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Abstract— Recommended practices that follow match 

run sequences for hard-to-place kidneys succumb to many 
declines, accruing cold ischemic time and exacerbating 
kidney quality that may lead to unnecessary kidney discard. 
Hard-to-place deceased donor kidneys accepted and 
transplanted later in the match-run sequence may threaten 
higher graft failure rates. Accelerated placement is a 
practice for Organ Procurement Organizations (OPOs) to 
allocate high-risk kidneys out of sequence and reach 
patients at aggressive transplant centers. The current 
practice of assessing hard-to-place kidneys and engaging 
in accelerated kidney placements relies heavily on the 
Kidney Donor Profile Index (KDPI) and the number of 
declines. Although this practice is reasonable, it also 
accrues cold ischemic time and increases the risk of kidney 
discard. We use a deep learning optimization approach to 
identify kidneys at risk of discard quickly. This approach 
uses Organ Procurement and Transplantation Network data 
to model kidney disposition. We filter discards and develop 
a model to predict transplant and discard of recovered and 
not transplanted kidneys. Kidneys with a higher probability 
of discard are deemed hard-to-place kidneys, which require 
early engagement for accelerated placement. Our approach 
will aid in identifying hard-to-place kidneys before or after 
procurement and support OPOs to deviate from the match-
run for accelerated placement. Compared to the KDPI-only 
prediction of the kidney disposition, our approach 
demonstrates a ten percent increase in correctly predicting 
kidneys at risk of discard. Future work will include 
developing models to identify candidates with an increased 
benefit of using hard-to-place kidneys. 

Index Terms— Accelerated placement, deep learning 
architectures, hard-to-place kidneys, kidney transplant, 
optimization.  

 
Affiliations: Missouri University of Science and Technology Systems 
Engineering, Rolla, Missouri 
Corresponding Author: lahnr@umsystem.edu 
Abbreviations: AI, artificial intelligence; CIT, cold ischemic time; 
CNN, convolutional neural network; DEAP, Distributed Evolutionary 
Algorithms in Python; ID, identification; KDPI, kidney donor profile 
index; NAS, network architecture search; NM, nautical miles; OPO, 
Organ Procurement Organization; OPTN, Organ Procurement and 
Transplantation Network; TXC, transplant center; UNOS, United 
Network for Organ Sharing. 

 

1 INTRODUCTION 
Kidney transplantation, including deceased donor kidney 
transplantation, significantly improves the quality-adjusted life 
years (QALYs) compared to dialysis [1]. The kidney supply in 
the United States, the majority of which comes from deceased 
donors, is limited, fulfilling only 20% of the waitlisted 
candidate demand [2]. Even with such low supply and high 
demand, roughly 20% of the recovered deceased donor kidneys 
are discarded annually [3]. Most of the discarded kidneys have 
a high Kidney Donor Profile Index (KDPI) which combines ten 
deceased donor characteristics into a single value to link the 
possibility of graft failure (immunological rejection) after the 
kidney is transplanted [3]. Although some kidney discards are 
unavoidable, it is unclear if an alteration to the current practices 
of the kidney allocation system could potentially increase the 
use of high KDPI deceased donor kidneys.  
Current kidney allocation practices follow United Network for 
Organ Sharing (UNOS) policies to match donors fairly and 
equitably to potential recipients. An organ procurement 
organization (OPO) is responsible for dealing with all matters 
related to recovering organs (kidneys), entering all donor 
medical information into UNOS’ network, and allocating 
organs (kidneys). Similarly, transplant centers (TXCs) enlist 
transplant candidates and enter medical information into 
UNOS' network, including dialysis start date, candidate 
location, medical urgency, etc.  
For each donor, OPOs generate a UNOS match-run list to 
prioritize candidates based on many criteria. Initially, waitlisted 
candidates found incompatible with the donor will be screened 
by UNOS; the remaining candidates will be rank-ordered by the 
UNOS match-run allocation prioritization algorithm that 
dictates how candidates receive the offers [4]. The OPOs use 
the UNOS match-run list to present offers to the TXCs listed 
higher up in the list. Depending upon kidney quality OPOs may 
increase TXC-batch to offer high-risk kidneys. TXCs have one 
hour to accept or decline the kidney offer provisionally. The 
term 'provisionally' implies that for non-primary candidates, the 
TXC has not made a firm commitment to accept the kidney but 
rather a tentative interest (candidates not on the top of the 
match-run list). Provisional acceptances ranked lower in the list 
become primary when all higher-ranked candidates have 
declined the offer, in which case an acceptance decision must 
be made within 30 minutes.   
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A high-risk deceased donor kidney (KDPI > 80) declined by 
many TXCs and in a prolonged allocation process (recurrent 
declines) because of organ quality may be deemed a 'hard-to-
place' kidney [5,7]. Declinations of such kidneys may influence 
the acceptance decision of lower-ranked TXCs, thus increasing 
cold ischemic time (CIT) for late sequence batch offers and 
increasing the likelihood of the kidney discard. The effect of 
increased declinations from higher-ranked candidates and 
accrued CIT may represent missed opportunities for earlier 
successful transplants [5] on late sequence batch offers.  
UNOS launched a one-year kidney accelerated placement 
project [6] to increase the utilization of hard-to-place kidneys. 
Kidneys not allocated within the local or regional area are 
turned over to the UNOS organ center. UNOS will continue 
kidney allocation and present the offers to TXCs with prior 
successful transplantation of similar kidneys. UNOS 
accelerated placement project was designed to increase 
utilization of hard-to-place kidneys (KDPI 80 or higher). 
However, the UNOS project was only considered for national 
kidney offers, implying that the kidneys were previously 
offered to local and regional levels and succumbed to increased 
declinations and accrued CIT [6]. Figure 1 depicts the high-
level kidney allocation system from the OPO perspective [5-7]. 
This Figure includes the accelerated kidney placement project 
for turning over kidney allocation to UNOS. Current practices 
may be different; depending upon OPO performance, there may 
be options for OPOs to continue allocation by jumping the list 
and allocating kidneys using their list of aggressive transplant 
centers or turning over kidney allocation to UNOS. Similarly, 
current practices of identifying hard-to-place kidneys may be a 
combination of characteristics, including KDPI, CIT, and many 
other logistical variables like proximity, time of the day, etc. 
[7].  
New changes to the kidney allocation system require kidneys to 
be first offered to the donor hospital's 250-nautical miles (NM) 
radius [8]. This change prioritizes waitlisted candidates closer 
to the donor hospital by awarding proximity points reducing 
travel and minimizing kidney CIT. If offers are not accepted 
within this radius, then allocation moves outside the circle, and 
greater proximity points are awarded to candidates closer to the 
circle. Kidney allocation outside the circle is most likely turned 
over to UNOS. 
According to the Scientific Registry of Transplant Recipients 
(SRTR), a hard-to-place kidney is a kidney that has previously 
exceeded 100 TXC offers  [9]. Although logistical variables 
like time of the day, day of the week [10], CIT, etc., may compel 
accelerated placement, there is no clear-cut representation of 
when OPOs jump the list for hard-to-place kidneys and engage 
in accelerated placements. Depending upon the deceased 
donor's location, US region, or time of the day, logistical 
variables may have distinct effects on kidney allocation.  
Therefore, we propose an AI-enabled approach that can help 
OPOs deem kidneys hard to place using only donor 
characteristics. The AI-enabled approach will quickly identify 
hard-to-place kidneys using broader deceased-donor 
characteristics instead of the KDPI. The proposed approach has 
incremental capabilities to predict if a donor's kidney is hard to 
place before and after procurement. Because there is no distinct 
feature that shows if deceased donor kidneys were hard-to-

