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(a) (b) (c) (d) 
Figure 1. In two of these images, the spherical lampshade is produced by our method creates realistically shaded renderings from cut-and-paste 

information; the other two are real photographs. Can you tell which is which? Answer in Sec 4. 

Abstract 

We show how to insert an object from one image to an­

other and get realistic results in the hard case, where the 

shading of the inserted object clashes with the shading of 

the scene. Rendering objects using an illumination model 

of the scene doesn't work, because doing so requires a ge­

ometric and material model of the object, which is hard to 

recover from a single image. In this paper, we introduce a 

method that corrects shading inconsistencies of the inserted 

object without requiring a geometric and physical model or 

an environment map. Our method uses a deep image prior 

(DIP), trained to produce reshaded renderings of inserted 

objects via consistent image decomposition inferential losses. 

The resulting image from DIP aims to have (a) an albedo 

similar to the cut-and-paste albedo, (b) a similar shading 

field to that of the target scene, and (c) a shading that is con­

sistent with the cut-and-paste surface normals. The result 

is a simple procedure that produces convincing shading of 

the inserted object. We show the efficacy of our method both 

qualitatively and quantitatively for several objects with com­

plex surface properties and also on a dataset of spherical 

lampshades for quantitative evaluation. Our method signifi­

cantly outperforms an Image Harmonization (/H) baseline 

for all these objects. They also outperform the cut-and-paste 

and IH baselines in a user study with over 100 users. 

1. Introduction 

Inserting objects into images is an appealingly easy ren­

dering paradigm - one just moves objects from one image 
into another. Applications of this task are abundant, ranging 

978-1-6654-5670-8/22/$31.00 ©2022 IEEE 
DOl 10.1109/3DV57658.2022.00045 

from room planners to image editing for artists to training de­
tectors [30, 9].  But most insertions are not realistic because 
the shading between the inserted object clashes with the tar­

get scene and the object sticks out [21]. Current state-of-the­

art (SOTA) methods recover an environment map and render 
objects using their geometric and physical model [27, 13].  

Current single-image methods for shape and material re­
covery cannot accurately reconstruct realistic objects (say, 

a lego toy) [29]. Therefore, in this work, we focus on an 

image-based insertion approach: one takes an object from 
one image, inserts it into another, and expects a system to 
correct it. Our method not only synthesizes plausibly re­

alistic renderings of inserted objects with complex surface 
properties but also does not require a geometric or physical 
model or an environment map at test time. Furthermore, it 

does not require rendered images during training. 

Our method, DIPR, uses Deep Image Prior [50] for re­
shading. DIPR adjusts shading so that simple inferences 

are consistent with cut-and-paste predictions. The render­

ing process produces an image that is realistic, guaranteed 
by our use of a deep image prior. The rendering must also 

produce (a) an albedo that matches the cut-and-paste albedo, 

(b) a shading that matches the target scene's shading outside 
the inserted fragment, and (c) the rendered shading and the 

cut-and-paste normals are consistent with each other. The re­
sult is a simple procedure that produces convincing shading. 

Our entire process, including image decomposition, does 

not require any form of labeled data for training. We use an 
extension of Retinex[24], build a statistical process for data 

generation and train variants of image decomposition models 

for DIPR. In fact, our only use of simulated ground truth is 
our use of a pre-trained, off-the-shelf, normal estimator [37]. 
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CP IH Ours CP IH Ours CP IH Ours CP IH Ours CP IH Ours 
Figure 2. We synthesize realistic, high-resolution renderings of objects added to scenes - cut from one image and pasted into another. Our 

approach, DIPR, is entirely image-based and can convincingly insert objects with complex surface properties (a lego dozer, a plant and a 
chair in the first row) and matte, glossy and specular objects (a set of 16 different materials in the second row; crop#5 in bottom row) added 

to spatially varying illuminating scenes (indoor-outdoor, day-night) without requiring the geometry of the inserted objects or the parameters 

of the target scene. Key findings from our method are (a) it appears to handle complex and subtle interaction with light; for eg., leaves 

(crop#!) (b) it appears to understand 3D scene and illumination reasonably well (crop#2); CP in crop#2 looks realistic in local context, 
but it isn't capturing the 3D scene - the light source behind is far away from the plant, and (c) it preserves material properties because of a 

carefully designed model; enabling object insertion without any loss of high-frequency details (crop#3 & #4). 

Our experiments show DIPR convincingly inserts several 

objects with complex surface properties - a lego dozer, a 

plant, a chair and a set of 16 materials with different reflec­

tive properties (Fig. 2), cars (Fig. 8) and spherical lamp­

shades (Fig. 7). In qualitative analysis, we show DIPR 

produces convincing results compared to a SarA image 

harmonization baseline [8].  We also find that DIPR achieves 

significantly better PSNR, MSE and LPIPS scores, outper­

forming a SarA image harmonization baseline for lamp­

shades renderings (Tab. 1 ). We conduct user studies com­

paring our renderings against baselines and real images. We 

also show our method has an implicit notion of 3D shape as 

an emergent property of our consistent reshading (Fig. 1 1). 

In summary, our main contributions are (1) we enable 

deep image priors to explicitly reason about the shading of 
the scene by a new class of image decomposition model. 

(2) Our method can realistically insert objects without any 

ground truth labeled data. The only labeled data that our 

method requires is a surface normal, obtained from a pre­

trained network. Other than that, our method is completely 

self-supervised. (3) Our method works for matte, glossy 

and specular objects with complex surface properties and 

without using explicit geometric or physical model of the 

scene. (4) Our method works for diverse (indoor-outdoor, 

day-night) spatially varying illuminated complex scenes. 

(5) Our method produces convincing results compared to a 

SOTA image harmonization baseline and achieves signifi­

cantly better PSNR, MSE and LPIPS scores. (6) Our method 

has an implicit notion of 3D shape as an emergent property 

of our consistent reshading. 

