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Abstract

A significant proportion of clinical physiologic monitoring alarms are false. This often leads to alarm fatigue in
clinical personnel, inevitably compromising patient safety. To combat this issue, researchers have attempted to build
Machine Learning (ML) models capable of accurately adjudicating Vital Sign (VS) alerts raised at the bedside of
hemodynamically monitored patients as real or artifact. Previous studies have utilized supervised ML techniques
that require substantial amounts of hand-labeled data. However, manually harvesting such data can be costly, time-
consuming, and mundane, and is a key factor limiting the widespread adoption of ML in healthcare (HC). Instead, we
explore the use of multiple, individually imperfect heuristics to automatically assign probabilistic labels to unlabeled
training data using weak supervision. Our weakly supervised models perform competitively with traditional super-
vised techniques and require less involvement from domain experts, demonstrating their use as efficient and practical
alternatives to supervised learning in HC applications of ML.

Introduction

Intensive care patients who are at risk of cardiorespiratory instability (CRI) undergo continuous monitoring of vital
sign (VS) parameters such as electrocardiography, plethysmography, pulse oximetry, and impedance pneumography.
Recent advances in commercial bedside monitoring devices have made the sustained tracking of the physical state and
health of a connected patient a real possibility. Without these devices, it would be practically impossible for medical
practitioners to continually and attentively observe fast-evolving and heterogeneous VS parameters. However, even
modern commercial devices have surprisingly inadequate support for identifying abnormal physiological variables in
the form of simple exceedances of pre-determined normality thresholds'. Moreover, it is not uncommon for patients
to have atypical VS parameters due to occasional movement, electrical interference, or loose sensors?.

Indeed, numerous studies have shown a large percent-
age of these VS alerts to be false, or more formally, ar-

tifact® - either of mechanical, electrical, or physiolog- i & & %l
ical nature>*. Additionally, medical practitioners may » » «
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be exposed to up to 1,000 alarms per Intensive Care
Unit (ICU) shift’>. The sheer amount of alarms in tan- - =
dem with the high rate of artifacts can quickly lead to r )

alarm desensitization and burnout in healthcare profes- l L i
sionals. Multiple studies have concluded that the result-
ing alarm fatigue can have severe negative consequences Clinician BusinessRules  Labeling Functions Label Model

for patient safety, with several incidents resulting in pre- Figure 1: Weak supervision pipeline for the binary clas-
ventable harm or even death of a subject®>>°. Further- sification of vital sign alerts. Heuristics given by domain
more, studies have shown that medical practitioners un- experts are encoded into labeling functions whose votes are
intentionally respond to noisy work environments cre- fed into a generative label model. This model then outputs
ated by the loud and frequent blaring of artifactual clin- probabilistic labels that are used for training a downstream
ical alarms, by becoming less engaging and empathetic real vs. artifact alert Random Forest classifier

towards patients’~?.

-

In addition to the added stress placed on medical practitioners, frequent alerts can also lead to increased physiological
stress in the patient, metabolic impairment, sleep disturbance and even death®. Moreover, these frequent artifacts pre-
clude the continuous monitoring of VS in postoperative ward patients, leading to the early warning signs of impending
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cardiorespiratory arrest to go unnoticed and untreated until it is too late!®. Not counting these many lives lost, the U.S.
Food and Drug Administration (FDA) has reported over 500 alarm-fatigue related patient deaths in the short span of
five years’.

Previous attempts to combat alarm fatigue have relied on advancements in adaptive filtering or explored the use of
various Machine Learning (ML) paradigms, particularly supervised and active learning®!!. However, these method-
ologies require varying quantities of manually and pointilistically labeled data. Labeling alerts as real or artifact is not
only time-intensive, but also a laborious, expensive, and mundane task that pulls experienced clinicians away from
their patients. Furthermore, traditional ML paradigms do not easily adapt to evolving clinical expertise and changing
problem definitions due to their reliance on pointillisticaly annotated data which must be re-labeled to accommodate
each such problem redefinition. For example, sepsis is one of the most sought-after clinical conditions to predict.
However, with the constantly evolving definition of sepsis, the labeling process is frequently affected, causing many
annotations to become inconsistent with current guidelines'?.

