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Abstract

Active learning theories and methods have been extensively studied in classical
statistical learning settings. However, deep active learning, i.e., active learning
with deep learning models, is usually based on empirical criteria without solid
theoretical justification, thus suffering from heavy doubts when some of those fail
to provide benefits in real applications. In this paper, by exploring the connection
between the generalization performance and the training dynamics, we propose a
theory-driven deep active learning method (dynamicAL) which selects samples to
maximize training dynamics. In particular, we prove that the convergence speed
of training and the generalization performance are positively correlated under the
ultra-wide condition and show that maximizing the training dynamics leads to better
generalization performance. Furthermore, to scale up to large deep neural networks
and data sets, we introduce two relaxations for the subset selection problem and
reduce the time complexity from polynomial to constant. Empirical results show
that dynamicAL not only outperforms the other baselines consistently but also
scales well on large deep learning models. We hope our work would inspire more
attempts on bridging the theoretical findings of deep networks and practical impacts
of deep active learning in real applications.

1 Introduction

Training deep learning (DL) models usually requires large amount of high-quality labeled data [1] to
optimize a model with a massive number of parameters. The acquisition of such annotated data is
usually time-consuming and expensive, making it unaffordable in the fields that require high domain
expertise. A promising approach for minimizing the labeling effort is active learning (AL), which
aims to identify and label the maximally informative samples, so that a high-performing classifier can
be trained with minimal labeling effort [2]. Under classical statistical learning settings, theories of
active learning have been extensively studied from the perspective of VC dimension [3]. As a result,
a variety of methods have been proposed, such as (i) the version-space-based approaches, which
require maintaining a set of models [4, 5], and (ii) the clustering-based approaches, which assume
that the data within the same cluster have pure labels [6].

However, the theoretical analyses for these classical settings may not hold for over-parameterized
deep neural networks where the traditional wisdom is ineffective [1]. For example, margin-based
methods select the labeling examples in the vicinity of the learned decision boundary [7, 8]. However,
in the over-parameterized regime, every labeled example could potentially be near the learned decision
boundary [9]. As a result, theoretically, such analysis can hardly guide us to design practical active
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learning methods. Besides, empirically, multiple deep active learning works, borrowing observations
and insights from the classical theories and methods, have been observed unable to outperform their
passive learning counterparts in a few application scenarios [10, 11].

On the other hand, the analysis of neural network’s optimization and generalization performance
has witnessed several exciting developments in recent years in terms of the deep learning theory [12,
13, 14]. It is shown that the training dynamics of deep neural networks using gradient descent can
be characterized by the Neural Tangent Kernel (NTK) of infinite [12] or finite [15] width networks.
This is further leveraged to characterize the generalization of over-parameterized networks through
Rademacher complexity analysis [13, 16]. We are therefore inspired to ask: How can we design a
practical and generic active learning method for deep neural networks with theoretical justifications?

To answer this question, we firstly explore the connection between the model performance on testing
data and the convergence speed on training data for the over-parameterized deep neural networks.
Based on the NTK framework [12, 13], we theoretically show that if a deep neural network converges
faster (“Train Faster”), then it tends to have better generalization performance (“Generalize Better”),
which matches the existing observations [17, 18, 19, 20, 21]. Motivated by the aforementioned
connection, we first introduce Training Dynamics, the derivative of training loss with respect to
iteration, as a proxy to quantitatively describe the training process. On top of it, we formally propose
our generic and theoretically-motivated deep active learning method, dynamicAL, which will query
labels for a subset of unlabeled samples that maximally increase the training dynamics. In order to
compute the training dynamics by merely using the unlabeled samples, we leverage two relaxations
Pseudo-labeling and Subset Approximation to solve this non-trivial subset selection problem. Our
relaxed approaches are capable of effectively estimating the training dynamics as well as efficiently
solving the subset selection problem by reducing the complexity from O(N b) to O(b).

In theory, we coin a new term Alignment to measure the length of the label vector’s projection on the
neural tangent kernel space. Then, we demonstrate that higher alignment usually comes with a faster
convergence speed and a lower generalization bound. Furthermore, with the help of the maximum
mean discrepancy [22], we extend the previous analysis to an active learning setting where the i.i.d.
assumption may not hold. Finally, we show that alignment is positively correlated with our active
learning goal, training dynamics, which implies that maximizing training dynamics will lead to better
generalization performance.

Regarding experiments, we have empirically verified our theory by conducting extensive experiments
on three datasets, CIFAR10 [23], SVHN [24], and Caltech101 [25] using three types of network
structures: vanilla CNN, ResNet [26], and VGG [27]. We first show that the result of the subset
selection problem delivered by the subset approximation is close to the global optimal solution.
Furthermore, under the active learning setting, our method not only outperforms other baselines but
also scales well on large deep learning models.

The main contributions of our paper can be summarized as follows:

• We propose a theory-driven deep active learning method, dynamicAL, inspired by the observation
of “train faster, generalize better”. To this end, we introduce the Training Dynamics, as a proxy to
describe the training process.

• We demonstrate that the convergence speed of training and the generalization performance is
strongly (positively) correlated under the ultra-wide condition; we also show that maximizing the
training dynamics will lead to a lower generalization error in the scenario of active learning.

• Our method is easy to implement. We conduct extensive experiments to evaluate the effectiveness
of dynamicAL and empirically show that our method consistently outperforms other methods in a
wide range of active learning settings.

2 Background

Notation. We use the random variable x ∈ X to represent the input data feature and y ∈ Y as the
label where K is the number of classes and [K] := {1, 2, ...,K}. We are given non-degenerated
a data source D with unknown distribution p(x, y). We further denote the concatenation of x as
X = [x1, x2, ..., xM ]⊤ and that of y as Y = [y1, y2, ..., yM ]⊤. We consider a deep learning classifier
hθ(x) = argmax σ(f(x; θ)) : x → y parameterized by θ ∈ Rp, where σ(·) is the softmax function
and f is a neural network. Let ⊗ be the Kronecker Product and IK ∈ RK×K be an identity matrix.
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Active learning. The goal of active learning is to improve the learning efficiency of a model with a
limited labeling budget. In this work, we consider the pool-based AL setup, where a finite data set
S = {(xl, yl)}Ml=1 with M points are i.i.d. sampled from p(x, y) as the (initial) labeled set. The AL
model receives an unlabeled data set U sampled from p(x) and request labels according to p(y|x)
for any x ∈ U in each query round. There are R rounds in total, and for each round, a query set Q
consisting of b unlabeled samples can be queried. The total budget size B = b×R.

Neural Tangent Kernel. The Neural Tangent Kernel [12] has been widely applied to analyze the
dynamics of neural networks. If a neural network is sufficiently wide, properly initialized, and
trained by gradient descent with infinitesimal step size (i.e., gradient flow), then the neural network is
equivalent to kernel regression predictor with a deterministic kernel Θ(·, ·), called Neural Tangent
Kernel (NTK). When minimizing the mean squared error loss, at the iteration t, the dynamics of the
neural network f has a closed-form expression:

df(X ; θ(t))

dt
= −Kt(X ,X ) (f(X ; θ(t))− Y) , (1)

where θ(t) denotes the parameter of the neural network at iteration t, Kt(X ,X ) ∈ R|X |×K×|X|×K

is called the empirical NTK and Ki,j
t (x, x′) = ∇θf

i(x; θ(t))⊤∇θf
j(x′; θ(t)) is the inner product of

the gradient of the i-th class probability and the gradient of the j-th class probability for two samples
x, x′ ∈ X and i, j ∈ [K]. The time-variant kernel Kt(·, ·) is equivalent to the (time-invariant) NTK
with a high probability, i.e., if the neural network is sufficiently wide and properly initialized, then:

Kt(X ,X ) = Θ(X ,X )⊗ IK . (2)

The final learned neural network at iteration t, is equivalent to the kernel regression solution with
respect to the NTK [14]. For any input x and training data {X,Y } we have,

f(x; θ(t)) ≈ Θ(x,X)⊤Θ(X,X)−1(I − e−ηΘ(X,X)t)Y, (3)

where η is the learning rate, Θ(x,X) is the NTK matrix between input x and all samples in training
data X .

3 Method

In section 3.1, we introduce the notion of training dynamics which can be used to describe the training
process. Then, in section 3.2, based on the training dynamics, we propose dynamicAL. In section 3.3,
we discuss the connection between dynamicAL and existing deep active learning methods.

3.1 Training dynamics

In this section, we introduce the notion of training dynamics. The cross-entropy loss over the labeled
set S is defined as:

L(S) =
∑

(xl,yl)∈S

ℓ(f(xl; θ), yl)

= −
∑

(xl,yl)∈S

∑
i∈[K]

yi
l log σ

i(f(xl; θ)),
(4)

where σi(f(x; θ)) = exp(fi(x;θ))∑
j exp(fj(x;θ)) . We first analyze the dynamics of the training loss, with respect

to iteration t, on one labeled sample (derivation is in Appendix A.1):

∂ℓ(f(x; θ), y)

∂t
= −

∑
i

(
yi − σi(f(x; θ))

)
∇θf

i(x; θ)∇⊤
t θ. (5)

For neural networks trained by gradient descent, if the learning rate η is small, then ∇tθ = θt+1−θt =

−η
∂
∑

(xl,yl)∈S ℓ(f(xl;θ),yl)

∂θ . Taking the partial derivative of the training loss with respect to the
parameters, we have (the derivation of the following equation can be found in Appendix A.2):

∂ℓ(f(x; θ), y)

∂θ
=
∑
j∈[K]

(
σj(f(x; θ))− yj)∂f j(x; θ)

∂θ
. (6)
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Therefore, we can further get the following result for the dynamics of training loss:

∂ℓ(f(x; θ), y)

∂t
= −η

∑
i

(
σi(f(x; θ))− yi)∑

j

∑
(x

l
′ ,y

l
′ )∈S

∇θf
i(x; θ)⊤∇θf

j(xl
′ ; θ)

(
σj(f(xl

′ ; θ))− yj

l
′
)
.

