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ABSTRACT
As the size and complexity of high-performance computing (HPC)
systems keep growing, scientists’ ability to trust the data produced
is paramount due to potential data corruption for various reasons,
which may stay undetected. While employing machine learning-
based anomaly detection techniques could relieve scientists of such
concern, it is practically infeasible due to the need for labels for
volumes of scientific datasets and the unwanted extra overhead as-
sociated. In this paper, we exploit spatial sparsity profiles exhibited
in scientific datasets and propose an approach to detect anomalies
effectively. Our method first extracts block-level sparse representa-
tions of original datasets in the transformed domain. Then it learns
from the extracted sparse representations and builds the bound-
ary threshold between normal and abnormal without relying on
labeled data. Experiments using real-world scientific datasets show
that the proposed approach requires 13% on average (less than 10%
in most cases and as low as 0.3%) of the entire dataset to achieve
competitive detection accuracy (70.74%–100.0%) as compared to
two state-of-the-art unsupervised techniques.

CCS CONCEPTS
• Computing methodologies → Anomaly detection.
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1 INTRODUCTION
The massive volumes of datasets generated by modern scientific
models and simulations of significant importance can help scientific
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discoveries reach better and faster decisions if scientists leverage the
datasets correctly. However, the potential compromise in the pro-
duced datasets, in particular, due to silent data corruption may stay
undetected and ultimately can adversely affect the integrity of sci-
entific interpretation [11, 12, 14, 17, 21, 22, 28–30, 33–35, 38, 39, 41].
For instance, Jaguar, a petascale supercomputer at ORNL, suffers
a double-bit memory error once every 24 hours [17]. An efficient
and effective anomaly detection empowers scientists to take timely
actions to correct anomaly situations [4, 5, 23]. For example, the
detector presented in [14] dynamically predicts the value for each
data point at each time step and compares the observed value with
a normal value range. They check every data point by injecting the
errors with different bitflips in binary notations.

Anomaly detection has traditionally relied on the human expert’s
knowledge, like domain scientists who define the anomaly rule and
deploy the defined rule-based anomaly detection algorithms to the
target scientific datasets [2, 20, 37]. However, obtaining large-scale
datasets with proper labels for supervised ML-based anomaly de-
tection models and the unpredictability combined with the growing
data size of HPC systems make effective use of anomaly detection
challenging [14, 31, 37].

Our anomaly detection model combines the advantage of the
sparse representation and anomaly detection model in an unsu-
pervised manner. We exploit data transformation to obtain sparse
representations at the block level as approximation through trans-
forms can easily expose intrinsic features between normal and
abnormal [26, 27]. We evaluate the proposed approach with six
scientific datasets produced from three production-level simulation
codes, FLASH [16], CMIP5 [24], and Nek5000 [15]. We compare the
effectiveness of the proposed approach against two state-of-the-
art unsupervised anomaly detection techniques, local outlier factor
(LoF) and autoencoder (AE), in terms of detection performance with
various degrees of injected errors (1%, 5%, and 10%). The injected
error is sufficiently trivial, as measured mean absolute error (MAE)
ranges from 1E-3 to 1E-1 to reflect realistic scenarios where those
injected errors may stay undetected.

The experimental results show that the proposed approach can:
1) provide a systematic anomaly injectionmodule for testing various
contamination rates; 2) detect the actual abnormalities correctly,
76.41%–93.04% of point anomalies and 73.79%–91.30% of collective
anomalies, respectively, when the corruption rate is 1% for the
evaluated datasets; 3) achieve competitive approximation, 53.92%-
99.81%, with less influence on errors from approximation for the
entire evaluated datasets.

https://doi.org/10.1145/3588982.3603610
https://doi.org/10.1145/3588982.3603610
https://doi.org/10.1145/3588982.3603610
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Figure 1: The transformed representations of scientific datasets. (a) Original Cellular datasets. (b) Transformed coefficients
(where the x-axis is in log scale). (c) CDF in the sequences of transformed (normalized) DCT coefficients.

