Al Open 3 (2022) 58-70

Contents lists available at ScienceDirect

KeAi

CHINESE ROOTS
GLOBAL IMPACT

AI Open

journal homepage: www.keaipublishing.com/en/journals/ai-open

Self-directed machine learning

Wenwu Zhu?, Xin Wang® ", Pengtao Xie "

 Department of Computer Science and Technology, Tsinghua University, China
" Department of Electrical and Computer Engineering, University of California, San Diego, USA

ARTICLE INFO ABSTRACT

Keywords: Conventional machine learning (ML) relies heavily on manual design from machine learning experts to decide
Self-directed machine learning learning tasks, data, models, optimization algorithms, and evaluation metrics, which is labor-intensive, time-
Self-awareness

consuming, and cannot learn autonomously like humans. In education science, self-directed learning, where
human learners select learning tasks and materials on their own without requiring hands-on guidance, has been
shown to be more effective than passive teacher-guided learning. Inspired by the concept of self-directed human
learning, we introduce the principal concept of Self-directed Machine Learning (SDML) and propose a framework
for SDML. Specifically, we design SDML as a self-directed learning process guided by self-awareness, including
internal awareness and external awareness. Our proposed SDML process benefits from self task selection, self
data selection, self model selection, self optimization strategy selection and self evaluation metric selection
through self-awareness without human guidance. Meanwhile, the learning performance of the SDML process
serves as feedback to further improve self-awareness. We propose a mathematical formulation for SDML based on
multi-level optimization. Furthermore, we present case studies together with potential applications of SDML,
followed by discussing future research directions. We expect that SDML could enable machines to conduct

human-like self-directed learning and provide a new perspective towards artificial general intelligence.

1. Introduction

Machine learning has achieved substantial success in many areas
such as natural language processing, computer vision, and robotics.
Towards the ultimate goal of artificial general intelligence (AGI), re-
searchers have kept working on reducing manual design in learning
processes. Unsupervised learning, semi-supervised learning and self-
supervised learning methods have shown their strength (Grira et al.,
2004; Qi and Luo, 2020; Schmarje et al., 2020; Jaiswal et al., 2020; Liu
et al., 2020b) in reducing manual annotations, and active learning can
help to reduce the cost for labeling data by interactively querying users
or some other information sources to label “important” new data points
(Wang and Hua, 2011; Kumar and Gupta, 2020; Ren et al., 2020). Be-
sides, automated machine learning (AutoML) carries out neural archi-
tecture search and hyperparameter optimization (Yao et al., 2018; He
et al., 2019; Zoller and Huber, 2019) for the sake of reducing manual
efforts in model design and selection. Meta learning utilizes a meta
learner to quickly adapt machine learning algorithms to new tasks with a
small amount of new data without manually transferring knowledge
(Finn et al., 2017; Vanschoren, 2018; Hospedales et al., 2020).

* Corresponding author.

Despite all the above progress, current machine learning paradigm is
still heavily dependent on manual design and human guidance, where
human experts decide learning tasks, data, models, optimization algo-
rithms and evaluation metrics. For example, to develop a rescue robotics
system, human experts need to design how to train analogous reasoning
models on manually-selected datasets, how to perform automatic
knowledge graph construction, what evaluation metrics to use, etc.
Manual design is labor-intensive, time-consuming, and lacks autonomy.
To address this problem, we are interested in investigating whether it is
possible to let machines select learning tasks, data, models, optimization
algorithms, evaluation metrics autonomously and control learning
processes in a self-directed manner?

Self-directed human learning (SDHL) has been studied in education
science for many years since the 1970s (Knowles, 1975; Garrison, 1997;
Caffarella, 1993). Particularly, in adult education (Loeng, 2020;
Brookfield, 1993) and online education (Song and Hill, 2007; LaTour
and Noel, 2021), where learning initiatives of learners are strong
required, self-directed human learning shows great effectiveness in
improving learning outcomes. In self-directed human learning, in-
dividuals take the initiative to determine proper learning tasks, selecting

E-mail addresses: wwzhu@tsinghua.edu.cn (W. Zhu), xin_ wang@tsinghua.edu.cn (X. Wang), plxie@ucsd.edu (P. Xie).

https://doi.org/10.1016/j.aiopen.2022.06.001
Received 19 January 2022; Accepted 21 June 2022
Available online 1 July 2022

2666-6510/© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

W. Zhu et al.

appropriate learning materials, making suitable learning plans, devel-
oping effective learning strategies, and adopting effective evaluation
metrics. It has been shown that self-directed human learners who take
the initiative in learning tend to learn more and better than those who
passively wait for guidance from teachers (Knowles, 1975).

Inspired by the concept of self-directed human learning, we propose
self-directed machine learning (SDML). The comparison between
conventional machine learning and SDML is illustrated in Fig. 1. While
conventional machine learning mostly depends on manual designs from
humans, SDML leverages self-awareness to perform a self-directed
learning process with high degree of autonomy, where the learning
process in turn can further improve self-awareness. Self-awareness in-
cludes internal awareness and external awareness. The internal aware-
ness reveals the states of machines themselves, while the external
awareness represents machines’ perception abilities towards the phys-
ical world and how they are seen by the external world. With the
guidance of self-awareness, SDML is able to conduct a self-directed
learning process through self task selection, self data selection, self
model selection, self optimization algorithm selection and self evalua-
tion metric selection in a more self-directed way. We propose a mathe-
matical formulation for SDML based on multi-level optimization.
Moreover, we present case studies together with potential applications
of SDML, followed by discussing future research directions.

The rest of the paper is organized as follows. Section II reviews self-
directed human learning. In Section III, we introduce the principal
concept and propose the framework of self-directed machine learning. In
Section 4 we showcase the superiority of SDML over conventional ma-
chine learning by discussing several case studies and potential applica-
tions for SDML, such as autonomous driving/robotics and automated
computer programming. We discuss future directions in Section 6,
including equipping SDML with robustness, explainability and
reasoning capability.

2. Self-directed human learning

The concept of self-directed human learning (SDHL) has been studied
in educational science for decades (Knowles, 1975; Garrison, 1997;
Caffarella, 1993), especially in adult education (Loeng, 2020; Brook-
field, 1993) and online education (Song and Hill, 2007; LaTour and
Noel, 2021) as the two scenarios both require high initiative of learners.
The original definition of self-directed learning (Knowles, 1975) is
provided by Knowles in 1975:

In its broadest meaning, self-directed learning describes a process by
which individuals take the initiative, with or without the assistance of others,
in diagnosing their learning needs, formulating learning goals, identifying
human and material resources for learning, choosing and implementing
appropriate learning strategies, and evaluating learning outcomes. It has
been shown that self-directed learners who take the initiative can learn
more and better than those who passively learn under guidance from

(a) Conventional Machine Learning

Al Open 3 (2022) 58-70

teachers (Knowles, 1975), and can know how they see themselves and
how they are seen by others.

Self-directed learning relies on self-awareness. In education science
(Eurich, 2017), there are two types of self-awareness: internal awareness
and external awareness. By combining internal awareness and external
awareness, learners can identify what to improve and change the way of
interacting with themselves, with others and with the physical world. As
such, being able to master both internal and external awareness is
regarded as a very crucial prerequisite for conducting self-directed
(human) learning.

3. Self-directed machine learning

We propose a new machine learning concept and framework called
self-directed machine learning (SDML), inspired by the concept of SDHL
in education science. Conventional machine learning is mostly human-
directed, which could handle well-defined specific tasks but is unable
to automatically adapt to changing environments. In contrast, SDML
takes the initiative in learning processes and pursues lifelong self-
improvement, as shown in Figs. 1b and 2.

In education science, self-directed learning views learners as
responsible owners and managers of their own learning process (Hayati
Abdullah, 2001). Internal awareness and external awareness are treated
as two important components for improving and changing learners’
perceptions about themselves and others. Drawing inspirations from
these facts, we design SDML as a self-directed learning process guided by
self-awareness, including internal awareness and external awareness.
During the learning process, SDML is towards being self-directed to
select learning tasks, data, models, optimization algorithms, and eval-
uation metrics. In turn, learning outcomes provide feedback on how to
improve self-awareness.

3.1. Self-awareness

Motivated by discoveries in education science (Schunk and Zim-
merman, 2012; Eurich, 2017), we propose a way of implementing
self-awareness, including internal awareness and external awareness, as
shown in Fig. 3.

3.1.1. Internal awareness

As SDML requires lifelong self-improvement of machines, it is
essential to build machines’ internal awareness to better guide the
learning process. Inspired by humans’ cognitive conditions in self-
directed learning, we represent internal awareness with the following
key factors:

1. Capacity. We represent the long-term internal awareness of a ma-
chine using capacity C : = {C},Ca,...,Cx}, where {C;}X | are different

aspects of capacity such as computation speed and memory size.

 str
(b) Self-directed Machine Learning

Fig. 1. Comparison of conventional machine learning (a) and self-directed machine learning (b).