As an alternative, Weak Supervision (WS) involves harvesting general heuristics that clinicians would normally use
to label the data by hand, and collectively using them to probabilistically reconstruct the labels for even vast amounts
of unlabeled reference data. The hope is that downstream models trained with such automatically annotated data
would perform as well as the models trained on data labeled in a point-by-point fashion, while greatly reducing the
human effort and time needed to develop such models. This allows clinicians to focus where it matters, while enabling
the development of accurate and efficient ML models, paving the way for materializing a significant social impact
in healthcare. Recent work suggests that the proposed WS methodology can indeed accomplish such goals in some
HC applications'>'*. In this paper, we demonstrate the potential utility of WS to adjudicate bedside alerts as real vs.
artifact using high-density waveform VS data collected in intensive care settings.

Related Work

Alarm Fatigue Alarm fatigue caused by high rates of artifact VS alerts is a widely-studied problem and a variety
of techniques have been adopted to combat it in previous research. Most approaches fall into two main categories:
(1) artifact reduction, and (2) artifact detection. The former approach attempts to reduce the number of artifact alerts
produced through internal improvements within the vital sign monitors and other biosignal-measuring devices. Ad-
vancements in adaptive filtering and other techniques to reduce artifacts in real time within the monitor itself have been
developed'>-?°. But, due to the wide ranges of signal frequency and the diverse nature and causes of artifact alerts>"-?2,
the problem of alarm fatigue still persists?. This work aims to tackle alarm fatigue and the high rates of artifact alarms
through the latter approach, which focuses on post-measurement artifact detection and alert adjudication.

Clinical Settings A large body of research has been produced on post-measurement artifact detection in the past,
but most approaches either look at ambulatory settings or are in the context of wearable devices and smartphones —
settings which are fundamentally different from the acute care clinical setting due to differences in physiological states
of subjects, data quality, rates of motion and noise artifact, amount and type of available data, a priori likelihood of
artifacts, and primary differences in the types of artifacts that need to be detected®*>~>>.

Machine Learning Paradigms Prior research on artifact detection strictly in the clinical setting has been conducted,
but most papers combat alarm fatigue through the use of traditional ML pipelines such as fully-supervised (FS), active
and federated learning® 26, These efforts yielded great strides in VS alert classification capabilities, but require
substantial amounts of expert-annotated reference data to train efficient and accurate classifiers. A distinct lack of
analysis remains on classifiers trained in data- and label-scarce environments using models expressly suited for this
application. To the best of our knowledge, our work is the first to apply weak supervision to the problem of VS alert
classification.
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Methodology

Problem Formulation Broadly, given an alert, our goal is to classify it as a real or artifact. We specify each alert
as a 4-tuple A; = (pid, 7, ¢, d), where pid is a unique alert ID, 7 € {RR, SpO,} is the alert type, ¢t and d
are the starting time and duration of the i*" alert. We assume that each alert is associated with an unobserved true
class label y € {0,1}, where 1 denotes real and 0 denotes an artifact; and that for the duration of the alert, we have
access to time series data 7; which includes both waveforms such as electrocardiogram (ECG) leads II and III and
numerics, such as heart rate (HR), potentially sampled at different frequencies. We aim to use clinical intuition and
expert knowledge encoded in several heuristics to obtain labels to train an downstream classification model M. We
define each heuristic, alternatively called a labeling function (LF), denoted by A : 7 x A — {—1,0, 1} directly on
timeseries data. A LF either abstains {—1} or votes for a particular class {0, 1} given an alert A and its associated
waveform data 7. While we do not expect any individual LF to have perfect accuracy or recall, we do expect them to
have better than random accuracy whenever they do not abstain from voting. Starting with n alerts X = {(A;, T:)}1..n
and m labeling functions A = {\;};=1..m, our goal is to learn a label model £ which assigns a probabilistic label
p(y | A), y € {0,1} to each alert in X.