2 PRELIMINARIES
2.1 Sparsity
As the amount of data produced by modern scientific simulation
codes reaches the exabyte range, data reduction techniques are
inevitable to lessen the volume of data and overhead by exploit-
ing potential redundancy in scientific datasets [40]. We utilize this
sparsity in scientific datasets to characterize potential data anom-
alies. For example, Figure 1a shows the original dataset from the
Cellular Nuclear Burning problem in FLASH. Figure 1b shows the
distribution of coefficients (in the spatial domain) after applying a
discrete cosine transform (DCT) to the original datasets (Figure 1a).
The x-axis label is in a log scale to emphasize that a small number
of transformed components account for most of the information
(signal amplitudes). Figure 1c illustrates such a high concentration
of information through the cumulative distribution function (CDF)
for DCT coefficients; DCT coefficients containing 99%-percentile
are only 0.3% (110 out of 32,768) of the entire Cellular dataset. While
the sparsity level varies among datasets, one can efficiently explore
properties of scientific datasets after data transforms with a suitable
basis [40, 42]. Among various transforms, such as DCT, Fourier,
or Wavelet basis, DCT or similar variants, in particular, generates
sparse representation effectively compared to other equivalent sig-
nal transformation methods [40].

2.2 Anomaly Detection
Anomaly detection is finding the patterns of various anomaly cat-
egories (such as point and collective) in datasets whose behavior
is not as expected [10]. A typical output of anomaly detection is
a trained binary classifier, which reads a new data entry as the
input and outputs a hypothesis (1 or 0 with some confidence) for
the data point’s abnormality. These techniques, which have been
extensively studied, range from training the detection algorithm
using completely unlabelled data to having an organized dataset
with entries labeled normal or abnormal and to those that rely only
partially on external input [19]. For example, in [36], they collect
several measurements through a monitoring infrastructure to clas-
sify the behavior of HPC systems using the collected statistical
features. This classifier is based on supervised ML algorithms and
decides the class (normal and abnormal).
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Figure 2: Overview of system architecture for learning sparse
representations and detecting anomalies.

While prior studies showed that supervised learning-based ap-
proaches could generate promising results, this is only viable in
cases where labeled data are abundant. However, there are few
or no labeled examples of anomalous behavior in real-world sce-
narios. Furthermore, in many cases, it is infeasible to label every
scientific dataset manually [6]. On the other hand, unsupervised
algorithms detect anomalies solely based on the intrinsic properties
of the unlabeled data points [3, 7, 9]. For example, the autoencoder
in [7] and console logs generated by computing nodes in [13] are
adopted to detect anomalies. However, these prior studies mainly
focus on the anomaly of system behavior in the computing nodes
(i.e., network contention or memory leak), not the data anomaly we
focused on in this paper. Unlike ML-based approaches, an alternate
solution, ABFT [12], could also detect anomalies accurately with
less overhead. However, ABFT is always designed for a particular
algorithm, requiring application modification or customization.

3 PROPOSED APPROACH
Figure 2 shows an overview of our methodology, where we learn
the boundary threshold (𝜏) while using compressive sampling to
classify whether blocks (block size is 100 in this paper) contain
anomalies. In the detection phase, we investigate raw anomaly
scores using only the 𝐾-dominant coefficients derived from SR and
𝜏 to classify whether a block contains anomalous data points. The
evaluation process includes an error-injecting module to validate
the effectiveness of the proposed model by comparing it with other
anomaly detection techniques.

3.1 Models
To formulate our model, let us consider a dataset (X) partitioned
into a set of equally partitioned blocks (𝐷𝑖,𝑡 ), where 𝑖 and 𝑡 denote
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block index and data point index within a block, respectively. As-
suming 𝑝 is the total number of partitioned blocks, and 𝑁 is the
total number of data points in each block, each data point can be
represented as 𝐷𝑖,𝑡 , where 1 ≤ 𝑖 ≤ 𝑝 and 1 ≤ 𝑡 ≤ 𝑁 . We also
define a parameter, 𝜃 (𝐷𝑖 ), which characterizes whether the block
under consideration is associated with data points exhibiting typical
or anomalous behavior. Let 𝜃 (𝑖 ) denote the parameter associated
with the behavior or pattern of 𝑛 data points in 𝐷𝑖 (i.e., within a
block) to determine whether a block contains anomalous data. Each
block contains data points, 𝐷𝑖,𝑡 , that follow the condition, as in
Equation 1.

𝐷 =


𝐷1,𝑡 , if 𝑠1 ≤ 𝑡 ≤ 𝑒1, [𝜃 (1) ]
𝐷2,𝑡 , if 𝑠2 ≤ 𝑡 ≤ 𝑒2, [𝜃 (2) ]

...