(7)
Furthermore, we define di(X,Y ) = σi(f(X; θ))− Y i and Y i is the label vector of all samples for
i-th class. Then, the training dynamics (dynamics of training loss) over training set S, computed with
the empirical NTK Kij(X,X), is denoted by G(S) ∈ R:

G(S) = −1

η

∑
(xl,yl)∈S

∂ℓ(f(xl; θ), yl)

∂t
=
∑
i

∑
j

di(X,Y )⊤Kij(X,X)dj(X,Y ). (8)

3.2 Active learning by activating training dynamics

Before we present dynamicAL, we state Proposition 1, which serves as the theoretical guidance for
dynamicAL and will be proved in Section 4.
Proposition 1. For deep neural networks, converging faster leads to a lower worst-case generaliza-
tion error.

Motivated by the connection between convergence speed and generalization performance, we propose
the general-purpose active learning method, dynamicAL, which aims to accelerate the convergence by
querying labels for unlabeled samples. As we described in the previous section, the training dynamics
can be used to describe the training process. Therefore, we employ the training dynamics as a proxy
to design an active learning method. Specifically, at each query round, dynamicAL will query labels
for samples which maximize the training dynamics G(S), i.e.,

Q = argmaxQ⊆UG(S ∪Q), s.t. |Q| = b, (9)

where Q is the corresponding data set for Q with ground-truth labels. Notice that when applying the
above objective in practice, we are facing two major challenges. First, G(S ∪Q) cannot be directly
computed, because the label information of unlabeled examples is not available before the query.
Second, the subset selection problem can be computationally prohibitive if enumerating all possible
sets with size b. Therefore, we employ the following two relaxations to make this maximization
problem to be solved with constant time complexity.

Pseudo labeling. To estimate the training dynamics, we use the predicted label ŷu for sample
xu in the unlabeled data set U to compute G. Note, the effectiveness of this adaptation has been
demonstrated in the recent gradient-based methods [11, 28], which compute the gradient as if the
model’s current prediction on the example is the true label. Therefore, the maximization problem in
Equation (9) is changed to,

Q = argmaxQ⊆UG(S ∪ Q̂). (10)

where Q̂ is the corresponding data set for Q with pseudo labels ŶQ.

Subset approximation. The subset selection problem of Equation (10) still requires enumerating all
possible subsets of U with size b, which is O(nb). We simplify the selection problem to the following
problem without causing any change on the result,

argmaxQ⊆UG(S ∪ Q̂) = argmaxQ⊆U∆(Q̂|S), (11)

where ∆(Q̂|S) = G(S ∪ Q̂)−G(S) is defined as the change of training dynamics. We approximate
the change of training dynamics caused by query set Q using the summation of the change of training
dynamics caused by each sample in the query set. Then the maximization problem can be converted
to Equation (12) which can be solved by a greedy algorithm with O(b).

Q = argmaxQ⊆U

∑
(x,ŷ)∈Q̂

∆({(x, ŷ)}|S), s.t. |Q| = b. (12)

To further show the approximated result is reasonably good, we decompose the change of training
dynamics as (derivation in Appendix A.4):

∆(Q̂|S) =
∑

(x,ŷ)∈Q̂

∆({(x, ŷ)}|S) +
∑

(x,ŷ),(x′,ŷ′)∈Q̂

di(x, ŷ)⊤Kij(x, x′)dj(x′, ŷ′), (13)
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where Kij(x, x′) is the empirical NTK. The first term in the right hand side is the approximated
change of training dynamics. Then, we further define the Approximation Ratio (14) which measures
the approximation quality,

R(Q̂|S) =
∑

(x,ŷ)∈Q̂ ∆({(x, ŷ)}|S)

∆(Q̂|S)
. (14)

We empirically measure the expectation of the Approximation Ratio on two data sets with two
different neural networks under three different batch sizes. As shown in Figure 4, the expectation
EQ∼UR(Q̂|S) ≈ 1 when the model is converged. Therefore, the approximated result delivered by
the greedy algorithm is close to the global optimal solution of the original maximization problem,
Equation (10), especially when the model is converged.

Based on the above two approximations, we present the proposed method dynamicAL in Algorithm 1.
As described below, the algorithm starts by training a neural network f(·; θ) on the initial labeled
set S until convergence. Then, for every unlabeled sample xu, we compute pseudo label ŷu and the
change of training dynamics ∆({(xu, ŷu)}|S). After that, dynamicAL will query labels for top-b
samples causing the maximal change on training dynamics, train the neural network on the extended
labeled set, and repeat the process. Note, to keep close to the theoretical analysis, re-initialization is
not used after each query, which also enables dynamicAL to get rid of the computational overhead of
retraining the deep neural networks every time.

Algorithm 1 Deep Active Learning by Leveraging Training Dynamics

Input: Neural network f(·; θ), unlabeled sample set U , initial labeled set S, number of query
round R, query batch size b.
for r = 1 to R do

Train f(·; θ) on S with cross-entropy loss until convergence.
for xu ∈ U do

Compute its pseudo label ŷu = argmaxf(xu; θ).
Compute ∆({(xu, ŷu)}|S).

end for
Select b query samples Q with the highest ∆ values, and request their labels from the oracle.
Update the labeled data set S = S ∪Q .

end for
return Final model f(·; θ).

3.3 Relation to existing methods

Although existing deep active learning methods are usually designed based on heuristic criteria, some
of them have empirically shown their effectiveness [11, 29, 30]. We surprisingly found that our
theoretically-motivated method dynamicAL has some connections with those existing methods from
the perspective of active learning criterion. The proposed active learning criterion in Equation (12)
can be explicitly written as (derivation in Appendix A.5):

∆({(xu,ŷu)}|S) = ∥∇θℓ(f(xu; θ), ŷu)∥2 + 2
∑

(x,y)∈S

∇θℓ(f(xu; θ), ŷu)
⊤∇θℓ(f(x; θ), y). (15)

Note. The first term of the right-hand side can be interpreted as the square of gradient length (2-
norm) which reflects the uncertainty of the model on the example and has been wildly used as an
active learning criterion in some existing works [30, 11, 31]. The second term can be viewed as
the influence function [32] with identity hessian matrix. And recently, [29] has empirically shown
that the effectiveness of using the influence function with identity hessian matrix as active learning
criterion. We hope our theoretical analysis can also shed some light on the interpretation of previous
methods.

4 Theoretical analysis

In this section, we study the correlation between the convergence rate of the training loss and the
generalization error under the ultra-wide condition [12, 13]. We define a measure named alignment
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to quantify the convergence rate and further show its connection with generalization bound. The
analysis provides a theoretical guarantee for the phenomenon of “Train Faster, Generalize Better” as
well as our active learning method dynamicAL with a rigorous treatment. Finally, we show that the
active learning proxy, training dynamics, is correlated with alignment, which indicates that increasing
the training dynamics leads to larger convergence rate and better generalization performance. We
leave all proofs of theorems and details of verification experiments in Appendix B and D respectively.

4.1 Train faster provably generalize better

Given an ultra-wide neural network, the gradient descent can achieve a near-zero training error
[12, 33] and its generalization ability in unseen data can be bounded [13]. It is shown that both the
convergence and generalization of a neural network can be analyzed using the NTK [13]. However,
the question what is the relation between the convergence rate and the generalization bound has
not been answered. We formally give a solution by introducing the concept of alignment, which is
defined as follows:
Definition 1 (Alignment). Given a data set S = {X,Y }, the alignment is a measure of correlation
between X and Y projected in the NTK space. In particular, the alignment can be computed by
A(X,Y ) = Tr[Y ⊤Θ(X,X)Y ] =

∑K
k=1

∑n
i=1 λi(v⃗

⊤
i Y

k)2.

In the following, we will demonstrate why “Train Faster” leads to “Generalize Better” through
alignment. In particular, the relation of the convergence rate and the generalization bound with
alignment is analyzed. The convergence rate of gradient descent for ultra-wide networks is presented
in following lemma:
Lemma 1 (Convergence Analysis with NTK, Theorem 4.1 of [13]). Suppose λ0 = λmin(Θ) > 0 for
all subsets of data samples. For δ ∈ (0, 1), if m = Ω( n7

λ4
0δ

4ϵ2
) and η = O(λ0

n2 ), with probability at
least 1− δ, the network can achieve near-zero training error,

∥Y − f(X; θ(t))∥2 =

√√√√ K∑
k=1

n∑
i=1

(1− ηλi)2t(v⃗⊤i Y k)2 ± ϵ, (16)

where n denotes the number of training samples and m denotes the width of hidden layers. The NTK
Θ = V ⊤ΛV with Λ = {λi}ni=1 is a diagonal matrix of eigenvalues and V = {v⃗i}ni=1 is a unitary
matrix.

In this lemma, we take mean square error (MSE) loss as an example for the convenience of illustration.
The conclusion can be extended to other loss functions such as cross-entropy loss (see Appendix B.2
in [14]). From the lemma, we find the convergence rate is governed by the dominant term (16) as

Et(X,Y ) =
√∑K

k=1

∑n
i=1(1− ηλi)2t(v⃗⊤i Y

k)2, which is correlated with the alignment:

Theorem 1 (Relationship between the convergence rate and alignment). Under the same assumptions
as in Lemma 1, the convergence rate described by Et satisfies,

Tr[Y ⊤Y ]− 2tηA(X,Y ) ≤ E2
t (X,Y ) ≤ Tr[Y ⊤Y ]− ηA(X,Y ). (17)

Remark 1. In the above theorem, we demonstrate that the alignment can measure the convergence
rate. Especially, we find that both the upper bound and the lower bound of error Et(X,Y ) are
inversely proportional to the alignment, which implies that higher alignment will lead to achieving
faster convergence.