2. Related Work 

Object insertion originated with Lalonde et al. [21].  

They insert objects into target images and control illumi­

nation problems by checking objects for compatibility with 

targets; Bansal et al. [1] and Lee et al. [26] do so by match­

ing contexts. Poisson blending [39, 18] can resolve nasty 

boundary artifacts, but significant illumination and color mis­

matches will cause cross-talk between target and fragment, 

producing ugly results. Karsch et al. [19, 20] how convinc­

ing insertions of computer graphics (CG) objects into inverse 

rendering models. Inverse rendering trained with rendered 

images can produce excellent reshading of CG objects [ 41].  
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Figure 3. DIPR overview. DIPR generates a plausibly realistic rendering of an object inserted from a source image to a target scene. DIPR 

uses a DIP to generate a reshaded rendering that has consistent image decomposition inferences. The resulting rendering from DIP should 
have an albedo, same as the cut-and-paste albedo; it should have a shading and gloss field that, outside the inserted fragment, is the same 
as the target scene's shading and gloss field. The rendering must have similar spherical harmonic properties as target scene and meet a 
consistency test everywhere (Sec 3.4, Fig. 6). This simple procedure inserts objects convincingly in real images. 

However, recovering a renderable model from an image frag­
ment is extremely difficult, particularly if the fragment has 

an odd surface texture. Liao et al. [3 1, 32] showed that a 
weak geometric model of the object can be sufficient for 
correcting shading if one has strong the geometric informa­

tion about the target scene. However, we do not know about 
geometry of the target scene, except for their normals. 

We use image hannonization (IH) methods as a strong 

baseline. IH train models to correct corrupted images where 
a fragment is adjusted by some noise process (made brighter; 
recolored; etc.) to the original image [48, 49, 8, 34, 16], 

and so could clearly be applied here. But we find those IH 
methods very often change the albedo of an inserted object, 
rather than its shading. This is because they rely on ensuring 

consistency of color representations across the image. In 
contrast, we wish to correct shading alone. 
Image Relighting: With appropriate training data, for 
indoor-scenes, one can predict multiple spherical harmonic 
components of illumination [13], or parametric lighting 
model [12] or even full radiance maps at scene points from 

images [45, 46].  For outdoor scenes, the sun's position is 
predicted in panoramas using a learning-based approach [17]. 
However, we do not have access to either training data with 

lighting parameters/environment maps to construct such a ra­
diance field. Recent single-image relighting methods relight 
portrait faces under directional lighting [47, 54, 38].  Our 
method can relight matte, gloss and specular objects with 
complex material properties like cars (Fig. 8) for both indoor 
and outdoor spatially varying lighting only from a single 

image and without requiring physics-based BRDF [27]. 
Land's Retinex (image decomposition) model assumes 

effective albedo displays sharp, localized changes (which 

result in large image gradients), and that shading has small 
gradients [22, 23, 24, 25]. These models require no ground 
truth. An alternative is to use CG rendered images for train­

ing [28, 5, 10].  Current image decomposition evaluation 
uses the weighted human disagreement rate (WHDR) [3];  
current champions are [10, 1 1].  We use an image decompo­

sition built around approximate statistical models of albedo 
and shading [1 1] to train our network without requiring real 
image decompositions. Our method has reasonable, but not 

SarA, WHDR; but we show that improvements in WHDR 
do not result in improvements in reshading (Fig. 4). 

3. Approach 

DIPR synthesizes a reshaded object transferred from the 

source image (s) into a target scene image (t). We use a deep 
image prior (DIP) [50] as a renderer to produce a reshaded 
image. We enable DIP to reshade by forcing it to produce 

consistent image decomposition inferences that meet certain 
shading consistency tests. We use an image decomposition 
trained on statistical samples of albedo, shading and gloss; 

Fig. 5a and not real images (Sec 3.2), and surface normals 
inferred by the method of [37] to meet the shading consis­
tency tests (Sec 3.4). The final reshaded image's albedo 
must be like the cut-and-paste albedo; the reshaded image's 
shading must match the shading of the target scene outside 
the fragment; and the shading of the reshaded image must 

have reasonable spherical harmonic properties and meet a 
consistency test everywhere Fig. 3 summarizes our method. 

3.1. Enabling DIP for object reshading 

Assume we have a noisy image ft. and wish to reconstruct 
the original. Write z for a random vector, and f9 for a CNN 

with parameters () and E(f9(z); It) for a loss comparing the 

image fo (z) to ft. DIP seeks 

0 = argmin9E(fo (z); It) (1) 

and then reports f 0 ( z) . In this naive setup we find that 
the DIP always converges to cut-and-paste image. This 
is because the inconsistency we observe in cut-and-paste 

images are subtle view-dependent lighting effects that are 
difficult to capture using a simple DIP. 

An alternative strategy is to decompose image into two 
components - a persistent map, one that is invariant to light­
ing effects and a transient map, one that changes with light­
ing. We then have to train a DIP only to make corrections to 

the extrinsic map and use intrinsic map as it is. To this end, 
we modify Eq. 1 by requiring that E(·; It) only to adjust the 
extrinsic properties of the inserted object. In particular, write 

gq, for some inference network(s), t,p (I8 , It) for inferences 
constructed out of It and the source image I8 • DIPR seeks 

0 = argmin9E(gq,(fo (z)) ;  t,p (Is , It) ) . (2) 

For us, gq, is an image decomposition network, which is 
pretrained and fixed. 

334 

Authorized licensed use limited to: University of Illinois. Downloaded on August 16,2023 at 17:01:12 UTC from IEEE Xplore.  Restrictions apply. 



