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|dentify Hard-to-Place Kidneys for Early
Engagement in Accelerated Placement with a
Deep Learning Optimization Approach
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Abstract— Recommended practices that follow match
run sequences for hard-to-place kidneys succumb to many
declines, accruing cold ischemic time and exacerbating
kidney quality that may lead to unnecessary kidney discard.
Hard-to-place deceased donor kidneys accepted and
transplanted later in the match-run sequence may threaten
higher graft failure rates. Accelerated placement is a
practice for Organ Procurement Organizations (OPOs) to
allocate high-risk kidneys out of sequence and reach
patients at aggressive transplant centers. The current
practice of assessing hard-to-place kidneys and engaging
in accelerated kidney placements relies heavily on the
Kidney Donor Profile Index (KDPI) and the number of
declines. Although this practice is reasonable, it also
accrues cold ischemic time and increases the risk of kidney
discard. We use a deep learning optimization approach to
identify kidneys at risk of discard quickly. This approach
uses Organ Procurement and Transplantation Network data
to model kidney disposition. We filter discards and develop
a model to predict transplant and discard of recovered and
not transplanted kidneys. Kidneys with a higher probability
of discard are deemed hard-to-place kidneys, which require
early engagement for accelerated placement. Our approach
will aid in identifying hard-to-place kidneys before or after
procurement and support OPOs to deviate from the match-
run for accelerated placement. Compared to the KDPI-only
prediction of the kidney disposition, our approach
demonstrates a ten percent increase in correctly predicting
kidneys at risk of discard. Future work will include
developing models to identify candidates with an increased
benefit of using hard-to-place kidneys.
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optimization.
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1 INTRODUCTION

Kidney transplantation, including deceased donor kidney
transplantation, significantly improves the quality-adjusted life
years (QALYs) compared to dialysis [1]. The kidney supply in
the United States, the majority of which comes from deceased
donors, is limited, fulfilling only 20% of the waitlisted
candidate demand [2]. Even with such low supply and high
demand, roughly 20% of the recovered deceased donor kidneys
are discarded annually [3]. Most of the discarded kidneys have
a high Kidney Donor Profile Index (KDPI) which combines ten
deceased donor characteristics into a single value to link the
possibility of graft failure (immunological rejection) after the
kidney is transplanted [3]. Although some kidney discards are
unavoidable, it is unclear if an alteration to the current practices
of the kidney allocation system could potentially increase the
use of high KDPI deceased donor kidneys.

Current kidney allocation practices follow United Network for
Organ Sharing (UNOS) policies to match donors fairly and
equitably to potential recipients. An organ procurement
organization (OPO) is responsible for dealing with all matters
related to recovering organs (kidneys), entering all donor
medical information into UNOS’ network, and allocating
organs (kidneys). Similarly, transplant centers (TXCs) enlist
transplant candidates and enter medical information into
UNOS' network, including dialysis start date, candidate
location, medical urgency, etc.

For each donor, OPOs generate a UNOS match-run list to
prioritize candidates based on many criteria. Initially, waitlisted
candidates found incompatible with the donor will be screened
by UNOS; the remaining candidates will be rank-ordered by the
UNOS match-run allocation prioritization algorithm that
dictates how candidates receive the offers [4]. The OPOs use
the UNOS match-run list to present offers to the TXCs listed
higher up in the list. Depending upon kidney quality OPOs may
increase TXC-batch to offer high-risk kidneys. TXCs have one
hour to accept or decline the kidney offer provisionally. The
term 'provisionally' implies that for non-primary candidates, the
TXC has not made a firm commitment to accept the kidney but
rather a tentative interest (candidates not on the top of the
match-run list). Provisional acceptances ranked lower in the list
become primary when all higher-ranked candidates have
declined the offer, in which case an acceptance decision must
be made within 30 minutes.
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A high-risk deceased donor kidney (KDPI > 80) declined by
many TXCs and in a prolonged allocation process (recurrent
declines) because of organ quality may be deemed a 'hard-to-
place' kidney [5,7]. Declinations of such kidneys may influence
the acceptance decision of lower-ranked TXCs, thus increasing
cold ischemic time (CIT) for late sequence batch offers and
increasing the likelihood of the kidney discard. The effect of
increased declinations from higher-ranked candidates and
accrued CIT may represent missed opportunities for earlier
successful transplants [5] on late sequence batch offers.

