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ABSTRACT

Using millimeter-wave radars as a perception sensor provides
self-driving cars with robust sensing capability in adverse
weather. However, mmWave radars currently lack sufficient
spatial resolution for semantic scene understanding. This
paper introduces Radatron++, a system leverages cascaded
MIMO (Multiple-Input Multiple-Output) radar to achieve ac-
curate vehicle detection for self-driving cars. We develop a
novel hybrid radar processing and deep learning approach to
leverage the 10x finer angular resolution while combating
unique challenges of cascaded MIMO radars. We train and
evaluate Radatron++ with a novel cascaded radar dataset. Ra-
datron++ achieves 93.9% and 58.5% Average Precisions with
0.5 and 0.75 Intersection over Union thresholds respectively
in 2D bounding box detection, outperforming prior work
using low-resolution radars by 9.3% and 18.1% respectively.

1. INTRODUCTION

Using millimeter-wave (mmWave) radars for perception on
self-driving cars has received increased interest in recent
years [1, 2, 3, 4, 5, 6, 7, 8]. This is because mmWave radars
have unique advantages over the dominant sensory modalities
on today’s autonomous vehicles, i.e., cameras and LiDARs.
Radars can accurately measure distances and even velocities
of objects, they are relatively cheap and can operate in ad-
verse weather conditions such as fog, smog, snowstorms, and
sandstorms where cameras and LiDARs fail [9, 10].

However, previous studies on mmWave radar-based se-
mantic scene understanding such as object detection were re-
stricted by the low angular resolution of radar, as shown in
Fig. 1(b), so they can only coarsely localize objects [1, 11,
12]. Others must fuse radar with LiDARs or cameras to en-
able object detection [5, 13], or jointly leverage multiple radar
frames to correct for inaccurate per-frame detection [14].

In this paper, we develop Radatron++, a mmWave radar-
based perception system for self-driving cars that can detect
precise bounding boxes of vehicles. Radatron++ leverages
the novel cascaded MIMO radar, which combines multiple
radar devices to emulate a much larger radar system with
more transmitters (TX) and receivers (RX) [15, 16] to im-
prove the angular resolution. However, the high angular res-
olution of cascaded MIMO radar comes at a price, because
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Fig. 1. Bird’s-eye view heatmap and detection comparison be-
tween (b) low-resolution mmWave radar, (c) high-solution cascaded
MIMO radar, (d) Radatron++’s multi-resolution imaging system.
the time-division multiplexing (TDM) of the TX antennas re-
quires combining multiple transmissions to generate a high-
resolution heatmap. In highly dynamic scenes like moving
cars on the road, the Doppler phase shift across the multiple
transmissions can blur and distort the resulting heatmaps [16,
17], as shown in Fig. 1(c). Reflections of objects get smeared
and appear in different locations than where they really are,
which leads to inaccurate bounding boxes prediction.

To overcome the challenges and fully leverage the high
angular resolutions of cascaded MIMO radars, Radatron++
jointly leverages a variety of virtual array topologies that can
be emulated from a single radar frame in a hybrid radar sig-
nal processing and deep learning solution. On the radar sig-
nal processing front, we first exploit a virtual array topology
consisting of co-located virtual antennas to disentangle the
Doppler phase shift in multiple transmissions and the spa-
tial diversity-induced phase differences. We can hence com-
pensate for the Doppler shift-induced distortion in the high-
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resolution range-azimuth heatmaps. Moreover, Radatron++
manages to extract unambiguous Doppler information using
a set of virtual arrays emulated with each TX antenna.

On the deep learning front, we design a novel radar-
based object detection network, that incorporates the multi-
resolution radar heatmaps from the cascaded MIMO radar.
We utilize the richer perceptual information in the high-
resolution heatmap for precise bounding box detection. Be-
sides, virtual arrays emulated using a single TX do not suffer
from Doppler shift-induced distortions, so even with lower
resolution, they are useful in correcting faulty information
like smeared or missed cars. Finally, Radatron++ also lever-
ages the additional unambiguous Doppler information to
better distinguish cars with different velocities.

Radatron++ is part of a broader radar-assisted perception
project. The neural network design details and ablation stud-
ies were presented in [18]. This paper focuses on the MIMO
radar signal processing algorithm. It also exploits the Doppler
information to fully leverage cascaded radar data and to fur-
ther improve detection performance. We train and extensively
evaluate Radatron++ using the novel cascaded MIMO radar
dataset we introduced in [18]. Our results show that Rada-
tron++ improves overall detection accuracy by 9.3% for APs
and 18.1% for AP75 compared to low-resolution radars used
in prior work [1, 4, 12]. Besides, leveraging the additional
Doppler information further improves the performance over
Radatron [18] by 1.3% for AP5¢ and 2.2% for AP7s.