335

Target Scene Our Decomposition CGintrinsics[28] 

Figure 4. Better WHDR does not mean better reshading. We show reshaded images when using target inferences from different decomposition 
models. Our decomposition achieves (relatively weak) WHDR of 19%; Paradigms [1 1] achieve 17%, and a supervised SarA [28] achieve 
15%. Paradigm [1 1] decomposition produces worse reshading. Moreover, reshading using a supervised SarA, CG1ntrinsics[28], is worse 
than ours and Paradigms decomposition. This reflects that better recovery of albedo, as measured by WHDR, does not produce better 
reshading. The key issue is that methods that get low WHDR do so by suppressing small spatial details in the albedo field (for example, 
the surface detail on the lego dozer), and the shading inference method cannot recover these details, and so they do not appear in the final 
rendering. From the perspective of reshading, it is better to model them as fine detail in albedo than in shading. 

3.2. Image Decomposition 

A natural choice for an image decomposition is an albedo 
map (persistent to lighting) and a shading map (transient 

to lighting). One could then use a SarA pretrained image 
decomposition network as 9¢ only to adjust the shading of 
the scene and use the cut-and-paste albedo as it is. Next, we 

train DIP to reshade (DIPR) the inserted object to produce 
an image with their albedo, same as the cut-and-paste albedo 
and a shading field, same as the cut-and-paste image only 

for the background region other than the inserted fragment. 
DIPR then learns to extrapolate or interpolate shading for 
the inserted fragment from the background's shading field. 

We first evaluated DIPR with two SOTA image decom­
position methods (one supervised [28] and one unsuper­

vised [1 1]) as measured by strong WHDR performance. 
The supervised decomposition train their models on CG­
generated datasets with ground-truth supervision. [1 1 ] uses 

Paradigms, a statistical model of albedo and shading, an ex­
tension of the Retinex [24]. Albedo paradigms are Mondrian 
images. Shading paradigms are Perlin noise [40]. We show 

these methods result in poor reshading outcomes (Fig 4). 
SarA albedo-shading decompositions get strong WHDR 
performance by suppressing fine spatial details in albedo. 

These methods preserve spatial and geometric details in the 
shading field and not albedo because they construct albedo as 
a piece-wise color constant (Mondrian) with no fine details 

on them. These fine geometric details are hard to recover 
accurately from a DIP when trained to interpolate the fore-

ground shading field from their background. However, [ 1 1] 
offers an interesting feature in their Paradigms construction. 
The statistical models used are authored. Changing the sta­

tistical properties of their models would result in a different 

class of decompositions. We take advantage of this feature. 
We change [1 1] and construct an albedo (A) - a  persistent 

map, a diffuse shading (S) - a multiplicative transient map 
and a gloss (G) - an aditive transient map using the same 
statistical process. We compose them as I = A x S + G 
to form an image and train a network to decompose them 
back. Fig. Sa shows samples of our. Fig. 5b illustrates the 
resulting decompositions are satisfactory on MSCOCO [33] 

real images. The main difference between ours and [1 1] is 
that we assume shading to be smooth and albedo has all the 
high-frequency information so that they can be recovered 
when reshading with a DIP. This is a reasonable assumption 

for our method because we aim to preserve all the fine-spatial 
details of inserted fragment when transferring from one im­

age to another. The additional gloss map that we use helps 
us to extract better lighting representations in scenes with 
strong lighting effects like shafts. We show our decomposi­

tion produces convincing object reshading when compared 
to other SarA image decomposition methods (Fig. 4). 

3.3. Base Losses 

We first construct the desired target albedo (At), target 

shading and gloss (St and Gt). We then train DIPR to pro­
duce an image that has reasonable albedo, shading and gloss 
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Albedo SJuuJing Gloss lmage,Alhedo, SJuuJing, Gloss (from top to bottom) 

(a) Our Decomposition (b) Image Decomposition on Real /mages (MS COCO) 

Figure 5. Image decomposition. Left: samples of our albedo, 
shading and gloss used to train our image decomposition network. 
Right: examples showing MS COCO image decompositions. 

properties. For DIPR, the input z is the cut-and-paste image 

and f o is optimized to inpaint inserted fragment and also 
to meet satisfactory image decomposition consistency tests. 
We use U-Net with partial convolution [35, 44] .  However, 

we find the standard partial convolution converges to a triv­

ial solution, producing images close to cut-and-paste. To 
prevent this overfitting, we flip the context for partial con­

volution. We consider the inserted object(s) as the context 

and hallucinate/outpaint the entire target scene around it. We 
call this flipped partial convolution. This encourages the 

network not to overfit to the input cut-and-paste image. 

We use CP(I8 ;  It ; s) for an operator that cuts the frag­
ment out of the source image (18), scales it by s, and places 

it in the relevant location in the target image (It). M for 
a mask with the size of the target image that is 0 inside 

the fragment and 1 outside. Our reconstruction loss for the 

background is: 

Lrecons = IIItcvM - (fo (CP(I. ; It ; s) ; M)W (3) 

We then pass the DIP rendered image through the image 
decomposition network Y¢> making Ar, Br and Gr for the 
rendered albedo, shading and gloss maps respectively. Our 
consistent image decomposition inference losses to train 
DIPR are: 

Ldecomp = IIAcP(I. ;lt;•) - Arll2 + IIBt0M - Br0MII2 
+ 11Gt0M - Gr0MII2 (4) 

3.4. Normal Consistency Losses 

We use two normal consistency losses to make the strong 

structure of a shading field apparent to a DIP's reshading. 

There is good evidence that shading (image extrinsic)is tied 
across surface normals (this underlies spherical harmonic 
models [29, 51]), and one should think of a surface normal as 

a latent variable that explains shading or extrinsic similarities. 
We assume the resulting illumination approximated with the 
first 9 spherical harmonics basis coefficients (Y) and does 

not change when an object is inserted into a scene. We get Y 
by solving the least square regression between normals (N) 

Figure 6. Shading consistency discriminator penalizes shading, 
if it is not consistent with the cut-and-paste normals. 

and shading (8) for both the target scene and the resulting 

composite image. We then minimize loss (.Cy) between the 
target and rendered image Y(S; N) and use a Huber loss. 