UNOS launched a one-year kidney accelerated placement
project [6] to increase the utilization of hard-to-place kidneys.
Kidneys not allocated within the local or regional area are
turned over to the UNOS organ center. UNOS will continue
kidney allocation and present the offers to TXCs with prior
successful transplantation of similar kidneys. UNOS
accelerated placement project was designed to increase
utilization of hard-to-place kidneys (KDPI 80 or higher).
However, the UNOS project was only considered for national
kidney offers, implying that the kidneys were previously
offered to local and regional levels and succumbed to increased
declinations and accrued CIT [6]. Figure 1 depicts the high-
level kidney allocation system from the OPO perspective [5-7].
This Figure includes the accelerated kidney placement project
for turning over kidney allocation to UNOS. Current practices
may be different; depending upon OPO performance, there may
be options for OPOs to continue allocation by jumping the list
and allocating kidneys using their list of aggressive transplant
centers or turning over kidney allocation to UNOS. Similarly,
current practices of identifying hard-to-place kidneys may be a
combination of characteristics, including KDPI, CIT, and many
other logistical variables like proximity, time of the day, etc.
[7].

New changes to the kidney allocation system require kidneys to
be first offered to the donor hospital's 250-nautical miles (NM)
radius [8]. This change prioritizes waitlisted candidates closer
to the donor hospital by awarding proximity points reducing
travel and minimizing kidney CIT. If offers are not accepted
within this radius, then allocation moves outside the circle, and
greater proximity points are awarded to candidates closer to the
circle. Kidney allocation outside the circle is most likely turned
over to UNOS.

According to the Scientific Registry of Transplant Recipients
(SRTR), a hard-to-place kidney is a kidney that has previously
exceeded 100 TXC offers [9]. Although logistical variables
like time of the day, day of the week [10], CIT, etc., may compel
accelerated placement, there is no clear-cut representation of
when OPOs jump the list for hard-to-place kidneys and engage
in accelerated placements. Depending upon the deceased
donor's location, US region, or time of the day, logistical
variables may have distinct effects on kidney allocation.
Therefore, we propose an Al-enabled approach that can help
OPOs deem kidneys hard to place using only donor
characteristics. The Al-enabled approach will quickly identify
hard-to-place  kidneys using broader deceased-donor
characteristics instead of the KDPI. The proposed approach has
incremental capabilities to predict if a donor's kidney is hard to
place before and after procurement. Because there is no distinct
feature that shows if deceased donor kidneys were hard-to-

place and presuming that discarded kidneys were hard-to-place
kidneys, we consider donor disposition as a target variable. Our
proposed method uses a genetic algorithm to optimize and
select a deep learning architecture to predict donor disposition,
aiding OPOs in identifying hard-to-place kidneys and
beginning accelerated placement more quickly. The model is
trained using Organ Procurement and Transplantation Network
(OPTN) historical deceased-donor data and excludes logistical
factors unrelated to deceased-donor kidney quality.
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Figure 1. A high-level kidney allocation system from an OPO perspective
includes accelerated kidney placement project practices. This Figure represents
old policies with different area levels and the new policy with 250 NM. The
local and regional are not in perfect correlation with the 250NM policy, but it
is included to show at what point kidney allocation is handed to UNOS.

This paper sought to create a model that will aid OPOs in
quickly identifying hard-to-place kidneys using donor
characteristics. The model uses a deep architecture design and
is tuned by a genetic algorithm.

1.1 Al in Healthcare

Machine learning classifiers are used to assess the risk of
delayed-graft function in kidney transplants [11]. Among many
different classifiers, the authors [11] select random forest and
artificial neural networks as the most effective classifiers for the
data. Random forest combines the output of many decision trees
to a single result, often referred to as an ensemble learning
method for classification. An artificial neural network has many
(input, hidden, output) layers. Each layer is comprised of
neurons connected to preceding and subsequent layers. A deep
learning model is used to predict posttransplant renal function
in deceased donor kidney recipients using donor biopsy [12].
The authors in [12] conclude that donor kidney biopsy coupled
with clinical characteristics to predict graft function improved
the prediction accuracy of renal graft function from 0.66 to
0.80.

Similarly, a deep learning model that predicts inpatient acute
kidney injury episodes enables the noninvasive kidney disease
stage classification using the estimated glomerular filtration
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rate as a function of patients’ serum creatinine [13]. Deep
learning or deep neural network uses computational models
with layered algorithmic architectures to learn a representation
of the input data without explicit guidance from field experts
[14]. In addition, deep learning is now being used for coronary
artery disease signal identification [15], arrhythmia detection
using a different interval of electrocardiogram segments [8],
detection of myocardial infarction [16], etc. In liver
transplantation, deep learning predicts pretransplant survival in
patients with cirrhosis and optimizes donor-recipient fit in the
liver allocation system [17].

1.2 Deep Learning Optimization

Despite increasing evidence that deep learning models may
outperform expert decision-making and reduce cognitive
burden [18], missing data barriers or unbalanced data may
cause models to struggle with overfitting. Overfitting is when
models closely match training data but do not generalize well
on unseen (test) data. Convolutional neural networks (CNN5s)
are regularized, fully connected networks that overcome
overfitting drawbacks [19]. Although CNN models have proven
effective, the architecture search is manually designed,
requiring users to arrange the width or depth of the architecture
initially. In search of optimum architecture, users will perform
hyperparameter-tuning and observe if desired performance is
achieved. This manual approach has worked well with existing
data and is used to develop cutting-edge deep architectures for
benchmark datasets [20].

