Surface Snapping Optimization Layer
for Single Image Object Shape Reconstruction

Yuan-Ting Hu' Alexander G. Schwing! Raymond A. Yeh?

Abstract

Reconstructing the 3D shape of objects observed
in a single image is a challenging task. Recent
approaches rely on visual cues extracted from
a given image learned from a deep net. In this
work, we leverage recent advances in monocu-
lar scene understanding to incorporate an addi-
tional geometric cue of surface normals. For this,
we proposed a novel optimization layer that en-
courages the face normals of the reconstructed
shape to be aligned with estimated surface nor-
mals. We develop a computationally efficient
conjugate-gradient-based method that avoids the
computation of high-dimensional sparse matrices.
We show this framework to achieve compelling
shape reconstruction results on the challenging
Pix3D and ShapeNet datasets.

1. Introduction

Humans can reason about the 3D geometry of objects even
from a monocular image. This capability enables us to
efficiently and effortlessly interact with our environment.
Developing a system that has this capability is hence an
important problem for applications across many fields, e.g.,
robotics, the entertainment industry, and augmented and
virtual reality.

Classical works (Horn, 1975; Nayar et al., 1991; Wolff
et al., 1993; Pentland, 1987) on shape reconstruction rely
on visual cues such as texture, shading, or camera focus.
More recent methods aim to learn the visual cues from data
via deep nets. These works study different shape represen-
tations and propose corresponding deep net architectures,
e.g., meshes (Wang et al., 2018), occupancy grids (Wu
et al., 2015), octrees (Tatarchenko et al., 2017), implicit

"Department of Electrical and Computer Engineering, Univer-
sity of Illinois at Urbana-Champaign “Department of Computer
Science, Purdue University. Correspondence to: Yuan-Ting Hu
<ythu2@illinois.edu>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

fields (Chen & Zhang, 2019; Mescheder et al., 2019; Park
et al., 2019) or point clouds (Groueix et al., 2018). The main
visual cue of these works is a deep feature extracted from
an image via a convolutional network. Notably, these works
often do not leverage explicit 2.5D sketches, such as depth
maps or surface normals. Use of these sketches has been
advocated by Marr (1982), and has previously been found
to be useful by Bansal et al. (2016) and Wu et al. (2017).

In this work, we study how shape reconstruction methods
can efficiently benefit from an explicit geometric cue of
surface normals. We choose surface normals as its estima-
tion has made tremendous progress in recent years (Ladicky
et al., 2014; Eigen & Fergus, 2015; Wang et al., 2015; 2016;
Liao et al., 2019; Zhang et al., 2019; Hickson et al., 2019;
Qi et al., 2020; Wang et al., 2020; Do et al., 2020; Zamir
et al., 2020; Bae et al., 2021; Yu et al., 2022).

To incorporate surface normal estimates, we propose a novel
optimization layer: an optimization problem viewed as a
differentiable function that maps from its input to its so-
lution (Amos & Kolter, 2017; Gould et al., 2022). The
proposed optimization layer minimizes a cost function that
explicitly encourages the normals of the reconstructed shape
to match the surface normals predicted from the image.

We minimize each optimization layer objective to optimal-
ity during a forward pass through the deep net, which re-
positions the vertices of the reconstructed shape. Conse-
quently, the reconstructed shape vertices “snap” to the ob-
served geometry, hence the name surface snapping. The
effect of surface snapping is illustrated in Fig. 1, where we
observe a more accurately recovered shape.

To compute the exact solution of the optimization layer, we
develop an efficient conjugate-gradient-based method that
considers the sparsity structure of the problem to improve
both the memory and computational efficiency. Using stan-
dard solvers without considering the sparsity structure is
intractable with present-day hardware. The layer is inter-
pretable and exposes a trainable parameter that controls the
strength of the snapping. Finally, the developed surface
snapping layer can be inserted into any deep net operating
on meshes. This layer can be trained via gradient-based
methods along with the standard layers.



Surface Snapping Optimization Layer for Single Image Object Shape Reconstruction

Estimated
Surface Normal

No snapping
a=0.0

-

Figure 1. Effect of surface snapping. Larger values of « result in stronger snapping.

In experiments, we evaluate the proposed surface snapping
technique on the challenging Pix3D (Sun et al., 2018) and
ShapeNet (Chang et al., 2015) datasets. On both datasets,
we observe that surface snapping, when incorporated into
recent baselines, improves the reconstruction; especially in
terms of the normal consistency metric. Qualitatively, we
observe that the reconstructed geometry is less noisy, i.e.,
the surface is smoother. This demonstrates the effectiveness
of the proposed surface snapping layer at adjusting face
normals for monocular shape reconstruction.

Our contributions:

* We propose a novel optimization layer for object shape
reconstruction and a specialized solver to efficiently
compute its solution.

* We demonstrate that the proposed layer leverages sur-
face normal estimation to improve object shape recon-
struction.

2. Related Work

Optimization as a layer. An optimization problem can be
considered as a single “layer” in a deep net architecture
because it can be viewed as a function mapping from its
input to its exact solution. For such a layer, the derivative is
computed through implicit differentiation. Amos & Kolter
(2017) study deep net architectures that integrate optimiza-
tion problems in the form of a quadratic program (OptNet).
This formulation is further extended to disciplined convex
programs by Agrawal et al. (2019). Recently, applications
of optimization layers have emerged in reinforcement learn-
ing (Amos et al., 2018), logical reasoning (Wang et al.,
2019), and image classification, segmentation and various
computer vision tasks (Bai et al., 2019; 2020; Huang et al.,
2021; Bai et al., 2022; Yeh et al., 2022; Pokle et al., 2022).

Our surface snapping formulation is also a quadratic pro-
gram. However, the generic solver implementations, e.g.,
OptNet, are not scalable to our problem size due to the large
number of vertices involved in a shape. We hence develop a
solver which benefits from the structure of the task.