C = 
{ � (Y(S, ; N,) - Y(Sr ; Ncp))2 for iYt - Yr l :::; 1, 

Y 
IY(S,; N,) - Y(Sr; Ncp) I - � otherwise. 

(5) 

Spherical harmonic shading fields have some disadvantages: 
every point with the same normal must have the same shad­

ing value, which results in poor models of (say) indoor shad­

ing on walls. To control this effect, we use a novel neural 
shading consistency loss (.Cz) that allows the shading field 

to depart from a spherical harmonic shading field, but only 

in ways consistent with past inferences. Our shading con­
sistency discriminator, ((S; N), is a U-Net [43] (Fig. 6); 
trained to discriminate real and fake shading-normal pairs. 

((S; N) produces two outputs: one a pixel-level map, yield­
ing the first loss term in Eq. 6, which measures per-pixel 

consistency; the other an image-level value, the second term 

in Eq. 6, which measures consistency for the entire image. 

The .C z loss is a binary cross-entropy loss. Let m x n be the 
resolution of our renderings, then .C z is given by 

m n 
Cz = - L 2 )og ((Sr [i, j] ; NcP [i, j] ) - log((SrNcp) (6) 

i=l j=l 
In summary, we update DIPR with 

Lr = Lrecons + Ldecomp + Ly + Cz (7) 

4. Experiments 

Scenes and objects. We collected about 100 diverse images 
with spatially varying illumination, both indoors-outdoors, 

day-night, to act as target scenes in our experiments. 25 of 

these scenes are captured by placing a spherical lampshade, 
which we use as ground truth for quantitative evaluation. We 

first test DIPR by inserting simple 2D bright disks at various 
locations in target scenes (Fig. 10). We also show reshading 
results for real cars inserted into our target scenes (Fig. 8). 

We also tested DIPR with complex surface properties - a lego 
dozer, a plant, a chair, and a set of sixteen materials with dif­

ferent reflective properties used in NeRF [36] (Fig. 2). Other 

objects from [29] are in our Appendix. We use ADE20K 
validation set [53] for supplying real residual loss to our 

image decomposition network and also to train our shading 

consistency network. ADE20K does not have ground truth 

normals and we use normals from [37]. 
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Figure 7. Reshading spherical lampshades. Similar to Fig. 10, we generate sphere rendering by overlaying 2D white disks over the real 
sphere from the photograph. We then use DIPR to reshade the overlaid 2D disk and combine that with the actual albedo (as they remain 
same irrespective of lighting) into a final rendering. lli copies average color. Our renderings are close to the ground truth (also see Tab. 1 ). 

Network architecture. Our DIP network is very similar to 

the U-Net used in 3DPhotolnpainting [44]. We use their 

provided model in our implementation as DIP. The only 

difference is our use of flipped partial convolution instead of 

standard partial convolution as described in our Sec 3. 

Training details. We used U-Net for DIP, Image Decom­

position and Shading Consistency Network. Network archi­

tecture and other training details are in our supplementary. 

We update our DIP for a fixed lOk iterations and this takes 

about 900 seconds using our image decomposition network 

and 1600 seconds when using CGintrinsic [28].  

m baseline. We use Cong et al. 's DoveNet [8] and their 

provided pretrained model for our lli baseline. 

Quantitative comparison to ground truth. We compare 

25 photographs of a spherical lampshade with DIPR based 

insertions. We get insertions by placing a white disk over the 

lampshade, reshading the disk using DIPR, then multiplying 

by lampshade's albedo (a favorable case as it correctly ren­

dered cast shadows). We then quantitatively compare results 

with ground truth (the real lampshade) using PSNR, LPIPS 

or MSE (Tab. 1; Fig. 1 , Fig. 7). Fig. 1 (b) and (c) are real. 

Fooling users. The gold standard evaluation here is user 

studies (after all, the goal is to fool people). However, user 

studies are a poor way to polish a method, and a proxy would 

be valuable. For images of the spherical lampshade used 

in the quantitative evaluation of Tab. 1 , we asked users to 

identify which of the two presented images (showing distinct 

scenes, but both containing the lampshade) was real. One 

image presented was always a rendering, the other always 

real. Users each see 16 pairs, and there were 72 participants 

performing this study. Our DIPR renderings are very good 

at fooling users (50% is a chance). They pick DIPR 42.7% 
of the time. We then use logistic regression to predict each 

rendered image's probability of being marked real against 

MSE, PSNR and LPIPS. An accurate regression would mean 

Table 1 .  Quantitative Evaluation on Spherical Lampshades 
(Fig. 7). Cases: fixed shading fields (S is constant); fixed albedo 
fields (A constant); cut-and-paste albedo fields (AaP(I. ;lt;s)) ;  im­
age harmonization (IH); and our reconstruction (Sr ). Note DIPR 
reshading wins in all metrics. Note such comparisons to ground 
truth occur in circumstances favorable to a method like ours (be­
cause the shading around the object is consistent), but we know of 
no way to avoid this. 

Shading (S) Albedo (A) LPIPS[52] ..j.. PSNR t 

1 1 0.0105 30.81 
Sr 1 0.0070 34.26 
DoveNet [8] AcP(I.;I,;s) 0.0072 35.57 
RainNet [34] AcP(I.;I,;s) 0.0070 36.10 
Harmony Transformer [16] AcP(I.;I,;s) 0.0069 36.52 
0.25 AcP(I.;I,;s) 0.0113 26.74 
0.50 AcP(I.;I,;s) 0.0060 31.28 
0.75 AcP(I.;I,;s) 0.0032 38.18 
1.0 AcP(I.;I,;s) 0.0043 36.66 
Sr (ours) AcP(I.;I,;s) 0.0021 39.53 

Table 2. Ablation over losses show each helps improve reshading. 