Now we analyze the generalization performance of the proposed method through complexity analysis.
We demonstrate that the ultra-wide networks can achieve a reasonable generalization bound.
Lemma 2 (Generalization bound with NTK, Theorem 5.1 of [13]). Suppose data S = {(xi, yi)}ni=1

are i.i.d. samples from a non-degenerate distribution p(x, y), and m ≥ poly(n, λ−1
0 , δ−1). Consider

any loss function ℓ : R× R → [0, 1] that is 1-Lipschitz, then with probability at least 1− δ over the
random initialization, the network trained by gradient descent for T ≥ Ω( 1

ηλ0
log n

δ ) iterations has
population risk Lp = E(x,y)∼p(x,y)[ℓ(fT (x; θ), y)] that is bounded as follows:

Lp ≤
√

2Tr[Y ⊤Θ−1(X,X)Y ]

n
+O

(√
log n

λ0δ

n

)
. (18)
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In this lemma, we show that the dominant term in the generalization upper bound is B(X,Y ) =√
2Tr[Y ⊤Θ−1Y ]

n . In the following theorem, we further prove that this bound is inversely proportional
to the alignment A(X,Y ).
Theorem 2 (Relationship between the generalization bound and alignment). Under the same assump-

tions as in Lemma 2, if we define the generalization upper bound as B(X,Y ) =

√
2Tr[Y ⊤Θ−1Y ]

n ,
then it can be bounded with the alignment as follows:

Tr2[Y ⊤Y ]

A(X,Y )
≤ n

2
B2(X,Y ) ≤ λmax

λmin

Tr2[Y ⊤Y ]

A(X,Y )
. (19)

Remark 2. Theorems 1 and 2 reveal that the cause for the correlated phenomenons “Train Faster”
and “Generalize Better” is the projection of label vector on the NTK space (alignment).

4.2 “ Train Faster, Generalize Better ” for active learning

Figure 1: Comparison between Em-
pirical Generalization Bound and
MMD.

In the NTK framework [13], the empirical average requires
data in S is i.i.d. samples (Lemma 2). However, this assump-
tion may not hold in the active learning setting with multiple
query rounds, because the training data is composed by i.i.d.
sampled initial label set and samples queried by active learn-
ing policy. To extend the previous analysis principle to active
learning, we follow [34] to reformulate the Lemma 2 as:

Lp ≤ (Lp − Lq) +

√
2Tr[Y ⊤Θ−1(X,X)Y ]

n
+O

(√
log n

λ0δ

n

)
,

(20)
where Lq = E(x,y)∼q(x,y)[ℓ(f(x; θ), y)], q(x, y) denotes the
data distribution after query, and X,Y includes initial training
samples and samples after query. There is a new term in the upper bound, which is the difference
between the true risk under different data distributions.

Lp − Lq =E(x,y)∼p(x,y)[ℓ(f(x; θ), y)]− E(x,y)∼q(x,y)[ℓ(f(x; θ), y)] (21)

Though in active learning the data distribution for the labeled samples may be different from
the original distribution, they share the same conditional probability p(y|x). We define g(x) =∫
y
ℓ(f(x; θ), y)p(y|x)dy, and then we have:

Lp − Lq =

∫
x

g(x)p(x)dx−
∫
x

g(x)q(x)dx. (22)

To measure the distance between two distributions, we employ the Maximum Mean Discrepancy
(MMD) with neural tangent kernel [35] (derivation in Appendix B.3).

Lp − Lq ≤ MMD(S0, S,HΘ) +O
(√C ln(1/δ)

n

)
. (23)

Slightly overloading the notation, we denote the initial labeled set as S0, HΘ as the associated Repro-
ducing Kernel Hilbert Space for the NTK Θ, and ∀x, x′ ∈ S,Θ(x, x′) ≤ C. Note, MMD(S0, S,HΘ)
is the empirical measure for MMD(p(x), q(x),HΘ). We empirically compute MMD and the dom-
inant term of the generalization upper bound B under the active learning setting with our method
dynamicAL. As shown in Figure 1, on CIFAR10 with a CNN target model (three convolutional layers
with global average pooling), the initial labeled set size |S| = 500, query round R = 1 and budget
size b ∈ {250, 500, 1000}, we observe that, under different active learning settings, the MMD is
always much smaller than the B. Besides, we further investigate the MMD and B for R ≥ 2 and
observe the similar results. Therefore, the lemma 2 still holds for the target model with dynamicAL.
More results and discussions for R ≥ 2 are in Appendix E.4 and the computation details of MMD
and NTK are in Appendix D.1.
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4.3 Alignment and training dynamics in active learning

Figure 2: Relation between Align-
ment and Training Dynamics.

In this section, we show the relationship between the align-
ment and the training dynamics. To be consistent with the
previous theoretical analysis (Theorem 1 and 2), we use the
training dynamics with mean square error under the ultra-
width condition, which can be expressed as GMSE(S) =
Tr
[
(f(X; θ)− Y )⊤Θ(X,X)(f(X; θ)− Y )

]
. Due to the lim-

ited space, we leave the derivation in Appendix A.3. To further
quantitatively evaluate the correlation between GMSE(S ∪Q)
and A(X∥XQ, Y ∥YQ), we utilize the Kendall τ coefficient [36]
to empirically measure their relation. As shown in Figure 2,
for CNN on CIFAR10 with active learning setting, where
|S| = 500 and |Q| = 250, there is a strong agreement between
GMSE(S ∪Q) and A(X∥XQ, Y ∥YQ), which further indicates
that increasing the training dynamics will lead to a faster conver-
gence and better generalization performance. More details about
this verification experiment are in Appendix D.2.

5 Experiments

5.1 Experiment setup

Baselines. We compare dynamicAL with the following eight baselines: Random, Corset, Confidence
Sampling (Conf), Margin Sampling (Marg), Entropy, and Active Learning by Learning (ALBL),
Batch Active learning by Diverse Gradient Embeddings (BADGE). Description of baseline methods
is in Appendix E.1.

Data sets and Target Model. We evaluate all the methods on three benchmark data sets, namely,
CIFAR10 [23], SVHN [24], and Caltech101 [25]. We use accuracy as the evaluation metric and
report the mean value of 5 runs. We consider three neural network architectures: vanilla CNN,
ResNet18 [26], and VGG11 [27]. For each model, we keep the hyper-parameters used in their official
implementations. More information about the implementation is in Appendix C.1.

Active Learning Protocol. Following the previous evaluation protocol [11], we compare all those
active learning methods in a batch-mode setup with an initial set size M = 500 for all those three data
sets, batch size b varying from {250, 500, 1000}. For the selection of test set, we use the benchmark
split of the CIFAR10 [23], SVHN [24] and sample 20% from each class to form the test set for the
Caltech101 [25].

5.2 Results and analysis

The main experimental results have been provided as plots due to the limited space. We also provide
tables in which we report the mean and standard deviation for each plot in Appendix E.3.

Overall results. The average test accuracy at each query round is shown in Figure 3. Our method
dynamicAL can consistently outperform other methods for all query rounds. This suggests that
dynamicAL is a good choice regardless of the labeling budget. And, we notice dynamicAL can work
well on data sets with a large class number, such as Caltech101. However, the previous state-of-the-art
method, BADGE, cannot be scaled up to those data sets, because the required memory is linear
with the number of classes. Besides, because dynamicAL depends on pseudo labeling, a relatively
large initial labeled set can provide advantages for dynamicAL. Therefore, it is important to examine
whether dynamicAL can work well with a small initial labeled set. As shown in Figure 3, dynamicAL
is able to work well with a relatively small initial labeled set (M = 500). Due to the limited space,
we only show the result under three different settings in Figure 3. More evaluation results are in
Appendix E.2. Moreover, although the re-initialization trick makes dynamicAL deviate from the
dynamics analysis, we investigate the effect of it to dynamicAL and provide the empirical observations
and analysis in Appendix E.5.

Effect of query size and query round. Given the total label budget B, the increasing of query
size always leads to the decreasing of query round. We study the influence of different query size
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Figure 3: Active learning test accuracy versus the number of query rounds for a range of conditions.

and query round on dynamicAL from two perspectives. First, we study the expected approximation
ratio with different query batch sizes on different data sets. As shown in Figure 4, under different
settings the expected approximation ratio always converges to 1 with the increase of training epochs,
which further indicates that the query set selected by using the approximated change of training
dynamics is a reasonably good result for the query set selection problem. Second, we study influence
of query round for actual performance of target models. The performance for different target models
on different data sets with total budge size B = 1000 is shown in Table 1. For certain query budget,
our active learning algorithm can be further improved if more query rounds are allowed.

10 15 20 25 30 35 40 45 50
Epoch

1.0

1.5

2.0

2.5

3.0

3.5

4.0


Q

∼
U
R(

̂
Q

|S
)

CIFAR10, ResNet
Batch Size b=250
Batch Size b=500
Batch Size b=1000

10 15 20 25 30 35 40
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5


Q

∼
U
R(

̂
Q

|S
)

SVHN, VGG
Batch Size b=250
Batch Size b=500
Batch Size b=1000

Figure 4: The Expectation of the Approximation Ratio with different query batch sizes b.

Table 1: Accuracy of dynamicAL with different query batch size b.