W. Zhu et al.

Al Open 3 (2022) 58-70

I T I
1 I
Applications | Lol
1 1
I T e e] I
1 I
Formulation | ;
1 1
| it e e b e el st e o e bl ol B ol e S o el vl el el el ol Rl el N B . e i |
1 I
1
SDML Process | |
1 1
e o T 1 I i e e e T]
| I
1 I
1 I
1 I
' |
1
Self Awareness |
! Capacity / State / Relations / :
' Learning Tasks / Learning Strategies Domain and Commonsense Knowledge |
___ 1
Fig. 2. Illustration diagram of Self-directed Machine Learning (SDML).
strategies for model constructions, parameters optimizations, eval-
Internal Awareness External Awareness uation metrics and so on. It is worth noting that @ includes the
models and parameters pre-trained or already trained in the machine
- learning task set T.
Domain Commonsense
Knowledge Knowledge .
Overall, we represent machine self-awareness as MA = {C,S,Gx,Gr,
Q}, which serves as a central controller and provides global guidance to
Learning Learning Relations the self-directed learning process.
Tasks Strategies
3.1.2. External awareness
External awareness represents machines’ perception abilities to-
Physical wards the physical world and how the machine is seen by the external
World world. We represent external awareness using the following key
Dy components.
ESh : i
o Perception
! ot «/ % @ Relations. The physical world consists of entities. Different from
i = previous works which mostly represent entities using texts, we define

Fig. 3. Self-awareness: i) Internal Awareness; ii) External Awareness.

Machine capacity specifies the maximum available resources of an
SDML system.

2. State. We represent the short-term internal awareness of a machine
using state S : = {81,S2,...,Sk }, where {Si}ﬁ , are the current states of
the corresponding capacity, {Ci}fi 1> such as current computation
speed and currently available memory size. Machine state represents
the current ability and available resources of an SDML system.

3. Learning Tasks. The COPES model of learning tasks includes Condi-
tions, Operations, Products, Evaluations, and Standards (Winne,
1989, 1997). Inspired by this, we define a machine learning task as
{Tc, To, Tk, Ts}, where T¢ is task conditions on inputs and system
constraints, T is task outputs (products), Tg is evaluations and Ts is
standards. As machine learning tasks are related (e.g., VQA tasks are
supported by visual and textual representation learning tasks), we
organized the set of known tasks as graphs Gr = {T,E}, where T is
the set of machine learning tasks and E is their relations. Gy can be
initialized with prior knowledge and updated during the learning
process/from external resources.

4. Learning Strategies. People can develop various and personalized
study strategies for different scenarios in their lifetime. We denote
the set of machine learning strategies as @, which consists of

60

the set of entities V = {V1, Vy, ...} in a multi-modal way. Each entity

is defined as V; = {V{}JZO, where M is the number of modalities. The

entities in V are interrelated. We define their relations R in a

recursive and hierarchical way. For example, the relation “is
grandfather of” could be defined recursively by stacking the relation
“is father of” twice. Formally, we have some basic relations in R first.
We perform statistical inference on basic relations to induce new
relations and add statistically significant ones to R.

@ Knowledge. Humans rely on commonsense and domain knowledge to
perform tasks. We define knowledge as Gx = {G¢, Gp}, where G¢
denotes commonsense knowledge and Gp represents domain
knowledge. Both G¢ and Gp could be represented as graphs, where
vertices represent concepts V and edges represent relations R. While
commonsense knowledge remains roughly the same in SDML,
domain knowledge may be updated frequently during the learning
process.

3.1.3. Construction of self-awareness

We construct self-awareness by combining internal awareness and
external awareness. To initialize the values of internal awareness, we
collect information including computation speed and memory size of
machines, task conditions on inputs, system constraints, et. To initialize
the values of external awareness, we collect information including en-
tities in the external world and their relations, seed commonsense
knowledge such as ConceptNet, domain knowledge, etc. During the

W. Zhu et al.

SDML process, we leverage feedback collected from learning outcomes
to update certain parts of self-awareness, including state, relationship
between tasks, domain knowledge, etc. The update of self-awareness is
conducted in a stable manner without catastrophic forgetting. Internal
and external awareness are updated in a joint way instead of greedily to
pursue globally optimal updates.

3.2. Self-directed machine learning process

With the guidance of our proposed self-awareness, machine algo-
rithms can conduct self-directed learning processes. As shown in Fig. 2,
we propose an implementation of a self-directed machine learning
process. When interacting with the external dynamic environment,
SDML can select learning tasks, data, models, optimization strategies
and evaluation metrics in a self-directed way based on the guidance of
self-awareness where the results will in turn provide feedback to
improve self-awareness, thus distinguishing SDML from the conven-
tional machine learning paradigm. Next, we will describe each compo-
nent in detail, i.e., self task selection, self data selection, self model selection,
self optimization strategy selection and self evaluation metric selection.

3.2.1. Self task selection

Humans could usually decompose a complex ultimate goal into
several fine-grained tasks, which may be preconditioned or helpful to
the final goal. For example, if we plan to cook a sumptuous meal, we will
decompose this ultimate goal into the following tasks: buying the in-
gredients, preparing the ingredients, cooking and seasoning. Each task
could be split to even smaller tasks, and we will pay attention to the task
which we perform the worst to lift our ability towards the ultimate goal
to a large extent.

Inspired by this, SDML is designed to decompose a complex goal into
a sequence of fine-grained subtasks automatically. SDML can choose a
subset of learning tasks and determine the order of executing them
under the guidance of self-awareness. Formally, we define the ultimate
goal as T* = {T¢, T;, Ty, T }. Note that the graph of machine learning
tasks Gr are included in machine self-awareness. Thus, given T*, Gr,
machine capacity C, machine state S and evaluation results O, SDML is
able to develop a function fr that generates a task sequence T =
{Tl-}ffo = fr(T*,Gr,C,S,0), where the Ny tasks are selected from G and
could be duplicated. This function may be modeled by similarity
matching among the inputs, outputs, evaluation metrics, and experi-
mental outcomes of different tasks. The selected tasks affect the selec-
tion of data, model and optimization strategies.

3.2.2. Self data selection

Humans have the ability to find the materials most related to a given
task for learning, so that we could improve our ability on the given task
in a rapid and effective way. Humans usually choose suitable materials
to learn for the given problem, and SDML should have the similar ability
to select proper data to learn with awareness of the ultimate goal, the
selected task and its current state.

Formally, given the task sequence T, machine state S, machine ca-
pacity C, evaluation results O, and the ultimate goal T*, SDML selects
the most suitable dataset for each task. That is, D = {D;}}, = fp(T*,T;,
C,S,0). The data selection process not only relies on the selected task
but also the ultimate goal for better efficiency since it aims to choose
data most related to the final target while discarding unrelated, noisy or
even harmful data. Therefore, the SDML is designed to improve itself in
an efficient and rapid way. The data selection results will also influence
the model design and optimization strategy selection.

3.2.3. Self model selection

Humans are able to locate the potential candidate solutions given
different learning tasks. Similarly, after adjusting the learning tasks,
SDML is required to choose the learning models for each task. Formally,

61

Al Open 3 (2022) 58-70

SDML designs models M = {M}ffo = fu(Ti,D;,C, S, O) based on the task
sequence T, machine capacity C, machine state S and evaluation results
O. The design of learning models also influences the selection of opti-
mization strategies, while the selected models together with the corre-
sponding model performance may give feedback to the task selection
component.

3.2.4. Self optimization strategy selection

As people vary in their abilities and available learning time, each
person has her own learning pace and style. Therefore, people tend to
choose strategies that are most suitable for themselves. Inspired by this,
SDML chooses optimization strategies under the guidance of machine
self-awareness. To date, many optimization strategies are proposed by
researchers in order to reduce human intervention in data, supervision,
losses, and optimization. The set of optimization strategies are encoded
and updated in self-awareness, which affects the learning speed, degree
and cost etc. The optimization strategies are most flexible in SDML,
which can be set according to the tasks and models. The set of strategies
could also be a key factor for selecting tasks and designing models.
Formally, the chosen optimization strategies are modeled through
considering tasks, models as well as machine self-awareness: P = Fp(T,
M, MA). Finally, the selected optimization strategies, outcomes and
evaluations will provide feedback to further update all roles in the self-
directed learning process.

3.2.5. Self evaluation metric selection

It is essential to set proper evaluation metrics in machine learning. In
conventional machine learning, one or more evaluation metrics are set
through manual design. However, there exist various evaluation metrics
and even researchers are not clear which metrics should be used under
different circumstances. Besides, different evaluation metrics often lead
to different optimization directions during model training. We expect
SDML to make evaluation in a self-directed way, e.g., choosing evalua-
tion metrics adaptively from a large set of candidates or even develop
new evaluation metrics. When solving a complex goal without clearly
well-defined objectives, machines will achieve lifelong self-
improvement in the world upon successful self evaluations.

3.3. Mathematical formulation of SDML

In this section, we present a mathematical formulation of self-
directed machine learning, by integrating the elements and processes
introduced in earlier sections. Specifically, we propose a multi-level
optimization based framework to formulate SDML. In this framework,
there are multiple joint optimization problems, each corresponding to
one process outlined in Section 3.2. These processes are organized into a
directed acyclic graph (DAG). If there is a directed edge from process A
to process B, then B is dependent on A: specifically, the optimal solution
of A’s optimization problem is used as a variable in B’s optimization
problem. These optimization problems are organized into six levels.

At the first level, we construct self-awareness, by solving the
following optimization problem:

B*(M) = arg miny Ly, (B,M). 1
where B denotes self-awareness, Lg,c denotes a self-awareness con-
struction loss, and M are meta parameters. The optimization is con-
ducted over B. M is tentatively fixed at this stage and will be updated
later on. Note that the optimal solution B* is a function of M since B* is a
function of the loss function which is a function of M.