place and presuming that discarded kidneys were hard-to-place 
kidneys, we consider donor disposition as a target variable. Our 
proposed method uses a genetic algorithm to optimize and 
select a deep learning architecture to predict donor disposition, 
aiding OPOs in identifying hard-to-place kidneys and 
beginning accelerated placement more quickly. The model is 
trained using Organ Procurement and Transplantation Network 
(OPTN) historical deceased-donor data and excludes logistical 
factors unrelated to deceased-donor kidney quality.  

 
 

 
Figure 1. A high-level kidney allocation system from an OPO perspective 
includes accelerated kidney placement project practices. This Figure represents 
old policies with different area levels and the new policy with 250 NM. The 
local and regional are not in perfect correlation with the 250NM policy, but it 
is included to show at what point kidney allocation is handed to UNOS. 
   

This paper sought to create a model that will aid OPOs in 
quickly identifying hard-to-place kidneys using donor 
characteristics. The model uses a deep architecture design and 
is tuned by a genetic algorithm.  

1.1  AI in Healthcare 
Machine learning classifiers are used to assess the risk of 
delayed-graft function in kidney transplants [11]. Among many 
different classifiers, the authors [11] select random forest and 
artificial neural networks as the most effective classifiers for the 
data. Random forest combines the output of many decision trees 
to a single result, often referred to as an ensemble learning 
method for classification. An artificial neural network has many 
(input, hidden, output) layers. Each layer is comprised of 
neurons connected to preceding and subsequent layers. A deep 
learning model is used to predict posttransplant renal function 
in deceased donor kidney recipients using donor biopsy [12]. 
The authors in [12] conclude that donor kidney biopsy coupled 
with clinical characteristics to predict graft function improved 
the prediction accuracy of renal graft function from 0.66 to 
0.80.  
Similarly, a deep learning model that predicts inpatient acute 
kidney injury episodes enables the noninvasive kidney disease 
stage classification using the estimated glomerular filtration 
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rate as a function of patients’ serum creatinine [13]. Deep 
learning or deep neural network uses computational models 
with layered algorithmic architectures to learn a representation 
of the input data without explicit guidance from field experts 
[14]. In addition, deep learning is now being used for coronary 
artery disease signal identification [15], arrhythmia detection 
using a different interval of electrocardiogram segments [8], 
detection of myocardial infarction [16], etc. In liver 
transplantation, deep learning predicts pretransplant survival in 
patients with cirrhosis and optimizes donor-recipient fit in the 
liver allocation system [17].  