Setting CIFAR10+CNN CIFAR10+Resnet SVHN+VGG Caltech101+Resnet

R = 10, b = 100 36.84 40.92 76.34 37.06
R = 4, b = 250 36.72 40.78 75.26 36.48
R = 2, b = 500 36.71 40.46 74.10 35.91
R = 1, b = 1000 36.67 40.09 70.04 33.82

Comparison with different variants. The active learning criterion of dynamicAL can be written as∑
(x,y)∈S ∥∇θℓ(f(x; θu), ŷu)∥2 + γ∇θℓ(f(xu; θ), ŷu)

⊤∇θℓ(f(x; θ), y). We empirically show the
performance for γ ∈ {0, 1, 2,∞} in Figure 5. With γ = 0, the criterion is close to the expected
gradient length method [31]. And with γ = ∞, the selected samples are same with the samples
selected by using the influence function with identity hessian matrix criterion [29]. As shown in
Figure 5, the model achieves the best performance with γ = 2, which is aligned with the value
indicated by the theoretical analysis (Equation 15). The result confirms the importance of theoretical
analysis for the design of deep active learning methods.

6 Related work
Neural Tangent Kernel (NTK): Recent study has shown that under proper conditions, an infinite-
width neural network can be simplified as a linear model with Neural Tangent Kernel (NTK) [12].
Since then, NTK has become a powerful theoretical tool to analyze the behavior of deep learning ar-
chitecture (CNN, GNN, RNN) [33, 37, 38], random initialization [39], stochastic neural network [40],
and graph neural network [41] from its output dynamics and to characterize the convergence and
generalization error [13]. Besides, [15] studies the finite-width NTK, aiming at making the NTK
more practical.
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Figure 5: Test Accuracy of different variants.

Active Learning: Active learning aims at interactively query labels for unlabeled data points to
maximize model performances [2]. Among others, there are two popular strategies for active learning,
i.e., diversity sampling [42, 43, 44] and uncertainty sampling [45, 46, 47, 11, 48, 49, 29]. Recently,
several papers proposed to use gradient to measure uncertainty [49, 11, 29]. However, those methods
need to compute gradient for each class, and thus they can hardly be applied on data sets with a
large class number. Besides, recent works [50, 51] leverage NTK to analyze contextual bandit with
streaming data, which are hard to be applied into our pool-based setting.

7 Conclusion

In this work, we bridge the gap between the theoretic findings of deep neural networks and real-
world deep active learning applications. By exploring the connection between the generalization
performance and the training dynamics, we propose a theory-driven method, dynamicAL, which
selects samples to maximize training dynamics. We prove that the convergence speed of training and
the generalization performance is (positively) strongly correlated under the ultra-wide condition and
we show that maximizing the training dynamics will lead to a lower generalization error. Empirically,
our work shows that dynamicAL not only consistently outperforms strong baselines across various
setting, but also scales well on large deep learning models.
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A APPENDIX: Derivation of Objectives

For the notational convenience, we use f(x) to represent f(x; θ) in the Appendix.

A.1 Training Dynamics for Cross-Entropy Loss

The partial derivative for softmax function can be defined with the following,

∂σi(f(x))

∂f j(x)
=

{
σi(f(x))

(
1− σi(f(x))

)
, i = j,

−σi(f(x))σj(f(x)), i ̸= j
(24)

Then, we have:

∂ℓ(f(x), y)

∂t
= −

∑
i

yi
∂ log σif(x)

∂σi(f(x))

∂σi(f(x))

∂t

= −
∑
i

yi
1

σi(f(x))

∑
j

∂σi(f(x))

∂f j(x)

∂f j(x)

∂t

= −
∑
i

yi
∑
j

(
1[i == j]− σj(f(x))

)∂f j(x)

∂t

= −
∑
i

(
yi − σi(f(x))

)
∇θf

i(x)∇tθ

(25)

A.2 Derivation for Cross-Entropy Loss

∂ℓ(f(x), y)

∂θ
=

∂ℓ

∂f(x)

∂f(x)

∂θ
= −

∑
i

yi
1

σi(f(x))

∂σi(f(x))

f(x)

∂f(x)
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∑
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1
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σi(f(x))

∑
j

(
1[i == j]− σj(f(x))

)∂f j(x)

∂θ
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∑
j

(
σj(f(x))− yj

)∂f j(x)

∂θ

(26)

A.3 APPENDIX: Training Dynamics for Mean Squared Error

For the labeled data set S, we define the Mean Squared Error(MSE) as:

LMSE(S) =
∑

(x,y)∈S

ℓMSE(f(x), y) = −
∑

(x,y)∈S

∑
i∈[K]

1

2
(f i(x)− yi)2

Then the training loss dynamics for each sample can be defined as:

∂ℓMSE(f(x), y)

∂t
= −

∑
i

(
yi − f i(x)

)
∇θf

i(x)∇tθ

Because neural networks are optimized by gradient descent, thus:

∇tθ = θt+1 − θt =
∑

(x,y)∈S

∂ℓ(f(x), y)

∂θ
=

∑
(x,y)∈S

∑
j

(
f j(x)− yj

)∂f j(x)

∂θ

Therefore, the training dynamics of MSE loss can be expressed as:

GMSE(S) = −1

η

∂
∑

(x,y)∈S ℓMSE(f(x), y)

∂t
= (f(X)− Y )⊤K(X,X)(f(X)− Y )
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A.4 APPENDIX: Decomposition of the Change of Training Dynamics

According to the definition of training dynamics ( Equation (8) ), we have,

G(S) =
∑
i,j

∑
(xl,yl)∈S

(
σi(f(xl; θ))− yi

l

) ∑
(x

l
′ ,y

l
′ )∈S

∇θf
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j(xl

′ ; θ)
(
σj(f(xl
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l
′
)
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The change of training dynamics, ∆(Q̂|S) = G(S ∪ Q̂)−G(S), can be further simplified as:
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∑
i,j

∑
(xu,ŷu)∈Q̂

(
σi(f(xu; θ))− ŷi

u

) ∑
(xu′ ,ŷu′ )∈Q̂,u′ ̸=u

∇θf
i(xu′ ; θ)⊤∇θf

j(xu′ ; θ)
(
σj(f(xu′ ; θ))− ŷj

u′
)

=
∑

(xu,ŷu)∈Q̂

∆({(xu, ŷu)}|S) +
∑

(xu,ŷu),(xu′ ,ŷu′ )∈Q̂

di(xu, ŷu)
⊤Kij(xu, xu′)di(xu′ , ŷu′)

A.5 APPENDIX: Simplification of the Change of Training Dynamics

∆({(xu, ŷu)}|S) =2
∑
i,j

∑
(xu,ŷu)∈Q̂

(
σi(f(xu; θ))− ŷi

u

) ∑
(xl,yl)∈S

∇θf
i(xu; θ)

⊤∇θf
j(xl; θ)

(
σj(f(xl; θ))− yj

l

)
+
∑
i,j

∑
(xu,ŷu)∈Q̂

(
σi(f(xu; θ))− ŷi

u

)
∇θf

i(xu; θ)
⊤∇θf

j(xu; θ)
(
σj(f(xu; θ))− ŷj

u

)
The derivative of loss with respect to model parameters can be written as:

∂
∑

(x,y)∈S ℓ(f(x; θ), y)

∂θ
=

∑
(x,y)∈S

∑
j∈[K]

(
σj(f(x; θ))− yj)∇θf

j(x; θ)

Therefore, the change of training dynamics caused by {(xu, ŷu)} can be written as:

∆({(xu, ŷu)}|S) = ∥∇θℓ(f(xu; θ), ŷu)∥2 + 2
∑

(x,y)∈S

∇θℓ(f(xu; θ), ŷu)
⊤∇θℓ(f(x; θ), y)

B APPENDIX: Proofs for Theoretical Analysis

B.1 Proofs for Theorem 1

Lemma 1 (Convergence Analysis with NTK, Theorem 4.1 of [13]). Suppose λ0 = λmin(Θ) > 0 for
all subsets of data samples. For δ ∈ (0, 1), if m = Ω( n7

λ4
0δ

4ϵ2
) and η = O(λ0

n2 ), with probability at
least 1− δ, the network can achieve near-zero training error,

∥Y − ft(X; θ(t))∥2 =

√√√√ K∑
k=1

n∑
i=1

(1− ηλi)2t(v⃗⊤i Y k)2 ± ϵ (27)

where n denotes the number of training samples and m denotes the width of hidden layers. The NTK
Θ = V ⊤ΛV with Λ = {λi}ni=1 is a diagonal matrix of eigenvalues and V = {v⃗i}ni=1 is a unitary
matrix.
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Proof. According to [13], if m = Ω( n7

λ4
0δ

4ϵ2
) and learning ratio η = O(λ0

n2 ), then with
probability at least 1 − δ over the random initialization, we have, ∥Yl − ft(X; θ(t))∥2 =√∑K

k=1

∑n
i=1(1− ηλi)2t(v⊤i Y

k
l )2 ± ϵ. We decompose the NTK using Θ = V ⊤ΛV with

Λ = {λi}ni=1 a diagonal matrix of eigenvalues and V = {vi}ni=1 a unitary matrix. At each training
step in active learning, the labeled samples will be updated by S = S ∪ Q. We can apply the
convergence result in each of this step and achieve near zero error.