At the second level, we perform task selection. Given the constructed

self-awareness B*(M), a set of candidate tasks 7 = {t,l}ﬁ’:1 and a textual
description E of the target application, the goal of task selection is to
select a subset of tasks S C 7 and form them into a DAG. The task DAG
specifies the dependency between tasks and the execution order of tasks.
At this stage, we solve the following optimization problem:

W. Zhu et al.

S*(B*(M)) = arg ming.; L(7,S,E,B"(M)). 2)
Ly is a task selection loss specifying the criteria of how to select the
optimal subset of tasks and form them into a DAG. It is defined on the
entire set of tasks 7, a candidate subset of tasks S, the application
description E, and self-awareness B*(M). The optimization is conducted
over S.

At the third level, there are two processes: one is training data se-
lection; the other is model selection. Data selection is defined as follows.
For each task s(M) in the selected task subset S*(B*(M)), from the
training data Ds(M) of task s(M), we select a subset of training examples
Cs(M) C Ds(M). Data selection for task s(M) amounts to solving the
following optimization problem:

Cj(M) = arg minqw)gu‘(m Las(Dyuy s Cyary)- 3)
Lgs is a data selection loss specifying the criteria of how to select the
optimal subset of training data. It is defined on the entire set of training
data Ds(M) of task s(M) and a candidate subset Cs(M) of data examples.
The optimization is conducted over Cs(M).

Model selection is defined as follows. For each task s(M) in the
selected task subset S*(B*(M)), given the search space of architectures
and hyperparameters of the model used to perform the task s(M), we
select the optimal architecture and hyperparameters. The corresponding
optimization problem is:

A;‘(M) = arg minA\W] L (Asury; s(M)). (@)
L is a model selection loss specifying the criteria of setting the optimal
architecture and hyperparameters. As(M) represents candidate archi-
tectures and hyperparameters in the search space. Optimization is
conducted over As(M).

At the fourth level, there is a single process, which is optimizer se-
lection. For each selected task s(M), given a set of candidate optimizers
O = {o}F_,, we select the optimal one 05 € O to train the selected

model on the selected data. The corresponding optimization problem is:

Oy = Arg minomeo Los (050m), Ay » C:(M))')
Los is a loss specifying the criteria of selecting the best optimizer. The
selection of the optimizer depends on the selected model Ay, and
selected data Cy,.

At the fifth level, there is a single process, which is to train weight
parameters of the selected model on the selected data, using the selected
optimizer, which amounts to solving the following optimization prob-
lem:

W:(M) = arg miny, Lwr(Ws(M)vA;(M)v C:(M)70:(M))‘ (6)

At the sixth level, there is a single process, which is to evaluate
models trained at the fourth stage on a validation set F. Meta parameters
M are updated by minimizing the validation loss, which amounts to
solving the following optimization problem:

miny L ({Wy, (M) € 5"(M)}, F), @]
where Ly is the validation loss.

Putting these pieces together, we have the following multi-level
optimization problem.

miny Ly ({W),|s(M) € S" (M)}, F),
s.t. Wiy = arg miny, Ly (Wyan, Al > Coans 055
0.?(/\4) = arg mi“uw)eo La:(os(M)vA:(M .Gy
A:(m = 5
C;(M) = arg mi“cmg)s(,m Las(Dsqury; Csony),
S (B*(M)) = arg ming.; L(7,S,E,B"(M)),
B*(M) = arg miny L. (B,M).

C.&(M))?

s(M)
arg min, , Ly (Aqan, s(M)) ®

62

Al Open 3 (2022) 58-70

4. Case studies and potential applications

In this section, we showcase how to leverage the proposed self-
directed learning framework to solve practical problems, in two case
studies: 1) autonomous rescue robotics, and 2) automated computer
programming. Besides, we discuss a few other potential applications of
SDML.

4.1. Case study I: autonomous rescue robotics

4.1.1. Problem definition

In robotics applications such as autonomous search and rescue, it is
crucial for the agents to derive analogous solutions based on learned
knowledge, such as opening a window based on the learned skills of
opening a door. This requires the agents to perform analogical
reasoning, including understanding which jobs (e.g., manipulation,
locomotion, navigation, assembly, etc.) are analogous, adapting the
actions of performing source jobs to an analogous target job, etc.
Existing research on analogical reasoning (Gentner et al., 2012; Cass,
1993) heavily requires humans to manually build knowledge bases
about the analogy relationships between jobs and to manually craft
symbolic systems for adapting actions between analogous jobs, which is
labor-intensive, expensive, difficult to evolve over time, and less robust.
In existing works on job planning (Galindo Juan-Antonio Fernandez--
Madrigal et al., 2008; Cambon et al., 2009), given a novel job, a software
program (e.g., policy, job plan, PDDL (Aeronautiques et al., 1998)
description, etc.) operating on a robotic system needs to be written by
human experts to execute this job, which is time-consuming and not
scalable. There have been a few data-drive approaches (Dantam et al.,
2018; Grover et al., 2020) aiming to reduce the dependency on humans.
However, they require a lot of experts-provided annotations for model
training and such annotations are difficult to obtain practical robotics
systems.

4.1.2. An SDML-based solution

To address the limitations of existing works, we can leverage our
proposed SDML framework to develop analogical reasoning systems
(shown in Fig. 4) that enable autonomous agents to master a much wider
range of jobs without heavily relying on humans to provide supervision.
Given a large set of analogous jobs, once the agent learns to solve one of
them, our system enables it to automatically figure out how to solve the
rest. This will make the autonomous agents more adaptive, autonomous,
robust, and intelligent. Specifically, our solution aims to automatically
synthesize a correct and efficient program (e.g., an application domain
definition written by the Planning Domain Definition Language (Aero-
nautiques et al., 1998), which specifies the sequence of actions needed
to accomplish a job and their preconditions and effects) to execute a
previously unseen job by drawing analogies with previously seen jobs.

4.1.2.1. Self task selection.

@ Automatic construction of analogy job graph: automatically build an
analogy job graph (AJG) including jobs with analogy relationships
and programs that can be used to perform these jobs. To perform
analogical reasoning, we first need to know which jobs are analogous
to each other. The AJG needs to be constructed automatically
without heavily relying on human annotations.

Program-job association: for each job in the AJG, we aim to extract a
program (represented using a syntax tree containing actions with
preconditions and effects) from the robotics literature where the
program can be used to perform this job.

W. Zhu et al.

Self Task Selection

Automatic Construction

Program Synthesis

Self Evaluation
Metric Selection

Area Under ROC Curve

Graph-to-graph

of Analogy Job Graph Construction Model Robotics Literature
Program-job Association Model

Program-to-program

1 | |
1 i -
1 ! !
1 i :
1 | |
1 | !
1 | |
| L
1 1 | X
I .
| -‘ e E »E Seed Analogy Job Graph
‘ o
| | .
| 1
: Synthesis Model : !
]

| I
| 1
I I
| I
| |
| I
| 1
! Precision, Recall, F1 . '
| 1
| I
| I
| I
| I
| 1
I 1
| I
| I
I

Al Open 3 (2022) 58-70

Self Data Selection

Unstructured Texts in

Job-planning Programs
Extracted From Robotics
Literature

Self Optimization
Strategy Selection

1

1

1

1

:
Stochastic Gradient :
Descent :
]

1

]

]

1

1

1

1

1

Adam

Policy Gradient

Fig. 4. Illustration diagram of autonomous rescue robotics.

@ Program synthesis: given the AKB, synthesize a target program to

execute a novel job from the source programs of analogous jobs in
the AKB.

4.1.2.2. Self model selection.

@ Graph-to-graph (G2G) construction model. The model is used for

automatic construction of AJG. It takes unstructured texts in the
robotics and job-planning literature and a small-sized seed AJG
(created by domain experts) as inputs and constructs a more
comprehensive graph containing previously unseen jobs and analogy
relations. The G2G model constructs a group of inter-correlated jobs
and analogy relations collectively as a graph. In the construction
process, high-order reasoning is performed to construct jobs having
unobvious analogy relations. To train the G2G model, we construct
training examples, each containing a graph G sampled from the seed
graph and a subgraph S of G, where the goal is to construct G from S.
We use the jobs and analogy relations in S as queries to retrieve
relevant paragraphs P from the unstructured texts. Then we use a
graph neural network to encode S and use a BERT model trained on
the entire collection of unstructured texts to encode P. Then the
graph embedding of S and BERT embedding of P are fed into a two-
layer hierarchical long short-term memory (LSTM) network to
construct new nodes. Given the constructed nodes, a Siamese
network is used to construct edges: two jobs are connected if they are
analogous. Given the constructed graph, we compare it with the
ground-truth graph G using graph edit distance. Since the objective is
not end-to-end differentiable, we use policy gradient to learn the
weight parameters, where the reward is defined based on the graph
edit distance.

Cross-modal hashing model. We leverage a program extractor which
analyzes the robotics literature and extracts all programs used for job
planning. The number of extracted programs and the number of jobs
in the AJG can be very large, which incurs huge computational costs
when associating programs to jobs. We leverage a cross-modal

63

hashing model to address this issue. We use a graph convolutional
network to encode the AJG and learn a latent representation vector
(whose elements are probability values) for each job in the graph.
From the representation vector of each job, a hash code is sampled to
represent this job. For programs extracted from robotics literature,
we represent them using syntax trees and encode these trees using
tree-structured LSTM networks. A hash code is sampled from the
encoding of each program to represent this program. Given the hash
codes of jobs and the hash codes of programs, we associate programs
to jobs by calculating the Hamming distance between their hash
codes. Hamming distance can be calculated extremely efficiently in
memory, which enables the association to be done with minimal
latency.