The label model learns from the overlaps, conflicts and (optionally) dependencies between the LFs using a factor graph
as shown in Fig. 1. In this work, we assume the LFs to be independent given the true class label. While this assumption
may not always stand, most prior work'>!427 has shown that this simple label model may work well in practice. Let
Y = {y;}" denote the vector of unobserved ground truth labels, and let A;; be the vote of the j** LF on the i** data
point. We then define LF accuracy and propensity as ¢4¢°(A;;, v;) = 1{A;; = y;}, and ¢%°(Ayj, yi) £ 1{A;; # 0},

respectively. Following Ratner et al.?®, we define the model of the joint distribution of A and Y" as:
1 m n
po(A,Y) = Z exp(D > (0,6 (Aij,yi) + 0j4m ™" (Aij,0:)))
j=1i=1

where Zy is a normalizing constant and 6 are the canonical parameters for the LF accuracy and propensity. We use
Snorkel? to learn # by minimizing the negative log marginal likelihood given the observed A. Finally, given a set of
training alerts {x1,...,2,}, 2; € X we want to train an end model classifier M : X — Y such that M(x) = y.

Vital Sign Data In this work we use a large single-center database comprising of vital sign data of patients admitted
to critical care units of a large tertiary care research and teaching hospital. The data was curated and de-identified at
the institution, whose Institutional Review Board deemed this research did not qualify as human subjects research.
Cardiorespiratory vital sign alert data consisting of a variety of waveforms and numerics were collected with the
Philips IntelliVue MX800 Monitor from a mix of ICU and Step Down Unit (SDU) patients. The data is comprised
of approximately 367,464 monitoring hours with around 80 hours of data from each patient. Numerics, including
respiratory rate (RR), HR, oxygen saturation (SpO2), and telemetric oxygen saturation (SpOsT) were sampled at 1 Hz.
Waveform data, including ECG lead II and lead III, plethysmographs (pleth), telemetric plethysmographs (plethT),
arterial pressure waveforms (ART) derived from an indwelling arterial catheter, and respiratory waveforms (resp)
from impedance pneumography, were all sampled at various frequencies. ECG lead II and lead III were sampled at
both 250 Hz and 500 Hz. Pleth, plethT, and ART were all sampled at 125 Hz, and the resp waveform was
sampled at 62.5 Hz.

Vital Sign Alert Events We determined both RR and SpOy/SpO-T vital sign alerts by analyzing the RR numeric
and SpO9/SpO2 T numeric, respectively, on 4 factors: (1) duration - at least 5 minutes of the respective numeric data
was present, (2) persistence - at least 70% of the numeric values exceeded respective thresholds (< 10 breaths per
minute or > 29 breaths per minute for RR and < 90% for SpO2/Sp0sT), (3) folerance of 5 minutes suggesting that
consecutive alerts < 5 minutes apart were combined, and (4) density expectation of 65% of numeric values present
at a 1 Hz sampling frequency. These factors ensured that the VS alerts we analyzed contained continuous spaced
anomalies with minimal interruption and were sufficiently long to have clinical relevance. Inspired by prior work by
Chen et al.> and Hravnak et al.'!, we only used the first 3 minutes of each alert event for both RR and SpO,/SpO,T
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alert classification. Additionally, we broke each 3 minute alert window into three 1 minute windows, primarily as a
way to artificially boost the sample size. The ground truth label for each of the alert windows was assumed to be
the same as that of the parent event. In the rest of this paper, RR or SpO2/SpO,T alerts refer to these 1 minute alert
event windows. We analyzed 648 RR alerts (216 events), comprising of 477 real alerts and 171 artifacts, and 621
SpO2/SpO.T alerts (207 events), comprising of 432 real alerts and 189 artifacts. Of these 621 SpO2/SpO2T alerts,
183 were telemetric alerts (87 real, 96 artifact), and 438 are non-telemetric (345 real, 93 artifact).