.Cdecomp(Eq. 4) .Cy (Eq. 5) .Cz(Eq. 6) LPIPS[52] ..j.. PSNR t 

,/ 0.0026 37.89 
,/ ,/ 0.0023 38.74 
,/ ,/ 0.0022 39.09 
,/ ,/ ,/ 0.0021 39.53 

that we had a score of "realness". However, such a model 

explains almost none of the variation of the data (null de­

viance: 17.87, residual deviance: 17). This means that, 

while it is pleasant that DIPR has strong MSE, PSNR, and 

LPIPS scores, these scores can not be used to predict user 

preferences for our task. 

For other object when we did not have ground truth for 

objects like cars, lego dozer, plant and chair, we conducted 

another user study to compare DIPR, CP, and lli renderings. 

Each study comprises a pre-qualifying process, followed 
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Figure 8. Reshading real cars. Glossy effects in car paint with 
glitter in them make reshading cars a particularly challenging case 
with their complex reflective properties. DIPR successfully re­
shades cars without a distinct shift in object and background color 
produced by IH. Note the bright patch on the metallic bonnet of the 
grey car in the top row that may possibly be because of the light 
source just above it. 

by 9 pair-wise comparisons, where the user is asked which 
of two images are more realistic. The result is 109 pre­
qualified studies. The comparisons are balanced. Each study 
is 3 DIPR-IH pairs, 3 CP-IH pairs, and 3 DIPR-CP pairs, in 
random order. 

We collected data from a total of 122 unique users in 
500 studies from Amazon Mechanical Turk. Each study 
consists of a prequalifying process, followed by 9 pair-wise 
comparisons, where the user is asked which of two images 
are more realistic. The prequalifying process presents the 
user with five tests; each consists of an image with inserted 
white spheres which are not reshaded (i.e. bright white 
disks) and an image with inserted spheres which have been 
reshaded (see Fig 10). We ignore any study where the user 
does not correctly identify all five reshaded images, on the 
grounds that the difference is very obvious and the user must 
not have been paying attention. 

The simplest analysis strongly supports DIPR is preferred 
over both alternatives. One compares the probability that 
DIPR is preferred to IH (.673, over 327 comparisons, so 
standard error is .026, and the difference from 0.5 is clearly 
significant); DIPR is preferred to CP (.645, over 327 com­
parisons, so the standard error is .026, and the difference 
from 0.5 is clearly significant); IH is preferred to CP (.51 1, 
over 327 comparisons, so standard error is .027, and there 
is no significant difference from 0.5). An alternative is a 
Bradley-Terry model [49, 8] used in IH evaluation, regress­
ing the quality predicted by the Bradley-Terry model against 
the class of algorithm. This yields coefficients of 0 for IH, 
-0.347 for CP, and 0.039 for DIPR, implying again that 
DIPR is preferred over IH and strongly preferred over CP. 

Consistent Instance Segmentation. We cannot quantita­
tively evaluate our reshading method when we do not know 
the ground truth. But we can test whether standard image 
tasks (which likely benefit from structural consistency in 

CP DIPR CP DIPR CP DIPR 

Figure 9. Instance segmentation. DIPR rendered images produce 
consistent and accurate segmentation maps (bottom row). We 
observe segmentation fails for cut-and-paste images often. Our 
key intuition is that the instance segmentation network inherently 
"knows" if the object's placement is natural or not and expects the 
foreground object to have consistent shading with the background. 
If the object's shading does not match with that of the background 
then the resulting segmentation fails to segment object completely. 

Target Scene CP IH [8] DIPR (ours) 

Figure 10. Rendering spheres. DIPR has some implicit notion 
of the 3D layout of the scene, which is required to choose the 
appropriate shading. DIPR shades the white discs as spheres (rather 
better than IH, implying it "knows" about shape; also see Fig. 1 1). 

images) perform better on our images. We observe image 
segmentation methods (we used [7] ) seem to prefer our im­
ages (Fig 9) compared to the naYve cut-and-paste. We believe 
the instance segmentation network inherently "knows" if the 
object's placement is natural or not and hence requires the 
foreground object to be consistent with the background. If 
not, the segmentation would produce inconsistent results. 
Our findings are also consistent with Ghiasi et al. [15], who 
show cut-and-paste is a strong data augmentation method for 
the instance segmentation. Previous models trained without 
this augmentation, such as [7] are sensitive to cut-and-paste 
images if the inserted fragments contradict the background's 
shading. This suggests downstream standard image analy­
sis tasks can serve as a proxy evaluation to further polish 
reshading methods and also DIPR data augmentations could 
further improve various recognition tasks. 

5. Shape from Shading and its Consistency 

Reshadings are derived from consistent shapes. DIPR render­
ings of circles look like spheres (see Fig 10), suggesting the 
method has some notion of shape. We test if our shadings are 
consistent, using two procedures: a large scale using singular 
values and explicit reconstruction (expensive in compute) at 
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a small scale. Results suggest there is indeed some emergent 
notion of shape, obtained with no shape annotated data. 