1.2  Deep Learning Optimization 
Despite increasing evidence that deep learning models may 
outperform expert decision-making and reduce cognitive 
burden [18], missing data barriers or unbalanced data may 
cause models to struggle with overfitting. Overfitting is when 
models closely match training data but do not generalize well 
on unseen (test) data. Convolutional neural networks (CNNs) 
are regularized, fully connected networks that overcome 
overfitting drawbacks [19]. Although CNN models have proven 
effective, the architecture search is manually designed, 
requiring users to arrange the width or depth of the architecture 
initially. In search of optimum architecture, users will perform 
hyperparameter-tuning and observe if desired performance is 
achieved. This manual approach has worked well with existing 
data and is used to develop cutting-edge deep architectures for 
benchmark datasets [20].   
However, users may often find manual hyperparameter-tuning 
and changes to architecture in search of sub-optimal 
architecture design are labor-intensive. The search for deep 
learning network architecture may be partially automated using 
Grid Search (try hyperparameters from a given set), Random 
Search (random hyperparameters from a uniform distribution), 
or a semi-dynamic hyperparameter optimization approach [21]. 
Automated deep architecture design relies on Neural 
Architecture Search (NAS) space that grew from Inception [22] 
to deep architectures with skip connections like ResNet or 
DenseNet [23].  
Deep architecture design has significantly reduced 
computational resources using parameter sharing in NAS space 
while achieving similar or better results [20]. Yet, this approach 
requires an optimization technique deployed in the NAS space 
to generate high-performing architecture solutions. Common 
optimization techniques include reinforcement learning, 
genetic algorithm, and gradient-based descent [20]. Although 
each has its benefits and drawbacks, the genetic algorithm 
requires greater preparation to establish search space and 
develop network representation but improves architecture 
solutions. The genetic algorithm that allows parameter sharing 
across generations enables rapid training (inherited weights) of 
matching architectures. The approach discussed by [20] built 
upon blocks comprised of various layers and represented as 
chromosomes, and each value in the chromosome denotes an 
operation for the layer. However, the deficiency of 
hyperparameter tuning makes the latter approach appropriate 
for deep neural architecture search when scarce computational 
resources. 
On the other hand, DeepMaker is used to develop network 
optimization by (1) design space exploration that searches for 

design configurations, including hyperparameter tuning and 
architecture design, and (2) minimizing computation power 
required by removing redundant filters known as network 
pruning [24]. To minimize computational resource utilization, 
DeepMaker searches for sub-optimal network architectures by 
partial training deeming 16 epochs sufficient for achieving 90% 
accuracy. The multi-objective optimization strategy of design 
space and network pruning provides a framework for attaining 
sub-optimal models at much reduced computational resources. 
However, the multi-objective tradeoff of DeepMaker leaves 
other areas for exploring, including the geometric dimensions 
of each layer. Training deeper networks doesn’t necessarily 
mean better performance than shallow ones, but deeper 
networks can represent compositionality and adapt to prior 
information [25]. Conversely, deep networks suffer from 
degradation problems like overfitting, vanishing gradients, or 
exploding gradients. Skip connections such as ResNet, 
DenseNet, or GoogLeNet are introduced to handle deep 
network degradation problems, which use identity mapping to 
bypass residual layers and preserve low-level features [26,27]. 

2.    METHODOLOGY 

2.1.  Data Preprocessing 
This study used OPTN deceased donor data to train and test a 
hard-to-place kidney model. The OPTN data repository 
includes data on donors, waitlisted candidates, and transplant 
recipients. The transplant recipient data is usually linked with 
match runs and is provided with an ID to link with waitlisted 
candidates. All data, apart from match runs and images (if 
available), can be available upon request.  
However, the data has many missing values for older 
observations; therefore, we considered the most recent UNOS 
deceased-donor data from January 1, 2015, to June 30, 2021. @ 
Furthermore, we isolated and compared distinct right and left 
kidney characteristics and found significant differences in 
procurement biopsies. Therefore, we created two copies of the 
data that isolated characteristics belonging to either right or left 
kidney. The isolations were caused by the aggregate kidney 
disposition label *KIB_DISPOSITION that didn’t reflect the sum 
of its parts (right *KIR_DISPOSITION and left *KIL_DISPOSITION 
kidney disposition). Additionally, for the target variable of the 
kidney disposition label, we only used data observations for 
recovered deceased donor kidneys that were either transplanted 
or not transplanted. To identify whether the ‘not transplanted’ 
kidneys were discarded, we conducted a comparative analysis 
using the number of kidneys recovered *NUM_KI_RECOV, 
kidneys transplanted *NUM_KI_TX, and kidneys discarded 
*NUM_KI_DISC. Observations for kidneys not recovered, or not 
recovered for transplant, and authorizations not requested or 
obtained are dropped from the data.  
Table 1 shows the principal components contributing to the 
target variable's total variance in impact score obtained by 
principal component analysis. The principal component 
analysis uses statistical analysis to extract meaningful 
information from large datasets and summarize it with a smaller 
set of components. The new donor characteristics/components 
are ordered by impact score (total variance explained by the 
component). Pearson’s correlation measures the linear 
correlation between two components; the negative value 
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denotes an inverse relationship between the target and the 
component.  
On the other hand, KDPI will be used as ground truth and, 
therefore, not included in the model but instead regressed from 
the features presented. Other redundant features, such as body 
mass index, hypertension duration, expanded criteria donor, 
etc., have a greater impact score than the correlated features. 
Since they can be inferred from the remaining features, we 
excluded them from the data.  