Expert Knowledge Informing Alert Classification Manually classifying artifact VS alerts is an arduous, repetitive,
yet sufficiently objective process, largely governed by a set of guiding principles or “business rules” based on visual
distinction and clinical intuition'!. In this work, we utilized business rules which were developed during an iterative,
multi-professional process of manual review and annotation of a subset of VS alerts by a committee of expert clinicians
with decades of emergency-care experience. This review was followed by group discussions that involved adjudication
and recognition of visual commonalities which were later translated into natural language rules upon consensus.

Most business rules are based on the apparent disagreement between numerics recorded by the monitor and corre-
sponding numerics derived from recorded waveform data. For instance, most business rules to distinguish between
real and artifact RR alerts are based on discrepancy of observed RR and the RR numeric derived from the resp,
pleth, plethT, and ART waveforms. In this study, however, we were unable to derive RR from the plethT and
ART waveforms after finding a large portion of the data for these waveforms to be missing or incomplete. Simi-
larly, SpO2/SpO-T alerts are more likely to be artifacts when the observed HR does not match HR derived from the
pleth/plethT waveforms. Our label model leveraged the overlaps and conflicts between labeling functions built
on different core methodologies to probabilistically label training data. Some business rules compared the HR derived
from ECG lead III to that computed from the pleth waveform, and another examined whether patients are expe-
riencing tachypnea (rapid breathing, with RR > 20) during an oxygen saturation alert. To improve reliability, some
business rules also checked whether resp and pleth waveforms were too low or displayed a lack of pulsatility.

From Expert Knowledge to Labeling Functions giapbetling function()

Since most business rules relied on RR and HR numer- def respNKl{waveform):

ics derived from the recorded Waveforms’ we developed if matches(waveform.respNK1l, waveform.medRR, @.15):
multiple core methodologies with wide ranging accu- else'_' W RERL

racy, to comque these numerics. For mgst bus1pess rules ;_e R ——

relying on derivations of RR and HR, it was important

to be able to compute the primary/secondary harmon- Figure 2: This sample RR LF demonstrates the general de-
ics and locate peaks in different waveforms. For in- sign of these functions. Heuristics suggested by domain
stance, the RR closely corresponds to the median num- experts can be easily encoded as a set of simple conditional
ber of peaks and the primary harmonic of a clean resp statements. In this specific case, when the value for the me-
waveform. We compute the former using a modified ver- dian RR derived from respiratory waveform data is within
sion of the Python SciPy package’s peak detection al- 15% of the median RR numeric, the alert is labeled as real.
gorithm?® and extrema extraction algorithm proposed in  Otherwise, it is labeled as artifact.

Khodadad et al.>' as implemented in Neurokit 232

We computed the primary harmonic of the resp waveform by locating the highest peak of a periodogram modified
by the Bohman windowing function. Prior to using the re sp waveform, we processed it by linear detrending followed
by a fifth order 2Hz low-pass IIR Butterworth filter*!. To derive RR from the pleth and ART waveforms, we first
processed them via a different, novel, multi-step methodology, which involved interpolating the tips of the peaks found
using SciPy’s peak detection algorithm via spline interpolation. This was done to derive a new waveform designed
to emulate the periodicity of the re sp waveform, from which RR can be extracted via the same core methodologies.
For SpO4/SpO,T alerts, we derived the HR numeric from ECG lead II and III using the same core methodologies, after
employing an ECG cleaning technique proposed in Neurokit2%.

Finally, we translated our business rules into labeling functions, building on the aforementioned core methodologies.
As an example, Figure 2 illustrates one such LF, comparing the observed median RR (waveform.medRR) with
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the RR derived from resp using the methods proposed in Khodadad et al.’! and implemented in Neurokit2
(waveform.respNK1l). We implemented a total of 8 and 11 noisy heuristics for the binary classification of RR
alerts and SpO2/SpO,T alerts, respectively.