However, users may often find manual hyperparameter-tuning
and changes to architecture in search of sub-optimal
architecture design are labor-intensive. The search for deep
learning network architecture may be partially automated using
Grid Search (try hyperparameters from a given set), Random
Search (random hyperparameters from a uniform distribution),
or a semi-dynamic hyperparameter optimization approach [21].
Automated deep architecture design relies on Neural
Architecture Search (NAS) space that grew from Inception [22]
to deep architectures with skip connections like ResNet or
DenseNet [23].

Deep architecture design has significantly reduced
computational resources using parameter sharing in NAS space
while achieving similar or better results [20]. Yet, this approach
requires an optimization technique deployed in the NAS space
to generate high-performing architecture solutions. Common
optimization techniques include reinforcement learning,
genetic algorithm, and gradient-based descent [20]. Although
each has its benefits and drawbacks, the genetic algorithm
requires greater preparation to establish search space and
develop network representation but improves architecture
solutions. The genetic algorithm that allows parameter sharing
across generations enables rapid training (inherited weights) of
matching architectures. The approach discussed by [20] built
upon blocks comprised of various layers and represented as
chromosomes, and each value in the chromosome denotes an
operation for the layer. However, the deficiency of
hyperparameter tuning makes the latter approach appropriate
for deep neural architecture search when scarce computational
resources.

On the other hand, DeepMaker is used to develop network
optimization by (1) design space exploration that searches for

design configurations, including hyperparameter tuning and
architecture design, and (2) minimizing computation power
required by removing redundant filters known as network
pruning [24]. To minimize computational resource utilization,
DeepMaker searches for sub-optimal network architectures by
partial training deeming 16 epochs sufficient for achieving 90%
accuracy. The multi-objective optimization strategy of design
space and network pruning provides a framework for attaining
sub-optimal models at much reduced computational resources.
However, the multi-objective tradeoff of DeepMaker leaves
other areas for exploring, including the geometric dimensions
of each layer. Training deeper networks doesn’t necessarily
mean better performance than shallow ones, but deeper
networks can represent compositionality and adapt to prior
information [25]. Conversely, deep networks suffer from
degradation problems like overfitting, vanishing gradients, or
exploding gradients. Skip connections such as ResNet,
DenseNet, or GoogleNet are introduced to handle deep
network degradation problems, which use identity mapping to
bypass residual layers and preserve low-level features [26,27].

2. METHODOLOGY

2.1. Data Preprocessing

This study used OPTN deceased donor data to train and test a
hard-to-place kidney model. The OPTN data repository
includes data on donors, waitlisted candidates, and transplant
recipients. The transplant recipient data is usually linked with
match runs and is provided with an ID to link with waitlisted
candidates. All data, apart from match runs and images (if
available), can be available upon request.

However, the data has many missing values for older
observations; therefore, we considered the most recent UNOS
deceased-donor data from January 1,2015, to June 30,2021. @
Furthermore, we isolated and compared distinct right and left
kidney characteristics and found significant differences in
procurement biopsies. Therefore, we created two copies of the
data that isolated characteristics belonging to either right or left
kidney. The isolations were caused by the aggregate kidney
disposition label *KIB_DISPOSITION that didn’t reflect the sum
of its parts (right *KIR_DISPOSITION and left *KIL_DISPOSITION
kidney disposition). Additionally, for the target variable of the
kidney disposition label, we only used data observations for
recovered deceased donor kidneys that were either transplanted
or not transplanted. To identify whether the ‘not transplanted’
kidneys were discarded, we conducted a comparative analysis
using the number of kidneys recovered *NUM_KI_RECOV,
kidneys transplanted *NUM_KI_TX, and kidneys discarded
*NUM_KI_DISC. Observations for kidneys not recovered, or not
recovered for transplant, and authorizations not requested or
obtained are dropped from the data.

Table 1 shows the principal components contributing to the
target variable's total variance in impact score obtained by
principal component analysis. The principal component
analysis uses statistical analysis to extract meaningful
information from large datasets and summarize it with a smaller
set of components. The new donor characteristics/components
are ordered by impact score (total variance explained by the
component). Pearson’s correlation measures the linear
correlation between two components; the negative value
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denotes an inverse relationship between the target and the
component.

On the other hand, KDPI will be used as ground truth and,
therefore, not included in the model but instead regressed from
the features presented. Other redundant features, such as body
mass index, hypertension duration, expanded criteria donor,
etc., have a greater impact score than the correlated features.
Since they can be inferred from the remaining features, we
excluded them from the data.

