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Abstract

Knowledge Distillation (KD) (Hinton et al.,

2015) is one of the most effective approaches

for deploying large-scale pre-trained language

models in low-latency environments by trans-

ferring the knowledge contained in the large-

scale models to smaller student models. Previ-

ous KD approaches use the soft labels and in-

termediate activations generated by the teacher

to transfer knowledge to the student model

parameters alone. In this paper, we show

that having access to non-parametric mem-

ory in the form of a knowledge base with the

teacher’s soft labels and predictions can fur-

ther enhance student capacity and improve gen-

eralization. To enable the student to retrieve

from the knowledge base effectively, we pro-

pose a new Retrieval-augmented KD frame-

work with a loss function that aligns the rela-

tional knowledge in teacher and student em-

bedding spaces. We show through extensive

experiments that our retrieval mechanism can

achieve state-of-the-art performance for task-

specific knowledge distillation on the GLUE

benchmark (Wang et al., 2018a).

1 Introduction

Large pre-trained language models, such as BERT

(Devlin et al., 2018), RoBERTa (Liu et al., 2019)

and Electra (Clark et al., 2020) have achieved sig-

nificant success on several different NLP tasks

(Ding et al., 2019; Wang et al., 2018a) with fine-

tuning. However, these models usually contain mil-

lions and billions of parameters, preventing their

execution on resource-restricted devices. To de-

ploy these models, Knowledge distillation (KD)

is an effective compression technique to derive a

smaller student model from a larger teacher model

by transferring the knowledge embedded in the

teacher’s network. Previous KD methods typically

store knowledge in the student’s parameters and

train the student by minimizing divergence between

the student’s and teacher’s output prediction and

intermediate activation distributions (Park et al.,

2019; Zhang et al., 2018). However, the student’s

parametric memory is often limited and cannot be

quickly expanded or revised. Moreover, after train-

ing, the teacher model’s soft labels and activations,

which contain essential task-specific knowledge,

are not utilized by the student at inference time.

To address the issues mentioned above, we pro-

pose the Retrieval-augmented Knowledge Distil-
lation (ReAugKD) framework. ReAugKD intro-

duces a non-parametric external memory in addi-

tion to the implicit parametric memory of the model

and uses kNN retrieval to retrieve from this mem-

ory. The key intuition of ReAugKD is to enhance

the effective capacity of the student by using an ex-

ternal memory derived from relevant task-specific

knowledge of the teacher. While this external mem-

ory could include any task-specific knowledge, in

this work, it is composed of the soft labels and

embeddings generated by the teacher model.

Our framework consists of an inference phase

and a training phase. In the inference phase, we

aggregate the soft labels of those teacher embed-

dings in our memory that are most similar to the

student embedding. We demonstrate the efficacy

of our framework by achieving state-of-the-art re-

sults on the GLUE benchmark (Wang et al., 2018a)

with less than 3% latency overhead over the base-

line without retrieval augmentation. ReAugKD

also comprises a training phase, where we train the

student to retrieve from the external memory effec-

tively. We train with a novel relational KD loss that

minimizes the divergence between teacher-teacher

and teacher-student embedding distributions. We

not only observe that training with this loss is nec-

essary to align the student and teacher embedding

spaces for retrieval but also that this loss improves

student generalization even in the absence of re-

trieval augmentation. This suggests that incorpo-

rating the ability to retrieve information can signif-

icantly enhance generalization during the process
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of knowledge distillation.

In summary, our contributions include

• We propose ReAugKD, a novel framework

for knowledge distillation that introduces a non-

parametric memory to increase the effective stu-

dent size. We show that retrieving from a memory

composed of training set teacher predictions at in-

ference time can significantly improve generaliza-

tion on the GLUE tasks.

• To effectively retrieve from the non-parametric

memory, we introduce a novel loss function that

transfers the relational knowledge between teacher-

teacher embedding and teacher-student embedding

distribution. This loss function improves student

generalization even in the absence of retrieval aug-

mentation at inference time.