From Labeling Functions to Alert Classifier We trained the label model £ defined in the previous section using
LFs for respective VS alerts, to obtain probabilistic labels for our training data. We used the label model implemen-
tation in Snorkel?® for the same. Samples not covered by any LF were filtered out, and the remaining probabilistic
labels produced by the label model were translated into crisp binary training labels, which were then used to train a
Random Forest (RF) model®® to classify VS alerts as real versus artifact. RFs have been widely used in literature to
learn complex decision boundaries for various classification problems*3> and have also been shown to be effective
for learning discriminative models of real versus artifact VS alert classification’>. We trained RF models with 1000
decision trees having a maximum depth of 5 implemented using scikit-learn?®.

Experimental setup

Featurization In order to train the RF models, we utilized the features computed for use by our LFs such as the RR
derived from a modified periodogram of the re sp waveform (respFFT), wave amplitude of the plethand plethT
waveforms (pulsatility and pulsatilityT, respectively), etc., but we also extracted features from the raw
waveforms and numerics themselves by computing a set of aggregate statistics (mean, standard deviation, kurtosis,
skewness, median, 1st and 3rd quartile). For the RR alerts, we subsequently dropped the features calculated from the
ART, plethT, and ECG lead III waveforms, and the SpOsT numerics, due to more than 75% of the alerts missing
this data. For SpOs/SpO-T alerts, we dropped features calculated from the ART waveform, for the same reason. Next,
we replaced any missing values remaining in the data after incomplete features were removed with either a 0 or —1
depending on the nominal ranges of the feature values.

Baselines and Evaluation We compared our weakly supervised RF model (Weak Sup.) with its fully super-
vised counterpart trained using ground truth labels (Fully Sup.), probabilistic labels produced by the label model
(Prob. Labels), and RF models trained using majority vote (Majority Vote) instead of the data program-
ming label model. The majority vote model predicts what the majority of LFs voted for. All models were trained in a
leave-one-patient-out (LOPO) cross-validation setting, where the models were trained on data from all but one patient,
and tested on the held-out patient’s data. This setting ensures that the models do not inadvertently fit to patient specific
characteristics to prevent artificially inflating their performance.

We compared all the models using a few different performance metrics including accuracy and AUC*. We also
computed metrics of practical utility such as the false positive rate at 50% true positive rate (FPR 50% TPR), true
positive rate at 1% FPR (TPR 1% FPR), etc. All models and LFs were implemented using Python programming
language (version 3.8.1), and experiments were carried out on a computing cluster with 64 CPUs equipped with AMD
Opteron 6380 processors having a total of 252 GB RAM.

Additional Research Questions In addition to examining the efficacy of WS models for VS alert classification, we
aimed to answer the following research questions.

(1) What patterns are our RF models learning? Interpretability is important when ML models are deployed in
clinical settings, especially when using complex models such RFs. We used Gini importance (G1)** and permuta-
tion feature importance (PFI)*’ to determine which features our weakly supervised model relied on the most while
making label predictions (Figure 3). Since GI can be inflated for high-cardinality features, PFI was also ana-
lyzed to reliably understand feature importance, in line with prior work conducted in different settings®. GI and
PFI were evaluated by accessing the feature importance for a trained scikit—-learn RF classifier, and using the
permutation_feature_importance functionin scikit-learn, respectively.

*The code for our experiments is publicly available at https://github.com/autonlab/weakVSAlertsAdjudicator
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(2) How useful is the waveform data? Since most of the previous work (e.g., Chen et al.”> and Hravnak et al.'') on
VS alert classification did not utilize high-density VS waveform data, we were curious about the predictive utility of
waveform data for classifying VS alerts. Consequently, we conducted ablation experiments by withholding waveform
features while training and validating our weakly and fully supervised models using the same LOPO cross-validation
procedure. However, we must note that the LFs informing the weakly supervised RF still had access to requisite
waveform data, and therefore these experiments were not completely indicative of settings with a lack of waveform
data.