(a) Large scale: Imagine we have many different re­
shadings Si,k of a particular inserted shape (we use white 
circles in albedo). It is known that multiple shadings of 
the same geometry have important similarities [2].  As­
sume that the shading value Si,k (x) is a slowly changing 
spatial function of the (unknown) normal N(x), so that 

Si,k (x) = L�'::1 am,k (x)¢m(N(x) . Assume here that k is 
small, and am,k (x) are spatially slow. These assumptions 
apply to, for example, spherical harmonic shading of diffuse 
surfaces [42]) and shading using the spherical gaussian ba­
sis of [27]. Now straighten each image into a vector Si,k · 
Then these vectors span a N8 dimensional space. Form 
Di = [Sf,1 , . . . , Si,No)  (where No > N8). We expect the 
singular values ar of Mi to be small for r > N8 if all the 
Si,j are shadings of the same scene, and large if they are 
not. Using these observations to make a test of consistency 
requires knowing what is a "small" singular value, and what 
N8 and N0 should be. We use N8 = 14 and 200 sample 
points on each shading field. We now draw 10000 sets of N8 
reshadings from our examples, and look at the test statistic 

T=11;.;,1o"r .  We see a mean of 0.21 and a standard deviation 
<Tg 

of 7.4 X w-2 for T
' 
which appears to be normally distributed. 

We compare this with a baseline of randomly chosen shading 
from natural scenes (cropped to the 2D disk). This yields a 
mean of0.66 and a standard deviation of 5.9 x 10-2• We con­
clude DIPR reshadings of spheres are strongly different from 
random shading and display a degree of shape consistency. 

(b) Explicit shape reconstruction: We produce explicit 
shape of our inserted circles from their predicted shadings. 
We take 7 reshaded circles, each from two different images. 
From this pool of 14, we draw 7 at random, use them to drive 
a shape reconstruction procedure (see Appendix; a typical 
reconstruction in Fig. 1 1). We then compute the spherical 
harmonic reshading of the resulting reconstruction that is 
closest to each of the 7 held out images and record the mean 
squared error of the shading residual for each. A small resid­
ual means that the shape is consistent across the reshaded 
circles. Box plots of the resulting residuals for 7 different 
splits of the data in Fig. 1 1 . To calibrate, we compare this 
with 3 baselines; we reshade: (1) a sphere using actual spher­
ical harmonic shading, reconstruct from reshadings, then 
predict the held out reshadings ('SphHarm'), (2) a constant 
height surface ('Const') and (3) a surface reconstructed from 
smoothed random noise shadings ('Rand'). These residuals 
and singular value analysis suggest the reshading network 
has some form of shape theory as an emergent property. 

6. Discussion and Conclusions 

Limitations. DIPR is slow because DIP takes 15 mins to 
render. DIPR cannot cast shadows; very hard and we leave 

Reconstruction from 7 reshaded spheres 0.11  r9=hod::;:l,ng-=:8ITO:=r"-'' ""':;:::d:..:o=ut.::.: ... :::;mos,=.:_7::::1ms=----r-----, 
0.1 

0.051 
... 0.08 
� 0.07 fo.oe 

CD 0.05 
0.04 
0.03 � = 

Spllllarm DIPR (oun) Cout Ruul 
Figure 1 1 .  Shape theory and shading consistency: On the left 
a sample surface reconstruction produced by using 7 reshaded 
spheres (Fig. 10). On the right, predicted shading residuals for 
held out spheres' shadings using our reconstructed shapes. The 
residuals suggest: there is a consistent underlying shape. Our DIPR 
residuals are small. The reconstruction process is reliable but the 
underlying surface is not quite a sphere. 'SphHarm' residuals are 
also small, but not as small as DIPR. 'Const' residuals are large. 
Therefore, underlying surface is not flat. Smooth 'Rand' residuals 
are large, that is, random shadings cannot explain this consistency. 

CP DIPR (ours) CP DIPR (ours) 
Figure 12. Failure cases. Red arrows point to shading errors. In 
first image, DIPR aggressively copies background shading onto the 
chair. However, lego's and plant's shading looks plausible. In the 
second scene, it has two dominant normals - the ground (upwards) 
and the sky (towards viewer). The lack of third direction results in 
copying shading either from the sky or the ground. 

that for our future work. DIPR likely copies shading, so has 
problems when there is little shading variation and responds 
poorly when there are "few" normals in the scene (Fig. 12). 
Why DIPR works? Corrections to object shading cannot be 
veridical. [3 1 , 32] finds corrected shading often fool humans 
more effectively than physically accurate lighting, likely 
because humans attend to complex materials much more 
than to consistent lighting [4]. The alternative physics the­
ory [6] argues that the brain employs a set of rules that are 
convenient, but not strictly physical and a violation leads 
to perception alarm or affects recognition negatively [14]. 
Otherwise, the scene "looks right". This means humans may 
tolerate a fair degree of error, as long as it is of the right 
kind. By requiring image to produce consistent inferences, 
we appear to be forcing errors to be "of the right kind". 

Acknowledgments 

This material is based upon work supported by the National 
Science Foundation under Grant Nos. 2106825 and 1718221. 
Any opinions, findings, and conclusions or recommendations 
expressed in this material are those of the author(s) and do 
not necessarily reflect the views of the National Science 
Foundation. 

339 

Authorized licensed use limited to: University of Illinois. Downloaded on August 16,2023 at 17:01:12 UTC from IEEE Xplore.  Restrictions apply. 



340

References 

[1] Aayush Bansal, Yaser Sheikh, and Deva Ramanan. Shapes 
and context: In-the-wild image synthesis & manipulation. In 
Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition, pages 23 17-2326, 2019. 2 

[2] Peter N Belhumeur and David J Kriegman. What is the set of 
images of an object under all possible illumination conditions? 
International Journal of Computer Vision, 1998. 8 

[3] Sean Bell, Kavita Bala, and Noah Snavely. Intrinsic images 
in the wild. ACM Transactions on Graphics (TOG), 2014. 3 

[4] Julia Berzhanskaya, Gurumurthy Swaminathan, Jacob Beck, 
and Ennio Mingolla. Remote effects of highlights on gloss 
perception. Perception, 2005. 8 

[5] Sai Bi, Xiaoguang Han, and Yizhou Yu. An 1 1  image trans­
form for edge-preserving smoothing and scene-level intrinsic 
decomposition. ACM Transactions on Graphics (TOG), 2015. 
3 

