation of the local theoretical climatic treelines, making
it difficult to isolate potential influences of climate on treeline posi-
tion and obscuring the impact of climate change on treeline shifts.
Therefore, accurate and reproducible detection of natural mountain
treelines and their shifts are of great importance to understanding
global climate change and the associated response of vegetation dy-
namics in alpine areas in natural systems.

Previous studies reporting local treeline sites have mainly relied
on field investigation (Elliott & Cowell, 2015; Liang et al., 2014; Sigdel
et al., 2018; Wardle & Coleman, 1992). While such studies have en-
hanced our understanding of treeline patterns, a key limitation of
field-based studies is sparse geographic coverage. Remote sensing
can overcome such a limitation by providing globally consistent cov-
erage, but the determination of treeline positions only through visu-
ally interpreting satellite imagery (Irl et al., 2016; Karger et al., 2019;
Paulsen & Koérner, 2014) is time-consuming and labor-intensive at
large spatial scales. Recently, regional attempts to combine remote
sensing data with automated image processing techniques have
emerged (Birre et al., 2023; Wang et al., 2022; Wei et al., 2020; Xu
et al., 2020), but inconsistent analytical approaches and treeline
definitions complicate regional comparisons and make it difficult
to generalize global patterns. Early assessment at the global scale
suggested that low temperatures limited tree growth at treelines
(Kérner & Paulsen, 2004), but there is also regional evidence that
tree growth at the treeline does not increase under global warming
due to moisture limitations (Camarero et al., 2021; Liang et al., 2014;
Lyu et al., 2019). A generalizable pattern of the climatic limiting fac-
tors of global treelines is still lacking.

The aforementioned challenges and limitations associated with
delineating treelines and determining climatic influences on treeline
positions have hindered our understanding of the global impact of
climate on treelines in natural systems. To address this issue, we

focused on “closed-loop” mountain treelines (CLMT)—treelines with
a continuous band of tree cover around a mountain. Such systems
are less likely to have been influenced by land-use change. By focus-
ing on this subset of treelines, we are better able to exclude treelines
that may be impacted by topographic constraints or anthropogenic
land use in order to isolate the effects of climate on mountain
treelines in natural systems. An advance over previous studies that
only provide a handful of data points for each treeline is a complete
depiction of treeline at 30m resolution. Our approach allows us to
calculate the treeline elevation around the entire treeline, provid-
ing unprecedented detail on the variability of treeline elevation at
the local scale. More importantly, using CLMT as a proxy for natu-
ral treelines with little influence from land-use change allows us to
make a new and more robust assessment of how natural treelines
are responding to changes in climate.

Here, we map closed-loop treelines in mountain regions globally
in 2000 based on remote sensing, via integrating a high-resolution
tree cover map (Hansen et al., 2013) with a digital elevation model at
the same spatial resolution (Tachikawa et al., 2011). For this purpose,
we develop a novel automatic detection algorithm that can produce
consistent characterizations of CLMT across space. Our detection of
mountain treeline is based on tree cover data that consider trees as
any vegetation taller than 5m (Hansen et al., 2013), using a 5% tree
cover threshold to delineate forested and non-forested areas. The
algorithm starts from the highest elevation point for each mountain
range and generates a forest boundary map from which we extract
the closed-loop treelines. To further ensure that our CLMT are nat-
ural treelines that are not impacted by anthropogenic disturbances,
we conduct a manual inspection of high-resolution imagery to re-
move treelines with any indication of anthropogenic land use and
restrict our analysis to regions where the human footprint is low
(Mu et al., 2022). To understand which bioclimatic factors con-
trol the position of natural mountain treelines from global to local
scales, we use the gradient boosting decision trees (GBDT) model
(Friedman, 2001) to calculate the feature importance of each tem-
perature or precipitation variable. Furthermore, we map the new
natural treeline positions in 2010 using the same algorithm above
and the amount of tree cover in 2010 (Hansen et al., 2013) to explore

the shifting of mountain treelines in natural systems.

