
AMachine Learning Correction Model of the Winter Clear-Sky Temperature Bias

over the Arctic Sea Ice in Atmospheric Reanalyses

LORENZO ZAMPIERI ,a GABRIELE ARDUINI,b MARIKA HOLLAND,a SARAH P. E. KEELEY,b KRISTIAN MOGENSEN,b

MATTHEW D. SHUPE,c,d AND STEFFEN TIETSCHEb

a National Center for Atmospheric Research, Boulder, Colorado
b European Centre for Medium-RangeWeather Forecasts, Reading, United Kingdom and Bonn, Germany

c Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
d National Oceanic and Atmospheric Administration, Physical Science Laboratory, Boulder, Colorado

(Manuscript received 2 May 2022, in final form 3 February 2023, accepted 27 February 2023)

ABSTRACT: Atmospheric reanalyses are widely used to estimate the past atmospheric near-surface state over sea ice.
They provide boundary conditions for sea ice and ocean numerical simulations and relevant information for studying polar
variability and anthropogenic climate change. Previous research revealed the existence of large near-surface temperature
biases (mostly warm) over the Arctic sea ice in the current generation of atmospheric reanalyses, which is linked to a poor
representation of the snow over the sea ice and the stably stratified boundary layer in the forecast models used to produce
the reanalyses. These errors can compromise the employment of reanalysis products in support of polar research. Here, we
train a fully connected neural network that learns from remote sensing infrared temperature observations to correct the exist-
ing generation of uncoupled atmospheric reanalyses (ERA5, JRA-55) based on a set of sea ice and atmospheric predictors,
which are themselves reanalysis products. The advantages of the proposed correction scheme over previous calibration at-
tempts are the consideration of the synoptic weather and cloud state, compatibility of the predictors with the mechanism re-
sponsible for the bias, and a self-emerging seasonality and multidecadal trend consistent with the declining sea ice state in the
Arctic. The correction leads on average to a 27% temperature bias reduction for ERA5 and 7% for JRA-55 if compared to
independent in situ observations from the MOSAiC campaign (respectively, 32% and 10% under clear-sky conditions).
These improvements can be beneficial for forced sea ice and ocean simulations, which rely on reanalyses surface fields as
boundary conditions.

SIGNIFICANCE STATEMENT: This study illustrates a novel method based on machine learning for reducing the
systematic surface temperature errors that characterize multiple atmospheric reanalyses in sea ice–covered regions of
the Arctic under clear-sky conditions. The correction applied to the temperature field is consistent with the local
weather and the sea ice and snow conditions, meaning that it responds to seasonal changes in sea ice cover as well as to
its long-term decline due to global warming. The corrected reanalysis temperature can be employed to support polar re-
search activities, and in particular to better simulate the evolution of the interacting sea ice and ocean system within nu-
merical models.
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1. Introduction

An atmospheric reanalysis is a realistic retrospective de-
scription of the atmospheric state obtained by constraining
an atmospheric model simulation with observations through
the application of data assimilation techniques. The resulting
products are continuously available over a relatively long period
(currently the last 40–70 years), retain consistency because they
are realized with a single model and data assimilation version,

and feature a uniform and continuous spatial coverage (Lindsay
et al. 2014). This is a particularly desirable property in the polar
regions, where only a few in situ environmental observations
are available (Jung et al. 2016). For these reasons, reanalyses
are widely used as an estimate for the present and past atmo-
spheric near-surface state over the Arctic sea ice, with one rele-
vant application being to serve as boundary conditions for sea
ice and ocean simulations (Large and Yeager 2009; Tsujino et al.
2018), fundamental tools to study the effects of climate change
on the polar regions and to predict the sea ice evolution at vari-
ous time scales.

Because of the lack ofmeasurements assimilated over the polar
regions by the reanalysis models, the near-surface Arctic atmo-
spheric state is only weakly constrained by observations and
strongly dependent on the formulation of themodels, and this can
lead to errors when this formulation is not appropriate (Zampieri
et al. 2018, 2019). Furthermore, when measurements are avail-
able, the presence of a shallow atmospheric boundary layer and
temperature inversion}challenging features to simulate correctly
even for state-of-the-art models}reduces the effectiveness of the
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assimilation procedure. In this respect, previous research revealed
large surface temperature biases over theArctic sea ice formost at-
mospheric reanalyses (Tjernström and Graversen 2009), a fact
that has been later linked to a poor representation of the snow
and sea ice state in the numerical surface schemes of the reanaly-
sis models (Batrak and Müller 2019). Most reanalysis models
prescribe a constant sea ice thickness in time and space and do
not account for the presence of a snow layer over the sea ice,
erroneously quantifying the insulating effect of the sea ice system
and thus the heat conduction through this medium. As a result,
the reanalyses surface temperature tends to be toowarm in regions
where the real insulating effect of ice and snow would be larger
than that prescribed in the models, and too cold in regions where
the sea ice and snow are thin and consequently exhibit lower insu-
lating properties (Fig. 3 of Batrak and Müller 2019). Given the
intra- and interannual spatiotemporal variability of the sea ice and
snow thickness in the Arctic, the resulting model biases tend to be
heterogeneous but particularly accentuated during winter clear-
sky events (CSE), when the surface experiences strong radiative
cooling (Serreze et al. 2007), a process hard to simulate correctly
withoutmodeling the insulating snow layer over the sea ice.

Numerical weather prediction (NWP) centers will likely ad-
dress this model deficiency in future reanalysis versions by em-
ploying fully coupled modeling systems (Keeley and Mogensen
2018; Arduini et al. 2022; Day et al. 2022) and assimilating new
kinds of near-surface observations. A first step in this direc-
tion has been taken in the C3S Arctic Regional Reanalysis
(Copernicus Climate Change Service 2021), where the snow
over sea ice is modeled more accurately. Nevertheless, the re-
duction of the temperature bias in coupled systems is still sub-
ordinated to a correct simulation of the sea ice system, and in
particular the snow and sea ice thickness. Meanwhile, this study
explores the possibility of correcting offline the existing genera-
tion of uncoupled reanalyses by training a machine learning
(ML) algorithm that links key atmospheric and sea ice variables
to a realistic estimate of the surface temperature carefully de-
rived from remote sensing surface observations that are cur-
rently not assimilated in the model reanalyses. The resulting
correction is by design state-dependent and therefore consistent
with the large-scale Arctic weather, as well as the declining
trend of the sea ice thickness. Furthermore, it increases the het-
erogeneity and realism of the reanalysis surface state in sea ice
regions, and it can be derived seamlessly in time and space be-
cause it relies entirely on reanalysis-based predictors. Our correc-
tion model can be adapted to multiple reanalysis products but
here we focus in particular on the European Centre for Medium-
Range Weather Forecasts (ECMWF) Reanalysis version 5
(Hersbach et al. 2020) (ERA5) and the Japanese Meteorologi-
cal Agency second reanalysis project (Onogi et al. 2007; Kobayashi
et al. 2015) (JRA-55), arguably among the most used reanaly-
ses for sea ice and polar applications. The main objectives of
this study are summarized in the following points:

1) Presenting the methodology behind the ML bias correc-
tion strategy for the skin surface temperature over sea ice,
including its practical implementation.