TABLE 1
PRINCIPAL COMPONENTS, IMPACT SCORE, AND PEARSON‘S CORRELATION

Component Impact Pearson’s Correlation

Score
Kidney Glomerulosclerosis 11490 -0.478
Donor Age 8529 -0.365
History of Hypertension 5385 -0.297
Glomeruli Count 3795 -0.237
Serum Creatinine 3611 -0.212
Coronary Artery Disease 1933 -0.184
Blood Urea Nitrogen 1618 -0.168
History of Cancer 1090 -0.084
History of Diabetes 798 -0.057
Donor Weight 682 -0.054
Donor Height 632 0.052
Donor’s HCV Status 598 -0.077
Donor meets DCD Criteria 487 -0.064
History of Cigarette Use 443 -0.141
RNA Nat serology HBV- 421 -0.094
Test
Arginine 405 0.085
Cause of Death 327 -0.004
Donor pH Level 317 0.102
Donor Gender 312 0.061
Kidney on Pump 161 0.048
Clinical Infection 104 0.042
Ethnic Category 72 0.022
Clamp Time 31 -0.007
KDPI (Not used in the model)

Cold Ischemic Time (Not used in the model)

Because we were predisposed to KPDI-driven characteristics,
we also included the ethnic category, which ranks lower than
clinical infection, donor smoking history, donor pH level, etc.
Table 2 displays the principal components of the deceased
donor data used to train the model. Table 2 includes the nature
of the data population and the percentage of the categorical
observations.

Since features like pump device, initial flush solution, final
flush solution, and biopsy type are not among the principal
components, we ignored them. Similarly, all features linked
with the aggregate kidney effect (both kidney labels) were
deemed ineffective because the target didn’t reflect the sum of
its parts and dropped from the final data used to train the model.

TABLE 2
PRINCIPAL CHARACTERISTICS OF THE DECEASED DONOR POPULATION

Donor Height (cm) 170.25 £ 13.40

Donor Weight (kg) 82.99 +23.67

Donor meets DCD 77.35% No, 22.65% Yes
Criteria

Donor Gender 61.09% Male, 38.91% Female

History of Diabetes 88.67% No, 4.13% 0-5yrs, 3.03% >10yrs,

2.02% 6-10yrs, 1.23% Duration-Unknown,
0.91% Unknown

67.25% No, 14.07% 0-5yrs, 7.87% >10yrs,
6.29% 6-10yrs, 4.51% Unknown

141+134

42.70% Anoxia, 28.16% Head trauma,
26.02% Cerebrovascular, 2.77% Other,
0.33% CNS tumor

92.97% Neg, 5.21% Pos, 1.69% Not done,
0.009% Inconclusive, 0.001%Unknown

92.98% No, 5.64% Yes, 1.37% Unknown
96.13% No,2.96% Yes, 0.91% Unknown
60.61% No, 38.17% Yes, 1.14% Unknown
44.70% NA, 34.52% 0-5,8.51% 6-10,
5.35% 20+,4.18% 11-15,2.45% 16-20,
0.27% Unknown

32.22+39.76

24.52+19.17

76.69% No, 21.20% Yes, 2.11% Unknown

95.14 % Neg, 4.74% Pos, 0.11% Not done
48.97% Yes, 39.30% No, 11.73% Unknown

History of Hypertension

Serum Creatinine
Cause of Death

Donor’s HCV status

Coronary Artery Disease
History of Cancer
Kidney on pump

Kidney
Glomerulosclerosis

Kidney Glomeruli count
Blood Urea Nitrogen

History of Cigarette Use
RNA Nat ser- HBV Test

Arginine
Donor pH Level 740+0.08
P . 73.68% Yes, 24.34% No, 1.98% Unknown
Clinical Infection
Clamp Time 12:55PM £ 7
KDPI 47 £ 29 (not used in the model)

Population (Mean + Standard Deviation)
Categorical shown by % of observations
Number of observations (N = 63,295)

Parameter

Donor Age (years) 40.51£15.72

67.24% White, 14.38% Black, 14.07%
Hispanic, 2.50% Asian, 0.90% Multi-Racial,
0.61% Am-Indian, 0.29% Pacific

Ethnic Category

Since roughly 20% of the kidneys are discarded [2,3], we have
a4:1 class imbalance. We sampled the data using the synthetic
minority oversampling technique (SMOTE) and class weight to
address the class imbalance. SMOTE is applied only to the
training data, and the class weight corresponds to a weight
based on the number of observations per class.