 
TABLE 1 

PRINCIPAL COMPONENTS,  IMPACT SCORE, AND PEARSON‘S CORRELATION 

Component Impact 
Score  

Pearson’s Correlation 
 

Kidney Glomerulosclerosis 
Donor Age 

 

11490  
  8529  

 

-0.478 
-0.365 

History of Hypertension 

Glomeruli Count 
  5385 
  3795 

-0.297 
-0.237 

Serum Creatinine   3611 -0.212 
Coronary Artery Disease 
Blood Urea Nitrogen  

  1933 
  1618 

-0.184 
-0.168 

History of Cancer   1090 -0.084 
History of Diabetes     798 -0.057 
Donor Weight 
Donor Height 
Donor’s HCV Status 
Donor meets DCD Criteria 
History of Cigarette Use 
RNA Nat serology HBV-   
Test 
Arginine 
Cause of Death 
Donor pH Level 
Donor Gender 
Kidney on Pump 
Clinical Infection 
Ethnic Category 
Clamp Time 

    682 
    632  
    598 
    487 
    443 
    421 
     
    405 
    327 
    317 
    312 
    161 
    104 
      72 
      31                          

-0.054 
 0.052 
-0.077 
-0.064 
-0.141 
-0.094 
  
 0.085 
-0.004 
 0.102 
 0.061 
 0.048 
 0.042 
 0.022 
-0.007  

KDPI (Not used in the model) 
  

 
Cold Ischemic Time (Not used in the model) 

 
Because we were predisposed to KPDI-driven characteristics, 
we also included the ethnic category, which ranks lower than 
clinical infection, donor smoking history, donor pH level, etc.  
Table 2 displays the principal components of the deceased 
donor data used to train the model. Table 2 includes the nature 
of the data population and the percentage of the categorical 
observations.  
Since features like pump device, initial flush solution, final 
flush solution, and biopsy type are not among the principal 
components, we ignored them. Similarly, all features linked 
with the aggregate kidney effect (both kidney labels) were 
deemed ineffective because the target didn’t reflect the sum of 
its parts and dropped from the final data used to train the model.  
 

TABLE 2 
PRINCIPAL CHARACTERISTICS OF THE DECEASED DONOR POPULATION 

Parameter 

 

Population (Mean ± Standard Deviation) 
Categorical shown by % of observations  
Number of observations (N = 63,295) 
 

Donor Age (years) 
 

Ethnic Category 
40.51 ± 15.72 
 

67.24% White, 14.38% Black, 14.07% 
Hispanic, 2.50% Asian, 0.90% Multi-Racial, 
0.61% Am-Indian, 0.29% Pacific 
 

Donor Height (cm) 
 

Donor Weight (kg) 
170.25 ± 13.40 
 

82.99 ± 23.67 
 

Donor meets DCD 
Criteria 

77.35% No, 22.65% Yes 
 

Donor Gender 
 

61.09% Male, 38.91% Female 
 
 

History of Diabetes 88.67% No, 4.13% 0-5yrs, 3.03% >10yrs, 
2.02% 6-10yrs, 1.23% Duration-Unknown,  
0.91% Unknown 
 

History of Hypertension 67.25% No, 14.07% 0-5yrs, 7.87% >10yrs,  
6.29% 6-10yrs, 4.51% Unknown 
 

Serum Creatinine 
 

Cause of Death 
1.41 ± 1.34 
 

42.70% Anoxia, 28.16% Head trauma, 
26.02% Cerebrovascular, 2.77% Other,  
0.33% CNS tumor 
 

Donor’s HCV status 92.97% Neg, 5.21% Pos, 1.69% Not done, 
0.009% Inconclusive, 0.001%Unknown 
 

Coronary Artery Disease 
 

92.98% No, 5.64% Yes, 1.37% Unknown 
History of Cancer 
 

Kidney on pump 
 

Kidney 
Glomerulosclerosis 
 
 

Kidney Glomeruli count 
 

Blood Urea Nitrogen 
 

History of Cigarette Use 
 

RNA Nat ser- HBV Test 
 

Arginine 
 

Donor pH Level 
 

Clinical Infection 
 

Clamp Time 
 

KDPI 

96.13% No, 2.96% Yes, 0.91% Unknown 
 

60.61% No, 38.17% Yes, 1.14% Unknown 
 

44.70% NA, 34.52% 0-5, 8.51% 6-10,  
5.35% 20+, 4.18% 11-15, 2.45% 16-20, 
0.27% Unknown 
32.22 ± 39.76 
 

24.52 ± 19.17 
 

76.69% No, 21.20% Yes, 2.11% Unknown 
 

95.14 % Neg, 4.74% Pos, 0.11% Not done 
48.97% Yes, 39.30% No, 11.73% Unknown 
7.40 ± 0.08 
 

73.68% Yes, 24.34% No, 1.98% Unknown 
 

12:55 PM ± 7 
 

47 ± 29 (not used in the model) 
 

 
Since roughly 20% of the kidneys are discarded [2,3], we have 
a 4:1 class imbalance. We sampled the data using the synthetic 
minority oversampling technique (SMOTE) and class weight to 
address the class imbalance. SMOTE is applied only to the 
training data, and the class weight corresponds to a weight 
based on the number of observations per class.     