2) Quantifying the bias reduction and describing the relation
of the correction with the sea ice and atmospheric states.

3) Analyzing the seasonality and interannual variability of the
correction, including its impact on the historical warming
trend observed in the Arctic during recent years.

2. Methods

This section provides details on the ML algorithm used to
correct the atmospheric reanalysis, the datasets employed for
its training and validation, and the criteria for its application.
The reader should note that, in practice, two identical correc-
tion models are trained and employed in parallel for this study,
one for each reanalysis product considered. Unless otherwise
stated, these ML models share the same network structure
(but different weights estimates) and therefore the description
in the method section will be generalized to keep the exposi-
tion more compact and clearer. Prior to presenting the correc-
tion strategy, we begin with a description of the observations
that serve as an improved estimate of the surface temperature
and have key implications for the correction model itself.

a. Satellite observations of the ice surface temperature

While typically not a problem when investigating slow
evolving sea ice variables such as the sea ice concentration,
the subdaily variability of the temperature field can be sub-
stantial due to the evolution of the local weather and changes
in insolation. For these reasons, this quantity can vary at the
subdaily time scales in both observations and reanalyses even
if polar regions experience a reduced or absent daily cycle for
most of the year. This study employs swath-based temperature
observations, commonly referred to as Level 2, to capture this
subdaily temperature variability. More information on the data
levels definitions can be found at https://www.earthdata.nasa.
gov/engage/open-data-services-and-software/data-information-
policy/data-levels. A Level 2 product type informs us of the ex-
act time and location a satellite observation was taken.

The swath-based satellite data used in this study are from the
Arctic and Antarctic Ice Surface Temperatures from thermal
Infrared satellite sensors dataset (AASTI; Høyer et al. 2019),
available from 2000 to 2009. This dataset is based on the work
of Høyer and She (2007), Høyer et al. (2014), Rasmussen et al.
(2018) at the Danish Meteorological Institute and it was created
in the framework of the EU Surface Temperature for All Cor-
ners of Earth (EUSTACE project). The dataset is built by
combining observations from the Advanced Very High Res-
olution Radiometer (AVHRR) instruments onboard differ-
ent satellites of the National Oceanic and Atmospheric
Administration (NOAA) and the European Organization for
the Exploitation of Meteorological Satellites [EUMETSAT;
see Fig. 2 in Nielsen-Englyst et al. (2021) for further details
on the observational platforms]. Only clear-sky observations
are included in the dataset and considered for this study. In
cloudy-sky conditions, the satellite sensor would measure the
thermal signature of the cloud top rather than that of the sea
ice or snow at the surface. The total uncertainty of the
AASTI observations is on the order of;28C. The uncertainty is
partitioned into three components: random uncertainty, locally
systematic uncertainty, and large-scale systematic uncertainty
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(Nielsen-Englyst et al. 2021). A quality level flag from 1 (bad
data) to 5 (best quality) is provided, and in this study, we
consider only observations with quality levels 3, 4, and 5.
The observations have a spatial resolution of ;0.058, mean-
ing that they can resolve the temperature signal of ice fea-
tures with a typical length scale of a few kilometers, such as
big leads, coastal polynyas, and extensive sea ice floes. Be-
cause the Arctic sea surface is characterized by the occur-
rence of open water and newly refrozen leads down to the
meter scale (Thielke et al. 2022), there can be a certain level
of ambiguity regarding what surface type is represented by
the temperature observation. This additional source of uncer-
tainty cannot be easily taken into account: the temperature
retrieval algorithm is nonlinear, and the exact ice surface tem-
perature cannot be reconstructed based on the observed sea
ice concentration. However, this aspect does not affect our
study substantially, as we focus on the winter season and the
pack-ice regions, which feature the occurrence of open water
only sporadically mostly due to a dynamical sea ice processes.

Finally, the reader should note that in Fig. 1c, we show the
daily aggregated number of surface temperature observa-
tions from a Level 3 dataset (Dybkjær et al. 2012) rather
than the Level 2 AASTI dataset used to train the correction
model.

b. The machine learning bias correction model

1) NETWORK PREDICTORS

As already mentioned in section 1, previous studies have
highlighted links between the reanalyses temperature bias
and different aspects of the atmosphere and sea ice systems,
such as the cloud state, the sea ice and snow thickness, and
the surface atmospheric temperature itself. Based on the pre-
vious considerations, the following four model predictors
have been chosen as input for the ML model:

• Reanalysis skin temperature (SKT): The skin temperature
is the theoretical temperature that is required to satisfy the
surface energy balance. This temperature is converted to an
ice-only temperature based on the reanalyses open-water
fraction. This is the same field we aim to ultimately correct.

• Reanalysis surface downward longwave radiation (STRD):
This physical quantity is the amount of thermal (or long-
wave) radiation emitted by the atmosphere and clouds that
reaches a horizontal plane at the surface.

• Sea ice thickness (SIT): The sea ice thickness represents the
average depth of sea ice inside a grid cell. Here, we do not
use in situ thickness measurements or remote sensing retriev-
als of this quantity due to a high fragmentation in time

FIG. 1. (a) ERA5 total cloud coverage (TCC) at 1200 UTC 1 Mar 2015. (b) Difference between the ERA5 all-sky and clear-sky
surface downward thermal radiation at 1200 UTC 1 Mar 2015 (DSTRD). Low values of DSTRD are an indication of little or no cloud
coverage. (c) Number of observations collected by the AVHRR satellite sensors orbiting on 1 Mar 2015. A high observation count
is an indication of the absence of clouds. Note that the date choice is arbitrary. (d),(e) As in (a) and (b), but for JRA-55. (f) Satellite
imagery retrieved from NASA’s Global Imagery Browse Services on 1 Mar 2015 (daily composite) based on the MODIS false color
“snow RGB” (Bands 3–6–7). Note that the image is available only in regions experiencing direct sunlight on the day.
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and space. Instead, a gap-free reanalysis-based estimate from
the Pan-Arctic Ice Ocean Modeling and Assimilation System
(PIOMAS) (Zhang and Rothrock 2003) is obtained by divid-
ing the point-wise volume of sea ice per unit area by the sea
ice area fraction.