2.2 Model Development Approach

Model development with shallow networks such as decision
trees, regularized regression, random trees, and shallow
artificial neural networks was attempted and generated
promising results compared to the KDPI ground truth [28].
However, the shallow network hyperparameter tuning is
limited, and so are model performance improvements.
Therefore, we use a deep optimization approach that presents
an automated, efficient deep architecture search incorporating
hyperparameter tuning and geometric dimensions that handle
degradation problems [20,25,26]. CNNs as regularized
artificial neural networks have penetrated a broad spectrum of
fields leveraging high-performance architectures for
classification and computer vision. We use a single objective
evolutionary genetic algorithm to search the NAS space and
rank populations (a subset of deep learning architecture) as
fitness functions (accuracy in predicting hard-to-place kidneys).
A genetic algorithm is a subclass of evolutionary algorithms
motivated by a human genetic process used for optimization
and search space problems [29]. Initially, a random population
(set of solutions) is generated. The population is represented
using binary bits outlining a set of properties (chromosomes).
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These chromosomes outline the hyperparameters of the deep
network architecture. Crossover and mutation are used to
diversify the population. Crossover is applied to two
chromosomes to generate a second-generation population.
Crossover can be applied at a single-point, two-point, or k-
point, where k is any positive integer less than the number of
genes in the chromosome. In a single-point crossover, the
leading part of the first chromosome is joined with the trailing
part of the other. The k-point crossovers follow the same pattern
as a single-point but repeated k-times.

Similarly, mutation generates new chromosome properties by
bit flips at a random position of the chromosome [30]. The
reproduction process depends on the fitness of the latest
population in predicting kidney disposition. Chromosomes with
better fitness replace current individuals in the hall of fame
‘elitism’ and are used for breeding the next generation. Table 3
depicts the step-by-step process of the genetic algorithm deep
architecture search.

TABLE 3
GENETIC ALGORITHM DEEP ARCHITECTURE SEARCH

Algorithm: The genetic algorithm for deep architecture search

1. Input: OPTN data, the number of generations G, and the number of
individuals for each generation N

2. Initialization: generate a set of randomized chromosomes to represent
all properties of the deep network architecture defined as the initial
population.

3. Evaluation: compute the fitness function of chromosomes in the
population

4. Iteration: repeat the process until the stop criterion is satisfied or time
=G

5. Crossover: a single-point crossover using two chromosomes.

6. Mutation: a flip-bit mutation on new chromosomes.

7. Evaluation: compute the fitness function of chromosomes in the
population

8. Elitism: current x-best (hall of fame) individuals/chromosomes are
passed to the next generation

9. Repeat from step 4

10. Output: display the average of the ‘hall of fame’ individuals and the
best solution.

The evaluation computes the fitness function of the
chromosomes in the population. We used Distributed
Evolutionary Algorithms in Python (DEAP) for optimizing
deep architecture [31]. DEAP is an evolutionary computation
framework providing the essentials for users to customize
functions and fit the current optimization problem [32]. The
DEAP ‘toolbox’ is a wrapper container leveraging functionality
in creating individuals, crossover, mutation, etc., but requires
adequate user knowledge to deploy.

Table 4 depicts the genes within the chromosome, their
explored ranges, and the number of bits within the chromosome
representation. Since artificial neural networks are seen as
mathematical models designed to recognize patterns and learn
like the human brain, we attempt to describe hyperparameters
with an analogy to the human brain. The optimization block (O-
block), like the nervous system, is the property used to
configure the number of systems needed to generate a best-
fitted population. The internal components of O-blocks do not
change from one block to another. The activation functions, like
synapses, are used to introduce nonlinearity into the output of a
neuron. The convolutional layers, like the number of

synchronous groups of connections, are used to aid in capturing
features that may otherwise be missed during processing. The
convolutional layer is CNN's fundamental building block that
comprises most computations. The learning rate is like the
neuronal processing speed. Kernel size is used as a filter to
extract (sample) features analogous to the receptive field of the
retinal ganglion [33]. Cost functions calculate the error between
the predictions and the actual outcome during the training
phase. Dropouts are skipped connections to prevent
memorization and overfitting. Hidden layer neurons represent
the number of neurons within a convolutional layer. Geometric
dimensions like dendritic patterns are provided as properties in
search of the best chromosomes [34].

Table 4 depicts the hyperparameters for the deep architecture
NAS space. The suggested values are not all-inclusive but are
common parameter values across the deep learning realm. Each
hyperparameter/property can be represented in binary using 1,
2, or 3 genes/bits. This Table is for information only; we will
illustrate a full scale of deep learning optimization on the paper
in preparation (L. Ashiku, C. Dagli, unpublished data, October
2022). Deep aggregation is used to help recover spatial
information or boundary localization while merging O-blocks

[35].