Results
Respiratory Rate Alerts Oxygen Saturation Alerts
Accuracy AUC FPR 50% TPR FNR 50% TNR TPR 1% FPR TNR 1% FNR | Accuracy AUC FPR 50% TPR FNR 50% TNR TPR 1% FPR TNR 1% FNR

Weak Sup. 0.915 0.951 0.012 0.008 0.428 0.567 0.881 0.940 0.011 0.009 0.382 0.630
Majority Vote 0.855 0.952 0 0.015 0.551 0.409 0.899 0.951 0.011 0.007 0.458 0.630
Fully Sup. 0.886 0.898 0.07 0.023 0.038 0.304 0.903 0.964 0.016 0.007 0.345 0.582
Prob. Labels 0.894 0.936 0.006 0.002 0.577 0.550 0.844 0.902 0.016 0.037 0.151 0.143
WS w/o WF 0.887 0918 0.035 0.010 0.031 0.474 0.709 0.754 0.111 0.197 0.012 0.032
Sup. w/o WF 0.838 0.871 0.053 0.019 0.004 0.146 0.730 0.825 0.037 0.106 0.002 0.243
Maj. w/o WF 0.792 0.899 0.07 0.019 0.080 0.199 0.702 0.779 0.058 0.167 0.025 0.069

Table 1: We calculated various performance metrics of ML pipelines on the classification of RR & SpO2/SpO2T
alerts. Interestingly, we found the performance of the weakly supervised model to be comparable, and in some cases
superior, to the fully supervised method for both alert types.

Performance Metrics For the RR alerts, the various

performance metrics shown in Table 1 highlight our WS GI PFI
model’s surprising, but superior performance over its FS 5 Alert dWS Fullll/ Sup- "(ZS FUU%’{ ?ip-
. std_resp ql_rr std_rr respHeight
counterpart. On the other hand, analysis on the mod- 4 respHeight  respHeight ql_resp std_resp
els’ performance on SpO2/SpO.,T alerts yielded more RR mean_rr mean_rr respFFT std_r
expected results, with the FS model performing slightly n?;&rir S}fe—;e:f ;li;ﬁﬂ g?—i:g
better than the WS. However, the WS model’s perfor- —g PIGthEFT Kurt_pleth med_1r PIeth TINT
mance is still noteworthy considering that the FS model = plethINT plethFFT ql_r plethTNK 1
: : SpO2 plethNK1 plethINT q3_rr plethFFT
had the immense advantage of accessing ground truth Kurt_pleth 43._pleth DehNK1  plethTFFT
labels for training. The results also indicate that our plethHeight ~ plethNK1 | skew_pleth  med_SpO,T

models performed better at classifying RR alerts than

SpO4/SpO,T alerts, consistent with prior work by Chen Figure 3: Feature importance calculated for RR and

et al.”. However, the performance gap we found between SpO2/SpO2T alerts using Gini importance (GI) and per-

the two alert types was slimmer, likely due to the inclu- mutation feature importance (PFI) are shown in decreas-

sion of waveform data in our work. ing order of importance. The ranked features between the
weakly and fully supervised pipelines for both alert types
show similarities and differences in the types of features

ROC Analysis In Figures 4 and 5, we plot pairs of Re-  ;5ed by the RF models for each pipeline.
ceiver Operating Characteristic (ROC) diagrams for each

experimental configuration in logarithmic scale of the horizontal axis to help focus the interpretation of the results on
the low error rate settings which are of practical relevance in clinical decision support scenarios. One plot in each pair
shows true positive rate as a function of logarithmically scaled false positive rate, while the other shows the other end
of the ROC plot by presenting the same data in the coordinates of true negative rate as a function of logarithmically
scaled false negative rate. Each plot includes a solid black line corresponding to random performance for viewers’
reference.

From the ROC plots for RR alerts shown in Figure 4 (i & ii), it is clear that our WS model has a higher TPR and TNR
at nearly every FPR and FNR setting, respectively. For SpO2/SpO-T (Plots iii & iv in Figure 4), that is not the case.
Nonetheless, WS still performs comparably to FS, despite not having access to ground truth labels, underscoring the
impressive capabilities of weak supervision as applied to VS alert classification.
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Figure 4: Log-scale ROC-AUC plots with 95% Wilson score confidence intervals for RR (i & ii) and SpO2/SpO-T
alerts (iii & iv), each with the WS (red), majority labeler (green), FS learning (blue), and probabilistic labels (grey).
These plots highlight the WS pipeline’s ability to keep up with the fully supervised method for the SpOs/SpO-T alerts,
and outperform it on the RR alerts.