• Snow thickness on sea ice (SND): Similar to the sea ice thick-
ness, the snow thickness estimates employed here also come
from a reanalysis product, the SnowModel-LG (Liston et al.
2018, 2020), where a Lagrangian snow-evolution model forced
with the precipitation from the ERA5 atmospheric dataset
is used to produce daily pan-Arctic snow-on-sea ice depth
distributions.

The predictors can be divided into an atmospheric group
(SKT and STRD), and in an ice group (SIT and SND). The
source of SKT and STRD changes according to the atmo-
spheric reanalysis product under consideration, while SIT and
SND remain the same for all reanalyses. The output data
used to train the network is defined as the difference between
the original reanalysis skin temperature and the surface tem-
perature observations described in section 2a. To build the
training dataset for the ML correction model, all the input
variables are interpolated to the exact location and time of
the observations by using a bilinear interpolation scheme pro-
vided by theXarray Python package (Hoyer andHamman 2017).
Being all model-based reanalysis fields, the inputs are available
over the whole Arctic domain for 40 years (1 August 1980 to
31 July 2021), allowing the temperature correction to be consis-
tently computed over sea ice regions without spatiotemporal gaps
if observations were available to fully characterize the bias. Be-
cause the snow and sea ice thickness data are not available for
some isolated ocean points along the coastlines due to grid con-
version issues, we filled these points with data from the nearest
neighboring grid cells. This occurrence is rare and confined to
complex coastal domains (e.g., the Canadian Archipelago). Ulti-
mately, the resulting temperature correction has the same time-
step as the atmospheric predictors SKT and STRD (1 h for
ERA5, 3 h for JRA-55).

A further correction skill source could come from the inclu-
sion of the wind speed among the predictors. Based on our
physical intuition, the turbulent heat flux tends to decrease in
low-wind conditions, enhancing the radiative cooling and the
boundary layer stratification. On the contrary, in high-wind
conditions the heat is redistributed much more efficiently be-
tween the surface and the boundary layer, reducing the impor-
tance of the ice state in determining the surface temperature.
At present, this aspect is outside the scope of our work and
therefore not considered in the current manuscript, but we ac-
knowledge the potential of a better representation of the turbu-
lence and stratification in our model design.

2) NETWORK DESIGN

A fully connected neural network (NN) has been chosen to
model the reanalysis temperature correction because it is flex-
ible, easy to implement and train, and appropriate for captur-
ing the nonlinear relations between the system state and the
correction. After testing different network designs, we chose
a simple setup consisting of a Deep Feed Forward (DFF) NN

with 5 hidden layers featuring 16 nodes each, resulting in 80
trainable weights. All the network nodes, except those line-
arly activated belonging to the last layer, feature a standard
“ReLu” activation function. The network cost function is min-
imized using an “Adam” algorithm, a mean squared error loss
function is employed, and the learning rate is 0.01. Note that
the uncertainties of the observations are not taken into ac-
count during the minimization process of the cost function.
The chosen batch size is 1024 and the training epochs are 10.
The correction model was developed in Python based on the
Pytorch package (Paszke et al. 2019).

The network inputs have been normalized with a linear
transformation to fit the interval [21; 11]. This ML standard
procedure is necessary since the NN input data combines dif-
ferent physical quantities with values spanning several orders
of magnitude. This fact could induce the NN to overweight
some predictors while neglecting others. The size of the NN
combined dataset varies depending on the reanalysis in con-
sideration because of the different spatiotemporal resolutions,
but it remains on the order of 5 3 107 points collected over
the period January 2000–December 2009 for both ERA5 and
JRA-55. The data are divided into training, validation, and
test subsets following a simple approach that guarantees that
neighboring data points, which are likely correlated, are not
distributed into more than one subset. First, we subdivide the
dataset into multiple 5-day portions. For each of these,
the first three days are dedicated to the training subset, the
fourth day to the validation subset, and the fifth day to the
testing subset. The three subsets are then shuffled sepa-
rately before the training step. The test subset provides an
unbiased evaluation of the final model fit on the dataset by
using data never seen by the model during the training and
validation phase. All the plots presented in the next section of
this paper refer to the test subset. The training and validation
phases of the correction model were completed in approxi-
mately 1 wall-clock hour when run on a single cluster node with
72 processors.

c. Application criteria of the bias correction model

Given the features of observations and reanalyses pre-
sented in the previous paragraphs, we conclude that the cor-
rection model should not be applied indiscriminately to the
entire Arctic domain but rather to the regions experiencing
clear-sky conditions, where observations are more reliable
and, at the same time, the reanalysis bias is larger. For this
reason, identifying the occurrence of CSE in atmospheric re-
analysis is a key step for an appropriate development and
application of our correction strategy. In the framework of
this study, two alternative approaches have been considered
for this classification. The first identification approach is based
on the total cloud cover (TCC) from atmospheric reanalyses.
The TCC variable is defined as the proportion of a grid cell
covered by clouds, resulting in a single level field based on
the clouds occurring at different vertical model levels by
making assumptions on the degree of overlap/randomness
between clouds at different heights. The performance of
TCC for diagnosing CSE over the Arctic sea ice appears to
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be poor for the ERA5, which tends to overestimate the winter
cloud cover (Gryning et al. 2020), but good for the JRA-55
product. This is shown in the qualitative comparison between
the reanalyses TCC (Figs. 1a,d), the number of measurements
collected daily by the AVHRR sensor (Fig. 1c), and the sat-
ellite image retrieved by the MODIS instrument (Fig. 1f).
Two more snapshots of the same panel are included in the
online supplemental material (Figs. S1 and S2) to show that
this condition is not only found in this specific case. Note
that we do not use the number of measurements collected
by the AVHRR sensors as the base for our cloud classifica-
tion procedure because a low count can indicate a cloudy at-
mospheric state, but also an observational gap that has
nothing to do with the cloud conditions. In contrast, the sec-
ond classification approach relies on information about the
atmospheric thermal (longwave) state, a variable typically
described in atmospheric reanalyses both for a realistic at-
mosphere with clouds and for a hypothetical dry atmo-
sphere without clouds. The difference between the all-sky
and clear-sky surface downward thermal radiation (DSTRD)
provides good indications of the presence of clouds for ERA5,
as qualitatively illustrated by its good agreement with the ob-
servation density and the observed cloud state (Figs. 1b,e,f).
Note that, due to the rapid evolution of the cloud as well
as temperature states, analyzing snapshots from reanalysis
and observations instead of long-term averages is more in-
sightful for diagnosing similarities between weather pat-
terns, an approach that we follow in the remainder of this
manuscript.

