
DPPIN: A Biological Repository of Dynamic
Protein-Protein Interaction Network Data

Dongqi Fu
University of Illinois at Urbana-Champaign

Illinois, USA
dongqif2@illinois.edu

Jingrui He
University of Illinois at Urbana-Champaign

Illinois, USA
jingrui@illinois.edu

Abstract—In the big data era, the relationship between entries
becomes more and more complex. Many graph (or network)
algorithms have already paid attention to dynamic networks,
which are more suitable than static ones for fitting the complex
real-world scenarios with evolving structures and features. To
contribute to the dynamic network representation learning and
mining research, we provide a new bunch of label-adequate,
dynamics-meaningful, and attribute-sufficient dynamic networks
from the health domain. To be specific, in our proposed repository
DPPIN, we totally have 12 individual dynamic network datasets
at different scales, and each dataset is a dynamic protein-protein
interaction network describing protein-level interactions of yeast
cells. We hope these domain-specific node features, structure
evolution patterns, and node and graph labels could inspire the
regularization techniques to increase the performance of graph
machine learning algorithms in a more complex setting. Also, we
link potential applications with our DPPIN by designing various
dynamic graph experiments, where DPPIN could indicate future
research opportunities for some tasks by presenting challenges
on state-of-the-art baseline algorithms. Finally, we identify future
directions to improve the utility of this repository and welcome
constructive inputs from the community. All resources (e.g., data
and code) of this work are deployed and publicly available
at https://github.com/DongqiFu/DPPIN.

Index Terms—Biological Networks, Dynamic Networks, Net-
work Datasets

I. INTRODUCTION

Networks (or graphs)1 are complex data structures con-
taining comprehensive node-attribute and node-interaction in-
formation, which attracts many research interests in network
representation learning algorithms [59] and network mining
tasks [8] to serve for a wide range of real-world applications
such as information retrieval [33], recommendation [64], fraud
detection [32], and drug discovery [12]. To fit the real-world
networks evolving attributes and typologies, many graph repre-
sentation learning and mining algorithms have transferred from
the static setting to the dynamic setting [2], [15]–[19], [27],
[62], [63], where the network structure (i.e., graph topology)
and the node features are evolving and dependent on time.

However, compared with the amount of publicly available
static network datasets, the dynamic network datasets are
not that sufficient. This phenomenon may hinder the related
research progress. To contribute to the dynamic network

1We use the term ”network” and ”graph” interchangeably throughout the
paper.

Fig. 1: A Subgraph Extracted from the Static Protein-Protein
Interaction Network of Yeast Cells [4]. Each node stands for
a gene coding protein, and the description information of
each protein node can be retrieved from the Saccharomyces
Genome Database.2

representation learning and mining research community, we
provide a new dynamic network repository from the bio-
logical domain, named DPPIN. To be specific, DPPIN has
12 individual dynamic network datasets at different scales
describing dynamic protein-protein interactions of yeast cells,
and each dynamic network dataset in DPPIN is label-adequate
(i.e., high label rate of nodes), dynamics-meaningful (i.e.,
metabolic patterns of yeast cells), and attribute-sufficient (i.e.,
accessible node features and edge features). We hope these
domain-specific node features, structure evolution patterns,
and node and graph labels could inspire the next-generation
graph machine learning algorithms in the dynamic setting.

In this paper, we first start by introducing the generation
process of each dynamic network dataset in our DPPIN, by
which a static protein-protein interaction network as shown
in Figure 1 can be decomposed into different timestamps as
shown in Figure 2. Moreover, during the generation process,
the details about the gene expression value calculation, node
feature determination, and node label retrieval are discussed
in Section III with the generation statistics. The utility of
DPPIN data repository are linked with the real-world prob-
lems by potential applications in Section IV. With different
generated network datasets in DPPIN, we design extensive
experiments such like dynamic spectral clustering and dynamic
graph classification experiments in Section V, where several
experimental results suggest that DPPIN presents challenges
on state-of-the-art baseline algorithms and indicates future

2https://www.yeastgenome.org/

Fig. 2: The Dynamic Network Structure Generation Process for each Dataset in DPPIN.

research opportunities. The data source, generation process
program, and other necessary information of our DPPIN
repository are well documented and released3.

Our main contributions are summarized as follows.
• Datasets: Regarding the biological domain, beyond many

static networks4, we provide a new repository of 12 dynamic
protein-protein interaction network datasets to contribute to
the dynamic network machine learning research community.

• Experiments: To demonstrate the utility of DPPIN, we
design extensive experiments and discuss how networks of
DPPIN can inspire baseline algorithms to get improved.

• Future Work: We also indicate the future work directions
to improve our DPPIN repository for better services.

II. PRELIMINARY

We use lowercase letters (e.g., α) for scalars, capital letters
(e.g., V) for sets, bold lowercase letters for column vectors
(e.g., p), bold capital letters for matrices (e.g., A), and
parenthesized superscripts to denote the timestamp of matrices
(e.g., A(t)).

A protein-protein interaction network (shot for PPIN in the
rest) is denoted as an undirected graph G = (V,E), where
each node represents a gene coding protein (shot for protein
in the rest), each edge represents a protein-protein interaction,
and matrix A ∈ Rn×n denotes the adjacency matrix encoding
interactions of all nodes [38]. Moreover, protein-protein inter-
actions in a cell are usually dynamic and change over time [9],
[23], [25], [40], [41], [45]. Many different efforts have been
devoted to the dynamic PPIN construction [52], [53], [60],
[61], where a dynamic PPIN is represented as a sequence of
observed snapshots, i.e., G̃ = {G(t)} with t ∈ {1, 2, . . . , T}.

3https://github.com/DongqiFu/DPPIN
4https://www.inetbio.org/yeastnet/downloadnetwork.php

Each snapshot is represented as G(t) = (V (t), E(t)) plus
optional node and edge features, and V (t) and E(t) denote
the nodes and edges that existed at time t, respectively. Note
that the number of nodes at different timestamps is different.
For the clear notation, we denote |V (t)| = |V | in the paper,
which means a node without any connections at time t can
just be regarded as a dangling node at that time.