Monocular 3D shape reconstruction. Shape reconstruc-
tion from a single image has received a considerable amount
of attention (Dai et al., 2017; Izadinia et al., 2017; Wu et al.,
2017; Zou et al., 2017; Wang et al., 2018; Tulsiani et al.,
2018; Groueix et al., 2018; Kundu et al., 2018; Mahmud
et al., 2020; Mescheder et al., 2019; Mo et al., 2019; Deng
et al., 2020; Chen et al., 2020; Peng et al., 2020; Nash et al.,
2020; Park et al., 2019; Paschalidou et al., 2020; Wu et al.,
2020; Duggal & Pathak, 2022). These methods’ shape repre-
sentations, which are often the focus of the work, generally
differ. Among the most popular shape representations are
meshes (Wang et al., 2018; Gao et al., 2022), occupancy
grids (Wu et al., 2015), octrees (Tatarchenko et al., 2017),
implicit fields (Chen & Zhang, 2019; Mescheder et al., 2019;
Park et al., 2019) or point clouds (Groueix et al., 2018).
Many of these methods assume that the image only depicts
a single object, i.e., only a single shape needs to be recon-
structed per image. Consequently, these methods usually
focus on datasets like ShapeNet (Chang et al., 2015), where
a single object is illustrated per image.

3D shape reconstruction methods (Izadinia et al., 2017;
Tulsiani et al., 2018; Kundu et al., 2018; Gkioxari et al.,
2019; Nie et al., 2020; Zhang et al., 2021) which reconstruct
multiple objects in a given image usually either leverage a
detection network (Izadinia et al., 2017; Kundu et al., 2018;
Gkioxari et al., 2019) like Faster/Mask-RCNN (Ren et al.,
2015; He et al., 2017) or assume instance-level bounding
boxes are readily available (Tulsiani et al., 2018). Using
given or detected bounding boxes, the 3D shape of each
instance is inferred separately for each bounding box. For
this, appearance information in the form of a spatial high-
dimensional feature vector is obtained for each bounding
box from the object detector or a feature pyramid network.

Different from these works, we study the use of surface nor-
mals as an additional geometric cue. While there are prior
deep learning approaches for 3D reconstruction that utilize
surface normals, they are either not directly applicable to
meshes (Qi et al., 2020) or simply introduce a normal loss
for end-to-end training (Wu et al., 2017; Wang et al., 2018).
In contrast, the proposed surface snapping layer operates di-



Surface Snapping Optimization Layer for Single Image Object Shape Reconstruction

\ 4

Refinement
Module

Surface

i Snapping
' (Sec 3.1)

Input Image

Refined Mesh Snapped Mesh

ﬁﬁﬁﬁ(fm' / IngMesh

Deep Nets

Normal

Figure 2. Object shape reconstruction with surface snapping and an explicit model. With surface snapping, the snapped mesh exhibits
sharper edges and a much smoother surface. E.g., the crisp edges near the bed frame or the outline of the pillows.

rectly on a mesh representation, finds the exact solution, and
incorporates the surfaces normal directly into the inference
procedure (forward-pass).

Monocular normal estimation. Fouhey et al. (2013) intro-
duce a data-driven approach that leverages 3D geometric
primitives and high-level constraints. Ladicky et al. (2014)
additionally incorporate pixel-based and segment-based
cues. The first deep net for this task was proposed by Wang
et al. (2015), and multi-scale network architectures have
been studied by Eigen & Fergus (2015). These were later
refined to incorporate skip connections (Bansal et al., 2016)
as well as a dense conditional random field to refine the deep
net output (Wang et al., 2016). Increasingly accurate results
have been reported and methods have also been scaled to
efficiently run on edge devices (Hickson et al., 2019).

To incorporate surface normals into shape reconstruction we
formulate a novel optimization layer that optimizes a cost
function to ensure that the reconstructed surface “snaps” to
the estimated normals.

3. Approach

Our goal is to leverage surface normal estimates for the task
of 3D shape reconstruction. For this, we propose surface
snapping, an optimization layer that explicitly aligns the
predicted shape to be consistent with the predicted surface
normal. In §3.1, we introduce the surface snapping layer
by defining its forward and backward operation. We in-
corporate surface snapping layers into shape reconstruction
methods, including both explicit and implicit models (§3.2).
‘We discuss how to train these models in §3.3.

3.1. Surface snapping Optimization Layer

An object’s shape can be characterized by a triangular mesh
M = (V, F), which is specified by a tuple V' € RV *3 of
Ny 3-dimensional vertices, and a tuple F' € pr *3of N Ja
faces. Here, each face is represented by three vertex indices.

~ 1 ~ A
Given a predicted shape M = (V! F) at the [ layer and

a face normal estimate N obtained from the image, the
proposed surface snapping aims to refine the vertices into a

NS - . . .
shape M~ = (V!*1 F) that is more consistent with the
surface normal IN. Le., we view surface snapping as a layer

A A
M = SurfaceSnapping(M,N), (D

A~ [ A
which takes as input a shape M and a normal map IV, and

) N
yields another shape M as its output.

Forward operation definition. To update the vertices
V!, we formulate Surf aceSnapping as an optimiza-
tion layer. The goal of this optimization problem is to align
(“snap”) the predicted vertices to face normal estimates N.
Specifically, Sur faceSnapping minimizes the weighted
sum of two cost functions, a vertex cost Cy and a normal
cost Cn, i.e.,

VI A X* — argmin (CV(X, V1) + alu(X, N)) )
X

where a € R, is a positive trainable parameter and X €
RNV *3 denotes the optimization variable in Eq. (2).

The vertex cost Cy encourages similarity between optimiza-
tion variable X and the current vertices V' by penalizing
distances via an {5-norm:

Cv(X, V) =X - V|3 3)

The normal cost Cy controls the consistency of the mesh
prediction and the estimated normals via

where N denotes the number of faces. This cost accumu-
lates the inner products between adjacent edges X ; — X, of
face 7 (defined by its vertex indices 13'i) and the face normal
N;. Intuitively, the estimated face normal and the edges
should be orthogonal to each other. Hence we penalize the



Surface Snapping Optimization Layer for Single Image Object Shape Reconstruction

squared norm of the inner product. As face normals are only
estimated for visible faces, we set the normal of non-visible
faces to a zero vector.