2 | METHODS
2.1 | Tree canopy cover data

We used a high-resolution remote sensing global map of tree canopy
cover for the year 2000 (Hansen et al., 2013) to delineate forested
and non-forested areas. The dataset was produced at a 30m reso-
lution based on multiple types of forest sample data and spectral
curves of Landsat time series using a decision tree method (Hansen
etal.,2013). To test which tree cover threshold is suitable for treeline
mapping, we undertook a sensitivity analysis with different thresh-
olds in mountains, finding there is little difference among different

ASURDI'T SUOWIIO) dANEAI)) d[qeatjdde ayy Aq pauIdA0S a1e SI[OILIE () 9N JO SI[NI 10§ AIRIqIT SUI[UQ) A3[IA UO (SUOHIPUOI-PUEB-SULIA)/WI0d" A 1M ATeIqIaur[uoy/:sdpy) suonipuoy) pue swa |, 3y S [£707/80/91] uo Areiqi aurjuQ Ad[ipy “Areiqry ueSiyory 3O Ansioatun) £q 68891°4d8/1 [ 11°01/10p/wod Ka[imAreiqiiaur[uo//:sdy woiy papeoumod ‘0 ‘9847S9¢ 1



HE ET AL.

thresholds from 0% to 10% (examples refer to Figures S1-S3). Thus,
we took the mean value of 0%-10%, namely 5%, as the tree cover
threshold, and define the treeline to be the transition zone above
which tree cover is <5% and below which tree cover is >5%. We then
binary-classified the tree canopy cover data using the threshold, as-
signing a value of 1 for the alpine land zone (the area above treeline)
with tree cover <5% (non-forested area) and O for pixels with greater

than 5% tree cover (forested area).

2.2 | Topography data

We combined global mountain polygons with a high-resolution
digital elevation model to restrict the search area of mountain
treelines. Mountain boundaries were collected from the Global
Mountain Biodiversity Assessment (GMBA) inventory (version 1.2;
Koérner et al., 2017). The GMBA inventory delineated global moun-
tains into discrete regions (polygons) based on topographic rug-
gedness metrics and expert delineation (Kérner et al., 2017). The
elevation information in mountains was provided by the Advanced
Spaceborne Thermal Emission and Reflection Radiometer Global
Digital Elevation Model (version 3; Tachikawa et al., 2011) at a spa-
tial resolution of 30m.

2.3 | Iterative mountain treeline
extraction algorithm

We developed an algorithm to automatically detect CLMT
(Figure S4). We first determined the coordinates of the highest peak
within each mountain region. The algorithm starts at this peak point
if it is within the alpine area that is non-forested, then expands out-
ward (i.e., downslope), and determines all other pixels of the image
that are connected to the point and equivalent (marked as “1”). The
eight neighborhood region of the pixel I(x,y) is expressed as:

R8 ={(x+iy+jsije (-1 D} 1)

where |, j are integers. In the collection of the eight neighborhood
pixels, if I(x,y) = I(x + i,y + j), there are connected relationships. The
connected domain generated by this method is the connected alpine
area. Because the algorithm determines the starting search point, we
marked only one connected domain (namely the treeline zone) after
one iteration.

To accelerate the efficiency of the algorithm, we set search
blocks to determine the full altitudinal range of treelines within
mountain ranges (Figure S4). Specifically, the first round of the
search takes the highest point of the mountain as the center and the
buffer zone with a side length of R as the search area for the treeline.
After testing, the square area with 8000 rows/ranks (side length R
about 240km) covered most alpine areas of mountains. For some
of the mountaintops larger than this range, we expanded the side
length to ~720km to ensure that all close-loop mountain treelines of
the world's mountaintops were covered.

ST i v

There may be multiple treelines within a mountain range be-
cause a mountain may have multiple peaks. To account for this, we
next searched for the second highest starting point (i.e., the highest
point of the unsearched part) and repeated the process until the se-
lected highest point was covered by forests (tree cover >5%).

After each iteration, the loops that were determined to be
“open” were removed. Focusing only on closed treeline loops gen-
erated from the algorithm, we then visually inspected all loops using
Google Earth (with spatial resolution ranging from 15m to ~15cm)
to further exclude treelines with apparent signs of anthropogenic
disturbances, such as roads, buildings, or croplands and removed the
part of water bodies (i.e., pixels that were determined to be water).
Last, we filled all the holes in the closed-loop polygons using the “im-
fill” function and extracted the edges of the binary images using the
“bwperim” function in Matlab R2019a to obtain the CLMT positions.