TABLE 4
CNN HYPERPARAMETER TUNING OPTIONS
Parameters Values Genes/Bits
Optimization 1,2,3,4,......... 8 3 bits
block
Activation Linear, Sigmoid, Tanh, ReLU, 3 bits
function LeakyReLU, Hard-sigmoid, Swish,
Softplus
Convolution 4 6 8 10 2 bits
layers
Learning rate 10° 10* 10° 10° 2 bits
Kernel size 3x3 5x5 1 bit
Cost function SGD, SGD-M, AdaGrad, RMS-Prop, 3 bits
AdaDelta, Adam, Adamax, Nadam
Dropout 2 3 4 5 2 bits
Hidden layer 16 24 32 64 2 bits
neurons
Geometric VGGNet, ResNet, DenseNet, 2 bits
dimension GoogLeNet
Deep aggregation 0 1 1 bit

Parameter values choices are represented by a factor of two to aid GA
chromosome bit-representation.

Figure 2 illustrates a generic deep architecture comprised of
back-to-back O-blocks for feature extractions that includes
many convolutional layers. Each convolution layer has batch
normalization, activation function, learning rate, kernel size,
hidden layer neuron, and dropout regularization. Geometric
dimensions connect the convolutional layers. Deep aggregation
is external to O-block and joins final convolution layers of O-
blocks to deepen the architecture while progressively refining
the representation. Finally, the cost function is used to evaluate
a candidate solution in terms of prediction to actual output error.
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Figure 2. O-block hyperparameters represent the deep architecture. On the left,
we depict the O-blocks as intermediate between the input and output layers (n).
The genetic algorithms select the number of convolutional layers. Each
convolutional layer contains all hyperparameters shown within the layer.
Geometry represents the convolutional layer patterns within an O-block.

Figure 3 illustrates the genetic algorithm process to induce
diversity in the population. The chromosome is represented in
21 bits; the first 3 bits represent O-block size. The next 3 bits
represent the activation function within the convolution layer,
followed by a 2-bit representation of the learning rate. The
kernel layer is shown with a single bit, followed by a 3-bit cost
function representation. Dropout regularization, hidden layer
neurons, and geometric dimension are each represented by 2
bits. Finally, deep aggregation is shown using a single bit. Two
selected chromosomes from the random population are chosen
to induce the new individuals [38]. A single-point crossover
generates two new chromosomes using genes of the previous
generation. Finally, gene mutations produce new chromosomes
that will be evaluated on the accuracy of predicting kidney
disposition to identify hard-to-place kidneys.
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Figure 3. Chromosome notation and the application of a genetic algorithm to
induce a new population. Each segment of the chromosome is shown in terms
of the hyperparameters. Two first-generation chromosomes are used to create a

second-generation chromosome after crossover. The second-generation
chromosome is then mutated, and a new population is created. The sample
chromosome is illustrated by the parameter values shown in Table 4.

3 RESULTS

The two copies of the data that isolated characteristics of either
right or left kidney for the kidney disposition model produced
results that were not statistically different; therefore, the results
reflect only the right kidney disposition. To set the stage for
ground truth, we revisit common practices for early engagement
in accelerated placement. The current practice of assessing hard-
to-place kidneys and engaging in accelerated kidney placement
may vary from one OPO to another. Some OPOs may associate
with SRTR definition for hard-to-place when deceased donor
kidneys exceed 100 declinations and have KDPI > 85 [9]. Other
OPOs may constitute other internal policies and accelerate
placement when kidney allocation within 250NM is
unsuccessful, serum creatinine is increased, and CIT accrued 6
hours. Similarly, procurement biopsy results may deem kidneys
hard to place and increase the discard rate for kidneys with lower
KDPI scores [36]. Since the proposed model can be used to assess
kidney disposition before and after procurement, we will create
three baseline models: 1. using only KDPI, 2. using KDPI and
serum creatinine, and 3. using KDPI, age, and procurement
biopsies [37,38]. The proposed model will be an incremental
model using OPO-current data to assess kidney disposition
before and after procurement. The model excludes CIT (not
available for discarded kidneys) and the number of offer declines
(not incorporated in the deceased donor dataset due to high
variability in OPO practices of accelerated placement and offer
bypass coding). Figure 4 illustrates the kidney disposition results
obtained from the genetic algorithm deep architecture search
compared to the baseline (KDPI-only). The best architecture
represents the individual with the highest fitness function on a
full-scaled after-procurement model, excluding KDPI from
features represented in Table 2. The KDPI-only model represents
the best deep learning architecture for a single input feature. The
average model represents the elite population replaced only by
better individuals. Finally, the KDPI-characteristics model
represents the deep learning architecture to predict kidney
disposition using the ten characteristics that regress KDPI.

Kidney disposition prediction for selected architectures
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Figure 4. Kidney disposition prediction fitness (accuracy) for the optimized
deep learning architectures. The genetic algorithm is optimized only for the full-
scale after-procurement model that uses clinical donor characteristics shown in
Table 2. The other models illustrated use the optimized architecture at the given
generation number. The KDPI-only is used as ground truth for identifying hard-
to-place kidneys. The average is for the full-scale model across the elite
population of ten. The KDPI-characteristics model is using ten characteristics
that regress KDPI but not KDPI itself.