Theorem 1 (Relationship between convergence rate and alignment). Under the same assumptions as
in Lemma 1, the convergence rate described by Et satisfies,

Tr[Y ⊤Y ]− 2tηA(X,Y ) ≤ E2
t (X,Y ) ≤ Tr[Y ⊤Y ]− ηA(X,Y ) (28)

Proof. We first prove the inequality on the right hand side. It is easy to see that (1−ηλi)
2t ≤ (1−ηλi)

for each λi and t ≥ 1, based on the fact that ∀λi, 0 ≤ 1− ηλi ≤ 1. Then we can obtain,

Et(X,Y ) =

√√√√ K∑
k=1

n∑
i=1

(1− ηλi)2t(v⊤i Y
k)2 ≤

√√√√ K∑
k=1

n∑
i=1

(1− ηλi)(v⊤i Y
k)2

=
√
Tr[Y ⊤(I − ηΘ)Y ] =

√
Tr[Y ⊤Y ]− ηA(X,Y )

Then we use Bernoulli’s inequality to prove the inequality on the left hand side. Bernoulli’s inequality
states that, (1 + x)r ≥ 1 + rx, for every integer r ≥ 0 and every real number x ≥ −1. It is easy to
check that (−ηλi) ≥ −1, ∀λi. Therefore,

Et(X,Y ) =

√√√√ K∑
k=1

n∑
i=1

(1− ηλi)2t(v⊤i Y
k)2 ≥

√√√√ K∑
k=1

n∑
i=1

(1− 2tηλi)(v⊤i Y
k)2

=
√
Tr[Y ⊤(I − 2tηΘ)Y ] =

√
Tr[Y ⊤Y ]− 2tηA(X,Y )

B.2 Proof for Theorem 2

Lemma 2 (Generalization bound with NTK, Theorem 5.1 of [13]). Suppose data S = {(xi, yi)}ni=1

are i.i.d. samples from a non-degenerate distribution p(x, y), and m ≥ poly(n, λ−1
0 , δ−1). Consider

any loss function ℓ : R × R → [0, 1] that is 1-Lipschitz, with probability at least 1 − δ over the
random initialization, the network trained by gradient descent for T ≥ Ω( 1

ηλ0
log n

δ ) iterations has
population risk Lp = E(x,y)∼p(x,y)[ℓ(fT (x), y)] that is bounded as follows:

Lp ≤
√

2Tr[Y ⊤Θ−1(X,X)Y ]

n
+O

(√
log n

λ0δ

n

)
. (29)

Proof. We first show that the generalization bound regrading our method on ultra-wide networks.
The distance between weights of trained networks and their initialization values can be bounded
as, ∥wr(t) − wr(0)∥ = O( n√

mλ0

√
δ
). We then give a bound on the ∥W (t) − W (0)∥F , where

W = {w1, w2, . . . } is the set of all parameters. We definite Z = ∂f(t)
∂W (t) , then the update function

is given by W (t+ 1) = W (t)− ηZ(Z⊤W (t)− Y ). Summing over all the time step t = 0, 1, . . . ,
we can obtain that W (∞) −W (0) =

∑∞
t=0 ηZ(I − ηΘ)y = ZΘ−1Y . Thus the distance can be

measured by ∥W (∞)−W (0)∥2F = Tr[Y ⊤Θ−1Y ].

Then the key step is to apply Rademacher complexity. Given R > 0, with probability at least 1− δ,
simultaneously for every B > 0, the function class FB,R = {f : ∥wr(t) − wr(0)∥ ≤ R (∀r ∈
m), ∥W (∞)−W (0)∥2F ≤ B} has empirical Rademacher complexity bounded as,

RS(FB,R) =
1

n
Eϵi∈{±1}n

[
sup

f∈FB,R

n∑
i=1

ϵif(xi)

]
≤ B√

2n

(
1+(

2 log 2
δ

m
)1/4

)
+2R2

√
m+R

√
2 log

2

δ
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where B =
√
Tr[Y ⊤Θ−1(X,X)Y ], and R = n√

mλ0

√
δ

.

Finally, Rademacher complexity directly gives an upper bound on generalization error [52],

supf∈F{Lp(f) − LS(f)} ≤ 2RS + 3c
√

log(2/δ)
2n , where LS(f) ≤ 1√

n
. Based on this, we ap-

ply a union bound over a finite set of different i’s. Then with probability at least 1 − δ/3 over

the sample S, we have supf∈FR,Bi
{Lp(f) − LS(f)} ≤ 2RS(FBi,R) + O(

√
log n

λ0δ

n ), ∀i ∈
{1, 2, . . . , O( n

λ0
)}. Taking a union bound, we know that with probability at least 1 − 2

3δ over

the sample S, we have, fT ∈ FB∗
i ,R

for some i∗, RS(FB∗
i ,R

) ≤
√

Tr[Y ⊤Θ−1(X,X)Y ]
2n + 2√

n
and

supfT∈FB∗
i
,R
{Lp(fT )− LS(fT )} ≤ 2RS(FB∗

i ,R
) +O(

√
log n

λ0δ

n ). These together can imply,

Lp(f) ≤
1√
n
+ 2RS(FB∗

i ,R
) +O(

√
log n

λ0δ

n
) ≤

√
2Tr[Y ⊤Θ−1(X,X)Y ]

n
+O

(√
log n

λ0δ

n

)
.

More proof details can be found in [13].

Theorem 2 (Relationship between the generalization bound and alignment). Under the same assump-

tions as in Lemma (2), if we define the generalization upper bound as B(X,Y ) =

√
2Tr[Y ⊤Θ−1Y ]

n ,
then it can be bounded with the alignment as follows,

Tr2[Y ⊤Y ]

A(X,Y )
≤ n

2
B2(X,Y ) ≤ λmax

λmin

Tr2[Y ⊤Y ]

A(X,Y )
(30)

Proof. We first expand the following expression:

n

2
B2(X,Y )A(X,Y ) =

K∑
k=1

n∑
i=1

λi(v
⊤
i Y

k)2
K∑

k=1

n∑
i=1

1

λi
(v⊤i Y

k)2

Then we use this expansion to prove the inequality on the left hand side,

K∑
k=1

n∑
i=1

λi(v
⊤
i Y

k)2
K∑

k=1

n∑
i=1

1

λi
(v⊤i Y

k)2 =

K∑
k=1

K∑
k′=1

( n∑
i=1

λi(v
⊤
i Y

k)2
n∑

i=1

1

λi
(v⊤i Y

k′
)2
)

≥
K∑

k=1

K∑
k′=1

( n∑
i=1

(v⊤i Y
k)2

n∑
i=1

(v⊤i Y
k′
)2
)

=
( K∑
k=1

Y k⊤V ⊤V Y k
)( K∑

k=1

Y k⊤V ⊤V Y k
)

= Tr2[Y ⊤Y ]

The second line is due to quadratic mean is greater or equal to geometric mean. Finally, we prove the
inequality on the right hand side,
K∑

k=1

n∑
i=1

λi(v
⊤
i Y

k)2
K∑

k=1

n∑
i=1

1

λi
(v⊤i Y

k)2 =
K∑

k=1

K∑
k′=1

( n∑
i=1

λi(v
⊤
i Y

k)2
n∑

i=1

1

λi
(v⊤i Y

k′
)2
)

≤
K∑

k=1

K∑
k′=1

λmax

λmin

( n∑
i=1

(v⊤i Y
k)2

n∑
i=1

(v⊤i Y
k′
)2
)

=
λmax

λmin

( K∑
k=1

Y k⊤V ⊤V Y k
)( K∑

k=1

Y k⊤V ⊤V Y k
)

=
λmax

λmin
Tr2[Y ⊤Y ]

B.3 Derivation for Maximum Mean Discrepancy

The difference between truth risk over p(x) and q(x) can be defined as,

Lp − Lq =

∫
x

g(x)p(x)dx−
∫
x

g(x)q(x)dx
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where g(x) =
∫
y
ℓ(f(x; θ), y)p(y|x)dy. Follow [34], we assume that the prediction functions

have bounded norm ∥f∥F . Thus, the function g is bounded. By given the loss function, g is also
measurable. Then, ∃ ĝ ∈ C(x), such that,

∫
x

g(x)p(x)dx−
∫
x

g(x)q(x)dx =

∫
x

ĝ(x)p(x)dx−
∫
x

ĝ(x)q(x)dx

≤ sup
ĝ∈C(x)

∫
x

ĝ(x)p(x)dx−
∫
x

ĝ(x)q(x)dx = MMD
(
p(x), q(x), C

)
where C(x) is the function class of bounded and continuous functions of x. To make the MMD term
be measurable, we empirically restrict the MMD on a reproducing kernel Hilbert space (RKHS) with
the characteristic kernel HΘ. Following [53], we know that the relationship between the true MMD
and the empirical MMD is,

P
(∣∣MMD

(
p(x), q(x), C

)
− MMD(S0, S,HΘ)

∣∣ ≥ ϵ+ 2(

√
C

n0
+

√
C

n
)
)

≤ 2e
−ϵ2n0n

2C(n0+n)

where MMD(S0, S,HΘ) is the empirical measure for MMD(p(x), q(x),HΘ). Slightly overloading
the notation, we denote S ∼ q(x), which may not be i.i.d., and the initial label set S0 ∼ p(x).
Then, in the active learning setting, S0 ⊆ S. Further, we denote |S0| = n0, |S| = n and ∀x, x′ ∈
S,Θ(x, x′) ≤ C. Therefore, we have,

√
C
n +

√
C
n0

≥ 2
√

C
n . For constant factor γ = M

M+B , we
have the following inequality,

P
(
MMD

(
p(x), q(x), C

)
≥ MMD(S0, S,HΘ) + ϵ+ 4

√
C

n

)
≤ 2e

−γϵ2n
4C

Denoting 2e
−γϵ2n

4C = δ/2, then we have ϵ =
√

4C ln(4/δ)
γn . Combining all the above results, we show

that with probability at least 1− δ, the following inequality holds:

Lp − Lq ≤ MMD(S0, S,HΘ) + 4

√
C

n
+

√
4C ln(4/δ)

γn

Then, we can get,

Lp − Lq ≤ MMD(S0, S,HΘ) +O

(√
C ln(1/δ)

n

)

C APPENDIX: More details of experimental settings

C.1 Implementation Detail

For simple CNN model, we utilize the same architecture used in Pytorch CIFAR10 Image Classi-
fication Tutorial 1. For ResNet model, we use the Pytorch Offical implementation of ResNet-18 2

and set the output dimension to the number of classes. For VGG model, we use the Pytorch Offical
implementation of VGG-11 3. Besides, we leverage the library BackPACK [54] to collect the gradient
of samples in batch.

