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ABSTRACT

The small cell size, wide bandwidth, and MIMO antenna arrays in

5G mmWave networks provide great opportunities for IoT localiza-

tion. However, low-power and low-cost IoT devices are incapable

of leveraging these benefits. We presentmm-ISLA: a system that en-

ables IoT nodes to localize themselves using ambient 5G mmWave

signals without any coordination with the base stations. mm-ISLA

leverages MEMS Spike-Train filters to access the wideband 5G sig-

nals and estimates the Angle of Departure from the base station

MIMO antenna arrays to accurately localize the IoT nodes.

1 INTRODUCTION

Recent years have witnessed a tremendous growth in the number

of IoT devices, with surveys projecting up to 31 billion deployed IoT

nodes by 2030 [7]. Given such ubiquitous deployment of IoT nodes,

the ability to localize and track these nodes with high accuracy is

essential for many applications.

In this work, we present mm-ISLA, IoT Self-Localization using

Ambient 5G mmWave signals, a system that enables IoT devices

to localize themselves in 5G networks by simply overhearing the

ambient 5G mmWave signals without any coordination with the

base stations, also known as gNBs. Leveraging ambient 5G signals,

especially those in mmWave bands, for localizing IoT nodes is

extremely appealing, because of two characteristics of 5G mmWave

networks: 1) The small cell sizes lead to very dense deployments of

base stations, up to 50 gNB per km2 [3], resulting in more potential

anchor points for accurate localization. 2) The unprecedentedly

wide signal bandwidth, up to 400 MHz in mmWave eMBB channels,

provides high Time of Flight (ToF) resolution. These two features

together provide great opportunities for high-accuracy localization.

Enabling coordination-free self-localization using the ambient

wideband 5G signals requires solving two fundamental challenges:

(1) Power-constrained narrowband IoT devices, equipped with low-

power and low-speed Analog-to-Digital Converters (ADC) [6], are

incapable of capturing wideband 5G signals and reusing them for lo-

calization. (2) mm-ISLA’s IoT self-localization technique should not

require any active participation of the gNBs, e.g., coordination or

synchronization. Any needs for coordination and synchronization

require modifying the 5G standards and dedicated gNB resource to

function, so they cannot scale to the ubiquitous IoT nodes.
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mm-ISLA is an extension of ISLA, a recent work of the authors [4],

which focuses on IoT self-localization in sub-6 GHz bands. However,

in this work, we try to extend ISLA to mmWave bands by resolving

a limitation of ISLA. In this way, mm-ISLA can leverage the even

wider bandwidth and smaller cell size.

Similar to ISLA, mm-ISLA overcomes the first challenge using

MEMS (Micro-ElectroMechanical System) Spike-Train filters [2,

5], that is a novel RF filter with a spike-train-shaped frequency

response, as shown in Fig. 1(b). When passing the wideband 5G

signal through the Spike-Train filter, only the OFDM subcarriers in

the spikes are kept while all the other subcarriers are filtered out

as Fig. 1(c) illustrates. The filtered spectrum becomes sparse in the

frequency domain, somm-ISLA can sample the filtered signal below

the Nyquist sampling rate, yet still be able to recover the wideband

Channel Frequency Response (CFR). Eventually, the wideband CFR

is translated into high-resolution Channel Impulse Response (CIR),

as if mm-ISLA can access the entire bandwidth. This is the key

enabler of mm-ISLA’s high localization accuracy.

However, adapting ISLA’s coordination-free localization proto-

col to mmWave bands would be impractical, because ISLA avoids

coordination with the gNBs by measuring the Time Difference of

Arrival (TDoA) between two antennas on the IoT node. Such IoT

design requires two antenna front-ends with tightly synchronized

RX chains, which is infeasible in mmWave frequencies because of

the expensive and power-consuming mmWave front-ends. There-

fore, mm-ISLA abandons the dual front-end IoT design and the

TDoA-based localization algorithm of ISLA. Instead, mm-ISLA over-

comes the coordination-free challenge by leveraging the additional

degree of freedom provided by the MIMO antenna arrays at the 5G

gNBs. mm-ISLA first resolves channels from multiple TX antennas

at the gNBs leveraging a unique 5G-NR waveform – DeModulation

Reference Signal (DMRS) in the Physical Downlink Shared Chan-

nel (PDSCH). The unique resource allocation pattern in the DMRS

waveforms allows mm-ISLA to distinguish the OFDM subcarriers

allocated to each antenna in the gNB MIMO antenna array. There-

fore, mm-ISLA can then leverage the channel differences across the

antennas to estimate the Angle of Departure (AoD) of the Line-of-

Sight (LoS) path from the gNB to the IoT node. Finally, with the

AoD measurements of three gNBs, an mm-ISLA node can localize

itself using the standard triangulation localization algorithm.

2 MM-ISLA LOCALIZATION ALGORITHM

Figure 1 illustrates mm-ISLA’s system pipeline, and how it solves

the two challenges of coordination-free IoT self-localization.