@ Program-to-program synthesis model. Given the learned analogy job
graph where each job is associated with a program that can execute
this job, we leverage it for analogical job planning. In previous job-
planning approaches, a program (e.g., a PDDL description) needs
to be pre-defined by human experts before the robot can start its job.
If a robot encounters a previously unseen job where a program has
not been written for, the robot is unable to conduct this job. We
leverage a program-to-program (P2P) synthesis model to solve this
issue. The P2P model automatically generates a program for a novel
job J by leveraging programs pre-defined for jobs that are analogous
to J. Specifically, from the analogy job graph, the P2P model re-
trieves the neighboring jobs that are analogous to J. The program
associated with each retrieved job is represented using a syntax tree,
which is encoded using a tree-structured LSTM model. Then these
program encodings are fed into a tree-structured LSTM decoder to
generate the program for executing J.

For the graph-to-graph construction model, the following aspects are
included in the model selection decision space: architecture of the graph
neural network, architecture of the BERT model, architecture of the
hierarchical long short-term memory network, and architecture of the
Siamese network.

W. Zhu et al.

For the cross-modal hashing model, the following aspects are
included in the model selection decision space: architecture of the graph
convolutional network, architecture of the tree-structured LSTM
network, and dimension of the hash codes.

For the program-to-program synthesis model, the following aspects
are included in the model selection decision space: architecture of the
tree-structured LSTM encoder, architecture of the tree-structure LSTM
decoder, and number of hidden units in LSTM networks.

4.1.2.3. Self data selection.

@ Data for training the graph-to-graph construction model: 1) un-
structured texts in the robotics and job-planning literature; 2) a
small-sized seed AJG (created by domain experts) as inputs. We
construct training examples in the following way: sample a graph G
from the seed graph, sample a subgraph S from G. Jobs and analogy
relations in S are used as queries to retrieve relevant paragraphs P
from the unstructured texts. The (S, P, G) tuple forms a training
example where S and P are the inputs and G is the output.

@ Data for training the cross-modal hashing model: 1) programs used

for job planning, extracted from robotics literature; 2) jobs in the

AJG. We utilize a program extractor to analyze the robotics literature

and extract all programs used for job planning.

@ Data for training the program-to-program synthesis model: jobs in
the AJG and programs associated with these jobs.

For each training example x, we automatically learn a weight a € [0,
1]. If a is close to 1, it means that x tends to be selected; otherwise, x
tends to be excluded. a can be parameterized using a deep neural

network which takes a latent representation of x as input and produces a
scalar between 0 and 1.

4.1.2.4. Self optimization strategy selection. In the aforementioned tasks,
some of them have differentiable objective functions and some do not.

Self Task Selection

Program Generation

Self-supervised
Pretraining

Abductive Reasoning

Self Evaluation
Metric Selection
Accuracy
BLEU, ROUGE, NIST

Perplexity
Area Under ROC Curve

Function-to-program
Generation Model

Generative Self-
Supervised Pretraining
Model

Abductive Reasoning
Model

Al Open 3 (2022) 58-70

For differentiable objectives, we can use gradient based methods for
optimization; and for non-differentiable ones, we can resort to rein-
forcement learning algorithms. The candidate optimizers include: sto-
chastic gradient descent, Adam, AdaGrad, RMSProp, policy gradient,
deep deterministic policy gradient, actor-critic, asynchronous advantage
actor-critic, trust region policy optimization, proximal policy optimi-
zation, and Q-learning.

4.1.2.5. Self evaluation metric selection. Each of the aforementioned
models can be evaluated from multiple perspectives. The candidate
evaluation metrics include precision, recall, F1, area under ROC curve,
accuracy, BLEU, NIST, perplexity, etc.

4.2. Case study II: automated computer programming

4.2.1. Problem definition

Developing Al systems to automatically write computer-executable
programs has attracted much research attention recently. Given a text
describing a target functionality to implement, an automated pro-
gramming system takes the textual description as input and automati-
cally generates a program to execute the function. Existing works for
automated programming require a lot of training data which is difficult
to obtain and do not perform reasoning to improve semantic correctness
of generated programs. We aim to leverage our proposed self-directed
ML framework to address these two problems, as shown in Fig. 5.

4.2.2. An SDML-based solution
To apply SDML for automated programming, we configure the
following elements and processes.

4.2.2.1. Self task selection.

@ Program generation: given a textual description describing a func-
tionality, generate a preliminary program that can fulfill this
functionality.

Self Data Selection

(Functionality
Description, Code) Pairs
in IBM CodeNet

Programs Crawled from
GitHub

Abduction Rules in
Computer Programming

Self Optimization
Strategy Selection

1

]

1

1

]

1

: Stochastic Gradient
: Descent
]

1

1

1

I

1

]

1

AdaGrad

Actor-Critic

Fig. 5. Illustration diagram of automated computer programming.

64

W. Zhu et al.

@ Self-supervised pretraining: pretrain the program generator to alle-
viate overfitting.

@ Abductive reasoning: perform abductive reasoning to improve se-
mantic correctness of generated programs.

4.2.2.2. Self model selection.

@ Function-to-program (F2P) generation model. It takes a functionality
description f as input and generates a program p that can fulfill this
functionality. The program is represented using a sequence of con-
stituent parse trees where on the nodes are symbols. The F2P model
is based on an encoder-decoder architecture. The encoder takes the
functionality description f as input and generates a latent embedding
for f. We use BERT as the encoder. The decoder takes the embedding
of f as input and generates a program. The architecture of the
decoder is a sequence-of-trees long short-term memory (LSTM)
network. Given the embedding, the decoder first uses a sequential
LSTM to decode a sequence of hidden states, each corresponding to
one constituent tree. Then each hidden state is fed into a top-down
tree-structured LSTM to generate the corresponding constituent tree.

Generative self-supervised pretraining model. To train the compli-
cated F2P model, a lot of (functionality description, program) pairs
are needed, which is difficult to obtain. Without sufficient training
data, the F2P model is prone to overfitting. To address this problem,
we leverage a generative self-supervised pretraining approach to
alleviate overfitting: we define a generative SSL task to learn a better
decoder of programs. Given an original program represented as a
tree, we perform tree-alteration operations (e.g., removing a node,
inserting a new node, moving a subtree of one node to another node,
swap a parent node with its child node, etc.) to create a sequence of
augmented programs Aj, ..., Ag. Then we define the generative SSL
task as: given Ag, predict the reverse sequence of programs
(including the augmented ones and the original one) Ag_1, Ax—2, ...,
O from which Ak is generated. We develop an encoder-decoder
model to perform this prediction task where an encoder is used to
encode Ag and a decoder is used to decode the sequence of programs
Ag_1, Ag—2, ..., A1, O. We use a bottom-up tree-structured LSTM
network as the encoder which produces a latent embedding for Ag.
Then the embedding is fed into a sequence-of-trees LSTM decoder
(Xie and Xing, 2017) to generate a sequence of trees, each corre-
sponding to a program in Ax_1, A2, ..., A1, O.

@ Abductive reasoning model. Programs generated by the F2P model
may contain semantic errors and fail to execute. To address this
problem, we perform abductive reasoning on the generated pro-
grams to revise them. The abductive reasoning model consists of a set
R of abduction rules. Each rule takes a set of statements as inputs and
produces a new statement. Given the statements S in a program
generated by the F2P model, the abductive reasoning model selects a
subset T of statements from S, selects an abduction rule r € R, and
applies r to T to generate a new statement s, which is added to S. This
procedure repeats several times until enough new statements are
generated. Now the learning problem is which abduction rules
should be applied to T. We develop an end-to-end reinforcement
learning based approach to perform this learning task. This RL-based
framework learns an abductive reasoning policy (ARP) network
which takes a set S of statements and a set R of abduction rules as
inputs and produces a new statement. The ARP network is composed
of three sub-networks: a statement selection (SS) network, an
abduction rule selection (ARS) network, and a termination network.
The SS network takes S as input and selects a subset T of statements.
The ARS network takes R and T as inputs and selects a rule r from R.
Then the rule r is applied to T to infer a new statement. Note that it

65

Al Open 3 (2022) 58-70

could be possible that r is not compatible with T, meaning that there
is no way to perform inference of r on T. In this case, a negative
reward will be assigned to guide the SS and ARS networks not to
select invalid T and r. The termination network takes the initial set of
statements and the newly generated statements as inputs and pro-
duces a binary variable indicating whether the process of generating
new statements should stop. The three sub-networks work together
as follows. First, the termination network determines whether the
generation process should continue. If so, the SS network selects T C
S. Then the ARS network selects r € R. Afterwards, r is applied to T to
infer a new statement s, which is added to S. This procedure con-
tinues until the termination network determines to stop it.

For the function-to-program generation model, the following aspects
are included in the model selection decision space: architecture of the
BERT encoder, dimension of functionality embeddings, architecture of
the sequence-of-trees LSTM decoder, and Attention mechanism. For the
generative self-supervised pretraining model, the following aspects are
included in the model selection decision space: program augmentation
policies, architecture of the bottom-up tree-structured LSTM encoder,
architecture of the sequence-of-trees LSTM decoder, and dimension of
program embeddings. For the abductive reasoning model, the following
aspects are included in the model selection decision space: 1) architec-
ture of the statement selection network, architecture of the abduction
rule selection network, and architecture of the termination network.

4.2.2.3. Self data selection.

@ Data for training the function-to-program generation model: (func-
tionality description, code) pairs in the IBM CodeNet dataset.

@ Data for generative self-supervised pretraining: programs crawled
from GitHub.