We keep a constant learning rate of 0.001 for all three datasets and all three models. All the codes
mentioned above use the MIT license. All experiments are done with four Tesla V100 SXM2 GPUs
and a 12-core 2.2GHz CPU.

1https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
2https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
3https://github.com/pytorch/vision/blob/main/torchvision/models/vgg.py
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C.2 Computation of Acquisition Function

The acquisition function employed by dynamicAL can be written as the Equation 15. Furthermore,
we simplify it into the following form:

∆({(xu,ŷu)}|S) = ∥∇θℓ(f(xu; θ), ŷu)∥2 + 2∇θℓ(f(xu; θ), ŷu)
⊤∇θℓ(f(XS ; θ), YS). (31)

where ∇θℓ(f(XS ; θ), YS) =
∑

(x,y)∈S ∇θℓ(f(x; θ), y). The computational requirement of the
Equation 31 is mainly composed of two parts, the computation of gradient and the computation of
the inner product. While PyTorch [55] can compute efficiently batch gradients, BackPACK [54]
optimizes the computation of individual gradient and compute the gradient norm, sample per sample,
at almost no time overhead. Thus, the acquisition function can be computed at low computational
costs. Note, the efficiency of BackPACK has been verified by several recent works with extensive
experiments[56, 57].

D APPENDIX: Verification Experiments under Ultra-wide Condition

D.1 Experiment Setting and Computational Detail for the Empirical Comparison between
NTK and MMD

Experiment Setting For the verification experiment shown in Figure 1, we employ a simple CNN
as the target model, in which there are three convolutional layers following with global average
pooling layer, on the CFAIR10 data set. Note, this CNN architecture is widely used in NTK analysis
works [33, 58]. To make the verification experiment close to the application setting, we keep size of
initial labeled set and query batch size same as what we used in Section 5.

Computational Detail We follow [35] to compute the MMD with NTK kernel. The MMD term,
MMD(p(x), q(x),HΘ), can be simplified into the following form:

MMD2(p(x), q(x)) = E[Θ(xi, xj) +Θ(x′
i, x

′
j)− 2Θ(xi, x

′
j)] (32)

where xi, xj ∼ p(x) and x′
i, x

′
j ∼ q(x). Then, we define set S0 as {x1, ..., xn0

} ∼ p(x) and
set S as {x′

1, ..., x
′
n} ∼ q(x), where n0 ≤ n. The MMD2(S0, S) is an unbiased estimation for

MMD2(p(x), q(x)), can we explicitly computed by:

MMD2(S0, S) =
1

m2 −m
a+

1

n2 − n
b− 2

m(n− 1)
c

a =

(
m∑
i,j

Θ(xi, xj)−
m∑
i

Θ(xi, xi)

)

b =

(
n∑
i,j

Θ(x′
i, x

′
j)−

n∑
i

Θ(x′
i, x

′
i)

)

c =

(
m∑
i

n∑
j

Θ(xi, x
′
j)−

m∑
i,j

Θ(xi, x
′
i)

)
(33)

Therefore, the MMD term of Equation (23), MMD(S0, S,HΘ) , can be empirically approximated

by
√
MMD2(S0, S).

D.2 Experiment for the Correlation Study between Training Dynamics and Alignment

Experiment Setting. For the verification experiment shown in Figure 2, we also use the simple
CNN on CIFAR10. And to keep consistent with the application setting, we set |S| = 500 and
|Q| = 250. The Q is randomly sampled from the unlabeled set and the labeled set S is fixed. We
independently sample Q 150 times to compute the correlation between between GMSE(S ∪Q) and
A(X∥XQ, Y ∥YQ).

Correlation between Training Dynamics computed with pseudo-labels and Alignment.
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Figure 6: Relation between Align-
ment and Training Dynamics com-
puted with the pseudo-label.

In Figure 2, we compute the training dynamics with the
ground-truth label. To study the effect of pseudo-labels,
we further provide the relation between training dynamics
computed with pseudo-labels GMSE(S ∪Q) and alignment
A(X∥XQ, Y ∥YQ), in which we compute the pseudo-labels
with Θ(XQ, X)⊤Θ(X,X)−1Y . The result is shown in the
Figure 6. Note that we keep hyperparameters the same as pre-
viously described. Compared with Figure 2, we find that the
positive relationship between A and the G computed with
ground-truth labels is stronger than the G computed with
pseudo-labels. The result is aligned with our expectations,
because the extra noise is introduced by the pseudo-labels.
But, the Kendall τ coefficient still achieves 0.46 for A and
the G computed with pseudo-labels which indicates the utility
of using G calculating with pseudo-labels as the acquisition
function to query samples.

D.3 Correlation Study
between Training Dynamics and Generalization Bound

We present the relation between the training dynamics and the
generalization bound in Figure 7. Same as the previous, we set |S| = 500 and |Q| = 250 and the Q
is randomly sampled from the unlabeled set. The result shows that with the increase of G, B will
decrease. This empirical observation is aligned with our expectation, because Theorem 2 indicates
that the alignment A is inverse proportional to B and Figure 2 tells us that the G is proportional to
A. Besides, the τ achieves -0.253 which indicates that the A is moderately inverse proportional to
B [59].

Figure 7: Relationship between Training Dynamics and Generalization.

E APPENDIX: More details of experimental results

E.1 Baselines

1. Random: Unlabeled data are randomly selected at each round.
2. Coreset: This method performs a clustering over the last hidden representations in the

network, and calculates the minimum distance between each candidate sample’s embedding
and embeddings of labeled samples. Then data samples with the maximum distances are
selected. [60].

3. Confidence Sampling (Conf): The method selects b examples with smallest predicted class
probability maxKi f i(x; θ) [61].
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4. Margin Sampling (Marg): The bottom b examples sorted according to the example’s multi-
class margin are selected. The margin is defined as f i(x; θ)− f j(x; θ), where i and j are
the indices of the largest and second largest entries of f(x; θ) [62].

5. Entropy: Top b samples are selected according to the entropy of the example’s predictive
class probability distribution, the entropy is defined as H((f i(x; θ))Ki=1), where H(p) =∑K

i pi ln
1
pi

[61].

6. Active Learning by Learning (ALBL): The bandit-style meta-active learning algorithm
combines Coreset and Conf [63].

7. Batch Active learning by Diverse Gradient Embeddings (BADGE): b samples are selected by
using k-means++ seeding on the gradients of the final layer, in order to query by uncertainty
and diversity. [11].

E.2 Experiment Results

The results for ResNet18, VGG11, and vanilla CNN on CIFAR10, SVHN, and Caltech101 with
different batch sizes have been shown in the Figure 3 and 8. Note, for the large batch size setting
(b = 1000) on Caltech101, we set the number of query round R = 4, in which 49.2% images will be
labeled after 4 rounds.
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Figure 8: The evaluation results for different active learning methods under a range of conditions.

E.3 Numerical Result of Main Experiments

For the the main experiments, we report the means and standard deviations of active learning
performance under different settings in the the following tables.

Table 2: CIFAR10, CNN, Query Batch Size:250, Initial Set Size:500
RANDOM MARG ENTROPY CORESET CONF ALBL BADGE dynamicAL

0 32.32%±1.308% 32.48%±1.286% 32.32%±1.269% 32.41%±1.281% 32.27%±1.266% 32.50%±1.263% 32.66%±1.182% 32.57%±1.423%
1 33.00%±1.175% 33.16%±1.165% 32.74%±1.617% 32.75%±1.306% 33.00%±1.703% 32.98%±1.184% 33.45%±1.813% 33.52%±1.311%
2 34.14%±1.322% 34.41%±1.130% 34.06%±1.546% 33.77%±1.011% 34.21%±1.426% 34.02%±1.392% 34.66%±1.483% 34.70%±1.019%
3 35.05%±1.508% 35.50%±1.301% 35.16%±1.679% 34.44%±0.937% 35.25%±1.344% 34.97%±1.227% 35.75%±1.024% 35.78%±1.115%
4 35.64%±1.945% 36.55%±1.249% 36.14%±1.646% 35.08%±1.396% 36.59%±1.508% 35.58%±1.177% 36.33%±0.791% 36.72%±0.716%
5 36.28%±1.124% 37.18%±1.547% 36.77%±1.004% 35.68%±1.390% 37.19%±1.063% 36.15%±1.311% 37.29%±1.126% 37.45%±1.573%
6 36.88%±1.568% 37.73%±1.546% 37.28%±1.983% 36.18%±1.419% 37.65%±2.062% 36.65%±1.111% 37.90%±1.988% 37.95%±1.414%
7 37.29%±1.605% 38.01%±0.874% 37.67%±1.723% 36.57%±1.346% 38.09%±1.174% 37.07%±1.731% 38.28%±1.474% 38.41%±1.295%
8 37.59%±1.848% 38.43%±1.675% 38.01%±1.601% 36.98%±0.748% 38.58%±1.556% 37.35%±1.135% 38.51%±1.091% 38.70%±1.291%
9 37.85%±1.789% 38.75%±1.550% 38.29%±1.312% 37.25%±1.527% 38.91%±1.902% 37.57%±1.170% 38.78%±0.776% 38.91%±1.358%
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Table 3: CIFAR10, CNN, Query Batch Size:500, Initial Set Size:500
RANDOM MARG ENTROPY CORESET CONF ALBL BADGE dynamicAL