Table 5 displays recognition accuracy (%) on the deceased-donor
dataset prediction for kidney disposition. The best accuracy is the
fitness (kidney disposition prediction) of the best deep learning
architecture generated by the genetic algorithm and shown in
encoded format per chromosome notation shown in Figure 3. The
KDPI-char is an abbreviation of the KDPI-characteristic model
using the ten KDPI characteristics. The final layer of the deep
architecture uses the SoftMax function (normalized exponential
function) to normalize kidney disposition prediction over
‘transplant’ or ‘discard’ classes. Hence, the kidney disposition
results can be presented regarding the likelihood of the kidney
being transplanted or discarded. Thus, OPOs could assign a
probability threshold value to determine when to engage in
accelerated placement.

TABLE 5
GENETIC ALGORITHM DEEP ARCHITECTURE RESULTS FOR KIDNEY DISPOSITION
MODEL

Best .
Com e KDPahrs, S e
01 87.11 83.10 000 000 01 01 0001 10 1100 0
02 87.59 83.52 000 000 01 010 100 10 11 00 0
03 88.11 83.91 001 0100101010011 11010
04 89.12 84.23 001 01000000001 11 1101 1
05 89.57 84.92 00101001010 111111101 1
10 92.81 86.93 00101101010101 111101 1
15 93.12 87.43 00101101010 101111001 1
20 93.12 87.92 001 01101010101 111001 1
30 93.12 88.24 00101101010 101111001 1
40 93.12 88.24 00101101 010101111001 1
The KDPI-char model provides increased accuracy in

representing deceased donor kidneys about their disposition
compared to KDPI. This result indicates that KDPI is a critical
projection of longevity matching allocation [39] (matching
kidneys with the recipient's long-term prognosis) but is a poor
predictor of kidney discard [40]. One of the rationales for model
prediction variations may be attributed to the high correlation
between hypertension and kidney disposition and the correlation
between diabetes and kidney disposition. Yet, both are given a
lower profile when calculating KDPI. The KDPI calculation
regards hypertension and diabetes using binary representation
(yes/mo), whereas the trained KDPI-char model considers the
duration-incremental effect. This model can help support early
engagement in accelerated placement using only limited
deceased donor characteristics.

Figure 5 presents the confusion matrix of the best deep learning
architecture, followed by the classification report showing each
class’s precision, recall, and fl-score. Class 1 represents a
transplanted kidney, whereas class O implies a discard for the
kidney disposition classification. As noted from the confusion
matrix, the quadrant representing missed opportunities is the

false positives (FPs), where historically, the kidney is
discarded, but the prediction is to transplant the kidney. The
kidneys in the FP quadrant have a mean KDPI of 74. The
majority are expanded-criteria donors with a mean clamp time
(time of procurement) of 13:40, and 95% are connected to the
pump (machine perfusion to improve the preservation of
kidneys during storage).

n = 6330 Actual: 1 Actual: 0
Predicted: 1 5149 376 5525
Predicted: 0 59 746 805

5208 1122

Class 1 (transplant)

Accuracy Score: 0.9312796209
Classification Report:

precision recall fl-score support
1 0.93 0.99 0.96 5208
0 0.93 0.66 0.77 1141

Class 0 (discard)

Figure 5. The confusion matrix and classification report are shown for the hard-
to-place full-scale after-procurement kidney model. At a threshold value of .5,
the model is optimistically inferring that 376 of the discarded kidneys should
have been transplanted. Similarly, the model is predicting 59 of the transplanted
kidneys should have been discarded.

Figure 6 illustrates the historical kidney discard rate for
recovered and not transplanted kidneys and four predictive
models using the deep architecture illustrated earlier. The ‘Data
Discard’ line presents the discard rate of kidneys using the
OPTN data range mentioned earlier in our research. The KDPI
and KDPI-serum prediction models are used as baseline
models. In addition, we created two other models to aid early
engagement in accelerated placement decision-making. All
models surpass the KDPI-only model suggesting that KDPI
alone should not be a kidney disposition predictor. This plot is
assembled to show the influence of deceased donor
characteristics, available before procurement, on predicting
kidney disposition and early recognition of kidneys at risk of
discard. The KDPI-char model closely matches the full-scale
before procurement model, denoting that additional
characteristic might not significantly contribute to predicting
hard-to-place kidneys. This empowers OPOs in quickly
identifying hard-to-place kidneys even before the kidneys have
been procured.

Kidney Disposition by KDPI Decile

Recovered Kidney not TX and Discarded (%)

KDPI
KDPI Predict ——KDPI Char Predict

Data Discard KDPI Serum Predict ——Before Procurement Full Scale
Figure 6. Historical kidney discard and four models predicting discard rate
based on KDPI only, KDPI characteristics, KDPI and serum creatinine, and a
full-scale model that uses all characteristics shown in Table 2, excluding
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procurement biopsy results. This Figure shows models that used deceased
donor kidney characteristics before procurement. The best performer following
the discard rate closely is the full-scale before-procurement model at 91.4 %
accuracy. The next leading model is the ten KDPI characteristics model
yielding 89.2 % accuracy, followed by the KDPI-serum model at 84.9 %
accuracy. KDPI-only model accuracy is at 83.1 %.