2. CHALLENGES FOR CASCADED MIMO RADAR

The angular resolution of radar is inversely proportional to
the antenna aperture size [12], so it only scales linearly with
the number of antennas and RF chains. MIMO radars, on the
other hand, provide a much more scalable solution to achieve
high angular resolution. With each TX-RX antenna pair em-
ulating a virtual link, a MIMO radar with N TX and M RX
can emulate N XM virtual links with only N+M physical an-
tennas [15]. This allows the angular resolution to scale bi-
linearly with the number of antennas. However, MIMO radars
require multiple transmissions from the TDM TX antennas
to construct a frame, which leads to two unique challenges:
(1) Doppler phase shift across transmissions is non-negligible
and can severely distort the resulting heatmap [16, 17]. (2)
Low frame rate leads to ambiguities in Doppler processing.

Doppler and Spatial Diversity Phase Entanglement: Stan-
dard radar processing algorithms estimate the angle-of-arrival
(AoA) of reflections (¢) and construct range-azimuth (RA)

heatmaps using the phase differences across the antenna ar-
ray: Q{dsinqﬁ, where A\ and d represent the wavelength and
antenna spacing respectively. For MIMO radars, both TX
and RX spatial diversities contribute to the phase differences
across the virtual array. Besides, as TDM TXs take turns to
transmit with switching delay T, transmissions from the k™
and [™ TXs received by the i and j™ RXs also experience
Doppler phase shift. The resulting phase variation is:

Af = Tﬂ[ singd(j —i) + singd(l—k) +2vT(l— k)]

RX Spatial Diversity  TX Spatial Diversity ~ Doppler Shift

1
In stationary scenes (v ~ 0), the Doppler phase shift is
negligible. However, with significant relative velocity v, the
Doppler phase shift is entangled with phase variations due to
antenna spacial diversities and corrupts beamforming. Con-
sequently, the RA heatmap gets distorted as reflections are
smeared along the azimuth axis, as shown in Fig. 1(c).
Although Doppler phase compensation algorithms have
been proposed for Synthetic Aperture Radar (SAR) and TDM
MIMO radars [17], motion compensation for SAR only dis-
solves a constant Doppler shift throughout the scene caused
by the ego motion of SAR. [17] also only considers an overly
simple scenario with a single moving target. However, auto-
motive MIMO radars suffer from various Doppler shifts in the
scene resulting from relative motions between the moving ego
vehicle and different objects in motion. Hence, conventional
motion compensation techniques alone are inadequate.

Ambiguity in Doppler Velocity: Another downside caused
by the low frame rate of cascaded MIMO radar is the limited
maximum unambiguous velocity range that is proportional to
the frame rate. Doppler phase shifts over multiple frames can
be used to estimate the relative velocity of objects, but there
can be ambiguities when the Doppler phase shift exceeds 27
and wraps over adjacent frames. For example, the frame in-
terval in our radar configuration is 547us, which results in a
maximum unambiguous velocity of only £6.4 km/h. There-
fore, all objects whose velocities (relative to the radar) differ
by integer multiples of 12.8 km/h are indistinguishable.

3. PROCESSING DIVERSE VIRTUAL ARRAYS

We leverage a variety of emulatable virtual antenna array
topologies to disentangle phase variations due to antenna spa-
tial diversity and Doppler shift and resolve them separately.
We design our processing algorithm for TI MMWCAS cas-
caded MIMO radar [15], a mono-static MIMO radar with 12
TX and 16 RX, but it can generalize to other MIMO radars.
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Fig. 3. Radatron++’s network architecture: Multi-resolution radar data are fused at an intermediate layer of the backbone.

Doppler Phase Compensation Leveraging Redundancies:
We exploit redundancies in the virtual antenna array, i.e.,
co-located virtual antennas [17], to disentangle the Doppler
phase shift from the spatial diversity-induced phase differ-
ences and compensate for the Doppler phase shifts. Under the
far-field assumption, two TX-RX antenna pairs (i*, k%) and
(57, 1%) emulate co-located virtual antennas if 77 is one unit
spacing (d) to the left of 7', while k% is d to the right of 7.
The resulting phase centers of the TX-RX links overlap [19],
and TX and RX spatial diversities cancel out with each other
in Eqn. 1. Therefore, the only phase difference between co-
located virtual antennas is the Doppler phase shift, which we
can directly measure and then compensate for throughout the
remaining virtual antenna array. In the TT MMWCAS MIMO
radar topology, there are 32 co-located virtual antenna pairs
with unit transmission time interval (T) as shown in Fig. 2.
In the radar processing pipeline, after performing the range
Fast Fourier transform (FFT), we measure the phase differ-
ences between each co-located virtual antenna pair for every
range bin and then take the median phase difference of all
co-located antenna pairs to reduce noises. We then scale the
estimated Doppler phase shift over a unit time interval T by
the corresponding transmission delays for all TX antennas.
Finally, we compensate for the Doppler phase shift for all
virtual antennas by multiplying with unit magnitude phasors
with opposite phases. After compensating for the Doppler
phase shifts, we can utilize the non-overlapping virtual anten-
nas for beamforming. Figure 1(d) demonstrates an example
of effective Doppler-induced distortion compensation.