𝐷𝑝,𝑡 , if 𝑠𝑝 ≤ 𝑡 ≤ 𝑒𝑝 , [𝜃 (𝑝 ) ]

 , 1 ≤ 𝑖 ≤ 𝑝. (1)

Next, we define the sparse representation, denoted as 𝑆𝑅𝑖 and
𝐴𝐷𝑖 for approximating data points for each partitioned block using
Equation 2 below, which represent the characteristics of data points
in each block. 𝑆𝑅𝑖 and 𝐴𝐷𝑖 are similar, except that 𝐴𝐷𝑖 includes
additional information required for data reconstruction. Therefore,
there is a correlation between 𝜃 (𝐷𝑖 ) and the probability of anomaly
behavior in block 𝑖 as in Equation 3 because anomaly data has high
𝑆𝑅𝑖 and 𝐴𝐷 (𝐷𝑖,𝑡 ) values.

𝐴𝐷𝑖 (𝐷𝑖,(𝑠𝑖 :𝑒𝑖 ) ) ≈ 𝑆𝑅𝑖 , 1 ≤ 𝑖 ≤ 𝑝. (2)
𝐴𝐷𝑖 (𝐷𝑖,(𝑠𝑖 :𝑒𝑖 ) , 𝜃

(𝑖 ) ) = 𝑆𝑅𝑖 × 𝐴𝐷 (𝐷𝑖,𝑡 ) . (3)
We consider two types of anomalies. For point anomaly, we cal-

culate the number of anomaly points𝑚 according to the corruption
rate 𝛼 . To inject anomaly data points, we randomly select 𝑛 data
points out of 𝑁 data points in data block 𝐷𝑖 . Next, we replace the
𝐷𝑖,𝑡 (1 ≤ 𝑡 ≤ 𝑁 ) with the generated 𝑛 anomalous data points into
𝐷𝑖 . For collective anomaly, we randomly choose the start of anoma-
lous data points, denoted as 𝑡𝑠 . Next, the end of anomaly points,
𝑡𝑠+𝑛 is defined by 𝑛 according to the contamination rate 𝛼 . Finally,
from 𝐷𝑖,𝑡𝑠 to 𝐷𝑖,𝑡𝑠+𝑛 are replaced with the generated anomalous
data points.

3.2 Characterizing Sparse Representations
Our approach begins by approximating raw data to extract 𝑆𝑅𝑖 ,
which compacts sparse representation for each block. To illustrate
how this mechanism works, let us consider 𝑋 , which denotes the
original dataset in the transformed domain (DCT in our case). Note
that the sum of information stored using the entire transformed
components is 100%-percentile. We then select the 𝐾-dominant
components ({𝑋1, 𝑋2, ...𝑋𝑘 }) from the transformed coefficients as
sparsity profiles.

While our approximation mechanism reduces data requirements
by maintaining 𝐾 transform components only (and indices associ-
ated with them for a reconstruction), selecting the right 𝐾 , espe-
cially systematically, is not easy. One of the main reasons is that
𝐾 is data-dependent, i.e., data in different applications exhibit dif-
ferent sparsity. In other words, 𝐾 values vary spatially (e.g., block
by block) and temporally (e.g., between checkpoints). In this paper,
we propose two mechanisms to obtain 𝐾 .

The first mechanism derives 𝐾 using a predefined fixed informa-
tion compaction rate. In this scheme, we acquire the full sample
signal 𝑋 (𝑡) (in the transformed domain), sort |𝑋 (𝑡) | in descending
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Figure 3: An illustration of finding anomaly using knee de-
tection algorithm.

order, and determine the 𝐾 largest (or dominant) components, de-
fined by 𝑁 -percentile information. For example, Fixed-95 uses 𝐾
values that amount to 95%-percentile. We formulate this as:

𝐸 (𝑋𝑘 ) =
∑𝑘
𝑖=1 𝑋

2
𝑖∑𝑛

𝑖=1 𝑋
2
𝑖

, 𝑁 = 1, 2, ..., 𝑛, 𝑘 ≤ 𝑛. (4)