To generate dynamic networks for our DPPIN, we apply
the dynamic protein-protein interaction network construction
method [61], which could use both gene expression variance
analysis and co-expression correlations analysis to establish
dynamic PPINs. The generation process shown in Figure 2
can be described as follows. Given a static PPIN with the
adjacency matrix A ∈ Rn×n and time-aware gene expres-
sion value sequences Si for each node i at each timestamp
t ∈ {1, . . . , T}, i.e., Si(t) denotes the gene expression value
of protein node i at timestamp t, we sequentially build the
dynamic PPIN G̃ = {G(1), G(2), . . . , G(T)}, which is a
sequence of snapshots G(t) at each observed timestamp t.

III. GENERATED DATA IN DPPIN

In this section, we first introduce the dynamic structure
generation process. Then, we introduce the feature and label
extraction the with the corresponding biological meaning. The
statistics of each dynamic network dataset in DPPIN are
summarized in Table II.

A. Dynamic Structure Generation Process

The generation process requires two inputs, as shown in
Figure 2, which are (1) a static PPIN and (2) time-aware gene
expression values of each protein in that static PPIN. Then
the generation process is divided into three sequential steps:
(1) determine active proteins at each desired timestamp, (2)

determine co-expressed protein pairs at that timestamp, and
(3) preserve both active and co-expressed protein connections
for that timestamp snapshot.

Determine Active Proteins. If the gene expression value
of a protein is higher than a pre-defined threshold at a certain
timestamp, then that protein is considered to be active for
that timestamp. In [52], the active probability of proteins is
expressed as follows.

p(t)(i) =


0.99, if Si(t) ≥ Th3(i)

0.95, if Th3(i) > Si(t) ≥ Th2(i)

0.68, if Th2(i) > Si(t) ≥ Th1(i)

0.0, if Si(t) < Th1(i)

(1)

where Si is the sequential gene expression data of i-th protein
over a period of time, and Si(t) denotes the expression value of
the i-th protein at time t. p(t) ∈ Rn×1 denotes the probability
vector at time t, which is a column vector encoding the active
probability of each protein at time t. Scalars Th3, Th2, and
Th1 are three thresholds, which are expressed as follows.

Thk(i) = µ(Si)+kσ(Si)(1−
1

1 + σ2(Si)
), k ∈ {1, 2, 3} (2)

where µ(Si) stands for the mean of the entire sequence Si,
and σ(Si) denotes the standard deviation of Si.

With the computed probability vector p(t) at time t, we can
obtain the activity matrix A

(t)
act ∈ Rn×n at time t as follows.

A
(t)
act = p(t)p⊤(t) (3)

where p⊤(t) denotes the transpose of the column vector p(t).
Determine Co-expressed Protein Pairs. The co-expression

correlation coefficient is a strong indicator of protein func-
tional associations [61] that is used to indicate whether co-
expressed genes have the same expression variance patterns
across different conditions [52]. To investigate whether two
protein nodes are co-expressed at time t, the co-expression
matrix A

(t)
coe ∈ Rn×n of a protein network is expressed as

follows with the coefficient.

A(t)
coe(i, j) =

{
|PCC(t)(i, j)|, if |PCC(t)(i, j)| ≥ ThPCC

0, if |PCC(t)(i, j)| < ThPCC

(4)
where PCC(t) is the Pearson Correlation Coefficient func-
tion at time t that takes {Si(t − 1), Si(t), Si(t + 1)} and
{Sj(t − 1), Sj(t), Sj(t + 1)} from two protein nodes i and
j as the input. ThPCC is the pre-defined threshold for Pear-
son Correlation Coefficient, which is set to be 0.5 through
preliminary experiments [61].

Determine Active and Co-expressed Protein Interac-
tions. With the computed activity matrix A

(t)
act ∈ Rn×n and

co-expression matrix A
(t)
coe ∈ Rn×n at time t, we can now

indicate active and co-expressed protein interactions to form
the weighted adjacency matrix at time t, denoted as A(t).

A(t) = A
(t)
act ⊙A(t)

coe ⊙A (5)

where ⊙ stands for the element-wise multiply operation, and
A ∈ Rn×n denotes the adjacency matrix of the input static
PPIN.

To obtain two necessary inputs of the above-mentioned
methods to generate dynamic PPIN structures, we select 12
static networks from High-Throughput Protein-Protein In-
teractions of yeast cells5 for the matrix A in Eq. 5, and
the GSE3431 gene expression data [48]6 for the time-aware
sequence Si(t) in Eq. 1 and Eq. 2. In GSE3431, each gene
coding protein has 36 observed gene expression values at 36
timestamps. To be specific, those 36 timestamps consist of 3
successive metabolic cycles of yeast cells, where each cycle
occupies 12 timestamped intervals, and each time interval
occupies 25 minutes in the real world. Thus, we could totally
have 36 timestamps for each generated dynamic network in
DPPIN.

B. Feature and Label Extraction

According to Eq. 5, generated dynamic network structures
in DPPIN are undirected and weighted. Hence, each edge
is represented as (i, j, t, w), where i and j are two nodes, t
denotes the timestamp, and w denotes the weight computed
through Eq. 5 and represents the active and co-expressed
probability as edge features. Moreover, the node feature of
each node i can be directed obtained from gene expression
sequences, i.e., Si(t). The label of each protein node can be
accessed through the Saccharomyces Genome Database7. For
example, the protein node YNR066C is an uncharacterized
protein, YLR366W is a dubious protein, and YGR062C is
a verified protein. Now, the construction of each dataset in
DPPIN is completed with evolving typologies, node features,
edge features, and node labels.

The entire generation is summarized in Algorithm 1, where
Steps 2–3 are responsible for building the protein activity
matrix, then Step 4 is responsible for building the protein co-
expression matrix, and Step 5 is responsible for constructing
the weighted adjacency matrix at that time t. For the feature
matrix, Step 6 concatenates the protein expression values from
the first time to the current time and stores this concatenation
as the node feature vector. Note that the length of this node
feature vector is dependent on time.