@ Data for training the abductive reasoning model: 1) abduction rules
in computer programming; 2) (functionality description, code) pairs
in the IBM CodeNet dataset.

The data selection mechanism is the same as that described in the
previous section.

4.2.2.4. Self optimization strategy selection. This application involves
both differentiable and non-differentiable objective functions, which
can be optimized using gradient based methods and reinforcement
learning methods. The candidate optimizers are the same as those listed
in the previous section.

4.2.2.5. Self evaluation metric selection. We evaluate each model using
multiple metrics from different perspectives. The candidate evaluation
metrics are the same as those listed in the previous section.

4.3. Potential applications

Our SDML framework can be broadly applied to a variety of appli-
cations in NLP, CV, data mining and multimedia etc., beyond the two
case studies described above. Here we present some examples.

® 1) Commonsense-grounded controllable story writing. Controllable
story writing, which automatically writes stories given control fac-
tors such as sentiment and storylines, finds broad applications. To
write meaningful and informative stories, it is necessary for ML
models to incorporate external commonsense knowledge. For
example, given a control factor “On a sunny day, we go for exercise.”
which is a storyline, a story writing model would not be able to write
an interesting and informative story such as “Yesterday was a sunny

W. Zhu et al.

day. We wanted to do some exercise. Sunny weather is good for
hiking and hiking is a popular exercise in California. So we went
hiking.” without knowing the commonsense knowledge that hiking
is an exercise and is preferable on sunny days. Developing a
commonsense-grounded story writer has several technical chal-
lenges: 1) how to automatically or semi-automatically collect
commonsense knowledge? 2) how to efficiently retrieve relevant
commonsense when writing stories? 3) how to train highly-
performant commonsense-grounded story writing systems when
the size of the story corpus covering commonsense knowledge is
limited? We leverage our proposed SDML framework to automati-
cally solve these problems via self-directed selection of tasks, data,
models, and optimizers.

@ II) Controllable video captioning aims to control the video caption
generation process by auxiliary information guidance, e.g., the sty-
listic label (romantic, humorous) (Gan et al., 2017), POS (Part-of--
Speech) tag sequence (Deshpande et al., 2019), or one exemplar
sentence (Yuan Lin et al., 2020). The most challenging one is
leveraging the exemplar sentence, which means generating a corre-
sponding video caption sharing the same syntactic structure with one
exemplar sentence. For example, when the groundtruth caption is “A
group of people are dancing” with the example sentence “Bunch of
green bananas hanging in front of a banana tree”. The model may
output “Group of young people dancing in front of a live audience”.
So the model needs to extract the syntactic structure of the exemplar
sentence, incorporate it into the caption generation process reason-
ably and avoid being distracted from the extra noisy semantic in-
formation. The difficulties can be summarized as follows: 1) how to
effectively extract syntactic information for further caption genera-
tion with limited exemplar sentences. 2) how to preserve video se-
mantics in the generated captions despite the disturbances from
exemplar sentences. Therefore, the capability of the SDML frame-
work in the self-directed selection of tasks, data, models, and opti-
mizers can be utilized for addressing the challenges mentioned
above.

I) Semantics-aware chatbots. In open-world dialog systems, espe-
cially goal-oriented dialog systems, it is very important to under-
stand the semantics of conversation histories and perform reasoning
on the semantics, in order to give informative, correct, and useful
responses. For example, given a human utterance “I want to drink
some coffee. How far is the coffee shop?“, without understanding the
semantics of this utterance, the chatbot tends to give an uninfor-
mative and boring response such as “Sounds cool”. In contrast, if
using semantic parsers to parse the query “How far is the coffee
shop?” into a logical form which represents the semantics of this
query and performing reasoning on the logical form together with an
external knowledge base, the chatbot is able to give a useful and
informative response such as “It’s about half mile.” To develop
semantics-aware chatbots, several technical challenges need to be
addressed: 1) given limited annotated (utterance, logical forms)
pairs, how to train highly accurate semantic parsers? 2) given limited
(logical forms, response) pairs, how to train a semantics-aware
response generation model that is resilient to overfitting? 3) how
to train reasoning systems to infer deeper semantics? Leveraging the
capability of SDML in performing self selection of tasks, data,
models, and optimizers, the aforementioned challenges can be
automatically coped with.

@ D) Video dialogues. This is also known as the task of audio-visual
scene-aware dialog (AVSD) (Huda et al., 2019; Das et al., 2017),
which requires an agent to hold the conversation with humans in
natural, conversational language about video content and audio
content in the format of dialog box. In real world dialog systems,
applied into daily use including tools for early childhood education,
it is important to understand the semantics of conversation histories
and the multi-modal representation of video, audio, and text, so as to
give responses with high relevance as well as enough information.

66

Al Open 3 (2022) 58-70

For example, given a video with audio about a person walking by a
bag and leaving a book, and then given a question in natural human
language “Does she walk quickly or slowly?, without understanding
the video, the response could be random “Quickly” or “Slowly”.
While an agent who fully understands the video context can give the
response “She walks pretty slowly back and forth before putting
down the book™, which obviously gives more information in a softer
description (Huda et al., 2019; Liu et al.,, 2020a). To develop
audio-visual scene-aware dialog agents, several technical challenges
need to be addressed: 1) how to train highly accurate semantic
parsers? Since all the questions and responses are given in the textual
format, precisely understanding the question is the key part. 2) how
to train systems to fuse and understand multi-modal information
including the dynamic scene, the audio, and the history (previous
rounds) of the dialog? Leveraging the capability of SDML in per-
forming self selection of tasks, data, models, and optimizers, the
challenges mentioned above could be easily coped with.

5. Related works

In a section, we discuss several existing works that are related to our
proposed SDML paradigms. In concrete, Curriculum Learning, Meta
Learning, Automated Machine Learning, Lifelong/Continual Learning and
Reinforcement Learning are all related to SDML.

5.1. Curriculum Learning

Curriculum learning (CL) (Bengio et al., 2009; Wang et al., 2021a) is
a training strategy of machine learning that selects the most suitable
examples or tasks (with adjustable loss weights) for each current
training step, aiming to improve the model’s generalization ability,
robustness, convergence speed, etc. CL can be seen as a self-directed
learning strategy, since the learning algorithm itself makes efforts to
handle the biases (e.g., class imbalance, label noise, etc.) of the training
set by autonomously re-weighting the training samples, which is also
one of the most crucial advantage of CL (Ren et al., 2018).

Existing CL strategies can be roughly categorized into three groups:
original CL, hard example mining (HEM), and automatic CL. Original CL
(Bengio et al., 2009) proposes to train the machine learning model with
easier data subsets (or easier subtasks), and then gradually increase the
difficulty level of data (or subtasks) until the whole training dataset (or
the target task(s)). Imitating human learning from easy to hard, CL helps
to improve the performance on test set (or target tasks) and the
convergence speed. Predefined CL methods measure data difficulty with
task-specific domain knowledge. For example, longer sentences are
often supposed as harder training data in NLP tasks, and audios with
lower Signal to Noise Ratio are expected to be more noisy and thus
harder in speech recognition tasks. On the other hand, self-paced
learning (SPL), a primary branch of CL, takes the example-wise
training loss of the current model as the criteria for difficulty measure-
ment. SPL alternatively optimizes the re-weighting variables for each
data example and the model parameters. Other methods also decide
difficulty measurement by the losses of pretrained teacher models. Hard
example mining (HEM) (Shrivastava et al., 2016) is another well-studied
and popular data selection strategy that proposes to assign higher
weights to harder data at each training step, taking an opposite para-
digm to CL. The basic assumption of HEM is that the harder examples are
more informative than easier examples and thus more beneficial for
model learning. The difficulty in HEM is often defined according to the
current model losses on examples or the gradient magnitude. Automatic
CL methods discard the prior assumptions on the data difficulty and
training strategies and aim to learn the loss weights of data examples at
each training step according to a specific target (e.g., higher training
efficiency, higher validation/testing performance, etc.). A typical way to
achieve automatic CL is to make a reinforcement learning (RL) agent
learn to assign weights to data. Concretely, the state in RL is the data,

W. Zhu et al.

current state of model, training epoch, etc., the action in RL is to assign
weights to the data, and the reward is defined according to the
requirement of tasks. Other automatic CL methods optimize the
re-weighting strategies by Bayesian Optimization (Tsvetkov et al.,
2016), meta-learning (Ren et al., 2018), gradient descent (Jiang et al.,
2018; Kim and Choi, 2018), adversarial learning (Zhang et al., 2020),
etc.

CL has been theoretically and practically proven an effective strategy
to improve the model’s robustness (Chen et al., 2021a), performance on
target data/task, convergence speed (Chen et al., 2021b), etc. It will be
interesting to exploit more self-directed methodologies by letting the
algorithm itself decide the most suitable loss functions (or learning
objective), training data (with automated data generation), and hy-
pothesis space for the model optimization.

5.2. Meta Learning

Last decade has witnessed a prosperous development for supervised
learning, which usually depends on large labeled datasets and trains a
huge model with a large number of parameters from scratch. Thus, the
requirement for data and computing resources is relatively high. How-
ever, there are many applications where data is difficult or expensive to
collect, or computing resources are limited. Since the lack of training
data, supervised learning is not suitable for these tasks and shows bad
performances.

For the sake of human-like learning, meta-learning which targets at
simulating the concept of “learning to learn”, provides a paradigm
where machine learning models are built based on experience with
related tasks. Meta-learning has been becoming a very hot research topic
in both academy and industry since the year of 2017, covering many
research communities including machine learning, computer vision,
natural language processing, data mining and multimedia.