To validate the robustness of the elevational distribution of
CLMT derived from satellite images, at the pixel level, we used an in-
dependent validation dataset by manual interpretation using Google
Earth's high-resolution images. We randomly produced 100 valida-
tion samples at a spatial resolution of 30m. On a larger scale, we
validated our CLMT database by comparison with in situ measures
(n=62; Table S1). For each treeline site, we corresponded it to the
closest treeline loop detected in this study and compared its eleva-
tion with the range of the corresponding treeline loop.

2.4 | Climate data

Considering the effect of climatic lag effects on treelines (Harsch
et al.,, 2009), we used the climate data from WorldClim (version 2.1;
Fick & Hijmans, 2017), which provided the average for the years
1970-2000 at a resolution of 30s (~1 km?), to understand which cli-
mate variables are important in controlling treeline elevations. We
used bioclimatic variables, which were derived from monthly tem-
perature and precipitation. A total of eight temperature variables
and eight precipitation variables were included, representing annual
trends, seasonality, and extreme or limiting environmental factors.
They are annual mean temperature (annual T), temperature sea-
sonality (T seasonality; calculated as the standard deviation of the
monthly mean temperatures, then multiply by 100), the maximum
temperature of the warmest month (maximum T), the minimum tem-
perature of the coldest month (minimum T), mean temperature of
the wettest quarter (wet season T), mean temperature of the driest
quarter (dry season T), mean temperature of the warmest quarter
(warm season T), mean temperature of the coldest quarter (cold sea-
son T), annual precipitation (annual P), precipitation of the wettest
month (maximum P), precipitation of the driest month (minimum P),
precipitation seasonality (P seasonality; calculated as the coefficient
of variation, which is the ratio of the standard deviation to the mean),
precipitation of the wettest quarter (wet season P), precipitation of
the driest quarter (dry season P), precipitation of the warmest quar-
ter (warm season P), and precipitation of the coldest quarter (cold
season P). A “quarter” here refers to any consecutive 3months. For
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example, the coldest quarter consists of the 3months that are colder
than any other set of three consecutive months. For each pixel de-
termined to be on a CLMT, we extracted the values of all 16 climate

variables.

2.5 | GBDT model

We applied a GBDT method to model the treeline elevation as a
function of climate factors. The GBDT model is a type of tree model
with good interpretability for feature values (Friedman, 2001), which
assembles and iterates over multiple regression trees, with the val-
ues of the negative gradient of the loss function in the model as an
approximation of the residuals of the lifting tree algorithm in the
regression problem (Ke et al., 2017). It is flexible in handling large
amounts of data and often performs well in dealing with complex
relationships in data (Ke et al., 2017). The GBDT initializes a weak
learner, estimating a constant value of the loss of function minimiza-
tion, and then creates decision trees according to the datasets and
performs iterative training on them. Next, it calculates the negative
gradient for loss of function (residuals) corresponding to each tree,
fits a regression tree to the residuals to obtain the leaf node region
of the m-th tree, and minimizes loss of function by estimating the
values of all leaf node regions using a linear search. Last, GBDT re-
peats the above steps until the target evaluation indicator is opti-
mal. Using this model, we calculated the feature importance of each
variable and determined the dependent correlations for each fac-
tor after the model was built. The GBDT analysis was undertaken in
Python 3.7 with the “sklearn.ensemble” module.

We carried out the GBDT analyses at global and local scales,
as well as separately for different climatic belts (i.e., boreal, tem-
perate, and tropical regions). At the global and regional scales, we
considered each treeline loop as a sample, namely, using the mean
of treeline elevation in each loop for the analysis. A total of 1690
samples (treeline loops) were used for the global model. At the local
scale, we regarded one treeline pixel as a sample. Hence, in each
treeline loop, the repeated GBDT model represents the local effect

of climate factors on treeline positions.