Note, we use the term cost function C to refer to the opti-
mization problem that defines the forward operation of the
surface snapping layer. A cost function C is not the loss
function for training the model. We will discuss training
losses in §3.3.

We illustrate the behavior of this layer in Fig. 1. When
« increases, we observe the edge of the bed more clearly
as a larger o more strongly encourages snapping the face
normals of the predicted shape to the estimated normals.
In summary, the program in Eq. (2) considers vertex and
normal cost functions which balance between the normal
predictions and the current vertex location estimates. We
will next discuss the layers’ forward pass and backward pass
computation.

Forward operation computation. A forward pass requires
solving the weighted objective in Eq. (2). Observe that it
can be formulated as a linear least-squares problem of the
form min,, ||Ax — bH;, as

min ([l& - '], + o IN © Da|3) (5)
2
L I ! ;
= mén \/aN oD T — \/aO . (6)
A b 2

Here, © = vec(X) and 9! = vec(V') € R¥*NV refer to
the flattened vertex coordinates in column-major order, i.e.,
Y22 NEE V2 N 72 B 2
vec(V') = [‘{;01(1), Voor(2); Vc01(3)]' Moreover, (NOD)z
computes the inner product between a face normal and the
edges of each face in the mesh. For this we construct the

edges by using matrix D € RYVF*3Nv which is defined as

>

0
0
D

0
D=0 D s Di,j = 1and le =-1 (7)
0 O
Vi < k € ﬁti/iﬂv and O otherwise. Le., each row of D
forms an edge X; — X, between vertex j and k. Next,
the face normals are stored in matrix N € RINFX9NF aq

follows:

N' 0o o A :
N=|o N2 0 Nh: Ni,hv ZG{I,...,NF}
0o o0 N3 T 0, otherwise,
®)

where J\Aflh is the normal of face 7 for dimension h.

In theory, a forward pass through the surface snapping layer
can be solved analytically via (AT A)~* ATb as formulated

in Eq. (6). However, this is inefficient and memory inten-
sive due to matrix inversion of a large matrix (ATA)~!.
Hence, we develop a conjugate gradient method leveraging
the system’s sparsity structure, which we discuss next.

Efficient conjugate gradient solver. The least-squares
solution is equivalent to solving a linear system of the form
Qx = t, where

Q=ATA and t= ATh. 9)

As Q@ is positive-definite, the conjugate gradient method
is applicable. We refer to a conjugate gradient solver via
CGSolve(Q,t).

Importantly, a standard conjugate gradient solver does not
work out of the box, due to memory and computation con-
straints. Instead, we develop a custom conjugate gradient
solver with GPU support which leverages the structure of
A. We exploit the sparsity patterns in the system of equa-
tions, observed in Eq. (7) and Eq. (8), to avoid redundancies.
Please see the Appendix for more details. Here, we spotlight
some aspects which led to significant speedups:

@ Sparse element-wise multiplication: When computing
N © D in Eq. (6), use of dense matrices is inefficient. In-
stead, we use sparse element-wise multiplications on D and
N, N2, N2 to avoid constructing the full matrices D and N.
This removes many unnecessary multiplications with zeros.

@ Advanced indexing to create edges: When computing
Dz in Eq. (6), we avoid this large matrix multiplication, by
using advanced indexing to select the vertices and taking
their differences with element-wise vector operations.

Backward operation. To enable end-to-end training, we
need to back-propagate through the solution * obtained
by solving the program given in Eq. (6). Concretely, for a
given loss function £ which depends on the solution x*, we
need to compute

0L(@t) _ oL 0w ot
ool dx* Ot ool

We can view the solution «* as a functional mapping of
o', i.e., z*(9'), in which case the gradient can be traced

(10)

v
through the optimization procedure. To see this, recall, ¢ is
a linear combination of ¥, as defined in Eq. (5) and Eq. (9).

Automatic differentiation can handle %. Hence, we only
L (x*)
ot

need to compute,
w.r.t. t.

, the gradient of a loss function

Recall, * is the solution of the linear system Qx = ¢, i.e.,

x* = Q~'t. From the chain rule, we obtain

oL
ox*

This is again a linear system where we can use the developed
CGSolver which exploits sparsity. Hence, we compute the

oL
:QT§~ (11)



Surface Snapping Optimization Layer for Single Image Object Shape Reconstruction

Table 1. Quantitative comparison explicit methods on Pix3D dataset split S using the Setup @ by Gkioxari et al. (2019). Green indicates

that adding the surface snapping layer improves the performance.

Method / % chair sofa table bed desk bkcs wrdrb tool misc  AP*™ AP™* AP™" Normal Normal"™
Pixel2Mesh™ (Wang et al., 2018) 30.9 59.1 40.2 40.5 30.2 50.8 62.4 18.226.7 935 884 399 18.0 39.8
Sphere-Init 409 75.2 442 50.3 28.4 48.6 42.5 269 7.0 941 875 405 153 39.0
Mesh R-CNN (Gkioxari et al., 2019) 48.2 71.7 60.9 53.7 42.9 70.2 634 21.6 27.8 94.0 884 512 21.6 46.5
GCN Transformer 49.9 74.3 67.3 50.5 42.8 75.4 689 37.4 333 94.1 883 555 233 49.6
Snap+ Pixel2Mesh™ 323 61.8 43.9 42.8 33.5 46.0 743 4.5 26.7 935 884 40.7 194 43.3
Snap+ Sphere-Init 35.1 61.7 44.1 40.0 31.3 55.7 46.1 23.6 135 941 87.6 39.0 17.1 39.0
Snap+ Mesh R-CNN 49.0 74.8 65.3 55.7 46.1 73.8 70.9 21.6 27.8 94.1 88.3 54.1 23.0 48.8
Snap+ GCN Transformer 49.5 76.5 64.3 56.0 44.3 73.8 70.9 31.8 33.4 94.1 883 556 238 50.4

Table 2. Quantitative comparison of explicit methods on Pix3D dataset split So using the Setup @ by Gkioxari et al. (2019). Green

indicates that adding the surface snapping layer improves the performance.