0 32.26%±1.164% 32.31%±1.441% 32.29%±1.397% 32.54%±1.331% 32.32%±1.288% 32.41%±1.432% 32.49%±1.320% 32.37%±1.049%
1 34.87%±1.286% 34.89%±1.575% 34.58%±1.664% 33.84%±1.368% 34.75%±1.503% 34.08%±1.368% 34.44%±1.230% 34.88%±1.557%
2 36.45%±0.842% 36.69%±1.456% 36.50%±1.463% 35.96%±1.667% 36.73%±1.744% 35.62%±1.536% 36.41%±1.175% 36.78%±1.253%
3 37.16%±0.767% 37.99%±1.356% 37.30%±1.221% 36.20%±1.086% 38.12%±1.663% 36.55%±1.327% 37.56%±1.284% 38.30%±1.152%
4 37.89%±0.880% 39.15%±1.056% 38.23%±0.878% 36.73%±1.011% 39.10%±1.336% 37.20%±1.381% 38.49%±1.238% 39.37%±0.708%
5 38.59%±0.861% 39.98%±1.562% 39.01%±1.278% 37.33%±1.373% 39.81%±1.402% 37.80%±1.560% 39.61%±1.219% 40.09%±0.940%
6 39.15%±1.108% 40.70%±1.391% 39.68%±1.315% 37.97%±1.393% 40.47%±1.126% 38.47%±1.270% 40.55%±1.066% 40.75%±1.671%
7 39.51%±1.219% 40.99%±1.217% 40.09%±1.408% 38.53%±1.600% 41.05%±1.448% 39.11%±1.385% 40.97%±0.814% 41.21%±1.433%
8 39.90%±0.807% 41.39%±1.614% 40.39%±1.357% 39.06%±1.156% 41.30%±1.865% 39.55%±1.595% 41.27%±1.409% 41.59%±1.013%
9 40.17%±1.170% 41.64%±1.287% 40.71%±0.739% 39.43%±0.892% 41.55%±1.341% 39.95%±1.299% 41.41%±0.949% 41.78%±0.645%

Table 4: CIFAR10, ResNet, Query Batch Size:500, Initial Set Size:500
RANDOM MARG ENTROPY CORESET CONF ALBL BADGE dynamicAL

0 28.75%±1.780% 28.75%±0.369% 28.63%±1.394% 28.63%±1.120% 28.31%±1.011% 28.75%±0.957% 28.95%±1.040% 28.52%±0.686%
1 34.11%±3.088% 34.62%±2.022% 34.42%±0.849% 34.57%±0.992% 33.49%±1.269% 34.42%±2.077% 34.26%±1.740% 35.58%±2.858%
2 39.63%±2.157% 39.63%±0.313% 40.08%±1.022% 38.94%±1.408% 38.23%±1.454% 40.16%±2.574% 39.78%±1.384% 40.46%±0.959%
3 41.38%±2.357% 42.15%±0.810% 42.18%±1.271% 40.96%±0.961% 40.87%±0.860% 42.26%±2.347% 41.74%±1.230% 42.51%±0.799%
4 43.18%±1.809% 44.09%±1.165% 44.09%±1.150% 42.60%±1.094% 43.10%±1.325% 43.52%±3.064% 43.76%±1.364% 44.36%±0.980%
5 44.73%±2.253% 45.57%±1.115% 45.00%±0.731% 43.86%±1.369% 44.83%±1.388% 44.64%±3.097% 44.73%±1.675% 46.02%±0.754%
6 46.00%±2.193% 47.17%±0.929% 46.74%±1.118% 45.08%±1.549% 45.83%±1.426% 46.22%±2.601% 46.38%±1.607% 47.34%±1.027%
7 46.80%±2.134% 48.18%±1.230% 47.69%±1.253% 46.02%±1.589% 47.47%±1.424% 47.18%±2.384% 47.17%±1.404% 48.48%±1.452%
8 47.91%±1.722% 49.26%±0.652% 49.05%±1.113% 47.14%±1.880% 48.40%±1.178% 48.18%±2.503% 48.11%±1.049% 49.58%±1.673%
9 48.84%±1.584% 49.75%±1.341% 49.46%±1.282% 48.07%±1.480% 49.35%±1.269% 49.45%±2.529% 49.06%±0.850% 50.50%±1.301%

Table 5: CIFAR10, ResNet, Query Batch Size:1000, Initial Set Size:500
RANDOM MARG ENTROPY CORESET CONF ALBL BADGE dynamicAL

0 28.34%±1.465% 28.07%±2.604% 28.24%±1.756% 28.41%±0.722% 29.05%±1.137% 29.06%±0.847% 28.43%±1.176% 28.48%±2.062%
1 40.08%±0.329% 39.57%±1.551% 39.09%±2.180% 38.95%±1.047% 39.50%±2.340% 39.67%±1.489% 39.46%±3.020% 40.09%±1.795%
2 45.63%±1.253% 45.43%±0.444% 44.48%±1.823% 43.78%±0.986% 45.62%±1.882% 43.58%±1.329% 44.55%±3.654% 45.77%±2.290%
3 47.90%±1.257% 47.96%±0.735% 48.15%±2.509% 45.93%±0.682% 48.82%±1.797% 47.24%±1.926% 47.39%±4.189% 49.22%±1.704%
4 50.13%±1.207% 50.49%±0.807% 49.97%±2.819% 48.14%±0.566% 50.79%±1.870% 49.05%±1.831% 49.13%±4.053% 51.50%±1.925%
5 52.14%±1.517% 52.24%±0.781% 52.00%±2.762% 49.85%±1.075% 52.59%±2.202% 50.59%±1.636% 50.94%±3.628% 53.24%±1.927%
6 53.33%±1.300% 53.87%±0.635% 53.57%±3.123% 52.01%±0.772% 53.99%±2.390% 52.69%±1.599% 52.36%±3.924% 55.06%±1.697%
7 54.84%±1.238% 55.19%±1.136% 54.79%±3.144% 52.99%±1.147% 55.60%±2.002% 54.20%±1.685% 53.77%±3.985% 56.33%±1.613%
8 55.86%±1.161% 56.90%±0.732% 56.23%±3.182% 54.45%±0.821% 56.79%±2.033% 55.20%±1.868% 54.91%±4.104% 57.76%±1.796%
9 56.84%±0.979% 57.73%±0.500% 57.29%±3.225% 55.42%±0.954% 57.70%±2.042% 56.67%±1.783% 56.02%±3.935% 58.56%±1.574%

Table 6: SVHN, VGG, Query Batch Size:500, Initial Set Size:500
RANDOM MARG ENTROPY CORESET CONF ALBL BADGE dynamicAL

0 25.94%±7.158% 26.15%±6.290% 26.41%±8.994% 25.83%±5.845% 26.52%±7.489% 25.31%±5.030% 26.38%±9.100% 26.30%±5.505%
1 61.23%±4.812% 63.93%±3.127% 59.02%±4.724% 57.02%±3.672% 61.99%±2.613% 62.14%±5.531% 58.70%±5.615% 63.01%±12.293%
2 71.35%±2.364% 74.08%±0.933% 71.25%±1.459% 67.95%±2.870% 73.31%±2.828% 71.75%±2.555% 74.74%±2.978% 74.10%±4.557%
3 76.34%±1.626% 79.17%±1.064% 76.74%±1.521% 73.76%±2.844% 78.02%±1.939% 77.65%±1.518% 77.75%±2.100% 79.20%±2.651%
4 78.86%±1.378% 82.18%±0.504% 79.67%±0.809% 78.14%±2.486% 81.32%±1.901% 81.09%±1.005% 80.16%±1.353% 82.33%±2.134%
5 80.56%±1.149% 83.85%±0.750% 81.87%±0.638% 80.34%±2.339% 83.31%±1.529% 83.37%±1.225% 82.94%±0.830% 84.19%±1.940%
6 81.98%±1.334% 85.61%±0.624% 83.56%±0.541% 82.32%±1.592% 84.94%±0.858% 85.19%±0.993% 83.69%±0.975% 85.80%±1.498%
7 83.00%±1.048% 86.62%±0.607% 84.94%±0.079% 83.98%±1.394% 85.97%±1.179% 86.31%±0.977% 85.15%±0.760% 86.75%±1.426%
8 83.59%±0.945% 87.57%±0.625% 85.78%±0.068% 85.26%±1.431% 87.13%±0.679% 87.55%±0.831% 86.61%±0.478% 87.91%±1.264%
9 84.42%±0.744% 88.23%±0.600% 87.11%±0.437% 86.18%±0.886% 87.87%±0.598% 87.89%±0.780% 87.29%±0.441% 88.52%±1.240%

Table 7: SVHN, VGG, Query Batch Size:1000, Initial Set Size:500
RANDOM MARG ENTROPY CORESET CONF ALBL BADGE dynamicAL