We summarize meta-learning as a series of techniques that can learn
prior experience across tasks in a systematic, data-driven manner. We
define the problem of meta-learning in two views, i.e., task distribution
view and learner and meta-learner view.

Task Distribution View A good meta-learning method should help the
model fy gain the ability of learning to learn across tasks and improve its
performance on a distribution of tasks p(z), including potentially unseen
tasks. The optimal model parameters are:

0" = arg (fnin Erp(o) [Lo(T:)]- (C))

To implement the optimization goal Eq. (9), we usually sample M
meta-train tasks from p(z), with which we learn meta-knowledge w. The
meta-knowledge w guides the optimization of the model across tasks,
and can have different meanings, such as parameter initialization, gra-
dients, and optimization strategy. The training and validation sets of a
meta-train task are often called support set and query set. Formally, we
denote the set used in the meta-train stage as

A\ M

{(Dfmftmm, Dﬁemfﬂam)(l)} . After meta-train stage, the model gets the
i=1

optimal meta-knowledge w*:

®* = arg max 10g p(®|Dyera—irain)- (10)

[

Similarly, we denote the N sampled tasks used in the meta-test stage
S

{ (Dmeta—test7

knowledge to train the model on each previously unseen task and get
the optimal model parameters:

AN
1
as Dpeta—test = Dﬁemfm)()}_ - We use the learned meta-
.

1)

meta—test

0" = arg max log p(6lo*, DS).
0

We can evaluate the meta-learning algorithm by the performance of

6*(i) on the corresponding meta-test query set DS, . .

Learner and Meta-learner View Another common view is that meta-

Dmem—tmin =

67

Al Open 3 (2022) 58-70

learning decomposes the process of parameter update into two stages:
base-learning stage and meta-learning stage. As aforementioned, the
dataset for each task 7; ~ p(7)is divided into support set S and query set
0% During the base learning stage, an inner learner model f; is trained
on the support set S¥ for solving a given specific task. During meta-
learning stage, an outer meta-learner g, is applied to improve an outer
objective £™® that is calculated on the query set Q. The outer opti-
mization problem contains the inner optimization as a constraint. Using
this notation, the parameter @ of meta-learner g, can be regarded as
meta-knowledge. The meta-learning algorithm can be formulated as
follows:

. : N ameta [pe(i) (i)
® _argar)mn Zi:lﬁ “(0 (w), w, Q"), 12)

sit. 0" (w) = arg min £ (0,0, S"), 13)
0

where Lyeq and Ly refer to the outer and inner objective losses
respectively, such as cross entropy in the case of few-shot classification.

5.3. Automated machine learning

Most machine learning methods have a plethora of design choices
that need to be made beforehand, and their performance is shown to be
very sensitive to these choices. Furthermore, the desirable choices of
algorithm design often vary over different tasks and hence the algorithm
configuration requires intensive expertise, which becomes a substantial
hurdle for new users and further restricts the applicability and feasibility
of modern machine learning methods in a wider range of public fields.
To remedy this issue, automated machine learning (AutoML) is devel-
oped to configure machine learning methods in a data-driven, object-
oriented and automatic way. AutoML aims to learn the configuration of
machine learning methods that attains the best performance on the
specific task. In this way, AutoML largely reduces the background
knowledge needed to customize modern machine learning methods in
specific application domains, which makes machine learning technolo-
gies more user-friendly (He et al., 2020; Yao et al., 2018). Complete
AutoML pipelines have the potential to automate every step of machine
learning, including auto data collection and cleaning, auto feature en-
gineering, and auto model selection and optimization, etc. Due to the
popularity of deep learning models, hyper-parameter optimization
(HPO) (James et al., 2011; Wang et al., 2021b; Liu et al., 2021) and
neural architecture search (NAS) (Guan et al., 2021; Wei et al., 2021;
Qin et al., 2021) are most widely studied. AutoML has achieved or
surpassed human-level performance (Zoph Quoc, 2017; Liu et al., 2018;
Pham et al., 2018) with little human guidance in areas such as computer
vision (Zoph et al., 2018; Esteban Real et al., 2019).

5.4. Lifelong learning/continual learning

Lifelong learning models are designed by humans to obtain an ability
to continually learn new skills and knowledge, while not forgetting what
has been learned. This ability is already available to humans, but re-
mains a challenge for computational systems and autonomous agents
(Parisi et al., 2019). In the lifelong learning approaches, the idea of
self-directed learning is reflected in many places, such as selection of key
parameters, pruning network architecture, and replaying memories.

The existing methodologies for Lifelong learning can be divided into
three categories: regularization-based methods, parameter isolation-
based methods, and replay-based methods. Regularization-based
methods (Kirkpatrick et al., 2017; Lopez-Paz et al., 2017) limit how
far the parameters can move from values that were optimal for previous
learning. They automatically determine which parameters are essential
and then penalize the change to these parameters in future training.
Parameter isolation-based methods (Mallya and Packnet, 2018; Li et al.,

W. Zhu et al.

2019) autonomously dedicate different subsets of the model parameters
to different skills and knowledge. As the model learns new things, the
capacity of the model may increase as needed, while some redundant
parameters may be reinitialized or pruned. Replay-based methods
(Rebuffi Alexander et al., 2017; Hou et al., 2019) need a memory
component to store data from the previous learning process. The stored
data are strategically sampled and help the model avoid forgetting in
future learning.

However, in lifelong learning/continual learning, what learning
sequence to follow and what learning regime to use between different
knowledge and skills are still not self-directed. In the future, making
lifelong learning/continual learning work in a more and even complete
self-directed way will be an interesting and exciting area.

5.5. Reinforcement learning

Reinforcement Learning (RL), which emits a sequence of actions in
the Markov Decision Process (MDP), is sometimes seen as a new cate-
gory of machine learning method (Haydari and Yilmaz, 2020). Other
than having an explicit ground-truth target, RL models are usually
optimized to maximize a long-term reward. In another word, RL tasks
usually do not have an immediate target like “this image should be an
apple” but have a long-term goal like “win the game of Go with a
sequence of actions” (Silver et al., 2017). As both RL and our SDML are
optimized towards a long-term goal and do not have explicit supervi-
sion, the two paradigms have a lot of features in common. But, there are
also some subtle and crucial differences in between. In the following, we
briefly introduce Reinforcement Learning considering these differences.

Firstly, the optimization target. An RL model is usually designed for a
specific task, e.g., chess (Silver et al., 2017), games (Mnih et al., 1312)
robotics (Kober et al., 2013), auto-driving (Sallab et al., 2017). Given a
task, the current RL method would construct a model and sample data
traces from the task data distribution. Recently, equipped with Deep
Learning as a power function fitting tool, RL methods tend to leave most
of the work to its underlying deep learning model and focus on the
optimization methods. As a comparison the target of SDML is much
bigger, which the target is far more than a specific task, also includes the
process of finding a proper model (self data selection), data (self-data
selection), and optimization method (self optimization strategy selec-
tion) to optimize the task. It would be possible to model the target of
SDML as an RL target and optimize that target in the abstract. Still, it
would not be technically possible because the target of SDML would be
too complicated and comprehensive to be modeled with a single RL
model.

An RL model is usually optimized via the samples drawn by sam-
pling. Early sampling strategies are inspired by the multi-arm bandit
that tries to balance exploration and exploitation. The observation in RL is
more likely the “data point” in supervised learning, all the observations
come from the same distribution, and the goal is to select the best “ac-
tion” under that circumstance. While in SDML, we work with “task
distribution” rather than “data distribution”. The goal is more general
and difficult, as there may be dozens of different data distributions that
SDML is required to handle, and our observation is a task distribution
rather than a single data point.

From the perspective of modeling, RL agents could be categorized
into model-free and model-based (Thrun and Littman, 2000). The
former is known for policy-gradient methods that directly learn the
mapping from observation O to the best action a, which has achieved
great success in early times (Sutton et al., 2000). The latter has been
studied recently in (Schrittwieser et al., 2020; Hafner et al., 2019),
where besides the policy is modeled, the environment is also modeled to
predict the possible reward R[a] given an action a. The modeling of
reward helps model-based RL methods have dominated several RL areas.
Modeling the environment as a “reward function” is an ingenious
abstraction as the whole environment would be hard to model. In SDML,
we have to model more than the “reward function”. Usually, we humans

68

Al Open 3 (2022) 58-70

have an understanding of the world so as to abstract commonsense in-
formation from different environments and make decisions for each of
them. While in the scope of SDML, the environment could cover more:
task distribution, model distribution, and even knowledge distribution.
A SDML model has to model all these distributions at the same time so as
to master them all.

6. Conclusions and future directions

Drawing inspiration from humans’ self-directed learning, we intro-
duce the principal concept and propose the framework of self-directed
machine learning (SDML). SDML aims for high autonomy, which con-
ducts self task selection, self data selection, self model selection, self
optimization strategy selection as well as self evaluation metric selection
instead of requiring humans to manually perform the selections. Our
proposed SDML framework consists of key elements including internal
awareness and external awareness and key processes including self-
directed task selection, data selection, model selection, and optimizer
selection. We propose a multi-level optimization based framework to
formulate SDML. In the two case studies including autonomous rescue
robotics and automated computer programming, we illustrate how to
leverage SDML to solve complicated practical problems autonomously.

It is worth noting that our proposed SDML framework is agnostic to
specific ML applications and can be broadly applied to improve a variety
of ML tasks including but not limited to: classification, regression,
clustering, text generation, dialog systems, machine translation, docu-
ment summarization, object detection, semantic segmentation, visual
question answering, time series prediction, link and node prediction in
graphs, etc.