2.6 | Mountain treeline shift rate

We mapped the new treeline positions in 2010 based on the global
2010 tree cover data (Hansen et al., 2013; Potapov et al., 2015),
which is an update of the 2000 tree cover product. Using this data-
set, we reran the algorithm around treelines to detect the new
closed-loop treelines in 2010. Starting from the highest elevation
point we detected before, we expanded the rectangular area of the
original treeline around by 10km as the search area. Then, we manu-
ally checked the results from the 1690 treeline loops to (i) exclude
treelines without closed loops; (ii) isolate examples of “broken tree-
line loops” and restrict them to corresponding areas in 2000 and
2010 (Figure S5); and (iii) remove outliers (>95th percentile of both

increasing and decreasing rates) to avoid the inclusion of any special
cases with extremely steep changes. This filtering resulted in 1110
treeline loops in 2010 (65.7% of all treelines initially assessed) being
available for analysis of the treeline change. The main reason for
the reduction in number of treeline loops between 2000 and 2010
is that some of the closed-loop treelines detected in 2000 did not
form closed loops in 2010. We then calculated the mean elevation
of closed-loop treelines in 2010 and the corresponding treelines in
2000 and used the difference to represent the treeline change over
the 10-year period. The treeline shift rate (m/year) at each treeline
loop was calculated as follows:

mean elevation 2010 — mean elevation 2000

hift rate =
shirtrate 10 years

(2)

3 | RESULTS
3.1 | A map of global CLMT

We detected 27,468,662 CLMT positions (pixels at 30m resolu-
tion) across 243 mountain ranges globally. The total length of CLMT
we detected is ~916,425km. Those treeline pixels form 1690 tree-
line loops covering all continents except Antarctica, ranging from
64°N (Khrebet Polyarnyy) to 46°S (Princess Mountains), with
mean elevations spanning from 489 +283m on Khrebet Chayatyn
to 4528 +104 m on Ruwenzori. The average length of these tree-
line loops is 542km, and the average alpine land area above them
is 142km?. To visualize global patterns of the elevation of CLMT,
we calculated the mean elevation for each treeline loop and plot-
ted their locations using the mean latitude and longitude of treeline
pixels at 30m resolution in each loop (Figure 1a). The CLMT derived
from satellite tree cover data are consistent with fine resolution
remote sensing images available on Google Earth (Figure 1b-g). At
the pixel level, the CLMT showed good agreement with manually
interpreted data at 30 m resolution (R?=.96; Figure S6). On a larger
scale, the validity of our CLMT database was further supported by
corroboration against in situ measures from previous studies (n=62
measurements; Table S1), which fall within the elevation range of
treeline loops (R?=.98; Figure S7).

We found a bimodal pattern for the CLMT elevation along lat-
itude, with peaks at the equator and ~25°N (Figure 2a). Between
0° and 10°N/S, the elevation of CLMT is symmetrical in the north-
ern and southern hemispheres, but beyond this range, treeline el-
evations in the northern hemisphere are higher than those in the
southern hemisphere at equivalent latitudes (Figure 2a), which is
attributed to the oceanic influence on a smaller southern landmass
(Cieraad et al., 2014). Our global CLMT distribution is consistent
with previous global assessments (Kérner, 1998; Irl et al., 2016;
Testolin et al., 2020), though there are some differences. In the
tropics, the elevation of CLMT reaches up to 3500m (Figure 2),
a lower elevation than in a recent global assessment by Testolin
et al. (2020) that reported tropical treelines higher than 4000 m.
This discrepancy may be due to our strict definition of trees, >5m
height, as well as the exclusion of some unilateral and non-closed
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FIGURE 2 Global latitudinal (a) and longitudinal (b) variation of closed-loop mountain treeline (CLMT) elevation. Different symbols
represent different regions and colors represent the distance to the coast. The data points show the mean elevation of all of the pixels in the
CLMT. The error bar is the elevation range of the corresponding treeline loop.

treelines in high mountains. At low latitude (especially at 0-20°N),
there is large variation in the range of CLMT elevation (Figure 2a).
Among different continents, South America has a large CLMT el-
evation range variation. At 50-60°N and 20-30°N, many moun-
tains in Asia and North America have similar treeline elevations,
whereas there is a rather different behavior at 30-50°N where
treelines in North America are higher than those in Europe and
Asia (Figure 2a). To help understand what causes this behavior,
we calculated the distance to the coast for each treeline. We
found lower treelines in coastal mountains at the same latitude
(Figure 2a) as has been suggested in the literature (Irl et al., 2016),
which can be largely attributed to the thermodynamic effect of
large high-elevation landmasses (Karger et al., 2019). At 30-60°N,
mountains close to the coast have lower treelines than their lat-
itude might suggest (i.e., fall below the fitted curve; Figure 2a).
Similarly, along with longitude decreasing from 150 to 100°W,
treeline elevations in North America increase due to an increase in
the distance to the coast (Figure 2b).

