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Abstract— The gap between the demand for kidneys and the 
supply of kidneys keeps growing by approximately six percent per 
year. There is an opportunity to utilize discarded kidneys, with 
roughly twenty percent of kidneys discarded each year. A real-
time generation of an optimized architecture is desired to assist 
kidney allocation. Current practice for allocating high-risk 
deceased donor kidneys requires organ procurement 
organizations (OPOs) to engage in a prolonged manual process, 
accruing cold ischemic time and exacerbating kidney quality. An 
interactive digital simulation tool is developed to identify high-risk 
kidneys that are hard to place and justify starting the accelerated 
placement process sooner. The simulation tool will estimate the 
increased likelihood of placement and improve the current 
allocation model by providing a systematic basis for changing the 
current process and demonstrating how simulation can be 
leveraged to evaluate a policy change before implementation. The 
simulation meta-architecture and AI were all integrated on the 
Anylogic platform to conduct real-time optimization and 
prediction of the kidney transplant system of systems. This 
integrated simulation allows UNOS to generate optimized policies 
for the kidney transplant systems of systems. Future work includes 
validating and verifying the platform with additional stakeholders 
and testing different policies with UNOS. 

Keywords: meta-architecture, artificial intelligence, 
optimization, organ transplant, system of systems  

I. INTRODUCTION 
 
According to the U.S. Renal Data System, approximately 

750,000 have end-stage renal disease (ESRD) [1]. The demand 
for kidney transplants far outpaces the supply of kidneys from 
both surviving and deceased donors. In 2019, over 24,000 
kidneys transplant occurred while over 88,000 people were on 
the waiting list, leaving an additional 64,000 people waiting for 
a kidney transplant [2]. The growing gap between the demand 
for kidney transplants and the supply of kidneys is growing 
yearly. In Figure 1, the gap between the number of patients 
needing a transplant and the number of people getting 
transplants has widened and continues to grow in the past 
decade [1]. 

 
 

 
 
Fig. 1. Total Number of Kidney Transplants Conducted and 
Number of People on Kidney Transplant Waiting List 2010-
2020 [1] 
 
Despite the growing need, as seen in Figure 1, the percentage 
of discarded kidneys continues to grow and far outweighs the 
supply of kidneys. Figure 2 shows the kidney discard rate has 

increased in the last decade [1]. The demand for kidneys is 
expected to continue to grow based on previous trends of the 

past decade. Despite the growing demand for kidney 
transplants, approximately 20% of procured deceased donor 

kidneys are discarded in current practice [3]. These discarded 
kidneys are typically lower quality but have been proven cost-
effective and life-extending in the appropriate candidates [4].

 
Fig. 2. Percent Kidney Discard by Year 2009-2018 [1] 



 

 
Even with the great demand for kidney transplants, 
approximately 20% of procured deceased donors’ kidneys are 
discarded in current practice. These lower-quality kidneys 
(KDPI >85) have a high probability of being discarded [4]. 
Although some of the high-risk kidney discards are 
unavoidable, even lower-quality kidneys have been life-
extending and cost-effective for the appropriate candidates [5]. 
The discard rate of kidneys rises with the Kidney Donor Profile 
Index, a regressor of several donor characteristics into a single 
value denoting the graft failure after transplant [6].  