• We study the accuracy and latency cost with the

number of neighbors (k) retrieved in ReAugKD.

ReAugKD with approximate kNN introduces a

small overhead of <3% latency increase.

2 Related Work

Knowledge distillation KD can be broadly classi-

fied into task-specific KD, where the student model

will be used for the same task as the teacher model

(Mirzadeh et al., 2020; Jin et al., 2019; Zhang et al.,

2018; Sun et al., 2019) and task-agnostic KD where

the student may be used for a different task, after

finetuning on the new task (Jiao et al., 2019; Sun

et al., 2020; Sanh et al., 2019; Wang et al., 2020;

Zhang et al., 2018; Xu et al., 2019). In this work,

we show that ReAugKD can be applied to enhance

task-specific distillation as well as when finetuning

task-agnostic distilled models. Closest to our work

is RKD (Park et al., 2019) that introduces a loss

to transfer relational knowledge between teacher-

teacher embedding and student-student embedding

distributions. Our work differs in that we trans-

fer relational knowledge between teacher-teacher

embedding and teacher-student embedding distri-

bution to enhance the student model’s ability to re-

trieve from the external memory. MetaDistil (Zhou

et al., 2022) is a strong task-specific distillation

baseline that employs meta-learning to better trans-

fer knowledge to the student. Unlike MetaDistill,

we show that ReAugKD can significantly improve

the student model’s generalization without retrain-

ing the whole teacher with meta-learning.

Retrieval-augmented language models There

has been growing interest in retrieval-augmented

methods for Knowledge-Intensive generative NLP

Tasks, such as text generation and question an-

swering (Weston et al., 2018; Lewis et al., 2020;

Guu et al., 2020; Lin et al., 2022), where querying

training examples during inference significantly

improves likelihood. Closest to our work is BERT-

kNN (Kassner and Schütze, 2020) which combines

BERT with a kNN search over a large datastore

of an embedded text collection, to improve cloze-

style QA. In our work, we apply retrieval augmen-

tation to enhance the capacity of student models

during KD, and show improvement even on non-

knowledge intensive tasks like GLUE.

3 Methodology

3.1 Training Phase

Our framework consists of two main phases, the

training phase and the inference phase. The train-

ing phase has two steps. In the first step, we prepare

the teacher model for KD by adding a linear projec-

tion head L on the top of the teacher model encoder

that has been finetuned for a specific downstream

task. The input dimension of this projection head

is the embedding dimension of the teacher. The

output dimension is the embedding dimension of

the student. We then freeze the other parameters of

the teacher model and finetune the parameters in

L with supervised contrastive loss (Khosla et al.,

2020). This step a) reduces the dimension of the

teacher’s embeddings, to the student model dimen-

sion for retrieval, and b) uses supervised contrastive

loss to derive a kNN classifier for BERT that is ro-

bust to natural corruptions, and hyperparameter

settings (Li et al., 2021). Fine-tuning L also greatly

reduces the computational cost compared to retrain-

ing the whole teacher model (Zhou et al., 2022).

In the second step, we perform KD by generating

the teacher embeddings with L and teacher soft

labels using the original teacher’s classifier head

for a batch of data. Then, we use the loss function

we proposed in Section 3 to train our student model.

3.2 Loss function

We present some mathematical notations to intro-

duce our loss function. Given a batch of data

{di}, i = 1, 2, · · · , N , where N is the batch

size, we denote the embedding generated by the

teacher’s projection head as zi and the soft labels

generated by the teacher’s classifier as ȳi. Similarly,

we adopt xi, yi to denote the student’s embeddings

and predictions. Then we construct a probability

distribution qi,j over each teacher’s embeddings zj
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Figure 1: Training and Inference (Testing) phases of Retrieval-augmented Knowledge Distillation (ReAugKD).

to capture the similarity with respect to an anchor

point zi,

qi,j =
exp (zi · zj)/τ∑N
k=1 exp (zi · zk)/τ

, (1)

where the τ stands for temperature. Note that∑N
j=1 qi,j = 1. qi,j reflects the cosine distance

relational knowledge among different embeddings

generated by the teacher model in the batch. If zj
is closer to zi, cosine distance, qi,j will be larger.