Method / % chair sofa table bed desk bkcs wrdrb tool misc AP AP™% AP™esh Normal NormalY®
Pixel2Mesh™ (Wang et al., 2018) 26.7 58.5 109 385 7.8 341 34 100 0.0 71.1 634 21.1 195 422
Sphere-Init 329 753 15.8 40.1 10.1 450 1.5 0.8 00 726 645 246 157 40.0
Mesh R-CNN (Gkioxari et al., 2019) 42.7 70.8 27.2 40.9 18251.1 29 52 0.0 722 639 288 214 46.5
GCN Transformer 429 68.8 26.5 40.7229446 12 05 00 724 640 275 221 48.8
Snap+ Pixel2Mesh™ 26.9 609 10.0 38.7 10.0 253 4.2 10.1 0.0 71.1 634 20.7 205 44.7
Snap+ Sphere-Init 312 72.7 11.7 42.1 7.8 382 1.0 12 00 726 645 229 16.0 40.2
Snap+ Mesh R-CNN 414 74.7 28.1 42.6 20.1 504 29 3.7 00 724 640 299 230 49.7
Snap+ GCN Transformer 42.2 753 28.6 41.321.1 500 28 6.1 00 724 640 297 233 49.7

gradient efficiently via

oL oL
g T Y=
n CGSolve <Q , *> . (12)

We will next explain how to incorporate our surface snap-
ping layer into deep nets for shape reconstruction.

3.2. Surface Snapping for Shape Reconstruction

To apply our surface snapping layer, we consider two main
shape reconstruction paradigms. We also discuss how to
obtain the surface normal estimation from an image.

Surface snapping with explicit models. Surface snapping
can be applied to models which use an explicit mesh repre-
sentation (Wang et al., 2018; Gkioxari et al., 2019). These
models start with an initial estimate of the object mesh
I\AII0 = (Vo, F), e.g., a sphere (Wang et al., 2018) or a cubi-
fied mesh obtained from voxel prediction (Gkioxari et al.,
2019). Next, these models iteratively update the initial mesh
with L refinement modules to update the vertices (Gkioxari
et al., 2019; Lin et al., 2021), i.e., refinement modules di-
rectly operate on meshes.

As the surface snapping layer also takes meshes as input, it
naturally fits the design of explicit models with refinement
modules. Specifically, we insert our surface snapping layer
after each refinement module. See Fig. 2 for a high-level il-
lustration. We back-propagate through the surface snapping
layer and train the weighting term « jointly with the other

differentiable layers. See §3.3 for details.

Surface Snapping with implicit models. The surface snap-
ping layer can also be incorporated into models which use
an implicit representation. Given an image, implicit models
reconstruct objects via an implicit function, e.g., a function
predicting the sign distance of a point to the surface (Park
et al., 2019) or predicting whether a point lies inside or
outside the mesh (Mescheder et al., 2019). Subsequently, a
marching cube algorithm is used to extract object meshes.
Hence, we incorporate the surface snapping layer after the
marching cube algorithm to snap the mesh vertices to the
estimated surface normals. As the classic marching cubes
algorithm is not differentiable, we do not train the surface
snapping layer jointly with the implicit function. This could
potentially be addressed by levering differentiable marching
cubes techniques (Liao et al., 2018).

Normal estimation model. For a fair comparison we train
a transformer-based dense prediction network (Ranftl et al.,
2021) to predict surface normals on the same training data
that is used for shape reconstruction. Note, the surface
normals are extracted from ground truth meshes. Le., we do
not use any additional data beyond what is already provided
in datasets for this task. Further note, the obtained surface
normals only capture the visible portion of the object. To
obtain the face normals N , we align the surface normal at
each pixel to a face F,. To do so, we rasterize the predicted

L1
mesh M~ for each [ € {1,..., L} to obtain the region
that each face F;; projects to in the image plane, as well as



Surface Snapping Optimization Layer for Single Image Object Shape Reconstruction

Table 3. Quantitative comparison on Pix3D dataset using the setup
in (Zhang et al., 2021). We report per-category Chamfer distance
and the averaged Chamfer distance (}) scaled by 10®. Green
indicates better results with surface snapping.

Method bed bkcs chair desk sofa table tool wrdrb misc Avg

AtlasNet (Groueix et al., 2018) 9.03 6.91 8.37 8.59 6.24 19.46 6.95 4.78 40.05 12.26
TMN (Pan et al., 2019) 7.78 593 6.86 7.08 425 17.42 4.13 4.09 23.68 9.03
MGN (Nie et al., 2020) 5.99 6.56 532 5.93 3.36 14.19 3.12 3.83 26.93 8.36
IM3D (Zhang et al., 2021) 4.11 396 545 7.85 5.61 11.73 2.39 431 24.65 7.78

Snap+ IM3D 3.98 3.91 5.05 7.90 5.32 11.61 2.47 4.06 24.99 7.70

information about its visibility. Finally, to compute the face
normal N;, we average the surface normals within each face
region. Importantly, we set the normal of the non-visible
faces to O to ensure that non-visible faces do not influence
the output of the surface snapping layer.

3.3. Training Details

Following Gkioxari et al. (2019), we train both the model pa-
rameters of the refinement modules and the surface snapping
strength « in Eq. (2) by minimizing the sum of a Chamfer
loss Lcham, the normal distance Lo, and an edge regular-
izer Eedgea i.e., L= Lcham + A1 Loom + )\2£edge~

Given a predicted mesh |\7|L and a ground-truth mesh M,
we first sample faces from each of the meshes. The prob-
ability of sampling a face is proportional to the area of
the face. We then uniformly sample points from the sur-
face of the face using differentiable sampling (Smith et al.,
2019). Let the two sets of sampled point clouds be P

and P where P is sampled from the predicted mesh ML
and P is sampled from the ground-truth mesh M. Let
(P, P) ={(p, argmin, s llp — Bll), Vp € P} be the set
of pairs of every point in P and its nearest neighbor in P.
The bi-directional Chamfer and normal losses between P
and P are defined as