2.2  Model Development Approach 
Model development with shallow networks such as decision 
trees, regularized regression, random trees, and shallow 
artificial neural networks was attempted and generated 
promising results compared to the KDPI ground truth [28]. 
However, the shallow network hyperparameter tuning is 
limited, and so are model performance improvements. 
Therefore, we use a deep optimization approach that presents 
an automated, efficient deep architecture search incorporating 
hyperparameter tuning and geometric dimensions that handle 
degradation problems [20,25,26]. CNNs as regularized 
artificial neural networks have penetrated a broad spectrum of 
fields leveraging high-performance architectures for 
classification and computer vision. We use a single objective 
evolutionary genetic algorithm to search the NAS space and 
rank populations (a subset of deep learning architecture) as 
fitness functions (accuracy in predicting hard-to-place kidneys). 
A genetic algorithm is a subclass of evolutionary algorithms 
motivated by a human genetic process used for optimization 
and search space problems [29]. Initially, a random population 
(set of solutions) is generated. The population is represented 
using binary bits outlining a set of properties (chromosomes). 
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These chromosomes outline the hyperparameters of the deep 
network architecture. Crossover and mutation are used to 
diversify the population. Crossover is applied to two 
chromosomes to generate a second-generation population. 
Crossover can be applied at a single-point, two-point, or k-
point, where k is any positive integer less than the number of 
genes in the chromosome. In a single-point crossover, the 
leading part of the first chromosome is joined with the trailing 
part of the other. The k-point crossovers follow the same pattern 
as a single-point but repeated k-times.  
Similarly, mutation generates new chromosome properties by 
bit flips at a random position of the chromosome [30]. The 
reproduction process depends on the fitness of the latest 
population in predicting kidney disposition. Chromosomes with 
better fitness replace current individuals in the hall of fame 
‘elitism’ and are used for breeding the next generation. Table 3 
depicts the step-by-step process of the genetic algorithm deep 
architecture search. 

 
TABLE 3 

GENETIC ALGORITHM DEEP ARCHITECTURE SEARCH 

Algorithm: The genetic algorithm for deep architecture search 

1. Input: OPTN data, the number of generations G, and the number of 
individuals for each generation N  

2. Initialization: generate a set of randomized chromosomes to represent 
all properties of the deep network architecture defined as the initial 
population.  
3. Evaluation: compute the fitness function of chromosomes in the 
population 
4. Iteration: repeat the process until the stop criterion is satisfied or time 
t=G 
5. Crossover: a single-point crossover using two chromosomes. 
6. Mutation: a flip-bit mutation on new chromosomes. 
7. Evaluation: compute the fitness function of chromosomes in the 
population 
8. Elitism: current x-best (hall of fame) individuals/chromosomes are 
passed to the next generation 
9. Repeat from step 4 
10. Output: display the average of the ‘hall of fame’ individuals and the 
best solution.  

 
The evaluation computes the fitness function of the 
chromosomes in the population. We used Distributed 
Evolutionary Algorithms in Python (DEAP) for optimizing 
deep architecture [31]. DEAP is an evolutionary computation 
framework providing the essentials for users to customize 
functions and fit the current optimization problem [32]. The 
DEAP ‘toolbox’ is a wrapper container leveraging functionality 
in creating individuals, crossover, mutation, etc., but requires 
adequate user knowledge to deploy. 
Table 4 depicts the genes within the chromosome, their 
explored ranges, and the number of bits within the chromosome 
representation. Since artificial neural networks are seen as 
mathematical models designed to recognize patterns and learn 
like the human brain, we attempt to describe hyperparameters 
with an analogy to the human brain. The optimization block (O-
block), like the nervous system, is the property used to 
configure the number of systems needed to generate a best-
fitted population. The internal components of O-blocks do not 
change from one block to another. The activation functions, like 
synapses, are used to introduce nonlinearity into the output of a 
neuron. The convolutional layers, like the number of 

synchronous groups of connections, are used to aid in capturing 
features that may otherwise be missed during processing. The 
convolutional layer is CNN's fundamental building block that 
comprises most computations. The learning rate is like the 
neuronal processing speed. Kernel size is used as a filter to 
extract (sample) features analogous to the receptive field of the 
retinal ganglion [33]. Cost functions calculate the error between 
the predictions and the actual outcome during the training 
phase. Dropouts are skipped connections to prevent 
memorization and overfitting. Hidden layer neurons represent 
the number of neurons within a convolutional layer. Geometric 
dimensions like dendritic patterns are provided as properties in 
search of the best chromosomes [34].     
Table 4 depicts the hyperparameters for the deep architecture 
NAS space. The suggested values are not all-inclusive but are 
common parameter values across the deep learning realm. Each 
hyperparameter/property can be represented in binary using 1, 
2, or 3 genes/bits. This Table is for information only; we will 
illustrate a full scale of deep learning optimization on the paper 
in preparation (L. Ashiku, C. Dagli, unpublished data, October 
2022). Deep aggregation is used to help recover spatial 
information or boundary localization while merging O-blocks 
[35].  
 

