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Abstract— The gap between the demand for kidneys and the
supply of kidneys keeps growing by approximately six percent per
year. There is an opportunity to utilize discarded kidneys, with
roughly twenty percent of kidneys discarded each year. A real-
time generation of an optimized architecture is desired to assist
kidney allocation. Current practice for allocating high-risk
deceased donor Kkidneys requires organ procurement
organizations (OPOs) to engage in a prolonged manual process,
accruing cold ischemic time and exacerbating kidney quality. An
interactive digital simulation tool is developed to identify high-risk
kidneys that are hard to place and justify starting the accelerated
placement process sooner. The simulation tool will estimate the
increased likelihood of placement and improve the current
allocation model by providing a systematic basis for changing the
current process and demonstrating how simulation can be
leveraged to evaluate a policy change before implementation. The
simulation meta-architecture and Al were all integrated on the
Anylogic platform to conduct real-time optimization and
prediction of the Kidney transplant system of systems. This
integrated simulation allows UNOS to generate optimized policies
for the kidney transplant systems of systems. Future work includes
validating and verifying the platform with additional stakeholders
and testing different policies with UNOS.
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I INTRODUCTION

According to the U.S. Renal Data System, approximately
750,000 have end-stage renal disease (ESRD) [1]. The demand
for kidney transplants far outpaces the supply of kidneys from
both surviving and deceased donors. In 2019, over 24,000
kidneys transplant occurred while over 88,000 people were on
the waiting list, leaving an additional 64,000 people waiting for
a kidney transplant [2]. The growing gap between the demand
for kidney transplants and the supply of kidneys is growing
yearly. In Figure 1, the gap between the number of patients
needing a transplant and the number of people getting
transplants has widened and continues to grow in the past
decade [1].
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Fig. 1. Total Number of Kidney Transplants Conducted and
Number of People on Kidney Transplant Waiting List 2010-
2020 [1]

Despite the growing need, as seen in Figure 1, the percentage
of discarded kidneys continues to grow and far outweighs the
supply of kidneys. Figure 2 shows the kidney discard rate has
increased in the last decade [1]. The demand for kidneys is
expected to continue to grow based on previous trends of the
past decade. Despite the growing demand for kidney
transplants, approximately 20% of procured deceased donor
kidneys are discarded in current practice [3]. These discarded
kidneys are typically lower quality but have been proven cost-
effective and life-extending in the appropriate candidates [4].
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Fig. 2. Percent Kidney Discard by Year 2009-2018 [1]



Even with the great demand for kidney transplants,
approximately 20% of procured deceased donors’ kidneys are
discarded in current practice. These lower-quality kidneys
(KDPI >85) have a high probability of being discarded [4].
Although some of the high-risk kidney discards are
unavoidable, even lower-quality kidneys have been life-
extending and cost-effective for the appropriate candidates [5].
The discard rate of kidneys rises with the Kidney Donor Profile
Index, a regressor of several donor characteristics into a single
value denoting the graft failure after transplant [6].

Digital health technologies, such as telehealth,
telemedicine, wearable devices, etc., have significantly
contributed to equitable and affordable health care to improve
population health. Since nearly half of the US population
suffers from one or more chronic conditions, chronic diseases
dominate as the leading cause of death [7]. Chronic kidney
disease affects 14.9% of the US adult population, and about
800,000 people are diagnosed with end-stage renal disease
(ESRD) at present [8]. Roughly 70% of ESRD patients receive
renal replacement therapy through dialysis and possibly enlist
as candidates seeking kidney transplants. As opposed to
dialysis, kidney transplants offer higher survival benefits and
improved quality of life [9]. However, as the number of patients
with incident ESRD exceeds 100,000 per year, the number of
transplants for the year 2019 recorded slightly higher than
23,000, of which 7,000 came from living donors [10]. About a
third of the deceased donor kidneys are high-risk kidneys
affiliated with a kidney donor profile index (KDPI) greater than
85. KPDI is calculated from several parameters and is an index
score for the quality of the kidney. The deceased-donor discard
rate of recovered kidneys is 20%, and most discards are from
high-risk donors [11]. Unfortunately, this shortage of kidney
donors leads to longer wait times and leads to increased
waitlisted candidate mortality rates. To address this challenge,
we aim to develop a digital simulation platform to identify
opportunities to reduce kidney discards. Digital twins include
modeling and simulation technology to study the dynamic
effect of proposed changes on existing processes. The
development of a digital simulation platform to address this
challenge and identify opportunities to increase high-risk
deceased donor transplants and reduce kidney discards.
Simulations include modeling and simulation technology to
study the dynamic effect of proposed changes on existing
protocols. Similar efforts have been developed in the “digital
patient” to accelerate heart diagnosis, assess treatment options,
and support medical decisions [12]. The digital patient
technology facilitates work for cardio-specialists and is
improving health outcomes. The high impact and high effort
tasks for autonomy have been initially identified for the kidney
transplant systems [13-14]. Various machine learning
algorithms have been proposed and developed to identify
missed opportunities that may increase deceased donor kidney
placement [13].