Leapam(P.P) =[PI7> " llp—plI*+IPI7 D lIp— 5,
(p,p)ET(P,P) (p,p)EL(P,P)

Loom(P,P) = =PI7' Y Infny| = [PI7' Y Infnyl,

(p,p)E€T(P,P) (p,p)ET (P, P)

where |P] is the cardinality of P and n,, denotes the unit
normal vector of the face that point p € R? is sampled
from. Note that the normal /oss is not the normal cost for
surface snapping. The normal loss uses ground-truth normal
from the ground-truth mesh, which is unavailable at test
time. Contrarily, the normal cost uses the estimated surface
normal which can be used to solve the objective in Eq. (2)
to optimality at test time. Finally, the edge regularizer of a
mesh penalizing long edges is given by

N . 1 Nr N N2
LanVEF) = =3 Y [vE-E [ a)

=1 jkeF;
4. Experiments

We quantitatively evaluate the proposed surface snapping
layer on two widely used datasets, Pix3D (Sun et al., 2018)
and ShapeNet (Chang et al., 2015). We show that the pro-
posed surface snapping layer enhances existing explicit
methods (Mesh R-CNN (Gkioxari et al., 2019) and GCN
Transformer inspired by Lin et al. (2021)) and implicit meth-
ods (Im3D (Zhang et al., 2021)). We also show qualitative
comparisons illustrating the improved meshes, e.g., sharper
edges and smooth surfaces, when using surface snapping
layers. Finally, we conclude with an ablation study and
discussion.

4.1. Pix3D Setup & Results

Pix3D (Sun et al., 2018) is a challenging dataset for sin-
gle image reconstruction. It consists of 10,069 real-world
photos of nine object categories with potentially cluttered
backgrounds and different lighting conditions. Evaluation
for the proposed surface snapping with the explicit meth-
ods follows Gkioxari et al. (2019), where object bounding
boxes are unknown, which we refer to as Setup @. Evalua-
tion for the proposed surface snapping with implicit meth-
ods follows Zhang et al. (2021), where ground truth object
bounding boxes are given, which we refer to as Setup @.

Evaluation metrics. As explicit and implicit methods use
different evaluation setups, we strictly follow the corre-
sponding setup for a fair comparison. Setup ®: Gkioxari
et al. (2019) report average precision of the bounding box
AP and average precision of the mask AP™*¥_ as well
as average precision of the shape AP™" which is defined
as the average area under the precision-recall curve, per-
category, with F1@0.3 and a threshold of 0.5. In addition,
we also report the normal consistency metric which is one
minus the normal distance described in §3.3. We report the
normal consistency computed on the whole shape (Normal)
and on the visible part only (Normal¥*). Setup ®: Zhang
et al. (2021) report per-category Chamfer distance and the
averaged Chamfer distance. The predicted mesh is aligned
with the ground-truth mesh via ICP (Arun et al., 1987) and
10K points are sampled to compute the Chamfer distance.

Baselines. For Setup @, we compare our approach to five
methods: Voxel-Only, Sphere-Init, Pixel2Mesh™, Mesh R-
CNN (Gkioxari et al., 2019) and GCN Transformer.

Mesh R-CNN extends Mask R-CNN for multi-object shape
reconstruction. This is done by first predicting an inter-
mediate voxel representation and refining it to a mesh
output for each of the objects. Pixel2Mesh* augments
Pixel2Mesh (Wang et al., 2018) by attaching an ROI head to



Surface Snapping Optimization Layer for Single Image Object Shape Reconstruction

Ground-truth Mesh R-CNN

|

Snap+ Mesh R-CNN

GCN Transformer Snap+ GCN Transformer

Figure 3. Qualitative comparisions to baselines Mesh R-CNN (Gkioxari et al., 2019) and GCN Transformer on Pix3D.

Mask R-CNN to support multi-object shape reconstruction.
The Voxel-Only method refers to the intermediate voxel rep-
resentation of Mesh R-CNN. The Sphere-Init refers to the
baseline of initializing from a sphere mesh and performing
vertex refinements, similar to Pixel2Mesh™ but without sub-
division. Finally, GCN Transformer is a baseline inspired
by Lin et al. (2021), where we apply the self-attention mech-
anism before graph convolutions in a refinement stage.

For Setup ®, we compare to baselines AtlasNet (Groueix
et al., 2018), TMN (Pan et al., 2019), MGN (Nie et al.,
2020), and IM3D (Zhang et al., 2021).

Quantitative results (Setup @). We evaluate using the
proposed surface snapping with the Mesh R-CNN frame-
work and provide quantitative results for the Pix3D split S1
in Tab. 1 and for the Pix3D split S5 in Tab. 2. Note that split
S is more challenging than split S; as split S2 guarantees
that 3D models which appear in training do not appear in
the test set, while split .S; does not guarantee this.

On both splits, we find that incorporating surface snapping
generally improves (shown in green) the quality of the re-
constructed shape in terms of AP™" when compared to the
corresponding baselines. As expected, the face normals of
the mesh predicted with the proposed surface snapping are
more consistent with the ground truth. We observe that sur-
face snapping improves nearly all baselines on the normal
consistency metric computed on both the whole shape (Nor-
mal) and the visible part only (NormalY®). These results
indicate that surface snapping effectively utilizes the esti-
mated normals and optimizes the vertices of the predicted
mesh to snap to the observed geometry.

Quantitative results (Setup ). We evaluate using the
proposed surface snapping following the setup in (Zhang
et al., 2021) and compare it to the baselines in Tab. 3. We
observe that incorporating surface snapping with existing
methods further improves the reconstruction quality.

Qualitative results. We illustrate the effectiveness of the



Surface Snapping Optimization Layer for Single Image Object Shape Reconstruction

Input Ground-truth

>
=
A

T

2 B

ng

Mesh R-CNN

Snap+ Mesh R-CNN

Figure 4. Qualitative results of our method compared to the baseline Mesh R-CNN (Gkioxari et al., 2019) on ShapeNet.

Table 4. Quantitative comparison on ShapeNet (Best). Green
indicates better results with surface snapping.