TABLE 4 
CNN HYPERPARAMETER TUNING OPTIONS 

Parameters    Values Genes/Bits 

Optimization 
block 

1, 2, 3, 4, ………8  3 bits 

Activation 
function 
   

Linear, Sigmoid, Tanh, ReLU, 
LeakyReLU, Hard-sigmoid, Swish, 
Softplus 

3 bits 

Convolution 
layers 

4      6      8     10 2 bits 

Learning rate 10-3   10-4     10-5      10-6 2 bits 

Kernel size 3x3  5x5 1 bit 
Cost function SGD, SGD-M, AdaGrad, RMS-Prop, 

AdaDelta, Adam, Adamax, Nadam 
3 bits 

Dropout .2      .3     .4      .5 2 bits 

Hidden layer 
neurons 

16    24    32    64 2 bits 

Geometric       
dimension 

VGGNet, ResNet, DenseNet, 
GoogLeNet 

2 bits 

Deep aggregation 0       1 1 bit 
Parameter values choices are represented by a factor of two to aid GA 
chromosome bit-representation.  
 
Figure 2 illustrates a generic deep architecture comprised of 
back-to-back O-blocks for feature extractions that includes 
many convolutional layers. Each convolution layer has batch 
normalization, activation function, learning rate, kernel size, 
hidden layer neuron, and dropout regularization. Geometric 
dimensions connect the convolutional layers. Deep aggregation 
is external to O-block and joins final convolution layers of O-
blocks to deepen the architecture while progressively refining 
the representation. Finally, the cost function is used to evaluate 
a candidate solution in terms of prediction to actual output error.  
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Figure 2. O-block hyperparameters represent the deep architecture. On the left, 
we depict the O-blocks as intermediate between the input and output layers (n). 
The genetic algorithms select the number of convolutional layers. Each 
convolutional layer contains all hyperparameters shown within the layer. 
Geometry represents the convolutional layer patterns within an O-block. 
 
Figure 3 illustrates the genetic algorithm process to induce 
diversity in the population. The chromosome is represented in 
21 bits; the first 3 bits represent O-block size. The next 3 bits 
represent the activation function within the convolution layer, 
followed by a 2-bit representation of the learning rate. The 
kernel layer is shown with a single bit, followed by a 3-bit cost 
function representation. Dropout regularization, hidden layer 
neurons, and geometric dimension are each represented by 2 
bits. Finally, deep aggregation is shown using a single bit. Two 
selected chromosomes from the random population are chosen 
to induce the new individuals [38]. A single-point crossover 
generates two new chromosomes using genes of the previous 
generation. Finally, gene mutations produce new chromosomes 
that will be evaluated on the accuracy of predicting kidney 
disposition to identify hard-to-place kidneys.  

 
 
Figure 3. Chromosome notation and the application of a genetic algorithm to 
induce a new population. Each segment of the chromosome is shown in terms 
of the hyperparameters. Two first-generation chromosomes are used to create a 

second-generation chromosome after crossover. The second-generation 
chromosome is then mutated, and a new population is created. The sample 
chromosome is illustrated by the parameter values shown in Table 4.  

3    RESULTS 
The two copies of the data that isolated characteristics of either 
right or left kidney for the kidney disposition model produced 
results that were not statistically different; therefore, the results 
reflect only the right kidney disposition. To set the stage for 
ground truth, we revisit common practices for early engagement 
in accelerated placement. The current practice of assessing hard-
to-place kidneys and engaging in accelerated kidney placement 
may vary from one OPO to another. Some OPOs may associate 
with SRTR definition for hard-to-place when deceased donor 
kidneys exceed 100 declinations and have KDPI > 85 [9]. Other 
OPOs may constitute other internal policies and accelerate 
placement when kidney allocation within 250NM is 
unsuccessful, serum creatinine is increased, and CIT accrued 6 
hours. Similarly, procurement biopsy results may deem kidneys 
hard to place and increase the discard rate for kidneys with lower 
KDPI scores [36]. Since the proposed model can be used to assess 
kidney disposition before and after procurement, we will create 
three baseline models: 1. using only KDPI, 2. using KDPI and 
serum creatinine, and 3. using KDPI, age, and procurement 
biopsies [37,38]. The proposed model will be an incremental 
model using OPO-current data to assess kidney disposition 
before and after procurement. The model excludes CIT (not 
available for discarded kidneys) and the number of offer declines 
(not incorporated in the deceased donor dataset due to high 
variability in OPO practices of accelerated placement and offer 
bypass coding). Figure 4 illustrates the kidney disposition results 
obtained from the genetic algorithm deep architecture search 
compared to the baseline (KDPI-only). The best architecture 
represents the individual with the highest fitness function on a 
full-scaled after-procurement model, excluding KDPI from 
features represented in Table 2. The KDPI-only model represents 
the best deep learning architecture for a single input feature. The 
average model represents the elite population replaced only by 
better individuals. Finally, the KDPI-characteristics model 
represents the deep learning architecture to predict kidney 
disposition using the ten characteristics that regress KDPI.  
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Figure 4. Kidney disposition prediction fitness (accuracy) for the optimized 
deep learning architectures. The genetic algorithm is optimized only for the full-
scale after-procurement model that uses clinical donor characteristics shown in 
Table 2. The other models illustrated use the optimized architecture at the given 
generation number. The KDPI-only is used as ground truth for identifying hard-
to-place kidneys. The average is for the full-scale model across the elite 
population of ten. The KDPI-characteristics model is using ten characteristics 
that regress KDPI but not KDPI itself. 
 