3.2 | Climatic determinants of CLMT

We found that T seasonality, cold season P, and warm season T
predict nearly 60% of the spatial distribution of CLMT globally
(Figure 3a). We then assessed how the three leading factors modu-
lated the elevation of CLMT spatially. The results showed the abrupt
transition of CLMT elevation occurring at the T seasonality thresh-
old of ~9°C, but attenuated transitions in areas where T seasonal-
ity exceeded 10°C (Figure S8a). Similarly, there is a CLMT elevation
gradient that is spatially driven by cold season P, with abrupt transi-
tions occurring at the thresholds of 320mm and 450mm along the
gradient of cold season P (Figure S8b). By contrast, we did not find
such a dramatic transition of CLMT elevation along the warm season
T gradient (Figure S8c).

Collectively, temperature-related factors (64%) are more im-
portant than precipitation-related factors for limiting CLMT ele-
vations on a global scale (Figure 3a). In different latitudinal belts,
temperature-related factors are most important in boreal and tropi-
cal regions, especially the temperature of the warmest and the wet-
test quarters, respectively, while precipitation dominates the CLMT
elevation in temperate regions (Figure 3b-d). We found that T sea-
sonality is the most important individual factor (30%) at global scale,
whereas its importance is lower than 10% for boreal and tropical
regions (Figure 3). These patterns may be because thermal limita-
tion to growth at treelines during the summer is most critical in the
cold boreal regions, while in the tropics where temperature is high
throughout the year, temperature of the wettest season plays a key
role in limiting tree growth at treelines. Our results confirm the im-
portance of temperature during the warm part of the year in the bo-
real zone (Jobbagy & Jackson, 2000), but suggest that precipitation
is more important than temperature in temperate regions. It agrees
with climatic sensitivity of tree growth in the Norther Hemisphere
(Gao et al., 2022). Especially under dry environmental conditions,
moisture availability is crucial to limiting tree growth in the treeline
ecotone (Liang et al., 2014; Ren et al., 2018).

Our study provides vastly more data points for each treeline
compared to previous global assessments (Jobbagy & Jackson, 2000;
Kérner & Paulsen, 2004), allowing us to explore for the first time
what controls treeline position at a local scale. We found that tem-
perature remains the dominant explanation for the altitudinal vari-
ation of 76% of the treeline within a single treeline loop with similar
climatic conditions (Figure S9).

3.3 | Shiftsin CLMT

Between 2000 and 2010, mountain treelines shifted upward at
777 of the 1110 treeline loops (70%) and downward at 333 treeline
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loops (Figure 4a). The mean global treeline shift rate was an upward
shift of 1.2m/year, which is consistent with case studies of treeline
change, with rates >1m/year reported in the literature (Table S2).
A synthesis of treeline shift rates reported in the literature sug-
gests the rate was 0.67m/year before 1970 compared to 4.36m/
year after 1970 and 6.16 m/year after 2000 (Figure S10; Table S2).
This provides evidence that the rate of change in treeline elevation
is accelerating, possibly due to recent rapid climate change (Bolton
et al., 2018). Treeline shift rates in the tropics (mean of 3.1 m/year)
were higher than those in boreal and temperate regions (Figure 4b).
The faster changes in the topics could be related to hydrothermal
conditions: in the tropics, higher temperature and more abundant
precipitation bring a longer growing season, which naturally favors

the growth of seedlings and young trees. By contrast, there is a slight
downward shift in temperate regions (an average of -0.5m/year),
where the position of the treeline is dominated by precipitation
(Figure 3c). This could be due to decreasing precipitation in some
mountain areas of the temperate zone, for example, in northern
China (Piao et al., 2010).