C. Generation Statistics

With the static structures, gene sequence, protein feature
and label information discussed in above two subsections, we
are ready to call Algorithm 1 to generate dynamic networks
with time-aware node features and labels. The selected static
protein networks are summarized in Table I. For example, in
Krogan (LCMS) [29], the authors identified proteins by the liq-
uid chromatography-tandem mass spectrometry (i.e., LCMS).
Correspondingly, the dynamic version of Krogan (LCMS) is
generated through Algorithm 1, i.e., DPPIN-Krogan (LCMS)

5https://www.inetbio.org/yeastnet/downloadnetwork.php
6https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE3431
7https://www.yeastgenome.org/

TABLE I: Selected Static PPINs for Generating Dynamic PPINs

Static HT PPINs Description of Protein Identification Methods
Uetz [49] Genome-scale yeast-two-hybrid (Y2H) screen
Ito [26] Genome-scale Y2H with pooled library
Ho [24] Genome-scale affinity purification followed by mass spectrometry analysis of co-purified proteins (APMS)
Gavin [20] Genome-scale APMS
Krogan (LCMS) [29] Genome-scale APMS with liquid chromatography tandem mass spectrometry (LCMS)
Krogan (MALDI) [29] Genome-scale APMS with matrix-assisted laser desorption/ionization (MALDI)
Yu [56] Genome-scale Y2H
Breitkreutz [7] Large-scale APMS for kinase and phosphatase interactions
Babu [4] Large-scale APMS for membrane proteins
Lambert [30] Protein interactions for chromatin-related proteins
Tarassov [44] Genome-wide protein-protein interactions
Hazbun [22] Interactome for 100 essential genes

TABLE II: Generated Dynamic Network Datasets in DPPIN

Generated Dynamic PPINs #Nodes #Edges Node Features Edge Features Node Label Rate #Timestamps
DPPIN-Uetz 922 2,159 ✓ ✓ 921/922 (99.89%) 36
DPPIN-Ito 2,856 8,638 ✓ ✓ 2854/2856 (99.93%) 36
DPPIN-Ho 1,548 42,220 ✓ ✓ 1547/1548 (99.93%) 36

DPPIN-Gavin 2,541 140,040 ✓ ✓ 2538/2541 (99.88%) 36
DPPIN-Krogan (LCMS) 2,211 85,133 ✓ ✓ 2208/2211 (99.86%) 36

DPPIN-Krogan (MALDI) 2,099 78,297 ✓ ✓ 2097/2099 (99.90%) 36
DPPIN-Yu 1,163 3,602 ✓ ✓ 1160/1163 (99.74%) 36

DPPIN-Breitkreutz 869 39,250 ✓ ✓ 869/869 (100.00%) 36
DPPIN-Babu 5,003 111,466 ✓ ✓ 4997/5003 (99.88%) 36

DPPIN-Lambert 697 6,654 ✓ ✓ 697/697 (100.00%) 36
DPPIN-Tarassov 1,053 4,826 ✓ ✓ 1051/1053 (99.81%) 36
DPPIN-Hazbun 143 1,959 ✓ ✓ 143/143 (100.00%) 36

Algorithm 1 Dynamic Protein Interaction Networks Construc-
tion
Input:

static adjacency matrix A ∈ Rn×n, time-aware gene
expression data Si(t) i ∈ {1, 2, . . . n}, t ∈ {1, 2, . . . T}

Output:
weighted adjacency matrix A(t) ∈ Rn×n, node feature
matrix X(t) ∈ Rn×t, t ∈ {1, 2, . . . T}

1: for t = 1 : T do
/*Determine Active Proteins*/

2: Determine the active probability p(t)(i) based on Si(t)
with Eq. 1 and Eq. 2 for each protein node i = 1, . . . , n

3: Construct the activity matrix A
(t)
act based on Eq. 3

/*Determine Co-expressed Protein Pairs*/
4: Construct the co-expression matrix A

(t)
coe based on Si(t)

with Eq. 4
/*Preserve Active and Co-expressed Protein Pairs*/

5: Construct the weight adjacency matrix At at time t
based on Eq. 5
/*Extend Node Features via Value Concatenation*/

6: X(t)(i, :) = Si(1) || . . . || Si(t)
7: end for

is summarized in Table II with other generated dynamic
network data.

IV. POTENTIAL APPLICATIONS

In this section, we discuss graph-based applications and
tasks that could leverage network data of our DPPIN reposi-

tory. For example, the datasets of DPPIN could be used for but
are not limited to dense community detection, graph querying,
node similarity retrieval, node property prediction, and graph
property prediction in the dynamic setting.

A. Dense Community Detection

Detecting densely connected communities (i.e., node clus-
tering or graph partitioning) is a fundamental research problem
in the graph mining research community [3], [43]. However,
in the dynamic setting, when the graph topology updates, the
previously identified clusters are outdated. To fast capture new
clusters, many algorithms are proposed such like [19], [35].

To be specific, detecting densely connected clusters can
be realized in a global view or a local view with different
compactness objectives. For example, the dynamic spectral
clustering [35] can be described as follows.

Problem 1: Dynamic Spectral Clustering
Input: (i) a dynamic graph G̃ = {G(1), G(2), . . . , G(T)}, and

(ii) the desired number of disjoint clusters q.
Output: q disjoint clusters {C(t)

1 , C
(t)
2 , . . . , C

(t)
q } minimizing

the normalized cut, and G(t) =
⋃q

i=1 C
(t)
i at each

timestamp t ∈ {1, 2, . . . , T}.
Instead of exploring the entire graph, local clustering al-

gorithms try to identify a dense local cluster near the user-
specified seed node. For example, the problem of dynamic
local clustering [19] can be generalized as follows.

Problem 2: Dynamic Local Clustering
Input: (i) a dynamic graph G̃ = {G(1), G(2), . . . , G(T)}, (ii)

a seed node u, and (iii) the conductance upper bound ϕ.

Output: a local cluster C(t) near the seed node u such that
the conductance score of C(t) ≤ ϕ at each timestamp
t ∈ {1, 2, . . . , T}.

With the dynamic network data from our DPPIN, dynamic
clustering algorithms can be tested and further improved for
faster and denser solutions.