Similarly, given a student’s embedding xi as an

anchor point, we formulate another probability dis-

tribution q̄i,j over each teacher’s embeddings zj of

the data in the batch.

q̄i,j =
exp (xi · zj)/τ∑N
k=1 exp (xi · zk)/τ

. (2)

The q̄i,j reflects the cosine distance relationship

between different embeddings generated by the

teacher model and the student’s embedding. Our

loss function aims to minimize the divergence of

these two distributions q̄i,j and qi,j since the teacher

model is a strong kNN classifier after finetuning

with supervised contrastive loss function in the first

step of our training. In the ideal case, given a stu-

dent’s embedding xi, the student retriever should

retrieve the same set of embeddings as the corre-

sponding teacher’s embedding zi. We adopt KL

divergence to measure that divergence. In addition,

we adopt the commonly-used cross-entropy loss

to calculate the divergence between the student’s

prediction yi and the teacher’s prediction ȳi.
Our loss function can be formulated as

CE(yi, ȳi) + αKL(qi,j , q̄i,j), (3)

where CE is the cross entropy loss and KL is KL-

divergence. α is the hyperparameter controlling the

trade-off between the two losses.

3.3 Inference Phase
After training, we construct a knowledge base (KB)

comprising of projected teacher embeddings and

predictions. Given new data di at inference time,

we obtain (xi, yi) using the student model. and use

the HNSW algorithm (Malkov and Yashunin, 2018)

to derive the K nearest teacher’s embeddings and

their corresponding soft labels {(zk, ȳk)}i=1,2,··· ,K
from the KB. Then we compute the weighted av-

erage of these soft labels Avg({ȳ})i based on q̄i,k

Avg({y})i =
K∑

k=1

q̄i,k∑K
k=1 q̄i,k

ȳk

We derive a new prediction ȳ′i for di with

Avg({ȳ})i.
ȳ′i = βȳi + (1− β)Avg({ȳ})i,

β is the hyperparameter controlling the trade-off

between the two predictions.

4 Experimental Results

We apply our method to distill BERT-Base (Devlin

et al., 2018) into a 6-layer BERT with a hidden

size of 768. We evaluate our proposed approach,

ReAugKD, on the GLUE benchmark (Wang et al.,

2018a). These datasets can be broadly divided

into three families of problems: single-set tasks

that include linguistic acceptability (CoLA) and

sentiment analysis (SST-2), similarity, and para-

phrasing tasks (MRPC and QQP); inference tasks
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Method #Param
GLUE

CoLA

(8.5k)

QNLI

(105k)

QQP

(364k)

RTE

(2.5k)

SST-2

(67k)

MRPC

(3.7k)
Avg

BERT-Base (teacher) (Devlin et al., 2018) 110M 58.9 91.2 91.4 71.4 93.0 87.6 82.25