Although the tropical CLMT have the fastest shift rates,
their variability is the largest, ranging from -10.2 to 16.9 m/year
(Figure 4b). In the tropics, treeline shift rates greater than 10m/
year in the mountains of Malawi, Papua New Guinea, and Indonesia
may reflect a more extreme trend in these tropical systems. In
other regions, there are also some treelines that have shifted
much more than expected (>10m/year; Figure 4b): In boreal

ASURDI'T SUOWIIO) dANEAI)) d[qeatjdde ayy Aq pauIdA0S a1e SI[OILIE () 9N JO SI[NI 10§ AIRIqIT SUI[UQ) A3[IA UO (SUOHIPUOI-PUEB-SULIA)/WI0d" A 1M ATeIqIaur[uoy/:sdpy) suonipuoy) pue swa |, 3y S [£707/80/91] uo Areiqi aurjuQ Ad[ipy “Areiqry ueSiyory 3O Ansioatun) £q 68891°4d8/1 [ 11°01/10p/wod Ka[imAreiqiiaur[uo//:sdy woiy papeoumod ‘0 ‘9847S9¢ 1



Ly S
(a)

" "CLMT shiftrate (m/year).

HE ET AL.
() ‘ . ‘
n =804 n=270 n=36
+
15 1
NE
8 10 1
z‘ T
E - :
@ :
T 5[ 1 .
ES : °
<
==
-
S O o T T
- ' '
o 1
5} ]
—10r + ' — 1
Boreal Temperate Tropical

FIGURE 4 Closed-loop mountain treeline (CLMT) shift rate during 2000-2010. (a) Spatial pattern of CLMT shift rate. (b) Box-plot showing
CLMT shift rate in boreal (250°N), temperate (23.5°-50°N/S), and tropical (23.5°N-23.5°S) regions (central line: median; red dot: mean;

box: 25th and 75th percentiles, respectively; error bar: maximum and minimum whisker values; +: maximum and minimum values). The black
dashed line is the zero line. Numbers of the studied CLMT are shown above the boxes.

regions, these expectations are mainly in Russia and Canada; in
temperate regions, they are geographically concentrated in East
Asia (North Korea, Japan, and China). On the contrary, there are
also cases of treelines receding at a high rate, possibly driven by
fire in some areas, either through the physical destruction of trees
that acts to lower the existing treelines, or through the destruc-
tion of seedlings established upslope that acts to prevent treeline
advances (Kim & Lee, 2015). For example, treelines have signifi-
cantly receded in the western United States where climate and
vegetation are favorable for fire (Seven Devils Mountains, Swan
Range, etc.; Figure 4a).

In addition, independent analysis for the changes in annual max-
imum Normalized Difference Vegetation Index (NDVI) at CLMT
that we identified for the year 2000 shows the NDVI has signifi-
cantly increased by 3.3% by 2020, at a rate of 0.0012 per year
(p<.01; Figure S11a). There are significant positive trends in NDVI
at treeline zones in boreal, temperate, and tropical regions during
2000-2020 (p<.01), and tropical areas have the highest rate, ap-
proaching 0.0016 per year (Figure S11b). The increase in NDVI oc-
curred at most treeline zones (~90%; Figure S11c). This greening
at the treeline may also be conducive to upward movement of the

treeline in the future.

4 | DISCUSSION

4.1 | Comparison of treeline datasets before and
after considering human footprint

Although we have examined CLMT by manual interpretation to re-
move anthropogenic treelines, we further conduct a stricter assess-
ment of human pressures to check whether our results would still
be impacted by human activity. We used a global Human Footprint
dataset (Mu et al., 2022) and found 83% of our CLMT in wilderness
(Human Footprint <1) or in highly intact areas (Human Footprint <4).

We then removed those treelines with human footprint values 24,
reran the analysis with the higher human footprint values excluded,
and updated all the results above (Figures $12-S14). By comparing
these new results with those using the whole dataset, we found a
similar pattern along latitude and longitude gradients (Figure 2;
Figure S12). The results regarding climate dominants (Figure 3;
Figure 513) and treeline shift rates (Figure 4b; Figure S14) were also
consistent using either approach. Thus, the additional criterion to
further focus our analysis on treelines with no human disturbance
does not alter our overall results or conclusions, and further con-
firms that our CLMT product can well represent the change and pat-
tern of climatic treelines.