B. Graph Querying

Searching whether a smaller specific query graph exists in
a larger data graph has a very wide range of applications such
as intrusion detection, VLSI reverse engineering, and chemical
compound detection [46], [58]. To save the computational
complexity for the query process, many dynamic subgraph
matching methods are proposed to leverage the historical in-
formation to fast produce the exact matching results [28], [31],
i.e., the exact positions of the query graph in the data graph.
Generally speaking, the dynamic subgraph exact matching can
be described as follows.

Problem 3: Dynamic Subgraph Exact Matching
Input: (i) a dynamic data graph G̃ = {G(1), G(2), . . . , G(T)},

and (ii) a query graph Q.
Output: the positions (indexed by nodes) where each node

and each edge of the query Q is matched in the data
graph G(t) at each timestamp t ∈ {1, 2, . . . , T}.

To obtain the exact matching solutions on dynamic data
graphs, our DPPIN repository plays a fundamental role by
providing time-evolving node interactions.

C. Node Similarity Retrieval

Measuring the proximity (or similarity) score between nodes
in a graph is very important for many graph mining research
problems and paves the way for many real-world applica-
tions, such as ranking and recommendation [47]. Due to
the intrinsic dynamics of real-world networks, retrieving the
similarity ranking list for every node is time-consuming. Many
efforts [37], [55], [57] have contributed to fast and accurately
tracking the node proximity in the dynamic setting, where the
topology is frequently evolving over time.

Formally, the proximity tracking problem in dynamic
graphs [47] can be described as follows.

Problem 4: Proximity Tracking
Input: (i) a dynamic graph G̃ = {G(1), G(2), . . . , G(T)}, and

(ii) a set Q of interest nodes.
Output: the top-k most related objects of each interest node

in Q and their proximity (or similarity) scores at each
timestamp t ∈ {1, 2, . . . , T}.

Dynamic networks in our DPPIN repository enable the
innovation and improvement of similarity retrieval algorithms
and further link prediction applications by bringing the dy-
namic connections in the form of protein-protein interactions.

D. Node/Graph Property Prediction

Based on predicted properties, accurately identifying (or
classifying) nodes or graphs has great importance in many
domains such as drug discovery [12], [39], molecular property

prediction [14], [21], and epidemic infectious pattern analy-
sis [13], [36]. Recently, many efforts have tried to investigate
the role of temporal dependencies in identifying the node
property [54] and graph property [5], [36] for achieving higher
classification accuracy in the dynamic setting.

In general, the node-level or graph-level classification prob-
lem based on property predictions can be instanced as follows.

Problem 5: Dynamic Node Classification
Input: (i) a dynamic graph G̃ = {G(1), G(2), . . . , G(T)}, and

(ii) a node label set Y
Output: a representation model that could output appropriate

node label predictions for the acceptable classification
accuracy against the label set Y at each timestamp
t ∈ {1, 2, . . . , T}.

Problem 6: Dynamic Graph Classification
Input: (i) a dynamic graph set {G̃1, G̃2, . . . G̃N}, and (ii) a

graph label set Y
Output: a representation model that could output appropriate

graph label predictions for the acceptable classification
accuracy against the label set Y .

Our DPPIN provides 12 different classes of dynamic net-
works, where each network has meaningful time-dependent
node connections. Therefore, DPPIN can be utilized by dy-
namic node classification and graph classification algorithms
to verify whether they could capture temporal representations
to improve the performance of static baseline algorithms.

V. EXPERIMENTS

In this section, we design extensive experiments to show
that network datasets from our DPPIN repository could pave
the way for many graph machine learning algorithms. e.g.,
node-level unsupervised learning and graph-level supervised
learning.

A. Dynamic Spectral Clustering (Motif-Aware)

In brief, spectral clustering aims to partition the input graph
into disjoint dense clusters, and different spectral clustering
algorithms choose different metrics to measure the compact-
ness of the resulting clusters. Motif-aware spectral clustering
algorithm (MSC) [6] analyzes the eigenvalue and eigenvector
of the normalized motif Laplacian matrix of the input graph
and then produces clusters under the constraint of the motif
conductance. A motif is a high-order connected subgraph
structure, and the order of a motif stands for the number of
nodes in that subgraph. For example, a third-order motif can
be a triangle or a three-node line. The low motif conductance
score indicates that few motifs are broken during the graph
partitioning, and the resulting clusters are dense. Although
motif clustering has broad application scopes [6], the motif-
aware spectral clustering problem on dynamic graphs remains
opening. To this end, we design a novel and simple incremental
solution, called MSC+T, and evaluate its performance based
on different datasets of DPPIN. To be specific, MSC+T is re-
alized based on MSC [6] and an eigenpairs (i.e., an eigenvalue
and its corresponding eigenvector) tracking method [10].

TABLE III: Performance of Spectral Clustering Algorithms

Methods DPPIN-Krogan (LCMS)
Motif Conductance Time Consumption

MSC 0.0000 2.0276s
MSC+T 0.0000 0.0997s

Methods DPPIN-Ho
Motif Conductance Time Consumption

MSC 0.0000 0.7354s
MSC+T 0.7500 0.0469s

In this experiment, we select DPPIN-Krogan (LCMS) and
DPPIN-Ho datasets and set the third-order motif (i.e., triangle)
being preserved during graph cuts. The static spectral clus-
tering algorithm (i.e., MSC) is directly executed on DPPIN-
Krogan (LCMS) and DPPIN-Ho at timestamp t = 29 to report
the performance, and the dynamic spectral clustering method
(i.e., MSC+T) receives the clustering result at t = 28 then
tracks the clustering for t = 29. We use the motif conductance
to measure the compactness performance of resulting clusters,
and the lower motif conductance score dictates the fewer motif
structures are broken due to the graph cuts. We partition the
input graph into two clusters, and the performance of MSC
and MSC+T is shown in Table III.

Research Opportunities. We can observe that MSC
achieves the better clustering compactness but consumes a
larger amount of time. Although MSC+T outputs the solution
in a fast manner, the compactness of clusters is not always
ideal. An intuitive explanation is that the graph structure
changes (between two consecutive timestamps) beyond the
representation ability of MSC+T in terms of tracking the exact
eigenvalues and eigenvectors. Using the dynamic networks
from DPPIN identifies the future research direction that
designing more dynamics-informative and accurate dynamic
spectral clustering methods is necessary.