Digital health technologies, such as telehealth, 
telemedicine, wearable devices, etc., have significantly 
contributed to equitable and affordable health care to improve 
population health. Since nearly half of the US population 
suffers from one or more chronic conditions, chronic diseases 
dominate as the leading cause of death [7]. Chronic kidney 
disease affects 14.9% of the US adult population, and about 
800,000 people are diagnosed with end-stage renal disease 
(ESRD) at present [8]. Roughly 70% of ESRD patients receive 
renal replacement therapy through dialysis and possibly enlist 
as candidates seeking kidney transplants. As opposed to 
dialysis, kidney transplants offer higher survival benefits and 
improved quality of life [9]. However, as the number of patients 
with incident ESRD exceeds 100,000 per year, the number of 
transplants for the year 2019 recorded slightly higher than 
23,000, of which 7,000 came from living donors [10]. About a 
third of the deceased donor kidneys are high-risk kidneys 
affiliated with a kidney donor profile index (KDPI) greater than 
85. KPDI is calculated from several parameters and is an index 
score for the quality of the kidney. The deceased-donor discard 
rate of recovered kidneys is 20%, and most discards are from 
high-risk donors [11]. Unfortunately, this shortage of kidney 
donors leads to longer wait times and leads to increased 
waitlisted candidate mortality rates. To address this challenge, 
we aim to develop a digital simulation platform to identify 
opportunities to reduce kidney discards. Digital twins include 
modeling and simulation technology to study the dynamic 
effect of proposed changes on existing processes. The 
development of a digital simulation platform to address this 
challenge and identify opportunities to increase high-risk 
deceased donor transplants and reduce kidney discards. 
Simulations include modeling and simulation technology to 
study the dynamic effect of proposed changes on existing 
protocols. Similar efforts have been developed in the “digital 
patient” to accelerate heart diagnosis, assess treatment options, 
and support medical decisions [12]. The digital patient 
technology facilitates work for cardio-specialists and is 
improving health outcomes. The high impact and high effort 
tasks for autonomy have been initially identified for the kidney 
transplant systems [13-14]. Various machine learning 
algorithms have been proposed and developed to identify 
missed opportunities that may increase deceased donor kidney 
placement [13]. 

On the other hand, detection, and prediction deep 
learning models, such as brain segmentation for Parkinson's 
disease, are used to diagnose early diagnosis and differentiate 

between Parkinson's disease and atypical parkinsonism [15-16]. 
Deep learning is a subfield of AI representing models through 
hierarchical feature learning and requires architecture and 
hyperparameter optimization. A regularized genetic algorithm 
with parameter sharing guided deep architectures that provided 
higher validation accuracy for early diagnosis of Parkinson's 
disease [17-18]. This approach would serve as a basis to search 
for efficient architectures in developing the kidney allocation 
decision-support tools. Incorporation of two artificial 
intelligence (AI) models in simulation will serve as decision-
support systems to facilitate interactions between OPO and 
transplant centers. An OPO AI model will focus on transplant 
center possible kidney acceptance based on match probability 
to support order of contact, development of back-up plans, and 
potential for accelerated placement [17]. The need for Deep 
Neural Networks (DNN) in healthcare [19] and a 
transdisciplinary approach has been identified [13] and could 
assist in the problems of healthcare. The kidney discard 
problem in the kidney transplant community has the potential 
for optimization and using DNN tools to help decisions. Neural 
Networks have successfully evaluated kidney acceptance [20] 
and heart transplants [21]. 

The agents involved in the kidney transplant system 
are patients, surgeons, kidneys, OPOs, Transplant Centers 
(TCs), United Network for Organ Sharing (UNOS), air 
transportation, and ground transportation. The OPO is the agent 
that is responsible for the capability of providing kidney offers 
to transplant centers. The OPO consists of several personnel 
participating in the workshops to address workflow, including 
directors, managers, and kidney coordinators. The OPO's 
primary goal is to maximize the number of kidneys transplanted 
and deliver multiple offers to different TCs. UNOS is the 
governing body of the entire kidney system of systems. It 
provides policy changes constraining the system and the patient 
merit list that determines the order in which patients receive 
kidney transplants. The TC's primary goal is to perform kidney 
transplants and obtain an ideal kidney for the given patient, 
maximizing life-years gained for the patient. The TC personnel 
interacting with the system are the kidney coordinator and the 
transplant surgeon. All these agents are systems with 
conflicting goals in the kidney system of systems. These agents 
and personnel formed the basis for developing the Key 
Performance Attributes (KPA) and the systems' capabilities. 