[6] Patrick Cavanagh and George A Alvarez. Tracking multiple 
targets with multifocal attention. Trends in cognitive sciences, 

9(7):349-354, 2005. 8 

[7] Liang-Chieh Chen, George Papandreou, Florian Schroff, and 
Hartwig Adam. Rethinking atrous convolution for semantic 
image segmentation. arXiv preprint arXiv:1706.05587, 2017. 
7 

[8] Wenyan Cong, Jianfu Zhang, Li Niu, Liu Liu, Zhixin Ling, 
Weiyuan Li, and Liqing Zhang. Dovenet: Deep image 
harmonization via domain verification. In Proceedings of 

the IEEEICVF Conference on Computer Vision and Pattern 

Recognition, pages 8394-8403, 2020. 2, 3, 6, 7 
[9] Debidatta Dwibedi, lshan Misra, and Martial Hebert. Cut, 

paste and learn: Surprisingly easy synthesis for instance de­
tection. In Proceedings of the IEEE International Conference 

on Computer Vision, pages 1 301-13 10, 2017. 1 

[10] Qingnan Fan, Jiaolong Yang, Gang Hua, Baoquan Chen, and 
David Wipf. Revisiting deep intrinsic image decompositions. 
In Proceedings of the IEEE conference on computer vision 

and pattern recognition, 2018. 3 
[ 1 1] DA Forsyth and Jason J Rock. Intrinsic image decomposition 

using paradigms. arXiv preprint arXiv:2011.10512, 2020. 3, 
4 

[12] Marc-Andre Gardner, Yannick Hold-Geoffroy, Kalyan 
Sunkavalli, Christian Gagne, and Jean-Fran�ois Lalonde. 
Deep parametric indoor lighting estimation. In Proceedings 

of the IEEE International Conference on Computer Vision, 

2019. 3 
[13] Mathieu Garon, Kalyan Sunkavalli, Sunil Hadap, Nathan Carr, 

and Jean-Fran�ois Lalonde. Fast spatially-varying indoor 
lighting estimation. In Proceedings of the IEEE Conference 

on Computer Vision and Pattern Recognition, 2019. 1 , 3 
[14] Isabel Gauthier, Pepper Williams, Michael J Tarr, and James 

Tanaka. Training 'greeble'experts: a framework for studying 
expert object recognition processes. Vision research, 38(15-
16):2401-2428, 1998. 8 

[15] Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung­
Yi Lin, Ekin D Cubuk, Quoc V Le, and Barret Zoph. Simple 
copy-paste is a strong data augmentation method for instance 
segmentation. arXiv preprint arXiv:2012.07177, 2020. 7 

[16] Zonghui Guo, Dongsheng Guo, Haiyong Zheng, Zhaorui Gu, 
Bing Zheng, and Junyu Dong. Image harmonization with 
transformer. In Proceedings of the IEEEICVF International 

Conference on Computer Vision, pages 14870-14879, 2021.  
3, 6 

[17] Yannick Hold-Geoffroy, Akshaya Athawale, and Jean­
Fran�ois Lalonde. Deep sky modeling for single image out­
door lighting estimation. In Proceedings of the IEEE Con­

ference on Computer Vision and Pattern Recognition, 2019. 
3 

[18] Jiaya Jia, Jian Sun, Chi-Keung Tang, and Heung-Yeung 
Shum. Drag-and-drop pasting. ACM Transactions on graph­

ics (TOG), 25(3):631--637, 2006. 2 

[19] Kevin Karsch, Varsha Hedau, David Forsyth, and Derek 
Hoiem. Rendering synthetic objects into legacy photographs. 
ACM Transactions on Graphics (TOG), 201 1 .  2 

[20] Kevin Karsch, Kalyan Sunkavalli, Sunil Hadap, Nathan Carr, 
Hailin Jin, Rafael Fonte, Michael Sittig, and David Forsyth. 
Automatic scene inference for 3d object compositing. ACM 

Transactions on Graphics (TOG), 2014. 2 

[21] Jean-Fran�ois Lalonde, Derek Hoiem, Alexei A Efros, 
Carsten Rother, John Winn, and Antonio Criminisi. Photo 
clip art. ACM transactions on graphics (TOG), 2007. 1 , 2 

[22] Edwin H Land. Color vision and the natural image. part 
i. Proceedings of the National Academy of Sciences of the 

United States of America, 1959. 3 

[23] Edwin H Land. Color vision and the natural image part 
ii. Proceedings of the National Academy of Sciences of the 

United States of America, 1959. 3 

[24] Edwin H Land. The retinex theory of color vision. Scientific 

american, 1977. 1 , 3, 4 

[25] Edwin H Land and John J McCann. Lightuess and retinex 
theory. Josa, 1971.  3 

[26] Donghoon Lee, Sifei Liu, Jinwei Gu, Ming Yu Liu, 
Ming Hsuan Yang, and Jan Kautz. Context-aware synthe­
sis and placement of object instances. In Advances in Neural 

Information Processing Systems, 2018. 2 

[27] Zhengqin Li, Mohammad Shafiei, Ravi Ramamoorthi, Kalyan 
Sunkavalli, and Manmohan Chandraker. Inverse rendering 
for complex indoor scenes: Shape, spatially-varying lighting 
and svbrdf from a single image. In Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition, 

2020. 1 , 3, 8 

[28] Zhengqi Li and Noah Snavely. Cgintrinsics: Better intrinsic 
image decomposition through physically-based rendering. In 
Proceedings of the European Conference on Computer Vision 

(ECCV), 2018. 3, 4, 6 

[29] Zhengqin Li, Zexiang Xu, Ravi Ramamoorthi, Kalyan 
Sunkavalli, and Manmohan Chandraker. Learning to recon­
struct shape and spatially-varying reflectance from a single 
image. ACM Transactions on Graphics (TOG), 2018. 1 , 5 

[30] Zicheng Liao, Ali Farhadi, Yang Wang, Ian Endres, and David 
Forsyth. Building a dictionary of image fragments. In 2012 

IEEE Conference on Computer Vision and Pattern Recogni­

tion, pages 3442-3449. IEEE, 2012. 1 

[3 1]  Zicheng Liao, Kevin Karsch, and David Forsyth. An approx­
imate shading model for object relighting. In Proceedings 

340 
Authorized licensed use limited to: University of Illinois. Downloaded on August 16,2023 at 17:01:12 UTC from IEEE Xplore.  Restrictions apply. 