Although the Doppler phase compensation algorithm
works well in general, it has limitations and cannot resolve
all the Doppler phase migration in the scene perfectly in the
following challenging scenarios. First, the algorithm suffers
when there are vehicles moving fast towards the ego-car, as
the very high relative velocity results in Doppler ambigui-
ties. Besides, the algorithm assumes that there is only one
dominant object and Doppler shift in each range bin. When
there are multiple Doppler shifts in a range bin, our algorithm
can only correctly estimate and compensate for one of them.
Note that, although one can leverage the 4-element arrays of
co-located virtual antennas (as shown in Fig. 2) to coarsely

resolve the directions of objects, the angular resolution is
extremely low. Therefore, we only differentiate different
ranges of objects and take the median of all Doppler shift
measurements to reduce noise. To ensure accurate detection
in these scenarios, Radatron++ further leverages the fact that
virtual arrays emulated with a single TX antenna do not suffer
from any Doppler phase migration. Therefore, Radatron++
jointly leverages lower-resolution heatmaps generated using
a single TX antenna and fuses them with the high-resolution
multi-TX heatmaps in the network model to further correct
faulty information caused by residual Doppler distortions.

High-Resolution and Low-Ambiguity Doppler Process-
ing: Standard Doppler processing methods estimate the
Doppler shifts across the 64 chirp loops, resulting in ve-
locity ambiguities. In contrast, Radatron++ leverages all 12
chips in a chirp loop with 45.6us Chirp Repetitive Inter-
val (CRI) for Doppler processing. Therefore, the Doppler
sampling rate and maximum unambiguous velocity will
be increased by 12x to ﬁ ~ +£75.4 km/h. With all
12 x 64 = 768 chirps, we can achieve a high-velocity resolu-
tion of m ~ 0.2 km/h at the same time.

Unfortunately, the 12 chirps in a chirp loop are transmit-
ted by different TX antennas, so the spatial diversity of the TX
antennas also contributes to the phase differences and entan-
gles with the Doppler phase shift. To resolve the Doppler shift
across these chirps, we need to disentangle the two sources of
phase variations again, but this time, we aim to eliminate the
phase differences resulting from spacial diversity instead. To
do so, we emulate a 16-element virtual array for every chirp
with a single TX antenna (as shown in Fig. 2) and process the
corresponding low-resolution range-azimuth (RA) heatmaps.
For every RA heatmap and every azimuth angle ¢, we com-
pute the TX array steering vector, which represents the spa-
tial diversity-resulted phase shift as shown in Eqn. 1. We
then eliminate the TX spatial diversity contribution of the
phase variation across all RA heatmaps by multiplying it with
the complex conjugates of the TX steering vector. Finally,
we take a Doppler FFT along the time domain over the 768
RA heatmaps and obtain a 3D range-azimuth-Doppler (RAD)
heatmap, where objects with different velocities are grouped
into different bins along the Doppler dimension.
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Table 1. Performance against baselines. Best performing model is boldfaced.

Model ‘ Split Straight Oriented Incoming Overall

Eval Metric AP50 AP75 mAP AP50 AP75 mAP AP50 AP75 mAP AP50 AP75 mAP
A. Radar in Prior work 88.6 450 473 | 739 240 344 | 694 246 312 | 846 404 442
B. Stand-alone single-TX 924 502 514 | 776 31.6 366 | 743 33.6 376 | 889 464 484
C. Stand-alone cascaded 877 429 455 | 809 319 381 | 659 262 309 | 846 398 432
D. Radatron (High-Res Only) | 94.7 614 56.6 | 90.7 563 523 | 73.1 346 376 | 924 571 539
E. Radatron [18] 956 563 53.8 | 887 571 531 | 797 382 414 | 926 563 53.8
Radatron++ 96.2 618 568 | 895 548 532 | 799 40.6 417 | 939 585 545