The second mechanism determines 𝐾 using the Kneedle algo-
rithm [32], denoted as Kneedle. In Kneedle, rather than using a fixed
𝐸 (𝑋𝑘 ), we accomplish finding 𝑆𝑅𝑖 by detecting the ‘knee-point’ as
described in [32]. The mathematical definition of ‘knee’ is given as
a function of its first and second derivatives, formulated as:

𝐾𝑓 (𝑥 ) =
𝑓 ′′ (𝑥 )

(1 + 𝑓 ′ (𝑥 )2 )1.5 , (5)

where 𝐾𝑓 (𝑥) defines the curvature of 𝑓 .
To use the Kneedle algorithm in the context of this paper, we

fit the CDF of transformed coefficients into a smoothing spline to
preserve the distribution’s overall behavior, like two solid curves in
Figure 3. Then we normalize the points, as in the x-axis in Figure
3, and find the knee points (𝐾) of the normalized curve, typically
the point of maximum curvature of the normalized curve shown
in Figure 3. In other words, the knee point is the local maxima,
depicting the maximum distance between the normalized curve
and the line 𝑦 = 𝑥 .

Figure 3 shows the use of our knee detection algorithm on two
selected blocks in one of our evaluated datasets: normal (blue) and
abnormal (red). The dotted line curves depict the difference between
the normalized spline (solid line curves) and 𝑦 = 𝑥 . The dashed
vertical lines indicate the position of local maxima (maximum cur-
vature of the normalized curve, i.e., the maximum distance between
the spline and difference curve). These curves demonstrate that
the block with abnormal vs. normal data points shows a noticeable
difference, 0.1 vs. 0.3, in the normalized number of coefficients (i.e.,
the x-axis). Note that the x-axis in Figure 3 is normalized to make
the detected knee points between 0 and 1.

3.3 Anomaly Detection Algorithm
As we have presented, our anomaly detection mechanism utilizes
the nature of the transformation we employed. We first find 𝑆𝑅𝑖 for
each block 𝑖 and the boundary threshold (𝜏) between normal and
abnormal. Our detection mechanism determines 𝜏 using Max(𝑆𝑅𝑖 )
and Avg(𝑆𝑅𝑖 ) obtained during the training step for data blocks
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Table 1: The Anomaly Detection Rule for all datasets.
Step Data Blocks → Sparse Representation for Blocks → Characteristics of Anomaly Detection

Training 𝐷1, 𝐷2 ..𝐷𝑖−1 → 𝑆𝑅1, 𝑆𝑅2, ..., 𝑆𝑅𝑖−1 → 𝐾𝑚𝑎𝑥 = Max(𝑆𝑅𝑝 ), 𝐾𝑎𝑣𝑔 = Avg(𝑆𝑅𝑝 ), 𝑝 = 𝐷1, 𝐷2, . . . , 𝐷𝑖−1
Detection 𝐷𝑖 , 𝐷𝑖+1, ... → 𝑆𝑅𝑖 → Anomaly Boundary 𝜏 = 𝐾𝑚𝑎𝑥 +𝐾𝑎𝑣𝑔 × 𝑤𝑖 , 𝑆𝑅𝐵𝑖

Table 2: Evaluated Datasets and their characteristics.

Code Datasets Description Size KPSS test Stationarity(p-value)

CMIP5 rlds Surface downwelling 218MB 0.01 non-stationary
longwave radiation

mrsos Moisture content 218MB 0.01 non-stationary
of soil layer

FLASH Sedov Hydrodynamical test code 576MB 0.08 stationary
involving strong shocks
and non-planar symmetry

Cellular Burn simulation: 1.35GB 0.01 non-stationary
cellular nuclear burning problem

Nek5000 Eddy 2D solution 820MB 0.1 stationary
Vortex Inviscid vortex propagation 580MB 0.01 non-stationary

𝐷1, ..., 𝐷𝑝 , as defined in Table 1. As we have shown, 𝐾 is notably
different in blocks with anomalies. In other words, the higher the
deviation from the original data points, the less compaction (more
dispersed) in the transformed domain. Therefore, the determined
𝜏 is located between two distinct 𝑆𝑅 values, e.g., between 0.1 and
0.3 in the normalized coefficient domain, as shown in Figure 3. For
instance, our algorithm chose 𝜏 of 24 (Kneedle) and 36 (Fixed-95)
according to Table 1 in the detection step for the Eddy dataset.