After some manual calibration to identify the threshold val-
ues for each classification method, we decided to apply the
temperature correction for ERA5 (i.e., assert a cloud free
part) only to regions where DSTRD # 15 W m22. To avoid the
development of nonphysical discontinuities in the surface tem-
perature fields, we assign a temperature that proportionally
combines corrected and original temperatures to transition re-
gions where 15 , DSTRD # 40 W m22, building a transition
zone between the corrected and uncorrected part of the do-
main. Finally, cloudy regions where DSTRD . 40 W m22 retain
their uncorrected temperature. Given the good correspon-
dence between TCC, cloud observations, and observation
count for JRA-55, the application domain for this reanalysis
product is defined based on the TCC variable. The corrected
temperature is assigned where TCC # 15%, the transition re-
gime occurs where 15% , TCC # 70%, and finally no correc-
tion is applied where TCC . 70%. In addition, for both
reanalyses we further limit the correction to the sea ice pack
(where sea ice concentration is larger than 80%), and locations
with a reanalysis surface temperature lower than 258C. For
higher temperatures, the surface temperature discrepancy be-
tween model and observation tends to be generally small. Un-
der these conditions, we typically observe a low conductive
heat flux because of the low temperature gradient between at-
mosphere, ice, and ocean, making a correction less relevant,
and furthermore, there are not enough observations to per-
form a robust training of the correction model because of pre-
vailing cloudy conditions in warm months.

d. The correction model skill score

We adopt the correction model skill score (CMSS) as a
metric to measure the skill of the correction model in reduc-
ing the bias against independent observations:

CMSS 5 1 2
|SKTCor 2 SKTObs|
|SKTOrg 2 SKTObs|

, (1)

where SKTCor is the corrected reanalysis skin temperature,
SKTOrg is the original reanalysis skin temperature, and
SKTObs is the skin temperature measured independently. This
metric should be interpreted as follows:

• CMSS 5 1 means that the correction model brings the re-
analysis temperature to match the observations and fully
corrects the bias.

• For 0 , CMSS, 1, the correction model reduces the bias.
• CMSS 5 0 means that the correction model has a neutral
impact on the bias. Note that because the CMSS is an ab-
solute metric, this case could refer both to the application
of a null correction, but also to the introduction of a bias
of the opposite sign.

• CMSS , 0 means that the correction model degrades the
reanalysis.

3. Results

a. Characterization of the temperature bias and
its correction

The role of the atmospheric and sea ice predictors in shaping
the skin temperature correction has been investigated during
the training phase of the ML correction model. The relationship
between the ERA-5 and JRA-55 temperature bias and the pre-
dictors is visualized in Figs. 2a,b,e,f. Only 105 randomly selected
points out of the approximately 107 composing the test datasets
are shown here to allow clearer visualization of the bias features.
As a reminder, the test dataset is built with reanalysis data and
observations from the years 2000 to 2009 that fulfill the clear-sky
classification and, for this reason, the considerations on the bias
nature can only refer to the clear-sky state, an essential condi-
tion for ensuring precise observations of the surface tempera-
ture. The temperature bias is defined as the difference between the
reanalysis state and the observed temperature. As such, in the
context of this study, a positive temperature bias indicates that
the reanalysis product is warmer than the observations, while
the opposite is true for a negative bias.

The emerging structure of the bias confirms the finding of
previous studies and our physical understanding of the cou-
pled atmospheric-sea ice system. The main features of the
temperature bias are summarized in the following points:

• Large positive temperature biases are evident for cold re-
analysis temperatures and low downward longwave radia-
tion values, particularly for ERA5 (Figs. 2a,e).

• Large positive temperature biases occur in regions with
thick sea ice, thick snow, or a combination of both condi-
tions (Figs. 2b,f).
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FIG. 2. Comparison between (a),(b),(e),(f) the skin temperature bias (reanalysis temperature minus ob-
served temperature) and (c),(d),(g),(h) modeled skin temperature correction (output of the ML correction
model). These color-coded quantities are plotted as function of the atmospheric predictors SKT and STRD
and the ice predictors SIT and SND.
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• Moderate negative biases tend to occur for thin sea ice,
thin snow, or a combination of both conditions (Figs. 2b,f).

• Despite the well recognizable features described in the pre-
vious points, the bias also shows a certain random error
component that can be linked to inevitable differences be-
tween the observed and reanalysis state.

The mismatch between reanalysis and observations ranges
approximately between 288 and 128C for ERA5, and 288 and
168C for JRA-55. These large values are in agreement with the
estimates of previous studies. A comparison between ERA5
and JRA-55 reveals some differences in the relationship be-
tween the bias and the atmospheric predictors (Figs. 2a,e).
While the largest positive temperature bias in ERA5 is ob-
served for cold temperatures (2408 to 2258C), the situation is
less obvious for JRA-55, which also exhibits a higher level of
noise. Note that the truncation for temperature values above
258C (Figs. 2a,c,e,g) is obtained by construction, as no correc-
tion is applied for temperatures warmer than258C. For a given
temperature, the spread of the downward longwave radiation
values is bigger in ERA5 than in JRA-55 (y axis in Figs. 2a,e).
When considering the sea ice predictors, the bias shows a func-
tional relation to the sea ice thickness in both reanalyses, while
the dependence on the snow depth is less pronounced and
seems relevant only for sea ice thinner than 1 m. This is consis-
tent with our physical understanding of the system: for thick
sea ice, the effect of snow on heat conduction is small because
the sea ice already saturates the insulation, while for thin sea
ice the snow drives the conduction properties of the system.

The temperature correction predicted by the ML correction
model is shown in Fig. 2 as a function of the four predictors
(Figs. 2c,d,g,h). Note that the same test points are displayed
for the bias plots (first and third row) and correction plots
(second and fourth row). Overall, the structure of the correc-
tion captures well the features of the original bias discussed in
the previous paragraphs. The opposite sign of correction and
bias makes physical sense and, ideally, a perfect correction
would exactly cancel out the reanalysis bias. The predicted
correction tends to be smooth and does not exhibit the same
noise as the bias. On one hand, this is a positive feature and it
indicates that the NN captures the systematic error while ne-
glecting the random component. On the other hand, due to
this behavior, the NN seems unable to correct extreme cases
when the absolute difference between reanalysis and ob-
served temperature is high. The latter is a feature of the cor-
rection model and not of the training procedure (i.e., it is not
linked to size limitation in the training dataset or to the fre-
quency of occurrence of these extreme events).