On the other hand, detection, and prediction deep
learning models, such as brain segmentation for Parkinson's
disease, are used to diagnose early diagnosis and differentiate

between Parkinson's disease and atypical parkinsonism [15-16].
Deep learning is a subfield of Al representing models through
hierarchical feature learning and requires architecture and
hyperparameter optimization. A regularized genetic algorithm
with parameter sharing guided deep architectures that provided
higher validation accuracy for early diagnosis of Parkinson's
disease [17-18]. This approach would serve as a basis to search
for efficient architectures in developing the kidney allocation
decision-support tools. Incorporation of two artificial
intelligence (AI) models in simulation will serve as decision-
support systems to facilitate interactions between OPO and
transplant centers. An OPO Al model will focus on transplant
center possible kidney acceptance based on match probability
to support order of contact, development of back-up plans, and
potential for accelerated placement [17]. The need for Deep
Neural Networks (DNN) in healthcare [19] and a
transdisciplinary approach has been identified [13] and could
assist in the problems of healthcare. The kidney discard
problem in the kidney transplant community has the potential
for optimization and using DNN tools to help decisions. Neural
Networks have successfully evaluated kidney acceptance [20]
and heart transplants [21].

The agents involved in the kidney transplant system
are patients, surgeons, kidneys, OPOs, Transplant Centers
(TCs), United Network for Organ Sharing (UNOS), air
transportation, and ground transportation. The OPO is the agent
that is responsible for the capability of providing kidney offers
to transplant centers. The OPO consists of several personnel
participating in the workshops to address workflow, including
directors, managers, and kidney coordinators. The OPO's
primary goal is to maximize the number of kidneys transplanted
and deliver multiple offers to different TCs. UNOS is the
governing body of the entire kidney system of systems. It
provides policy changes constraining the system and the patient
merit list that determines the order in which patients receive
kidney transplants. The TC's primary goal is to perform kidney
transplants and obtain an ideal kidney for the given patient,
maximizing life-years gained for the patient. The TC personnel
interacting with the system are the kidney coordinator and the
transplant surgeon. All these agents are systems with
conflicting goals in the kidney system of systems. These agents
and personnel formed the basis for developing the Key
Performance Attributes (KPA) and the systems' capabilities.

Various simulations have been developed and tested,
attempting to simulate and predict changes in the kidney
allocation system. Arena simulation language software
packages simulate different policies that affect survival ratings,
deaths, and wait times [22]. The multiple listing strategy where
patients enlist at one-to-many transplant centers is deemed
effective the larger the distance they could enroll in [23]. The
KARES-CBR system was used from medical knowledge, social
information, and expert involvement to recommend patients for
transplants [24]. The UNOS Kidney Allocation Model is used
to simulate and analyze allocation policies [25]. A discrete
event simulation KSIM was developed to analyze geographical
distance for allocation policies [26]. While these simulations
solved parts of the problem, a systems decision supporting all



stakeholders and available data to make decisions is still a gap
within the kidney allocation system.

1L METHODOLOGY

Design-A-Thons and Interviews with Stakeholders

The initial step was understanding and analyzing the
stakeholders involved in the kidney allocation process and the
work processes, capabilities, metrics, and current pain points.
The research team conducted three Design-a-thons, which are
events interacting with the stakeholders, to host tens of
stakeholders from the kidney transplant community. The
stakeholders involved in the kidney transplant system are Organ
Procurement Organizations (OPOs), the United Network of
Organ Sharing, Transplant Centers (TCs), and patients. The
OPO is a stakeholder but also a system that owns the capability
of providing organ offers to transplant centers. The OPO had in
attendance several key personnel in the workshops, including
directors, managers, and organ coordinators. The OPO wants to
maximize the number of kidneys transplanted and sends organ
offers to various TCs around the United States. UNOS is the
governing body of the kidney SoS and develops policies and the
patient merit list. The transplant center's primary capability is

their KPAs in the kidney allocation SoS. Figure 3 shows the
simulation Overview.

Key Performance Attributes

The KPAs were developed and defined from the Design-A-
Thons and the interviews with OPO stakeholders of the kidney
allocation system. Two primary KPAs are added to calculate an
objective function optimized via genetic algorithms. Equations
1 and 2 can be defined as systems, S (X, i) =1 if the i system is
participating in chromosome X, meta-architecture, and 0 if not.
Interfaces, I (X, i, j) =1 if the i and j system has an interface
connection in chromosome X, and 0 if not. The Cxxx represents
system characteristics, i value of performance where ‘xxx, i’
indicates the characteristic value for the system i. Variable &
represents the interfaces between active systems to be
calculated in the objective function.
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The kidney utilization KPA calculates the total number of
kidneys utilized and transplanted as a percentage. This KPA is
desired to be maximized and would be 100% in an ideal SoS.