0 25.90%±3.479% 26.20%±5.409% 26.85%±4.403% 26.18%±6.853% 27.21%±8.721% 26.60%±4.688% 26.88%±6.248% 26.43%±8.047%
1 70.26%±3.154% 69.06%±3.646% 68.72%±2.156% 68.46%±1.111% 69.85%±3.485% 70.51%±3.487% 70.09%±2.690% 70.04%±1.650%
2 77.91%±1.061% 78.24%±2.237% 78.56%±0.492% 77.66%±1.784% 78.89%±2.809% 78.14%±1.494% 78.67%±1.799% 78.86%±1.710%
3 81.25%±0.812% 83.68%±1.657% 82.83%±0.527% 82.34%±1.461% 83.75%±2.165% 83.50%±1.669% 83.07%±1.334% 83.11%±1.269%
4 83.63%±0.746% 86.12%±1.251% 85.80%±0.744% 85.34%±1.126% 85.91%±1.128% 86.18%±0.979% 86.50%±1.087% 85.70%±1.179%
5 85.17%±0.870% 88.04%±1.022% 87.66%±0.683% 87.19%±0.928% 87.61%±1.044% 87.65%±1.031% 88.03%±0.742% 87.46%±1.054%
6 86.06%±0.822% 89.13%±0.712% 88.96%±0.395% 88.65%±0.505% 88.90%±0.845% 88.93%±0.809% 88.41%±0.783% 88.89%±1.274%
7 87.30%±0.948% 90.36%±0.532% 90.00%±0.257% 89.65%±0.486% 90.18%±0.706% 89.83%±0.747% 90.53%±0.495% 90.09%±1.149%
8 87.69%±0.890% 90.95%±0.375% 90.67%±0.385% 90.15%±0.410% 90.96%±0.677% 90.75%±0.567% 91.25%±0.432% 90.95%±0.782%
9 88.28%±0.723% 91.59%±0.417% 91.25%±0.353% 90.64%±0.311% 91.66%±0.755% 91.41%±0.665% 91.76%±0.367% 91.67%±0.840%
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Table 8: Caltech101, ResNet, Query Batch Size:500, Initial Set Size:500
RANDOM MARG ENTROPY CORESET CONF ALBL dynamicAL

0 21.59%±1.431% 21.98%±1.688% 21.49%±1.681% 21.39%±1.738% 21.98%±1.459% 21.48%±1.828% 21.38%±1.323%
1 25.84%±1.112% 28.42%±1.677% 27.43%±0.760% 28.61%±1.224% 27.25%±1.155% 28.02%±1.515% 29.34%±2.111%
2 34.94%±0.635% 34.76%±1.745% 32.94%±1.224% 35.37%±1.561% 32.85%±0.849% 35.86%±1.012% 36.14%±1.234%
3 37.34%±1.088% 39.70%±1.328% 36.36%±0.636% 40.81%±1.005% 37.52%±1.250% 40.20%±1.091% 41.19%±0.789%
4 43.87%±0.867% 43.26%±0.612% 40.12%±0.805% 45.38%±0.508% 41.82%±1.104% 45.27%±0.725% 46.11%±1.138%
5 45.45%±1.672% 46.25%±1.562% 43.24%±1.617% 47.81%±1.683% 44.60%±1.295% 48.35%±1.729% 49.42%±1.298%
6 47.60%±1.383% 49.20%±1.310% 45.71%±1.047% 50.60%±1.596% 46.74%±0.760% 51.20%±1.466% 52.31%±1.739%
7 49.97%±0.530% 51.40%±1.571% 48.19%±0.928% 52.80%±1.887% 49.19%±0.885% 53.90%±1.166% 55.03%±1.098%
8 52.06%±1.476% 53.56%±1.044% 50.81%±0.943% 55.31%±1.105% 51.99%±1.383% 56.22%±0.838% 56.92%±1.153%
9 54.04%±0.898% 55.92%±0.496% 53.05%±0.554% 56.93%±0.691% 54.96%±0.981% 57.99%±0.805% 58.81%±1.040%

Table 9: Caltech101, ResNet, Query Batch Size:1000, Initial Set Size:500
RANDOM MARG ENTROPY CORESET CONF ALBL dynamicAL

0 22.13%±1.050% 22.05%±1.011% 21.83%±0.725% 20.98%±0.631% 22.03%±1.364% 22.05%±0.633% 21.42%±1.735%
1 33.91%±1.330% 33.80%±1.002% 31.98%±1.000% 33.40%±0.962% 32.43%±0.895% 33.66%±2.174% 33.83%±1.438%
2 42.08%±0.560% 41.22%±0.730% 39.23%±0.981% 43.24%±0.960% 40.05%±0.988% 43.28%±2.360% 43.27%±2.280%
3 47.43%±0.700% 47.16%±0.659% 46.26%±0.968% 50.51%±0.706% 47.87%±0.698% 50.10%±2.082% 50.43%±1.634%
4 52.77%±0.980% 54.52%±1.288% 54.11%±1.347% 56.15%±1.284% 53.76%±1.196% 56.96%±1.733% 57.52%±1.189%

E.4 Maximum Mean Discrepancy for Multiple Rounds

As shown in Figure 1, the MMD term is much smaller than the B at the first query round. To better
understand the relation between MMD and B for multiple query setting, we measure the MMD/B
for R ≥ 2. As shown in Figure 9, B is much larger than MMD even multiple query rounds. Besides,
we notice that, for the first round, the larger query batch always leads to larger MMD/B, because the
sampling bias introduced by the query policy will be amplified by using large batch size.
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Figure 9: MMD/B for larger query round.

Furthermore, we measure the MMD/B with a constant total budget size but different query rounds.
The result is shown in Table 10. As our expectation, spending the total query budget in one query
round will induce the largest MMD/B. And, with more query rounds, the MMD/B will be lower.

Table 10: MMD/B under constant budget size.
SETTING R = 10, b = 100 R = 4, b = 250 R = 2, b = 500 R = 1, b = 1000

MMD/B 0.004999 0.005253 0.005367 0.005455

E.5 Performance under the Re-initialization Setting

To study the effectiveness of dynamicALunder the re-initialization setting, we compare dynamicAL
with the strong baseline involving the re-initialization trick in its algorithm design, e.g., Coreset [60].
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Following [11], we query samples when training accuracy is greater than 99% and the results
are summarized in Table 11 and 12. The results show that dynamicAL can still be better than or
competitive with the commonly used active learning methods. We notice that the improvement in
the non-retraining setting is more significant. This is as our expectation. The dynamic analysis
(Equation (8)), that dynamicAL is based on, considers the change of dynamics according to the model’s
current parameters. The re-initialization trick will not only causes the computational overhead of
retraining, but also makes dynamicAL deviate from the analysis (Section 4).

E.6 Performance with large query rounds

We provide the experiments with b = 500, r = 15 on Caltech101 data set with ResNet18 as the
backbone. We ignore the BACKGROUND Google label and then we have 8677 images in total.
At the last round, we run out of all images in the pool. As shown in the Figure 10, our method
consistently outperforms those baselines. Note, due to the non-retraining setting, the model will have
different performance even if all the samples are used for the training.
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Figure 10: The evaluation result with larger query round on Caltech101.

Table 11: CIFAR10, ResNet, Query Batch Size 500, Initial Set Size 500.
#ROUND RANDOM CORESET dynamicAL

0 30.80±1.81 30.77±0.92 30.94±2.17
1 35.80±1.52 36.62±2.10 36.47±0.13
2 42.91±1.75 43.16±1.79 42.74±2.44
3 43.76±0.65 44.35±2.25 46.43±1.07
4 47.03±1.19 48.74±1.94 49.38±1.80
5 49.16±1.77 50.20±1.25 51.61±1.09
6 52.43±1.33 53.44±1.37 54.33±1.76
7 52.81±1.55 53.89±0.78 54.59±1.04
8 54.56±0.23 57.12±1.11 57.50±1.28
9 58.08±1.48 59.62±1.50 60.35±1.80
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Table 12: SVHN, VGG, Query Batch Size 500, Initial Set Size 500.
#ROUND RANDOM CORESET dynamicAL

0 52.68±1.97 52.74±6.16 52.59±3.73
1 67.64±1.99 68.08±3.61 66.48±4.10
2 73.46±1.51 74.93±1.44 74.34±2.22
3 77.30±1.08 76.49±2.08 76.73±2.65
4 79.27±0.78 79.33±0.72 80.19±0.78
5 79.97±1.28 82.09±1.08 82.08±1.39
6 83.97±0.42 82.30±0.33 83.80±1.30
7 83.44±0.57 83.29±1.11 84.85±1.12
8 86.24±0.52 84.72±0.52 86.59±1.25
9 85.75±1.23 85.62±0.55 86.57±0.74

F Discussion

Limitation and Future Work. In the work, we study the connection between generalization
performance and the training dynamics under the NTK regime. Although the relation between training
dynamics and generalization performance has been verified by our experiments, the theoretical
analysis of the relation out of the NTK regime still needs study. Besides, in the experiments, we
mainly focus on the classification problem. Whether the proposed method is effective for the
regression problem is under-explored. We would like to leave the study of the previously mentioned
two problems in the future work.

NTK Analysis for the Design of Practical Method. Although some works [64, 65] discussed
that the NTK assumption is hard to be strictly satisfied in some real-world models, we notice that
some recent works have shown that the high-level conclusions derived based on NTK is insightful
and useful for the design of practical models. Some of their applications can achieve SOTA. For
example, Park et al. [66] used the NTK to predict the generalization performance of architectures in
the application of Neural Architecture Search (NAS). Chen et al. [67] used the condition number of
NTK to predict a model’s trainability. Chen et al. [68] also used the NTK to evaluate the trainability
of several ImageNet models, such as ResNet. Deshpande et al. [69] used the NTK for model selection
in the fine-tuning of pre-trained models on a target task. In our work, the empirical results in Figure 3
and Appendix.E also show the effectiveness of the high-level conclusions derived from the theory
still hold.

Social Impacts. In this work, we study the connection between the generalization performance
and the training dynamics and try to bridge the gap between the theoretic findings of deep neural
networks and deep active learning applications. We hope our work would inspire more attempts on
the design of deep active learning algorithms with theoretical justification, which might have positive
social impacts. We do not foresee any form of negative social impact induced by our work.

License Privacy Information. We use the commonly used datasets, CIFAR104, SVHN5, Cal-
tech1016 in the experiments. Those datasets follow the MIT, CC0 1.0, CC BY 4.0 License respectively
and are publicly accessible. No privacy information is included in those datasets.

4https://www.cs.toronto.edu/~kriz/cifar.html
5http://ufldl.stanford.edu/housenumbers/
6https://data.caltech.edu/records/20086
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