As the next step, we want to understand whether the cor-
rection learned by the ML model during the training phase
can be applied to the reanalysis temperature field in a more
operational setup, thus investigating if the corrected tempera-
ture fields retain the spatial coherency of the original reanaly-
sis products, ideally also outside the training time window.

Maps in Figs. 3a,d exhibit the original skin temperature
field for ERA5 and JRA-55, respectively. Part of this discrep-
ancy is simply explained by the different spatiotemporal reso-
lutions of the two reanalyses (lower in JRA-55 than in

ERA5). Nevertheless, another part originates from the differ-
ent model physics and, in particular, for the resulting cloud
states, with ERA5 featuring more clouds than JRA-55 (Fig. 1).
Note that considering the same reanalysis snapshot in Figs. 1 and
3 allows us to relate the surface skin temperature and its correc-
tion to the cloud and downward longwave radiation state. While
both maps show similar spatial features, they also reveal different
temperatures. The warm regions (2208 , SKT , 2158C) are
larger in ERA5 but, at the same time, the cold regions are also
slightly colder for this dataset. The correction application leads to
a marked cooling in the clear-sky portion of the domain. Note
that the difference in the active correction domain for the two re-
analyses, as well as the magnitude of the correction, is in part due
to differences in the cloud-state representation, in part to the
application of different classification strategies for the clear-sky
state in reanalyses (section 2c), and in part to the application of
two different correction models. The locations on which the tem-
perature correction is applied are generally continuous over
relatively wide portions of the Arctic and evolve dynamically fol-
lowing the movement of large-scale weather systems. The pres-
ence of localized cloud formations and clear-sky gaps introduce
heterogeneity to the active correction domain. This feature is
particularly evident for ERA5, which can resolve smaller cloud
formations due to the higher spatiotemporal resolution. No fur-
ther unexpected spatial noise or sharp gradients emerges from
the correction, indicating that the choices made concerning the
application mask are reasonable. Overall, each reanalysis main-
tains consistency with its atmospheric state after the correction
application.

b. Comparing the corrected skin temperature to
independent in situ observations

A rigorous evaluation of the correction model skill mandates
comparing the corrected temperatures with independent meas-
urements, possibly outside the training decade. The meteoro-
logical dataset collected during the Multidisciplinary drifting
Observatory for the Study of Arctic Climate (MOSAiC) expe-
dition in the winter of 2019/20 (Shupe et al. 2022; Reynolds and
Riihimaki 2019) provides an ideal basis for building this assess-
ment. During MOSAiC, a set of longwave broadband up- and
down-welling observations were made from a location on the
sea ice. The surface skin temperature was derived from these
measurements assuming a fixed surface emissivity of 0.985,
which is reasonable for the winter observations used here.

As expected, Figs. 4a and 4b reveal large positive skin tem-
perature biases for both the reanalyses when compared to the
in situ observations, particularly in association with clear-sky
conditions. The correction model performs reasonably well
and tends to substantially mitigate the bias for ERA5, with a
27% average bias reduction, while the improvement is modest
for JRA-55, with a 7% average bias reduction. The above
reduction percentages have been quantified by computing
the Mean Absolute Error (MAE) based on all the winter
MOSAiC observations available from October 2019 to June
2020 (Table 1, columns 2 and 3}All Observations), including
instances of cloudy conditions when the temperature correc-
tion does not act. The error reduction for ERA5 and JRA-55
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increases, respectively, to 32% and 10% when restricting the
analysis only to clear-sky conditions according to each reanaly-
sis classification (Table 1, columns 4 and 5}Clear-sky Obser-
vations). The Pearson correlation between the reanalysis and
observation time series is 0.89 for ERA5 and 0.75 for JRA-55,
with negligible differences between the corrected and original
cases. The complete MOSAiC temperature time series for
ERA5 and JRA-55 are available in the supplemental material
(Fig. S3), while Fig. 4 focuses on four winter months for better
readability of the panel.

Comparing gridded reanalysis fields at relatively low resolu-
tion with single-point measurements is challenging and requires
additional care to draw the correct conclusions. First, reanalyses
data represent spatially an average sea ice and snow state, while
in situ observations capture a unique ice state. There is no
straightforward way to accurately downscale the gridded data
and account for this uncertainty. Second, the cloud state of in
situ observations and reanalysis should be similar for a mean-
ingful comparison, which is not necessarily the case in our situa-
tion, as shown in Figs. 4c and 4d. Specifically, the STRD in
JRA-55 is substantially lower than in the measurements when
clouds are present (i.e., for the highest values in STRD), and
also the ERA5 evaluation reveals differences in multiple instan-
ces. Therefore, we display the CMSS (Figs. 4e,f) as a function
of the downward longwave radiation difference between the
two reanalyses and the MOSAiC observations (DSTRD*). We ar-
gue that the model skill is meaningful only when this difference
is small (210,DSTRD* , 10Wm22). Under these conditions,

the model skill scores are generally positive, with 49% bias re-
duction for ERA5 and 20% for JRA-55 (Table 1, columns 6
and 7}Compatible Observations), and we observe only a few
instances when the correction degrades the reanalysis. Outside
this range, the skill score can capture a bias reduction or degra-
dation for the wrong reasons.

Given the results that emerge from this independent evalu-
ation, we believe that our method provides a useful correction
for ERA5. However, for JRA-55, the correction performance
is quite small. We expand on possible reasons for this discrep-
ancy between the different reanalysis products below and dis-
cuss possible steps forward.

c. Spatiotemporal variability of the temperature
correction

Because of the rapid changes that the Arctic experienced
during the last few decades, such as the decline of the sea ice
extent and volume in response to the warming of both the
near-surface atmosphere and the ocean, there are good rea-
sons to believe that also the reanalysis skin temperature bias,
as well as its correction, will present some trends and a certain
level of spatiotemporal variability. This hypothesis is reason-
able also given our understanding of the mechanism inducing
the bias, which is ice thickness and temperature dependent.
For instance, the constant sea ice thickness assumption (e.g.,
1.5 m in ERA5) made in the reanalysis models, appears to be
more compatible with the recent (post 2007) winter sea ice
condition compared to those observed at the end of the

FIG. 3. (a) 1 Mar 2015 original ERA5 skin temperature over sea ice and open ocean. (b) 1 Mar 2015 corrected ERA5 skin temperature
over sea ice and open ocean. (c) 1 Mar 2015 ERA5 temperature correction over sea ice. (d)–(f) As in (a)–(c), but for the JRA-55.
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twentieth century. Similarly, for a given year and depending
on the season, this assumption might be appropriate for cer-
tain Arctic locations while penalizing others. We will begin ex-
ploring these aspects by making some consideration on the

average spatial distribution of the correction during the differ-
ent seasons.