B. Dynamic Local Clustering (Conductance-Guided)

Unlike spectral clustering algorithms standing in a global
optimization view, local clustering only cares about the local
cluster compactness. PageRank-Nibble [3] is a traditional local
clustering algorithm designed for static graphs, which uses
the stationary distribution of random walks to search an edge-
preserving dense local cluster near the seed node, guaranteeing
a lower bound of graph conductance. TPPR [37] could track
that stationary distribution of PageRank-Nibble and fast update
the local cluster when a new graph structure arrives.

Research Opportunities. Setting the same seed node (i.e.,
YOL033W in DPPIN-Krogan (MALDI) and YER052C in
DPPIN-Ho), we report the local clustering compactness per-
formance (i.e., conductance) of PageRank-Nibble (static result
at t = 28) and TPPR (tracking result at t = 29 from t = 28)
on two dynamic network datasets in Table IV. Similar to
the performance comparison in Table III, the dynamic local
clustering method (i.e., TPPR) also fast provides the solution
but does not always guarantee optimal. In this viewpoint,
dynamic networks of DPPIN provide the foundation for future
advanced dynamic local clustering algorithms.

TABLE IV: Performance of Local Clustering Algorithms

Methods DPPIN-Krogan (MALDI)
Conductance Time Consumption

PageRank-Nibble 0.3775 4.9119s
TPPR 0.7109 4.2645s

Methods DPPIN-Ho
Conductance Time Consumption

PageRank-Nibble 0.3364 1.2128s
TPPR 0.6486 0.9415s

C. Dynamic Subgraph Matching (Clique-Based)

Cliques are complete connected subgraphs, which means
each pair of nodes is connected. A k-clique means that
the clique structure has k nodes, and every two nodes are
connected. Examples of k-cliques (i.e., k = {3, 4, 5}) are
shown in Figure 3.

Fig. 3: Examples of k-cliques.

Research Opportunities. Determining whether a data
graph contains a specific clique and listing all matches has
potential research value in many domains, such as identifying
protein complexes and discovering new groups of functionally
associated proteins [1]. Aiming at 3-cliques and 4-cliques,
we use G-Finder [31] to enumerate all matched subgraphs
in all dynamic network datasets of DPPIN at t = 28 and
t = 29, respectively. The number of matched subgraphs is
reported in Table V. We can observe that different network
datasets of DPPIN have very different distributions of the
number of cliques. Moreover, even some network dataset has
a considerably large number of nodes, but it is sparse and
corresponding the number of cliques is small.

TABLE V: Number of Exact Matched Subgraphs in DPPIN

Dynamic PPINs Number of 3-cliques Number of 4-cliques
t = 28 t = 29 t = 28 t = 29

DPPIN-Uetz 0 1 0 0
DPPIN-Ito 3 1 0 0
DPPIN-Ho 173 60 79 9

DPPIN-Gavin 285 589 184 503
DPPIN-Krogan (LCMS) 129 202 46 79

DPPIN-Krogan (MALDI) 557 371 490 171
DPPIN-Yu 0 0 0 0

DPPIN-Breitkreutz 396 422 233 244
DPPIN-Babu 111 269 26 109

DPPIN-Lambert 6 1 1 0
DPPIN-Tarassov 3 8 0 2
DPPIN-Hazbun 7 32 1 20

D. Proximity Tracking (PageRank-Based)

The goal of proximity tracking is to monitor important
nodes towards the selected interest node at each observed

timestamp and how the ranking of these important nodes
changes as time evolves.

Here, we use the PageRank-based proximity tracking
method [47] and report the top-10 most similar proteins to
the query protein YDR377W at two timestamps, t = 25
and t = 35, in DPPIN-Babu dynamic network dataset. As
shown in Table VI, the most similar protein to YDR377W is
itself, and the ranking of following similar proteins changes
at different timestamps for evolving structures.

TABLE VI: Top-10 Proximity Tracking Result of YDR377W

Query Protein Target Network Similarity Rankings
t = 25 t = 35

YDR377W DPPIN-Babu

YDR377W YDR377W
YBL099W YMR001C
YPL271W YDR291W
YNL225C YJR090C
YDR126W YER093C
YIL026C YOR032C

YNR006W YOR307C
YHR155W YDR408C
YGL263W YNL147W
YGR206W YHR166C

E. Dynamic Node Classification (Attention-Aware)

To identify the node property (e.g., class labels), inspired
by Graph Attention Network (GAT) [51], Temporal Graph
Attention Network (TGAT) [54] is a recently proposed graph
neural network model for aggregating the temporal-topological
neighborhood information into the node representation vector
(through attention mechanisms) for improving the node clas-
sification accuracy in the dynamic setting.

TABLE VII: Performance of Graph Neural Networks w.r.t.
Nodel-level Classification Accuracy

Methods DPPIN-Ito
Training Acc. Testing Acc.

GAT 0.9426 ± 0.0004 0.9435 ± 0.0078
TGAT 0.9478 ± 0.0005 0.9558 ± 0.0096

Here, we want to investigate whether TGAT could achieve
higher node classification than GAT in our DPPIN-Ito dataset
by capturing the temporal metabolic evolution information.
Based on the chronological order, we split the first 70%
temporal edges as the training set, the middle 15% temporal
edges as the validation set, and the last 15% temporal edges as
the testing set. Then, we report the average node classification
accuracy and the standard deviation of GAT and TGAT with
the varying number of test samples in Table VII, where GAT
and TGAT are converged under the same condition (e.g., the
same number of layers, same dropout probability, same learn-
ing rate, and same training epochs). Moreover, to make the
static method GAT could take the dynamic network DPPIN-
Ito as input, we use Reduced Graph Representation [36] to
map temporal graphs into dynamics-preserving static graphs.
In Table VII, we can observe that TGAT achieves the higher
training accuracy and testing accuracy in terms of the node
classification, which suggests that temporal metabolic patterns

are helpful in regularizing the representation learning process
to help determine the category of nodes, TGAT could cap-
ture those temporal metabolic patterns in DPPIN-Ito to help
identify protein properties.