Method F1@0.1(1) F1@0.3(T) F1@0.5(1) Chamfer(]) Normal(?)
Sphere-Init 383 86.5 95.1 0.132 0.711
Pixel2Mesh™ (Wang et al., 2018) 383 86.6 95.1 0.132 0.707
Mesh R-CNN (Gkioxari et al., 2019)  39.2 86.8 95.1 0.133 0.725
Snap+ Sphere-Init 37.6 85.6 94.5 0.133 0.716
Snap+ Pixel2Mesh™ 37.0 85.3 94.6 0.134 0.717
Snap+ Mesh R-CNN 38.0 86.0 94.7 0.134 0.727

Table 5. Quantitative comparison on ShapeNet (Pretty). Green
indicates better results with surface snapping.

Method F1@0.1(1) F1@0.3(1) F1@0.5() Chamfer(}) Normal(1)

Sphere-Init 345 822 929 0.175 0.718
Pixel2Mesh™ (Wang et al., 2018) 349 82.3 92.9 0.175 0.727
Mesh R-CNN (Gkioxari et al., 2019)  34.8 824 93.1 0.176 0.699
Snap+ Sphere-Init 34.6 82.2 92.9 0.174 0.722
Snap+ Pixel2Mesh™ 349 82.3 93.0 0.175 0.731
Snap+ Mesh R-CNN 349 824 93.1 0.171 0.707

proposed method for mesh reconstruction on Pix3D images
in Fig. 3. We train a dense prediction transformer (Ranftl
et al., 2021) using the Pix3D data to predict surface nor-
mals. We observe that the results with surface snapping are
generally less noisy and more visually appealing.

4.2. ShapeNet Setup & Results

ShapeNet (Chang et al., 2015) is a commonly used synthetic
dataset for training and evaluating single image object re-
construction. We use the rendered images provided by Choy
et al. (2016) and use the training and test splits provided
by Wang et al. (2018). The rendered images have a black
background. The training split consists of 840,189 images

and the test split contains 210,051 images. All images are
of size 137x137.

Evaluation Metrics. For evaluation, we report the Cham-
fer distance and normal consistency (one minus normal
distance) as described in §3.3 as well as the F-score with
various distance thresholds following Gkioxari et al. (2019).

Baselines. We use the same set of explicit baselines as
we did for Pix3D data, except for GCN Transformer as it
utilizes too much GPU memory for the given batch size.

Quantitative results. We provide the quantitative results
for ShapeNet in Tab. 4 and Tab. 5. Following Gkioxari et al.
(2019), we evaluate baselines using two settings: Pretty
and Best. The two settings differ in the shape regularizer.
Specifically, the Pretty setting enables the edge regularizer,
while the Best does not use one. While the images are of low
resolution, which makes it challenging to estimate accurate
normals, we still find our method to improve the normal
consistency metric in the Best setting and to improve the
Chamfer distance in the Pretty setting.

Qualitative results. In Fig. 4, we visualize the recon-
structed shapes on ShapeNet. Incorporating surface snap-
ping leads to less noisy reconstruction that better matches
the observed geometry.

4.3. Additional analysis

Ablation study on .. We study the effect of the weight o
on the normal cost in the surface snapping objective given



Surface Snapping Optimization Layer for Single Image Object Shape Reconstruction

Table 6. Ablation on « in Eq. (2) for Snap+ Mesh R-CNN.

Pix3D S, Pix3D S,
AP™" Normal Normal"™ AP™" Normal Normal™®
a=00 534 21.5 454 29.1 21.4 46.5
a=10 534 22.2 47.1 28.7 20.8 44.7
a=20 527 214 44.8 28.5 21.6 44.6
o learned  54.1 23.0 48.8 29.9 23.0 49.7

Surface Normal Failure Case

Input

Figure 5. Failure mode of our approach. If the surface normal
estimation is not accurate the proposed reconstruction degrades.

in Eq. (2) using Mesh R-CNN. We report quantitative results
of models trained with different values of a in Tab. 6. We
find the learning of o to improve the overall performance.

Surface snapping implementation comparison. We ablate
different aspects of our implementation and report inference
time and memory usage on meshes with 5,280 faces with a
batch size of two. We compare the following settings (on
an Nvidia Tesla V100 GPU): (a) Without considering any
structure in the system of equations, the solver reports an
out-of-memory error; (b) Leveraging the sparsity structure
and solving with torch.solve takes 1.71s and consumes
4437MiB in GPU memory; (c) Leveraging the sparsity struc-
ture and using the developed CGSolver takes 0.46s and
consumes 1203MiB in GPU memory.

Limitations. In Fig. 5, we show that surface snapping
struggles when the estimated surface normal is not accurate.
On the flip side, we expect the proposed technique to further
improve if normal estimation accuracy increases.

5. Conclusion

We develop surface snapping, an optimization layer, for
3D shape reconstruction. This layer ensures that the re-
constructed shape ‘snaps’ to predicted normal estimates
by solving an optimization problem that encourages the
edges in the predicted mesh to be orthogonal to the pre-
dicted normals. To run this layer efficiently, we develop a
conjugate-gradient-based method that leverages the sparsity
of the problem. During training, we back-propagate through
this layer via implicit differentiation. On the challenging
Pix3D and ShapeNet datasets, we show that incorporating
surface snapping into existing methods leads to competitive
shape reconstruction performance and yields results with
improved normal consistency. More generally, we believe
advances in scene understanding can aid recently developed

monocular object reconstruction techniques. The developed
surface snapping is a step in this direction that explicitly
utilizes estimated surface normal geometry.

Acknowledgments: Work supported in part by NSF Grants
2008387, 2045586, 2106825, MRI 1725729, and NIFA award
2020-67021-32799. We thank NVIDIA for providing a GPU.