4.2 | Implications of treeline shifts for carbon,
biodiversity, and hydrology

Changing treeline position can affect the carbon cycle, biodiversity,
and hydrological processes in mountain environments. Mountain tree-
lines moving upward to higher elevations increase woody biomass at
and above the treeline, accumulating carbon and increasing their abil-
ity to act as carbon sinks (Lopatin et al., 2006; Tarnocai et al., 2009).
However, such increases may be offset by increases in soil respira-
tion, leading to a net loss of ecosystem carbon (Hartley et al., 2012;
Wilmking et al., 2006). The ascent of mountain treelines also sub-
stantially influences biodiversity patterns at high elevations, with en-
hanced habitat loss of endemic alpine species within a narrow range of
mountains (Wang et al., 2022) and potential expansion of habitat for
forest-dependent species whose upper range limits coincide with the
treeline ecotones (Elsen et al., 2017). For alpine species isolated at the
top of mountains, upward treeline shifts could increase the risk of ex-
tinction, where there is not enough room for the alpine zone to move
upward under future climate change (Dirnbock et al., 2011). In Siberia,
for example, we show many treelines have shifted upward (Figure 4b),
inevitably reducing the area of the tundra, which is rich in floristic and
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species diversity and supports indigenous land use types. The expan-
sion of Siberian forests has been predicted to continue, thus causing
huge losses of tundra in the future (Kruse & Herzschuh, 2022). While
we focused here on treeline shifts in areas with minimal human impacts,
treeline ascent in areas with pronounced human disturbance will fur-
ther hinder species' ability to track vegetation changes and likely lead
to more pronounced population declines (Elsen et al., 2020; Feeley &
Silman, 2010). There are many instances with high pressure in high-
elevation areas, especially from burning, grazing, and wood harvesting
(Bader et al., 2008; Jiménez-Garcia et al., 2021). The combined impact
of shifting treelines and human disturbances may also affect local liveli-
hoods and act as a double-blow for sensitive alpine species. In addition,
tree expansions into the formerly treeless area may alter downstream
water supply. Recent advances of the treeline have decreased the area
of alpine tundra, thereby affecting its critical role as a reservoir of fresh-

water resources and in water release (Barredo et al., 2020).

4.3 | Uncertainties and caveats

To isolate the impacts of climate on treelines, our analysis identifies
CLMT that completely encircle a mountain. However, focusing on
this kind of treelines could omit some climate-related treelines as cli-
matic treelines may not be in a closed-loop shape in some cases. We
acknowledge that our CLMT database does not include all climatic
treelines, but is a subset of climatic treelines that specifically form
a closed loop, because these enable us to analyze climatic determi-
nants with greater confidence. We also note that tree cover can in-
crease in various ways, either through new or existing trees growing
above the 5m height threshold, or existing trees having increased
canopy cover. However, our analysis is based on the definition of
treeline according to remotely sensed tree cover, and we used this
definition to assess treeline position at two time periods and assess
change. While our analysis period is short and errors will exist at a
pixel scale, our global detection of a shifting treeline provides an
early indication of climate-induced changes that need to be care-
fully monitored in the future. To reduce uncertainties and further
advance our understanding of treeline dynamics, future studies re-
quire more high-resolution remote sensing products for a longer pe-

riod and more field data in alpine treeline zones for cross-validation.

5 | CONCLUSION

Our study develops a novel remote sensing-based algorithm to
map closed-loop treelines across global mountain regions, isolating
the effects of climate on treeline position. Our approach provides
a globally consistent way of detecting and monitoring closed-loop
treelines around mountains, which are more likely to reflect natural
systems with minimal impact of land-use change. Focusing on these
closed-loop treelines as a proxy for natural treelines allows us to
isolate the impacts of climate and climate change on the elevation
distribution and change of treelines. We found temperature was the

ST v

dominant control on natural treelines both at a global and local scale.
Our results indicated an upward migration of treelines over the pe-
riod 2000-2010 in boreal and tropical regions but a slight downward
shift in temperate zones. Our new findings and the global closed-
loop mountain treeline database produced in this study also provide
a useful tool for biodiversity and carbon assessments, ecological
modeling, and analyses of adaptation of species to future climate

change.
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