341

of the IEEE Conference on Computer Vision and Pattern 

Recognition, 2015. 3, 8 

[32] Zicheng Liao, Kevin Karsch, Hongyi Zhang, and David 

Forsyth. An approximate shading model with detail decompo­

sition for object relighting. International Journal of Computer 

Vision, 2019. 3, 8 

[33] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, 

Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence 

Zitnick. Microsoft coco: Common objects in context. In 

European conference on computer vision. Springer, 2014. 4 

[34] Jun Ling, Han Xue, Li Song, Rong Xie, and Xiao Gu. Region­

aware adaptive instance normalization for image harmoniza­

tion. In Proceedings of the IEEEICVF Conference on Com­

puter Vision and Pattern Recognition, 2021. 3, 6 

[35] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang, 
Andrew Tao, and Bryan Catanzaro. Image inpainting for 

irregular holes using partial convolutions. In Proceedings of 

the European Conference on Computer Vision (ECCV), 2018. 

5 

[36] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, 

Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: 

Representing scenes as neural radiance fields for view synthe­

sis. arXiv preprint arXiv:2003.08934, 2020. 5 

[37] Vladimir Nekrasov, Thanuja Dharmasiri, Andrew Spek, Tom 

Drummond, Chunhua Shen, and Ian Reid. Real-time joint se­

mantic segmentation and depth estimation using asymmetric 

annotations. In 20I9 International Conference on Robotics 

and Automation (ICRA). IEEE, 2019. 1 , 3, 5 

[38] Thomas Nestmeyer, Jean-Fran�ois Lalonde, lain Matthews, 

Epic Games, Andreas Lehrmann, and AI Borealis. Learning 

physics-guided face relighting under directional light. 2020. 

3 

[39] Patrick Perez, Michel Gangnet, and Andrew Blake. Poisson 

image editing. In ACM SIGGRAPH 2003 Papers, pages 313-

318, 2003. 2 

[ 40] Ken Perlin. An image synthesizer. ACM Siggraph Computer 

Graphics, 1985. 4 

[41] Vilayanur S Ramachandran. Perceiving shape from shading. 

Scientific American, 1988. 2 

[ 42] Ravi Ramamoorthi and Pat Hanrahan. On the relationship be­

tween radiance and irradiance: determining the illumination 

from images of a convex lambertian object. JOSA A, 2001. 8 

[43] Edgar Schonfeld, Bernt Schiele, and Anna Khoreva. A u­

net based discriminator for generative adversarial networks. 

arXiv preprint arXiv:2002.12655, 2020. 5 

[44] Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin 

Huang. 3d photography using context-aware layered depth 

inpainting. In Proceedings of the IEEEICVF Conference on 

Computer Vision and Pattern Recognition, pages 8028-8038, 

2020. 5, 6 

[45] Shuran Song and Thomas Funkhouser. Neural illumination: 

Lighting prediction for indoor enviromnents. In Proceedings 

of the IEEE Conference on Computer Vision and Pattern 

Recognition, 2019. 3 

[ 46] Pratul P Srinivasan, Ben Mildenhall, Matthew Tancik, 

Jonathan T Barron, Richard Tucker, and Noah Snavely. Light­

house: Predicting lighting volumes for spatially-coherent 

illumination. In Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, 2020. 3 

[47] Tiancheng Sun, Jonathan T Barron, Yun-Ta Tsai, Zexiang Xu, 
Xueming Yu, Graham Fyffe, Christoph Rhemann, Jay Busch, 

Paul Debevec, and Ravi Ramamoorthi. Single image portrait 

relighting. ACM Transactions on Graphics (Proceedings 

SIGGRAPH), 2019. 3 

[48] Kalyan Sunkavalli, Micah K Johnson, Wojciech Matusik, and 

Hanspeter Pfister. Multi-scale image harmonization. ACM 

Transactions on Graphics (TOG), 29(4):1-10, 2010. 3 

[49] Yi-Hsuan Tsai, Xiaohui Shen, Zhe Lin, Kalyan Sunkavalli, 

Xin Lu, and Ming-Hsuan Yang. Deep image harmonization. 

In Proceedings of the IEEE Conference on Computer Vision 

and Pattern Recognition, pages 3789-3797, 2017. 3, 7 

[50] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. 

Deep image prior. In Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, 2018. 1 , 3 

[51] Ye Yu and William AP Smith. lnverserendemet: Learning 

single image inverse rendering. In Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition, 

2019. 5 

[52] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, 

and Oliver Wang. The unreasonable effectiveness of deep 

features as a perceptual metric. In CVPR, 2018. 6 

[53] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Bar­

riuso, and Antonio Torralba. Scene parsing through ade20k 

dataset. In Proceedings of the IEEE conference on computer 

vision and pattern recognition, 2017. 5 

[54] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, and David W 

Jacobs. Deep single-image portrait relighting. In Proceedings 

of the IEEE International Conference on Computer Vision, 

2019. 3 

341 
Authorized licensed use limited to: University of Illinois. Downloaded on August 16,2023 at 17:01:12 UTC from IEEE Xplore.  Restrictions apply. 