Various simulations have been developed and tested, 
attempting to simulate and predict changes in the kidney 
allocation system. Arena simulation language software 
packages simulate different policies that affect survival ratings, 
deaths, and wait times [22]. The multiple listing strategy where 
patients enlist at one-to-many transplant centers is deemed 
effective the larger the distance they could enroll in [23]. The 
KARES-CBR system was used from medical knowledge, social 
information, and expert involvement to recommend patients for 
transplants [24]. The UNOS Kidney Allocation Model is used 
to simulate and analyze allocation policies [25]. A discrete 
event simulation KSIM was developed to analyze geographical 
distance for allocation policies [26]. While these simulations 
solved parts of the problem, a systems decision supporting all 



 

stakeholders and available data to make decisions is still a gap 
within the kidney allocation system. 

 
 

II. METHODOLOGY 
 

Design-A-Thons and Interviews with Stakeholders 
 
 The initial step was understanding and analyzing the 
stakeholders involved in the kidney allocation process and the 
work processes, capabilities, metrics, and current pain points. 
The research team conducted three Design-a-thons, which are 
events interacting with the stakeholders, to host tens of 
stakeholders from the kidney transplant community. The 
stakeholders involved in the kidney transplant system are Organ 
Procurement Organizations (OPOs), the United Network of 
Organ Sharing, Transplant Centers (TCs), and patients. The 
OPO is a stakeholder but also a system that owns the capability 
of providing organ offers to transplant centers. The OPO had in 
attendance several key personnel in the workshops, including 
directors, managers, and organ coordinators. The OPO wants to 
maximize the number of kidneys transplanted and sends organ 
offers to various TCs around the United States. UNOS is the 
governing body of the kidney SoS and develops policies and the 
patient merit list. The transplant center's primary capability is 

to perform a kidney transplant that maximizes life years gained 
and is suitable for a given patient. The direct personnel involved 
in the design-a-thons were the kidney coordinator and the 
transplant surgeon. All these stakeholders are systems within 
themselves and have diverging interests and emergent behavior 
in the kidney SoS. The Design-A-Thon results are discussed 
with initial pain points and decision support systems [16]. The 
current simulation developed in this paper focuses on the OPO 
stakeholder to determine KPAs, policies, and dashboards that 
the OPO can utilize to analyze various approaches to optimize 

their KPAs in the kidney allocation SoS. Figure 3 shows the 
simulation Overview. 
 

 
Key Performance Attributes 

 
The KPAs were developed and defined from the Design-A-
Thons and the interviews with OPO stakeholders of the kidney 
allocation system. Two primary KPAs are added to calculate an 
objective function optimized via genetic algorithms. Equations 
1 and 2 can be defined as systems, 𝑆 (𝑋, 𝑖) =1 if the i system is 
participating in chromosome X, meta-architecture, and 0 if not. 
Interfaces, 𝐼 (𝑋, 𝑖, 𝑗) = 1 if the i and j system has an interface 
connection in chromosome X, and 0 if not. The 𝐶𝑥𝑥𝑥 represents 
system characteristics, 𝑖 value of performance where ‘xxx, i’ 
indicates the characteristic value for the system i. Variable δ 
represents the interfaces between active systems to be 
calculated in the objective function. 

 
The kidney utilization KPA calculates the total number of 
kidneys utilized and transplanted as a percentage. This KPA is 
desired to be maximized and would be 100% in an ideal SoS. 

The kidney transplant O/E is the number of kidneys observed 
that are successfully transplanted divided by the kidney 
transplants expected to be transplanted. The expectation of 
kidney transplants is provided by UNOS and is based on the 
average rate of all OPOs. The optimal meta-architecture is 
calculated using SoS Explorer utilizing a simple SOGA genetic 
algorithm with 10,000 maximum evaluations. 
 