4. RADATRON++ NETWORK DESIGN

Our network jointly leverages three different versions of
radar heatmaps generated using different virtual antenna ar-
ray topologies. In addition to the Doppler compensated high-
resolution heatmaps and the low-resolution but distortion-free
single-TX heatmaps that are demonstrated in [18], Rada-
tron++ also leverages the Doppler information extracted by
our Doppler processing algorithm. Similar to prior work
on radar-based object detection [8], our network design also
adopts the Faster R-CNN framework [20], but it incorporates
the multi-resolution radar inputs as described below.
Doppler Input: Unlike prior works that directly feed the
sparse 3D RAD heatmap to a 3D backbone network [2, 4, 6,
12], we first take an argmax operation along the Doppler di-
mension to obtain a 2D Doppler feature map, where the pixel
value represents the dominant velocity for the range-azimuth
pixel. This dimension compression significantly reduces
the sparsity of the 3D RAD radar tensor, making it much
easier for a smaller network model to learn. Besides, the
Doppler feature map has the same dimensions as the single-
TX heatmap, so it can be simply concatenated as a second
channel to the single-TX input to the backbone network.
Backbone: The backbone network jointly extracts features
from the three versions of radar heatmaps. We adopt the fea-
ture pyramid network [21] architecture, but we first use two
parallel branches at the beginning of the bottom-up network
to process the high and low-resolution versions of radar inputs
separately and bring them into a common feature space. Each
of the two branches first separately goes through a stem layer
and two ResNet50 stages [22]. Different from Radatron [18],
the number of channels for the low-resolution branch is al-
ways 1.5x more than the high-resolution branch (e.g., 96
stem output channels vs 64), in order to encode both single-
TX heatmap and Doppler feature map. We then fuse the two
branches by concatenating their feature maps of the same di-
mension across channels and fuse them by applying a lateral
33 convolutional layer. We further encode the feature maps
by passing them through ResNet stages and then combine
them to create feature maps at different scales similar to [20].
RPN and Box Head: We feed RA heatmaps in polar coordi-
nates to Radatron++’s backbone network, then we explicitly
map the output features maps from polar coordinates to Carte-
sian coordinates using bi-linear interpolation, similar to [2].
We can thus use standard Region Proposal Network (RPN)
and Box head architectures in Cartesian coordinates to pre-
dict 2D bounding boxes with orientations of vehicles.

5. EVALUATION

We train and evaluate Radatron++ on a novel cascaded radar
dataset we introduced [18], so the radar configurations follow
that in [18] with a maximum detection range of 25 m. We fol-
low the COCO framework [23] to evaluate Radatron++, and
our metrics are Average Precisions with 0.5 (AP5) and 0.75
(AP75) Intersection over Union (IoU) thresholds and mean
AP (mAP) of IoU values from 0.5 to 0.95 with 0.05 steps. We
split vehicle instances in the test set into 3 categories: 2854
straight, 327 oriented, and 512 incoming cars similar to [18].

We compare Radatron++ with the following baselines:
A.Radar in prior work: We implement a virtual array equiva-
lent to the radar used in recent radar datasets [1, 3, 4, 12].
B.Stand-alone single-TX: We pass the single-TX heatmap
alone to the stand-alone top stream in Fig. 3.
C.Stand-alone cascaded radar: We process the high-resolution
heatmap conventionally without our Doppler compensation
algorithm, and feed it to a stand-alone bottom stream in Fig. 3.
D.Radatron [18] (High-res Only): We only feed in the high-
resolution processed radar data through the bottom branch.
E.Radatron [18]: Fusion network without Doppler input.

Table 1 summarizes our results. First, Radatron++ out-
performs the low-resolution radar baselines (A and B) con-
sistently across all metrics and the performance gaps are even
more prominent for higher IoU thresholds and oriented cars.
This proves that the higher angular resolution of cascaded
MIMO radar is essential for accurate object detection. Next,
one can see that using cascaded MIMO radar without any
Doppler compensation (baseline C) suffers from distorted
heatmaps, especially for highly dynamic objects like incom-
ing cars. The comparison of baselines C and D indicates that
our Doppler compensation algorithm can effectively mitigate
the distortions and improve accuracies in all aspects. How-
ever, as we analyzed in section 3, the compensation algorithm
is suboptimal in challenging scenarios, so we need to jointly
leverage the distortion-free single-TX heatmaps. The fusion
network improves the accuracies in incoming cars by 4 ~ 6%
at the cost of slightly lower accuracies for oriented cars.

Finally, with the additional Doppler input, Radatron++
outperforms Radatron [18] in most metrics with overall mar-
gins of 1.3% and 2.2% for AP;y and AP75 respectively.
This result confirms our hypothesis that Doppler information
can help distinguish car moving in directions with different
speeds. We believe the Doppler information can be even
more useful when extending bounding boxes detection to
also estimate the velocities of vehicles.
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