BERT-6L (student)(Turc et al., 2019) 66M 53.5 88.6 90.4 67.9 91.1 84.4 79.32

Task-specific Distillation

KD (Hinton et al., 2015) 66M 54.1 89.2 90.9 67.7 91.2 85.2 79.72

PKD (Sun et al., 2019) 66M 54.5 89.5 90.9 67.6 91.3 84.7 79.75

TinyBERT w/o DA (Jiao et al., 2019) 66M 52.4 89.8 90.6 67.7 91.9 86.5 79.82

RCO (Jin et al., 2019) 66M 53.6 89.7 90.6 67.6 91.4 85.1 79.67

TAKD (Mirzadeh et al., 2020) 66M 53.8 89.6 90.7 68.5 91.4 85.0 79.83

RKD (Park et al., 2019) 66M 53.4 89.5 90.9 68.6 91.7 86.1 80.03

DML (Zhang et al., 2018) 66M 53.7 89.6 90.3 68.4 91.5 85.1 79.77

ProKT (Shi et al., 2020) 66M 54.3 89.7 90.9 68.4 91.3 86.3 80.15

SFTN (Park et al., 2021) 66M 53.6 89.5 90.4 68.5 91.5 85.3 79.80

MetaDistil (Zhou et al., 2022) 66M 58.6 90.4 91.0 69.4 92.3 86.8 81.42

ReAugKD (ours) 66M 59.4 90.7 91.24 70.39 92.5 86.3 81.76
ReAugKD w/o retrieval 66M 59.1 90.6 91.21 69.31 92.3 85.8 81.39

Table 1: Experimental results of ReAugKD and other previous works on the development set of GLUE. Numbers

under each dataset indicate the number of training samples. The results of the baselines are from (Zhou et al., 2022).

We report Matthew’s correlation coefficient for CoLA and accuracy for other datasets.

that include Natural Language Inference (MNLI

and RTE); and Question Answering (QNLI). We

compare our method with vanilla KD (Hinton et al.,

2015), TAKD (Mirzadeh et al., 2020), RCO (Jin

et al., 2019), RKD (Park et al., 2019), DML (Zhang

et al., 2018), PKD (Sun et al., 2019) ProKT (Shi

et al., 2020), SFTN (Park et al., 2021) and MetaDis-

til (Zhou et al., 2022). Following similar setting

as MetaDistill, we perform a grid search over the

sets of the weight of KD loss from {0.9, 0.99}, the

predictions weight β from {0, 0.1, ... 1} and the

top-k from 1 to 20. We set the student learning rate

to 2e-5 and the batch size to 64.

Experimental Results on GLUE We report the

experimental results on the development set of the

six GLUE tasks in Table 1. Notably, our method

achieves start-of-the-art results on five out of the

six datasets with an average improvement of 0.34%

over the previous best KD method MetaDistil

(Zhou et al., 2022). Although MetaDistil achieves

slightly better performance on the MRPC dataset,

our method has the advantage of not needing to

conduct meta-learning on the whole large teacher

model, which significantly increases extra training

cost in terms of time and memory (Zhou et al.,

2022). In addition, we also observe a performance

gain of 0.37% with the retrieval component of

ReAugKD as compared to ReAugKD without re-

trieval which verifies the benefit of retrieval aug-

mentation in our approach. Even without the re-

trieval process, the student model trained by our

Method
QNLI SST-2 CoLA

acc time acc time mcc time

ReAugKD w/o Retrieval 90.6 45.70s 92.3 7.80s 59.1 8.67s

ReAugKD (k=5) 90.72 +1.31s 92.43 +0.199s 58.87 +0.143s

ReAugKD (k=10) 90.70 +1.32s 92.54 +0.201s 59.39 +0.147s

ReAugKD (k=15) 90.74 +1.33s 92.54 +0.202s 59.35 +0.147s

ReAugKD (k=20) 90.72 +1.33s 92.43 +0.204s 59.37 +0.148s

Table 2: Analysis of the sensitivity of top k on model

performance and retrieval time

designed loss can still achieve comparable perfor-

mance to MetaDistill on most datasets. Since our

loss is designed to improve the student retrieval

function, this demonstrates the importance of re-

trieval capability in KD.

Number of Neighbors Retrieved (k) To under-

stand the time overhead of retrieval on the student

model’s inference time, we investigate the perfor-

mance and additional time overhead of the retrieval

process while varying the number of neighbors re-

trieved (k) in Table 2. From the results, it is clear

that retrieval improves the student model perfor-

mance with an additional time overhead of less

than 3% of the original inference time. The re-

trieval process is conducted only on CPU, and does

not take up GPU resources during training.