Figure 5 exhibits the 1981–2020 average temperature cor-
rection for the months December–February (DJF), March–

FIG. 4. (a),(b) Skin temperature measured during the MOSAiC expedition and estimates from the corrected
and original reanalyses from 1 Dec 2019 to 31 Mar 2020. (c),(d) As in (a) and (b), but for the downward long-
wave radiation. (e),(f) Correction model skill score as function of the downward longwave radiation difference
between reanalyses and MOSAiC observations. Note that the different point density in the two plots is due to
the different time resolution of the reanalyses.

TABLE 1. Average temperatures mismatch between reanalysis and MOSAiC observations (October 2019 to June 2020) quantified
by the mean absolute error (MAE) metric for the corrected and original case considering all the available MOSAiC observations
(columns 2 and 3), only clear-sky observations according to each reanalysis classification (columns 4 and 5), and only the
observations with a longwave radiation state compatible with the reanalysis (columns 6 and 7).

All observations Clear-sky observations Compatible observations

ERA5 JRA-55 ERA5 JRA-55 ERA5 JRA-55

Original (8C) 3.75 3.52 4.06 3.83 3.56 4.41
Corrected (8C) 2.75 3.29 2.75 3.45 1.80 3.52
Error reduction (%) 27 7 32 10 49 20
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May (MAM), and September–November (SON). Note that
cloudy regions and open-water regions, where the correc-
tion is zero, are also included in this spatiotemporal aver-
age. For both reanalyses, the correction exhibits a moderate
seasonality. Specifically, it reaches a maximum in winter
(DJF; Figs. 5a,d), when the Arctic is colder and drier, and a
minimum in the summer months, when by design no correc-
tion is applied because of too warm temperatures (maps not
shown for June–August). Furthermore, the fall correction
(SON; Figs. 5c,f) is smaller than the late winter/early spring
one (MAM; Figs. 5b,e), a fact that can be counterintuitive
given Arctic temperature similarities during these two peri-
ods, but that it is explained by the presence of thicker and
thus more insulating snow and ice layers in MAM, which is
conducive to the warm bias (see Fig. 2). Furthermore, given
that zero correction regions are included in the average, this
behavior can also be caused by different cloud and open-
water conditions in SON than in MAM, particularly for the
most recent years. Both reanalyses feature a large negative
correction over thick sea ice regions (north of the Canadian
Archipelago and Greenland), and a smaller one (in absolute
terms) in peripheral seas with a seasonal ice cover. A similar
structure, including the differences between JRA-55 and
ERA5, has been evidenced in the temperature bias quantifi-
cation by Batrak and Müller (2019) [Fig. 3 of their paper;

maps (c) and (d)], even though the comparison is possible
only in qualitative terms due to the different periods and
methodologies of our analyses. Even though instances of a
positive correction up to 28C occur in single snapshots, par-
ticularly during the fall months in peripheral Arctic seas,
these disappear in the multiyear, multimonth average of
Fig. 5. A positive temperature correction instance can be
observed in Fig. 3c along the Kara Sea coast, and it is linked
to a sea ice divergence area which leads to a thinner sea ice
and snow cover. Note that the overall corrections to ERA5
are slightly smaller than corrections to JRA-55, which might
lead the reader to conclude that the original ERA5 temper-
ature is closer to observed than JRA-55. However, this is
not the case for the MOSAiC analysis (Table 1, row 1, columns 1
to 4), and this feature might be also explained by the effect of
a larger cloudiness in ERA5 compared to JRA-55, hence less
opportunity to correct the temperature field under the clear-
sky state.

The plot in Fig. 6a shows the annual cycle of the difference
between the uncorrected and corrected atmospheric surface
temperature averaged over the region north of 708N. In this
context, positive difference values correspond to a negative
correction as defined in Figs. 2 and 5. The results have been
grouped into four different periods, roughly representative of
the last four decades, to reveal the possible interannual trends

FIG. 5. 1981–2018 average temperature correction for the months December–February (DJF), March–May (MAM), and September–
November (SON) for the (top) ERA5 and (bottom) JRA-55. The summer months are not shown because the correction is zero. All the
maps share the same color scheme illustrated by the color bars on the right. Note that, in agreement with Fig. 2, the sign of the correction
is opposite of that of the bias.
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of the correction. The seasonal cycle of the temperature
difference confirms previous evidence that the correction
reaches a maximum in winter and a minimum in the sum-
mer. Furthermore, a declining trend characterizes both the
ERA5 (solid lines) and JRA-55 (dashed lines) corrections
for the last decade (2010–19; red lines). During the last de-
cade (2010–19), the average correction for both reanalyses
becomes almost zero for the transitions months of May and
October, demonstrating a generalized time reduction of
the active correction season as the sea ice thickness de-
creases and the Arctic warms. During the winter months
(February–April), the multidecadal evolution of the rean-
alysis correction before 2010 becomes less obvious, likely
due to a strong reduction of the heat conduction through
the ice after a certain effective conductivity threshold (de-
fined by the sea ice and snow thickness) is reached.

Applying the correction to the reanalyses fields tends on
average to cool the climatological temperature state over
the Arctic sea ice, and this could in principle impact the re-
analysis representation of the warming that the Arctic expe-
rienced during the last decades. We investigate this aspect
in Figs. 6b,c, where the anomalies for the corrected and un-
corrected skin temperatures (computed against their clima-
tological reference based on the period 1981–2010) are,
respectively, displayed for the ERA5 (Fig. 6b) and JRA-55
(Fig. 6c). Note that each anomaly time series is built by sub-
tracting its individual climatological state, and not a com-
mon one. For both reanalyses, the anomaly variability is
similar for the original (red lines) and the corrected data
(blue lines), with only small differences between the two.
The warming trend of the original product is slightly smaller
than that of the corrected product for both reanalyses:

FIG. 6. (a) Annual cycle, averaged over four decades, of the difference between the original (uncorrected) and the
corrected ERA5 (solid lines) and JRA-55 (dashed lines) skin temperatures averaged over the regions north of 708N.
(b),(c) Corrected (blue dashed lines) and original (red lines) ERA5 and JRA-55 skin temperature anomalies com-
puted against their own climatological reference based on the period 1981–2010. The dashed straight lines show the
average warming trend experienced by the Arctic over the period under consideration.
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ERA5 exhibits a warming of 0.98 K decade21 for the cor-
rected case and 0.82 K decade21 for the uncorrected case.
JRA-55 exhibits a warming of 0.92 K decade21 for the cor-
rected case and 0.80 K decade21 for the uncorrected case.
Thus, the correction impact on the warming trend for JRA-55
is 75% of that of ERA5. This difference is still relatively small
(;10%–20%) if compared to the absolute magnitude of the
warming signal and in line with the trend of differences be-
tween the two reanalysis products.