’ Objective Statement: Desired Effects:
Develop a digital meta-architecture in a dynamic
changing environment that can intcgrate artificial
intelligence (AI) models to analyze policies,
decision. rules, and emergent behaviors of multiple
agents. A case is developed for hard-to-place
kidneys that identifies optimal transplant recipients
and simulates proposed policy changes to organ
allocation.

Identify Hard-to-place kidney

+ Decrease in kidney discard.

+ Incrcase in kidney allocation.

« Increase observed over expected kidney transplants.
* Reduce burden of accelerated placement.

* Provide additional information for decision making.
+ Enable optimization and analysis of proposed policy.

To help achieve

Identify hard-to-place at \
beginning of kidney allocation
and update in real time during
the allocation process

Identify optimal transplant
recipient
+ Simulate and analyze
Policy changes

Identify optimal transplant recipient

match probability

B i Simulate Policy Changes and Evaluate Model

Provide the ability to

Fig. 3. Simulation Overview

to perform a kidney transplant that maximizes life years gained
and is suitable for a given patient. The direct personnel involved
in the design-a-thons were the kidney coordinator and the
transplant surgeon. All these stakeholders are systems within
themselves and have diverging interests and emergent behavior
in the kidney SoS. The Design-A-Thon results are discussed
with initial pain points and decision support systems [16]. The
current simulation developed in this paper focuses on the OPO
stakeholder to determine KPAs, policies, and dashboards that
the OPO can utilize to analyze various approaches to optimize

The kidney transplant O/E is the number of kidneys observed
that are successfully transplanted divided by the kidney
transplants expected to be transplanted. The expectation of
kidney transplants is provided by UNOS and is based on the
average rate of all OPOs. The optimal meta-architecture is
calculated using SoS Explorer utilizing a simple SOGA genetic
algorithm with 10,000 maximum evaluations.



Systems of Systems Explorer

SoS Explorer is a software tool written by the Engineering
Management and Systems Engineering Department at Missouri
S&T. It provides a framework for defining system of systems
problems such that metaarchitectures may be produced
computationally. The overall performance of the architecture is
determined by the KPAs. These objectives may be defined
using Python, MATLAB, or F#. The selected optimizer can
then be used to generate optimum architectures which are
displayed in the Graphical User Interface (GUI) and may be
interacted with by the user. Solutions may also be stored as
Excel Open XML files (XLSX) or graphically as Portable
Network Graphics (PNG) images. For evaluation, the
objectives require an architecture which, in this framework, is
a set of systems and interfaces and information about the
systems in terms of their characteristics, capabilities, and
feasible interfaces. The objectives are evaluated by an
optimizer, of which three evolutionary algorithms are included:
NSGA-III, MaOEA-DM, and Simple SOGA. Both single and
multiple objective optimizations are supported. Furthermore,
constrained optimization is supported, and constraints may be
added using Python, MATLAB, or F#.

Membership Functions & Fuzzy Assessor & Rules

To quantify the ambiguity of the KPAs a fuzzy assessor and
membership functions were developed using MATLAB’s fuzzy
designer. The membership functions were chosen based upon
the Design-A-Thons and interviews with stakeholders but can
be updated with additional KPAs or update the membership
functions based upon how the stakeholders’ definitions of Low,
Below Average, Average, Above Average, and High for the
KPAs. The process is repeated with each KPA with the group
of stakeholders to quantify the KPA.

A set of rules are generated based upon stakeholder
input for the fuzzy assessment of the objective function is
created based upon each of the KPAs. Each of the KPAs are
assessed to assess the desirability of the meta-architecture. An
example would be if performance is low, discard rate is low,
OoverE is low, credibility is low, affordability is below
average, and acceptability is low, then the overall assessment is
that the meta-architecture is very unacceptable. Another side of
the spectrum example is if performance is high, discard rate is
high, OoverE is high, credibility is above average, affordability
is above average, acceptability is high, then the meta-
architecture is very desirable. These rules create a KPA
dimensional surface to determine the objective function of the
meta-architecture of the system of systems. This methodology
is as applied to the kidney allocation is described in a previous
paper [27].