5 Conclusion

In this paper, we present ReAugKD, a knowl-

edge distillation framework with a retrieval mech-

anism that shows state-of-the-art performance on

the GLUE benchmark. In the future, we plan to

expand the knowledge base with more information

from the teacher and extend it to additional tasks.
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Limitations Our method relies on having access

to teacher embeddings and prediction which may

not always be possible in a black-box distillation

setting. Retrieval augmentation also requires main-

taining a knowledge base that is memory intensive.

The cost of the retrieval process is dependent on the

size of the training corpus, which can be a limita-

tion when dealing with very large training datasets.

Conducting dataset distillation (Wang et al., 2018b)

on the training corpus to further reduce memory

cost and retrieval time is an important future step

for our framework.
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A Appendix

A.1 ReAugKD with task-agnostic distillation

Model #Param QNLI QQP RTE SST-2 MRPC MNLI-m CoLA Avg

Teacher Model (24 × 1024 RoBERTa-large (Liu et al., 2019))

RoBERTa-large 354M 94.7 92.2 86.6 96.4 90.9 90.2 68 88.43

Distilled Student Model (6×768 MiniLMv2)

Pretraining Distillation 81M 92.7 91.4 78.7 94.5 90.4 87.0 54.0 83.8

ReAugKD 81M 93.1 91.9 80.5 95.0 90.2 88.5 57.9 85.30
ReAugKD w/o Retrieval 81M 93.0 91.8 79.8 94.9 90.2 88.3 57.2 85.02

Table 3: Results of our method improving finetuned task performance of MiniLMv2

Previous results have demonstrated the effectiveness of our method for task-specific distillation. Our

method can further improve the finetuned performance of task-agnostic distilled models. We adopt

RoBERTa-large as the teacher model and the MiniLMv2 as the student model to verify the effectiveness

of our method. Our method can achieve around 2% improvement in performance.

A.2 Details about training teacher model’s projection head
We adopt the Lsup

out version of the loss function in (Khosla et al., 2020) to finetune the parameters of the

projection head, which is

Lsup
out = −

N∑

i=1

1

N

∑

j∈P (i)

log
exp (zi · zj) /τ∑N
k=1 exp (zi · zk) /τ

. (4)

Here, there are N data samples di in the batch and we denote the embedding generated by the teacher’s

projection head for the i-th data di as zi. P (i) here represents the set of all the positive data samples for

data di. The data samples from the same class are considered as positive pairs and the data samples from

different classes are considered as negative pairs. Regarding the use of data augmentation in training the

projection head, we chose not to adopt data augmentation as we found that using supervised contrastive

loss without data augmentation was sufficient to achieve results comparable to the cross-entropy loss used

in supervised learning. We use the AdamW optimizer with a learning rate of 0.00002. The batch size was

set to 512, and the temperature for the supervised contrastive loss (SCL) was set to 0.07. We trained the

model 3 epochs.
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� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and

linguistic phenomena, demographic groups represented, etc.?

No response.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,

etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the

number of examples in train / validation / test splits, as these provide necessary context for a reader

to understand experimental results. For example, small differences in accuracy on large test sets may

be significant, while on small test sets they may not be.

No response.

C �� Did you run computational experiments?
Section 3

�� C1. Did you report the number of parameters in the models used, the total computational budget

(e.g., GPU hours), and computing infrastructure used?

Section 3
The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.
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�� C2. Did you discuss the experimental setup, including hyperparameter search and best-found

hyperparameter values?

Section 3

�� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary

statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,

etc. or just a single run?

Section 3

�� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did

you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,

etc.)?

The packages we used are confidential due to our company’s policy

D �� Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,

disclaimers of any risks to participants or annotators, etc.?

No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)

and paid participants, and discuss if such payment is adequate given the participants’ demographic

(e.g., country of residence)?

No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? For example, if you collected data via crowdsourcing, did your instructions to

crowdworkers explain how the data would be used?

No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?

No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population

that is the source of the data?

No response.
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