4. Discussion

a. Limitations of the proposed bias correction strategy

The bias correction strategy presented in this study proved
to be effective in partially correcting the near-surface temper-
ature bias that affects the current generation of atmospheric
reanalysis in the Arctic region. Nevertheless, some limitations
associated with our methodology deserve some more in-depth
discussion.

The first caveat of our approach is that the ML correction
model is trained on a limited portion of the reanalysis period
(2000–09) while being applied also to previous or future deca-
des experiencing different conditions (i.e., on average colder
temperatures and thicker sea ice and snow before 2000 and
the opposite after 2010). We argue that this assumption is ac-
ceptable, given that our correction model design relies on
state-dependent predictors and not on spatiotemporal infor-
mation such as the location and the time of the year}also le-
gitimate predictors that would, however, strongly bind the
model to the background climate state. Furthermore, the mis-
representation of the conductive heat flux through sea ice and
snow, which is the mechanism at the heart of the observed
bias, tends to saturate for thick ice and snow, for which the
conductive heat flux becomes very small. Nevertheless, we
cannot exclude that the correction is suboptimal for sea ice re-
gimes underrepresented in the training dataset, such as very
thick ice conditions, and we can only rely on the extrapolation
capabilities of the ML model under these conditions. Encour-
aging indications of the robustness of our approach to this
kind of issue come from the self-emerging declining trend of
the correction for both the reanalyses products considered,
which highlight the dependence of the model on the sea ice
state, and the convincing comparison to MOSAiC in situ ob-
servations outside of the training window.

A second point worth discussing is the fact that the correc-
tion model relies entirely on reanalysis products, which have
well-known shortcomings. For example, in terms of the ice
predictors, the limitations of the PIOMAS product, which
consistently underestimates the sea ice thickness in regions of
thicker ice and overestimates it in regions of thinner ice, are
well documented in the literature (Labe et al. 2018). The
physical sophistication of the SnowModel-LG thickness prod-
uct is remarkable, but this product is by design impacted by
errors in the snow precipitation and sea ice drift description
used to force the reanalysis model. While alternative direct
Arctic-wide observations of the snow thickness are presently
not available, remote sensing sea ice thickness observations

(e.g., from Envisat, CryoSat-2, SMOS, and IceSat2 satellites)
and reanalyses (Mu et al. 2020, 2022) have become available
for the past 20 years. While we considered employing some of
these products as an alternative to PIOMAS, we decided
against this approach in order to apply the correction model
consistently over the entire reanalysis period with no spatio-
temporal gaps due to missing observations. A complementary
correction approach considered for this study consisted of
nudging the reanalysis surface state to the satellite observa-
tions when these were available. Even though this would have
certainly led to good temperature estimates in areas with a
high density of observations, and also limited the episodes of
bias degradation associated with the application of the correc-
tion model, we decided against this strategy to avoid the intro-
duction of inconsistencies in the corrected reanalysis field, as
observations are not regularly available over the whole do-
main, and they are temporally incompatible with the reanaly-
sis products (daily versus subdaily representation).

The discussed bias correction approach targets the Arctic,
while we expect similar biases to emerge also for the Antarctic
sea ice. The main motivation for this is the absence of ice pre-
dictors; with no reliable long term Antarctic sea ice and snow
thickness estimates our correction model would lose a substan-
tial portion of its skill, a fact that prevents us from even testing
our Arctic trained correction on the Antarctic domain. Further-
more, the compatibility of the reanalyses with the true atmo-
spheric state is strongly linked to the number of observations
assimilated in the forecast system. A better reanalysis quality
for more recent years than the past should thus be expected
due to the advances in observational techniques. While under
clear-sky conditions the Arctic boundary layer is strongly de-
coupled from the rest of the atmosphere and poorly character-
ized by observations also for recent years, the locations at
which clear-sky conditions occur can be affected by the quality
of the circulation in the reanalysis. Correcting for circulation is-
sues in reanalyses goes beyond the scope of this study, and this
aspect should be kept in mind when using these products in po-
lar regions, with or without bias correction.

A further aspect to consider is the difference between skin
temperature and 2 m temperature in reanalysis products.
Given that the observed temperatures used to quantify the re-
analysis bias are representative of the surface layer, the result-
ing correction is also applied to the skin temperature of the
reanalysis. However, most of the reanalysis temperature ap-
plications in polar regions are based on the 2 m temperature,
including the forcing fields for sea ice and ocean models. To
maintain consistency between the reanalysis fields, we trans-
fer the skin temperature correction to the 2 m temperature
variable by assuming that the temperature difference between
these two model levels would remain unchanged. The robust-
ness of this assumption is hard to prove, given that the stratifi-
cation of the near-surface atmosphere cannot be observed
from remote sensing products, and thus its characterization
mostly relies on local measurements. Other reanalysis varia-
bles defining the surface energy budget, such as the surface
turbulent heat flux and the upwelling longwave radiation,
must also be affected by biases because the uncorrected skin
temperature is biased. Both these quantities have an impact
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on boundary layer and cloud processes. Once the skin tem-
perature is corrected using the method presented here, it is
then inconsistent with the other uncorrected terms in the re-
analyses surface energy balance, and this aspect should be
considered carefully to avoid misuse of the corrected product.

The correction application domain is tightly linked to the cloud
state, and the assumptions made in the classification of clear-sky
versus cloudy regions impact the correction. Unfortunately, the
lack of direct surface observations in cloudy conditions made an
extension of the ML model to the cloudy state impossible. Also,
in these conditions there are many more physical processes in-
volved, (e.g., cloud radiative properties) which would make the
MLmodel trainingmore challenging. In the attempt to overcome
this limitation, during the preliminary phase of our work, we tried
to integrate the remote sensing observations with arguably more
precise in situ measurements collected by automatic buoys and
weather stations deployed on the Arctic sea ice. These observa-
tions are less abundant than satellite products but provide amore
complete overview of the surface temperature state in theArctic,
also covering earlier decades, cloudy conditions, as well as being
available for the Southern Ocean sea ice. However, comparing
localized observations representative of a very specific sea ice
state to gridded products that capture an average sea ice state
representative of an area spanning several kilometers, proved to
be unfeasible, as we also argue in section 3b.