 
 

Fig. 3. Simulation Overview 



 

Systems of Systems Explorer 
 
SoS Explorer is a software tool written by the Engineering 
Management and Systems Engineering Department at Missouri 
S&T. It provides a framework for defining system of systems 
problems such that metaarchitectures may be produced 
computationally. The overall performance of the architecture is 
determined by the KPAs. These objectives may be defined 
using Python, MATLAB, or F#. The selected optimizer can 
then be used to generate optimum architectures which are 
displayed in the Graphical User Interface (GUI) and may be 
interacted with by the user. Solutions may also be stored as 
Excel Open XML files (XLSX) or graphically as Portable 
Network Graphics (PNG) images. For evaluation, the 
objectives require an architecture which, in this framework, is 
a set of systems and interfaces and information about the 
systems in terms of their characteristics, capabilities, and 
feasible interfaces. The objectives are evaluated by an 
optimizer, of which three evolutionary algorithms are included: 
NSGA-III, MaOEA-DM, and Simple SOGA. Both single and 
multiple objective optimizations are supported. Furthermore, 
constrained optimization is supported, and constraints may be 
added using Python, MATLAB, or F#. 
 

Membership Functions & Fuzzy Assessor & Rules 
 
To quantify the ambiguity of the KPAs a fuzzy assessor and 
membership functions were developed using MATLAB’s fuzzy 
designer. The membership functions were chosen based upon 
the Design-A-Thons and interviews with stakeholders but can 
be updated with additional KPAs or update the membership 
functions based upon how the stakeholders’ definitions of Low, 
Below Average, Average, Above Average, and High for the 
KPAs. The process is repeated with each KPA with the group 
of stakeholders to quantify the KPA.  

A set of rules are generated based upon stakeholder 
input for the fuzzy assessment of the objective function is 
created based upon each of the KPAs. Each of the KPAs are 
assessed to assess the desirability of the meta-architecture. An 
example would be if performance is low, discard rate is low, 
OoverE is low, credibility is low, affordability is below 
average, and acceptability is low, then the overall assessment is 
that the meta-architecture is very unacceptable. Another side of 
the spectrum example is if performance is high, discard rate is 
high, OoverE is high, credibility is above average, affordability 
is above average, acceptability is high, then the meta-
architecture is very desirable. These rules create a KPA 
dimensional surface to determine the objective function of the 
meta-architecture of the system of systems. This methodology 
is as applied to the kidney allocation is described in a previous 
paper [27]. 
 

Anylogic Simulation Creation 
 
Anylogic utilizes multiple methods for developing a modeling 
environment. The modeling environment is used to develop 
models using all three modern simulation methods of discrete 

events, agent based, and system dynamics. The three methods 
can be utilized in any combination, with one software, to 
simulate complex systems. Anylogic can utilize several 
different visual modeling languages including process 
flowcharts, statecharts, action charts, and stock & flow 
diagrams. This platform was chosen to model the architecture 
of the kidney transplant systems of systems and to execute via 
agent-based simulation. 
 
 

Artificial Intelligence Integration 
 
Currently, the OPO assesses hard-to-place kidneys, and 
utilizing accelerated kidney placements relies heavily on the 
kidney donor profile index (KDPI) and the number of declines. 
A Deep learning optimization approach to quickly identify 
kidneys at risk for discard is integrated within the simulation. 
These deep learning approaches use Organ Procurement and 
Transplantation Network data to model kidney disposition. The 
model is developed to predict the transplant and discard of 
recovered and not transplanted kidneys. Kidneys with a higher 
probability of discard are deemed hard-to-place kidneys, which 
require early adoption of accelerated placement. The deep 
learning models aid in identifying hard-to-place kidneys before 
or after procurement and support OPOs to deviate from the 
match-run for accelerated placement [28]. Artificial 
intelligence algorithms that were developed to assist in 
identification of hard to place kidneys and identify aggressive 
transplant centers were integrated into the Anylogic simulation. 
They provide recommendations to the simulation on which 
transplant center and patient is the best for a given hard to place 
donor kidney. 