Similarly, Figure 7 illustrates the historical kidney discard rate
for recovered and not transplanted kidneys and three predictive
models using the same deep learning architecture. Historical
kidney discards and full-scale before procurement models are
the same as in Figure 6. The added models are the baseline
model using KDPI, age, and biopsy results and the full-scale
model like the one shown in Figure 6 but added procurement
biopsy results to the model input.

Kidney Disposition by KDPI Decile

100%

=

0 10 20 30 40 50 60 70 80 90 100
KDPI

Recovered Kidney not TX and Discarded (%)

Data Discard ——Before Procurement Full Scale ——KDPI Age Biopsy Predict After Procurement Full Scale

Figure 7. Historical kidney discard and three models predicting discard rate
based on KDPI-age-biopsy, full-scale before-procurement model, and full-scale
after-procurement model. The best performer that closely follows the discard
rate is the full-scale after-procurement model at 93.1 % accuracy, followed by
the full-scale before procurement at 91.4 % accuracy. The leading model of all
benchmark models is the KDPI-age-biopsy model at 89.8% accuracy. Although
historical kidney discard is greater than the leading benchmark model, there
might be an unnecessary discard in the lower-KDPI deciles by using the leading
benchmark model (KDPI-age-biopsy).

The KDPI-age-biopsy model is the front-runner of the baseline
models that OPOs may internally practice for accelerating
kidney placements. However, even with biopsy results, this
model does not convey much value-added deceased donor
information that cannot be acquired from clinical deceased
donor information [41] readily available before procurement
with no added exacerbations of accrued CIT. From Figure 7, we
note that biopsy increases discard for low KDPI kidneys
beginning with KDPI 35 to 85 range with a significant increase
in discard for KDPI 50 to 70 range. Although now it is
mandatory to perform a biopsy for expanded criteria donors,
donors with KDPI greater than 85, donors with a history of
diabetes and hemoglobin of 6.5 or greater, etc., biopsy for lower
KDPI may lead to unnecessary discard. On the other hand, the
clamp time, although correlated with kidney disposition, did not
significantly affect the model prediction. We suggest that it may
have a greater influence when linked with the day of the week
since deceased donor kidneys are harder to place on the
weekends [10] and can be used as a surrogate for early
engagement in the accelerated placement. All models shown in
Figure 7 are more optimistic and suggest that there may have
been an increase in kidney transplantation for high-risk kidneys
with early engagement in accelerated placement.

4 DISCUSSIONS

The research focuses on leveraging Al opportunities to aid in
identifying kidneys that are hard to place for early engagement in
accelerated placement. This approach uses historical OPTN
deceased donor data to model kidney disposition. Convolutional
neural networks tuned by a genetic algorithm develop the deep
learning architecture that enhances prediction accuracy
compared to three baseline ground truth models. Compared to the
most common baseline of KDPI as the sole predictor for kidney
discard, our full-scale after procurement model shows a ten
percent increase in correctly predicting donor disposition. These
trained kidney disposition models that can be used anytime
during the kidney allocation process will aid OPOs in assessing
if the deceased donor kidney is hard to place using currently
available deceased donor clinical characteristics. The models
allow OPOs to deviate from the match-run and avoid the
exacerbations caused by cold ischemic time.

Because most deceased donor kidney discards happen for KDPI
80 or higher, KDPI is used as a surrogate for predicting discard.
This research found that KDPI alone should not be used as a
predictor to identify hard-to-place kidneys at risk of discard,
instead, added clinical characteristics will significantly improve
the prediction of deceased donor kidney disposition. Also, the
study recovered that biopsy may not yield much-added
information about the deceased donor that cannot be acquired
from clinical characteristics. Yet it may cause unnecessary
discard of lower KDPI deceased donor kidneys.

Despite the excellent results, our proposed approach may have
some limitations. The results are not unique and may vary on the
nature of the data, data input features, data imputations and
preprocessing, architecture style limitations, or limitations of the
framework (tools and options) used to deploy the genetic
algorithm. In addition, deceased donor characteristics are only
one component of a complex kidney allocation system; many
other factors must be considered. Perhaps the best way to assess
the proposed approach is to have subject experts test the hard-to-
place kidney models and observe their effect on reducing
deceased donor kidney discards.

The need for a more structured approach lays the foundation for
future work to develop a novel many-objective optimization. The
many-objective approach creates data-adaptive deep learning
architectures using OPO and transplant centers’ objectives.
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