F. Dynamic Graph Classification (Few-Shot Learning)

To a large extent, accurately classifying different class
dynamic graphs and saving labeling workload requires cor-
responding graph embedding algorithms to encode the class-
distinctive graph property (i.e., structure and/or feature evolu-
tion pattern) appropriately in the learning process.

Here, we conduct the dynamic graph classification ex-
periment on state-of-the-art baseline algorithms and see if
datasets in DPPIN could help indicate some latent research
opportunities. According to [5], tdGraphEmbed is the first
graph-level dynamic graph representation learning algorithm,
which could capture the representation of each observed
snapshot. We use tdGraphEmbed and call the sum pooling
function to aggregate snapshot representations for the entire
dynamic graph representation vector for further classification.
We also involve two static graph-level representation learning
algorithms, Graph2Vec [34] and GL2Vec [11]. Furthermore,
to make static algorithms deal with dynamic inputs, we use
Reduced Graph Representation [36] to map evolving graphs
into dynamics-preserving static graphs. In our DPPIN, there
are 12 graph classes (indicated by network names) in total,
and each class has one large dynamic graph. In each class,
we take subgraphs as samples. To be specific, for each graph,
we take a subgraph by extracting a length of 5 timestamps
with every 3 timestamps elapsed. For example, t1, t2, t3, t4,
t5 together compose the first dynamic subgraph, and t4, t5,
t6, t7, t8 together compose the second dynamic subgraph.
The extracted subgraph shares the class label with its original
entire graph, and we have 11 dynamic subgraphs per class.
Therefore, we can sample subgraphs and form the N -way k-
shot classification setting (i.e., N classes and k samples per
class during meta-training and no shared class labels between
the meta-training and meta-testing stages) with two few-shot
classifiers: ProtoNet and its special cases kNN [42]. We split 8
classes for the meta-training and 4 classes for the meta-testing,
and we randomly shuffle this split 4 times to report the testing
accuracy of the meta-testing stage in Table VIII.

TABLE VIII: Graph-level Classification Accuracy during
Meta-testing with Varying Few-shot Settings

Methods Few-Shot Setting
3 way - 5 shot 3 way - 3 shot

Graph2Vec + kNN8 – –
GL2Vec + kNN 0.0717± 0.0900 0.0917± 0.0793

tdGraphEmbed + kNN 0.2167± 0.1736 0.1056± 0.0814
Graph2Vec + ProtoNet 0.3792± 0.0459 0.3958± 0.0731

GL2Vec + ProtoNet 0.7100 ± 0.0361 0.6625 ± 0.0407
tdGraphEmbed + ProtoNet 0.6562 ± 0.1882 0.6791 ± 0.1141

8Cannot get the results within 48 hours on a Linux machine with a single
NVIDIA Tesla V100 32GB GPU

Research Opportunities. As shown in Table VIII, td-
GraphEmbed+ProtoNet achieves the best performance in both
few-shot settings. An intuitive explanation is that, compared
just simply calling Reduced Graph Representation [36] for
static algorithms, the dynamics representation learning process
of tdGraphEmbed is more suitable for capturing the bioin-
formatic evolution patterns. However, tdGraphEmbed takes
each snapshot individually, and we just call sum pooling to
aggregate all of them. But there is still an opening question
about how to aggregate each snapshot representation more
reasonably. For instance, if there are some snapshots globally
shared by different class dynamic graphs (i.e., different class
graphs share several same or similar snapshots), then the
simply summarized graph-level representation may not be
class-distinctive. Based on this observation, we know that
capturing the lifelong evolution pattern may be an essential
factor in designing the next-generation dynamic graph-level
representation learning algorithms. Some hints may be found
in applying the attention mechanism [50] of current node-level
representation learning methods [54].

VI. FUTURE WORK

Although every gene coding protein that appeared in our
DPPIN repository has observed time-aware expression values
based on the GSE3431 gene expression data [48], some protein
nodes are currently lacking meaningful labels, as shown in
the Saccharomyces Genome Database9. Consequently, some
dynamic network datasets in our DPPIN repository have no
100.00% label rate, which can be seen in Table II. This defect
may hinder executing supervised learning algorithms on the
datasets of DPPIN, such as some node classification tasks.
In the future, we will continually follow related research of
unlabeled proteins of our DPPIN repository and incrementally
update the label set of DPPIN.

ACKNOWLEDGEMENT

This work is supported by National Science Foundation
under Award No. IIS-1947203, IIS-2117902, and IIS-2137468.
The views and conclusions are those of the authors and should
not be interpreted as representing the official policies of the
funding agencies or the government.

VII. CONCLUSION

In this paper, we first release a new repository of dy-
namic network datasets from the bioinformatics domain, called
DPPIN. To be specific, each network of DPPIN consists
of dynamic protein-protein interactions generated by analyz-
ing active and co-expressed protein pairs at corresponding
timestamps. Then, we connect our DPPIN repository with
the real-world applications that could take advantage of it
through corresponding experiments, such as dense commu-
nity detection, graph querying, node similarity retrieval, and
node/graph property prediction in the dynamic setting. Finally,
we indicate the future direction to continually improve the
utility of our DPPIN data repository. We hope the various

9https://www.yeastgenome.org/

evolution patterns in each network dataset of the DPPIN
repository could provide guidance or constraint for developing
more effective dynamic graph machine learning and mining
algorithms.

REFERENCES

[1] Balázs Adamcsek, Gergely Palla, Illés J. Farkas, Imre Derényi, and
Tamás Vicsek. CFinder: locating cliques and overlapping modules in
biological networks. Bioinformatics, 2006.

[2] Charu C. Aggarwal and Karthik Subbian. Evolutionary network analysis:
A survey. ACM Comput. Surv., 2014.

[3] Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. Local graph
partitioning using pagerank vectors. In FOCS, 2006.

[4] Mohan Babu, James Vlasblom, Shuye Pu, Xinghua Guo, Chris Graham,
Björn DM Bean, Helen E Burston, Franco J Vizeacoumar, Jamie Snider,
Sadhna Phanse, et al. Interaction landscape of membrane-protein
complexes in saccharomyces cerevisiae. Nature, 2012.