Table 5 displays recognition accuracy (%) on the deceased-donor 
dataset prediction for kidney disposition. The best accuracy is the 
fitness (kidney disposition prediction) of the best deep learning 
architecture generated by the genetic algorithm and shown in 
encoded format per chromosome notation shown in Figure 3. The 
KDPI-char is an abbreviation of the KDPI-characteristic model 
using the ten KDPI characteristics. The final layer of the deep 
architecture uses the SoftMax function (normalized exponential 
function) to normalize kidney disposition prediction over 
‘transplant’ or ‘discard’ classes. Hence, the kidney disposition 
results can be presented regarding the likelihood of the kidney 
being transplanted or discarded. Thus, OPOs could assign a 
probability threshold value to determine when to engage in 
accelerated placement. 
 

TABLE 5 
GENETIC ALGORITHM DEEP ARCHITECTURE RESULTS FOR KIDNEY DISPOSITION 

MODEL 

Genera
tion 

Best 
architecture  
% 

KDPI-char % Best deep architecture 
using bit-representation 

01 
 

02 
87.11 

 

87.59 
83.10 

 

83.52 
    000 000 01 01 0 001 10 11 00 0 
 

    000 000 01 01 0 100 10 11 00 0 
03 88.11 83.91     001 010 01 01 0 100 11 11 01 0 
04 89.12 84.23     001 010 00 00 0 001 11 11 01 1 

05 89.57 84.92     001 010 01 01 0 111 11 11 01 1 

10 92.81 86.93     001 011 01 01 0 101 11 11 01 1 
15 93.12 87.43     001 011 01 01 0 101 11 10 01 1 
20 93.12 87.92     001 011 01 01 0 101 11 10 01 1 
30 93.12 88.24     001 011 01 01 0 101 11 10 01 1 
40 93.12 88.24     001 011 01 01 0 101 11 10 01 1 

    

 
The KDPI-char model provides increased accuracy in 
representing deceased donor kidneys about their disposition 
compared to KDPI. This result indicates that KDPI is a critical 
projection of longevity matching allocation [39] (matching 
kidneys with the recipient's long-term prognosis) but is a poor 
predictor of kidney discard [40]. One of the rationales for model 
prediction variations may be attributed to the high correlation 
between hypertension and kidney disposition and the correlation 
between diabetes and kidney disposition. Yet, both are given a 
lower profile when calculating KDPI. The KDPI calculation 
regards hypertension and diabetes using binary representation 
(yes/no), whereas the trained KDPI-char model considers the 
duration-incremental effect. This model can help support early 
engagement in accelerated placement using only limited 
deceased donor characteristics. 
Figure 5 presents the confusion matrix of the best deep learning 
architecture, followed by the classification report showing each 
class’s precision, recall, and f1-score. Class 1 represents a 
transplanted kidney, whereas class 0 implies a discard for the 
kidney disposition classification. As noted from the confusion 
matrix, the quadrant representing missed opportunities is the 

false positives (FPs), where historically, the kidney is 
discarded, but the prediction is to transplant the kidney. The 
kidneys in the FP quadrant have a mean KDPI of 74. The 
majority are expanded-criteria donors with a mean clamp time 
(time of procurement) of 13:40, and 95% are connected to the 
pump (machine perfusion to improve the preservation of 
kidneys during storage).  

 
Figure 5. The confusion matrix and classification report are shown for the hard-
to-place full-scale after-procurement kidney model. At a threshold value of .5, 
the model is optimistically inferring that 376 of the discarded kidneys should 
have been transplanted. Similarly, the model is predicting 59 of the transplanted 
kidneys should have been discarded.  
 
Figure 6 illustrates the historical kidney discard rate for 
recovered and not transplanted kidneys and four predictive 
models using the deep architecture illustrated earlier. The ‘Data 
Discard’ line presents the discard rate of kidneys using the 
OPTN data range mentioned earlier in our research. The KDPI 
and KDPI-serum prediction models are used as baseline 
models. In addition, we created two other models to aid early 
engagement in accelerated placement decision-making. All 
models surpass the KDPI-only model suggesting that KDPI 
alone should not be a kidney disposition predictor. This plot is 
assembled to show the influence of deceased donor 
characteristics, available before procurement, on predicting 
kidney disposition and early recognition of kidneys at risk of 
discard. The KDPI-char model closely matches the full-scale 
before procurement model, denoting that additional 
characteristic might not significantly contribute to predicting 
hard-to-place kidneys. This empowers OPOs in quickly 
identifying hard-to-place kidneys even before the kidneys have 
been procured. 
 