4 EVALUATIONS
4.1 Setup
4.1.1 Datasets. We use six real-world scientific datasets from three
production-level codes: FLASH, CMIP5, and Nek5000, as presented
in Table 2. We use Kwiatkowski-Phillips-Schmidt-Shin (KPSS) to
check the stationarity, which means that the statistical properties
in a partitioned block, i.e., mean, variance, and covariance, do not
change within a block. As the results show, Eddy and Sedov are
relatively stationary, where the p-value of KPSS is lower than 0.05
(significance level).

4.1.2 Generating the Training and Testing Datasets. We use 30%
of the data for training, which contains normal data points only,
and the remaining 70% for testing. In the training datasets, we use
the corruption rate (𝛼) of 1%, 5%, and 10% to evaluate the perfor-
mance of the evaluated schemes. We evaluate the corruption of 10%
or lower because beyond that is rare in real scenarios and, more
importantly, makes it hard to differentiate between normal and ab-
normal conditions. According to the corruption rate, we calculate
the number of anomalous points 𝑛. Let 𝑖 be the anomaly blocks in
testing blocks (70% of the datasets) and 𝑁 be the number of data
points in each block. We replace 𝑛 normal 𝐷𝑖,𝑡 with 𝑛 generated
anomalous 𝐷′

𝑖,𝑡
in the 20% of randomly selected blocks from the

testing blocks. For example, if 𝛼 is 1%, 1% of the data points in each
anomaly block are selected as anomalies. Then, the actual number
of anomaly data points (or anomalies) is 𝑁 × 0.7× 0.2× 0.01, where
𝑁 is the total number of data points.

4.1.3 Evaluated Schemes and Metrics. We compare our approaches
(Fixed-95 and Kneedle) with two state-of-the-art unsupervised

anomaly detection methods [18]: LoF [8] and AE [1, 25]. To eval-
uate the performance of the evaluated anomaly detection tech-
niques, we implement an anomaly data injection model, consist-
ing of point anomalies and collective anomalies using the library
https://github.com/KDD-OpenSource/agots. We use the following
metrics to assess the overall anomaly detection rates and how ac-
curately the obtained 𝑆𝑅 approximates the original data. The latter
ultimately dictates how closely the approximated data captures the
original data.

• Accuracy (ACC) and False Positive Rate (FPR) are calculated
from the ML confusion matrix.

• Approximation Ratio (AR) is given by:𝐴𝑅 =
|𝐷 |− |𝐷 ′ |

|𝐷 | ×100%,
where |𝐷 | is the size of 𝐷 , |𝐷′ | is the approximated data
size. Error rate using PSNR (Peak Signal-to-Noise Ratio),
𝑃𝑆𝑁𝑅 = 20 · 𝑙𝑜𝑔10(value range) − 10 · 𝑙𝑜𝑔10(𝑀𝑆𝐸), where
value range and MSE refer to the data value range and the
mean squared error, respectively.

4.2 Results
4.2.1 Detection Accuracy. Figure 4 shows the detection accuracy
of the evaluated schemes for point and collective anomalies while
varying the ratio of data corruption 𝛼 (1%, 5%, and 10%). Compared
to AE and LoF, which perform relatively poorly in some datasets,
our proposed schemes achieve high detection accuracy: 73.79%–
98.26% for the point anomaly and 70.74%–100% for the collective
anomaly. Experiments also demonstrate consistently lower FPR: 0%
– 8.89% for point anomalies and 0% – 10.17% for collective anomalies.

Our approach also shows improving detection accuracy as the
corruption rate increases. This trend is because, when the corrup-
tion rate gets higher (i.e., more anomalous data points in a block),
higher 𝐾-dominants in an 𝑆𝑅 occur, leading to more apparent sepa-
ration of 𝜏 from blocks with anomalous data points. AE and LoF, on
the other hand, show deteriorating detection accuracy with lower
contamination rates. We attribute this contrary trend to the fact
that the AE-based anomaly detector uses the reconstruction error
as an anomaly score. So when fewer anomalies exist, the reconstruc-
tion error between normal and abnormal blocks is not apparent. In
other words, AE could become unstable in practical unsupervised
cases without a reliable anomaly score, which is hard to determine
automatically.