References

Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond,
S., and Kolter, J. Z. Differentiable convex optimization
layers. In Proc. NeurIPS, 2019. 2

Amos, B. and Kolter, J. Z. OptNet: Differentiable optimiza-
tion as a layer in neural networks. In Proc. ICML, 2017.
1,2

Amos, B., Jimenez, 1., Sacks, J., Boots, B., and Kolter, J. Z.
Differentiable MPC for end-to-end planning and control.
In Proc. NeurIPS, 2018. 2

Arun, K. S., Huang, T. S., and Blostein, S. D. Least-squares
fitting of two 3-D point sets. 1987. 6

Bae, G., Budvytis, L., and Cipolla, R. Estimating and exploit-
ing the aleatoric uncertainty in surface normal estimation.
In Proc. ICCV, 2021. 1

Bai, S., Kolter, J. Z., and Koltun, V. Deep equilibrium
models. In Proc. NeurIPS, 2019. 2

Bai, S., Koltun, V., and Kolter, J. Z. Multiscale deep equi-
librium models. In Proc. NeurIPS, 2020. 2

Bai, S., Geng, Z., Savani, Y., and Kolter, J. Z. Deep equilib-
rium optical flow estimation. In IEEE Conf. Comput. Vis.
Pattern Recog., 2022. 2

Bansal, A., Russell, B., and Gupta, A. Marr revisited: 2D-
3D alignment via surface normal prediction. In Proc.
CVPR, 2016. 1,3

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P.,
Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S.,
Su, H., Xiao, J., Yi, L., and Yu, F. ShapeNet: An
information-rich 3D model repository. arXiv preprint
arXiv:1512.03012,2015. 2,6, 8

Chen, Z. and Zhang, H. Learning implicit fields for genera-
tive shape modeling. In Proc. CVPR, 2019. 1, 2

Chen, Z., Tagliasacchi, A., and Zhang, H. BSP-Net: Gener-
ating compact meshes via binary space partitioning. In
Proc. CVPR, 2020. 2

Choy, C. B., Xu, D., Gwak, J., Chen, K., and Savarese, S.
3D-R2N2: A unified approach for single and multi-view
3D object reconstruction. In Proc. ECCV, 2016. 8



Surface Snapping Optimization Layer for Single Image Object Shape Reconstruction

Dai, A., Ruizhongtai Qi, C., and Niefiner, M. Shape comple-
tion using 3D-encoder-predictor cnns and shape synthesis.
In Proc. CVPR, 2017. 2

Deng, B., Genova, K., Yazdani, S., Bouaziz, S., Hinton,
G., and Tagliasacchi, A. CvxNet: Learnable convex
decomposition. In Proc. CVPR, 2020. 2

Do, T., Vuong, K., Roumeliotis, S. I., and Park, H. S. Sur-
face normal estimation of tilted images via spatial rectifier.
In Proc. ECCV, 2020. 1

Duggal, S. and Pathak, D. Topologically-aware deformation
fields for single-view 3d reconstruction. In Proc. CVPR,
June 2022. 2

Eigen, D. and Fergus, R. Predicting depth, surface normals
and semantic labels with a common multi-scale convolu-
tional architecture. In Proc. ICCV, 2015. 1,3

Fouhey, D., Gupta, A., and Hebert, M. Data-driven 3D
primitives for single image understanding. In Proc. ICCV,
2013. 3

Gao, W., Wang, A., Metzer, G., Yeh, R. A., and Hanocka, R.
Tetgan: A convolutional neural network for tetrahedral
mesh generation. 2022. 2

Gkioxari, G., Malik, J., and Johnson, J. Mesh R-CNN. In
Proc. ICCV, 2019. 2,5,6,7, 8

Gould, S., Hartley, R., and Campbell, D. Deep declarative
networks. IEEE TPAMI, Aug 2022. 1

Groueix, T., Fisher, M., Kim, V. G., Russell, B. C., and
Aubry, M. A papier-maché approach to learning 3D
surface generation. In Proc. CVPR, 2018. 1,2, 6,7

He, K., Gkioxari, G., Dollar, P., and Girshick, R. Mask
R-CNN. In Proc. ICCV, 2017. 2

Hickson, S., Raveendran, K., Fathi, A., Murphy, K., and
Essa, I. Floors are Flat: Leveraging Semantics for Real-
Time Surface Normal Prediction. In ICCV Workshop,
2019. 1,3

Horn, B. K. Obtaining shape from shading information. The
psychology of computer vision, 1975. 1

Huang, Z., Bai, S., and Kolter, J. Z. (Implicit)?: Implicit
layers for implicit representations. Adv. Neural Inform.
Process. Syst., 2021. 2

Izadinia, H., Shan, Q., and Seitz, S. M. IM2CAD. In Proc.
CVPR, 2017. 2

Kundu, A., Li, Y., and Rehg, J. M. 3D-RCNN: Instance-
level 3D object reconstruction via render-and-compare.
In Proc. CVPR, 2018. 2

10

Ladicky, L., Zeisl, B., and Pollefeys, M. Discriminatively
trained dense surface normal estimation. In Proc. ECCV,
2014. 1,3

Liao, S., Gavves, E., and Snoek, C. G. M. Spherical re-
gression: Learning viewpoints, surface normals and 3D
rotations on n-spheres. In Proc. CVPR, 2019. 1

Liao, Y., Donne, S., and Geiger, A. Deep marching cubes:
Learning explicit surface representations. In Proc. CVPR,
2018. 5

Lin, K., Wang, L., and Liu, Z. Mesh graphormer. In Proc.
ICCV,2021. 5,6,7

Mahmud, J., Price, T., Bapat, A., and Frahm, J.-M.
Boundary-aware 3D building reconstruction from a single
overhead image. In Proc. CVPR, 2020. 2

Marr, D. Vision: A Computational Investigation into the
Human Representation and Processing of Visual Informa-
tion. MIT Press, 1982. 1

Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S.,
and Geiger, A. Occupancy networks: Learning 3D recon-

struction in function space. In Proc. CVPR, 2019. 1, 2,
5

Mo, K., Zhu, S., Chang, A. X., Yi, L., Tripathi, S., Guibas,
L.J., and Su, H. PartNet: A large-scale benchmark for
fine-grained and hierarchical part-level 3D object under-
standing. In Proc. CVPR, 2019. 2