For future work, we plan to investigate the following research
directions.

@ Interpretable SDML Being reliable is almost a must for ML models
to be willingly used by humans. To gain trust from humans, we will
develop interpretable SDML methods which generate explainable
and transparent predictions. Most of the prior approaches for inter-
pretable ML focus on finding out key evidence from the input data
(such as phrases in texts and regions in images) that is most relevant
to a prediction, then using this evidence to justify the meaningfulness
of the prediction. However, in many cases, the attributed evidence
does not make sense to the human. A fundamental reason is that the
reasoning processes of ML models and humans are not aligned,
though they reach the same prediction outcome. To address this
issue, we plan to study weakly supervised model-interpretation.
Specifically, we will develop natural language processing methods
to analyze texts and automatically extract the decision-making pro-
cesses of humans therefrom, then inject these structured processes
into the SDML framework as an inductive bias to achieve human-
machine alignment. As a longer-term goal, we will collaborate
with cognitive scientists to deeply understand the fundamental
mechanisms of how humans interpret phenomena and decisions and
use these mechanisms to guide the design of SDML frameworks.

Robust SDML In many applications such as healthcare, finance, etc.,
decisions are mission-critical. ML-aided decision support software is
required to be secure and robust against malicious attacks. The
existing clinical ML models are shown to be vulnerable to adversarial
examples. For example, given a chest X-ray that is predicted by a
convolutional neural network as containing pneumonia, adding tiny
perturbations (that are not perceivable by the human) could render
the model thinks this image has no pneumonia. Most of the prior
defense methods are highly customized to specific attacks; thus they
may easily become futile when the attacks change. We will develop
SDML frameworks which represent attacks and defenses in a unified
way and accordingly devise defense techniques that are able to cope
with various forms of attacks and robust to the changes of attacks. As
a longer-term goal, we will collaborate with cryptographers to

W. Zhu et al.

develop ML-specific homomorphic encryption (HE) methods that
allow SDML training and inference on ciphertexts.

@ Sample-efficient SDML In many applications, due to privacy con-
cerns and administrative regulations, the amount of data that the
SDML framework could access for model training is usually quite
limited. And the cost (regarding time and financial budget) of
attempting to obtain more data grows super-linearly with the
amount of data. We are interested in answering a research question:
under circumstances where we do not have a large amount of data
due to cost-control purposes, can we still be able to learn highly
performant ML models via SDML? This question has been investi-
gated in previous studies based on few-shot learning, meta-learning,
transfer learning, etc. However, these approaches do not perform
reasoning to mitigate data deficiency. We plan to bridge this gap. We
will develop neural-symbolic reasoning systems to understand the
relationship between high-level variables in data, develop logical
and inductive reasoning systems to discover the causality between
tasks, and leverage the reasoning outcomes to guide self-directed
learning processes. We will develop graph neural network based
reasoning systems to automatically discover logical rules and
conduct long-range multi-step complex reasoning to determine the
execution order and interactions between models.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgement

This work is supported by the National Key Research and Develop-
ment Program of China No. 2020AAA0106300 and National Natural
Science Foundation of China No. 62250008, No. 62102222.

References

Aeronautiques, Constructions, Howe, Adele, Craig, Knoblock, Drew McDermott, 1.S.I.,
Ram, Ashwin, Veloso, Manuela, Weld, Daniel, David Wilkins, S.R.I.,

Barrett, Anthony, Christianson, Dave, et al., 1998. Pddl— the Planning Domain
Definition Language. Technical report. Technical report.

Bengio, Yoshua, Louradour, Jérome, Collobert, Ronan, Weston, Jason, 2009. Curriculum
learning. In: Proceedings of the 26th Annual International Conference on Machine
Learning, pp. 41-48.

Brookfield, Stephen, 1993. Self-directed learning, political clarity, and the critical
practice of adult education. Adult Educ. Q. 43 (4), 227-242.

Caffarella, Rosemary S., 1993. Self-directed learning. N. Dir. Adult Cont. Educ. 57,
25-35.

Cambon, Stephane, Alami, Rachid, Gravot, Fabien, 2009. A hybrid approach to intricate
motion, manipulation and task planning. Int. J. Robot Res. 28 (1), 104-126.

Cass, R Sunstein, 1993. On analogical reasoning. Harv. Law Rev. 106 (3), 741-791.

Chen, Hong, Chen, Yudong, Wang, Xin, Xie, Ruobing, Wang, Rui, Xia, Feng,

Zhu, Wenwu, 2021a. Curriculum disentangled recommendation with noisy multi-
feedback. Adv. Neural Inf. Process. Syst. 34.

Chen, Yudong, Wang, Xin, Fan, Miao, Huang, Jizhou, Yang, Shengwen, Zhu, Wenwu,
2021b. Curriculum meta-learning for next poi recommendation. In: Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
pPp. 2692-2702.

Dantam, Neil T., Kingston, Zachary K., Chaudhuri, Swarat, Kavraki, Lydia E., 2018. An
incremental constraint-based framework for task and motion planning. Int. J. Robot
Res. 37 (10), 1134-1151.

Das, Abhishek, Kottur, Satwik, Gupta, Khushi, Singh, Avi, Yadav, Deshraj, Moura, José
MF., Parikh, Devi, Batra, Dhruv, 2017. Visual dialog. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 326-335.

Deshpande, Aditya, Aneja, Jyoti, Wang, Liwei, Schwing, Alexander G., Forsyth, David,
2019. Fast, diverse and accurate image captioning guided by part-of-speech. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10695-10704.

Esteban Real, et al., 2019. Regularized Evolution for Image Classifier Architecture
Search. AAAL

Eurich, Tasha, 2017. Insight: the Surprising Truth about How Others See Us, How We See
Ourselves, and Why the Answers Matter More than We Think. Currency.

Finn, Chelsea, Abbeel, Pieter, Levine, Sergey, 2017. Model-agnostic meta-learning for
fast adaptation of deep networks. Int. Conf. Machine Learn. 1126-1135.

Al Open 3 (2022) 58-70

Galindo, Cipriano, Juan-Antonio Fernandez-Madrigal, Gonzalez, Javier,

Saffiotti, Alessandro, 2008. Robot task planning using semantic maps. Robot.
Autonom. Syst. 56 (11), 955-966.

Gan, Chuang, Gan, Zhe, He, Xiaodong, Gao, Jianfeng, Deng, Li, 2017. Stylenet:
generating attractive visual captions with styles. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3137-3146.

Garrison, D Randy, 1997. Self-directed learning: toward a comprehensive model. Adult
Educ. Q. 48 (1), 18-33.

Gentner, D., Smith, L., Ramachandran, V.S., 2012. Analogical Reasoning. encyclopedia of
human behavior.

Grira, Nizar, Crucianu, Michel, Boujemaa, Nozha, 2004. Unsupervised and semi-
supervised clustering: a brief survey. Rev. Machine Learn Techinque. Process
Multimedia Content. 1, 9-16.

Grover, Sachin, Sengupta, Sailik, Chakraborti, Tathagata, Mishra, Aditya Prasad,
Kambhampati, Subbarao, 2020. Radar: automated task planning for proactive
decision support. Hum. Comput. Interact. 35 (5-6), 387-412.

Guan, Chaoyu, Wang, Xin, Zhu, Wenwu, 2021. Autoattend: automated attention
representation search. In: International Conference on Machine Learning. PMLR,
Pp. 3864-3874.

Hafner, Danijar, Lillicrap, Timothy, Jimmy, Ba, Norouzi, Mohammad, 2019. Dream to
Control: Learning Behaviors by Latent Imagination. arXiv preprint arXiv:1912.01603.

Hayati Abdullah, Mardziah, 2001. Self-directed Learning.

Haydari, Ammar, Yilmaz, Yasin, 2020. Deep Reinforcement Learning for Intelligent
Transportation Systems: A Survey. IEEE Transactions on Intelligent Transportation
Systems.

He, Xin, Zhao, Kaiyong, Chu, Xiaowen, 2019. Automl: A Survey of the State-Of-The-Art.
arXiv preprint arXiv:1908.00709.

He, Xin, Zhao, Kaiyong, Chu, Xiaowen, 2020. Automl: A Survey of the State-Of-The-Art.
KBS.

Hospedales, Timothy, Antoniou, Antreas, Paul, Micaelli, Amos, Storkey, 2020. Meta-
learning in Neural Networks: A Survey. arXiv preprint arXiv:2004.05439.

Hou, Saihui, Pan, Xinyu, Change Loy, Chen, Wang, Zilei, Lin, Dahua, June 2019.
Learning a unified classifier incrementally via rebalancing. In: The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

Huda, Alamri, Cartillier, Vincent, Das, Abhishek, Wang, Jue, Cherian, Anoop, Essa, Irfan,
Batra, Dhruv, Marks, Tim K., Hori, Chiori, Anderson, Peter, et al., 2019. Audio visual
scene-aware dialog. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 7558-7567.

Jaiswal, Ashish, Ramesh Babu, Ashwin, Zaki Zadeh, Mohammad, Banerjee, Debapriya,
Makedon, Fillia, 2020. A survey on contrastive self-supervised learning.
Technologies 9 (1), 2.

James, Bergstra, et al., 2011. Algorithms for Hyper-Parameter Optimization. NeurIPS.

Jiang, Lu, Zhou, Zhengyuan, Leung, Thomas, Li, Li-Jia, Fei-Fei, Li, 2018. Mentornet:
learning data-driven curriculum for very deep neural networks on corrupted labels.
In: International Conference on Machine Learning, pp. 2304-2313.