105 0

Answers to Additional Research Questions Our weakly and fully supervised RF models are learning similar pat-
terns. We found considerable overlap between important features for our weakly and fully supervised RF classifiers,
despite some minor differences in the feature importance ranking. For example, our models for RR alerts found the
standard deviation (st d_resp) and the height of the resp waveform (respHeight) to be the most important. For
SpO4/SpO-T alerts, we found the HR derived from the primary harmonic of the pleth (plethFFT), and by count-
ing its peaks (plethINT)' to be high-ranking across both models in terms of GI and PFI. The apparent discrepancies in
rankings may be due to the different ways in which GI and PFI compute feature importance. Nevertheless, the large
overlap in high-ranking features for both alert types, across both types of models, and for both feature importance
metrics, indicates that the weakly and fully supervised RF models may be learning similar patterns for both VS alert

types.

log10(FPR) log10(FNR) log10(FPR) log10(FNR)
@) (i) (iii) (iv)

Figure 5: Log-scaled ROC plots with 95% Wilson confidence intervals pertain for ablation experiments conducted on
RR alerts (i & ii) and SpOo/SpO,T alerts (iii & iv). Each plot shows the WS pipeline without waveform data (red),
with waveform data (dark-red), the FS pipeline without waveform data (blue), with waveform data (dark-blue), and
the probabilistic labels (grey). The separation between the curves indicate that waveform data is much more beneficial
for oxygen saturation alerts than for RR alerts.

Waveform data is helpful for RR alerts, but almost essential for SpO2/SpO-T alerts. The log-scale ROC plots in Figure
5 neatly visualize the predictive utility of waveform data for both the RR and SpO2/SpO-T alerts. For RR alerts, the
plots show some separation between models with and without access to waveform data, indicating the slight usefulness
of waveform data for RR alert classification. In contrast, the plots for oxygen saturation alerts show a much larger gap,
with models having access to waveform data performing much better than those without. The significant predictive
utility of waveform data for oxygen saturation alert classification is further substantiated by the ubiquity of waveform
features in the top echelon of feature importance rankings, as highlighted previously and shown in Table 3.

*Specifically, plethINT is based on the number of common peaks found using the peak finding functions of sciPy and Neurokit2.
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Discussion

This work has five main takeaways: (1) The novel core methodologies we developed to derive VS numeric values from
time series waveform data were reliable, and have meaningful applications beyond the scope of this project. (2) Both
the fully and weakly supervised pipelines - when validated on unseen data from a unique patient - remained robust
and performed well, with AUC values ranging from 0.898 to 0.964 for all the models. (3) The predictive utility of
waveform data was found to be minimal for RR alerts, but significantly important for SpO2/SpO,T alerts. (4) The
WS models were shown to perform on par with their FS counterparts, and for the RR alerts, even outperform them.
(5) Perhaps most importantly, the WS models could be built within a span of a few hours, and without the significant
involvement or time of domain experts, streamlining the process of building accurate and efficient VS alert classifiers.
Overall, this work demonstrates the efficacy of weak supervision as a framework to streamline the process for building
ML models for HC applications in a scalable fashion, contributing to a broadening of the social impact of powerful
machine learning methodologies.

Limitations & Future Work

There are a few limitations of this work. Firstly, it assumes a priori knowledge of approximate real versus artifact class
balances of vital sign alerts. However, domain experts often already have this knowledge, so these models can still
be built to accomplish their goals. Secondly, due to the design of our study, the WS model is currently best used as a
“fact-checker” that lends a secondary opinion on archived vital sign alert data. In the future, analysis should be carried
out to measure the speed and latency of the classification algorithm, before eventually optimizing the design to create
and implement a real-time artifact alert adjudication system. Despite these limitations, the promising results indicate
that a trained WS model could eventually serve as an effective tool for medical practitioners to combat alarm fatigue
in the acute and intensive care settings.
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