III. RESULTS 
 
The initial results shown in Figure 4 include the current 
architecture of kidney allocation from the OPO perspective, 
agents, kidney characteristics, and KPAs. The agents are 
represented in the middle of the screen with a geo-referenced 
map of the agent's current location. The bottom of the 
dashboard consists of the current donor kidney's selected 
characteristics. On the right are the OPO KPAs over time. This 
tool estimates the system-level performance of OPO efforts to 
increase kidney utilization. The tool allows for changes within 
various policies of UNOS and the OPO, such as donor type, 
Cold Ischemic Time (CIT) to accelerated placement, TXC 
Offer to send, distance for match run offer, and a percent 
discard to conduct accelerated placement. Donor type can 
change between live and deceased donors.  
 CIT to accelerated placement is the time that has 
passed since the kidney has been clamped (surgically removed) 
from the body. The accelerated placement bypasses the list of 
patients that UNOS has provided and offers the kidney to any 
available transplant center. TXC offers to send is the number of 
offers on average sent until the final acceptance has been made 
for a given batch of offers. Distance for match run offer is the 
distance from the OPO to the patient's transplant center that is 



 

allowable for a given match run. The match run patient must be 
within this distance unless accelerated placement is utilized or 
the list is exhausted. Percent discard to conduct accelerated 
placement is the percent chance of discard given by the artificial 
intelligence algorithm to conduct accelerated kidney placement. 
All policies can be changed, and the KPA observed within the 
agent-based simulation consists of all the stakeholders of the 
kidney allocation SoS. The effectiveness of the digital 
simulation tool is measured by KPAs of kidney utilization and 
observed/expected kidney transplants. Other calculated 
measures and statistics of interest to the OPOs include: 
 

• Allocation time 
• Sequence number allocation 
• Cold ischemic time all 
• Cold ischemic time placed 
• Cold ischemic time non-utilization 
• Logistical time 

 
Allocation time is the amount of time from when the kidney 
becomes available to when the transplant surgeon accepts the 
final offer. Sequence number allocation is the number that the 
patient who received the transplant was on the UNOS waiting 
list. Cold ischemic time is the amount of time from clamp time 
to transplant or the last denial of the kidney offer for all kidneys. 
Cold ischemic time placed is the amount of time from clamp 
time to transplant for all transplanted kidneys. Cold ischemic 
time non-utilization is the amount of time from clamp time to 
the last denial of the kidney offer for all nonutilized kidneys 
(discarded). Logistical time is the amount of time the kidney is 
transported from the origination site to the transplant center via 
ground or air.  

IV. FUTURE WORK 
 

Future work involves the integration of logistics and the 
integration of updated and additional artificial intelligence aid 
for different stakeholders such as the transplant center into the 
simulation. Degradation of the kidney occurs over time, and it 
is important to know how long it will take a kidney to travel to 
get to the transplant center. If the time is too long, the kidney 
will end up discarded. A simulation is desired to let the OPO 
know how long the kidney will be traveling to ensure the kidney 
is not discarded. Additional validation and verification events 
with different realistic policy testing are planned with Mid 
America OPO and transplant centers within the year.  

V. CONCLUSION  
 
The study analyzes the impact of amended kidney allocation 
practices and identifies best practices for high-risk kidney 
allocation. KPPs are used to measure the effectiveness of new 
kidney allocation policies for high-risk kidneys. The digital 
simulation tool predicts an increased deceased donor kidney 
utilization for early engagement in accelerated placement for 
out-of-sequence allocation, hence supporting high-risk kidney 
allocation policy changes. Future work will include incremental 
updates to the simulation and AI models for data-supported 
aggressive transplant centers willing to transplant high-risk 
kidneys. 
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