Anylogic Simulation Creation
Anylogic utilizes multiple methods for developing a modeling

environment. The modeling environment is used to develop
models using all three modern simulation methods of discrete

events, agent based, and system dynamics. The three methods
can be utilized in any combination, with one software, to
simulate complex systems. Anylogic can utilize several
different visual modeling languages including process
flowcharts, statecharts, action charts, and stock & flow
diagrams. This platform was chosen to model the architecture
of the kidney transplant systems of systems and to execute via
agent-based simulation.

Artificial Intelligence Integration

Currently, the OPO assesses hard-to-place kidneys, and
utilizing accelerated kidney placements relies heavily on the
kidney donor profile index (KDPI) and the number of declines.
A Deep learning optimization approach to quickly identify
kidneys at risk for discard is integrated within the simulation.
These deep learning approaches use Organ Procurement and
Transplantation Network data to model kidney disposition. The
model is developed to predict the transplant and discard of
recovered and not transplanted kidneys. Kidneys with a higher
probability of discard are deemed hard-to-place kidneys, which
require early adoption of accelerated placement. The deep
learning models aid in identifying hard-to-place kidneys before
or after procurement and support OPOs to deviate from the
match-run  for accelerated placement [28]. Artificial
intelligence algorithms that were developed to assist in
identification of hard to place kidneys and identify aggressive
transplant centers were integrated into the Anylogic simulation.
They provide recommendations to the simulation on which
transplant center and patient is the best for a given hard to place
donor kidney.

I1I. RESULTS

The initial results shown in Figure 4 include the current
architecture of kidney allocation from the OPO perspective,
agents, kidney characteristics, and KPAs. The agents are
represented in the middle of the screen with a geo-referenced
map of the agent's current location. The bottom of the
dashboard consists of the current donor kidney's selected
characteristics. On the right are the OPO KPAs over time. This
tool estimates the system-level performance of OPO efforts to
increase kidney utilization. The tool allows for changes within
various policies of UNOS and the OPO, such as donor type,
Cold Ischemic Time (CIT) to accelerated placement, TXC
Offer to send, distance for match run offer, and a percent
discard to conduct accelerated placement. Donor type can
change between live and deceased donors.

CIT to accelerated placement is the time that has
passed since the kidney has been clamped (surgically removed)
from the body. The accelerated placement bypasses the list of
patients that UNOS has provided and offers the kidney to any
available transplant center. TXC offers to send is the number of
offers on average sent until the final acceptance has been made
for a given batch of offers. Distance for match run offer is the
distance from the OPO to the patient's transplant center that is
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Fig. 4. Simulation Dashboard Example

allowable for a given match run. The match run patient must be
within this distance unless accelerated placement is utilized or
the list is exhausted. Percent discard to conduct accelerated
placement is the percent chance of discard given by the artificial
intelligence algorithm to conduct accelerated kidney placement.
All policies can be changed, and the KPA observed within the
agent-based simulation consists of all the stakeholders of the
kidney allocation SoS. The effectiveness of the digital
simulation tool is measured by KPAs of kidney utilization and
observed/expected kidney transplants. Other calculated
measures and statistics of interest to the OPOs include:

Allocation time

Sequence number allocation

Cold ischemic time all

Cold ischemic time placed

Cold ischemic time non-utilization
Logistical time

Allocation time is the amount of time from when the kidney
becomes available to when the transplant surgeon accepts the
final offer. Sequence number allocation is the number that the
patient who received the transplant was on the UNOS waiting
list. Cold ischemic time is the amount of time from clamp time
to transplant or the last denial of the kidney offer for all kidneys.
Cold ischemic time placed is the amount of time from clamp
time to transplant for all transplanted kidneys. Cold ischemic
time non-utilization is the amount of time from clamp time to
the last denial of the kidney offer for all nonutilized kidneys
(discarded). Logistical time is the amount of time the kidney is
transported from the origination site to the transplant center via
ground or air.

V. FUTURE WORK

Future work involves the integration of logistics and the
integration of updated and additional artificial intelligence aid
for different stakeholders such as the transplant center into the
simulation. Degradation of the kidney occurs over time, and it
is important to know how long it will take a kidney to travel to
get to the transplant center. If the time is too long, the kidney
will end up discarded. A simulation is desired to let the OPO
know how long the kidney will be traveling to ensure the kidney
is not discarded. Additional validation and verification events
with different realistic policy testing are planned with Mid
America OPO and transplant centers within the year.

V. CONCLUSION

The study analyzes the impact of amended kidney allocation
practices and identifies best practices for high-risk kidney
allocation. KPPs are used to measure the effectiveness of new
kidney allocation policies for high-risk kidneys. The digital
simulation tool predicts an increased deceased donor kidney
utilization for early engagement in accelerated placement for
out-of-sequence allocation, hence supporting high-risk kidney
allocation policy changes. Future work will include incremental
updates to the simulation and Al models for data-supported
aggressive transplant centers willing to transplant high-risk
kidneys.
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