(1) Wideband Channel Estimation on Narrowband IoT Nodes:

mm-ISLA mostly adopts the same approach as ISLA to overcome

the challenge of capturing wideband 5G signals and estimating the

wideband channel using low-speed ADCs on IoT devices. Since the

sampling rates of IoT devices are significantly below the Nyquist
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Figure 1: mm-ISLA pipeline. (a) Wideband 5G PDSCH-DMRS Spectrum Allocated to 2 Antenna Ports. (b) MEMS Spike-Train Filter Frequency Response. (c) Filtered
Sparse Spectrum. (d) Sub-Nyquist Sampled Spectrum Aliased to the Narrow ADC Bandwidth. (e) Recovered DMRS Subcarriers. (f) Recover Channel Impulse
Response. (g) AoD-Based Triangulation Localization.

sampling rate of wideband 5G signals, the wideband spectrum

will alias to the narrow bandwidth of the ADCs, which leads to

frequency collisions between subcarriers and makes them unresolv-

able. mm-ISLA utilizes the MEMS Spike-Train filter with periodic

spike-shaped passbands to sparsify the wideband spectrum. The

resulting spectrum becomes sparse with a periodic sparsity pattern,

which allows us to reconstruct the wideband spectrum after sub-

Nyquist Sampling. Moreover, the sparsity pattern of the filtered

spectrum can be specifically designed by modeling the MEMS filter

architecture [5]. Therefore,mm-ISLA adopts the filter hardware and

sparse recovery algorithm co-design from ISLA to avoid frequency

collisions and to maintain OFDM subcarrier orthogonality after

aliasing.1 After reconstructing the wideband spectrum, we estimate

the CFR and translate it into super-resolution CIR by formulating

an inverse optimization problem. Note that the ToF resolution of the

reconstructed CIR is equivalent to that of the wide 5G bandwidth,

and this is the key to achieve high localization accuracy.

(2) Coordination-Free Localization using a Single Antenna

Front-End: Towards solving the coordination-free challenge, mm-

ISLA however, takes a completely different approach than ISLA. The

TDoA-based localization algorithm of ISLA is abandoned, because

it requires two tightly synchronized RF front-ends, RF chains, and

ADCs. The additional RF circuitry and ADC doubles the cost and

power-consumption of the IoT nodes, which is even more infeasible

in the mmWave frequencies than in the sub-6GHz bands. Restricted

to a single antenna front-end, mm-ISLA enabled IoT nodes still

manage to localize themselves without any coordination with the

gNBs. To do so, mm-ISLA leverages another unique opportunity in

5G networks – the spatial diversity of the MIMO antenna arrays at

the 5G gNBs. mm-ISLA tries to measure the ToF differences across

antennas in the gNB MIMO antenna array, from which mm-ISLA

can infer the AoD of the LoS path from the gNB to the IoT node.

With AoD estimates of three or more gNBs along with the gNB

locations and antenna array orientations, mm-ISLA enabled IoT

nodes will be able to apply the standard triangulation algorithm

to localize themselves. However, to do so, mm-ISLA has to first be

able to estimate the CIR from each gNB MIMO antenna separately.

The question becomes how can mm-ISLA isolate concurrent

transmissions from TXMIMO antennas at the 5G gNB and estimate

them corresponding CIR separately? Note that signals from differ-

ent TX antennas has to be transmitted at the same time, otherwise,

the transmitting time offset will corrupt the AoD estimation. To

overcomes this challenge, mm-ISLA leverages another unique op-

portunities in the 5G-NR standards, that is the resource allocation

pattern in the 5G-NR PDSCH-DMRS waveforms. PDSCH-DMRS is

a specific type of 5G-NR waveform used for decoding the PDSCH

1We refer interested readers to [4] for hardware-software co-design details.
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Figure 2: Testbed Figure 3: AoD Estimation Accuracy

data, so it’s a preamble-like waveform one can leverage to esti-

mate the channel. When MIMO is enabled at the gNB, to decode

the channels from the MIMO antennas, different antenna ports

are allocated with a different set of interleaved subcarriers in the

resource block [1], as shown in Fig. 1(a). Therefore, we can identify

the DMRS subcarriers corresponding to each TX antenna and es-

timate their channels separately. Since the interleaved subcarrier

allocation pattern ensures that the DMRS waveform from all TX

antennas covers the entire bandwidth of the resource block, we can

still achieve wideband CFR estimations for all TX antenna. There-

fore, we can estimate the super-resolution CIRs corresponding to

each TX antenna with a small modification to the inversion opti-

mization problem to incorporate the subcarrier allocation in the

PDSCH-DMRS waveform. Finally, we compare the ToF differences

across the TX antennas to estimate the AoD of the LoS path.

3 PRELIMINARY RESULTS AND DISCUSSION

We conducted preliminary experiments in a outdoor testbed as

shown in Fig. 2 to evaluate mm-ISLA’s AoD estimation accuracy.

Due to the lack of MIMO-enabled mmWave frond-ends, we eval-

uated mm-ISLA’s AoD estimation technique in sub-6GHz bands.

We emulated a dual-antenna 5G gNB and a mm-ISLA enabled IoT

node equipped with the MEMS spike-train filter using X310 USRPs.

The dual-antenna base station prototype transmits 100 MHz OFDM

waveform that mimics the 5G-NR DMRS waveform in the vacant

950 to 1050 MHz spectrum. The mm-ISLA IoT prototype emulates

the MEMS spike-train filter in digital and then downsamples the

signal by 16×, so that the effective ADC sampling rate is 6.25 MHz.

We compare the AoD estimation accuracy of mm-ISLA after

reconstructing the 100 MHz wideband CIR against a baseline using

a 6.25 MHz narrowband receiver without the spike-train filter. As

shown in Fig. 3, mm-ISLA can achieve a median AoD error of only

1.56◦, which is 6× lower than the 9.37◦ of the narrowband baseline.

This result shows that mm-ISLA is able to leverage wideband 5G

signals to estimate the AoD of the LoS path with high accuracy.

In practice, due to the directionality of mmWave gNBs, IoT nodes

might not be able to receive PDSCH signals from three gNBs at a

given location. However, mm-ISLA can potentially jointly leverage

PDSCH signals and narrowband Synchronization Signal Block (SSB)

used in beam sweeping to get three anchor points for triangulation.
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