[5] Moran Beladev, Lior Rokach, Gilad Katz, Ido Guy, and Kira Radinsky.
tdgraphembed: Temporal dynamic graph-level embedding. In CIKM,
2020.

[6] Austin R. Benson, David F. Gleich, and Jure Leskovec. Higher-order
organization of complex networks. Science, 2016.

[7] Ashton Breitkreutz, Hyungwon Choi, Jeffrey R Sharom, Lorrie Boucher,
Victor Neduva, Brett Larsen, Zhen-Yuan Lin, Bobby-Joe Breitkreutz,
Chris Stark, Guomin Liu, et al. A global protein kinase and phosphatase
interaction network in yeast. Science, 2010.

[8] Deepayan Chakrabarti and Christos Faloutsos. Graph mining: Laws,
generators, and algorithms. ACM Comput. Surv., 2006.

[9] Bolin Chen, Weiwei Fan, Juan Liu, and Fang-Xiang Wu. Identifying
protein complexes and functional modules—from static ppi networks to
dynamic ppi networks. Briefings in Bioinformatics, 2014.

[10] Chen Chen and Hanghang Tong. Fast eigen-functions tracking on
dynamic graphs. In SDM, 2015.

[11] Hong Chen and Hisashi Koga. Gl2vec: Graph embedding enriched by
line graphs with edge features. In ICONIP, 2019.

[12] Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent
variable models for structured data. In ICML, 2016.

[13] Tyler Derr, Yao Ma, Wenqi Fan, Xiaorui Liu, Charu C. Aggarwal, and
Jiliang Tang. Epidemic graph convolutional network. In WSDM, 2020.

[14] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael
Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P.
Adams. Convolutional networks on graphs for learning molecular
fingerprints. In NeurIPS, 2015.

[15] Dongqi Fu, Yikun Ban, Hanghang Tong, Ross Maciejewski, and Jingrui
He. DISCO: comprehensive and explainable disinformation detection.
In CIKM, 2022.

[16] Dongqi Fu, Liri Fang, Ross Maciejewski, Vetle I. Torvik, and Jingrui
He. Meta-learned metrics over multi-evolution temporal graphs. In
KDD, 2022.

[17] Dongqi Fu and Jingrui He. Sdg: A simplified and dynamic graph neural
network. In SIGIR, 2021.

[18] Dongqi Fu, Zhe Xu, Bo Li, Hanghang Tong, and Jingrui He. A view-
adversarial framework for multi-view network embedding. In CIKM,
2020.

[19] Dongqi Fu, Dawei Zhou, and Jingrui He. Local motif clustering on
time-evolving graphs. In KDD, 2020.

[20] Anne-Claude Gavin, Patrick Aloy, Paola Grandi, Roland Krause, Markus
Boesche, Martina Marzioch, Christina Rau, Lars Juhl Jensen, Sonja
Bastuck, Birgit Dümpelfeld, et al. Proteome survey reveals modularity
of the yeast cell machinery. Nature, 2006.

[21] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals,
and George E. Dahl. Neural message passing for quantum chemistry.
In ICML, 2017.

[22] Tony R Hazbun, Lars Malmström, Scott Anderson, Beth J Graczyk,
Bethany Fox, Michael Riffle, Bryan A Sundin, J Derringer Aranda,
W Hayes McDonald, Chun-Hwei Chiu, et al. Assigning function to
yeast proteins by integration of technologies. Molecular Cell, 2003.

[23] Shubhada R Hegde, Palanisamy Manimaran, and Shekhar C Mande.
Dynamic changes in protein functional linkage networks revealed by
integration with gene expression data. PLoS Computational Biology,
2008.

[24] Yuen Ho, Albrecht Gruhler, Adrian Heilbut, Gary D Bader, Lynda
Moore, Sally-Lin Adams, Anna Millar, Paul Taylor, Keiryn Bennett,
Kelly Boutilier, et al. Systematic identification of protein complexes in
saccharomyces cerevisiae by mass spectrometry. Nature, 2002.

[25] Lun Hu, Xiaojuan Wang, Yu-An Huang, Pengwei Hu, and Zhu-Hong
You. A survey on computational models for predicting protein–protein
interactions. Briefings in Bioinformatics, 2021.

[26] Takashi Ito, Tomoko Chiba, Ritsuko Ozawa, Mikio Yoshida, Masahira
Hattori, and Yoshiyuki Sakaki. A comprehensive two-hybrid analysis to
explore the yeast protein interactome. PNAS, 2001.

[27] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay
Sethi, Peter Forsyth, and Pascal Poupart. Representation learning for
dynamic graphs: A survey. J. Mach. Learn. Res., 2020.

[28] Kyoungmin Kim, In Seo, Wook-Shin Han, Jeong-Hoon Lee, Sungpack
Hong, Hassan Chafi, Hyungyu Shin, and Geonhwa Jeong. Turboflux: A
fast continuous subgraph matching system for streaming graph data. In
SIGMOD, 2018.

[29] Nevan J Krogan, Gerard Cagney, Haiyuan Yu, Gouqing Zhong, Xinghua
Guo, Alexandr Ignatchenko, Joyce Li, Shuye Pu, Nira Datta, Aaron P
Tikuisis, et al. Global landscape of protein complexes in the yeast
saccharomyces cerevisiae. Nature, 2006.

[30] Jean-Philippe Lambert, Jeffrey Fillingham, Mojgan Siahbazi, Jack
Greenblatt, Kristin Baetz, and Daniel Figeys. Defining the budding yeast
chromatin-associated interactome. Molecular Systems Biology, 2010.

[31] Lihui Liu, Boxin Du, Jiejun Xu, and Hanghang Tong. G-finder:
Approximate attributed subgraph matching. In IEEE BigData, 2019.

[32] Zhiwei Liu, Yingtong Dou, Philip S. Yu, Yutong Deng, and Hao Peng.
Alleviating the inconsistency problem of applying graph neural network
to fraud detection. In SIGIR, 2020.