Nash, C., Ganin, Y., Eslami, S. A., and Battaglia, P. Poly-
Gen: An autoregressive generative model of 3D meshes.
In Proc. ICML, 2020. 2

Nayar, S. K., Ikeuchi, K., and Kanade, T. Shape from
interreflections. IJCV, 1991. 1

Nie, Y., Han, X., Guo, S., Zheng, Y., Chang, J., and Zhang,
J. J. Total3DUnderstanding: Joint layout, object pose
and mesh reconstruction for indoor scenes from a single
image. In Proc. CVPR, 2020. 2, 6,7

Pan, J., Han, X., Chen, W., Tang, J., and Jia, K. Deep
mesh reconstruction from single rgb images via topology
modification networks. In Proc. ICCV, 2019. 6,7

Park, J. J., Florence, P., Straub, J., Newcombe, R., and Love-
grove, S. DeepSDF: Learning continuous signed distance
functions for shape representation. In Proc. CVPR, 2019.
1,2,5

Paschalidou, D., Gool, L. V., and Geiger, A. Learning unsu-
pervised hierarchical part decomposition of 3D objects
from a single RGB image. In Proc. CVPR, 2020. 2



Surface Snapping Optimization Layer for Single Image Object Shape Reconstruction

Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., and
Geiger, A. Convolutional occupancy networks. In Proc.
ECCYV,2020. 2

Pentland, A. P. A new sense for depth of field. IEEE TPAMI,
1987. 1

Pokle, A., Geng, Z., and Kolter, Z. Deep equilibrium ap-
proaches to diffusion models. In Proc. NeurlPS, 2022.
2

Qi, X., Liu, Z., Liao, R., Torr, P. H., Urtasun, R., and Jia,
J. GeoNet++: Iterative geometric neural network with
edge-aware refinement for joint depth and surface normal
estimation. IEEE TPAMI, 2020. 1,2

Ranftl, R., Bochkovskiy, A., and Koltun, V. Vision trans-
formers for dense prediction. Proc. ICCV, 2021. 5, 8

Ren, S., He, K., Girshick, R., and Sun, J. Faster R-CNN:
Towards real-time object detection with region proposal
networks. In Proc. NeurIPS, 2015. 2

Smith, E., Fujimoto, S., Romero, A., and Meger, D. Geomet-
rics: Exploiting geometric structure for graph-encoded
objects. In Proc. ICML, 2019. 6

Sun, X., Wu, J., Zhang, X., Zhang, Z., Zhang, C., Xue, T,
Tenenbaum, J. B., and Freeman, W. T. Pix3D: Dataset
and methods for single-image 3D shape modeling. In
Proc. CVPR, 2018. 2,6

Tatarchenko, M., Dosovitskiy, A., and Brox, T. Octree gen-
erating networks: Efficient convolutional architectures
for high-resolution 3D outputs. In Proc. ICCV, 2017. 1,
2

Tulsiani, S., Gupta, S., Fouhey, D. F., Efros, A. A., and
Malik, J. Factoring shape, pose, and layout from the 2D
image of a 3D scene. In Proc. CVPR, 2018. 2

Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., and Jiang, Y.-G.
Pixel2Mesh: Generating 3D mesh models from single
RGB images. In Proc. ECCV, 2018. 1,2,5,6,8

Wang, P., Shen, X., Russell, B., Cohen, S., Price, B., and
Yuille, A. L. Surge: Surface regularized geometry esti-
mation from a single image. In Proc. NeurIPS, 2016. 1,
3

Wang, P.-W., Donti, P., Wilder, B., and Kolter, Z. SATNet:
Bridging deep learning and logical reasoning using a
differentiable satisfiability solver. In Proc. ICML, 2019.
2

Wang, R., Geraghty, D., Matzen, K., Szeliski, R., and Frahm,
J.-M. VPLNet: Deep single view normal estimation with
vanishing points and lines. In Proc. CVPR, 2020. 1

11

Wang, X., Fouhey, D., and Gupta, A. Designing deep net-
works for surface normal estimation. In Proc. CVPR,
2015. 1,3

Wolff, L. B., Shafer, S. A., and Healey, G. E. Physics-Based
Vision: Principles and Practice: Radiometry. 1993. 1

Wu, J., Wang, Y., Xue, T., Sun, X., Freeman, B., and Tenen-
baum, J. MarrNet: 3D shape reconstruction via 2.5D
sketches. Proc. NeurIPS, 30, 2017. 1,2

Wu, R., Zhuang, Y., Xu, K., Zhang, H., and Chen, B. PQ-
NET: A generative part seq2seq network for 3D shapes.
In Proc. CVPR, 2020. 2

Wu, Z., Song, S., Khosla, A., Yu, F,, Zhang, L., Tang, X.,
and Xiao, J. 3D shapenets: A deep representation for
volumetric shapes. In Proc. CVPR, 2015. 1,2

Yeh, R. A., Hu, Y.-T., Ren, Z., and Schwing, A. G. Total
variation optimization layers for computer vision. In Proc.
CVPR, 2022. 2

Yu, Z., Peng, S., Niemeyer, M., Sattler, T., and Geiger, A.
Monosdf: Exploring monocular geometric cues for neural
implicit surface reconstruction. Proc. NeurIPS, 2022. 1

Zamir, A. R., Sax, A., Cheerla, N., Suri, R., Cao, Z., Malik,
J., and Guibas, L. J. Robust learning through cross-task
consistency. In Proc. CVPR, 2020. 1

Zhang, C., Cui, Z., Zhang, Y., Zeng, B., Pollefeys, M., and
Liu, S. Holistic 3D scene understanding from a single
image with implicit representation. In Proc. CVPR, 2021.
2,6,7

Zhang, Z., Cui, Z., Xu, C., Yan, Y., Sebe, N., and Yang,
J. Pattern-affinitive propagation across depth, surface
normal and semantic segmentation. In Proc. CVPR, 2019.
1

Zou, C., Yumer, E., Yang, J., Ceylan, D., and Hoiem, D.
3D-PRNN: Generating shape primitives with recurrent
neural networks. In Proc. ICCV, 2017. 2