Kim, Tae-Hoon, Choi, Jonghyun, 2018. Screenernet: Learning Self-Paced Curriculum for
Deep Neural Networks. arXiv preprint arXiv:1801.00904.

Kirkpatrick, James, Pascanu, Razvan, Rabinowitz, Neil, Veness, Joel,

Desjardins, Guillaume, Rusu, Andrei A., 2017. Kieran Milan, John Quan, Tiago
Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting
in neural networks. Proc. Natl. Acad. Sci. USA 114 (13), 3521-3526.

Knowles, Malcolm S., 1975. Self-directed Learning: A Guide for Learners and Teachers.

Kober, Jens, Bagnell, J Andrew, Peters, Jan, 2013. Reinforcement learning in robotics: a
survey. Int. J. Robot Res. 32 (11), 1238-1274.

Kumar, Punit, Gupta, Atul, 2020. Active learning query strategies for classification,
regression, and clustering: a survey. J. Comput. Sci. Technol. 35 (4), 913-945.
LaTour, Kathryn A., Noel, Hayden N., 2021. Self-directed learning online: an opportunity
to binge. J. Market. Educ. 43 (2), 174-188. https://doi.org/10.1177/

0273475320987295.

Li, Xilai, Zhou, Yingbo, Wu, Tianfu, Socher, Richard, Xiong, Caiming, 2019. Learn to
grow: a continual structure learning framework for overcoming catastrophic
forgetting. In: International Conference on Machine Learning.

Liu, Hanxiao, Simonyan, Karen, Yang, Yiming, 2018. Darts: Differentiable Architecture
Search. ICLR.

Liu, Jingzhou, Chen, Wenhu, Cheng, Yu, Gan, Zhe, Yu, Licheng, Yang, Yiming,

Liu, Jingjing, 2020a. Violin: a large-scale dataset for video-and-language inference.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10900-10910.

Liu, Xiao, Zhang, Fanjin, Hou, Zhenyu, Wang, Zhaoyu, Li, Mian, Zhang, Jing, Tang, Jie,
2020b. Self-supervised Learning: Generative or Contrastive. arXiv preprint arXiv:
2006.08218, vol. 1, 2.

Liu, Yue, Wang, Xin, Xu, Xue, Yang, Jianbo, Zhu, Wenwu, 2021. Meta hyperparameter
optimization with adversarial proxy subsets sampling. In: Proceedings of the 30th
ACM International Conference on. Information & Knowledge Management,
pp. 1109-1118.

Loeng, Svein, 2020. Self-directed learning: a core concept in adult education. Educ. Res.
Int. 2020.

Lopez-Paz, David, Ranzato, Marc Aurelio, 2017. Gradient episodic memory for continual
learning. In: Guyon, L., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., Garnett, R. (Eds.), Advances in Neural Information Processing
Systems, vol. 30. Curran Associates, Inc.

Mallya, Arun, Packnet, S. Lazebnik, 2018. Adding multiple tasks to a single network by
iterative pruning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7765-7773.

W. Zhu et al.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing Atari with Deep Reinforcement
Learning. arXiv preprint arXiv:1312.5602, 2013.

Parisi, German 1., Kemker, Ronald, Part, Jose L., Kanan, Christopher, Wermter, Stefan,
2019. Continual lifelong learning with neural networks: a review. Neural Network.
113, 54-71.

Pham, Hieu, et al., 2018. Efficient Neural Architecture Search via Parameters Sharing.
ICML.

Qi, Guo-Jun, Luo, Jiebo, 2020. Small Data Challenges in Big Data Era: A Survey of Recent
Progress on Unsupervised and Semi-supervised Methods. IEEE Transactions on
Pattern Analysis and Machine Intelligence.

Qin, Yijian, Wang, Xin, Zhang, Zeyang, Zhu, Wenwu, 2021. Graph differentiable
architecture search with structure learning. Adv. Neural Inf. Process. Syst. 34.
Rebulffi, Sylvestre-Alvise, Alexander, Kolesnikov, Georg Sperl, Lampert, Christoph, 2017.
Icarl: Incremental Classifier and Representation Learning, pp. 5533-5542, 07.

Ren, Mengye, Zeng, Wenyuan, Yang, Bin, Urtasun, Raquel, 2018. Learning to Reweight
Examples for Robust Deep Learning. arXiv preprint arXiv:1803.09050.

Ren, Pengzhen, Xiao, Yun, Chang, Xiaojun, Huang, Po-Yao, Li, Zhihui, Chen, Xiaojiang,
Wang, Xin, 2020. A Survey of Deep Active Learning.

Sallab, Ahmad EL., Abdou, Mohammed, Perot, Etienne, Yogamani, Senthil, 2017. Deep
reinforcement learning framework for autonomous driving. Electron. Imag. (19),
70-76, 2017.

Schmarje, Lars, Santarossa, Monty, Schroder, Simon-Martin, Koch, Reinhard, 2020.

A survey on semi-, self- and unsupervised techniques in image classification. CoRR,
abs/2002, 08721.

Schrittwieser, Julian, Antonoglou, Ioannis, Hubert, Thomas, Simonyan, Karen,

Laurent, Sifre, Schmitt, Simon, Guez, Arthur, Lockhart, Edward, Hassabis, Demis,
Graepel, Thore, et al., 2020. Mastering atari, go, chess and shogi by planning with a
learned model. Nature 588 (7839), 604-609.

Schunk, Dale H., Zimmerman, Barry J., 2012. Motivation and Self-Regulated Learning:
Theory, Research, and Applications. Routledge.

Shrivastava, Abhinav, Gupta, Abhinav, Girshick, Ross, 2016. Training region-based
object detectors with online hard example mining. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 761-769.

Silver, David, Schrittwieser, Julian, Simonyan, Karen, Antonoglou, Ioannis, Huang, Aja,
Guez, Arthur, Hubert, Thomas, Baker, Lucas, Lai, Matthew, Bolton, Adrian, et al.,
2017. Mastering the game of go without human knowledge. Nature 550 (7676),
354-359.

Song, Liyan, Hill, Janette R., 2007. A conceptual model for understanding self-directed
learning in online environments. J. Interact. Online Learn. 6 (1), 27-42.

70

Al Open 3 (2022) 58-70

Sutton, Richard S., McAllester, David A., Singh, Satinder P., Mansour, Yishay, 2000.
Policy gradient methods for reinforcement learning with function approximation. In:
Advances in Neural Information Processing Systems, pp. 1057-1063.

Thrun, Sebastian, Littman, Michael L., 2000. Reinforcement learning: an introduction. Al
Mag. 21 (1), 103-103.

Tsvetkov, Yulia, Faruqui, Manaal, Wang, Ling, MacWhinney, Brian, Dyer, Chris, 2016.
Learning the Curriculum with Bayesian Optimization for Task-specific Word
Representation Learning. arXiv preprint arXiv:1605.03852.

Vanschoren, Joaquin, 2018. Meta-learning: A Survey. arXiv preprint arXiv:1810.03548.

Wang, Meng, Hua, Xian-Sheng, 2011. Active learning in multimedia annotation and
retrieval: a survey. ACM Trans. Intelligent Syst. Technol. 2 (2), 1-21.

Wang, Xin, Chen, Yudong, Zhu, Wenwu, 2021a. A Survey on Curriculum Learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence.

Wang, Xin, Fan, Shuyi, Kuang, Kun, Zhu, Wenwu, 2021b. Explainable automated graph
representation learning with hyperparameter importance. In: International
Conference on Machine Learning. PMLR, pp. 10727-10737.

Wei, Zhikun, Wang, Xin, Autoias, Wenwu Zhu, 2021. Automatic integrated architecture
searcher for click-trough rate prediction. In: Proceedings of the 30th ACM
International Conference on Information & Knowledge Management,
pp. 2101-2110.

Winne, Philip H., 1989. Theories of instruction and of intelligence for designing
artificially intelligent tutoring systems. Educ. Psychol. 24 (3), 229-259.

Winne, Philip H., 1997. Experimenting to bootstrap self-regulated learning. J. Educ.
Psychol. 89 (3), 397.

Xie, Pengtao, Xing, Eric, 2017. A constituent-centric neural architecture for reading
comprehension. In: Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics, 1, pp. 1405-1414. Long Papers.

Yao, Quanming, Wang, Mengshuo, Chen, Yugiang, Dai, Wenyuan, Li, Yu-Feng, Tu, Wei-
Wei, Yang, Qiang, Yang, Yu, 2018. Taking Human Out of Learning Applications: A
Survey on Automated Machine Learning. arXiv preprint arXiv:1810.13306.

Yuan, Yitian, Lin, Ma, Wang, Jingwen, Zhu, Wenwu, 2020. Controllable video captioning
with an exemplar sentence. In: Proceedings of the 28th ACM International
Conference on Multimedia, pp. 1085-1093.

Zhang, Dingwen, Tian, Haibin, Han, J., 2020. Few-cost Salient Object Detection with
Adversarial-Paced Learning. NeurIPS.

Zoller, Marc-André, Huber, Marco F., 2019. Survey on Automated Machine Learning, vol.
9, p. 12054. arXiv preprint arXiv:1904.

Zoph, Barret, et al., 2018. Learning Transferable Architectures for Scalable Image
Recognition. CVPR.

Zoph, Barret, Quoc, V Le, 2017. Neural Architecture Search with Reinforcement
Learning. ICLR.