 
 
Figure 6. Historical kidney discard and four models predicting discard rate 
based on KDPI only, KDPI characteristics, KDPI and serum creatinine, and a 
full-scale model that uses all characteristics shown in Table 2, excluding 
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procurement biopsy results. This Figure shows models that used deceased 
donor kidney characteristics before procurement. The best performer following 
the discard rate closely is the full-scale before-procurement model at 91.4 % 
accuracy. The next leading model is the ten KDPI characteristics model 
yielding 89.2 % accuracy, followed by the KDPI-serum model at 84.9 % 
accuracy. KDPI-only model accuracy is at 83.1 %. 
 
Similarly, Figure 7 illustrates the historical kidney discard rate 
for recovered and not transplanted kidneys and three predictive 
models using the same deep learning architecture. Historical 
kidney discards and full-scale before procurement models are 
the same as in Figure 6. The added models are the baseline 
model using KDPI, age, and biopsy results and the full-scale 
model like the one shown in Figure 6 but added procurement 
biopsy results to the model input.  
 

 
 
Figure 7. Historical kidney discard and three models predicting discard rate 
based on KDPI-age-biopsy, full-scale before-procurement model, and full-scale 
after-procurement model. The best performer that closely follows the discard 
rate is the full-scale after-procurement model at 93.1 % accuracy, followed by 
the full-scale before procurement at 91.4 % accuracy. The leading model of all 
benchmark models is the KDPI-age-biopsy model at 89.8% accuracy. Although 
historical kidney discard is greater than the leading benchmark model, there 
might be an unnecessary discard in the lower-KDPI deciles by using the leading 
benchmark model (KDPI-age-biopsy). 
 
The KDPI-age-biopsy model is the front-runner of the baseline 
models that OPOs may internally practice for accelerating 
kidney placements. However, even with biopsy results, this 
model does not convey much value-added deceased donor 
information that cannot be acquired from clinical deceased 
donor information [41] readily available before procurement 
with no added exacerbations of accrued CIT. From Figure 7, we 
note that biopsy increases discard for low KDPI kidneys 
beginning with KDPI 35 to 85 range with a significant increase 
in discard for KDPI 50 to 70 range. Although now it is 
mandatory to perform a biopsy for expanded criteria donors, 
donors with KDPI greater than 85, donors with a history of 
diabetes and hemoglobin of 6.5 or greater, etc., biopsy for lower 
KDPI may lead to unnecessary discard. On the other hand, the 
clamp time, although correlated with kidney disposition, did not 
significantly affect the model prediction. We suggest that it may 
have a greater influence when linked with the day of the week 
since deceased donor kidneys are harder to place on the 
weekends [10] and can be used as a surrogate for early 
engagement in the accelerated placement. All models shown in 
Figure 7 are more optimistic and suggest that there may have 
been an increase in kidney transplantation for high-risk kidneys 
with early engagement in accelerated placement.  

4    DISCUSSIONS 
The research focuses on leveraging AI opportunities to aid in 
identifying kidneys that are hard to place for early engagement in 
accelerated placement. This approach uses historical OPTN 
deceased donor data to model kidney disposition. Convolutional 
neural networks tuned by a genetic algorithm develop the deep 
learning architecture that enhances prediction accuracy 
compared to three baseline ground truth models. Compared to the 
most common baseline of KDPI as the sole predictor for kidney 
discard, our full-scale after procurement model shows a ten 
percent increase in correctly predicting donor disposition. These 
trained kidney disposition models that can be used anytime 
during the kidney allocation process will aid OPOs in assessing 
if the deceased donor kidney is hard to place using currently 
available deceased donor clinical characteristics. The models 
allow OPOs to deviate from the match-run and avoid the 
exacerbations caused by cold ischemic time.   
Because most deceased donor kidney discards happen for KDPI 
80 or higher, KDPI is used as a surrogate for predicting discard. 
This research found that KDPI alone should not be used as a 
predictor to identify hard-to-place kidneys at risk of discard, 
instead, added clinical characteristics will significantly improve 
the prediction of deceased donor kidney disposition. Also, the 
study recovered that biopsy may not yield much-added 
information about the deceased donor that cannot be acquired 
from clinical characteristics. Yet it may cause unnecessary 
discard of lower KDPI deceased donor kidneys.  
Despite the excellent results, our proposed approach may have 
some limitations. The results are not unique and may vary on the 
nature of the data, data input features, data imputations and 
preprocessing, architecture style limitations, or limitations of the 
framework (tools and options) used to deploy the genetic 
algorithm. In addition, deceased donor characteristics are only 
one component of a complex kidney allocation system; many 
other factors must be considered. Perhaps the best way to assess 
the proposed approach is to have subject experts test the hard-to-
place kidney models and observe their effect on reducing 
deceased donor kidney discards.   
The need for a more structured approach lays the foundation for 
future work to develop a novel many-objective optimization. The 
many-objective approach creates data-adaptive deep learning 
architectures using OPO and transplant centers’ objectives.  
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