Finally, the correction skill difference between ERA5 and
JRA-55 deserves additional discussion. The model skill that
emerges from the comparison to independent MOSAiC obser-
vations reveals better performances for ERA5 than JRA-55.
We speculatively attribute the low JRA-55 skill to lower syn-
optic and moisture compatibility of this reanalysis with the
true atmospheric state, as suggested by the lower temporal
correlation with the MOSAiC observations and the downward
longwave radiation analysis. First, the discrepancy impacts the
correction at the model training stage, as the learned bias sig-
nal generates not only from the snow-related mechanism but
also from unrelated sources. Second, the discrepancy results in
penalization at the evaluation stage, as the correction can ex-
acerbate the bias if observations and reanalysis are in different
regimes. Nevertheless, further analyses are needed to quanti-
tatively verify the previous statement and formulate a correct
attribution of the correction skill difference.

b. Comparing the bias correction methodology to
previous correction strategies

Even though a clear understanding of the physical mecha-
nism responsible for the winter temperature bias in atmo-
spheric reanalysis has been uncovered only in recent years,
the existence of the bias itself has been established earlier and
several measures have been taken for mitigating its effect. In
particular, the ocean and sea ice modeling community real-
ized that employing uncorrected reanalysis temperature fields
as forcing (i.e., boundary conditions) for regional and global
sea ice and ocean general circulation models leads to an un-
satisfactory representation of the sea ice (mainly not enough
sea ice formation during winter), with errors propagating also
to other seasons and ultimately to the oceanic circulation in the

Arctic and beyond. Two alternative approaches can be taken to
mitigate this problem: 1) tuning underconstrained key model pa-
rameters to partially compensate the forcing effect (Zampieri
et al. 2021; Sumata et al. 2019), for example by increasing the
sea ice and snow conductivity to foster the heat conduction
through the sea ice system, and 2) calibrating the reanalysis, and
thus following the same reasoning that motivated this study.
The latter approach has been attempted by the DRAKKAR
project, which develops consistent global forcing datasets based
on a combination of ECMWF reanalysis and observed flux data,
called Drakkar Forcing Sets (DFS). To correct the ERA40
warm Arctic bias, the DFS adopts a full spatially dependent
monthly rescaling of ERA40 air temperature over ice-covered
regions north of 708N, using a monthly climatological sea ice
mask (Brodeau et al. 2010), a stratagem that follows the work of
Large and Yeager (2004, 2009) in the context of the Coordi-
nated Ocean Reference Experiments and the “CORE2” forc-
ing. More recently, the community participating in the Ocean
Models Intercomparison Project (OMIP) proposed a calibration
strategy for the JRA-55 temperature in the Arctic (Tsujino et al.
2018) based on data from the International Arctic Buoy Pro-
gramme (IABP)/Polar Exchange at the Sea Surface (POLES)
(IABP-NPOLES; Rigor et al. 2000), and implemented in the
JRA-55-do forcing.

The previously mentioned strategies can be classified as
climatological calibration, meaning that they aim to a cor-
rect climatological representation of the temperature in the
Arctic. However, we argue that our correction approach,
compared to the previous attempts, brings a higher level of
sophistication for three main reasons:

1) The correction is state-dependent, meaning that it is co-
herent with the reanalyzed sea ice conditions and with the
local weather. It favors clear-sky conditions, in agreement
with the observation-based characterization of the reanal-
ysis bias. Furthermore, its predictors can be associated
with the physical mechanism causing the bias in the first
place, which is the misrepresentation of the conductive
heat flux through the snow and sea ice.

2) Even though the reanalysis bias in the Arctic is on aver-
age warm, our model is able to correct also less common
occurrences of cold biases occurring on thin ice, mostly at
the beginning of the freezing season.

3) A self-emerging property of the correction is its declining
trend for the last decade, which is compatible with our
physical understanding of the bias and with the changing
sea ice conditions in the Arctic due to global warming.

In addition, a characteristic of our correction is that, simi-
larly to the climatological calibration approaches, it has only
a minor impact on the reanalysis representation of the near-
surface warming trend of the Arctic observed in the past four
decades. A quantitative comparison of our correction strategy
with previous efforts falls outside the scope of this work.

5. Conclusions

In this study, we have presented a machine learning correc-
tion model that reduces the (mostly warm) winter bias over
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the Arctic sea ice in uncoupled atmospheric reanalyses due to
a misrepresentation of the conductive heat flux through the
sea ice and snow. Our work focused on the widely used ERA5
and JRA-55 products, but no constraint would prevent the
model from being trained also on other reanalysis products, as
well as on coupled forecast systems exhibiting similar biases.
The correction relies on four reanalysis predictors, which have
been chosen because they are skillful and linked to the physi-
cal mechanism that causes the bias. These are the reanalysis
surface temperature itself, the downward longwave (or ther-
mal) radiation reaching the surface, the sea ice thickness, and
the snow thickness. The skill of the correction model is investi-
gated by comparing the original and corrected reanalyses to
independent in situ measurements from the MOSAiC cam-
paign. This comparison revealed an overall positive impact of
the correction, with a substantial reduction of the bias and
only limited instances of degradation for ERA5, while the im-
provement is modest for JRA-55. The self-emerging proper-
ties of the correction are compatible with our understanding
of the bias and of the ice system: the correction varies season-
ally with a maximum in winter and a minimum in summer, it is
spatially heterogeneous and on average stronger on thicker
sea ice, and finally, it shows a declining trend linked to the sea
ice reduction and warming of the Arctic. Overall, the ML cor-
rection results confirm the physical understanding of the bias.

We envisage that the correction presented in this study
will find its main application in support of uncoupled sea ice
and ocean simulations that rely on reanalysis fields as atmo-
spheric boundary conditions. A better representation of the
near-surface weather could be beneficial for a correct simu-
lation of the Arctic sea ice and should reduce the use of
nonphysical tuning choices aiming at compensating the re-
analyses bias, rather than at an accurate simulation of the
sea ice processes. In this context, more research is needed to
understand the impact of the corrected fields on model sim-
ulations, and an in-depth evaluation of these aspects, as well
as a quantitative comparison with previous reanalysis-based
forcing fields, is out of the scope of this work.

Finally, we argue that the state-dependent approach to
bias-correct reanalysis fields that was followed in this study is
beneficial compared to simpler climatological calibration tech-
niques, and we expect that similar correction models could be
adapted also for other reanalysis variables affected by bias re-
lated to model deficiencies. The MOSAiC-based skill assess-
ment presented in this study reveals that part of the bias
remains despite our correction, and further efforts are needed,
both in the context of coupled model development and post-
processing, for improving the quality of atmospheric reanalysis
over sea ice. For this reason, developing a correction that di-
rectly targets the mechanism generating the bias can be infor-
mative and guide future development efforts to improve the
realism of the atmospheric reanalysis system, in the Arctic and
beyond.
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