Similarly, LoF uses an isolated ratio as an anomaly score. In LoF,
because the degree of anomaly depends on how isolated the object
is from the surrounding neighborhood, it is also more challenging
to decide the anomaly threshold for each block when there are
fewer anomalies (or a lower corruption rate). Lastly, LoF and AE
show slightly lower detection accuracy than ours for collective
anomalies in some cases. We used the static anomaly score for LoF
and AE in both point and collective anomalies. We adjusted the
anomaly score for AE and LoF to achieve maximum performance.

https://github.com/KDD-OpenSource/agots
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Figure 4: Comparison of detection accuracy (bar plot) and false positive rate (line plot).

Table 3: Comparison of approximation ratio for our ap-
proaches with different sparse representations.

Cellular Eddy mrsos
AR AS PSNR AR AS PSNR AR AS PSNR

Fixed-95 99.7% 93.98% 22.86 85.04% 78.95% 27.83 76.76% 70.48% 22.95
Kneedle 90.16% 84.07% 28.94 87.41% 81.5% 29.97 84.99% 79.12% 22.25

rlds Sedov Vortex
AR AS PSNR AR AS PSNR AR AS PSNR

Fixed-95 99.81% 94.17% 20.22 94.36% 88.49% 24.85 93.36% 87.44% 28.26
Kneedle 88.75% 82.59% 30.53 91.67% 85.86% 26.8 90.1% 84.03% 29.9

4.2.2 Approximation Performance. The high detection accuracy
achieved by our schemes confirms our hypothesis that the rela-
tionship among the 𝐾-dominant coefficients allows effective anom-
aly detection in scientific datasets. To understand our sampling
mechanism’s efficiency in capturing the original data character-
istics in a compact form, we measure the approximation ratio of
fixed-information-based (Fixed-95) and Kneedle-based (Kneedle)
because each finds an optimal sparse profile differently. Because
AS means the actual data size to store 𝐾-dominant coefficients and
their indices, our approach incurs the additional storage overhead
computed by AR minus AS. Note that the approximation ratios
presented in Table 3 are for all data blocks, including training and
testing datasets. As we can see from Table 3, all schemes approx-
imate data well with high ratios. For example, our approach can
achieve up to 99.7% of ARs using Fixed-95 for Cellular, which means
that the sparse profile of Cellular requires only 0.3% of the original
data while achieving high detection accuracy.

We next evaluate the reconstructed data to measure how the
quality of the approximated data is comparable to the original
data, which led to higher detection accuracy. The PSNR column
in Table 3 shows the error rates between the reconstructed and
the original data.; in other words, the higher the PSNR, the smaller
the error. In our proposed techniques (Fixed-95 and Kneedle), 𝐾
varies depending on data, i.e., variable data approximation, and so
does in PSNR values, as shown in Table 3. Overall, the PSNR of
Fixed-95 generally is lower than that of the PSNR of Kneedle but

with higher approximation ratios, e.g., in the case of Cellular, 28.86
of PSNR with 99.7% of AR and 28.94 of PSNR with 90.16% of AR for
Fixed-95 and Kneedle, respectively. These results confirmed that
our approach achieves a competitive approximation ratio while
maintaining a relatively low error rate.

5 CONCLUSIONS AND FUTUREWORK
This paper proposes an unsupervised anomaly detection model for
scientific datasets. The motivation behind our method is that scien-
tific datasets exhibit a certain degree of sparsity. We use discrete
transformations, specifically DCT, to reveal the signal’s spatial be-
havior, leading to efficient sparse representation. Our technique also
exploits the correlation between the number of dominant trans-
form coefficients and data anomalies. To validate the proposed
approach, we inject anomalies into original scientific simulation
datasets and compare performance with the other two state-of-the-
art unsupervised anomaly detection techniques, AE and LoF. Our
experimental results show that our approach achieves higher anom-
aly detection accuracy with an increasing contamination rate. Our
proposed schemes successfully detect anomalies while obtaining
about 90.16% of the approximation ratio, i.e., requiring only 9.84%
of original Cellular data. We also observe that the detection accu-
racy by our schemes could be 75.54%–92.13% of point anomalies,
unlike 28.82%-34.49% in AE and 58.96%-61.57% in LoF. These results
demonstrate that our proposed approach can achieve a high approx-
imation/compression ratio while accurately detecting anomalies.
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