[33] Kelong Mao, Xi Xiao, Jieming Zhu, Biao Lu, Ruiming Tang, and
Xiuqiang He. Item tagging for information retrieval: A tripartite graph
neural network based approach. In SIGIR, 2020.

[34] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkate-
san, Lihui Chen, Yang Liu, and Shantanu Jaiswal. graph2vec: Learning
distributed representations of graphs. CoRR, 2017.

[35] Huazhong Ning, Wei Xu, Yun Chi, Yihong Gong, and Thomas S.
Huang. Incremental spectral clustering with application to monitoring
of evolving blog communities. In SDM, 2007.

[36] Lutz Oettershagen, Nils M. Kriege, Christopher Morris, and Petra
Mutzel. Temporal graph kernels for classifying dissemination processes.
In SDM, 2020.

[37] Naoto Ohsaka, Takanori Maehara, and Ken-ichi Kawarabayashi. Effi-
cient pagerank tracking in evolving networks. In KDD, 2015.

[38] R Ranjani Rani, D Ramyachitra, and A Brindhadevi. Detection of
dynamic protein complexes through markov clustering based on elephant
herd optimization approach. Scientific Reports, 2019.

[39] Bernhard Schölkopf, Koji Tsuda, and Jean-Philippe Vert. Kernel
Methods in Computational Biology. MIT press, 2004.

[40] Xianjun Shen, Li Yi, Xingpeng Jiang, Tingting He, Xiaohua Hu, and
Jincai Yang. Mining temporal protein complex based on the dynamic
pin weighted with connected affinity and gene co-expression. PloS one,
2016.

[41] Xianjun Shen, Li Yi, Xingpeng Jiang, Tingting He, Jincai Yang, Wei
Xie, Po Hu, and Xiaohua Hu. Identifying protein complex by integrating
characteristic of core-attachment into dynamic ppi network. PloS one,
2017.

[42] Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks
for few-shot learning. In NeurIPS, 2017.

[43] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms
for graph partitioning, graph sparsification, and solving linear systems.
In STOC, 2004.

[46] Hanghang Tong, Christos Faloutsos, Brian Gallagher, and Tina Eliassi-
Rad. Fast best-effort pattern matching in large attributed graphs. In
KDD, 2007.

[44] Kirill Tarassov, Vincent Messier, Christian R Landry, Stevo Radinovic,
Mercedes M Serna Molina, Igor Shames, Yelena Malitskaya, Jackie
Vogel, Howard Bussey, and Stephen W Michnick. An in vivo map
of the yeast protein interactome. Science, 2008.

[45] Ratana Thanasomboon, Saowalak Kalapanulak, Supatcharee Netrphan,
and Treenut Saithong. Exploring dynamic protein-protein interactions in
cassava through the integrative interactome network. Scientific Reports,
2020.

[47] Hanghang Tong, Spiros Papadimitriou, Philip S. Yu, and Christos
Faloutsos. Proximity tracking on time-evolving bipartite graphs. In
SDM, 2008.

[48] Benjamin P Tu, Andrzej Kudlicki, Maga Rowicka, and Steven L
McKnight. Logic of the yeast metabolic cycle: temporal compartmen-
talization of cellular processes. Science, 2005.

[49] Peter Uetz, Loic Giot, Gerard Cagney, Traci A Mansfield, Richard S Jud-
son, James R Knight, Daniel Lockshon, Vaibhav Narayan, Maithreyan
Srinivasan, Pascale Pochart, et al. A comprehensive analysis of protein–
protein interactions in saccharomyces cerevisiae. Nature, 2000.

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In NeurIPS, 2017.

[51] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. Graph attention networks. In ICLR,
2018.

[52] Jianxin Wang, Xiaoqing Peng, Min Li, and Yi Pan. Construction and
application of dynamic protein interaction network based on time course
gene expression data. Proteomics, 2013.

[53] Jianxin Wang, Xiaoqing Peng, Wei Peng, and Fang-Xiang Wu. Dynamic
protein interaction network construction and applications. Proteomics,
2014.

[54] Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, and Kannan
Achan. Inductive representation learning on temporal graphs. In ICLR,
2020.

[55] Minji Yoon, Woojeong Jin, and U Kang. Fast and accurate random walk
with restart on dynamic graphs with guarantees. In WWW, 2018.

[56] Haiyuan Yu, Pascal Braun, Muhammed A Yıldırım, Irma Lemmens,
Kavitha Venkatesan, Julie Sahalie, Tomoko Hirozane-Kishikawa, Fana
Gebreab, Na Li, Nicolas Simonis, et al. High-quality binary protein
interaction map of the yeast interactome network. Science, 2008.

[57] Hongyang Zhang, Peter Lofgren, and Ashish Goel. Approximate
personalized pagerank on dynamic graphs. In KDD, 2016.

[58] Shijie Zhang, Shirong Li, and Jiong Yang. GADDI: distance index based
subgraph matching in biological networks. In EDBT, 2009.

[59] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph
convolutional networks: a comprehensive review. Computational Social
Networks, 2019.

[60] Yijia Zhang, Hongfei Lin, Zhihao Yang, and Jian Wang. Construction of
dynamic probabilistic protein interaction networks for protein complex
identification. BMC Bioinformatics, 2016.

[61] Yijia Zhang, Hongfei Lin, Zhihao Yang, Jian Wang, Yiwei Liu, and
Shengtian Sang. A method for predicting protein complex in dynamic
ppi networks. BMC Bioinformatics, 2016.

[62] Dawei Zhou, Lecheng Zheng, Dongqi Fu, Jiawei Han, and Jingrui He.
Mentorgnn: Deriving curriculum for pre-training gnns. In CIKM, 2022.

[63] Dawei Zhou, Lecheng Zheng, Jiawei Han, and Jingrui He. A data-
driven graph generative model for temporal interaction networks. In
KDD, 2020.

[64] Yao Zhou, Jianpeng Xu, Jun Wu, Zeinab Taghavi Nasrabadi, Evren
Körpeoglu, Kannan Achan, and Jingrui He. PURE: positive-unlabeled
recommendation with generative adversarial network. In KDD, 2021.

